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Abstract

Let M be the monoid of all endomaps of a non-empty set N, Q2 the locale of all ideals of
M, and let .# be the topos of all M-sets. The core of this paper is formed by a locale B,
a subtopos # — .4 and two theorems, where B is the locale of all bornologies defined on
subsets of N and Z is the topos of j-sheaves for a topology j: Q — Q. The first theorem shows
a morphism of locales B — Q with nucleus j which induces an isomorphism of locales between
B and the sublocale Q; — Q. The second theorem, which generalizes the first one, gives an
equivalence between the category of Kolmogorov bornological spaces and bounded maps, and the
full subcategory 4’ — 2 formed by all j-sheaves which are separated for the double negation
topology of 4.
© 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

We consider the set B of all bornologies into a non-empty set N and the topos
A of all M-sets and equivariant maps between them, where M is the monoid of all
endomaps N — N. In abstract functional analysis one considers bornologies related
to sequences s: N — X, where N is the set of natural numbers, but the constructions
in this paper work for every non-empty set N and they have a very particular sense
when N is finite. The core of this paper is formed by a theorem about bornologies into
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N in the context of locales and a second theorem about bornological spaces, which
generalizes the first one in a context of big categories.

This paper subsumes some results in [6] which are different of those improved in [2].
The basic ideas for the relation between bornologies and toposes were communicated
by Lawvere in several talks [7] during the Bogota 1983 workshop on category theory,
but they were not included in the later paper [8]. For locales and toposes we refer to
[1,4,11] and [3] for bornologies.

Now we give a more detailed description of the contents of this work. In Section 1
we deal with the locale B, the locale @ of all ideals of M (the subobject classifier of
) and the boolean locale Z(N) of all subsets of N. We define two open morphisms
of locales Z(N) — B and #(N) — Q with similar properties. Then we complete in
Section 2 a commutative triangle with a morphism of locales B — 2 which gives us,
as usual, a nucleus j: Q2 — Q and a sublocale Q; = j(Q) — Q. Our first theorem says
that there exists an isomorphism of locales B = Q;.

Section 3 is devoted to the topos .#, in particular to study the double negation
topology J—— and the associated subtopos .#——. We calculate J-——={I € Q;C C I}
and A —— = &, where & is the topos of sets. We also consider the full subcategory
A" of all —-separated M-sets. In Section 4 we note that the nucleus j above is
equivariant, so that it defines a Grothendieck topology J = j~!(M) and the subtopos
% — M of J-sheaves. Since €; is the subobject classifier of ¥, the locale B, with a
natural structure of M-set, is also an object of true values in the topos %. We describe
the sheafification functor .# — % over the subcategory #N.#’. Then, we consider the
double negation topology & : Q; — €; in the topos # and we prove that the subcategory
%' of all j-sheaves which are k-separated is N .#' and %, = &.

Finally, we obtain in Section 5 a commutative triangle formed with the functors .% —
K-BOR, ¥ — .#', where K-BOR is the category of all Kolmogorov bornological
spaces (and bounded maps between them), and the functor K-BOR — .#’ defined by
means of bounded sequences. This diagram is an extension of the diagram of locales in
Section 2. Then we give the second theorem: there exists an equivalence between the
categories K-BOR and %’. Let us note that Johnstone [5, Proposition 3.6] has proved
a similar result involving the category of all subsequential spaces and continuous maps
between them, and the category 7' corresponding to the topos 7 of all T-sets, where
T is the monoid of all continuous endomaps of N* (the one point compactification of
the discrete space of natural numbers).

1. Locales of bornologies and locales of ideals

Let N be a non-empty set. A bornology into N is a non-empty family of subsets of
N (called bounded subsets) which is hereditary under inclusion and stable under finite
union. Let B denote the set of all bornologies into N, which is ordered in a natural
way. The intersection of bornologies into N is a bornology into N, so that B is a
locale with maximum 2(N), the set of all subsets of N, and minimum {@}. Let us
note that the locale B also depends on N, but we omit this fact in the notation. The
supremum of a family {f;}; in B is the bornology  whose bounded sets are all the
subsets of finite unions of bounded sets of the different f;’s. If f is a bornology into
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N, we denote by E(f) the union of all the subsets of N belonging to . If 4 = E(f)
we say that f is a bornology on A or a bornology with extent A; we also say that
(4, p) is a bornological space.

