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A B S T R A C T

We present the design and implementation of a C++ class for reliability analysis of multi-state systems using an algebraic approach based on monomial ideals.
The class is implemented within the open-source CoCoALib library and provides functions to compute system reliability and bounds. The algorithms we present
may be applied to general systems with independent components having identical or non-identical probability distributions.
1. Introduction

The development and implementation of efficient algorithms for
system reliability computations is an important task in reliability en-
gineering. Many algorithms exist, and are available to the community
in a variety of forms. Some are included in large versatile commercial
systems [1–3], others are offered as packages, functions or libraries
in mathematical software systems of general purpose languages, for
example Matlab [4,5], Python [6] or R [7]. Others still are directly
distributed by the authors as stand-alone software, like SHARPE [8].

In this paper we describe the C++ class which implements our
algebraic approach to system reliability, and can be integrated in other
software systems. In this way it may become available in different
forms and toolboxes to researchers, software developers and reliability
engineers. The language C++ (now in its version 17, standard ISO/IEC
14882) is a widely used [9] object-oriented general purpose computer
language, both for very large systems and for small ad-hoc applications.
Among the virtues of C++ is its integrability with other languages
and also its high performance, meeting the need for fast and reliable
computations. Our class is implemented in the CoCoALib library [10],
which is a C++ library for Computations in Commutative Algebra,
currently at its version 0.99712 (December 2020). It is open source
and free.

The main feature of the C++ class introduced in this paper is
that it is applicable to a large variety of systems, with or without a
known identifiable structure, and can be used to compute the reliability
(and bounds) of systems having independent identical or non-identical
components. The performance of this class is good in terms of time
requirements, being able to compute the reliability of systems with
hundreds of components and tens of thousands of minimal paths or
cuts. Even though there exist optimized algorithms for several kinds of
systems which are faster than the ones presented here, ours are useful
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to analyze systems for which no specialized algorithms are known, and
to benchmark new algorithms for particular types of systems.

The outline of the paper is the following. Section 2 gives an in-
troduction to the algebraic approach for system reliability which is at
the mathematical core of our implementation. We describe the main
functions and design of the class in Section 3. Finally, in Section 4,
we show some examples of its use and the results of some computer
experiments. All the code of the class and the examples are available
at http://www.dima.unige.it/~bigatti/data/AlgebraicReliability/.

2. Algebraic reliability of coherent systems

The algebraic approach to system reliability is based on resolutions
and Hilbert series of ideals in rings of polynomials in several indeter-
minates. Although at first it might look like an abstract and theoretical
method, it is made practically applicable by the combinatorial nature
of monomial ideals and it is supported by strong results and algorithms
in the area. Other authors have used algebraic structures in system
reliability analysis before, see for instance the seminal works [11,12]
or the application of algebraic structures to network reliability [13,14].
In particular, the Universal Generating Function method (UGF), intro-
duced in [15] and described in more detail in books like [16], uses the
exponents and coefficients of polynomial-like structures to encode the
performance distribution and probabilities of multi-state systems. The
UGF method is very flexible and has been applied to several types of
multi-state systems, see for instance [17] for a recent example.

In this section we give an overview of the basics of the approach
by monomial ideals, that is the backbone of the algorithms in the C++
class we introduce in Section 3.
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2.1. Coherent systems

A system  consists of 𝑛 components which are its elementary
nits, we denote the 𝑛 system components by 𝑐𝑖 with 𝑖 ∈ {1,… , 𝑛}.

At each moment in time the system is in one of a discrete set of levels
𝑆 = {0, 1,… ,𝑀} indicating growing levels of performance or of failure.
Each individual component 𝑐𝑖 of the system can be in one of a discrete
set of levels 𝑆𝑖 = {0,… ,𝑀𝑖}. A state of a component is its level and a
state of the system is the 𝑛-tuple of its components’ states. Given two
states 𝑠 = (𝑠1,… , 𝑠𝑛) and 𝑡 = (𝑡1,… , 𝑡𝑛) we say that 𝑠 ≥ 𝑡 if 𝑠𝑖 ≥ 𝑡𝑖
or all 𝑖 = 1,… , 𝑛 and, conversely, that 𝑠 ≤ 𝑡 if 𝑠𝑖 ≤ 𝑡𝑖 for all 𝑖. The
evel of performance of the system is determined in terms of the states
f the components by a structure function 𝛷 ∶ 𝑆1 × ⋯ × 𝑆𝑛 ⟶ 𝑆.
he system  is said to be coherent if 𝛷 is non-decreasing and each
omponent is relevant to the system, i.e. for each component 𝑐𝑖 there
xist a system state 𝑠 = (𝑠1,… , 𝑠𝑛) and two different levels 𝑗, 𝑘 ∈ 𝑆𝑖
uch that 𝛷(𝑠𝑖,𝑗 ) ≠ 𝛷(𝑠𝑖,𝑘), where 𝑠𝑖,𝓁 = (𝑠1,… , 𝑠𝑖−1,𝓁, 𝑠𝑖+1,… , 𝑠𝑛).

We distinguish between working systems, also called path systems,
.e. systems described by the working states of their components, and
ailure systems or cut systems i.e. systems described by the failure states
f their components.1

In path systems the focus is on working states. In this case the levels
f the system, {0,… ,𝑀} indicate growing levels of performance, the
ystem being in level 0 indicates that the system is failing, and level
> 𝑖 indicates that the system is performing at level 𝑗 better than at

evel 𝑖. For each component 𝑐𝑖 and for each of its levels 𝑗, we denote by
𝑖,𝑗 the probability that 𝑐𝑖 is performing at level ≥ 𝑗. The 𝑗-reliability
f , denoted by 𝑅𝑗 () is the probability that  is performing at level
𝑗; conversely, the 𝑗-unreliability of , denoted 𝑈𝑗 (), is 1 − 𝑅𝑗 ().

A path system is given at level 𝑗 by its set of 𝑗-working states i.e. those
uples (𝑠1,… , 𝑠𝑛) ∈ 𝑆1 × ⋯ × 𝑆𝑛 such that 𝛷(𝑠1,… , 𝑠𝑛) ≥ 𝑗. We say

that a state (𝑠1,… , 𝑠𝑛) ∈ 𝑆1 × ⋯ × 𝑆𝑛 is a minimal 𝑗-working state or
inimal 𝑗-path if 𝛷(𝑠1,… , 𝑠𝑛) ≥ 𝑗 and 𝛷(𝑡1,… , 𝑡𝑛) < 𝑗 whenever all

𝑡𝑖 ≤ 𝑠𝑖 and at least in one case the inequality is strict. We say that a
state (𝑠1,… , 𝑠𝑛) ∈ 𝑆1×⋯×𝑆𝑛 is a minimal 𝑗-failure state or minimal 𝑗-cut
if 𝛷(𝑠1,… , 𝑠𝑛) < 𝑗 and 𝛷(𝑡1,… , 𝑡𝑛) ≥ 𝑗 whenever all 𝑡𝑖 ≥ 𝑠𝑖 and at least
one of the inequalities is strict. Path systems are usually denoted by :G
(for good) in the literature.

