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Abstract

Let M be the monoid of all endomaps of a non-empty set N , � the locale of all ideals of
M , and let M be the topos of all M -sets. The core of this paper is formed by a locale B,
a subtopos B ,→ M and two theorems, where B is the locale of all bornologies de3ned on
subsets of N and B is the topos of j-sheaves for a topology j :�→ �. The 3rst theorem shows
a morphism of locales B → � with nucleus j which induces an isomorphism of locales between
B and the sublocale �j ,→ �. The second theorem, which generalizes the 3rst one, gives an
equivalence between the category of Kolmogorov bornological spaces and bounded maps, and the
full subcategory B′ ,→ B formed by all j-sheaves which are separated for the double negation
topology of B.
c© 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

We consider the set B of all bornologies into a non-empty set N and the topos
M of all M -sets and equivariant maps between them, where M is the monoid of all
endomaps N → N . In abstract functional analysis one considers bornologies related
to sequences s :N → X , where N is the set of natural numbers, but the constructions
in this paper work for every non-empty set N and they have a very particular sense
when N is 3nite. The core of this paper is formed by a theorem about bornologies into
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114 L. Español, L. Lamb�an / Journal of Pure and Applied Algebra 176 (2002) 113–125

N in the context of locales and a second theorem about bornological spaces, which
generalizes the 3rst one in a context of big categories.
This paper subsumes some results in [6] which are diHerent of those improved in [2].

The basic ideas for the relation between bornologies and toposes were communicated
by Lawvere in several talks [7] during the Bogot*a 1983 workshop on category theory,
but they were not included in the later paper [8]. For locales and toposes we refer to
[1,4,11] and [3] for bornologies.
Now we give a more detailed description of the contents of this work. In Section 1

we deal with the locale B, the locale � of all ideals of M (the subobject classi3er of
M) and the boolean locale P(N ) of all subsets of N . We de3ne two open morphisms
of locales P(N ) → B and P(N ) → � with similar properties. Then we complete in
Section 2 a commutative triangle with a morphism of locales B → � which gives us,
as usual, a nucleus j :�→ � and a sublocale �j = j(�) ,→ �. Our 3rst theorem says
that there exists an isomorphism of locales B ∼= �j.
Section 3 is devoted to the topos M, in particular to study the double negation

topology J@@ and the associated subtopos M@@. We calculate J@@={I ∈�;C ⊂ I}
and M@@ ∼=S, where S is the topos of sets. We also consider the full subcategory
M′ of all @@-separated M -sets. In Section 4 we note that the nucleus j above is
equivariant, so that it de3nes a Grothendieck topology J = j−1(M) and the subtopos
B ,→ M of J-sheaves. Since �j is the subobject classi3er of B, the locale B, with a
natural structure of M -set, is also an object of true values in the topos B. We describe
the shea33cation functor M → B over the subcategory B∩M′. Then, we consider the
double negation topology k :�j → �j in the topos B and we prove that the subcategory
B′ of all j-sheaves which are k-separated is B ∩M′ and Bk

∼=S.
Finally, we obtain in Section 5 a commutative triangle formed with the functors S ,→

K-BOR, S ,→ M′, where K-BOR is the category of all Kolmogorov bornological
spaces (and bounded maps between them), and the functor K-BOR ,→ M′ de3ned by
means of bounded sequences. This diagram is an extension of the diagram of locales in
Section 2. Then we give the second theorem: there exists an equivalence between the
categories K-BOR and B′. Let us note that Johnstone [5, Proposition 3.6] has proved
a similar result involving the category of all subsequential spaces and continuous maps
between them, and the category T′ corresponding to the topos T of all T -sets, where
T is the monoid of all continuous endomaps of N+ (the one point compacti3cation of
the discrete space of natural numbers).

1. Locales of bornologies and locales of ideals

Let N be a non-empty set. A bornology into N is a non-empty family of subsets of
N (called bounded subsets) which is hereditary under inclusion and stable under 3nite
union. Let B denote the set of all bornologies into N , which is ordered in a natural
way. The intersection of bornologies into N is a bornology into N , so that B is a
locale with maximum P(N ), the set of all subsets of N , and minimum {∅}. Let us
note that the locale B also depends on N , but we omit this fact in the notation. The
supremum of a family {
i}i in B is the bornology 
 whose bounded sets are all the
subsets of 3nite unions of bounded sets of the diHerent 
i’s. If 
 is a bornology into