Given a locale L, we denote by —1x the negation of an element x € L and by L——
the image of the double negation nucleus —7—1:L — L (in general, L; will denote the
image of a nucleus j:L — L). It is easy to verify that the negation of the locale B
is given by 7 = 2(N — E(f)), hence /1 = 2(E(f)). Let us note that there are
monotone maps

E:B— P(N) and A, ?:P(N)— B,

where #'(A) is the bornology that consists of all finite subsets of 4 and 2(A4) is
the discrete bornology on A4 (all subsets of A4), so that the double negation map of
Bis 71 =20E:B — B. We shall use the open sublocale (#'(N)] of B formed
by all bornologies contained in #°(N), with the corresponding nucleus, j = #(N) —
(—):B — B, given by the implication in the locale B. The following properties are
easy to prove.

Lemma 1.1. (i) There exist Galois connections X < E - 2.
(i1) The equalities E o # =id =E o 2 hold.
(i) A (ANEP)) = H(4)N S (Frobenius formula).

Proposition 1.2. The locale B satisfies:
(i) The double negation nucleus is A (N) — (—).
(i1) There exist isomorphisms of locales B—— = 2(N) = (A (N)].

Proof. (i) By Lemma 1.1, we know that the double negation map of B is the nucleus
2 o E associated to the morphism of locales (£,2):2?(N) — B. We shall prove
that 2(E(f)) = j(p) for each bornology f, where j = #(N) — (—). The inclusion
P(E(P)) C j(P) is equivalent to the counit A (E(f)) C S because the left-hand side
is equal to " (N)N Z(E(S)) by the Frobenius equality. On the other hand, by two
adjunctions, the inclusion j(f) C 2(E(p)) is equivalent to S (E(j(f))) C B, where,
by the Frobenius equality, the left-hand side is equal to # (N)N (XA (N) — f), that is
A (N)N .

(ii) By Lemma 1.1 the locale Z(N) is isomorphic to B——. In fact we have B—— =
Im 2, which is the set of all discrete bornologies into N. Moreover, each bornology
p C A (N) is of the form = #(E(f)) (Frobenius equality) and the locale (£ (N)]
is isomorphic to Z(N) through #" and E. O

Our next step is to consider (right) ideals in the monoid M of all endomaps of
N (with composition), that is, subsets / of M such that fogel for any f €/ and
geM. Let © be the set of all ideals / of M. Given an ideal / and f €M the set
(I:f)={geM;fogel} is also an ideal. It is well known that Q is a locale with
the usual union, intersection, and

I —J={feM;:fYC(J:/)}, U=1—-0={feM;VgeM,fog¢&l}
Tl ={feEM;YgeM,FheM,fogohel}.
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Let C be the set of all constant maps of M, so that C = N. The subset C is an
ideal and each subset of C is also an ideal, that is, 22(C) = (C] is the open sublocale
of Q defined by C. Since C is non-empty we have —1C = (). It is easy to see that
CNn—//=Cnl1, so that =7/ C C — I; conversely, C — I C =11 is equivalent
to 7/ N(C — I)=0, but this is clear in a Heyting algebra since the left-hand side
is contained in —C. Hence, we have =7/ =C — I, and =7/ = M if and only if
ccl
By means of the formulas

Ext([):U{Im(f);f €1}, Contd) = {f € M;Im f C A}, c(A) = C N Cont(A),

we define three monotone maps Ext: Q2 — 2(N) and ¢, Cont : Z(N) — Q, and we
say that Ext(/) is the extent of the ideal / and Cont(A4) is the content of the subset 4.
We shall see later the reason why we call “extent” both E(ff) and Ext(/). If ¢, is the
constant map valued onto n € N, then it is clear that Ext(/) ={neN;c, €I} = CnNI
and c(4) = {c;;ne A} = 4. Tt is useful to note that ¢, €7 if f €l and neIm(f).
We omit the proof of the next lemma because it is straightforward. Let us note that
C =c¢(N), so that this lemma is similar to Lemma 1.1.

