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Abstract

In the classical Kantorovich theorem on Newton’s method it is assumed that the second Fr)echet derivative of the
involved operator satis$es the condition ||F ′′(x)||6K in an appropiate domain. In this paper we study a modi$cation
of this condition, assuming that ||F ′′(x)||6!(||x||), where ! is a continuous and non-decreasing real function. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

The classical Kantorovich conditions are the most famous ones in the study of Newton’s method
in Banach spaces. These conditions are the following (we denote them by (K) throughout this
paper):
(i) F is a Fr)echet di<erentiable operator de$ned on a non-empty open convex set � included in a

Banach space X and with values in another Banach space Y .
(ii) There exists a point x0 ∈ � where the operator 
0 = F ′(x0)−1 is de$ned, ||
0|| 6 b and

||
0F(x0)||6a.
(iii) ||F ′′(x)||6K; x ∈ �.
(iv) h= abK61=2.
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(v) B(x0; t∗) ⊆ �, where
t∗ =

1−√
1− 2h
bK

and B(x0; t∗) = {x; ||x − x0||6 t∗}:
Under conditions (K), it is proved that Newton’s method,

xn+1 = xn − 
nF(xn); 
n = F ′(xn)−1; n¿ 0; (1)

converges to a solution of the equation F(x)=0. Further, Kantorovich-type results provide the regions
where the solution is located and unique, along with some error estimates.

There is a wide bibliography concerning Newton–Kantorovich results, such as the classical text
of Kantorovich and Akilov [5]. Some authors have studied di<erent modi$cations of (K). These
changes mainly a<ect condition (iii). Instead of assuming that the derivative F ′′ satis$es condi-
tion (iii), results have been obtained when F ′ satis$es a Lipschitz condition [5] or when F ′ is a
(k; p)-HLolder function [2], or more generally when F ′ satis$es

||F ′(x)− F ′(y)||6 !(||x − y||);
where w is a given real function [1].

Results have also been obtained by assuming a Lipschitz condition on the second Fr)echet derivative
(see [3]). In [4], Newton’s method is studied under the condition

||F ′′(x)− F ′′(x0)||6 k||x − x0||:
In this case, the Lipschitz condition is weakened because one of the points is $xed.

In this paper, we investigate whether it is possible to weaken the conditions on the second Fr)echet
derivative assuming only that

(iii′) ||F ′′(x)||6 !(||x||); x ∈ �;
where the function !(z) is a continuous and non-decreasing real function for z¿ 0 and such that
!(0)¿ 0. As we will see, this change also inMuences conditions (iv) and (v).

From now on, we assume that the operator F satis$es the following conditions (we denote them
by (K′)):
(i′) F is a Fr)echet di<erentiable operator de$ned on a non-empty open convex set � included in

a Banach space X and with values in another Banach space Y .
(ii′) There exists a point x0 ∈ � where the operator 
0 = F ′(x0)−1 is de$ned, ||
0||6b and also

||
0F(x0)||6a.
(iii′) ||F ′′(x)||6!(||x||); x ∈ �, where the function !(z) is a continuous and non-decreasing real

function for z¿ 0, and such that !(0)¿ 0.
(iv′) If we denote the real function M (t) = !(||x0|| + t), there exists at least one positive root of

the equation

2[1− bM (t)t]a− [2− 3bM (t)t]t = 0:

We denote the small positive root of this equation by R.
(v′) B(x0; R) ⊆ �.

Our goal, in this paper, is to prove that, under conditions (K′), Newton’s method converges to a
solution of F(x) = 0. In addition, we give the domain where the solution is located. To do that we
follow a new technique based on the use of recurrence relations instead of the classical majorizing
sequences.
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2. The main result

First of all, we give some technical lemmas.

Lemma 1. Under conditions (K′); we de5ne f(x) = (1− x)−1 and denote �= bM (R)R. Then; the
following hold:
(i) 1

2�f(�)¡ 1.

(ii)

(
n∑
j=0

[
1
2�f(�)

]j) a= ( 1−[(1=2)�f(�)]n+1

1−(1=2)�f(�)

)
a¡

(
1

1−(1=2)�f(�)

)
a= R:

Proof. Notice that R veri$es

2[1− bM (R)R]a− [2− 3bM (R)R]R= 0;

and therefore

M (R) =
2(R− a)

Rb(3R− 2a)
:

So, �¡ 2=3 and (i) is then proved. The proof of (ii) follows easily from (i).

Lemma 2. With the notations of the previous lemma; we have:

1. There exists 
n and ||
nF ′(x0)||6f(�); n¿ 1.
2. ||F(xn)||6 1

2M (R)R||xn − xn−1||; n¿ 2.
3. ||xn+1 − xn||6 1

2�f(�)||xn − xn−1||¡R; n¿ 2.
4. ||xn+1 − x0||6(1 + 1

2�f(�) + (12�f(�))
2 + · · ·+ (12�f(�))

n)a¡R; n¿ 1.

