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Poisson series appear frequently in problems of non-linear dynamics and celestial me-
chanics. The size of such mathematical objects makes their manipulation by means of
general symbolic processors (GSP) inefficient. Special processors named Poisson series
processors (PSP) have been created to handle them in a more efficient way. We propose
here a way to combine the flexibility and easy use of GSPs with the power of PSPs.
Using the communication tool MathLink we produced PSPCLink to connect Mathe-
matica with PSPC, a PSP of our own creation. PSPCLink is a set of C-files and one
Mathematica package. Compiling the C-files we created an executable program to be
called from Mathematica. With PSPCLink we use the PSPC functions in a way com-
pletely integrated into Mathematica taking advantage of the good properties of both
Mathematica and PSPC.
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1. Introduction

In Celestial Mechanics, the enormous size of some tasks, such us lunar and planetary
theories (Deprit et al., 1970; Brumberg and Chapront, 1973), makes it imperative to
write special algebraic manipulators oriented towards these particular problems. The
formulation of the latter is based on multivariate Fourier Series whose coefficients are
multivariate Laurent Series.∑
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This mathematical object is commonly named a Poisson series (Deprit, 1990). The set P
of a Poisson series is a commutative algebra with a unit element. This good algebraic
structure of P combined with efficient algorithms makes it possible to design efficient
Processors for dealing with them. Named Poisson series processors (PSP), this tool has
been frequently used not only in celestial mechanics, but in other problems of non-linear
dynamics (see Ricklefs et al., 1983; Broucke, 1989; Henrard, 1989, for a historical review).
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Most of the classical PSPs have been written in FORTRAN. It is a high-level lan-
guage but it does not allow data abstraction, i.e. programming using user-defined types
(Stroustrup, 1987). The C language supports neither data abstraction nor object-oriented
programming, but it is nearer than FORTRAN to these concepts of programming, and
this is one of the reasons why new PSP written in C are now appearing. More detailed
reasons are given in the next section together with the characteristics of a PSP of our
own creation called PSPC.

General symbolic processors (GSP), like Macsyma, Maple, Axiom or Mathematica are
becoming more and more useful in all branches of scientific work since they provide
a powerful tool to analyse and solve a wide range of problems. For example, as one
illustration Palacián (1993) produced the Mathematica package MALISIAS to generate
analytical theories in the artificial satellite problem using the Poisson series.

The objects in Mathematica are represented by means of tree structures. This struc-
ture, combined with a system of evaluation based on the matching of patterns, makes
Mathematica a flexible tool for studying a lot of different computational objects, from
mathematical functions like Sin[x] or ArcTan[x,y], to completely different ones like
graphics Plot[Sin[x],List[x,0,Pi]], etc.

With its structure Mathematica represents a Poisson series as a head Plus whose ar-
guments are the terms of the series, but it does not distinguish between a Poisson series
and other objects. As a consequence, it needs to store all the elements of the expres-
sion to handle them (Wolfram, 1988), while PSPs take advantage of the properties of
only the object they handle to pack the information. In the usual problems of celestial
mechanics there appear series with a very high number of terms; in this case, the mem-
ory becomes critical and PSPs are more efficient. The MALISIAS package showed the
difficulty of obtaining high orders of the theories with Mathematica, while these orders
can be obtained without difficulty using PSPC (Abad and San-Juan, 1993; San-Juan,
1996). However, sometimes the use of a Poisson series is not sufficient for developing a
theory, and we need to add other special functions like natural logarithms, dilogarithmic
functions (Osácar and Palacián, 1994), and other objects without a well-defined algebraic
structure. In these cases PSPs cannot be used and we need a GSP.

Modern tools of communication between programs can help us to have a tool with the
combined advantages of both PSP and GSP systems. Specifically MathLink (Wolfram,
1992) is a communication protocol for Mathematica that is a way of sending data and
commands back and forth between Mathematica and other programs, in particular C
programs. With MathLink we produced PSPCLink. Mathematica uses PSPCLink to
call the routines of PSPC to perform all operations with a Poisson series. PSPCLink
adds to Mathematica the efficiency of PSPC. Mathematica for its part adds to PSPC
the flexibility and the possibility of using a great variety of Mathematica objects and its
friendly front end.

The structure of a Poisson series suggests the use of object-oriented programming
(OOP) to design PSPs, but at this moment we do not have the possibility of connect-
ing Mathematica with an OO language like C++. Mathematica is not an OO language,
however, we used the features of Mathematica to add OOP characteristics, like polymor-
phism, to PSPCLink.
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2. PSPC

A few years ago, we decided to write our own program for manipulating a Poisson
series. Up to that time, we had used the PSP of Dasenbrock (1982), and we grew out of
it. We needed to improve its performance and we wanted to add new functions to it.