Example 2.1. Let  be a path system with 3 components 𝑐1, 𝑐2, 𝑐3 such
that 𝑆 = 𝑆1 = 𝑆2 = 𝑆3 = {0, 1, 2}. The structure function of  is given
by 𝛷(𝑠1, 𝑠2, 𝑠3) = min{𝑠1, 𝑠2, 𝑠3} i.e.  is a multi-state series:G system, the
system works at level 𝑗 > 0 only if all of its components are working
at level 𝑗 or bigger. Let 𝑝1,1 = 0.8, 𝑝1,2 = 0.75, 𝑝2,1 = 0.9, 𝑝2,2 = 0.8 and
𝑝3,1 = 0.75, 𝑝3,2 = 0.7.

The only minimal 1-working state of  is (1, 1, 1) and the only mini-
mal 2-working state is (2, 2, 2). The minimal 1-failure states are (2, 2, 0),
(2, 0, 2), (0, 2, 2) and the minimal 2-failure states are (2, 2, 1), (2, 1, 2),
(1, 2, 2). The 1-reliability of the system is 𝑅1() = 0.54 and 𝑈1() = 0.46;
the 2-reliability is 𝑅2() = 0.42 and 𝑈2() = 0.58.

In cut systems the focus is on the failure of the system, the exact
counterpart of path systems. In this case the levels of the system,
{0,… ,𝑀}, indicate growing levels of failure. Hence being at level 0
indicates that the system is completely functional and level 𝑗 > 𝑖
indicates that the system is performing worse at level 𝑗 than at level 𝑖
(i.e. the higher the level, the higher the intensity of failure). For each
state 𝑗 of each of the components 𝑐𝑖 we denote by 𝑞𝑖,𝑗 the probability

1 There are several definitions of multi-state systems in the literature,
ee the relationships between them in the diagram given by Natvig in [18]
igure 2.1. The algebraic methodology that we use can be applied to multi-
tate strongly coherent systems, multi-state coherent systems and multi-state
eakly coherent systems as defined in [18] Definition 2.4 since the algebraic

xpressions of reliability are not affected by irrelevant components for each of
2

he levels of performance of the system. t
that component 𝑐𝑖 is failing at level ≥ 𝑗. The 𝑗-unreliability 𝑈𝑗 () of  is
the probability that  is failing at level ≥ 𝑗; conversely, the 𝑗-reliability
of  is 𝑅𝑗 () = 1 − 𝑈𝑗 (). A cut system is given at level 𝑗 by its set
of 𝑗-failing states i.e. those tuples (𝑠1,… , 𝑠𝑛) ∈ 𝑆1 × ⋯ × 𝑆𝑛 such that
𝛷(𝑠1,… , 𝑠𝑛) ≥ 𝑗. We say that a state (𝑠1,… , 𝑠𝑛) ∈ 𝑆1×⋯×𝑆𝑛 is a minimal
𝑗-failing state or minimal 𝑗-cut if 𝛷(𝑠1,… , 𝑠𝑛) ≥ 𝑗 and 𝛷(𝑡1,… , 𝑡𝑛) < 𝑗
whenever all 𝑡𝑖 ≤ 𝑠𝑖 and at least in one case the inequality is strict.
We say that a state (𝑠1,… , 𝑠𝑛) ∈ 𝑆1 × ⋯ × 𝑆𝑛 is a minimal 𝑗-working
state or minimal 𝑗-path if 𝛷(𝑠1,… , 𝑠𝑛) < 𝑗 and 𝛷(𝑡1,… , 𝑡𝑛) ≥ 𝑗 whenever
all 𝑡𝑖 ≥ 𝑠𝑖 and at least one of the inequalities is strict. Cut systems are
usually denoted by :F (for fail) in the literature.

Example 2.2. Let  be a cut system with 3 components 𝑐1, 𝑐2, 𝑐3 such
that 𝑆 = 𝑆1 = 𝑆2 = 𝑆3 = {0, 1, 2}. The structure function of  is given
by 𝛷(𝑠1, 𝑠2, 𝑠3) = max{𝑠1, 𝑠2, 𝑠3} i.e.  is a multi-state parallel:F system,
the system fails at level 𝑗 > 0 or bigger whenever any of its components
is failing at level 𝑗 or more. Let 𝑞1,1 = 0.25, 𝑞1,2 = 0.2, 𝑞2,1 = 0.2, 𝑞2,2 = 0.1
and 𝑞3,1 = 0.3, 𝑞3,2 = 0.25.

The minimal 1-failing states of  are (1, 0, 0), (0, 1, 0), (0, 0, 1) and the
minimal 2-failing states of this system are (2, 0, 0), (0, 2, 0), (0, 0, 2). The
1-unreliability of the system is 𝑈1() = 0.58 and 𝑅1() = 0.42; the
2-unreliability of the system is 𝑈2() = 0.46 and 𝑅2() = 0.54.

For clarity, in this paper we refer mainly to path systems. All the
computations and considerations may be correspondingly applied to
cut systems unless otherwise stated. We assume that the working or
failure probabilities of the components in any system are independently
distributed, although the method can also be applied to systems with
dependent components. Also, we will consider that the probabilities of
the systems’ components to be in their different levels are constant in
time (or equivalently, we consider reliability at a given instant 𝑡 or for
the steady state of the system). The algebraic method can be applied to
components’ probabilities that vary in time, and to repairable systems
and renewal processes. In those cases, we must consider the 𝑗-reliability
of the system, i.e. the probability that the system is performing at level 𝑗
or better, and also the 𝑗-availability of the system at a given instant 𝑡 or
an interval  of time, i.e. the probability that the system is performing
at level 𝑗 or better for all 𝑡 ∈  . Both notions have been extensively
studied in the literature of multi-state systems, e.g. [19]. For complete
introductions to multi-state system reliability and methods see [18,20,
21].

2.2. Algebraic reliability

The use of commutative algebra (in particular of monomial ideals)
in system reliability started in [22,23] in a close relation to improve-
ments in inclusion–exclusion formulas and Bonferroni bounds [24]. The
approach we follow was developed in a series of papers, e.g. [25–27].
The main idea is to associate an algebraic object to a coherent system
and obtain information about the structure and reliability of the system
by investigating the properties of the algebraic object. In this section
we make a brief self-contained description of the algebraic concepts
involved and refer the interested reader to the cited series of papers
for full details and proofs.

Let  be a path system with 𝑛 components and let 𝑗 ∈ {0,… ,𝑀} be
one of the levels of the system. Let 𝐹𝑗 () be the set of 𝑗-working states
of the system and 𝐹 𝑗 () the subset of minimal 𝑗-working states. Let us
onsider 𝑃 = 𝐤[𝑥1,… , 𝑥𝑛] a polynomial ring in 𝑛 indeterminates, one
or each component of ; here 𝐤 denotes any field of characteristic 0,
ut for clarity we assume that our coefficients are in Q or R. To each
tate 𝑠 = (𝑠1,… , 𝑠𝑛) ∈ 𝑆1 × ⋯ × 𝑆𝑛 of  we associate the monomial
𝑠 = 𝑥𝑠11 ⋯ 𝑥𝑠𝑛𝑛 ∈ 𝑃 .

