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a b s t r a c t

We establish a global convergence result for an efficient third-order iterative process
which is constructed from Chebyshev’s method by approximating the second derivative
of the operator involved by combinations of the operator. In particular, from the use
of auxiliary points, we provide domains of restricted global convergence that allow
obtaining balls of convergence and locate solutions. Finally, we use different numerical
examples, including a Chandrashekar’s integral equation problem, to illustrate the study.
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1. Introduction

When solving a nonlinear equation, we feel generally obliged to apply iterative processes to approximate a solution
f the nonlinear equation because we cannot calculate the solution exactly. Thus, if we consider an equation of the form
(x) = 0, where F is a nonlinear operator, F : Ω ⊆ X → Y , defined on a non-empty open convex domain Ω of a Banach
pace X with values in a Banach space Y , we often apply a one-point iterative process of the form

xn+1 = P(xn), n ≥ 0, for given x0, (1)

here P : X → X , to approximate a solution of F (x) = 0. For this, we need to see that the solution exists and the
sequence (1) converges to this solution.

In the general approach we just mentioned, the nonlinear equation F (x) = 0 can represent a system of nonlinear
equations, a differential equation, a boundary value problem, an integral equation, etc. If we pay a little attention to the
equation F (x) = 0, we see that it can be represented in the form of a fixed point equation. For this, just write F (x) = 0
as x = G(x) with G(x) = x − F (x), so that if we approximate a fixed point of the equation x = G(x), we then obtain a
solution of F (x) = 0. A common procedure to approximate a fixed point of an equation is to apply a fixed point result
like this [1,2]:
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If the operator H : S → S, where S is a convex and compact set of a Banach space X , is a contraction, then
the operator H has a unique fixed point in S, that is approximated by the method of successive approximations,
un+1 = H(un), n ≥ 0, from any u0 ∈ S.

This fixed point result has two remarkable characteristics: it proves the existence of the fixed point and provides an
iterative process to approximate it. The iterative process has the advantage that it is globally convergent in the set S and
the disadvantage of its slow convergence (linear convergence only).

If we now think of any iterative process of the form (1), we see that we cannot obtain a result with features similar
to those given by the previous fixed point result, since we cannot obtain them simultaneously. Observe that we usually
analyze the convergence of sequence (1) in two different ways [3–6]. The first consists in giving conditions on the starting
point x0 and on the operator F , so that it proves the existence of a solution x∗ of the equation F (x) = 0, provides a ball of
existence of solution of F (x) = 0, B(x0, ρ1), called existence ball, and the convergence of (1) starting at x0. This is called
emilocal convergence. The second assumes previously that a solution x∗ of F (x) = 0 exists and, under certain conditions
on the operator F , we obtain a ball B(x∗, ρ2), called convergence ball, where the convergence of (1) is guaranteed by taking
any point on the ball as the starting point x0, so that we obtain global convergence for (1) in the ball B(x∗, ρ2). This is
alled local convergence. We then see that none of these results has the features of the above fixed point result at the
ame time. In this work, we look for a convergence result for an iterative process of the form (1) that combines the thesis
f local and semilocal convergence.
Our main aim in this work is to obtain a result of convergence for an efficient third-order iterative process of the

orm (1) such that the existence of a solution x∗ of F (x) = 0 is proved and it provides a domain in which the sequence
given by the iterative process converges globally, so that it converges starting at any point of the domain.

The iterative process considered,⎧⎪⎪⎪⎨⎪⎪⎪⎩
x0 given in Ω,

yn = xn − [F ′(xn)]−1F (xn),
zn = xn + p (yn − xn), p ∈ (0, 1],

xn+1 = yn −
1
p2

[F ′(xn)]−1 ((p − 1)F (xn) + F (zn)) , n ≥ 0,

(2)

is constructed in [7] from Chebyshev’s method and by using a slight modification of a technique developed in [8] to obtain
iterative processes of the form (1). The idea used in [7] is to approximate the second Fréchet derivative of the operator F in
Chebyshev’s method by means of only combinations of F in different points, so that F ′′ is not used and F ′ is only evaluated
in xn. With this modification of Chebyshev’s method, the number of evaluations of functions and the computational cost
are considerably reduced, the efficiency is improved and the order of convergence is kept, see [7]. Notice that, for p = 1,
the iterative process (2) corresponds to the two-step frozen Newton method [9].

