

Journal of Pure and Applied Algebra 176 (2002) 113-125

JOURNAL OF PURE AND APPLIED ALGEBRA

www.elsevier.com/locate/jpaa

On bornologies, locales and toposes of *M*-sets $\stackrel{\text{\tiny trian}}{\to}$

Luis Español*, Laureano Lambán

Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, Spain

Received 15 December 2001 Communicated by F.W. Lawvere

Abstract

Let M be the monoid of all endomaps of a non-empty set N, Ω the locale of all ideals of M, and let \mathscr{M} be the topos of all M-sets. The core of this paper is formed by a locale \mathbf{B} , a subtopos $\mathscr{B} \hookrightarrow \mathscr{M}$ and two theorems, where \mathbf{B} is the locale of all bornologies defined on subsets of N and \mathscr{B} is the topos of j-sheaves for a topology $j: \Omega \to \Omega$. The first theorem shows a morphism of locales $\mathbf{B} \to \Omega$ with nucleus j which induces an isomorphism of locales between \mathbf{B} and the sublocale $\Omega_j \hookrightarrow \Omega$. The second theorem, which generalizes the first one, gives an equivalence between the category of Kolmogorov bornological spaces and bounded maps, and the full subcategory $\mathscr{B}' \hookrightarrow \mathscr{B}$ formed by all j-sheaves which are separated for the double negation topology of \mathscr{B} .

© 2002 Elsevier Science B.V. All rights reserved.

MSC: 18B25; 18F20; 46A17

0. Introduction

We consider the set **B** of all bornologies into a non-empty set N and the topos \mathcal{M} of all M-sets and equivariant maps between them, where M is the monoid of all endomaps $N \to N$. In abstract functional analysis one considers bornologies related to sequences $s: N \to X$, where N is the set of natural numbers, but the constructions in this paper work for every non-empty set N and they have a very particular sense when N is finite. The core of this paper is formed by a theorem about bornologies into

E-mail addresses: luis.espanol@dmc.unirioja.es (L. Español), laureano.lamban@dmc.unirioja.es (L. Lambán).

0022-4049/02/\$-see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0022-4049(02)00047-6

 $^{^{\}star}$ Partially supported by Universidad de La Rioja, project API-97/A09, and DGES, project PB98-1621-C02-01.

^{*} Corresponding author.

N in the context of locales and a second theorem about bornological spaces, which generalizes the first one in a context of big categories.

This paper subsumes some results in [6] which are different of those improved in [2]. The basic ideas for the relation between bornologies and toposes were communicated by Lawvere in several talks [7] during the Bogotá 1983 workshop on category theory, but they were not included in the later paper [8]. For locales and toposes we refer to [1,4,11] and [3] for bornologies.

Now we give a more detailed description of the contents of this work. In Section 1 we deal with the locale **B**, the locale Ω of all ideals of M (the subobject classifier of \mathcal{M}) and the boolean locale $\mathcal{P}(N)$ of all subsets of N. We define two open morphisms of locales $\mathcal{P}(N) \to \mathbf{B}$ and $\mathcal{P}(N) \to \Omega$ with similar properties. Then we complete in Section 2 a commutative triangle with a morphism of locales $\mathbf{B} \to \Omega$ which gives us, as usual, a nucleus $j: \Omega \to \Omega$ and a sublocale $\Omega_j = j(\Omega) \hookrightarrow \Omega$. Our first theorem says that there exists an isomorphism of locales $\mathbf{B} \cong \Omega_j$.

