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Algebraic and Symbolic Manipulation of Poisson
Series

FÉLIX SAN-JUAN† AND ALBERTO ABAD
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Efficiency in handling Poisson series is essential to obtain high-accuracy analytical the-
ories in celestial mechanics and non-linear dynamics in general. A good knowledge of

the mathematical structure of these objects is fundamental to create data structures to

store and handle efficiently its equivalent computational object. In this paper we analyse
the mathematical, symbolic and computational structure of Poisson series.
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1. Introduction

High accuracy is one of the main requirements for theories of perturbations applied to
non-linear mechanics or non-linear differential equations problems. In these problems ex-
pressions based on multivariate Fourier series, whose coefficients are multivariate Laurent
series ∑

i0,...,in−1,j0,...,jm−1

C
j0,...,jm−1
i0,...,in−1

xi0
0 . . . x

in−1
n−1

(
sin
cos

)
(j0y0 + · · ·+ jm−1ym−1),

commonly named Poisson series (Deprit et al., 1965; Deprit, 1981), are among the most
characteristic mathematical objects. Indeed, they appear in quite involved problems such
as lunar and planetary motion, in artificial satellite theories, etc.

After Herget and Musen (1959), most of the people working in these scientific areas
needed to handle Poisson series by computer. The software to manipulate algebraically
Poisson series was named the Poisson series processor (PSP). There exists a great variety
of PSPs, not only because of the language in which they were written (PL1, FORTRAN,
LISP, C), but for the computational data structures they use. Among the most impor-
tant PSP we find: Broucke’s PSP (Broucke and Garthwaite, 1969), MAO (Rom, 1970),
TRIGMAN (Jefferys, 1970, 1972), Dasenbrock’s PSP (Dasenbrock, 1982), MAO!! (Miller,
1988) and our PSPC (Abad and San-Juan, 1993; San-Juan, 1996).

When the requirements of the analytical theory increase, PSPs become more and
more efficient compared with general symbolic processors such as Mathematica, Maple,
Macsyma, etc. In a previous paper (Abad and San-Juan, 1997) we compared PSPs with
respect to general symbolic processors and we described PSPCLink, a tool to be added
to Mathematica in order to have a new kernel combining the efficiency of PSPC with the
flexibility of Mathematica, that sends expressions that involve Poisson series to PSPCLink
and the remaining ones to the kernel of Mathematica.
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In order to achieve better accuracies in the applications of analytical theories, it is nec-
essary to reach high orders in these theories; this fact demands a continuous maintenance
and revision of PSPs. Unfortunately, there is not a standard PSP. In fact, usually each
user writes and uses its own PSP. Since the desired standard PSP does not exist, this
scenario will continue and a better knowledge of the Poisson series will help new users
without previous experience. The objective of this paper is to clarify the characteristics of
the mathematical object called Poisson Series, in order to help in the creation of software
tools to handle it.

In this respect, good algorithms adapted to a good definition of the data structures
are fundamental to the efficiency of a PSP. In this paper, we analyse the mathematical
structure of the Poisson series, but this analysis may be useful not only to current PSP
users, but to people who are not specialists in computer algebra and need to work with
special algebraic manipulators to handle Poisson series, as well as other similar math-
ematical objects. The ideas contained in this paper can help them to characterize the
Poisson series in order to create efficient software tools.

In particular, we show here the data structures and part of the algorithms implemented
by us in our PSPC. The software package PSPC can be obtained by sending an e-mail
to the authors.

2. Representation of Mathematical Objects in a Computer

To represent a mathematical object with the aim of its symbolic treatment in a com-
puter, three levels of abstraction need to be distinguished.

The first level is the mathematical object level. This is the pure mathematical level
where the elements belong to a set, in which a number of operations have been defined,
which gives an algebraic structure.

The second level is the symbolic object. At this level, the objects are considered as a
sequence of characters or symbols. It is the usual way in which the objects are repre-
sented formally by the mathematician. One object may have different representations.
For example, the polynomial p(x) = x2 + x− 2 can be represented as:

p1(x) =x2 + x− 2, p2(x) =−2 + x+ x2,
p3(x) = (x+ 2)(x− 1), p4(x) =−2 + x(1 + x).

The choice of one representation or another depends on the context of the problem and
on the goals wished to be reached in the manipulation of the object.