To achieve our aim, we use a technique based on auxiliary points [2,10], and, from certain conditions on the operator
F and on an auxiliary point, we prove the existence of a solution x∗ of F (x) = 0 and guarantee the convergence of (2)
to x∗ starting at any point of a ball centered at the auxiliary point. Moreover, we obtain results of semilocal and local
convergence for iterative process (2) from two particular choices of the auxiliary point.

Throughout the paper, we denote B(x, ϱ) = {y ∈ X : ∥y − x∥ ≤ ϱ} and B(x, ϱ) = {y ∈ X : ∥y − x∥ < ϱ} and the set of
bounded linear operators from Y to X by L(Y , X).

2. Convergence conditions

Now, we introduce the conditions under which we study the global convergence of the iterative process (2), which
are:

(C1) For some x̃ ∈ Ω , there exists Γ̃ = [F ′ (̃x)]−1
∈ L(Y , X) with ∥Γ̃ ∥ ≤ β and ∥Γ̃ F (̃x)∥ ≤ η.

(C2) There exists a constant K ≥ 0 such that ∥F ′(x) − F ′(y)∥ ≤ K∥x − y∥, for all x, y ∈ Ω .

If we observe the condition (C2), it is easy to follow that

∥F ′(x) − F ′ (̃x)∥ ≤ K̃∥x − x̃∥, for all x ∈ Ω,

with K̃ ≤ K , once x̃ ∈ Ω is fixed.
Next, we introduce some approximations that are used later to prove the convergence of the iterative process (2).

Lemma 1. Let F : Ω ⊆ X → Y be a once continuously differentiable operator defined on a non-empty open convex domain
Ω of a Banach space X with values in a Banach space Y . Then,

(a) F (x0) = F (̃x) + F ′ (̃x)(x0 − x̃) +

∫ x0

x̃

(
F ′(x) − F ′ (̃x)

)
(x0 − x) dx, with x0, x ∈ Ω .

(b) For xn, zn ∈ Ω , we have (see [7])

F (zn) = (1 − p)F (xn) +

∫ zn

xn

(
F ′(x) − F ′(xn)

)
(zn − x) dx,
2
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(c) For xn, xn+1 ∈ Ω , we have (see [7])

F (xn+1) = F (xn) + F ′(xn)(xn+1 − xn) +

∫ xn+1

xn

(
F ′(x) − F ′(xn)

)
dx

=
1
p

∫ 1

0

[
F ′(xn) − F ′(xn + pt(yn − xn))

]
(yn − xn) dt

+

∫ 1

0

[
F ′(xn + t(xn+1 − xn)) − F ′(xn)

]
(xn+1 − xn) dt.

(d) For xn ∈ Ω , we have

F (xn) + F ′(xn)(̃x − xn) = F (̃x) −

∫ x̃

xn

(
F ′(x) − F ′(xn)

)
(̃x − x) dx.

In addition, from ∥I − Γ̃ F ′(x)∥ ≤ ∥Γ̃
(
F ′ (̃x) − F ′(x)

)
∥ and the Banach lemma on invertible operators, we have

∥Γ ∥ = ∥[F ′(x)]−1
∥ ≤

β

1 − K̃βR
= d and ∥Γ F ′ (̃x)∥ ≤

1
1 − K̃βR

,

provided that there exists R > 0 such that x ∈ B(̃x, R) ⊂ Ω and

K̃βR < 1. (3)

3. Analysis of global convergence

In this section, we analyze the global convergence of the iterative process (2). For this, we first construct a system of
recurrence relations, where a scalar sequence is involved, from the real parameters given in conditions (C1) and (C2), and
the global convergence of the iterative process is then guaranteed.

3.1. Recurrence relations

From (3), it follows that ∥Γ0∥ = ∥[F ′(x0)]−1
∥ ≤ d and ∥Γ0F ′ (̃x)∥ ≤

1
1−K̃βR

, provided that x0 ∈ B(̃x, R). Next, from item
(a) of Lemma 1, we have

∥y0 − x0∥ ≤ ∥Γ0F ′ (̃x)∥∥Γ̃ F (x0)∥ ≤
2η + 2R + K̃βR2

2(1 − K̃βR)
= e.