Section 3 is devoted to the topos \mathscr{M} , in particular to study the double negation topology $\mathbf{J}_{\neg\neg}$ and the associated subtopos $\mathscr{M}_{\neg\neg}$. We calculate $\mathbf{J}_{\neg\neg} = \{I \in \Omega; C \subset I\}$ and $\mathscr{M}_{\neg\neg} \cong \mathscr{S}$, where \mathscr{S} is the topos of sets. We also consider the full subcategory \mathscr{M}' of all $\neg\neg$ -separated \mathcal{M} -sets. In Section 4 we note that the nucleus j above is equivariant, so that it defines a Grothendieck topology $\mathbf{J} = j^{-1}(\mathcal{M})$ and the subtopos $\mathscr{B} \hookrightarrow \mathscr{M}$ of \mathbf{J} -sheaves. Since Ω_j is the subobject classifier of \mathscr{B} , the locale \mathbf{B} , with a natural structure of \mathcal{M} -set, is also an object of true values in the topos \mathscr{B} . We describe the sheafification functor $\mathscr{M} \to \mathscr{B}$ over the subcategory $\mathscr{B} \cap \mathscr{M}'$. Then, we consider the double negation topology $k : \Omega_j \to \Omega_j$ in the topos \mathscr{B} and we prove that the subcategory \mathscr{B}' of all j-sheaves which are k-separated is $\mathscr{B} \cap \mathscr{M}'$ and $\mathscr{B}_k \cong \mathscr{S}$.

Finally, we obtain in Section 5 a commutative triangle formed with the functors $\mathscr{S} \hookrightarrow K$ -BOR, $\mathscr{S} \hookrightarrow \mathscr{M}'$, where K-BOR is the category of all Kolmogorov bornological spaces (and bounded maps between them), and the functor K-BOR $\hookrightarrow \mathscr{M}'$ defined by means of bounded sequences. This diagram is an extension of the diagram of locales in Section 2. Then we give the second theorem: there exists an equivalence between the categories K-BOR and \mathscr{B}' . Let us note that Johnstone [5, Proposition 3.6] has proved a similar result involving the category of all subsequential spaces and continuous maps between them, and the category \mathscr{T}' corresponding to the topos \mathscr{T} of all *T*-sets, where *T* is the monoid of all continuous endomaps of \mathbb{N}^+ (the one point compactification of the discrete space of natural numbers).

1. Locales of bornologies and locales of ideals

Let N be a non-empty set. A *bornology into* N is a non-empty family of subsets of N (called *bounded* subsets) which is hereditary under inclusion and stable under finite union. Let **B** denote the set of all bornologies into N, which is ordered in a natural way. The intersection of bornologies into N is a bornology into N, so that **B** is a locale with maximum $\mathcal{P}(N)$, the set of all subsets of N, and minimum $\{\emptyset\}$. Let us note that the locale **B** also depends on N, but we omit this fact in the notation. The supremum of a family $\{\beta_i\}_i$ in **B** is the bornology β whose bounded sets are all the subsets of finite unions of bounded sets of the different β_i 's. If β is a bornology into

N, we denote by $E(\beta)$ the union of all the subsets of *N* belonging to β . If $A = E(\beta)$ we say that β is a *bornology on A* or a bornology with *extent A*; we also say that (A, β) is a *bornological space*.

Given a locale *L*, we denote by $\neg x$ the negation of an element $x \in L$ and by $L_{\neg \neg}$ the image of the double negation nucleus $\neg \neg : L \to L$ (in general, L_j will denote the image of a nucleus $j: L \to L$). It is easy to verify that the negation of the locale **B** is given by $\neg \beta = \mathcal{P}(N - E(\beta))$, hence $\neg \neg \beta = \mathcal{P}(E(\beta))$. Let us note that there are monotone maps

 $E: \mathbf{B} \to \mathscr{P}(N) \text{ and } \mathscr{K}, \ \mathscr{P}: \mathscr{P}(N) \to \mathbf{B},$

where $\mathscr{K}(A)$ is the bornology that consists of all finite subsets of A and $\mathscr{P}(A)$ is the discrete bornology on A (all subsets of A), so that the double negation map of **B** is $\neg \neg = \mathscr{P} \circ E : \mathbf{B} \to \mathbf{B}$. We shall use the open sublocale $(\mathscr{K}(N)]$ of **B** formed by all bornologies contained in $\mathscr{K}(N)$, with the corresponding nucleus, $j = \mathscr{K}(N) \to$ $(-): \mathbf{B} \to \mathbf{B}$, given by the implication in the locale **B**. The following properties are easy to prove.