We denote by 𝑝𝑟(𝑥𝑠) =
∏𝑛

𝑖=1 𝑝𝑖,𝑠𝑖 the probability that the system is
n a state ≥ 𝑠. In algebraic terms, having a state 𝑡 ≥ 𝑠 is equivalent to
aying that the monomial 𝑥𝑡 is a multiple of 𝑥𝑠, i.e. 𝑥𝑡 is in 𝐼 = ⟨𝑥𝑠⟩,

𝑠
he ideal in 𝑃 generated by the monomial 𝑥 . Now we consider the
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probability that the system is in a state greater then or equal to at least
one of the states in {𝜇1,… , 𝜇𝑟}: this situation algebraically corresponds
o the set of monomials 𝑥𝑡 belonging to the ideal 𝐼 = ⟨𝑥𝜇1 ,… , 𝑥𝜇𝑟 ⟩. Thus
e denote its probability by 𝑝𝑟(𝐼) = 𝑝𝑟(

⋃𝑟
𝑖=1⟨𝑥

𝜇𝑖
⟩).

The ideal generated by the 𝑗-working states of  is denoted by 𝐼𝑗 ()
nd is called the 𝑗-reliability ideal of . For a monomial ideal there
s a unique minimal monomial generating set, denoted MinGens(𝐼).
hus we observe that, due to the coherence property of , we have
hat MinGens(𝐼𝑗 ()) is the set of the monomials corresponding to the
inimal 𝑗-paths of 

𝑗 () = ⟨𝑥𝜇 ∣ 𝜇 ∈ 𝐹 𝑗 ()⟩.

From these definitions we have that the reliability of  is given by

𝑅𝑗 () = 𝑝𝑟(𝐼𝑗 ()).

Remark 2.3. The definition and description of the structure function
of a multi-state coherent systems can be based on the sets of minimal
𝑗-paths or minimal 𝑗-cuts, which extend the notion of minimal paths
and minimal cuts from binary systems [28]. These special sets of state
vectors are described as lower boundary points and upper boundary
points to level 𝑗 in [28]. Both sets can be formulated in algebraic terms
as the minimal generators of the 𝑗-reliability ideal (lower boundary
points) and maximal standard pairs (upper boundary points). For full
details and a complete proof of this correspondence, see [29].

Since 𝑝𝑟(𝐼𝑗 ()) is expressed as the probability of a union, a natural
choice for this computation is using the inclusion–exclusion principle,
which in this case can be expressed as

𝑝𝑟(𝐼𝑗 ()) =
𝑟
∑

𝑖=1
(−1)𝑖+1

∑

|𝜎|=𝑖
𝑝𝑟(lcm(𝑥𝜇𝑠 |𝑠 ∈ 𝜎)), (1)

where 𝜎 denotes subsets of {1,… , 𝑟} and lcm denotes the least common
multiple.

A compact form of Eq. (1) can be obtained by the multigraded
Hilbert series of 𝐼𝑗 (). The multigraded Hilbert series of an ideal or
module is a very important invariant in commutative algebra and
algebraic geometry [30]. It is useful in our context because it provides
a compact way to enumerate all monomials in a monomial ideal. The
multigraded Hilbert series of an ideal 𝐼 ∈ 𝑃 , given by

𝐻𝐼 (𝑥1,… , 𝑥𝑛) =
∑

𝜇∈N𝑛
[𝑥𝜇 ∈ 𝐼]𝑥𝜇 ,

where the symbol [𝑥𝜇 ∈ 𝐼] is equal to 1 if 𝑥𝜇 is in 𝐼 and 0 otherwise.
The multigraded Hilbert series is an element of the formal power series
ring Z[[𝑥1,… , 𝑥𝑛]]. Observe that in this ring we have the identity 1

1−𝑥𝑖
=

1 + 𝑥𝑖 + 𝑥2𝑖 + ⋯ and hence one way to enumerate all the monomials
in 𝑃 is to consider the summands of ∏𝑛

𝑖=1
1

1−𝑥𝑖
. Therefore the Hilbert

eries of 𝑃 is given by 𝐻𝑃 (𝑥1,… , 𝑥𝑛) =
∏𝑛

𝑖=1
1

1−𝑥𝑖
. Just by multiplying

every monomial by a given 𝑥𝜇 ∈ 𝑃 one obtains that 𝐻
⟨𝑥𝜇⟩(𝑥1,… , 𝑥𝑛) =

∏𝑛
𝑖=1

𝑥𝜇

1−𝑥𝑖
. Now, since the set of monomials in a monomial ideal 𝐼

enerated by {𝑥𝜇1 ,… , 𝑥𝜇𝑟} is the union of the sets of monomials in each
f the ideals ⟨𝑥𝜇𝑖 ⟩ then we have that

𝐼 (𝑥1,… , 𝑥𝑛) =
𝑟
∑

𝑖=1
(−1)𝑖+1

∑

|𝜎|=𝑖

lcm(𝑥𝜇𝑠 |𝑠 ∈ 𝜎)
∏𝑛

𝑗=1(1 − 𝑥𝑗 )
, (2)

which is the algebraic version of Eq. (1). Let 𝐻𝑁𝐼 (𝑥1,… , 𝑥𝑛) denote the
numerator of the Hilbert series of the ideal 𝐼 and let  be a coherent
path system as in Section 2.1. Let 𝑝𝑟(𝐻𝑁𝐼𝑗 ()(𝑥1,… , 𝑥𝑛)) denote the
formal substitution of every 𝑥𝜇 by 𝑝𝑟(𝑥𝜇) in the numerator of the
multigraded Hilbert series of 𝐼𝑗 (). The direct relation between Eqs. (1)
and (2) allows us to establish the fundamental identity of the algebraic
approach to system reliability

𝑅 () = 𝑝𝑟(𝐼 ()) = 𝑝𝑟(𝐻𝑁 (𝑥 ,… , 𝑥 )). (3)
3

𝑗 𝑗 𝐼𝑗 () 1 𝑛
Hence any way to obtain 𝐻𝑁𝐼𝑗 ()(𝑥1,… , 𝑥𝑛) gives us a way to compute
𝑅𝑗 (). Of course a direct one, although very redundant in general,
is Eq. (2) by means of the inclusion–exclusion principle. Other more
efficient and compact ways to obtain 𝐻𝑁𝐼𝑗 ()(𝑥1,… , 𝑥𝑛) are described
in [31].

An important feature of the inclusion–exclusion formulas is that
they can be truncated to obtain the so called Bonferroni bounds [24].
More precisely, we have that

𝑝𝑟(𝐼𝑗 ()) ≤
𝑡

∑

𝑖=1
(−1)𝑖+1

∑

|𝜎|=𝑖
𝑝𝑟(lcm(𝑥𝜇𝑠 |𝑠 ∈ 𝜎)) for 𝑡 ≤ 𝑟 odd,

𝑝𝑟(𝐼𝑗 ()) ≥
𝑡

∑

𝑖=1
(−1)𝑖+1

∑

|𝜎|=𝑖
𝑝𝑟(lcm(𝑥𝜇𝑠 |𝑠 ∈ 𝜎)) for 𝑡 ≤ 𝑟 even.