In addition, from item (d) of Lemma 1, it follows

∥y0 − x̃∥ =
−Γ0

(
F (x0) + F ′(x0)(̃x − x0)

)
≤ ∥Γ0F ′ (̃x)∥∥Γ̃ F (̃x)∥ +

Kβ

2(1 − K̃βR)
∥x0 − x̃∥2

≤
2η + KβR2

2(1 − K̃βR)
.

so that y0 ∈ B(̃x, R), provided that

2η + KβR2

2(1 − K̃βR)
≤ R. (4)

Moreover, as

∥z0 − x0∥ = p∥y0 − x0∥ ≤ p e,
∥z0 − x̃∥ ≤ (1 − p)∥x0 − x̃∥ + p∥y0 − x̃∥ ≤ R,

it follows that z0 ∈ B(̃x, R), provided that (4) is satisfied. Furthermore,

∥x1 − x0∥ =

− 1
p2

Γ0
(
(p2 + p − 1)F (x0) + F (z0)

) ≤ (1 + a0/2) ∥y0 − x0∥,

∥x1 − x̃∥ =

y0 − x̃ −
1
p2

Γ0 ((p − 1)F (x0) + F (z0))
 ≤

2η + KβR2

2(1 − K̃βR)
+

e
2
a0.

here a0 = Kde, and x1 ∈ B(̃x, R), provided that

2η + KβR2

2(1 − K̃βR)
+

e
2
a0 ≤ R. (5)

Observe that (4) holds if (5) is satisfied.
3
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Next, from ∥y1 − x1∥ ≤ ∥Γ1∥∥F (x1)∥ and item (c) of Lemma 1, we have

∥y1 − x1∥ ≤ f (a0)∥y0 − x0∥,

where

f (t) =
t
8
(t2 + 4t + 8). (6)

As f is increasing for t > 0, it follows that

Kd∥y1 − x1∥ ≤ a1,

∥y1 − x̃∥ ≤
2η + KβR2

2(1 − K̃βR)
,

∥z1 − x1∥ ≤ pf (a0)∥y0 − x0∥,
∥z1 − x̃∥ ≤ R,

∥x2 − x1∥ ≤ (1 + a1/2) ∥y1 − x1∥,

∥x2 − x̃∥ ≤
2η + KβR2

2(1 − K̃βR)
+

e
2
a0f (a0)2,

and y1, z1, x2 ∈ B(̃x, R), provided that

2η + KβR2

2(1 − K̃βR)
+

e
2
a0f (a0)2 ≤ R.

Notice that the last condition holds if (5) and f (a0) < 1 are satisfied.
Now, we consider a1 = a0f (a0) and define

an = an−1f (an−1), n ≥ 1.

otice that f (a0) < 1 if a0 < 0.7064 . . . and, as a consequence, the sequence {an} is decreasing.
The following aim is to guarantee that sequence (2) is well-defined. For this, we introduce the following lemma.

Lemma 2. Let f be the real function given in (6). If there exists R > 0 such that condition (5) and a0 < 0.7064 . . . are satisfied,
then the following items are true for all n ≥ 1:

∥yn − xn∥ ≤ f (an−1)∥yn−1 − xn−1∥,

Kd∥yn − xn∥ ≤ an,

∥yn − x̃∥ ≤
2η + KβR2

2(1 − K̃βR)
≤ R,

∥zn − xn∥ ≤ pf (an−1)∥yn−1 − xn−1∥,

∥xn+1 − xn∥ ≤ (1 + an/2)∥yn − xn∥, (7)

∥xn+1 − x̃∥ ≤
2η + KβR2

2(1 − K̃βR)
+

e
2
a0

(
n−1∏
i=0

f (ai)2
)

≤ R,

To prove the last lemma, we simply apply mathematical induction and use the same arguments that we have previously
sed to prove the first step of induction.
From the use of auxiliary points, we notice that the global convergence of the iterative process (2) follows steps similar

o those used to obtain results of semilocal convergence [7]. Since condition (5) is usually satisfied for different values of
, we then choose the most favorable value. Note that the greater value of R gives us the best global convergence domain
nd the smallest gives us the best location of the solution.