L. Español, L. Lamb�an / Journal of Pure and Applied Algebra 176 (2002) 113–125 115

N , we denote by E(
) the union of all the subsets of N belonging to 
. If A= E(
)
we say that 
 is a bornology on A or a bornology with extent A; we also say that
(A; 
) is a bornological space.
Given a locale L, we denote by @ x the negation of an element x∈L and by L@@

the image of the double negation nucleus @@ :L→ L (in general, Lj will denote the
image of a nucleus j :L → L). It is easy to verify that the negation of the locale B
is given by @
 =P(N − E(
)), hence @@
 =P(E(
)). Let us note that there are
monotone maps

E :B → P(N ) and K; P :P(N )→ B;

where K(A) is the bornology that consists of all 3nite subsets of A and P(A) is
the discrete bornology on A (all subsets of A), so that the double negation map of
B is @@ = P ◦ E :B → B. We shall use the open sublocale (K(N )] of B formed
by all bornologies contained in K(N ), with the corresponding nucleus, j =K(N )→
(−) :B → B, given by the implication in the locale B. The following properties are
easy to prove.

Lemma 1.1. (i) There exist Galois connections K � E � P.
(ii) The equalities E ◦K= id = E ◦P hold.
(iii) K(A ∩ E(
)) =K(A) ∩ 
 (Frobenius formula).

Proposition 1.2. The locale B satis7es:
(i) The double negation nucleus is K(N )→ (−).
(ii) There exist isomorphisms of locales B@@ ∼= P(N ) ∼= (K(N )].

Proof. (i) By Lemma 1.1; we know that the double negation map of B is the nucleus
P ◦ E associated to the morphism of locales (E;P) :P(N ) → B. We shall prove
that P(E(
)) = j(
) for each bornology 
; where j =K(N ) → (−). The inclusion
P(E(
)) ⊂ j(
) is equivalent to the counit K(E(
)) ⊂ 
 because the left-hand side
is equal to K(N ) ∩ P(E(
)) by the Frobenius equality. On the other hand; by two
adjunctions; the inclusion j(
) ⊂ P(E(
)) is equivalent to K(E(j(
))) ⊂ 
; where;
by the Frobenius equality; the left-hand side is equal to K(N )∩ (K(N )→ 
); that is
K(N ) ∩ 
.
(ii) By Lemma 1.1 the locale P(N ) is isomorphic to B@@. In fact we have B@@=

ImP, which is the set of all discrete bornologies into N . Moreover, each bornology

 ⊂ K(N ) is of the form 
 =K(E(
)) (Frobenius equality) and the locale (K(N )]
is isomorphic to P(N ) through K and E.

Our next step is to consider (right) ideals in the monoid M of all endomaps of
N (with composition), that is, subsets I of M such that f ◦ g∈ I for any f∈ I and
g∈M . Let � be the set of all ideals I of M . Given an ideal I and f∈M the set
(I :f) = {g∈M ;f ◦ g∈ I} is also an ideal. It is well known that � is a locale with
the usual union, intersection, and

I → J = {f∈M ; (I :f) ⊂ (J :f)}; @I = I → ∅= {f∈M ;∀g∈M;f ◦ g 
∈ I};
@@I = {f∈M ;∀g∈M;∃h∈M;f ◦ g ◦ h∈ I}:
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Let C be the set of all constant maps of M , so that C ∼= N . The subset C is an
ideal and each subset of C is also an ideal, that is, P(C) = (C] is the open sublocale
of � de3ned by C. Since C is non-empty we have @C = ∅. It is easy to see that
C ∩@@I = C ∩ I , so that @@I ⊂ C → I ; conversely, C → I ⊂@@I is equivalent
to @I ∩ (C → I) = ∅, but this is clear in a Heyting algebra since the left-hand side
is contained in @C. Hence, we have @@I = C → I , and @@I =M if and only if
C ⊂ I .
By means of the formulas

Ext(I) =
⋃

{Im (f);f ∈ I}; Cont(A) = {f ∈ M ; Imf ⊂ A}; c(A) = C ∩ Cont(A);

we de3ne three monotone maps Ext :� → P(N ) and c, Cont :P(N ) → �, and we
say that Ext(I) is the extent of the ideal I and Cont(A) is the content of the subset A.
We shall see later the reason why we call “extent” both E(
) and Ext(I). If cn is the
constant map valued onto n∈N , then it is clear that Ext(I) = {n∈N ; cn ∈ I} ∼= C ∩ I
and c(A) = {cn; n∈A} ∼= A. It is useful to note that cn ∈ I if f∈ I and n∈ Im (f).
We omit the proof of the next lemma because it is straightforward. Let us note that
C = c(N ), so that this lemma is similar to Lemma 1.1.