(4)

One way to obtain the multigraded Hilbert series of a monomial ideal 𝐼
is by constructing a multigraded free resolution of 𝐼 and read 𝐻𝑁(𝐼)
from the data in the resolution. Every ideal 𝐼 ⊆ 𝑃 = 𝐤[𝑥1,… , 𝑥𝑛] can be
described as a module in terms of what is called a free resolution, which
is a series of free modules and morphisms among them. A free module
is a direct sum of copies of 𝑃 with the usual grading shifted by some
degree 𝑑 ∈ N denoted by 𝑃 (−𝑑). In the case of monomial ideals we
can also have multigraded resolutions, in which the degree shifts are
given by multidegrees (𝑑1,… , 𝑑𝑛) ∈ N𝑛 and the shifted copies of 𝑃 are
denoted by 𝑃 (𝜇). A multigraded free resolution of a monomial ideal 𝐼
is of the form

0 ⟶

𝑟𝑑
⨁

𝑗=1
𝑃 (−𝜇𝑑,𝑗 )

𝜕𝑑
⟶ ⋯

𝜕2
⟶

𝑟1
⨁

𝑗=1
𝑃 (−𝜇1,𝑗 )

𝜕1
⟶ 𝑃∕𝐼 ⟶ 0,

here the 𝜕𝑖 are graded module morphisms (here called differentials), 𝑑
s the length of the resolution, the 𝑟𝑖 are called ranks of the resolution

and the 𝜇𝑖,𝑗 for each 𝑖 are the multidegrees of the 𝑖th module of
the resolution. Given an ideal 𝐼 one can build different resolutions
and among them there is a distinguished one called the minimal free
esolution which is unique up to isomorphisms and is characterized by
aving smallest ranks among all the possible resolutions of 𝐼 . The ranks

of the minimal free resolution of 𝐼 are called the Betti numbers of 𝐼 and
are a fundamental invariant of 𝐼 [30].

Now, given any multigraded free resolution of a monomial ideal 𝐼
we have the following expression for 𝐻𝑁𝐼 (𝑥1,… , 𝑥𝑛)

𝐻𝑁𝐼 (𝑥1,… , 𝑥𝑛) =
𝑑
∑

𝑖=1
(−1)𝑖

𝑟𝑖
∑

𝑗=1
𝑥𝜇𝑖,𝑗 . (5)

This expression can be truncated as in (4) and produces the following
bounds for 𝑅𝑗 (), see [25]

𝑅𝑗 () ≤
𝑡

∑

𝑖=1
(−1)𝑖+1

𝑟𝑖
∑

𝑗=1
𝑝𝑟(𝑥𝜇𝑖,𝑗 ) for 𝑡 ≤ 𝑟 odd,

𝑅𝑗 () ≥
𝑡

∑

𝑖=1
(−1)𝑖+1

𝑟𝑖
∑

𝑗=1
𝑝𝑟(𝑥𝜇𝑖,𝑗 ) for 𝑡 ≤ 𝑟 even.

(6)

Among this type of bounds, those given by the minimal multigraded
free resolution of 𝐼𝑗 () are the tightest, cf. [25].

Example 2.4. Consider the series:G system  studied in Example 2.1.
The 𝑗-reliability ideals of  are 𝐼1() = ⟨𝑥1𝑥2𝑥3⟩ and 𝐼2() = ⟨𝑥21𝑥

2
2𝑥

2
3⟩.

The minimal free resolution of 𝐼1() has length 1 and the only free
module of this resolution has multidegree (1, 1, 1), hence 𝑅1() =
𝑝𝑟(𝑥1𝑥2𝑥3) = 0.54. An equivalent computation shows that 𝑅2() =
𝑝𝑟(𝑥21𝑥

2
2𝑥

2
3) = 0.42.

Example 2.5. Consider now the parallel:F system  in Example 2.2.
The 𝑗-unreliability ideals of  are 𝐼1() = ⟨𝑥1, 𝑥2, 𝑥3⟩ and 𝐼2() =
𝑥21, 𝑥

2
2, 𝑥

2
3⟩. The minimal free resolution of 𝐼2() has length 3 and the

ultidegrees of its modules are 𝜇 = (2, 0, 0), 𝜇 = (0, 2, 0), 𝜇 =
1,1 1,2 1,3
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(0, 0, 2), 𝜇2,1 = (2, 2, 0), 𝜇2,2 = (2, 0, 2), 𝜇2,3 = (0, 2, 2) and 𝜇3,1 = (2, 2, 2)
hence the 2-unreliability of  is given by

𝑈2() = 𝑝𝑟(𝑥21) + 𝑝𝑟(𝑥22) + 𝑝𝑟(𝑥23) − (𝑝𝑟(𝑥21𝑥
2
2) + 𝑝𝑟(𝑥21𝑥

2
3) + 𝑝𝑟(𝑥22𝑥

2
3))

+ 𝑝𝑟(𝑥21𝑥
2
2𝑥

2
3) = 0.55 − 0.095 + 0.005 = 0.46.

Observe that truncating this expression we obtain a first upper bound
of 0.55 and a first lower bound of 0.455 for 𝑈2().

The algebraic methodology for reliability computation using mono-
mial ideals is based on two main principles. The first one is to avoid as
much redundancy as possible when enumerating the states needed for
the final reliability computation. This is provided by the possibility of
using different resolutions to express the numerator of the Hilbert series
of the system’s ideals. In this respect, a fast computation of the minimal
resolution or close-to-minimal resolutions is the main component of
our approach. The second principle is that this methodology can be
approached as a recursive procedure, computing the Hilbert series of
an ideal in terms of the Hilbert series of smaller ideals. Recursion is
usually very efficient in reliability computations and is used in other
methodologies, such as the UGF method [16], the decomposition and
factoring methods [20,21] or ad-hoc methods for particular systems,
see [32] for instance.

To achieve the aforementioned two principles, we use in our al-
gorithm the Hilbert series expression given by ranks of resolutions
computed by Mayer–Vietoris trees, described in [33]. They are a funda-
mental tool in our implementation of the algebraic method for system
reliability, for they are a fast and efficient recursive algorithm and
their output is a resolution that is in most cases minimal or very close
to minimal. This is the main ingredient of the efficiency of the class
described in Section 3 which is demonstrated in some examples in
Section 4.

Remark 2.6. The principles of avoiding redundant computations and
using recurrence are the keys of the UGF method, which also uses
an algebraic formalism. They are however used in a slightly different
way compared to our approach. In the first place, the UGF method
avoids the redundancy by collecting like terms during the recursive
computation. In our approach we reduce redundant terms by checking
divisibility of the involved monomials during the computation and
hence not using terms that would be canceled in the final evaluation
of the expression. With respect to the recursive methodology, the
recursions used in the UGF method needs a certain structure for the
base cases (e.g. series or parallel systems as base case to stop the
recursion) and the recursion is applied by blocks or subsystems. In
our case the recursion is applied by selecting a single generator of
the ideal in each step. This reduces the need of previous knowledge
of the system’s structure and is therefore very general, but has the
disadvantage of eventually producing larger recursion trees.

These observations suggest that both methods could mutually ben-
efit from considering the stronger points of the other to improve their
own performance. A full comparison is certainly worth considering, but
it is beyond the scope of this paper.

Example 2.7. Consider the double bridge binary system in Fig. 1,
taken from [24]. It has 5 nodes and 8 connections and we assume that
only its connections are subject to failure. The minimal cuts of the
system are 123, 1258, 13 457, 1478, 2346, 24 568, 3567 and 678. The cut
ideal corresponding to this network is then

𝐼 =⟨𝑥1𝑥2𝑥3, 𝑥1𝑥2𝑥5𝑥8, 𝑥1𝑥3𝑥4𝑥5𝑥7, 𝑥1𝑥4𝑥7𝑥8, 𝑥2𝑥3𝑥4𝑥6,

𝑥2𝑥4𝑥5𝑥6𝑥8, 𝑥3𝑥5𝑥6𝑥7, 𝑥6𝑥7𝑥8⟩.