Lemma 1.1. (i) There exist Galois connections $\mathscr{K} \dashv E \dashv \mathscr{P}$.

(ii) The equalities $E \circ \mathscr{H} = \mathrm{id} = E \circ \mathscr{P}$ hold.

(iii) $\mathscr{K}(A \cap E(\beta)) = \mathscr{K}(A) \cap \beta$ (Frobenius formula).

Proposition 1.2. The locale **B** satisfies:

(i) The double negation nucleus is $\mathscr{K}(N) \to (-)$.

(ii) There exist isomorphisms of locales $\mathbf{B}_{\neg \neg} \cong \mathscr{P}(N) \cong (\mathscr{K}(N)]$.

Proof. (i) By Lemma 1.1, we know that the double negation map of **B** is the nucleus $\mathscr{P} \circ E$ associated to the morphism of locales $(E, \mathscr{P}) : \mathscr{P}(N) \to \mathbf{B}$. We shall prove that $\mathscr{P}(E(\beta)) = j(\beta)$ for each bornology β , where $j = \mathscr{K}(N) \to (-)$. The inclusion $\mathscr{P}(E(\beta)) \subset j(\beta)$ is equivalent to the counit $\mathscr{K}(E(\beta)) \subset \beta$ because the left-hand side is equal to $\mathscr{K}(N) \cap \mathscr{P}(E(\beta))$ by the Frobenius equality. On the other hand, by two adjunctions, the inclusion $j(\beta) \subset \mathscr{P}(E(\beta))$ is equivalent to $\mathscr{K}(E(j(\beta))) \subset \beta$, where, by the Frobenius equality, the left-hand side is equal to $\mathscr{K}(N) \cap (\mathscr{K}(N) \to \beta)$, that is $\mathscr{K}(N) \cap \beta$.

(ii) By Lemma 1.1 the locale $\mathscr{P}(N)$ is isomorphic to $\mathbf{B}_{\neg \neg}$. In fact we have $\mathbf{B}_{\neg \neg} = \operatorname{Im} \mathscr{P}$, which is the set of all discrete bornologies into N. Moreover, each bornology $\beta \subset \mathscr{H}(N)$ is of the form $\beta = \mathscr{H}(E(\beta))$ (Frobenius equality) and the locale $(\mathscr{H}(N)]$ is isomorphic to $\mathscr{P}(N)$ through \mathscr{H} and E. \Box

Our next step is to consider (right) ideals in the monoid M of all endomaps of N (with composition), that is, subsets I of M such that $f \circ g \in I$ for any $f \in I$ and $g \in M$. Let Ω be the set of all ideals I of M. Given an ideal I and $f \in M$ the set $(I:f) = \{g \in M; f \circ g \in I\}$ is also an ideal. It is well known that Ω is a locale with the usual union, intersection, and

$$I \to J = \{ f \in M; (I:f) \subset (J:f) \}, \quad \neg I = I \to \emptyset = \{ f \in M; \forall g \in M, f \circ g \notin I \}, \\ \neg \neg I = \{ f \in M; \forall g \in M, \exists h \in M, f \circ g \circ h \in I \}.$$

Let *C* be the set of all *constant* maps of *M*, so that $C \cong N$. The subset *C* is an ideal and each subset of *C* is also an ideal, that is, $\mathscr{P}(C) = (C]$ is the open sublocale of Ω defined by *C*. Since *C* is non-empty we have $\neg C = \emptyset$. It is easy to see that $C \cap \neg \neg I = C \cap I$, so that $\neg \neg I \subset C \to I$; conversely, $C \to I \subset \neg \neg I$ is equivalent to $\neg I \cap (C \to I) = \emptyset$, but this is clear in a Heyting algebra since the left-hand side is contained in $\neg C$. Hence, we have $\neg \neg I = C \to I$, and $\neg \neg I = M$ if and only if $C \subset I$.