Finally, the computational object level is based on the way the computer memory is
organized. At this level, the computer stores the chosen symbolic representation of the
mathematical object using data structures (stacks, lists, trees, etc.).

As seen above, an algebraic expression or mathematical object can have different sym-
bolic representations that are equivalents. This has created one of the greatest problems
of computational algebra: the simplification (Moses, 1971). The term simplify itself in-
duces confusion due to its ambiguity. In fact, why is p1(x) simpler than p2(x), p3(x)
or p4(x)? The simplification problem can be formulated in a more precise way by the
concepts of normal and canonical functions (Geddes et al., 1992).
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Let E be a set of expressions (symbolic objects) and ∼ be an equivalent relation in
E defined as follows:

a ∼ b if a = b with a, b ∈ E, (2.1)

where the = operator is considered as the equality on the mathematical object level. For
example, (x + 1)2 ∼ x2 + 2x + 1 since (x + 1)2 = x2 + 2x + 1. We denote E/ ∼ as the
quotient set.

On the other hand, a will be identical to b, represented by a ≡ b, if a and b are identical
as symbolic objects. In the previous example (x + 1)2 6≡ x2 + 2x + 1 since they are two
different character chains.

Thus, we say “to simplify” when referring to looking for a transformation f : E → E
such that for all a ∈ E the transformed expression corresponds to the same equivalence
class as that of a in E/ ∼.

Definition 2.1. Let E be a set of expressions and ∼ be an equivalence relation over
E. We say that a function f : E → E is a normal function in (E,∼) if for all a ∈ E,
f(a) ∼ a.

Definition 2.2. A function f : E → E is called canonical in (E,∼) if it is normal in
(E,∼) and moreover, for all a, b ∈ E such that a ∼ b⇒ f(a) ≡ f(b).

As shown before, a canonical function provides not only symbolically equivalent ob-
jects but also identical objects. Thus, a canonical function assigns a unique sequence of
characters or symbols to each equivalence class, and this canonical representative will be
chosen as the symbolic representation of the object.

3. Poisson Series as Mathematical Objects

On the first level, i.e. considering the series as mathematical object, we have to analyse
its algebraic properties. In particular, from the computational point of view it is worth
while checking what operations are closed over the set of Poisson series. Operations
that do not obey this property will be difficult to implement without increasing the
number of mathematical objects to manipulate in the program, and therefore increasing
its complexity.

Definition 3.1. We call Poisson series of n polynomials x = (x1, . . . , xn) and m angular
variables y = (y1, . . . , ym), to a map (x ,y)→ S(x ,y) : Rn ×Rm → R, defined by

S(x ,y) =
∑

i∈I,j∈J

Cj
i PiTj , Cj

i ∈ R,

where i = (i0, . . . , in−1) and j = (j0, . . . , jm−1) are elements belonging to Zn and Zm,
respectively, and furthermore

Pi = xi00 . . . x
in−1
n−1 and Tj =

(
sin
cos

)
(j0y0 + · · ·+ jm−1ym−1),

represent the polynomial and trigonometric parts, respectively.

Let Pn,m be the set of the Poisson series above defined. Thus, we can define the sum
of two Poisson series and prove that (Pn,m,+) forms a commutative group whose zero
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element is the series 0x0
1 . . . x

0
n cos(0y1 + · · · + 0yn) and the inverse element of a given

series is the series itself with their coefficients Cj
i changed in signs.

On the other hand, taking into account the trigonometrical relations, we can define
the product of two Poisson series as an internal, associative, and commutative operation
with the unit element.

On the other hand, we can define an external operation with coefficient field R,
(t,S(x ,y))→ tS(x ,y) : R× Pn,m → Pn,m, such that

tS(x ,y) =
∑

i∈I,j∈J

(tCj
i )PiTj .

The Pn,m set with the two operations defined, + and ·R, is a vectorial space that together
with the ring structure carry out Pn,m a commutative algebra.

Note that the previous definitions are also valid when the external coefficient field is
the set of the complex numbers C.

The algebraic structure of the Poisson series determines the mathematical framework
within which we shall work. However, the type of problems we will deal with by using
these series requires study of another type of operation that is related to the differential
and integral calculus.

It is not difficult to prove that the partial derivative of a Poisson series with respect to
a polynomial or an angular variable is always another Poisson series. Besides, the total
derivative dS(x ,y)/dt of a Poisson series with respect to an independent variable t, is
a Poisson series if the derivatives of each variable xi and yj with respect to t can be
expressed as Poisson series.

