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Abstract: One of the fundamental maintenance tasks of ports is the periodic dredging of them.
This is necessary to guarantee a minimum draft that will enable ships to access ports safely. The
determination of bathymetries is the instrument that determines the need for dredging and permits
an analysis of the behavior of the port bottom over time, in order to achieve adequate water depth.
Satellite data processing to predict environmental parameters is used increasingly. Based on satellite
data and using different machine learning algorithm techniques, this study has sought to estimate
the seabed in ports, taking into account the fact that the port areas are strongly anthropized areas.
The algorithms that were used were Support Vector Machine (SVM), Random Forest (RF) and the
Multi-Adaptive Regression Splines (MARS). The study was carried out in the ports of Candás and
Luarca in the Principality of Asturias. In order to validate the results obtained, data was acquired in
situ by using a single beam provided. The results show that this type of methodology can be used to
estimate coastal bathymetry. However, when deciding which system was best, priority was given to
simplicity and robustness. The results of the SVM and RF algorithms outperform those of the MARS.
RF performs better in Candás with a mean absolute error (MAE) of 0.27 cm, whereas SVM performs
better in Luarca with a mean absolute error of 0.37 cm. It is suggested that this approach is suitable
as a simpler and more cost-effective rough resolution alternative, for estimating the depth of turbid
water in ports, than single-beam sonar, which is labor-intensive and polluting.

Keywords: environmental monitoring; satellite remote sensing; Sentinel-2; SVM; RF; MARS; polluted
water; bathymetry

1. Introduction

The bathymetry of coastal zones is important for many applications. These include
navigation, infrastructure maintenance, dredging planning, managing the environment,
hydrographic applications and coastal engineering sciences [1–4]. Sediment deposition
and erosion in these shallow areas occurs frequently due to tides, wave propagation and
intensive human activities [5]. Management of and planning for these areas of endeavor
require updated and accurate information. In turn, this requires efficient technologies
to record these never-ending changes. Although detailed information of the seabed is
essential worldwide for the management of coastal environments, there are still economical
and logistical constraints. In the specific actions program for ports and port facilities,
dredging maintenance of docks and navigation channels is undertaken as actions that are
necessary to guarantee navigation within ports and operation of their infrastructure and
facilities. Most ports have dredging channels that experience sedimentation and reduce the
depth of water that is available for navigation [6]. Ports operate with a minimum draft that
is necessary to accommodate the ships. Most ports need maintenance dredging at some
point to improve and facilitate navigation and for the development and maintenance of
infrastructures in the marine and fluvial environment [7,8]. It is necessary to update the
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bathymetries periodical. In order to minimize unnecessary or excessive dredging and the
associated expense [9], it is important to determine and model seafloor levels accurately.
Conventional methods of bathymetric data acquisition generally provide accurate depth
profiles or point measurements along transects. However, they are limited by their logistical
expenses and inefficiency in use. Further, they are difficult to apply in remote areas. Echo
sounders are normally used to measure depths [10,11]. Single beam echo sounders are most
commonly used for port studies. The measurement range of depths of these systems is
from 0 to 5 m, but it can perform measurements greater than 5 m, a value well above what
dredging operations require. The echo sounder measures the time for the signal from the
transducer to reach the receiver, after being reflected by the background. By this means, it
is possible to measure the depth of both the seabed and any object that is below the surface
of the sea. This tool provides valid results in port studies. It will continue to do so, if the
studies are well planned and executed. However, problems in precision and accuracy limit
its use, as does the difficulty of using the tool for shallow coastal waters. Its operating costs
are also high and its use requires many safety precautions [11]. These aspects increase the
attractiveness of such alternative techniques as remote sensing, to provide reliable lower
costing depth estimates [12–15]. Combining echo sounders’ and satellite data provides
another means to improve bathymetric estimation. Many topographic studies are carried
out by remote sensing technology. This solves various problems that require studies of the
depths on temporal and spatial scales that are impossible to achieve [16–19]. Some authors
have developed simple methods that use optical images to estimate the depth of water.
They include the use of linear regression logarithms [20–22].