By means of the formulas

$$\operatorname{Ext}(I) = \bigcup \{ \operatorname{Im}(f); f \in I \}, \operatorname{Cont}(A) = \{ f \in M; \operatorname{Im} f \subset A \}, c(A) = C \cap \operatorname{Cont}(A),$$

we define three monotone maps $\operatorname{Ext} : \Omega \to \mathscr{P}(N)$ and c, $\operatorname{Cont} : \mathscr{P}(N) \to \Omega$, and we say that $\operatorname{Ext}(I)$ is the *extent* of the ideal I and $\operatorname{Cont}(A)$ is the *content* of the subset A. We shall see later the reason why we call "extent" both $E(\beta)$ and $\operatorname{Ext}(I)$. If c_n is the constant map valued onto $n \in N$, then it is clear that $\operatorname{Ext}(I) = \{n \in N; c_n \in I\} \cong C \cap I$ and $c(A) = \{c_n; n \in A\} \cong A$. It is useful to note that $c_n \in I$ if $f \in I$ and $n \in \operatorname{Im}(f)$. We omit the proof of the next lemma because it is straightforward. Let us note that C = c(N), so that this lemma is similar to Lemma 1.1.

Lemma 1.3. (i) There exist Galois connections $c \dashv Ext \dashv Cont$.

- (ii) The equalities $\text{Ext} \circ c = \text{id} = \text{Ext} \circ \text{Cont hold.}$
- (iii) $c(A \cap \text{Ext}(I)) = c(A) \cap I$ (Frobenius formula).

Proposition 1.4. The locale Ω satisfies:

- (i) The double negation nucleus is $Cont \circ Ext = C \rightarrow (-)$.
- (ii) There exist isomorphisms of locales $\Omega_{\neg \neg} \cong \mathscr{P}(N) \cong (C]$.

Proof. We know that $\neg \neg = C \rightarrow (-)$. By Lemma 1.3 (Ext, Cont): $\mathcal{P}(N) \rightarrow \Omega$ is a morphism of locales with nucleus Cont \circ Ext. Since Lemma 1.3 is similar to Lemma 1.1, the proof of this proposition is similar to that given in Proposition 1.2. \Box

We have found two isomorphic copies of the boolean locale $\mathcal{P}(N)$ into the locales **B** and Ω . These diagrams are examples of "unity and identity of adjoint opposites" (UIAO) using the terminology of Lawvere [10]. For instance, the map *E* unifies the opposites \mathcal{K} and \mathcal{P} , with the idempotent maps $\mathcal{K} \circ E$ and $\neg \neg$, respectively. In these cases, the Frobenius formula gives an isomorphism between the opposites.

Example 1.5. If *N* is finite then $\mathscr{K} = \mathscr{P}$ and $\mathbf{B} = \{\mathscr{P}(A); A \subset N\} \cong \mathscr{P}(N)$. Hence, in this case we only consider the isomorphism on the right-hand side in the above formula. When $N = \{1\}$ we have $M = \{\mathrm{id}\}$, $\mathscr{P}(N) = \{\emptyset, N\} \cong \{\emptyset, M\} = \Omega$. When $N = \{1, 2\}$ then $\mathscr{P}(N) = \{\emptyset, \{1\}, \{2\}, N\}$, $M = \{\mathrm{id}, \tau, c_1, c_2\}$ with $\tau^2 = \mathrm{id}$, $C = \{c_1, c_2\}$ and $\Omega = \{\emptyset, C_1, C_2, C, M\}$ where $C_i = \{c_i\}$, i = 1, 2; now we can calculate $\mathbf{J}_{\neg \neg} = \{C, M\}$ and $\Omega_{\neg \neg} = \{\emptyset, C_1, C_2, M\}$.

2. The isomorphism of locales

Our aim in this section is to compare both the locales **B** and Ω by means of a morphism of locales which induces a nucleus j of Ω such that $\mathbf{B} \cong \Omega_j$. This morphism of locales and the two morphisms studied in the last section complete a commutative diagram.