Rather than restructuring PSP, we decided to start from scratch. We had in mind
principally to provide our colleagues and students at the Grupo de Mecánica Espacial
with a common toolbox for them to build programs adapted to their own applications.

We adopted C as the programming language. Dasenbrock had written his PSP in
FORTRAN, but times have changed since then. We concur with the general view that,
nowadays, in the area of symbol manipulation, C is more suitable than FORTRAN and
more portable than LISP. We found many advantages in C.

(i) C provides a preprocessor, a capability we exercise to parametrize PSPC before
compilation by means of macrovariables. PSPC is more than a processor of Poisson
series; at a higher level of abstraction it is an instrument for creating PSPs. In that
perspective, the number of trigonometric arguments, the number of polynomial
variables, the chopping threshold for real coefficients, the size of a block of memory
for allocation, the output stream, all these parameters and a few other specifications
are made into macrovariables. They must be set before compiling the code; every
time a macrovariable is changed, the code must be recompiled. With macrovariables
we enable the users to proportion the toolbox to their needs. Those, for instance,
who deal only in pure polynomials will appreciate the savings they make in run
time and memory from not having to handle them as a Poisson series in a fixed
number of angles never to be zero.

(ii) Thanks to the mechanism of dynamic allocation, no slice of memory is reserved
in advance for series storage. Requirements in memory grow and contract with
the series. If the equipment allows for it, the program can take advantage without
modification of the virtual address mechanism in the software and hardware of the
host equipment.

(iii) Internal structuring is achieved by means of pointers to words; chaining by pointers
permits scanning by hopping over terms in a series.

(iv) C lets the user define new types of data structures. We take advantage of this
to introduce series, nodes for trigonometric arguments, polynomial exponents, nu-
merical coefficients, etc., each of these entities associated with pointers in different
directions.

A multivariate Fourier series of the form of equation (1.1) is called a Poisson series. In
practice, in order to define an equivalent computational object, we need to consider only
series with a finite number of terms. Each term of one of these series consists of a rational
or real coefficient, n polynomial variables with integer exponents and a trigonometric
function of a linear combination of angular variables. These elements are stored in three
different kinds of nodes in a bidimensional structure (see Figure 1).

The computational object, called series by an abuse of language, contains information
about the number of the three kinds of nodes and pointers addressed by the first and the
last polynomial and trigonometric nodes. In particular, the zero element of the algebra P
is represented by a series with one coefficient equal to 0, one polynomial node whose
exponents are all 0 and a cosine of zero as a trigonometric node.

The polynomial part of the series is a sequence of n integer variables forming the
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Figure 1. Bidimensional structure of PSPC. TN, PN and CN represent the trigonometric, the
polynomial and the coefficient nodes respectively. They are the nodes in a network of pointers.

exponents of the variables. Each exponent is taken to be between −128 and 128; they are
packed in groups of four exponents in an integer variable (32 bits). The null exponents
do not need to be stored. Together with a list of exponents the polynomial node contains
a set of pointers to related nodes in the bidimensional grid making the Poisson series.

The structure of trigonometric nodes is similar to the polynomial ones, with an addi-
tional bit to signify that the function is either a sine or a cosine. The coefficient nodes
are formed by the corresponding pointers and the coefficient itself. This coefficient may
be a real number (type double of C) or a rational number (a pair of integers of 32 bits).
The user may decide the kind of arithmetic in which to operate.

The polynomial nodes are chained in ascending lexicographic order. To be precise, we
say that the node xi00 , . . . , x

in−1
n−1 precedes the node xj00 , . . . , x

jn−1
n−1 when i0 < j0, or i0 = j0

and i1 < j1, . . .
Trigonometric nodes are chained likewise with the additional provision that cosine

terms precede sine terms.
Insertion of a node in a bidimensional grid is the most frequent operation for PSPC.

Attentive to performance in this regard, we have looked very studiously for a good
searching algorithm. The best ones, in our experience, are binary in nature; unfortunately,
they cannot be applied to lists because lists are not indexed arrays. In PSPC, we made
a compromise between the ordinary search in lists and the binary search. It proved to be
more efficient that the pure ordinary search.

Among the problems with which we were confronted was the exchange of information
with other computer programs. We solved the most pressing ones by creating functions
(routines) for input and output in various formats. In particular, PSPC makes it possible
to convert Poisson series to LATEX format. We have added capabilities by which, given a
Poisson series S, PSPC automatically turns the internal structure of S into a program in
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either C or FORTRAN to evaluate S for any values of its polynomial and trigonometric
arguments.