Machine Learning (ML) techniques have become popular in recent years to estimate
bathymetries using optical sensors. This is due to the increasing availability of new satellites
and rapid advances in algorithm development and data availability [23]. For example,
Neural Networks (NN) is a potential tool that numerous researchers have used recently in
a wide variety of remote sensing applications [24–26]. Other researchers have been using
Support Vector Machine (SVM) [27] as an alternative to NN to improve the performance
of bathymetric recovery algorithms. It works well for nonlinear classification, time series
prediction and regression [28]. Another non-linear regression algorithm, Random Forest
(RF), is suitable for the construction of regression models that involve satellite images for
bathymetry data [29–31]. Recently, Multi-Adaptive Regression Splines (MARS) has been
used as relatively novel method for modelling and approximating nonlinear bathymetry
measurements in shallow coastal areas [32]. These data-driven models are generally
regarded as offering greater flexibility and accuracy in using satellite images to estimate
water depths [33].

The literature reveals areas of possible future use of remotely sensed data in studies
of water depth in clear shallow water [34,35]. However, the inherent conditions of ports
that have highly polluted and turbid waters have often compromised the results that have
been obtained. This may be related directly to the water’s inherent optical properties
(attenuation coefficient, dispersion, absorption . . . ). This paper proposes a comparison of
three different approaches for bathymetry estimation at two ports located at Candás and
Luarca (Spain). The water depth estimation models were created by use of the Support
Vector Machine, Random Forest and Multi-Adaptive Regression Splines methods. These
proposed bathymetry methodologies were applied to Sentinel-2 images and compared to
echo sounder depth data of the two study ports.

Previous studies have investigated the use of SVM techniques to estimate water
depth in ports [36], the main advantages of machine learning methods include their
reproducibility and their potential for continuous updating. In the current study, three
machine learning techniques, SVM, MARS and RF, were compared to construct bathymetry
maps using geographic information systems and remote sensing techniques, in order to
provide the most efficient and simplest depth estimation model based on the accuracy of
the resulting models for the ports. These three models were used with the main objective
of using satellite data sets rather than extensive field studies. The novelty of this work is
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the application of the methodology proposed in port areas. The fundamental difference
between the port areas that have been analyzed in this work and other areas in which
similar studies have been carried out, are the characteristics of the bottom, polluted and
darker areas compared to light and sandy areas. In addition, these bathymetric maps
in port areas can identify areas with accumulation of sediments, so that areas in need of
dredging can be easily detected as well as being applied in the future in different ports. The
intention is to provide a fast, operational and low cost alternative to traditional bathymetry
with which to assess the need for port maintenance dredging.

2. Materials
2.1. Areas of Study and Field Measurements

The sites that were studied were the Port of Candás (43◦35′25” N to 5◦45′43” W) and
the Port of Luarca (43◦32′45” N to 6◦32′1” W), located on the Cantabrian Sea coast (Bay
of Biscay) on Spain’s northern coast. The Port of Candás (Figure 1) has been the object
of extensive rebuilding and extensions, although mainly since the 18th century. In the
early 1950s, the dock was expanded leading to a gradual silting. This resulted in a gradual
decrease in the draft of the port. Recently, work has been undertaken to improve this
situation with new extensions to the port’s levees. The port’s traffic today consists of cargo
vessels and recreational boats. However, the minimum draft in the port’s operating varies
from 1 m near the docks for small boats to 3.5 m for the navigation channel. The water in
the access area reaches a depth of up to 5 m.
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The second study site was the Port of Luarca (Figure 1). From its origin in the 10th
century, Luarca has been linked to maritime activity and a fishing enclave. However, it
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was not until the 20th century that Luarca’s outer breakwaters were built. Because only
small boats use the port, the minimum draft ranges from two meters in the docking area to
three meters in the navigation canal and as much as twelve meters in the access area. The
docking area and the navigation channel are dredged every year to maintain the necessary
depth of water.

The bathymetry data of the Candás and Luarca ports were provided by the port
service. The latter determines the quality of the water in the port each year and, also,
any morphological changes. For both ports, the measurements were carried out using
a Navisound 210 sounder (Reson, Inc.; Slangerup, Denmark) single beam echo, with a
variable frequency acoustic profiler between 201 kHz and 33 kHz, and a 1 cm vertical
precision. A Differential Global Positioning System (D-GPS) determined the position.
Because the depth measurement data is affected by the tide, the depth measurement
referred to the mean sea level. Table 1 provides the depth characteristics of the Port of
Candás and Port of Luarca. They show a medium depth of −1.5519 m for Candás and
−4.0694 m for Luarca. These negative values are in relation to the port’s minimum level
during the highest tide in the last 15 years. That level was recorded as zero.