Lemma 1.3. (i) There exist Galois connections c � Ext � Cont.
(ii) The equalities Ext ◦ c = id = Ext ◦ Cont hold.
(iii) c(A ∩ Ext(I)) = c(A) ∩ I (Frobenius formula).

Proposition 1.4. The locale � satis7es:
(i) The double negation nucleus is Cont ◦ Ext = C → (−).
(ii) There exist isomorphisms of locales �@@ ∼= P(N ) ∼= (C].

Proof. We know that @@ = C → (−). By Lemma 1.3 (Ext;Cont) :P(N ) → �
is a morphism of locales with nucleus Cont ◦ Ext. Since Lemma 1.3 is similar to
Lemma 1.1; the proof of this proposition is similar to that given in Pro-
position 1.2.

We have found two isomorphic copies of the boolean locale P(N ) into the lo-
cales B and �. These diagrams are examples of “unity and identity of adjoint op-
posites” (UIAO) using the terminology of Lawvere [10]. For instance, the map E
uni7es the opposites K and P, with the idempotent maps K ◦ E and @@, re-
spectively. In these cases, the Frobenius formula gives an isomorphism between the
opposites.

Example 1.5. If N is 3nite then K = P and B = {P(A);A ⊂ N} ∼= P(N ). Hence;
in this case we only consider the isomorphism on the right-hand side in the above
formula. When N = {1} we have M = {id}; P(N ) = {∅; N} ∼= {∅; M} = �. When
N = {1; 2} then P(N ) = {∅; {1}; {2}; N}; M = {id; �; c1; c2} with �2 = id; C = {c1; c2}
and �={∅; C1; C2; C;M} where Ci={ci}; i=1; 2; now we can calculate J@@={C;M}
and �@@ = {∅; C1; C2; M}.
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2. The isomorphism of locales

Our aim in this section is to compare both the locales B and � by means of a
morphism of locales which induces a nucleus j of � such that B ∼= �j. This morphism
of locales and the two morphisms studied in the last section complete a commutative
diagram.

First, we extend to bornologies the notion of content given for subsets. Let 
 be a
bornology into N . We shall say that Cont(
)= {f∈M ; Imf∈ 
} is the content of 
.
Since the sets Cont(A) and Cont(P(A)) are equals, this terminology is coherent and
we have a monotone map Cont :B → � extending the content P(N )→ � through P.
On the other hand, to any f∈M and I ∈� we associate the bornology

Bor(I) = sup{Bor(f);f∈ I} where Bor(f) =P(Imf);

where the sup is taken in the locale B, so that bounded sets in Bor(I) are subsets
of 3nite unions of some images Imf, with f∈ I . Let us note that the sets E(
) and
Ext(I) are equal if 
=Bor(I). The map Bor :�→ B is monotone and also is monotone
the composition j=Cont ◦Bor :�→ � (in fact, we shall see that j is a nucleus). For
the forthcoming 3rst theorem, we need some particular non-constructive properties of
our monoid M that we state without proof.

Lemma 2.1. The following properties of the monoid M hold:
(i) For every non-empty A ⊂ N; there exists f∈M such that A= Imf.
(ii) Given f; g∈M; if Imf ⊂ Im g there exists h∈M such that f = g ◦ h.
(iii) Given f; g∈M and I ∈�; if Imf ⊂ Im g and g∈ I then f∈ I .

Theorem 2.2. There exists an isomorphism of locales B ∼= �j induced by the nucleus
j = Cont ◦ Bor :�→ �.

Proof. We shall prove that

Bor � Cont; Bor(I ∩ J ) = Bor(I) ∩ Bor(J ) and Bor ◦ Cont = id:

Hence the pair (Bor;Cont) is a regular monomorphism of locales and the theorem
follows from the Proposition 1.5.4 in [1].
It is easy to verify the adjunction and Bor(I ∩ J ) ⊂ Bor(I) ∩ Bor(J ). Now, if we

suppose that B is a bounded subset in Bor(I) ∩ Bor(J ) then there exist f1; : : : ; fm ∈ I
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and g1; : : : ; gn ∈ J such that
B ⊂ Imf1 ∪ · · · ∪ Imfm and B ⊂ Im g1 ∪ · · · ∪ Im gn;

so that B ⊂ ⋃
Bij, where Bij = Imfi ∩ Im gj. For the moment we prove that if A =

Imf ∩ Im g, f∈ I , g∈ J , then A ⊂ Bor(I ∩ J ); in fact, by Lemma 2.1(i) we have
A = Im h with h∈M , but then Im h ⊂ Imf so that h∈ I by Lemma 2.1(iii), and the
same argument shows that h∈ J ; hence h∈ I ∩ J and this means that A is a bounded
in Bor(I ∩ J ). In this way, we have proved that Bij ∈Bor(I ∩ J ) for all Bij and this
implies that B∈Bor(I ∩ J ).
Finally, the counit of the adjunction means that Bor(Cont(
)) ⊂ 
; conversely, if B

is a non-empty bounded set in 
, then B= Imf by Lemma 2.1(i) and this means that
f∈Cont(
), that is B∈Bor(Cont(
)).

We complete this section by giving an explicit description of the M -subsets �j
and J = j−1(M) of �. The proof of the next proposition uses Lemma 2.1 and it is
straightforward.

Proposition 2.3. For each ideal I ∈�; the following characterizations hold:
(i) I ∈�j if and only if Bor(I) = {B ⊂ N ;∃f∈ I; B ⊂ Imf}.
(ii) I ∈ J if and only if Bor(I) =P(N ).

The condition Bor(I) = P(N ) means that N ∈Bor(I), that is, N = ⋃
16i6m Imfi,

where each fj belongs to I . Let us note that every ideal of the form Cont(
) belongs
to �j, and that Proposition 2.3(ii) implies C ⊂ I (N =Ext(I)). Moreover, if N is 3nite
then j =@@.

3. The double negation in the topos of M -sets

A set X with an action of a monoid M is called an M -set. An action of M on X is a
map X×M → X , usually denoted simply by xf, such that x(id)=x and (xf)g=x(f◦g)
for every x∈X , f; g∈M . LetM be the topos of M -sets and equivariant maps � :X →
Y , that is, maps preserving the actions: �(xf) = (�(x))f, for every x∈X and f∈M .
The subobject classi3er of M is �, which is an M -set with the action de3ned by
(I :f) = {g∈M ;f ◦ g∈ I}, f∈M . For each M -subset U ⊂ X , the characteristic
morphism ’ :X → � is given by ’(x) = (U : x), where (U : x) = {f∈M ; xf∈U}. In
particular, the characteristic morphism ’ :M → � of an ideal I ⊂ M is the unique
equivariant map de3ned by ’(id)= I . Let Sub(X ) be the set of all subobjects of X in
M, so that � ∼= Sub(M). The logical operations in the locale Sub(X ) are de3ned like
in the case X =M (see Section 1) and for every x∈X the equalities

(U ∪ V : x) = (U : x) ∪ (V : x); (U → V : x) = (U : x)→ (V : x); etc:

hold. In particular, the logical operations of � are equivariant and hence the nucleus
@@ = C → (−) of � is an equivariant map. Recall that I → (−) is not equivariant
for every ideal I (see Lemma 1.1 in [2] for a characterization of this kind of ideals).
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We give a example: if we suppose m 
= n∈N and take the ideals I = {cm}, J = {cn},
then we have I → (J : cm) =@I and ((I → J ) : cm) = ∅, but cn ∈@I ; hence I → (−)
is not equivariant.
Any M -set X has a subset of 3xed points (x∈X is a 3xed point if xf= x for every

f∈M) denoted #(X ). In particular C = #(M). We have @@U = #(X ) → U , for
every M -subset U ⊂ X , and C ⊂ (#(X ) : x) for every x∈X . It is clear that from the
evaluation map M × N → N and the action X ×M → X we can obtain the set #(X )
as a coequalizer of two maps of the form N × X ×M → N × X . Then the canonical
map N × X → #(X ) corresponds to

$ :X → #(X )N ; $(x)(n) = xcn;

where #(X )N is the set of all maps N → #(X ) in S. Given a set S, the set SN of all
maps N → S in S, which we shall call sequences of S, is an M -set with action the
composition of sequences N → S and endomaps in M . We have #(SN ) ∼= S and $ ∼= id
when X = SN . For the trivial M -set S (action given by the projection S × M → S)
the map $ : S → SN is the natural inclusion given by the constant sequences. In S,
maps g :X → SN are in one-to-one correspondence with maps G :N × X → S, and g
is equivariant if and only if G factorizes by the coequalizer #(X ), so that we have
an adjunction # � (−)N with unit the natural transformation $ de3ned above. The
one-to-one correspondence between the set of all maps h :#(X )→ S and the set of all
equivariant maps H :X → SN is given by H (x) = h ◦ $(x), and if x is a 3xed point
then h(x) is the constant value of H (x). Hence, the topos S of sets is equivalent to
the full subcategory of M formed by all M -sets X such that $ is an isomorphism in
the level X .
It is well known that there exists an geometric morphism ((; #) :M → S, where, for

every set S, ((S) is the set S with the trivial action given by the projection S×M → S.
For instance, for each M -set X , #(X ) is a trivial M -subset of X . Actually, there exists
an essential geometric morphism