.2. Global convergence

The restricted global convergence of the iterative process (2) follows now from the next result.

heorem 3. Let F be a once continuously differentiable operator defined on a non-empty open convex domain Ω of a Banach
space X with values in a Banach space Y . Assume that the conditions (C1) and (C2) hold and the existence of R > 0 satisfying (5)
and such that B(̃x, R) ⊂ Ω . If conditions (3) and a0 < 0.7064 . . . are satisfied, then the iterative process (2) is well-defined
and converges to a solution x∗ of the equation F (x) = 0 in the domain B(̃x, R) from every point x0 belonging to B(̃x, R).
4
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Proof. Observe that the sequence given by the iterative process (2) is of Cauchy without taking into account (7) and

∥xn+m − xn∥ ≤

n+m−1∑
i=n

(1 + ai/2)∥yi − xi∥

≤ (1 + a0/2)
n+m−1∑

i=n

f (ai−1)∥yi−1 − xi−1∥

≤ (1 + a0/2)f (a0)n∥y0 − x0∥
m−1∑
i=0

f (a0)i

≤ (1 + a0/2)f (a0)n∥y0 − x0∥
1 − f (a0)m

1 − f (a0)
.

herefore, the sequence given by the iterative process (2) is convergent.
In addition, by the continuity of F in B(̃x, R), we obtain F (x∗) = 0, since ∥F (xn)∥ → 0 as a consequence of ∥ΓnF (xn)∥ →

, ∥F (xn)∥ ≤ ∥F ′(xn)∥∥ΓnF (xn)∥ and {∥F ′(xn)∥} is bounded, due to the fact that ∥F ′(xn)∥ ≤ ∥F ′ (̃x)∥ + K̃R, for all n ≥ 0. ■

Note that this way of analyzing the global convergence of the iterative process (2) allows locating the solution x∗ in
the ball B(̃x, R) and defining a ball of global convergence B(̃x, R).

4. Uniqueness of solution

In the following, we establish the uniqueness of solution of the equation F (x) = 0.

Theorem 4. If the conditions (C1) and (C2) are satisfied, then the solution x∗ of the equation F (x) = 0 is unique in B(̃x, ε)∩Ω ,
where ε is a positive root of

K̃β(R + ε) − 2 = 0. (8)

Proof. Assume that v∗ is another solution of equation F (x) = 0 in B(̃x, ε) ∩ Ω . Then,

0 = Γ̃
(
F (v∗) − F (x∗)

)
=

(∫ 1

0
Γ̃ F ′(x∗

+ t(v∗
− x∗)) dt

)
(v∗

− x∗) = Q (v∗
− x∗),

so that v∗
= x∗ if the operator Q =

∫ 1
0 Γ0F ′(x∗

+ t(v∗
− x∗)) dt is invertible. For this, we see that

∥I − Q∥ ≤ ∥Γ̃ ∥

∫ 1

0

(
F ′ (̃x) − F ′(x∗

+ t(v∗
− x∗))

)
dt


≤ β

∫ 1

0
K̃ ∥̃x − x∗

− t(v∗
− x∗)∥ dt

<
1
2
K̃β(R + ε)

= 1

and, by the Banach lemma on invertible operators, we conclude that Q is invertible. ■

Example 5. In this example we present an application of the previous analysis to the Chandrasekhar equation:

x(s) = 1 +
ϖ0

2
s x(s)

∫ 1

0

x(t)
s + t

dt, s ∈ [0, 1], (9)

which arises in the theory of radiative transfer [11]; where ϖ0 is the albedo for single scattering and x(s) is the unknown
function which is sought in C[0, 1]. The physical background of this equation is fairly elaborate. It was developed by
Chandrasekhar [11] to solve the problem of determination of the angular distribution of the radiant flux emerging from a
plane radiation field. This radiation field must be isotropic at a point, that is the distribution in independent of direction
at that point. Explicit definitions of these terms may be found in the literature [11]. It is considered to be the prototype
of the equation,

x(s) = 1 + s x(s)
∫ 1 ϕ(s)

x(t) dt, s ∈ [0, 1],

0 s + t

5
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for more general laws of scattering, where ϕ(s) is an even polynomial in s with∫ 1

0
ϕ(s) ds ≤

1
2
. (10)

Integral equations of the above form also arise in the other studies [12,13].
We consider (9) for ϖ0 =

1
4 which satisfies (10). To solve this equation is equivalent to solve F (x) = 0, where

F : C[0, 1] → C[0, 1] and

[F (x)](s) = x(s) − 1 −
s
8
x(s)

∫ 1

0

x(t)
s + t

dt, s ∈ [0, 1], (11)

herefore Ω = C[0, 1].
First of all, from Eq. (9) we obtain that x(0) = 1 and as a consequence we can select as initial guess x̃(s) = 1, in the

omain of s. Moreover, we obtain that

[F (x0)](s) = −
s
8

∫ 1

0

dt
s + t

= −
s
8
ln
[
1 + 2

s

]
, s ∈ [0, 1].