To compute the (un)reliability of this system we can use the Hilbert
series of its cut ideal, which has 8 generators. Using the Taylor res-
olution corresponds to the inclusion–exclusion method, and uses in
4

this case 255 summands for the Hilbert series. Another resolution is
Fig. 1. Double bridge network.

the Scarf resolution, that is equivalent to apply the method of abstract
tubes [23,24], which in this case is much less redundant, giving an
expression for the Hilbert series that uses only 51 summands. Using the
minimal free resolution gives an expression using 43 summands and
is the most compact form achievable with this methodology. If we use
the expression given by the inclusion–exclusion method and Bonferroni
bounds obtained by truncation, we have that the eighth bound is sharp,
while in the case of the Scarf or minimal resolutions already the fourth
bound is sharp.

Remark 2.8. The network in Example 2.7 can be handled efficiently
using the factoring algorithm. The domination invariant [34] of this
system is 4, which implies that the reliability function can be expressed
ery easily as the sum of just four terms. Observe that this is the same
umber of terms in the minimal resolution of the reliability ideal of this
ystem.

.3. Duality

Given a structure function 𝛷 its dual 𝛷𝐷 with respect to 𝐭 ∈ N𝑛 is
iven by (cf. [19])
𝐷(𝑠1,… , 𝑠𝑛) = 𝑀 −𝛷((𝑡1 − 𝑠1,… , 𝑡𝑛 − 𝑠𝑛)). (7)

xample 2.9. Consider a binary series:G system  with three com-
onents where 𝛷(𝑠1, 𝑠2, 𝑠3) = min{𝑠1, 𝑠2, 𝑠3}. We have 𝛷𝐷(𝑠1, 𝑠2, 𝑠3) = 0
f and only if (𝑠1, 𝑠2, 𝑠3) = (0, 0, 0) hence the minimal working states of
he dual system are (1, 0, 0), (0, 1, 0) and (0, 0, 1), which correspond to a

parallel system. The dual of a series system is always a parallel system
and vice-versa.

There is a notion of duality in monomial ideals, called Alexander
duality [35]. To describe it we use the following notation. Given a
vector 𝜇 ∈ N𝑛, we denote by m𝜇 the monomial ideal

m𝜇 = ⟨𝑥𝜇𝑖𝑖 ∣ 𝜇𝑖 ≥ 1⟩.

Given two vectors 𝜇 and 𝜈 in N𝑛 let 𝜇⧵𝜈 the vector whose 𝑖’th coordinate
is 𝜇𝑖 + 1 − 𝜈𝑖 if 𝜈𝑖 ≥ 1 and 0 otherwise.

efinition 2.10. Let 𝐼 ⊂ 𝐤[𝑥1,… , 𝑥𝑛] be a monomial ideal, MinGens(𝐼)
its minimal set of monomial generators, and 𝑥𝜈 = lcm(MinGens(𝐼)). The
Alexander dual of I is the intersection

𝐼𝐷 =
⋂

𝑥𝜇∈MinGens(𝐼)
m𝜈⧵𝜇 ,

where m(𝑠1 ,…,𝑠𝑛) denotes the monomial ideal ⟨𝑥𝑠𝑖𝑖 ∣ 𝑠𝑖 ≥ 1⟩

Remark 2.11. Given a coherent system  its 𝑗-reliability ideal 𝐼𝑗 ()
is generated by the monomials corresponding to its minimal 𝑗-paths.
The ideal of its dual system 𝐼𝑗 (𝐷) is generated by the monomials
corresponding to maximal 𝑗-cuts of  and may be seen as the ideal
generated by the maximal standard pairs of 𝐼𝑗 () [29]. These can
be computed using the Alexander dual of the artinian ideal 𝐼𝑗 () +

𝑀1+1 𝑀𝑛+1

⟨𝑥𝑖 ,… , 𝑥𝑛 ⟩ [36].
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We can use the dual ideal of a system to compute its reliability in
the following way. Let 𝑝𝑟(𝑥𝜇) = ∏𝑛

𝑖=1(1 − 𝑝𝑖,𝜇𝑖+1) i.e. the product of the
probabilities that each component 𝑖 is in a state less than or equal to 𝜇𝑖.
We denote by 𝜈 = (𝑀1,… ,𝑀𝑛) the vector of maximal possible levels of
he components. Let 𝐼 𝑗 () be the ideal generated by the monomials
𝑥𝜇 ∣ 𝑥𝜇 is a generator of 𝐼𝑗 ()}. We consider the ideal 𝐼 𝑗 ()𝐷 and
ompute 𝐻𝐼𝑗 ()𝐷

(𝑥1,… , 𝑥𝑛). We obtain 𝑈𝑗 () = 1 − 𝑅𝑗 () by formally
substituting each monomial 𝑥𝜇 in 𝐻𝑁𝐼𝑗 ()𝐷

(𝑥1,… , 𝑥𝑛) by 𝑝𝑟( 𝑥
𝜈

𝑥𝜇 ).

xample 2.12. Consider the system in Example 2.9. We have that
1() = ⟨𝑥1𝑥2𝑥3⟩, then 𝐼1()𝐷 = ⟨𝑥1, 𝑥2, 𝑥3⟩ and 𝐼1()𝐷 = ⟨𝑥1, 𝑥2, 𝑥3⟩.
y using the minimal free resolution of 𝐼1()𝐷 = ⟨𝑥1, 𝑥2, 𝑥3⟩ we have

that 𝐻𝑁𝐼1()𝐷
(𝑥1,… , 𝑥𝑛) = (𝑥1+𝑥2+𝑥3)− (𝑥2𝑥3+𝑥1𝑥3+𝑥1𝑥2)+𝑥1𝑥2𝑥3.

ence, if we set the probabilities 𝑝1,1 = 0.8, 𝑝2,1 = 0.9 and 𝑝3,1 = 0.75,
we get

𝑈1() = 𝑝𝑟(𝑥1𝑥2) + 𝑝𝑟(𝑥1𝑥3) + 𝑝𝑟(𝑥2𝑥3) − 𝑝𝑟(𝑥1) − 𝑝𝑟(𝑥2) − 𝑝𝑟(𝑥3) + 𝑝𝑟(1)

= 0.25 + 0.1 + 0.2 − (0.025 + 0.05 + 0.02) + 0.005 = 0.46,

nd we obtain 𝑅1() = 0.54. Observe that in the equality above, 𝑝𝑟(1) =
𝑝𝑟(𝑥01𝑥

0
2𝑥

0
3) = 𝑝𝑟(𝑥1 ≤ 0)𝑝𝑟(𝑥2 ≤ 0)𝑝𝑟(𝑥3 ≤ 0) = 0.005.

3. Algebraic reliability class in CoCoALib

The good performance of an algorithm depends also on the effi-
ciency of its implementation. In this section we give the interested
reader some technical details on the implementation of our algorithms
and some of the decisions we made, like the choice of data types and
the structure of the algorithms. These decisions contribute to the actual
performance of the algorithms in terms of memory usage and CPU time.
Also, we describe the CoCoALib library, which provides convenient
mplementations of the main algebraic structures we need. We hope
hese descriptions, although not fully detailed, make it easier for en-
ineers and reliability practitioners to practically use these algorithms
r incorporate them into their own software, and also make it easy to
eproduce our results, experiments and benchmarks.