Table 1. Properties depth characteristics of Candás and Luarca ports.

Port Max Depth (m) Min Depth (m) Mean Depth (m)

Candás 1.3461 −5.0149 −1.5519
Luarca 1.5979 −11.9601 −4.0694

The bathymetry elevations in this zone were referenced to the UTM/WGS84 projection
ZONE 30N. The images were acquired on 16 October 2016; 12 March and 29 April 2019 for
Candás and on 28 June 2016; 10 May 2018 and 18 May 2019 for Luarca. All images were
acquired during calm weather. They were selected as the reference data set and compared
to the satellite-delivered bathymetry products for each study area.

2.2. Satellite Data Acquisition

Sentinel-2 is the latest generation of the European Space Agency (ESA) [37]. The
Copernicus program is an ambitious program for Earth observation than has been designed
to obtain current and accurate information that can be accessed easily. The data from the
Sentinel-2 satellite were used to predict the water depth of the study ports. The Sentinel-2
satellite conducted measurements in 13 spectral bands. Its spatial resolutions extended
from 10 to 60. The spectral channels of the satellite include four bands of a 10 m spatial
resolution. They were B2 (blue), B3 (green), B4 (red) and B8 (near infrared). There are
also six bands of 20 m spatial resolution, four of which are used for the characterization of
the vegetation in the bands B5, B6, B7 and B8a (red-edge). The two other bands are used
for applications, such as the detection of clouds, snow or ice (B11 and B12). Finally, three
bands of 60 m spatial resolution were used for atmospheric corrections and cloud screening.
These were aerosols (B1), water vapor (B9) and cirrus detection (B10). The characteristics
of specified spectral bands and their resolutions are shown in Figure 2. The satellite data
were selected based on the proximity to the date of the in situ bathymetry and the least
amount of clouds at the time of data acquisition (Figure 2).
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3. Methods
3.1. Pre-Processing of Satellite Images

Data captured by Sentinel-2A satellite, which currently is in orbit, is available without
charge under an open license through portals, such as the Copernicus Open Hub. To
visualize and preprocess Sentinel-2A data (10 m resolution), SNAP (Sentinel Application
Platform) software (v7.0.1) was used [38]. This is an open source architecture that combines
all toolboxes from the ESA. The data from the Sentinel-2A satellite reflectance bands (1,
2, 3, 4, 5, 6, 7, 8, 8A, 9, 11 and 12) were used to predict the depth of the water at the
study ports. A resampling of all the spectral bands of the satellite images was performed,
transforming the resolution of all of them to a resolution of 10 × 10 m [39,40]. This was
done with SNAP software using the S2 Resampling Processor. As a result, a dataset without
georeferencing was obtained, and to determine the positioning of the reference points, the
geographical location of each point was defined by its longitude and latitude using the
SNAP program. Then, using the WGS84 ellipsoid, a coordinate projection was created to,
obtain the coordinates in ETRS89. This system was also used to project the positions that
the echo sounder provides. The ellipsoid projections have an average position error of 1
cm. The data that was obtained was compared to the bathymetry that was projected. To
accomplish this, a geodesic calculator was used to project the coordinates. This enabled
the authors to obtain the data for bands that are associated with Universal Transverse
Mercator (UTM). The annual in-situ bathymetries of the study ports that were provided for
the Principality of Asturias Port Service were used to assign the z coordinate. Bathymetries
were carried out by means of a single beam echo sounder located on a boat. Data are
measured every 10 cm in each data acquisition beam. From the points, the surfaces were
obtained using digital terrain models. Linear interpolation was used in the triangulation in
this case. The error that was incurred in this process is not great due to the seabed’s smooth
surface and lack of significant irregularities. The z coordinates are related to the port’s
zero. The dimensions of each pixel are assigned on the basis of its former x–y location. The
method of analysis and pre-processing the Sentinel-2 images is shown schematically in
Figure 3.
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3.2. Proposed Algorithms for Bathymetry Mapping
3.2.1. Support Vector Machines