First, we extend to bornologies the notion of content given for subsets. Let β be a bornology into *N*. We shall say that $Cont(\beta) = \{f \in M; Im f \in \beta\}$ is the *content* of β . Since the sets Cont(A) and $Cont(\mathscr{P}(A))$ are equals, this terminology is coherent and we have a monotone map $Cont : \mathbf{B} \to \Omega$ extending the content $\mathscr{P}(N) \to \Omega$ through \mathscr{P} . On the other hand, to any $f \in M$ and $I \in \Omega$ we associate the bornology

 $Bor(I) = sup\{Bor(f); f \in I\}$ where $Bor(f) = \mathcal{P}(Im f)$,

where the sup is taken in the locale **B**, so that bounded sets in Bor(*I*) are subsets of finite unions of some images Im f, with $f \in I$. Let us note that the sets $E(\beta)$ and Ext(I) are equal if $\beta = Bor(I)$. The map Bor : $\Omega \to \mathbf{B}$ is monotone and also is monotone the composition $j = Cont \circ Bor : \Omega \to \Omega$ (in fact, we shall see that j is a nucleus). For the forthcoming first theorem, we need some particular non-constructive properties of our monoid M that we state without proof.

Lemma 2.1. The following properties of the monoid M hold:

- (i) For every non-empty $A \subset N$, there exists $f \in M$ such that A = Im f.
- (ii) Given $f, g \in M$, if Im $f \subset$ Im g there exists $h \in M$ such that $f = g \circ h$.
- (iii) Given $f, g \in M$ and $I \in \Omega$, if $\operatorname{Im} f \subset \operatorname{Im} g$ and $g \in I$ then $f \in I$.

Theorem 2.2. There exists an isomorphism of locales $\mathbf{B} \cong \Omega_j$ induced by the nucleus $j = \text{Cont} \circ \text{Bor} : \Omega \to \Omega$.

Proof. We shall prove that

Bor \dashv Cont, Bor($I \cap J$) = Bor(I) \cap Bor(J) and Bor \circ Cont = id.

Hence the pair (Bor, Cont) is a regular monomorphism of locales and the theorem follows from the Proposition 1.5.4 in [1].

It is easy to verify the adjunction and $Bor(I \cap J) \subset Bor(I) \cap Bor(J)$. Now, if we suppose that *B* is a bounded subset in $Bor(I) \cap Bor(J)$ then there exist $f_1, \ldots, f_m \in I$

and $g_1, \ldots, g_n \in J$ such that

 $B \subset \operatorname{Im} f_1 \cup \cdots \cup \operatorname{Im} f_m$ and $B \subset \operatorname{Im} g_1 \cup \cdots \cup \operatorname{Im} g_n$,

so that $B \subset \bigcup B_{ij}$, where $B_{ij} = \operatorname{Im} f_i \cap \operatorname{Im} g_j$. For the moment we prove that if $A = \operatorname{Im} f \cap \operatorname{Im} g$, $f \in I$, $g \in J$, then $A \subset \operatorname{Bor}(I \cap J)$; in fact, by Lemma 2.1(i) we have $A = \operatorname{Im} h$ with $h \in M$, but then $\operatorname{Im} h \subset \operatorname{Im} f$ so that $h \in I$ by Lemma 2.1(ii), and the same argument shows that $h \in J$; hence $h \in I \cap J$ and this means that A is a bounded in $\operatorname{Bor}(I \cap J)$. In this way, we have proved that $B_{ij} \in \operatorname{Bor}(I \cap J)$ for all B_{ij} and this implies that $B \in \operatorname{Bor}(I \cap J)$.

Finally, the counit of the adjunction means that $Bor(Cont(\beta)) \subset \beta$; conversely, if *B* is a non-empty bounded set in β , then B = Im f by Lemma 2.1(i) and this means that $f \in Cont(\beta)$, that is $B \in Bor(Cont(\beta))$. \Box

We complete this section by giving an explicit description of the *M*-subsets Ω_j and $\mathbf{J} = j^{-1}(M)$ of Ω . The proof of the next proposition uses Lemma 2.1 and it is straightforward.