.1. CoCoALib

CoCoALib, for Computations in Commutative Algebra, is an open
ource C++ software library principally based on multi-variate mono-
ials and polynomials and devoted to algebraic geometry. It is the

omputational core of the CoCoA software system [37]. A crucial aspect
f CoCoALib is that it was designed from the outset to be an open-
ource software library. This initial decision, together with the desire
o help the software prosper, has many implications: e.g. designing

a particularly clean interface for all functions with comprehensive
documentation. This cleanliness makes it easy to integrate CoCoALib
into other software in a trouble-free manner. The library is fully docu-
mented, and also comes with about 100 illustrative example programs.
CoCoALib reports errors using C++ exceptions, while the library itself
is exception-safe and thread-safe. The current source code follows the
C++14 standard. The main features of the design of CoCoALib are:

• it is well-documented, free and open source C++ code (under the
GPL v.3 licence);

• the design is inspired by, and respects, the underlying mathemat-
ical structures;

• the source code is clean and portable;
• the user function interface is natural for mathematicians, and easy

to memorize;
• execution speed is good with robust error detection.

The design of the library (and its openness) was chosen to facilitate
and encourage ‘‘outsiders’’ to contribute. There are two categories of
contribution: code written specifically to become part of CoCoALib,
and stand-alone code written without considering its integration into
5

CoCoALib. The library has combined some of the features of various
external libraries into CoCoALib. Such as Frobby (see [38]) which is
specialized for operations on monomial ideals. Other integrations are
with Normaliz library for computing with affine monoids or rational
cones and GFanLib which is a C++ software library for computing
Gröbner fans and tropical varieties.

3.2. The class description

We have implemented within CoCoALib a set of C++ classes for
aking computations in algebraic reliability. The UML class diagram

s depicted in Fig. 7 in Appendix. Our main class is the abstract class
oherentSystem which consists of a series of levels and a matrix
f probabilities. The levels are stored in a std::vector (an efficient
tructure of the C++ language) in which each component is an instance
f the class CoherentSystemLevel, and the probabilities are given

by a vector of vectors of type double where the 𝑗’th entry of the
’th vector corresponds to 𝑝𝑖,𝑗 = 𝑝(𝑠𝑖 ≥ 𝑗), the probability that the level
f the 𝑖’th component of the system is bigger than or equal to 𝑗. Each
nstance of the class CoherentSystemLevel consists basically of an
deal and its dual, which are objects of the CoCoALib class ideal. Also,
e store as member fields their Mayer–Vietoris trees, which play the

ole of multigraded free resolutions optimized for monomial ideals.
The concrete classes inheriting from the class CoherentSystem are

oherentSystemPath and CoherentSystemCuts which respec-
ively represent :G systems in which the levels and probabilities denote
orking states, and :F systems in which the levels and probabilities

epresent failures, as seen in Section 2.1. For any instance of these two
oncrete classes, and hence of the abstract class CoherentSystem we
an call the following member functions:

yMinimalPaths Receives a level and gives a vector of vectors of type
long. Each of these vectors is a minimal path of the system at
the given level.

yMinimalCuts Receives a level and gives a vector of vectors of type
long. Each of these vectors is a minimal cut of the system at
the given level.

yReliability Receives a level 𝑗 and computes 𝑅𝑗 ().

yUnreliability Receives a level 𝑗 and computes 𝑈𝑗 ().

yReliabilityBounds Receives a level 𝑗 and computes bounds for
𝑅𝑗 () given by the resolution obtained by the Mayer–Vietoris
tree of 𝐼𝑗 () as given in Eq. (6).

yUnreliabilityBounds Receives a level 𝑗 and computes bounds for
𝑈𝑗 () given by the resolution obtained by the Mayer–Vietoris
tree of 𝐼𝑗 () computed from the bounds for 𝑅𝑗 () given in
Eq. (6).

In addition, for :G systems given by its sets of paths, we have
mplemented two more bounds, described by Gåsemyr and Natvig
n [39]:

NMaxMinPathBound Let 𝐲𝐦, 𝑚 = 1,… ,𝑀𝑝 the minimal paths of 
for level 𝑗, the following lower bound for 𝑅𝑗 () is given in [40]:

𝑙′𝑗 (𝐩) = max
1≤𝑚≤𝑀𝑝

( 𝑛
∏

𝑖=1
𝑝
𝑦𝑚𝑖
𝑖

)

NCoproductMinCutsBound Let 𝐳𝐦, 𝑚 = 1,… ,𝑀𝑐 the set of minimal
cut vectors of  for level 𝑗, then we have the following lower
minimal bound for 𝑅𝑗 () [40]:

𝑙∗∗𝑗 (𝐩) =
𝑀𝑐
∏

𝑚=1

𝑛
∐

𝑖=1
𝑝
𝑧𝑚𝑖 +1
𝑖

where for 𝑝 ∈ [0, 1] we define ∐𝑛 = 1 −
∏𝑛 (1 − 𝑝 ).
𝑖 𝑖=1 𝑖=1 𝑖
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When computing the functions myReliability,
myUnreliability, myReliabilityBounds or
myUnreliabilityBounds the object checks its ideal and its dual
ideal, and chooses whichever of them has a smallest number of min-
imal generators to perform the actual computation. To compute du-
als of ideals we use the Frobby library, in particular the function
FrbAlexanderDual which is in general a fast computation. Once the
ideal is chosen, we check whether the system has already computed its
Mayer–Vietoris tree. If it is not yet computed, it is computed and stored
in the corresponding class member field. Then the Mayer–Vietoris tree
is used to retrieve the required value or bounds for reliability or
unreliability.

4. Examples of use

In this section we apply our C++ class to some examples of reliabil-
ity computations. We use binary networks and multi-state systems. We
consider systems in which their components have independent identi-
cally distributed probabilities as well as systems in which the compo-
nents’ probabilities are independent but not identically distributed. All
the computations in this section have been implemented by the authors
and executed in an HP Z-book laptop.2

4.1. Test examples

First, we validate our algorithms with a set of diverse examples
of multi-state systems found in the literature. We selected systems
of different nature so that we can test our algorithms with examples
featuring different characteristics. Table 1 shows the results of these
tests. The first column of the table indicates the name of each example
(see description below), 𝑛 indicates the number of variables and 𝑀 the
number of levels of the system (not counting the complete failure level
or level 0). Column 𝑀𝑖 indicates the number of levels of each compo-
nent and column 𝑔𝑒𝑛𝑠(𝐼𝑗 ) indicates the number of minimal generators
f the 𝑗-reliability ideal for each level 𝑗 = 1,… ,𝑀 . The set of test

examples consists of the following:

- Army Battle Plan is taken from the classical paper [28]. It
is a customer-driven multi-state system with 5 different states
and 4 components (two binary components and two three-level
components), the probabilities of the different components are
independent but not identical.

- Bin.S-P is a binary Series–Parallel system taken from [41]
(Example 4.5) which has seven independent not identical com-
ponents and two levels.