The support vector machine is a widely used linear regression technique [41–44].
This technique provides higher accuracy when inputs are properly selected. SVM uses a
kernel-based algorithm. Its new input estimations require the kernel function’s evaluation
of a subcategory of events during a training stage. The challenge with this method is in
identifying a function to minimize Equation (1)’s final error.

y(x) = wT ·φ(x) + b (1)

where y(x) is the predicted value, w is a vector with parameters that the model defines,
b is the value of the bias and φ(x) denotes the feature-space transformation. In this case,
the error function i in the linear regression (Equation (1)) is replaced by an ε insensitive
error function (Equation (2)). Equation (3) assigns a zero to value if ε exceeds the difference
between the predicted value and target value. If the difference is equal to, or exceeds, ε,
the error function’s value remains unchanged. Equation (4) can be minimized by assigning
a cost (C) to the difference between the predicted value and the targeted value.

1
2

n

∑
n=1

[yn − tn]
2 +

λ

2
‖w‖2 (2)
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Eε(y(x)− t) =
{

0,
|y(x)− t| − ε,

i f |y(x)− t| < ε
otherwise

(3)

C
n

∑
n=1

Eε(y(xn)− tn) +
1
2
‖w‖2 (4)

where, ε is the margin if the function fails to impose a penalty, t represents the searched
target function, C is the penalty and y(x) is the value that Equation (1) predicted. The final
function resembles Equation (5).

y(x) =
n

∑
n=1

(αi − αi
∗)k(xi, x) + b (5)

where α is a solution for the occasionally encountered optimization problem with the
Lagrangian Theory.

The Gaussian Radial Basis Function (RBF) is generally the best kernel. It ensures
the highest overall accuracy and Kappa [45]. The RBF function was used in this study
(Equation (6)).

k(xi, x) = e−
‖xi−x‖2

2σ2 (6)

The SVM was conducted in the R statistical computing environment using the “e1071”
package (version 1.7-1, The R Foundation for Statistical Computing, Vienna, Austria) [46].

3.2.2. Random Forest

Random Forest refers to a model that was developed by Breiman [47]. It provides
classification and regression. That creates model numerous classification trees by use of a
randomized subset of predictors [48]. The algorithm grows many of these trees. Each tree
begins as a sample of training data. The tree building process involves a random subset of
predictor variables, which are used at each fork in the process. Thus, each tree is unique.
The basic principle employed is that each tree is a poor predictor, but any pair of trees
provide very different responses, thereby aggregating the predictions of uncorrelated trees.
This reduces the prediction variance and improves accuracy [49–51]. The number of trees
in this work was set at 100. Fifteen randomly selected variables were assigned to ted for
each node. The minimum size of nodes was set at the default values. The RF algorithm was
implemented by the Random Forest (v 4.6-2, The R Foundation for Statistical Computing,
Vienna, Austria) [52] R package [46], to predicted bathymetry maps.

3.2.3. Multi-Adaptive Regression Splines

The Multi-Adaptive Regression Splines algorithm [53] is a nonparametric multiple
regression method that uses adaptively selected spline functions [54]. Although based on
linear relationships, it identifies and simulates a model with coefficients that change with
changes in the predictor variable’s level [45]. Depth water models were constructed by use
of the Earth package [55] under R environment [46].

The MARS principle is based on the linear basis functions of Equations (7) and (8).

|x− c|+ = max(0, x− t) =
{

x− c
0

x > c
x ≤ c

(7)

|c− x|+ = max(0, c− x) =
{

c− x
0

x < c
x ≥ c

(8)

where c is the connecting knot or intersection between successive splines.
The MARS model takes the form of a linear combination of these basis functions, as

Equation (9) [56].

y = βo +
n

∑
i=1

βi Bi(x) (9)
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where Bi(x) is the basis functions, βo is the bias, and βi is the coefficients of basic functions
that are calculated by a least square method. The letter n is number of terms in the model
and is calculated after two successive steps.