Consequently,

∥[F (x0)](s)∥ =
ln2
8

.

Furthermore, we get

[F ′(x)y](s) = y(s) −
s
8
x(s)

∫ 1

0

y(t)
s + t

dt −
s
8
y(s)

∫ 1

0

x(t)
s + t

dt, s ∈ [0, 1]

then

∥I − F ′(x0)∥ ≤
ln2
4

,

nd, from the Banach lemma, we obtain

β =
1

1 −
ln2
4

≈ 1.2096 and η =

ln2
8

1 −
ln2
4

≈ 0.1048.

Moreover, it is easy to check that K = K̃ =
ln2
4

≈ 0.173287. Now, notice that the condition

2η + KβR2

2(1 − K̃βR)
+

e
2
a0 ≤ R

it is verified for R ∈ [0.114254, 1.45189]. For all these values KβR < 1 is verified. But the condition a0 =< 0.7064 . . . it
is verified for R ∈ [0.114254, 1.38785]. So, both conditions are satisfied and as a consequence the iterative process (2) is
well-defined and converges to a solution x∗ of the equation F (x) = 0 in the domain B(1, R) for R ∈ [0.114254, 1.38785].
Therefore, the best ball of existence for the location of the solution is B(1, 0.114254) and the best ball for the global
convergence for the iterative process (2) is B(1, 1.38785).

On the other hand, from Theorem 4, we obtain as the ball of uniqueness of solution B(1, 8.15371)
To obtain a numerical solution of equation, we first discretize the problem and approach the integral by a Gauss–

Legendre numerical quadrature with eight nodes∫ 1

0
f (t) dt ≈

8∑
j=1

wjf (tj),

here the nodes and weights are given in Table 1.
If we denote xi = x(ti), i = 1, 2, . . . , 8, equation is transformed into the following nonlinear system:

xi = 1 +
xi
8

8∑
j=1

aijxj, i = 1, 2, . . . , 8, (12)

where, aij =
tiwj

ti + tj
. Take into account the previous continuous study, we can now use the initial choice

x = 1, 1, 1, 1, 1, 1, 1, 1 T .
0 ( )

6



J.A. Ezquerro, M.A. Hernández-Verón and Á.A. Magreñán Journal of Computational and Applied Mathematics 404 (2022) 113417

r

I
c

u
a
c

5

f

T
s
s

B

Table 1
Nodes and weights of Gauss–Legendre.
j tj wj

1 0.01985507175123188... 0.050614268145188129...
2 0.10166676129318663... 0.111190517226687235...
3 0.23723379504183550... 0.156853322938943643...
4 0.40828267875217509... 0.181341891689180991...
5 0.59171732124782490... 0.181341891689180991...
6 0.76276620495816449... 0.156853322938943643...
7 0.89833323870681336... 0.111190517226687235...
8 0.98014492824876811... 0.050614268145188129...

Table 2
Solution of system of Eqs. (12).
j x∗

j

1 1.0101781...
2 1.0329569...
3 1.0547234...
4 1.0719797...
5 1.0844979...
6 1.0930361...
7 1.0984086...
8 1.1012071...

Fig. 1. Interpolatory polynomial xint (dotted) and the ball of existence (blue). (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

f we take p = 1, the two-step frozen Newton’s method, after three iterates and a tolerance of 10−30, iterative process (2)
onverges to the numerical solution x∗ of system of Eqs. (12) given in Table 2.
Once the solution x∗ has been obtained, we construct a function xint (see Figs. 1–2) by an interpolating procedure to

se the values obtained from the numerical solution of the arithmetic problem {(tj, x∗

j )}
8
j=1. Observe that the interpolated

pproximation xint lies within the ball of existence and the ball of global convergence of solutions obtained above in the
ontinuous study.