( � # � (−)N :S → M; # ◦ (−)N ∼= id; # ◦ (= id:
Let us note that this is another example of UIAO (in this case it is also called essential
localization): # uni3es the opposites ( and (−)N which, by composing with #, give
the idempotent functors ( ◦# and )= (−)N ◦# :M → M, respectively. This diagram
of functors is an extension of that given by the Galois connections c � Ext � Cont in
Lemma 1.3, since we have natural inclusion functors P(N ) ,→ S and � ,→ M.
Now we shall see this construction in terms of sheaves. We recall that an equivariant

map j:�→ � is the characteristic morphism of the M -subset J= j−1(M), and j is a
nucleus if and only if J is a topology in the sense of Grothendieck. An M -set X is
an I -sheaf if for every equivariant map H : I → X , there exists a unique equivariant
extension H ′ :M → X of H , that is, there exists a unique x∈X such that H (f) = xf
for every f∈ I ; and X is a J-sheaf ( j-sheaf) if it is an I -sheaf for every ideal I ∈ J. If
we only suppose that the element x∈X is unique when it exists then we say that X is
I -separated or J-separated ( j-separated), respectively. The full subcategory Mj ,→ M
of all J-sheaves is a topos with subobject classi3er �j. The inclusion has a left exact
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left adjoint functor called the shea33cation functor. Limits and exponentials in Mj are
like in M, and colimits in Mj are constructed by shea33cation.
Now we consider the subtopos M@@ ,→ M of sheaves for the nucleus @@ :�→

� (Proposition 1.4), so that the associated topology is J@@ = {I ∈�;C ⊂ I}. The
following elementary results are given without proof.

Lemma 3.1. Every M -set X satis7es:
(i) X is a J@@-sheaf if and only if it is a C-sheaf.
(ii) X is C-separated if and only if $ is a monomorphism.
(iii) X is C-sheaf if and only if $ is an isomorphism.

Proposition 3.2. The topos M@@ veri7es:
(i) ) :M → M@@ is the shea77cation functor.
(ii) The functor (−)N induces an equivalence of categories S ∼=M@@.

We shall add two simple comments. The condition C-separated for an M -set X
means that xcn=ycn for all n∈N implies x=y, and if X is a set of sequences, this is
the principle of extensionality for sequences. The monoid M is clearly a C-sheaf, and
actually J@@ is the canonical topology of the topos M, since if M is J-sheaf then
J@@ ⊂ J. We prove it: if I ∈ J then (I : cn)∈ J for all n∈N , but M is (I : cn)-sheaf
so that (I : cn) 
= ∅, that is (I : cn) =M and cn ∈ I ; hence C ⊂ I .
By using Proposition 3.2 we have a new look for the above UIAO. The functor

) :M → M@@ uni3es the opposites ( ◦ # :M@@ ,→ M and the inclusion functor
with the corresponding idempotents ( ◦ #, ) :M → M, respectively. Let us note that
2={0; 1} is the subobject classi3er of S and we can use P(N ) ∼= 2N as subobject clas-
si3er of M@@ (Propositions 1.4 and 3.2), in this case the characteristic morphism cor-
responding to an M -subset U ⊂ X in M@@ is ’ :X → P(N ), ’(x)={n∈N ; xcn ∈U}.
If X is a set of sequences then ’ selects the points of each sequence belonging
to U .
Let M′ be the full subcategory of M formed by all C-separated M -sets, so that

we have a chain M@@ ,→ M′ ,→ M of full subcategories which are reQexive. The
reQector functor (−)′ :M → M′ is given by X ′=$(X ) and the reQector M′ → M@@
is #, with #($(X )) ∼= #(X ). Let us note that the UIAO’s considered above can
be reformulated taking M′ instead of M. It is well known that M′ is a quasitopos
(Theorem 10.1 in [5], or Theorem 43.6 in [12]) but we do not use this structure in
the present paper.