3.3. Data Processing

In data mining, data preparation is one of the essential steps for modeling. In this
study the collected dataset from the two ports was randomly divided into two parts,
in order to properly validate the models, 80% of the data were used for training and
the remaining 20% for testing. The data selection was carried out randomly and was
tested with 5 different data sets, the mean of the 5 tests was taken as error. The data
points for the port of Candás were divided into 1092 model generation points and 284
validation points. The data points that were used for the Luarca model were 1593 and
388 for training and testing respectively. The training and testing data set was randomly
selected, five different groups of random data were generated, validating that the dataset
was homogeneous. In this case, this validation system was used, although other authors
use cross-validation systems [57,58]. It is necessary to use a valid method for implementing
the remote sensing bathymetric measurements of an area from optical images. Thus, to
choose the appropriate variables and to decide on corrections to make to the images, a
Principal Component Analysis (PCA) was conducted. PCA is based on the component
substitution of the original data for spectral transformation [59]. It is used in this work to
minimize repetitive information within strongly correlated Sentinel-2 bands and to produce
a set of linearly uncorrelated variable values, which are known as principal components
(PC). PC1 is considered to contain the greatest amount of information from an original
multispectral image with the greatest variance (74.2% in this case), whereas PC2 explains
14.0% of the total variance.

Figure 4 represents the projected data by using the principal components, PC1 and
PC2. It is apparent that there are two clearly differentiated data groups, a group of data
from the port of Luarca (blue points) and a group with data from both ports. The reason
for this is that the depth range in Candás is much less than in Luarca. Therefore, there is
a relationship between the points in shallower areas and the B9 band and the tide. Also,
there is an area of greater depths that is more related to the remaining bands.
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In addition, Figure 4 shows a strong relationship between all bands, except for band
B9. In remote sensing, the adjacent Sentinel-2 bands are correlated to each other. The
correlation coefficients (R2) between all variables studied appear in Figure 5. They indicate
a strong statistical relationship among Sentinel-2 bands. A coefficient of correlation of 1.0
indicates a perfect correlation between the two variables. In contrast, a coefficient of 0.0
indicates that the two variables are not correlated at all [60]. Thus, the bands with the
highest coefficient of correlation, were chosen for data modeling.
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Lyzenga [20] used two bands to offset the disadvantages of using a single-band linear
correlation of reflectance (R(λi)) and water depths (Z). It is assumed that the column of
water was uniform and the bottom’s surface was homogenous (Equation (10)).

Z = b log R(λi) + c (10)

The ratio algorithm (Equation (11)) estimates depth without a need for bottom re-
flectance [61]

Z = m
log R(λi)

log R
(
λj
) + c (11)

where R(λi) and R(λj) are reflectance in bands i and j. As in the case of a linear algorithm,
information from any bands in the satellite image can be transformed into a multiple linear
regression by Equation (12) [61].

Z =
n

∑
i=1

n

∑
j=1

mij
log R(λi)

log R
(
λj
) + cij (12)
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Stumpf et al. [61] suggested a linear model, although it did not always reveal a linear
relationship between water depth and the dates of satellites. It is better to obtain this by
examining the relationship between a non-linear function and depth (Z), (Equation (13)).

Z = f
ln[nRw(λi)]

ln
[
nRw

(
λj
)] (13)

where Rw is the observed reflectance of the wave length (λ) of bands i and j, and n is a
fixed value.

Each algorithm (SVM, RF and MARS) was trained by using two different options,
in which the input variables vary. In the first option, the (Bi) bands were used as input
variables to obtain the bathymetry maps by analyzing water-leaving reflectance. This
option had been used previously by several authors [30,31,42]. In the second option, a
band ratio method was used to estimate water depths by using, as input variables, two
radiance bands through the relationship that had been observed in Equation (14). This
technique has been used by many researchers [27,62]. To date, the results that have been
obtained by the two previously proposed options have not been compared. The analysis of
the results will enable selection of the option that is best in selecting the input variables for
each implemented algorithm and obtaining the simplest model.

4. Results

Three statistical metrics were used to compare the accuracies of the SVM, RF and
MARS models. They were the Mean Absolute Error (MAE), the Root Mean Squared Error
(RMSE), and the correlation coefficient (adjusted R2). These are calculated by the following
Equations (14)–(16).

MAE =
1
N

N

∑
i=1
|ZSentinel − Zecho| (14)

RMSE =

√√√√ 1
N

N

∑
i=1

(ZSentinel − Zecho)
2 (15)

R2 =
∑N

i=1 (Zecho − Zecho)(ZSentinel − ZSentinel)√
∑N

i=1 (Zecho − Zecho)
2
(ZSentinel − ZSentinel)

2
(16)

where ZSentimel are the depths that were predicted by the three proposed methodologies
(SVM, RF and MARS) from satellite images. Zecho is the in-situ echo sounding depths and
N is the number of data.