. Particular cases

As we have indicated in Section 1, we can obtain results of local and semilocal convergence for iterative process (2)
rom two particular choices of the auxiliary point x̃.

First, if x̃ = x∗, we can establish the next local convergence theorem for iterative process (2).

heorem 6. Let F be a once continuously differentiable operator defined on a non-empty open convex domain Ω of a Banach
pace X with values in a Banach space Y . Assume that the conditions (C1) and (C2) hold for x̃ = x∗ and the existence of R > 0
atisfying (5) and such that B(x∗, R) ⊂ Ω . If conditions (3) and a0 < 0.7064 . . . are satisfied, then the iterative process (2) is
well-defined and converges to a solution x∗ of the equation F (x) = 0 in the domain B(x∗, R) from every point x0 belonging to
(x∗, R).
7
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r

E

T

Fig. 2. Interpolatory polynomial xint (dotted) and the ball of existence (blue) and the ball of global convergence (red). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

xample 7. We consider the simple system of equations given by{
ln(3 − x)2

8
+ y − 3 = 0

xy − 2y = 0,

it is easy to check that (2, 3) is a solution of this system of equations.
So, let F (x, y) = 0 be given by F : Ω = (2 − δ, 2 + δ) × (3 − δ, 3 + δ) → R2, with δ ∈ (0, 1), and

F (x, y) =

(
ln(3 − x)2

8
+ y − 3, xy − 2y

)
. (13)

hen, we have

F ′(x, y) =

(
−1

4(x − 3)
1

y x − 2

)
We take the sup-norm in R2 and the norm ∥A∥ = max{|a11| + |a12|, |a21| + |a22|} for a matrix

A =

(
a11 a12
a21 a22

)
Then, for δ = 0.5, we obtain

∥F ′(x, y) − F ′(u, v)∥ ≤ ∥(x, y) − (u, v)∥

and then K = 1.
We now choose x̃ = x∗

= (2, 3), then K̃ = 1. Moreover, we obtain β = 13/12 and η = 0. So, the condition

2η + KβR2

2(1 − K̃βR)
+

e
2
a0 ≤ R

is verified for R ∈ [0, 0.27738]. Therefore, B((2, 3), (0.27738)) ⊂ Ω , K̃βR = 0.300495 . . . < 1 and a0 = 0.70639 . . . <
0.7064 . . .. As a consequence, the iterative process (2) is well-defined and converges to the solution x∗

= (2, 3) of the
equation F (x) = 0 in the domain B((2, 3), 0.27738) from every point x0 belonging to B((2, 3), 0.27738).

We can see in Fig. 3 that our result gives a local convergence ball which is contained in the immediate basin of attraction
of solution (2, 3), painted in dark cyan after 100 iterations and a tolerance of 10−3, the black color correspond to the points
of non-convergence to that root. The circle in white is the local convergence ball.

Second, if x̃ = x0, we can establish a semilocal convergence result for iterative process (2), whose proof is followed
similarly to that of Theorem 3 without more than taking into account that items

∥yn − xn∥ ≤ f (bn−1)∥yn−1 − xn−1∥,

Kd∥yn − xn∥ ≤ bn,

∥yn − x0∥ ≤

(
f (b0)n + (1 + b0/2)

1 − f (b0)n+1)
η ≤ R,
1 − f (b0)
8
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Fig. 3. Basins of attraction associated to the method (2), for p = 1, applied to function (13) and ball of local convergence.

∥zn − xn∥ ≤ pf (bn−1)∥yn−1 − xn−1∥,

∥xn+1 − xn∥ ≤ (1 + bn/2)∥yn − xn∥,

∥xn+1 − x0∥ ≤ (1 + b0/2)
1 − f (b0)n+1

1 − f (b0)
η ≤ R,

are true, for all n ≥ 1, if (1+b0/2)η
1−f (b0)

≤ R and bn = bn−1f (bn−1) with b0 = Kdη < 0.7064 . . . So, we have the following
theorem.