The integral of a Poisson series with respect to a polynomial variable is another Poisson
series provided that there is no term whose exponent is −1. In this case, a term with a
ln(x) factor would be obtained and therefore the integral would not be a Poisson series.

4. Poisson Series as Symbolic Objects

Let Pn,m be the set of Poisson series with n polynomial and m angular variables, and
let ∼ be the equivalence relation defined in (2.1). We are looking for canonical functions
that will provide a canonical representation of each equivalence class, that is, the symbolic
object that represents the Poisson series.

As in the polynomial case, the symbolic representation of a non-performed operation
can be used as a representation of the resultant object. Thus, for example, (x− 1)(x+ 1)
represents x2 − 1. From now on, this type of representation will not be considered, and
all the operations will be assumed to be performed in such a way that for the Poisson
series we will always start with a representative of the form∑

i ,j

Cj
i PiTj , (4.1)

where the summations appear without any predetermined order.
To obtain a canonical representative, it is necessary to make the following operations.

(1) If the first non-zero coefficient of the angular variables is negative, the following
rules will be applied:

sin(−akyk + · · ·) = − sin(akyk − · · ·),
cos(−akyk + · · ·) = cos(akyk − · · ·).
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The duplicity of symbolically different but mathematically equal trigonometrical
terms is avoided with this operation.

(2) The terms with identical polynomial and trigonometric parts will be grouped to-
gether.

The classical way to work with Poisson series is to define an order relation, which
takes into account simultaneously the polynomial and the trigonometric parts of the
series. By doing so, a canonical symbolic representation of the form (4.1) is obtained.
However, we have chosen a different representation in which the polynomial and
the trigonometric terms are ordered separately. This representation agrees better
with the computational one chosen for the Poisson series. In order to do that let us
follow the next steps.

(3) The terms of the set {Pi , i ∈ I} will be ordered with the lexicographical ordering
defined as follows. Let i(1), i(2) ∈ I we say that i(1) ≺ i(2) if for the first k-index
such that i(1)

k 6= i
(2)
k then i

(1)
k < i

(2)
k is verified.

By i we denote the natural number that represents the i index order after per-
forming the lexicographical ordering described before. The set of polynomial terms
can be now represented by {Pi, i = 1, . . . , p}, with p equal to the number of poly-
nomial terms.

(4) The terms of the set {Tj , j ∈ J } will be ordered following the lexicographical
ordering defined as follows. Let j(1), j(2) ∈ J we say that j(1) ≺ j(2) if for the first
k-index such that j(1)

k 6= j
(2)
k then j

(1)
k < j

(2)
k is verified, or if for all k, j(1)

k = j
(2)
k

and Tj (1) represents a cosine and Tj (2) a sine.
By j we denote the natural number that represents the j index order once the

previous lexicographical ordering is performed. The set of trigonometric terms can
be now represented by {Tj , j = 1, . . . , t}, with t equal to the number of trigonometric
terms.

By calling P the row vector of dimension p whose elements are the ordered terms
Pi, T the column vector with dimension t whose elements are the ordered terms
Tj , and C the matrix of coefficients Cji , the series can be written in the following
matrix form

S(x ,y) = P · C · T. (4.2)
This is the best canonical representative from the computational point of view, but
not from the point of view of a user that has to read and write series. Owing to
this, we will define a more convenient representation obtained by applying a new
operation to the previous representation.

(5) The terms with a common trigonometric part will be grouped together

S(x ,y) =
t∑

j=1

(
p∑

i=1

Cji Pi

)
Tj . (4.3)

This will be the canonical representation used for the PSPC input and output functions,
that is, for the user–computer communications.

5. Poisson Series as a Computational Object

In this section we will consider the basic information that characterizes a Poisson series
and the data structures through which the series is stored in the computer, in such a
way that the chosen canonical representation for the given object is reflected.
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Figure 1. Unidimensional structure.

Each term of a Poisson series is characterized by the following basic information.

(i) A number Cji that represents the coefficients.
Using rational arithmetic, with multiple precision numbers, is preferable from an

analytical point of view. However, when we want to numerically evaluate the series,
floating point arithmetic is sufficient. A data structure CD stores rational or real
coefficients.

(ii) n integers (i0, . . . , in−1) that represent the exponents of the polynomial part Pi.
This information is contained in a data structure PD.