In case of Candás Port, results of the testing data set appear in Table 2 (the best results
appear in bolded fonts). The RF and SVM methods achieved good predictive performance.
Thus, predictions of depths by the two models improved greatly there in comparison to
MARS. All models were implemented. Their R2, MAE and RMSE values were analyzed
for both options, using the bands as input variables (Bands (Bi)) and using spectral band
pairs with a high coefficient of determination estimated by Equation (13) as input variables
(Ratios (LBi/LBj)).

Table 2 shows that the most consistent method, according to the correlation coefficients,
was RF-Bands (0.92). This was followed closely by RF-Ratios (0.87), and SVM (0.85 and
0.74 for Ratios and Bands respectively). The MARS (0.62 for Ratios and 0.69 for Bands)
gave the poorest predictive performance. The best performance for MAE in each of the
proposed algorithms was achieved by using RF-Bands (0.27 m), followed by SVM-Ratios
(0.34 m) and MARS-Ratios (0.50 m). According to RMSE, random forest models provided
the most robust methodology, especially for RF-Bands to excellent performance (0.33 m). It
was followed closely by SVM-Ratios (0.44 m). MARS (0.59 m) varied the most.
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Table 2. Error statistics reported in meters for the SVM, RF and MARS algorithms and the Candás
Port validation dataset.

Algorithm R2 MAE (m) RMSE (m)

SVM (RBF kernel)
Ratios (LBi/LBj) 0.85 0.34 0.44
Bands (Bi) 0.74 0.43 0.52

RF
Ratios (LBi/LBj) 0.87 0.32 0.39
Bands (Bi) 0.92 0.27 0.33

MARS
Ratios (LBi/LBj) 0.62 0.51 0.60
Bands (Bi) 0.69 0.50 0.59

Figure 6 shows the bathymetry map of Candás that was created by using the echo
sounder measurements, and Figure 7 represents the bathymetry maps of Candás in a
comparison and evaluation of the best performance of the three proposed methodologies
that were obtained with ratio bands (LBi/LBj as input variables) and the SVM algorithm
(Figure 7a), the RF algorithm (Figure 7b) and MARS algorithm (Figure 7c).

Figure 8 represents the water depth maps of Candás that were produced by us-
ing bands (Bi) as input variables and the SVM algorithm (Figure 8a), the RF algorithm
(Figure 8b) and the MARS algorithm (Figure 8c). Figures 7 and 8b show that RF-Bands
algorithm is very effective in prediction depths from satellite images. This algorithm
produced the fewest errors. Figure 7b indicates that there are fewer areas of low points
or high points. This corresponds to reality, as see in the bathymetry by an echo sounder
(Figure 6), the transitions and slopes are smooth, which corresponds to the actual seabed.
It can be concluded that the best results in the graphic representation are provided by
Figures 7b and 8b and associated with Random Forest. However, it is the latter (Figure 8b)
that is associated with modeling with the use of the bands, with similarity to the results of
using the echo sounder measurements (Figure 6).
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Testing dataset results for Port of Luarca appear in Table 3 (the best results are bolded).
As for Candás, the RF and SVM methods provided good predictive performance in com-
parison to MARS. Table 3 shows that the most consistent method according to the correla-
tion coefficients was RF-Bands (0.974). This was followed closely by SVM-Ratios (0.973),
RF-Ratios (0.96) and SVM-Bands (0.96), whereas MARS-Ratios (0.95) gave the poorest
predictive performance. The best performance for MAE in each of the proposed algorithms
was achieved when using RF-Bands (0.37 m) and SVM-Ratios (0.37 m). This was followed
by MARS-Bands (0.48 m). According to RMSE, SVM models had the most robust method-
ology, especially for Ratios, which gave an excellent performance (0.46 m), followed closely
by RF-Bands (0.47 m). The performance of MARS (0.59 m) varied the most.

Table 3. Error statistics in meters for the SVM, RF and MARS algorithms and the Luarca Port testing
dataset.