Example 3.3. The case N = {1} is trivial since M=M@@ =S; but N = {1; 2} is an
interesting case. By using the representation given by Lawvere [9]; M is the category
of all reQexive directed graphs with an involutive operation x∗ = x� (corresponding
to the transposition �∈M; �2 = id; see Example 2.4); #(X ) represents the set of all
vertices of X and )(X )=#(X )×#(X ); so that $(x)= (a; b) means that x is an arrow
from the vertex a to the vertex b (then $(x∗)= (b; a)). A C-separated graph X (object
in M′) is an equivalence relation on the set #(X ). Finally; a C-sheaf is the equality
relation on #(X ).
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4. A topos of M -sets for bornologies

We shall consider B as an M -set with the action given by


f = {B ⊂ N ;f(B)∈ 
}:
Then the logical operations in B, the maps Cont :B → � and Bor :�→ B, the nucleus
j =Cont ◦ Bor and the bijection �j ∼= B (see Section 2) all are equivariant. Since the
nucleus j is equivariant, the M -subset J= j−1(M) of � is a (Grothendieck) topology
and we can consider the subtopos B ,→ M of J-sheaves. The subobject classi3er of
B is �j ∼= B, so that we can consider B as an M -set of true values of the topos B.
In this way, given an M -subset U ⊂ X in B, we take the characteristic morphism in
the form ’ :X → B,

’(x) = {B ⊂ N ;∃f∈M; xf∈U; B ⊂ Imf}:
If U = #(X ), then E(’(x)) = N by using the constant maps. We shall call B the
bornological topos because there exists the subobject classi3er B and also because it
contains a full reQexive subcategory of bornological spaces as we shall see in the next
section. (In [2] we have used a topos, called bounded topos, de3ned in a similar way
by using another monoid of maps.)
Before exploring the relation of the topos B to bornological spaces, we shall consider

the full subcategories Bk ,→ B′ ,→ B as de3ned in Section 3, but now from the double
negation k :�j → �j in B, which is the nucleus given by k(I) = j(@@I), where
@@ is the double negation in �. We shall denote by Jk the corresponding topology
k−1(M) ⊂ �j.

Proposition 4.1. (i) Jk = J@@ ∩ �j. (ii) B′ =M′ ∩B. (iii) Bk
∼=S.

Proof. (i) Given I ∈�j we have k(I) = j(C → I) = j(C) → I (with the implication
in �). Hence I ∈ Jk if and only if j(C) ⊂ I ; that is C ⊂ I since I ∈�j.
(ii) Like in Lemma 3.1, it is clear that an object X in B is Jk -separated if and only

if X is j(C)-separated, but C ⊂ j(C) so that X is j(C)-separated if and only if X is
C-separated as an object in M.
(iii) Like in (ii), Bk =M@@ ∩B=M@@, and then we use Proposition 3.2.

By the isomorphism �j ∼= B (Theorem 2.2) the topology Jk ⊂ �j is transformed
in the topology {
∈B;E(
) = N} ⊂ B corresponding to the double negation in B.
Moreover, j(C) = {f∈M ; Imf 3nite} is the ideal of �j associated to the bornology
K(N ).
Topos theory says that there exists a shea33cation functor, left exact and left adjoint

to the inclusion B ,→ M, which we shall denote by b :M → B. In the next proposition
we give an explicit description of b over the subcategory M′.

Proposition 4.2. If X is C-separated then

b(X ) = {s :N → #(X ); s(N )∈ 
} ⊂ )(X );
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where 
 is the bornology on #(X ) generated by the family of discrete bornologies
{P(Im $(x)); x∈X }.

Proof. By Proposition 2.3(ii) the topology J is subcanonical; hence M@@ ,→ B and
each M -set of the form SN is a J-sheaf; in particular )(X ) for all M -set X . If X is
C separated then $ :X → )(X ) is mono and hence b(X ) is the closure of $(X ) in
)(X ); that is; a sequence s :N → #(X ) belongs to b(X ) if and only if ($(X ) : s)∈ J;
in other words; there exist maps fi ∈M and elements xi ∈X ; 16 i6 n; such that
N = Imf1 ∪ · · · ∪ Imfn and s ◦ fi = $(xi) for every index. Now it is clear that
s∈ b(X ) implies s(N )∈ 
; where 
 is the bornology in the statement (it is clear that
for every x∈#(X ) the condition {x}∈ 
 holds). Conversely; if s(N )∈ 
 then we have
s(N )∩ Im $(x1)∪ · · · ∪ Im $(xn) for some xi ∈X ; 16 i6 n; and for each index s(N )∩
Im $(xi) 
= ∅; so that we can 3nd maps fi ∈M such that Im (s ◦ fi) ⊂ Im $(xi); but
then there exists yi ∈X such that s ◦fi = $(yi); 16 i6 n. In fact; if we de3ne a map
g∈M by choosing g(n) in the non-empty 3bre $(xi)−1((s ◦ fi)(n)) then it is easy to
check that (s ◦ fi) = $(xig). Hence we conclude that s∈ b(X ).