- MAX+MIN,TIMES is a multi-state system with 5 components and
7 levels whose structure function is given by

𝛷(𝑥1,… , 𝑥5) =
(

max{𝑥1, 𝑥2} + min{𝑥3, 𝑥4}
)

× 𝑥5,

and the details on components’ and system’s levels and probabil-
ities (not i.i.d) are given in [42], Example 4.7.

- Bridge Flow Network is a multi-state network with 5 edges
with different weights considered as flows. The states of the
system are given by the possible flows through the network. The
example considers the probability of a total flow of at least three
units (i.e. the system is in level 𝑗 = 3). The details on states and
probabilities are given in [43] Example 4, see also [21] Example
5.14.

- Dominant MS binary-imaged system is a multi-state system
with three i.i.d. components. Both the system and components
have four different states. It is presented as Example 12.21 in [20]
to illustrate the concept of multi-state dominant binary-imaged
system.

2 CPU: intel i7-4810MQ, 2.80 GHz. RAM: 16 Gb.
6
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Table 1
Test examples of multi-state systems.

Example 𝑛 𝑀 𝑀𝑖 𝑔𝑒𝑛𝑠(𝐼𝑗 )

Army Battle Plan 4 4 2,2,3,3 2,4,5,5
Bin.S-P 7 1 1 ∀𝑖 3
MAX+MIN,TIMES 5 6 3,2,2,3,2 4,3,4,3,2,1
Bridge Flow Network 5 3 3,1,2,1,2 3 for 𝑗 = 3
Dominant MS binary-imaged system 3 3 3,3,3 3,2,1
MS Cons. k-out-of-n 3 3 3,3,3 1,2,1

Table 2
Reliability computations for the GARR 2008 network.

S-node T-node # Minpaths i.i.d probabilities Non i.i.d.

0.9 0.95 0.99

TO CT 212 0.977344 0.994704 0.999798 0.994352
TS1 NA 223 0.985203 0.996890 0.999895 0.993917

TO* CT* 196 0.977428 0.994713 0.999797 –
TS1* NA* 168 0.975771 0.994486 0.999795 –

- MS Cons.k-out-of-n is a multi-state consecutive 𝑘-out-of-𝑛
system with 3 components and three levels. It is example 12.18
in [20].

.2. Source to terminal networks

One of the main problems in reliability engineering is Network Reli-
bility, see for instance [21,44] for a comprehensive account and [45]
or a recent algorithm. In this problem we consider a network in which
ne vertex is selected as source vertex and one or more vertices are
elected as target vertices. Each of the connections in the network has
certain probability to be working, and the problem is to compute

he probability that there exists at least one source-to-target path
omposed by operational connections. Usually the networks are binary
.e. the system and all of its components have only two possible levels,
lthough the multi-state version has also been considered [46,47].

.2.1. GARR: Italian research and education network
Our first example is the GARR Italian network. The motivation to

se this example is to show the performance of our algorithms in a real-
ife system that has already been studied in the literature. Fig. 2 shows
he official 2008 map of the backbone of the GARR network in Italy,
hich interconnects universities, research centers, libraries, museums,

chools and other education, science, culture and innovation facilities,
ee http//:www.garr.it. The network was at the time formed by 41
odes and 52 connections. Table 2 shows the results of some reliability
omputations in this network. First, we use TO as source node and CT as
erminal node, and then we use TS1 as source node and NA as terminal
ode. In both cases we consider an identical independent probability 𝑝
or all the connections and compute the source to terminal reliability
or 𝑝 = 0.9, 0.95 and 0.99. The last two rows in Table 2 correspond to the
ame computations in [21] (Example 5.7), observe that the differences
re due to the fact that the authors in [21] use a slightly different
etwork which has 42 nodes and hence some different connections
nd a different number of minimal paths in each example. Since our
lgorithms can also treat the case of non-identical probabilities, we
ssigned probability 0.99 to all 10 Gbps connections (4 connections),
.95 to all 2.5 Gbps connections (14 connections) and 0.9 to the rest of
he connections. The results are shown in the last column of the table.
ll our computations in this table took less than one second.

.2.2. Random networks
Our second example is a randomly generated set of networks. This

s a convenient way to generate a big number of examples not having
regular structure (like for instance series–parallel systems or 𝑘-out-
f-𝑛 systems and variants), and therefore represents a good set of

https://www.garr.it
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Fig. 2. Map of the GARR network in 2008.

benchmarks for the application to general systems. We demonstrate
our algorithms’ performance in several random networks generated
following the Erdős–Rényi model 𝐸𝑅(𝑛, 𝑝) [48] and Barabasi–Albert
model 𝐵𝐴(𝑛, 𝑚) [49]. These models generate networks with different
characteristics such as degree distribution, modularity, etc. We com-
pute the reliability of 100 random Erdős–Rényi networks with 𝑛 =
40, 𝑝 = 0.05 and 100 Barabasi–Albert networks with 𝑛 = 10 and
𝑚 = 4; we chose randomly one source and one terminal node in each
case. The number of minimal paths varies between 100 and 1000 in
both cases. However, the relation between the number of minimal
paths and minimal cuts is significantly different in the two types of
networks. Erdős–Rényi networks tend to have many more minimal cuts
with respect to the number of minimal paths, while the situation is
the opposite for Barabasi–Albert networks, see Fig. 3. In the case of
Barabasi–Albert networks our algorithms compute the reliability of the
network using the dual ideal, since it is smaller in most cases. The
reliability of the Erdős–Rényi examples was always computed using
the minimal path ideal. Times for the computation of the reliability
of these networks are shown in Fig. 4. The figures show that the times
depend greatly on the number of minimal paths, but the topology of the
network influences the algebraic characteristics of the ideals. Observe
that there are two cases of Barabasi–Albert graphs in which the number
of minimal paths is smaller than the number of minimal cuts and hence
the path ideal was used for the computation, which results in higher
computation times compared with the cases in which the dual was used.
The resolutions of these networks ideals are much shorter in the dual
case and hence the results.

4.3. Multi-state generalized 𝑘-out-of-𝑛 systems

Our final example is multi-state generalized 𝑘-out-of-𝑛 systems. We
include this example since they are one of the most important types
of systems studied in the reliability engineering literature, both in
their binary and multi-state versions. A binary 𝑘-out-of-𝑛:G system is a
system with 𝑛 components that is in a working state whenever at least
𝑘 of its components are working. The multi-state version of this kind of
systems has received several definitions in the literature, see [29] for a
7

Fig. 3. Number of minimal paths and minimal cuts in Erdős–Rényi and Barabasi–Albert
networks. The line indicates number of minimal paths equals number of minimal cuts.

review. A general definition is that of generalized multi-state 𝑘-out-of-𝑛
systems, see [50]:

Definition 4.1. An 𝑛-component systems is called a generalized 𝑘-out-
of-𝑛:G system if 𝜙(𝑠1,… , 𝑠𝑛) > 𝑗, 1 ≤ 𝑗 ≤ 𝑀 whenever there exists an
integer value 𝑙, (𝑗 ≤ 𝑙 ≤ 𝑀) such that at least 𝑘𝑙 components are in
state 𝑙 or above.

If we denote by 𝑁𝑗 the number of components of the system that
are in state 𝑗 or above then this definition can be rephrased by saying
that 𝜙(𝑆) ≥ 𝑗 if

𝑁𝑗 ≥ 𝑘𝑗
𝑁𝑗+1 ≥ 𝑘𝑗+1

⋮

𝑁𝑀 ≥ 𝑘𝑀 .