Algorithm R2 MAE (m) RMSE (m)

SVM (RBF kernel)
Ratios (LBi/LBj) 0.973 0.37 0.46
Bands 0.96 0.45 0.58

RF
Ratios (LBi/LBj) 0.96 0.41 0.56
Bands 0.974 0.37 0.47

MARS
Ratios (LBi/LBj) 0.95 0.53 0.65
Bands 0.96 0.48 0.59

Figure 9 shows the bathymetry map of Luarca that was created by using the echo
sounder measurements, and Figure 10 represents the bathymetry maps of Luarca in a
comparison and evaluation of the best performance of the three proposed methodologies
that were created using ratios bands (LBi/LBj) as input variables, and the SVM algorithm
(Figure 10a), the RF algorithm (Figure 10b) and the MARS algorithm (Figure 10c). Figure 11
shows the bathymetry maps of Luarca using bands (Bi) as input variables and the SVM
algorithm (Figure 11a), the RF algorithm (Figure 11b) and the MARS algorithm (Figure 11c).
From Figures 9–11, it can be concluded that the SVM and RF algorithms are a very effective
predictors of depths from satellite images. In the methodologies (RF and SVM) that
generated the best results, smooth curves can be seen that are substantially parallel to
the beach.
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The research that is presented in this work suggests that RF models detect depths in
port waters well and can replace echo-sounded bathymetry measurements to measure port
depths. The studies demonstrated that all methods provided good predictive performance
of models. In Tables 2 and 3, it can be observed that the values of correlation coefficients
using the three proposed algorithms are very close to 1.0 (which is very high). The worst R2

was obtained when using the MARS algorithm for Candás. The results that were obtained
with MARS provided the greatest error, although the latter is the algorithm that best adapts
to the generation of surfaces. The reason is that the position of the points was not used as an
input variable, due to a desire to obtain a model that is as general as possible. Thus, it is so
generic that a single model has been created for two ports with different characteristics. In
all of the bathymetric maps for all models (Figures 7, 8, 10 and 11), the algorithms identified
correctly the deepest areas, areas where the depth is lowest with smooth transitions and
coastal contour lines. Complex areas that are very shallow also were identified correctly.

In order to analyze the factors that may influence the errors, their relationship with
depth was analyzed. The global errors of Candás and Luarca have been analyzed jointly.
The results appear in Table 4. This table shows how in the studied models the error did not
increase with increasing depth.

Table 4. A comparison of MAE error in the use of RF and SVM techniques.

MAE (m)

Depth Interval RF SVM

2 m to 0 m 0.32 0.4
0 m to −2 m 0.26 0.34
−2 m to −4 m 0.36 0.34
−4 m to −6 m 0.61 0.39
−6 m to −8 m 0.61 0.58
−8 m to −10 m 0.23 0.4
−10 m to −12 m 0.26 0.23

Figure 12 provides the histogram for the relationship between MAE errors and the
depth interval in the port area for the algorithms of greatest accuracy; RF-bands and
SVM-Ratios.
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As can be seen in Figure 12 and Table 4, the RF-Band technique gives better results in
the depths between +2 m to −2 m and −8 m to −10 m. SVM-Ratio algorithms have better



Energies 2021, 14, 2486 18 of 22

results at between −4 m and −8 m and −10 to −12 m. In the range between −2 m and −4
m, the MAE results for the two algorithms are very similar.

5. Discussion

In machine learning, there is no single algorithm or solution that adapts to all the
analyzed data, so it is quite common to work with several algorithms to find the best or
most adjusted solutions. To our knowledge, no study previously has compared the use
of SVM, RF, and MARS to study bathymetric mapping for the determination of depth in
anthropized water areas, including ports that experience contamination and processes
of accretion. Bathymetric mapping requires is highly precise design characteristics. The
research that is presented in this work suggests that RF models detect depths in port waters
well and can replace echo-sounded bathymetry measurements to measure port depths. The
models that are presented in this study produced fewer errors in Candás than in Luarca.
It is also necessary to consider that the bottoms of the port of Candás is sandy. In Luarca,
there are areas of greater depth, although there are more rocky outcrops. The bathymetry
obtained permits an understanding of the state of the port areas and where there is less
draft and, therefore, a greater deposit of sediments. The latter makes it important to have
this system of obtaining the bathymetry to reveal the areas where dredging is necessary
for proper operation of the port. Thus, the main advantage of the technique that was
implemented in this study is acquiring a greater understanding of the topography of the
seabed at ports. The technique offers a high level of precision, applicability in areas of
turbid and shallow water, rapidity of use and flexibility. Finally, the proposed method is
economical. Thus, the results of this work offer a valuable contribution to the provision of
useful information for the management of port maintenance dredging.