Proof. Firstly, notice that, for all x ∈ B(x0; R), we have

||I − 
0F ′(x)||6 ||
0|| ||F ′(x)− F ′(x0)||6 �¡ 1:

Then, F ′(x)−1 exists and

||F ′(x)−1F ′(x0)||6 1
1− � = f(�):

In addition, we have that ||x1 − x0||6a¡R, and then x1 ∈ B(x0; R). Therefore 
1 = F ′(x1)−1 exists
with ||F ′(x1)−1F ′(x0)||6f(�). Further, by Taylor’s formula, we obtain

F(x1) =F(x0) + F ′(x0)(x1 − x0) +
∫ x1

x0

F ′′(x)(x1 − x) dx

=
∫ 1

0
F ′′(x0 + t(x1 − x0))(1− t)(x1 − x0)2 dt:

Consequently

||F(x1)||6 1
2M (R)R||x1 − x0||;
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and

||x2 − x1||6 ||
1F ′(x0)|| ||
0|| ||F(x1)||6 1
2�f(�)||x1 − x0||¡a¡R: (2)

So, by Lemma 1,

||x2 − x0||6 ||x2 − x1||+ ||x1 − x0||6
(
1 + 1

2�f(�)
) ||x1 − x0||

6
(
1 + 1

2�f(�)
)
a¡R: (3)

Secondly, it is possible to go on with the process because x2 ∈ B(x0; R). Then 
2=F ′(x2)−1 exists
and moreover

||
2F ′(x0)||6 f(�):

In addition, as in the previous step, we have

||F(x2)|| =
∣∣∣∣
∣∣∣∣
∫ 1

0
F ′(x1 + t(x2 − x1))(1− t)(x2 − x1)2 dt

∣∣∣∣
∣∣∣∣

6 1
2M (R)R||x2 − x1||:

Then

||x3 − x2||6 ||
2F ′(x0)|| ||
0|| ||F(x2)||6 1
2�f(�)||x2 − x1||

¡ ||x2 − x1||¡ ||x1 − x0||¡a¡R

and $nally, by Lemma 1, (2) and (3),

||x3 − x0||6 ||x3 − x2||+ ||x2 − x0||6 1
2�f(�)||x2 − x1||+

(
1 + 1

2�f(�)
)
a

6
(
1 + 1

2�f(�) +
(
1
2�f(�)

)2) a¡R:

The rest of the proof follows inductively. Assume that the conditions of the Lemma hold for
2; 3; : : : ; n− 1. As xn ∈ B(x0; R) ⊆ �, then 
n exists and

||
nF ′(x0)||6 f(�):

Next, as ||xn − xn−1||¡R, we have

||F(xn)||6 1
2
M (R)R||xn − xn−1||: (4)

So, it follows that

||xn+1 − xn||6 ||
nF ′(x0)|| || ||
0||F(xn)||6 1
2�f(�)||xn − xn−1||¡R:
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Now, take into account that

||xn − xn−1||6 ||
n−1F ′(x0)|| ||
0|| ||F(xn−1)||6 1
2�f(�)||xn−1 − xn−2||

6 · · ·6 (
1
2�f(�)

)n−2 ||x2 − x1||6
(
1
2�f(�)

)n−1 a¡R;

by Lemma 1, we have

||xn+1 − xn||6
(
1
2�f(�)

)n a¡R: (5)

Finally, from (5) and the previous lemma:

||xn+1 − x0||6 ||xn+1 − xn||+ ||xn − x0||

6
(
1 + 1

2�f(�) +
(
1
2�f(�)

)2 + · · ·+ ( 12�f(�))n−1
)
a+ 1

2�f(�)||xn − xn−1||

6
(
1 + 1

2�f(�) +
(
1
2�f(�)

)2 + · · ·+ ( 12�f(�))n) a¡R:

Theorem 3. Under conditions (K′) we have that Newton’s method (1) converges to a solution x∗
of the equation F(x) = 0.

Proof. From Lemma 2, it follows that

||xn+m − xn||6 ||xn+m − xn+m−1||+ · · ·+ ||xn+1 − xn||
6 ||
n+m−1F ′(x0)|| ||
0|| ||F(xn+m−1)||+ · · ·+ ||
nF ′(x0)|| ||
0|| ||F(xn)||

6f(�)b
n+m−1∑
j=n

||F(xj)||6 1
2�f(�)a

n+m−1∑
j=n

[
1
2�f(�)

]j−1 :

Then {xn} is a Cauchy sequence and therefore converges. Let x∗ be the limit. By letting n→ ∞ in
(4), we obtain F(x∗) = 0.
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