Lemma 1.3. (i) There exist Galois connections ¢ - Ext 4 Cont.
(it) The equalities Ext o ¢ = id = Ext o Cont hold.
(iii) c(4 NExt(l)) = c(A) NI (Frobenius formula).

Proposition 1.4. The locale Q satisfies:
(i) The double negation nucleus is Cont o Ext=C — (—).
(i1) There exist isomorphisms of locales Q—— = P(N) = (C].

Proof. We know that =7/ =C — (—). By Lemma 1.3 (Ext,Cont): Z(N) — Q
is a morphism of locales with nucleus Cont o Ext. Since Lemma 1.3 is similar to
Lemma 1.1, the proof of this proposition is similar to that given in Pro-
position 1.2. [

We have found two isomorphic copies of the boolean locale Z(N) into the lo-
cales B and Q. These diagrams are examples of “unity and identity of adjoint op-
posites” (UIAO) using the terminology of Lawvere [10]. For instance, the map FE
unifies the opposites # and 2, with the idempotent maps #" o E and —1—, re-
spectively. In these cases, the Frobenius formula gives an isomorphism between the
opposites.

Example 1.5. If N is finite then # = 2 and B = {#(4);4 C N} = 2(N). Hence,
in this case we only consider the isomorphism on the right-hand side in the above
formula. When N = {1} we have M = {id}, Z(N) = {0,N} = {0,M} = Q. When
N ={1,2} then Z(N)={0,{1},{2},N}, M = {id,1,c1,c;} with 7> =id, C = {c1,¢2}
and Q={0,Cy,C,,C,M} where C;={c¢;}, i=1,2; now we can calculate J——={C,M}
and Q—‘—| = {@, Cl, CQ,M}.
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2. The isomorphism of locales

Our aim in this section is to compare both the locales B and 2 by means of a
morphism of locales which induces a nucleus j of € such that B = ;. This morphism
of locales and the two morphisms studied in the last section complete a commutative
diagram.

/v B
#(N)

N

First, we extend to bornologies the notion of content given for subsets. Let § be a
bornology into N. We shall say that Cont(f)={f € M;Im f € S} is the content of f5.
Since the sets Cont(4) and Cont(£(A)) are equals, this terminology is coherent and
we have a monotone map Cont : B — Q2 extending the content Z(N) — 2 through £.
On the other hand, to any f € M and I € Q we associate the bornology

Bor(/) = sup{Bor(f); f €I} where Bor(f)= 2(Im f),

where the sup is taken in the locale B, so that bounded sets in Bor(/) are subsets
of finite unions of some images Im f, with f €. Let us note that the sets £(f) and
Ext(7) are equal if f=Bor(/). The map Bor : 2 — B is monotone and also is monotone
the composition j = ContoBor : Q — Q (in fact, we shall see that ;j is a nucleus). For
the forthcoming first theorem, we need some particular non-constructive properties of
our monoid M that we state without proof.

Lemma 2.1. The following properties of the monoid M hold.

(1) For every non-empty A C N, there exists f € M such that A=Im f.
(i1) Given f,geM, if Im f CImg there exists he M such that f =goh.
(iii) Given f,geM and 1€ Q, if Im f CImg and g€ then fel.

Theorem 2.2. There exists an isomorphism of locales B = Q; induced by the nucleus
j=ContoBor:Q2 — Q.

Proof. We shall prove that
Bor 4 Cont, Bor(/ NJ) = Bor(/) N Bor(J) and Bor o Cont = id.

Hence the pair (Bor,Cont) is a regular monomorphism of locales and the theorem
follows from the Proposition 1.5.4 in [1].

It is easy to verify the adjunction and Bor(/ NJ) C Bor(/) N Bor(J). Now, if we
suppose that B is a bounded subset in Bor(/) N Bor(J) then there exist f,..., fn €1
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and g¢1,...,¢, €J such that
BCImfiU---Ulmf, and BCImg,U---Ulmg,,

so that B C |JB;;, where B;; =Im f; N Img;. For the moment we prove that if 4 =
Imf NiImg, fel, geJ, then 4 C Bor(/ NJ); in fact, by Lemma 2.1(i) we have
A=1Imh with he M, but then Ims C Im f so that ~€/ by Lemma 2.1(iii), and the
same argument shows that 2 €J; hence €/ NJ and this means that 4 is a bounded
in Bor(/ NJ). In this way, we have proved that B;; € Bor(/ NJ) for all B;; and this
implies that B € Bor(/ NJ).