To compare the results that have been obtained with previous results from other
authors studies, many variables, such as depth range, nature of bottom, image quality and
water-quality should be considered [63]. Many authors [39,56,64] have applied SVM and
RF methods to estimate the bathymetry in shallow water using satellite imagery. The errors
that those have found are greater than those in this study. The cause could be the color and
turbidity, because the bottoms were muddy and contaminated. They absorbed more light
than did the sandy bottoms below waters of high transparency that many studies have
examined. However, the errors obtained in this work are lower than those obtained in [32],
where the authors proposed empirical approaches of bathymetry estimations in different
locations with a silt-sand bottom water area, and a high-turbidity, clay bottom area. Using
free and open-access satellite data that does not provide a resolution that is less than what
other authors experiences and the satellites that they used may also have affected these
results. However, unlike the studies cited above, it is important to note that the proposed
methodology is applied to study anthropized water areas, not coastal areas whose bottoms
are cleaner and the waters are clearer. In fact, it is in these types of areas where this system
is most useful since it would allow the analysis of the sedimentation process that occurs in
ports.

This study confirms the viability of machine learning models using Sentinel-2 images,
we have proposed a methodology to build the best performance model that could be
applied to different anthropized water areas. Sentinel-2 images can be used effectively
to determine bathymetry in the study area, and this methodology could be extended to
different ports in the Principality of Asturias that have similar characteristics for water.
The use of this methodology could also be extended to other ports in the world. In future
work, it could be interesting to analyze the composition of the seabed looking for different
algorithms based on that composition.

6. Conclusions

This approach brings a new perspective in the subject of determination of water
depth in ports using remote sensing technology, this technology is considered a time-
effective, low-cost, and wide-coverage solution. It is also a supplement and improvement
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to traditional bathymetric measurement methods and techniques. This study compared
SVM, RF and MARS methods of bathymetry prediction using Sentinel-2 images, in order
to propose a simple and robust model for bathymetry mapping in anthropized water areas.
This depth estimation is needed for the dredging processes, especially for maintaining the
free draft and adequate port management, also the analysis of the behavior of the bottom
of the ports provides valuable information the knowledge of their behavior in the face
of littoral dynamics. The algorithms were applied in two different ports—in Candás and
Luarca (Asturias, Spain)—with different numbers of available data points. The depths
that were determined were compared to those that were produced by a depth sounder
in-situ measurements. The three proposed approaches used bands and bands logarithms
ratios as input variables. The errors obtained were admissible since the oscillations in the
background due to the storms have an order of magnitude greater than the errors obtained
in the models.

At Candás, the RF method provided the best bathymetry predictions. Further, its
results were most consistent, according to the correlation coefficients RF-Bands (0.92).
The method’s best performance was achieved by the use of the RF-Bands (0.27 m). The
Random Forest model was the most robust methodology for RMSE, especially for the
Bands option where it gave an excellent performance (0.33 m). In case of Luarca, the
coefficient of determination that was obtained was very strong in case of RF-Bands (0.974).
It is closely followed by SVM-Ratios (0.973). For MAE, the highest performance was
achieved using RF-Bands and SVM-Ratios (0.37 m). For RMSE, the SVM models had the
most robust methodology, especially for Ratios, with an excellent performance (0.46 m),
closely followed by RF-Bands (0.47 m).

The results that the RF and SVM algorithms provided exceeded those of the MARS
algorithm. In addition, the RF method produced results that were more accurate in Candás,
and the SVM method in Luarca. The difference in results between the two models is very
small. It should be noted that the best RF result was obtained from the Bands. For SVM,
the best result came from the use of the Ratios. Therefore, in order to choose a single model,
RF is considered best due to its simplicity and its need for fewer input variables. Validation
method used in this work use randomly chosen training and testing sets, which ignore
spatial autocorrelation (SAC) in data. This may lead to overoptimistic assessment of model
predictive power [58]. Our intention is to address SAC properly in future studies. Also, in
future work, a very interesting option could be to use both techniques, applying one or the
other depending on the previous depth result.
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