If we take in Proposition 4.2 a trivial M -set S we obtain the 3nite bornology K(S),
so that in this case b(S) = {s :N → #(S); s(N )3nite}.
Moreover, we obtain P(S) from the M -set SN of sequences. Let us note that there

exists a UIAO (or an essential localization)

- � # � (−)N : S → B; # ◦ (−)N = id = # ◦ -
where - = b ◦ (. If we take B in B then we have -(#(B)) = #(B)N ∼= P(N ) with
the action Af=f−1(A). Let us note that #(B) ∼= #(P(N )) ∼= 2. The equivariant maps
P, E are, respectively, the unit and the counit of the adjunction - � #. Since the
subcategory M′ ,→ M is reQexive (Section 3) the subcategory B′ ,→ M is reQexive
too.

5. Kolmogorov bornological spaces and M -sets

We have a chain of categories S ,→ B′ ,→ B ,→ M, where B′ is a quasitopos
(like M′, see Section 3) and all others are toposes. In this section we shall identify
B′ with a category of bornological spaces.
Let BOR be the category of all bornological spaces (S; 
) and bounded maps between

them. (Recall that, given bornological spaces (S; 
) and (S ′; 
′), a map f : S → S ′ is
bounded if for every B∈ 
 we have f(B)∈ 
′.) We have a forgetful functor E : BOR →
S with left adjoint K (3nite bornology) and right adjoint P (discrete bornology) such
that the equalities E◦K=id=E◦P hold, like in Lemma 1.1. Actually, there are natural
inclusions P(N ) ,→ S and B ,→ BOR, the last one sending every bornology 
∈B to
the bornological space (E(
); 
). Our aim in this section is to extend the diagram of
locales P(N ) → B → � in Section 2 to a diagram of categories S → BOR → M,
and then to induce an equivalence between categories from the second functor.
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We de3ne the following functor by associating to each bornological space the M -set
of its bounded sequences,

)b : BOR → M; )b(S; 
) = {s :N → S; s(N )∈ 
} ⊂ SN ;

with the obvious action )(h)(s) = h ◦ s on the bounded maps. If we consider N
with the discrete bornology, then )b =BOR(N;−). It is clear that for each bornology

∈B we have )b(E(
); 
) = Cont(
), so that given an ideal I we have in particular
)b(Ext(I);Bor(I)) = j(I).

Lemma 5.1. )b is faithful and factorizes through M′.

Proof. Given a bounded map h : S → S ′ we can recover h from )b(h) since the
constant sequences cx are bounded and )b(h)(cx)=h◦cx=ch(x) for every x∈ S; hence
)b is faithful. Moreover; we have seen (Proposition 3.2) that SN is a C-sheaf; hence
)b(S; 
) ⊂ SN is C-separated (note that the inclusion is the mono $ in this case).

By Lemma 5.1 we can reduce to M′ the codomain of )b and the new codomain
suRces to contain the images of both functors ( and (−)N , so that it is a good
extension of S yet.
Now we analyse the domain. We say that (S; 
) is a Kolmogorov bornological (or

K-bornological) space [3] if every subset B ⊂ S such that s(N )∈ 
 for all s :N → B
satis3es B∈ 
. Let K-BOR be the full subcategory of BOR given by all K-bornological
spaces. There exists the universal K-bornological space over (S; 
), which is the same
set S but with the bornology 
−, 
 ⊂ 
−, given by


− = {B ⊂ S; s(N )∈ 
 for all s :N → B}:
Let us note that a K-bornological space is determined by its bounded sequences,

and the bornological spaces (S; 
) and (S; 
−) have the same bounded sequences. All
spaces (E(
); 
), 
∈B, are K-bornological and the spaces obtained by using K or P
also; hence K-BOR is a good extension of B for the domain of the new functor of )b.
From now on, we shall consider the commutative diagram in the form