Finally, the counit of the adjunction means that Bor(Cont(f)) C f; conversely, if B
is a non-empty bounded set in f, then B=1Im f by Lemma 2.1(i) and this means that
f €Cont(f), that is B € Bor(Cont(f)). O

We complete this section by giving an explicit description of the M-subsets €;
and J = j~!(M) of Q. The proof of the next proposition uses Lemma 2.1 and it is
straightforward.

Proposition 2.3. For each ideal I € Q, the following characterizations hold.
(i) 1€Q; if and only if Bor(/)={B C N;3f €l,B CIm f}.
(it) 1 €J if and only if Bor({) = 2(N).

The condition Bor(/) = #(N) means that N € Bor(/), that is, N = J, ., ,, Im 3,
where each f'; belongs to /. Let us note that every ideal of the form Cont(f) belongs
to €, and that Proposition 2.3(ii) implies C C I (N =Ext(/)). Moreover, if N is finite
then j =—"1.

3. The double negation in the topos of M-sets

A set X with an action of a monoid M is called an M-set. An action of M on X is a
map X xM — X, usually denoted simply by x f, such that x(id)=x and (x /' )g=x(fog)
for every xe X, f,g€ M. Let ./ be the topos of M-sets and equivariant maps ¢ : X —
Y, that is, maps preserving the actions: ¢(xf) = (¢(x))f, for every x€X and f e M.
The subobject classifier of .# is Q, which is an M-set with the action defined by
U:f)={9geM;fogel}, feM. For each M-subset U C X, the characteristic
morphism ¢ : X — Q is given by ¢(x) = (U :x), where (U:x)={feM;xf€U}. In
particular, the characteristic morphism ¢ :M — Q of an ideal / C M is the unique
equivariant map defined by ¢(id) =1. Let Sub(X) be the set of all subobjects of X in
M, so that Q 2 Sub(M). The logical operations in the locale Sub(X') are defined like
in the case X =M (see Section 1) and for every x € X the equalities

Uur:x)y=U:x)uV:x), (U—=V:x)=WU:x)— (V:x), etc.

hold. In particular, the logical operations of €2 are equivariant and hence the nucleus
—1=C — (—) of Q is an equivariant map. Recall that / — (—) is not equivariant
for every ideal / (see Lemma 1.1 in [2] for a characterization of this kind of ideals).
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We give a example: if we suppose m#n €N and take the ideals 7 = {c,}, J = {cu},
then we have I — (J:c,) =" and (I — J):¢c,) =10, but ¢, € —; hence I — (—)
is not equivariant.

Any M-set X has a subset of fixed points (x € X is a fixed point if x f =x for every
feM) denoted I'(X). In particular C = I'(M). We have WU =T'(X) — U, for
every M-subset U C X, and C C (I'(X):x) for every x € X. It is clear that from the
evaluation map M X N — N and the action X x M — X we can obtain the set I'(X)
as a coequalizer of two maps of the form N x X x M — N x X. Then the canonical
map N X X — I'(X) corresponds to

w:X — F(X)N’ ,U(X)(I’l) = XCp,

where I'(X)V is the set of all maps N — I'(X) in .. Given a set S, the set SV of all
maps N — S in &, which we shall call sequences of S, is an M-set with action the
composition of sequences N — S and endomaps in M. We have I'(SV) = S and p = id
when X = SV, For the trivial M-set S (action given by the projection S x M — S)
the map u:S — SV is the natural inclusion given by the constant sequences. In &,
maps g:X — SV are in one-to-one correspondence with maps G:N x X — S, and ¢
is equivariant if and only if G factorizes by the coequalizer I'(X), so that we have
an adjunction I' 4 (—)" with unit the natural transformation p defined above. The
one-to-one correspondence between the set of all maps 4:I'(X) — S and the set of all
equivariant maps H :X — SV is given by H(x) = h o u(x), and if x is a fixed point
then /(x) is the constant value of H(x). Hence, the topos & of sets is equivalent to
the full subcategory of .# formed by all M-sets X such that p is an isomorphism in
the level X.