Proposition 2.3. For each ideal $I \in \Omega$, the following characterizations hold: (i) $I \in \Omega_j$ if and only if $Bor(I) = \{B \subset N; \exists f \in I, B \subset Im f\}$. (ii) $I \in \mathbf{J}$ if and only if $Bor(I) = \mathcal{P}(N)$.

The condition $Bor(I) = \mathcal{P}(N)$ means that $N \in Bor(I)$, that is, $N = \bigcup_{1 \le i \le m} \text{Im } f_i$, where each f_j belongs to I. Let us note that every ideal of the form $Cont(\beta)$ belongs to Ω_j , and that Proposition 2.3(ii) implies $C \subset I$ (N = Ext(I)). Moreover, if N is finite then $j = \neg \neg$.

3. The double negation in the topos of *M*-sets

A set X with an action of a monoid M is called an M-set. An action of M on X is a map $X \times M \to X$, usually denoted simply by xf, such that x(id)=x and $(xf)g=x(f \circ g)$ for every $x \in X$, $f, g \in M$. Let \mathscr{M} be the topos of M-sets and equivariant maps $\phi: X \to Y$, that is, maps preserving the actions: $\phi(xf) = (\phi(x))f$, for every $x \in X$ and $f \in M$. The subobject classifier of \mathscr{M} is Ω , which is an M-set with the action defined by $(I:f) = \{g \in M; f \circ g \in I\}, f \in M$. For each M-subset $U \subset X$, the characteristic morphism $\phi: X \to \Omega$ is given by $\phi(x) = (U:x)$, where $(U:x) = \{f \in M; xf \in U\}$. In particular, the characteristic morphism $\phi: M \to \Omega$ of an ideal $I \subset M$ is the unique equivariant map defined by $\phi(id)=I$. Let Sub(X) be the set of all subobjects of X in \mathscr{M} , so that $\Omega \cong$ Sub(M). The logical operations in the locale Sub(X) are defined like in the case X = M (see Section 1) and for every $x \in X$ the equalities

 $(U \cup V:x) = (U:x) \cup (V:x), \quad (U \to V:x) = (U:x) \to (V:x), \text{ etc.}$

hold. In particular, the logical operations of Ω are equivariant and hence the nucleus $\neg \neg = C \rightarrow (-)$ of Ω is an equivariant map. Recall that $I \rightarrow (-)$ is not equivariant for every ideal I (see Lemma 1.1 in [2] for a characterization of this kind of ideals).

We give a example: if we suppose $m \neq n \in N$ and take the ideals $I = \{c_m\}, J = \{c_n\}$, then we have $I \to (J:c_m) = \neg I$ and $((I \to J):c_m) = \emptyset$, but $c_n \in \neg I$; hence $I \to (-)$ is not equivariant.

Any *M*-set *X* has a subset of fixed points $(x \in X \text{ is a fixed point if } xf = x \text{ for every } f \in M)$ denoted $\Gamma(X)$. In particular $C = \Gamma(M)$. We have $\neg \neg U = \Gamma(X) \rightarrow U$, for every *M*-subset $U \subset X$, and $C \subset (\Gamma(X):x)$ for every $x \in X$. It is clear that from the evaluation map $M \times N \rightarrow N$ and the action $X \times M \rightarrow X$ we can obtain the set $\Gamma(X)$ as a coequalizer of two maps of the form $N \times X \times M \rightarrow N \times X$. Then the canonical map $N \times X \rightarrow \Gamma(X)$ corresponds to