(iii) m integers (j0, . . . , jm−1) that represent the angular variable coefficients of the
trigonometrical part Tj , plus an integer, or simply a bit, equal to 0 or 1 which says
if the term is a sine or a cosine. The data structure TD contains all the information
about the trigonometric part.

To minimize the size of the data structures that contain the terms of the series we make
use of two properties of the Poisson series when they appear in problems of non-linear
dynamics. Since the integers (i0, . . . , in−1) and (j0, . . . , jm−1) are usually small numbers,
in practice we consider these numbers inside the interval [−127, 128]. In each term most
of the integers (i0, . . . , in−1), (j0, . . . , jm−1) are zero. We save a great amount of memory
with data structures PD, TD that store the integers packed in groups of four and avoid
the storage of zeros.

Throughout PSP evolution, the chosen way to store information on Poisson series and
data structures has been affected by the computer limitations as well as the languages
used. The designs used in the main PSPs, can be found in the Henrard (1989) and Laskar
(1989) reviews. Abad and Sein-Echaluce (1988) analysed the solutions given by Broucke
and Garthwaite (1969) and Dasenbrock (1982).

The Dasenbrock work is the direct predecessor of PSPC. His PSP is built using unidi-
mensional, unidirectional and ordered term lists.

Dasenbrock also pointed out in his work the limitations of this structure, due mainly to
the repetition of polynomial and trigonometric terms and suggested that a bidimensional
structure would give better results.

Although a bidimensional structure is more difficult to be implemented, we have cho-
sen it as the storage system since it ensures a faster access to each term. The data
that determine the series are stored in three different types of nodes: polynomial (PN),
trigonometrical (TN), and coefficient nodes (CN). These nodes contain the data (CD,
PD, TD) and the necessary pointers. The graphic representation of this structure is
shown in Figure 2.

The trigonometric nodes shown in the lower horizontal line form a bidimensional list,
ordered according to the lexicographical ordering described in the latter part. The poly-
nomial nodes appearing on the left vertical line also form an ordered bidirectional list.
The coefficient nodes form horizontal bidirectional lists associated to a polynomial node,
and vertical bidirectional lists associated to a trigonometrical node. A structure stored
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Figure 2. Bidimensional structure.

in such a way reflects reliably the symbolic representation (4.2). The representation of
the coefficients through bidimensional lists, instead of a matrix, enables the building of
a sparse representation in which the zeros are not stored. This represents a remarkable
saving in memory when the series has a lot of terms.

This type of structure also allows us to retrieve the two canonical representation afore-
mentioned. First, the structure reflects representation (4.1) since each coefficient node
is linked to a polynomial and trigonometrical node. The three nodes constitute a term
of the series. Secondly, representation (4.3) is obtained by considering each node of the
list of trigonometrical terms and, obtaining the polynomial that acts as the coefficient
of this node by multiplying the column of coefficients associated to this trigonometrical
node with the corresponding list of polynomial nodes.

We find two basic operations when handling Poisson series. (1) Navigate through the
different lists of the bidimensional structure applying or not functions to each node of
the list, and (2) search the position of a term into a series.

Most of the operations involving Poisson series can be reduced applying the two pre-
vious operations. For instance, to add two series is equivalent to inserting each term of
one of the series into the other one, and insertion is essentially based on the searching
algorithm. The partial derivative of a series with respect to a polynomial variable cor-
responds to going through the list of polynomial nodes and extracting the exponent of
the variable, subtracting a unit from this exponent and going to the horizontal list of
coefficient nodes multiplying each coefficient by the exponent.

We have very carefully looked for a good searching algorithm. The best one, in our
experience, is binary in nature; unfortunately, it cannot be applied to lists because lists
are not indexed arrays. However, the use of the bidirectional lists, together with the
knowledge of the number of terms of the list, permits navigating forward and backward
and emulates the binary search, improving the performance of this critical operation.
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Among the problems we had to face was the exchange of information with other com-
puter programs. We solved the most pressing ones by creating functions (routines) for
input and output in various formats. In particular, PSPC makes it possible to convert
Poisson series to LATEX and Mathematica output. Another important capability is to
create automatically, from a series, a C or FORTRAN program to evaluate it. The nav-
igation algorithm of Coffey and Deprit (1980) has been included in the evaluation code
in order to obtain fast evaluations of very big series.
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