We have used our C++ class to compute the reliability of several
generalized 𝑘-out-of-𝑛 systems. Since each of these systems is given by a
vector (𝑘1,… , 𝑘𝑀 ) we generated randomly 100 vectors for systems with
four levels, and 10 variables. Fig. 5(a) and (b) show the number of mini-
mal paths and minimal cuts of these systems and the computing time of
these examples vs. the number of generators used for its computation in
each case. All systems considered have components with independent,
non-identical working probabilities. The figures show that most of these
systems have a smaller number of minimal paths compared to the
number of its minimal cuts, and that the computation time depends
greatly on the structure of the system. Let us denote by 𝑘 the maximum
of the integers 𝑘𝑙 for 𝑙 ∈ {1,… ,𝑀}. Fig. 6(a) and (b) show the number
of minimal paths and cuts for systems with 12 components, 4 levels
and 𝑘 = 4, 𝑘 = 6. The number of minimal cuts and paths of multi-state
generalized 𝑘-out-of-𝑛 grows as

(𝑛
𝑘

)

. The performance of our algorithms
depend greatly on the number of minimal paths or minimal cuts, as
can be seen in Fig. 6(c). There exist specialized algorithms for this kind
of systems that are recursive on 𝑀 , see [29,51] or based on Decision
Diagrams [32].

4.4. Computational complexity

The algebraic method is (in its general form) an enumerative
method, similar to the inclusion–exclusion approach but less redun-
dant. The compact form of the Hilbert series provided by our algorithms
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Fig. 4. Times for reliability computation on Erdős–Rényi and Barabasi–Albert graphs.
Fig. 5. Number of minimal paths vs. number of minimal cuts and computing time for generalized multi-state 𝑘-out-of-𝑛 systems with 10 components, 4 levels, and non-identical
probabilities.
gives some computational advantages, but there exist certain intrinsic
limitations due to the complexity of the problem. The computation of
network reliability (either 𝑘-terminal, 2-terminal or all-terminal) is a
#𝑃 -hard problem [52] and hence there is no hope of finding an efficient
algorithm for computing the reliability of general systems unless 𝑃 =
𝑁𝑃 , even in the binary case. The algebraic method in which our algo-
rithms are based shows that the problem of computing the reliability of
a multi-state system can be polynomially reduced to the computation
of the multigraded Hilbert series of a monomial ideal. This problem
belongs to the class of #𝑃 -hard problems and there exist several sub-
problems of it that are known to be #𝑃 -complete or 𝑁𝑃 -complete. In
particular, the problem of computing the Euler characteristic of an
abstract simplicial complex is equivalent to the computation of the
coefficient of the monomial 𝑥1 ⋯ 𝑥𝑛 in the multigraded Hilbert series
of a (square-free) monomial ideal, and this problem belongs to the
#𝑃 -complete complexity class [53].

There are two complementary directions to follow for finding sat-
isfactory solutions for these problems. One is to develop specialized
polynomial algorithms for particular families of systems. The other is
to find algorithms showing good heuristic behavior when applied to
general problems. In these two directions it is of paramount importance
to develop good implementations in terms of data types, memory
management, etc. that make the algorithms applicable to practical
problems.

The algebraic method for system reliability contributes to both of
the directions described above. On the one hand, the study of the
structure of the ideals of particular classes of systems can provide
efficient algorithms or even formulas (explicit or recursive) for their
8

Hilbert series, see [54,55] for 𝑘-out-of-𝑛 and consecutive 𝑘-out-of-𝑛
binary systems, and [29] for the multi-state version. As an example,
the formulas for 𝑘-out-of-𝑛 systems have complexity 𝑂(𝑛2) which is
quadratic, but not optimal when restricted to systems with statistically
independent components, for which the algorithm in [56], based on the
Fast Fourier Transform, runs in complexity 𝑂(𝑛(log 𝑛)2). On the other
hand, for the general case we used efficient algorithms for computing
the multi-graded Hilbert series of monomial ideals and Alexander duals.
These algorithms avoid much of the redundancy that shows up in
reliability computation of general systems, when we have no evident
structure to take advantage of. Besides, they make use of the recursive
nature of the problem, which has also been used in other approaches
like the Universal Generating Function method. However, there is still
room for improvement. As the UGF and other methods show, it is
important, for the sake of efficiency, to identify good base cases for the
recursion, and for simplification techniques. The algorithms provided
in this paper use only algebraic base cases and simplifications, and
hence it is expected to gain efficiency by exploring other base cases
that arise from the knowledge of system reliability. This is beyond
the scope of this paper and is left as future work. Finally, as it is
common in computer algebra, implementations of general algorithms
which are good enough for 𝑁𝑃 -hard or #𝑃 -hard problems offer good
performance in practice. A paradigmatic example of this are the good
algorithms for Gröbner bases, a problem whose complexity is known
to be doubly exponential. This is the case of the class presented in this
paper, in which we took advantage of the data types and optimized
routines provided by CoCoALib together with good implementations
for the Hilbert series and Alexander dual algorithms. This allows us to



Reliability Engineering and System Safety 213 (2021) 107751A.M. Bigatti et al.
Fig. 6. Number of minimal paths vs. number of minimal cuts and computing time for generalized multi-state 𝑘-out-of-𝑛 systems with 12 components, 4 levels, 𝑘 = 4, 6, and
non-identical probabilities.
efficiently compute the reliability of general systems of big size with an
affordable use of time and memory resources.

5. Conclusions and further work

We have presented a C++ class that computes the reliability of
multi-state coherent systems. The class is included and distributed
with the computer algebra library CoCoALib as free software. The
algorithms in this class are based on the algebraic approach to system
reliability analysis developed in the last decade. The main advantage
of these algorithms is that they can be applied to general systems, that
they provide bounds and that can be applied without modification to
systems with i.i.d probabilities and systems in which the probabilities
are not identical. The main drawback is that this approach is enumer-
ative, in the sense that relies on the enumeration of minimal paths or
cuts, which may be impractical for big systems.

Specialized algorithms for particular systems are not easy to find but
are very efficient in practice, see for example the algorithms based on
Multi-Valued Decision Diagrams for multi-state 𝑘-out-of-𝑛 systems [32]
or the linear algorithm for networks with small treewidth [45]. Our
future work includes the design of specialized algebraic algorithms
for particular kinds of systems. The structure of particular systems
induces a particular structure in the associated ideals which can be
studied using algebraic and combinatorial tools allowing the design of
more efficient algorithms, as described for instance in [26,27]. Another
direction of improvement is to adapt the algorithm for systems with
non-independent components. The algebraic theory is exactly the same
and only the probability assignment to the computed monomials need
to be changed. This would give a wider flexibility to our C++ class.
9

Finally, further tuning and optimization of the existing algorithms will
likely improve their efficiency and reduce the computing times, in
particular optimizations coming from the comparison and strong points
of other methods, like the UGF method.

The fact that our approach is general makes it useful as one of the
default algorithms to try in the cases for which no specific algorithms
are known yet, and also as a tool to benchmark new specific algorithms
for such problems.
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Fig. 7. UML diagram of the CoherentSystem class.
Appendix. UML diagram of the algebraic reliability C++ class

See Fig. 7.
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