It is well known that there exists an geometric morphism (A, I'): .4 — &, where, for
every set S, 4(S) is the set S with the trivial action given by the projection S xM — S.
For instance, for each M-set X, I'(X) is a trivial M-subset of X. Actually, there exists
an essential geometric morphism

AAT AW -, To(—)"=id, TI'od=id.

Let us note that this is another example of UIAO (in this case it is also called essential
localization): I' unifies the opposites 4 and (—)" which, by composing with I, give
the idempotent functors Ao I’ and ¥ =(—)N o I':.#/ — ./, respectively. This diagram
of functors is an extension of that given by the Galois connections ¢ 4 Ext + Cont in
Lemma 1.3, since we have natural inclusion functors Z(N) — & and Q — /.

Now we shall see this construction in terms of sheaves. We recall that an equivariant
map j: Q — Q is the characteristic morphism of the M-subset J =;~!(M), and j is a
nucleus if and only if J is a topology in the sense of Grothendieck. An M-set X is
an [-sheaf if for every equivariant map H :/ — X, there exists a unique equivariant
extension H': M — X of H, that is, there exists a unique x € X such that H(f)=xf
for every f €1l; and X is a J-sheaf ( j-sheaf) if it is an /-sheaf for every ideal / € J. If
we only suppose that the element x € X' is unique when it exists then we say that X is
I-separated or J-separated ( j-separated), respectively. The full subcategory .#; — .«
of all J-sheaves is a topos with subobject classifier ;. The inclusion has a left exact
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left adjoint functor called the sheafification functor. Limits and exponentials in .#; are
like in .#, and colimits in .#; are constructed by sheafification.

Now we consider the subtopos .#—— — .4 of sheaves for the nucleus —171: Q2 —
Q (Proposition 1.4), so that the associated topology is J—— ={/€Q;C C I}. The
following elementary results are given without proof.

Lemma 3.1. Every M-set X satisfies:

(1) X is a J——-sheaf if and only if it is a C-sheaf.

(il) X is C-separated if and only if u is a monomorphism.
(iii) X is C-sheaf if and only if u is an isomorphism.

Proposition 3.2. The topos .#—— verifies:
(1) 2: M — M—— is the sheafification functor.
(ii) The functor (=) induces an equivalence of categories S = M ——.

We shall add two simple comments. The condition C-separated for an M-set X
means that xc, = yc, for all n€ N implies x =y, and if X is a set of sequences, this is
the principle of extensionality for sequences. The monoid M is clearly a C-sheaf, and
actually J—— is the canonical topology of the topos .#, since if M is J-sheaf then
J—— C J. We prove it: if /€ J then (I:c,)€J for all n€ N, but M is ({:c,)-sheaf
so that (/:c,)#0, that is (/:c,) =M and ¢, €1; hence C C I.

By using Proposition 3.2 we have a new look for the above UIAO. The functor
2. M — M—— unifies the opposites 4 o I': .#M/—— — .# and the inclusion functor
with the corresponding idempotents A o I', X: .# — ./, respectively. Let us note that
2={0, 1} is the subobject classifier of . and we can use Z(N) =2 2" as subobject clas-
sifier of .#—— (Propositions 1.4 and 3.2), in this case the characteristic morphism cor-
responding to an M-subset U C X in M —— is ¢: X — P(N), p(x)={n€N;xc, € U}.
If X is a set of sequences then ¢ selects the points of each sequence belonging
to U.

Let .4’ be the full subcategory of .# formed by all C-separated M-sets, so that
we have a chain .#/—— — /4’ — .4 of full subcategories which are reflexive. The
reflector functor (=) :.# — M’ is given by X’ = u(X) and the reflector .4’ — M ——
is I, with I'(u(X)) = I'(X). Let us note that the UIAO’s considered above can
be reformulated taking .#’ instead of .#. It is well known that .#’ is a quasitopos
(Theorem 10.1 in [5], or Theorem 43.6 in [12]) but we do not use this structure in
the present paper.