Theorem 8. Let F be a once continuously differentiable operator defined on a non-empty open convex domain Ω of a Banach
space X with values in a Banach space Y . Assume that the conditions (C1) and (C2) hold for x̃ = x0. If there exists R > 0 such
that

(1 + b0/2)η
1 − f (b0)

≤ R,

where b0 = Kdη, and satisfies

K̃βR < 1, b0 < 0.7064 . . .

and B(x0, R) ⊂ Ω , then the iterative process (2) is well-defined and converges to a solution x∗ of F (x) = 0 in B(x0, R) starting
t x0.

xample 9. Now we consider the following Planck’s radiation law problem found in [14]:

ϕ(λ) =
8πcPλ−5

e
cP

λBT − 1
(14)

hich calculates the energy density within an isothermal blackbody, where

• λ is the wavelength of the radiation,
• T is the absolute temperature of the blackbody,
• B is Boltzmann’s constant,
• P is the Planck’s constant,
• c is the speed of light.

Our main purpose it to determine wavelength λ which corresponds to maximum energy density ϕ(λ). From (14), we
et

ϕ′(λ) =

(
8πcPλ−6

cP

)(
( cP
λBT )e

cP
λBT

cP − 5

)
(15)
e λBT − 1 e λkT − 1
9
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Table 3
Tolerance of iterations for method (2) with different values of p.
Tolerance p = 0.25 p = 0.5 p = 0.75 1

∥x1 − x0∥ 1.5288 1.5303 1.5321 1.5344
∥x2 − x1∥ 0.0059 0.0045 0.0026 0.0004
∥x3 − x2∥ 1.107 × 10−9 3.346 × 10−10 4.176 × 10−11 5.389 × 10−14

∥x4 − x3∥ 7.033 × 10−30 1.373 × 10−31 1.573 × 10−34 1.022 × 10−43

∥x5 − x4∥ 1.799 × 10−90 9.504 × 10−96 8.412 × 10−105 6.986 × 10−133

The maxima for ϕ occurs, using x =
cP

λBT , when

1 −
x
5

= e−x (16)

o, now defining

F (x) = e−x
− 1 +

x
5
, (17)

hen

λ =
cP

x∗BT
. (18)

eing x∗ a solution of Eq. (17).
This function F is continuous and from F (4) = −0.181684 . . . , F (12) = 1.400006144 . . . and for the Rolle Theorem, F

as at least one root in that interval (4, 12). Now, we consider Ω = (4, 12) and x0 = 6.5 as initial guess. So, we obtain
= 5.03787 and η = 1.51894. Moreover, it is easy to check that K = K̃ = 0.0183156. Then,

(1 + b0/2)η
1 − f (b0)

≤ R,

for all R ∈ [2.03199, 8.18845].
If we consider R = 2.03199, then

B(6.5, 2.03199) = (4.46801, 8.53199) ⊆ Ω,

βR = 0.187495 < 1 and b0 = 0.172497 < 0.7064. So, the iterative process (2) is well-defined and converges to a
olution x∗ of F (x) = 0 in B(6.5, 2.03199) starting at x0 = 6.5. Moreover, the solution x∗ of the equation F (x) = 0 is
unique in B(6.5, ε) ∩ Ω , where ε = 19.6431.

As it can be seen in Table 3, the convergence seems higher as the values of p are greater, and the best value is obtained
when p = 1, two-step Newton’s method. Moreover, we obtain the numerical solution x∗

= 4.965114231 . . ., so we get

λ =
cP

4.965114231 . . . BT
.

. Conclusions

In this work, we have considered the family of iterative methods (2) which depends on a parameter p ∈ (0, 1]. When
p = 1 we obtain the frozen two-step Newton’s method. The family (2), which has cubic convergence, if more efficient
than Newton’s and Chebyshev’s methods. For this family, we have obtained a global convergence result in a domain,
which corresponds to a ball in our case, and allows us to locate solutions as well as find, in an easier way, favorable
starting points to obtain the convergence of the iterative method to a solution of the problem considered. Moreover, we
have obtained a uniqueness result which allows us to distinguish different solution of the problem considered. On the
other hand, these results allow to obtain, in particular cases, new local and semilocal convergence results for the iterative
family studied. In our numerical development, we have applied the results to a Chandrasekhar integral equation problem,
locating the solution and obtaining a global convergence domain for the method in a way that, once we have discretized
the equation, we can find a numerical solution that approximates the solution of that integral equation. Finally, in order
to prove the theoretical results, we have applied the local and semilocal findings to methods of the family (2) to different
examples.
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