3. Interfacing with Mathematica

MathLink can provide seamless connections between Mathematica, your own programs
and any MathLink-capable application (Excel, SpyGlass, MATLAB, and others). We are
only interested in the option of MathLink which takes functions defined in an external
C-program and installs them into Mathematica.

To see the characteristics of this procedure, let us analyse a simple example provided
in Wolfram (1992). This is a procedure by which we can add two integers by means of
an external program. In order to do it we must write the source code of the function
addtwo:

int addtwo(int i, int j)
{

/* Code */
}

into a file called addtwo.c with a main program whose specifications are described in
Wolfram (1992).

Furthermore, we write a template file addtwo.tm that identifies each external function
like addtwo with its corresponding Mathematica symbol AddTwo and gives the pattern
and the arguments of this expression to be called by Mathematica. Arguments of the
type Integer, Real, List of Integers, List of Reals, Strings and Symbols can be passed to
the external program, and only one argument of these types can be received. You can
neither use pointers nor user-defined types.

The files addtwo.c and addtwo.tm must be compiled together with a special compiler
of C provided with MathLink and then the executable program addtwo is created.

To use it inside Mathematica it is sufficient to install it by means of the expression
Install["addtwo"]. This operation starts the external program addtwo. With the sym-
bol defined in the template: AddTwo[3,5] the integers 3 and 5 are transferred to the
external program, and it adds the numbers and transmits the result to Mathematica
with 8 appearing in the front end of Mathematica.

4. PSPCLink

The goal of PSPCLink is to use from Mathematica, via MathLink, the library of C-
functions PSPC.

The manipulation of series in PSPC is based on the definition of user-defined types of
data. In particular, the new type of data SERIES does not contain the series itself, but
the address of the first nodes in which the series is stored and the number of nodes. With
this information we can access completely every term of the series. We used the type
SERIES to write a routine for the addition of two series a, b to obtain a new series c.

int add_series(SERIES *a, SERIES *b, SERIES *c)
{

/* Code */
}
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The function add series uses three pointers to SERIES as arguments and an integer as
return value. This returned value is an internal control of the errors in PSPC.

The specifications about the type of arguments of MathLink do not permit us to use
this function directly. To solve the problem we write a new function

int AddSeries(int n, int m, int s)
{

return(add_series(address(n), address(m), address(s))); }

in which the three series are represented by means of three integers and the address of
the corresponding variables SERIES is given by the external array of pointers to SERIES
called address.

With the same style we can write functions to perform all the operations of PSPC.
Compiling the C-code of these intermediary functions together with the PSPC-code and
the template file we create an external program named PSPCLink.

Taking again the addition, after installing PSPCLink into Mathematica we can input
the expression

AddSeries[n,m,s]

This function sends the integers n, m and s to PSPCLink. Then, PSPCLink adds the
series pointed by address(n) and address(m), and stores the result in a place pointed
by address(s). Mathematica receives an integer that informs it about the success of the
operation, but it does not receive the added series. However, this is not good Mathematica
style; it is procedural programming, and it is not friendly to the user. For this reason we
wrote a new file called PSPCLink.m that is a Mathematica package to simplify the use of
PSPCLink.

Now, two kinds of Poisson series may be handled with Mathematica: the literal ex-
pression, and the integer number associated with a series in PSPCLink. To identify more
clearly the last one we added to it the head PoissonSeries. In order to transfer series
we built the Mathematica objects: ToPoissonSeries[ ] and FromPoissonSeries[ ].
ToPoissonSeries[PS] writes the literal expression PS into a temporary ASCII file.

PSPCLink reads this and stores the series. Eventually, ToPoissonSeries will return the
expression PoissonSeries[n] with the index of the series, n, assigned by the system.
FromPoissonSeries[PoissonSeries[n]] sends to PSPCLink a command to write

into a temporary ASCII file the series of index n. This file is read and the literal expression
of the series is returned. Let us see an example

In[1]:=

s1 = ToPoissonSeries[(a + b) Sin[2 x - 3 y]]

Out[1]=

PoissonSeries[1]

In[2]:=

FromPoissonSeries[s1]
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Out[2]=

(a + b) Sin[2 x - 3 y]

The use of the operator + instead of calling the procedure AddSeries is a better Math-
ematica style. The TagSetDelayed built-in function of Mathematica gives us the possi-
bility of overloading the operator +.