Example 3.3. The case N = {1} is trivial since .#/ = #—— =, but N={1,2} is an
interesting case. By using the representation given by Lawvere [9], .# is the category
of all reflexive directed graphs with an involutive operation x* = xt (corresponding
to the transposition t € M, 1> = id, see Example 2.4), I'(X) represents the set of all
vertices of X and 2(X)=TI'(X) x I'(X), so that u(x)=(a,b) means that x is an arrow
from the vertex a to the vertex b (then u(x*)=(b,a)). A C-separated graph X (object
in ./") is an equivalence relation on the set I'(X). Finally, a C-sheaf is the equality
relation on I'(X).
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4. A topos of M-sets for bornologies

We shall consider B as an M-set with the action given by

Bf ={B CN;f(B)ep}.

Then the logical operations in B, the maps Cont : B — Q and Bor : 2 — B, the nucleus
j = Cont o Bor and the bijection ; = B (see Section 2) all are equivariant. Since the
nucleus j is equivariant, the M-subset J =;~'(M) of Q is a (Grothendieck) topology
and we can consider the subtopos # — .# of J-sheaves. The subobject classifier of
% is Q; = B, so that we can consider B as an M-set of true values of the topos .
In this way, given an M-subset U C X in 4, we take the characteristic morphism in
the form ¢: X — B,

p(x)={BCN;3feMxfeU, BCImf}

If U=T(X), then E(¢(x)) = N by using the constant maps. We shall call # the
bornological topos because there exists the subobject classifier B and also because it
contains a full reflexive subcategory of bornological spaces as we shall see in the next
section. (In [2] we have used a topos, called bounded topos, defined in a similar way
by using another monoid of maps.)

Before exploring the relation of the topos 4 to bornological spaces, we shall consider
the full subcategories %, — B’ — % as defined in Section 3, but now from the double
negation k:Q; — €; in 2, which is the nucleus given by k(/) = j(——/), where
_\_l is the double negation in 2. We shall denote by J; the corresponding topology

k—'(M) C Q.

Proposition 4.1. (i) J, =J——NQ;. (ii) ' = 4" N A. (iii) By =

Proof. (i) Given / € Q; we have k(I) = j(C — I)=j(C) — I (with the implication
in Q). Hence / € J; if and only if j(C) C I, that is C C I since I € Q;.

(ii) Like in Lemma 3.1, it is clear that an object X in % is Jj;-separated if and only
if X is j(C)-separated, but C C j(C) so that X is j(C)-separated if and only if X is
C-separated as an object in ..

(iii) Like in (ii), $y = M —— N # = M ——, and then we use Proposition 3.2. T[]

By the isomorphism ; = B (Theorem 2.2) the topology Ji C €; is transformed
in the topology {f€B;E(f) =N} C B corresponding to the double negation in B.
Moreover, j(C)={f €M;Im f finite} is the ideal of Q; associated to the bornology
A(N).

Topos theory says that there exists a sheafification functor, left exact and left adjoint
to the inclusion 4 — .4, which we shall denote by b : .# — 2. In the next proposition
we give an explicit description of b over the subcategory .#’.

Proposition 4.2. [f X is C-separated then
b(X)={s:N — I'(X);s(N) € f} C Z(X),
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where f§ is the bornology on I'(X) generated by the family of discrete bornologies
{2(Im u(x)); x€X}.

Proof. By Proposition 2.3(ii) the topology J is subcanonical, hence .#—— — % and
each M-set of the form SV is a J-sheaf, in particular X(X) for all M-set X. If X is
C separated then pu: X — 2(X) is mono and hence b(X) is the closure of u(X) in
2(X), that is, a sequence s: N — I'(X) belongs to b(X) if and only if (u(X):s)eJ,
in other words, there exist maps f; €M and elements x; €X, 1 <i <n, such that
N=ImfiU---UIm f, and s o f; = u(x;) for every index. Now it is clear that
s€b(X) implies s(N) € f, where f is the bornology in the statement (it is clear that
for every x € I'(X) the condition {x} €  holds). Conversely, if s(N) € § then we have
s(N)NIm p(x)U---UIm p(x,) for some x; € X, 1 <i < n, and for each index s(N)N
Im pu(x;) #0, so that we can find maps f; € M such that Im(s o f;) C Im u(x;); but
then there exists y; € X such that so f; =pu(y;), 1 <i < n. In fact, if we define a map
g € M by choosing g(n) in the non-empty fibre u(x;)~'((s o £;)(n)) then it is easy to
check that (s o f;) = u(x;g). Hence we conclude that s cb(X). [

If we take in Proposition 4.2 a trivial M-set S we obtain the finite bornology #°(S),
so that in this case b(S) = {s: N — I'(S);s(N Yfinite}.