Given an M -set X , by taking the set #(X ) with the K-bornology generated by
the bornology de3ned in Proposition 4.1, we produce from # the functor #b :M′ →
K-BOR. In fact, for every equivariant map H :X → Y , the restriction H :#b(X ) →
#b(Y ) is bounded because, given x∈X and the generating bounded sequence $(x) :
N → #b(X ), the map H ◦ $(x) :N → #b(Y ) is bounded since H ◦ $(x) = $(H (x))
by the naturality of $. In particular, #b(M) is (isomorphic to) the set N with the
discrete bornology, and every point x :M → X is transformed by #b in the sequence
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$(x) = {xcn} :N → #(X ) of all 3xed points in its orbit. Now, we give the second
theorem of this paper.

Theorem 5.2. There exists and adjunction #b � )b :K-BOR → M′ which induces an
equivalence of categories K-BOR ∼= B′.

Proof. If we consider the one-to-one correspondence de3ned by the adjunction # �
(−)N (see Section 3) then it is easy to verify that h :#b(X ) → S is bounded if and
only if H :X → SN ; H (x) = h ◦ $(x); satis3es H (X ) ⊂ )b(S). Hence; we have the
adjunction #b � )b and we shall describe the induced equivalence.
For the counit we have #b ◦ )b ∼= id. In fact, given a K-bornological space (S; 
),

since #b()b(S)) ∼= S as sets, we observe that the new K-bornology 
′ on S is generated
by the inclusion $ :)b(S) ,→ SN , that is, by the sets s(N ) where s is a bounded
sequence for 
. We must prove that 
= 
′. Every B ⊂ S such that B ⊂ s1(N ) ∪ · · · ∪
sr(N ) with si ∈)b(S), 16 i6 r, belongs to 
, so that 
′ ⊂ 
 since 
 is K-bornology.
Conversely, given B∈ 
, we must prove that B∈ 
′, which is a consequence, because

′ is K-bornology, of the condition s(N )∈ 
′ for every s :N → B; but s∈)b(S) since
B∈ 
, so that the condition follows.
For the unit, by Proposition 4.2, we must prove that given a C-separated M -set X , the

equivariant map $b :X → )b(#b(X )) ($ with restricted codomain) is an isomorphism if
and only if X is a J-sheaf. But by Proposition 4.2 and the property )b(S; 
)=)b(S; 
−)
we have b(X )=)b(#b(X )), so that $b is an iso if and only if X ∼= b(X ) is a J-sheaf.

The equivalence S ∼= M@@ = Bk (Propositions 3.2 and 4.1) is the restriction
to the discrete bornologies of the equivalence in Theorem 5.2. Note that if N is
3nite all the Kolmogorov bornologies are discrete. As a corollary of Theorem 5.2
we conclude that the category K-BOR is a quasitopos. Actually, we can obtain also
this result from the fact that BOR is a quasitopos [12, p. 99]. Given two object S,
T in K-BOR, we shall describe the exponential TS in terms of exponential in B′.
If X = )b(S) and Y = )b(T ), then #b(YX ) ∼= B′(X; Y ) ∼= K-BOR(S; T ) with the
K-bornology determined by the bounded sequences $(2) :N → #b(YX ), 2∈YX . Recall
that 2 :M × X → Y is an equivariant map and $(2)(n) = 2cn, n∈N , is the equivari-
ant map given by (2cn)(f; s) = 2(cf(n); s), f∈M , s∈X . By the above bijection, $(2)
corresponds to w :N → K-BOR(S; T ), where for every n∈N w(n) de3ne an equivari-
ant map !n ∈#b(YX ) by !n(f; s)(m) = w(f(n))(s(m)), but this means that the map
w∧ :N × S → T , w∧(n; x)=w(n)(x) is bounded with N discrete. Hence, the bornology
in TS is in fact the equibounded bornology.
Finally, we conclude that if N is the set N of all natural numbers then the bornologi-

cal topos B is a convenient topos to study the boundedness properties of spaces in func-
tional analysis. A natural number object in B is Nb=b(N)={s :N→ #(X ); s(N) 3nite},
and then the objects of integers and rationals are Zb = b(Z) and Qb = b(Q), respec-
tively; but b(R) is not the object of Dedekind reals. It can be proved that this object is
Rb=)b(R) when we consider the set R of all real numbers with the usual bornology,
that is, Rb is the classical space l∞ of real bounded sequences. Hence, the category of
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K-bornological real vector spaces is equivalent to the category MODb of Rb-modules
in B′.
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