PoissonSeries/:
PoissonSeries[n_Integer] + PoissonSeries[m_Integer] :

/* Code to create a new object PoissonSeries[s]
and to call AddSeries[n,m,s] to obtain its value */

The rest of PSPC operations has been included in PSPCLink in the same way

In[3]:=

s2 = ToPoissonSeries[(a - b) Cos[2 x - 3 y]]

Out[3]=

PoissonSeries[2]

In[4]:=

s3 = s1 D[s2, x] - s2^2

Out[4]=

PoissonSeries[7]

In[5]:=

FromPoissonSeries[s3]

Out[5]=

2 2 2 2
-3 a b a 3 b
----- + a b + -- + (-- + a b - ----) Cos[4 x - 6 y]

2 2 2 2

Figure 2 shows the order of operations in the computation of s3. The number represents
the index of the intermediary Poisson series generated in that process. These intermediary
series are stored by PSPCLink, but usually the user does not need them. To clean the
memory of useless information we created a garbage collector.

The garbage collector needs to distinguish between the anonymous Poisson series, in-
termediary series 3, 4, 5, 6 in the example, and the active series, useful in later operations.
In fact, not one but two different heads have been defined to this purpose. When a new
series is created, Mathematica assigns to this series a new index n, creates the object
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s1 D[s2, x] - s2ˆ2

[3] [5]

[4] [6]

[7]

Figure 2. Order of operations.

$PoissonSeries[n] and adds n to a list of anonymous series. Only when we assign a
series to a symbol, the series is converted into active series with the same index and a
new head: PoissonSeries[n]. Together with this assignation every anonymous series is
automatically deleted. This procedure forces the user to assign to a symbol every series
that needs to be saved; it limits the use of the Mathematica symbol %, but allows control
on the use of memory in PSPC, deleting the unnecessary intermediary results.

To change the effects of the assignation in Mathematica we use again the TagSetDelayed
function

$PoissonSeries /:
Set[x_, $PoissonSeries[n_Integer]] :=

( /* Code to delete the non-active series */
Set[x,PoissonSeries[n]])

5. Efficiency of PSPCLink

To show the efficiency of PSPCLink we present here two examples. The first one is the
expansion of the series [

1 +
( 5∑
i=1

xi

)
cos
( n∑
j=1

yj

)]4

.

We made this expansion for different numbers of trigonometric variables in two different
ways: with the built-in function Expand[ ,Trig->True] of Mathematica and with the
PSPC function called by Mathematica through PSPCLink. As was expected, the resul-
tant series is the same in both cases. The times of execution are shown in Figure 3. We
can see that only in the case of no trigonometric variables the built-in function of Math-
ematica is faster. When the number of trigonometric variables increases Mathematica
becomes slower, but PSPCLink appears to work regardless of the number of trigonomet-
ric variables; the reason is due to the packing system of variables.

The second example is a classical problem of celestial mechanics: the inversion of the
Kepler equation

E − e sinE = `.

In order to obtain the eccentric anomaly E as a Fourier series of the mean anomaly `
whose coefficients are polynomials in the eccentricity e we apply an algorithm for inversion
of series due to Deprit (1979). There are simpler and more efficient algorithms to solve
this example, but we use it since the method proposed by Deprit is based on the Lie
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Figure 3. Time in seconds versus number n of angular variables.
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Figure 4. Time in seconds versus order of inversion.

transformation that is frequently used in the construction of analytical theories in many
problems of celestial mechanics.

We compare the times of inversion of the equation for different orders using the built-in
functions of Mathematica and PSPCLink and we show the results in Figure 4.

These figures show that Mathematica is faster only until fourth order. With a Macin-
tosh Centris 660 AV with 12 MB of RAM dedicated to the Mathematica kernel, Mathe-
matica has problems of overflow of memory after order eight; however, PSPCLink com-
putes up to order 13 without overloading the memory.

6. Conclusions

PSPCLink increases the characteristics of Mathematica by using the power of PSPC
in handling a Poisson series. Furthermore, it extends the possibilities of PSPC combining
a Poisson series with the wide range of mathematical functions handled by Mathematica.
The front end and the style of Mathematica makes the use of PSPC more friendly.

The communication tool MathLink made it possible to write PSPCLink. This commu-
nication tool is a good way to combine and to increase the qualities of very specialized
tools and integrate them in a more general context.

PSPCLink works on any computer with Mathematica 2.2, MathLink and a C compiler
compatible with MathLink (Wolfram, 1992). There is no special requirement in hardware,
in particular the dynamic allocation of PSPC permits the use of all free RAM memory.
Obviously, the maximum size of the series handled by PSPC depends on the amount of
RAM memory of the computer.

Both PSPC and PSPCLink can be obtained by sending an e-mail to the first author.
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