Moreover, we obtain 2(S) from the M-set SV of sequences. Let us note that there
exists a UIAO (or an essential localization)

AAT A (YN ¥ =B, To(-)N=id=To4

where 4 =bo A. If we take B in % then we have A(I'(B)) = I'(B)Y = 2(N) with
the action A4/ = f~'(4). Let us note that I'(B) = I'(#(N)) = 2. The equivariant maps
2, E are, respectively, the unit and the counit of the adjunction A - I'. Since the
subcategory .#' — ./ is reflexive (Section 3) the subcategory %' — . is reflexive
too.

5. Kolmogorov bornological spaces and M -sets

We have a chain of categories & — %' — % — .U, where 4’ is a quasitopos
(like .#’, see Section 3) and all others are toposes. In this section we shall identify
2’ with a category of bornological spaces.

Let BOR be the category of all bornological spaces (S, ) and bounded maps between
them. (Recall that, given bornological spaces (S,f) and (S’,f'), a map f:S — S’ is
bounded if for every B € § we have f(B) € f’.) We have a forgetful functor E: BOR —
& with left adjoint %" (finite bornology) and right adjoint £ (discrete bornology) such
that the equalities Eo.#"=id=FE o2 hold, like in Lemma 1.1. Actually, there are natural
inclusions 2(N) — & and B — BOR, the last one sending every bornology € B to
the bornological space (E(f3), ). Our aim in this section is to extend the diagram of
locales Z(N) — B — Q in Section 2 to a diagram of categories ¥ — BOR — /#,
and then to induce an equivalence between categories from the second functor.
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We define the following functor by associating to each bornological space the M -set
of its bounded sequences,

3, :BOR — ., Zy(S,p)={s:N — S;s(N)cp} cS",

with the obvious action X(4)(s) = h os on the bounded maps. If we consider N
with the discrete bornology, then X, = BOR(N, —). It is clear that for each bornology
p€B we have X, (E(f), ) = Cont(f), so that given an ideal / we have in particular
2y(Ext(I),Bor(1)) = j(I).

Lemma 5.1. X, is faithful and factorizes through M'.

Proof. Given a bounded map 4:S — S’ we can recover & from X,(h) since the
constant sequences ¢, are bounded and X, (%)(cy)=hoc,=cu(x) for every x € S; hence
X, is faithful. Moreover, we have seen (Proposition 3.2) that SV is a C-sheaf, hence
(S, B) € SV is C-separated (note that the inclusion is the mono u in this case). [

By Lemma 5.1 we can reduce to .#’ the codomain of X, and the new codomain
suffices to contain the images of both functors A and (—)", so that it is a good
extension of &% yet.

Now we analyse the domain. We say that (S, ) is a Kolmogorov bornological (or
K-bornological) space [3] if every subset B C S such that s(N)€ ff for all s:N — B
satisfies B € . Let K-BOR be the full subcategory of BOR given by all K-bornological
spaces. There exists the universal K-bornological space over (S, ), which is the same
set S but with the bornology f—, f C f, given by

p~={BCS;s(N)ep forall s:N — B}.

Let us note that a K-bornological space is determined by its bounded sequences,
and the bornological spaces (S, f) and (S, f~) have the same bounded sequences. All
spaces (E(f3), ), p € B, are K-bornological and the spaces obtained by using #" or Z
also; hence K-BOR is a good extension of B for the domain of the new functor of 2.

From now on, we shall consider the commutative diagram in the form

K-BOR

/
fxl h

M

1

Given an M-set X, by taking the set I'(X) with the K-bornology generated by
the bornology defined in Proposition 4.1, we produce from I' the functor I'p: . %' —
K-BOR. In fact, for every equivariant map H:X — Y, the restriction H:I'p(X) —
I'y(Y) is bounded because, given x € X and the generating bounded sequence p(x):
N — I'p(X), the map H o u(x):N — I',(Y) is bounded since H o u(x) = u(H(x))
by the naturality of u. In particular, I'p(M) is (isomorphic to) the set N with the
discrete bornology, and every point x: M — X is transformed by I, in the sequence
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w(x) =A{xc,}:N — I'(X) of all fixed points in its orbit. Now, we give the second
theorem of this paper.

Theorem 5.2. There exists and adjunction T'y, 4 Xy :K-BOR — ' which induces an
equivalence of categories K-BOR = J'.

Proof. If we consider the one-to-one correspondence defined by the adjunction I'
(=)V (see Section 3) then it is easy to verify that 4:I',(X) — S is bounded if and
only if H:X — SV, H(x) = h o u(x), satisfies H(X) C X(S). Hence, we have the
adjunction I', 4 X} and we shall describe the induced equivalence.

For the counit we have ', o X = id. In fact, given a K-bornological space (S, ),
since I'p(25(S)) = S as sets, we observe that the new K-bornology ' on S is generated
by the inclusion u:ZX,(S) — SV, that is, by the sets s(N) where s is a bounded
sequence for f. We must prove that = f’. Every B C S such that B C s;(N)U---U
s.(N) with s; € Zp(S), 1 <i <r, belongs to f8, so that 8/ C f since f is K-bornology.
Conversely, given B € f§, we must prove that B € ff/, which is a consequence, because
S’ is K-bornology, of the condition s(N) € ' for every s:N — B; but s € XZ(S) since
B e f, so that the condition follows.

For the unit, by Proposition 4.2, we must prove that given a C-separated M -set X, the
equivariant map p,: X — 25(I'5(X)) (1 with restricted codomain) is an isomorphism if
and only if X is a J-sheaf. But by Proposition 4.2 and the property X,(S, f)=24(S, ™)
we have b(X')=2,(I'5(X)), so that u, is an iso if and only if X = b(X) is a J-sheaf.

O

The equivalence & = .#—— = %) (Propositions 3.2 and 4.1) is the restriction
to the discrete bornologies of the equivalence in Theorem 5.2. Note that if N is
finite all the Kolmogorov bornologies are discrete. As a corollary of Theorem 5.2
we conclude that the category K-BOR is a quasitopos. Actually, we can obtain also
this result from the fact that BOR is a quasitopos [12, p. 99]. Given two object S,
T in K-BOR, we shall describe the exponential 7% in terms of exponential in %’.
If X =2,(5) and Y = X,(T), then I'y(Y¥) = #'(X,Y) = K-BOR(S,T) with the
K-bornology determined by the bounded sequences u(¢):N — Ip(YY), &€ Y¥. Recall
that £: M x X — Y is an equivariant map and u(&)(n) = &c,, n €N, is the equivari-
ant map given by (&c,)(f,s) = &(crmy.s), f €M, s€X. By the above bijection, pu(&)
corresponds to w: N — K-BOR(S, T'), where for every n € N w(n) define an equivari-
ant map w, € I'y(YY) by w,(f,s)(m) = w(f(n))(s(m)), but this means that the map
wNiN xS — T, w’(n,x)=w(n)(x) is bounded with N discrete. Hence, the bornology
in 75 is in fact the equibounded bornology.

Finally, we conclude that if N is the set N of all natural numbers then the bornologi-
cal topos 4 is a convenient topos to study the boundedness properties of spaces in func-
tional analysis. A natural number object in % is Np=b(N)={s: N — I'(X); s(N) finite},
and then the objects of integers and rationals are Z, = b(Z) and Q, = b(Q), respec-
tively; but b(R) is not the object of Dedekind reals. It can be proved that this object is
Ry =2p(R) when we consider the set R of all real numbers with the usual bornology,
that is, R is the classical space /*° of real bounded sequences. Hence, the category of
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K-bornological real vector spaces is equivalent to the category MOD; of Rj-modules
in 4'.
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