$$\mu: X \to \Gamma(X)^N, \quad \mu(x)(n) = xc_n,$$

where $\Gamma(X)^N$ is the set of all maps $N \to \Gamma(X)$ in \mathscr{S} . Given a set S, the set S^N of all maps $N \to S$ in \mathscr{S} , which we shall call *sequences* of S, is an M-set with action the composition of sequences $N \to S$ and endomaps in M. We have $\Gamma(S^N) \cong S$ and $\mu \cong id$ when $X = S^N$. For the trivial M-set S (action given by the projection $S \times M \to S$) the map $\mu: S \to S^N$ is the natural inclusion given by the constant sequences. In \mathscr{S} , maps $g: X \to S^N$ are in one-to-one correspondence with maps $G: N \times X \to S$, and g is equivariant if and only if G factorizes by the coequalizer $\Gamma(X)$, so that we have an adjunction $\Gamma \dashv (-)^N$ with unit the natural transformation μ defined above. The one-to-one correspondence between the set of all maps $h: \Gamma(X) \to S$ and the set of all equivariant maps $H: X \to S^N$ is given by $H(x) = h \circ \mu(x)$, and if x is a fixed point then h(x) is the constant value of H(x). Hence, the topos \mathscr{S} of sets is equivalent to the full subcategory of \mathscr{M} formed by all M-sets X such that μ is an isomorphism in the level X.

It is well known that there exists an geometric morphism $(\Delta, \Gamma): \mathcal{M} \to \mathcal{S}$, where, for every set S, $\Delta(S)$ is the set S with the trivial action given by the projection $S \times \mathcal{M} \to S$. For instance, for each *M*-set X, $\Gamma(X)$ is a trivial *M*-subset of X. Actually, there exists an essential geometric morphism

$$\varDelta \dashv \Gamma \dashv (-)^N : \mathscr{S} \to \mathscr{M}, \quad \Gamma \circ (-)^N \cong \mathrm{id}, \quad \Gamma \circ \varDelta = \mathrm{id}.$$

Let us note that this is another example of UIAO (in this case it is also called essential localization): Γ unifies the opposites Δ and $(-)^N$ which, by composing with Γ , give the idempotent functors $\Delta \circ \Gamma$ and $\Sigma = (-)^N \circ \Gamma : \mathcal{M} \to \mathcal{M}$, respectively. This diagram of functors is an extension of that given by the Galois connections $c \dashv \text{Ext} \dashv \text{Cont}$ in Lemma 1.3, since we have natural inclusion functors $\mathcal{P}(N) \hookrightarrow \mathcal{S}$ and $\Omega \hookrightarrow \mathcal{M}$.

Now we shall see this construction in terms of sheaves. We recall that an equivariant map $j: \Omega \to \Omega$ is the characteristic morphism of the *M*-subset $\mathbf{J} = j^{-1}(M)$, and *j* is a nucleus if and only if \mathbf{J} is a topology in the sense of Grothendieck. An *M*-set *X* is an *I*-sheaf if for every equivariant map $H: I \to X$, there exists a unique equivariant extension $H': M \to X$ of *H*, that is, there exists a unique $x \in X$ such that H(f) = xf for every $f \in I$; and *X* is a **J**-sheaf (*j*-sheaf) if it is an *I*-sheaf for every ideal $I \in \mathbf{J}$. If we only suppose that the element $x \in X$ is unique when it exists then we say that *X* is *I*-separated or **J**-separated (*j*-separated), respectively. The full subcategory $\mathcal{M}_j \hookrightarrow \mathcal{M}$ of all **J**-sheaves is a topos with subobject classifier Ω_j . The inclusion has a left exact

left adjoint functor called the sheafification functor. Limits and exponentials in \mathcal{M}_j are like in \mathcal{M} , and colimits in \mathcal{M}_j are constructed by sheafification.

Now we consider the subtopos $\mathcal{M}_{\neg\neg} \hookrightarrow \mathcal{M}$ of sheaves for the nucleus $\neg\neg: \Omega \to \Omega$ (Proposition 1.4), so that the associated topology is $\mathbf{J}_{\neg\neg} = \{I \in \Omega; C \subset I\}$. The following elementary results are given without proof.

Lemma 3.1. Every M-set X satisfies:

(i) X is a $\mathbf{J}_{\neg\neg}$ -sheaf if and only if it is a C-sheaf.

(ii) X is C-separated if and only if μ is a monomorphism.

(iii) X is C-sheaf if and only if μ is an isomorphism.

Proposition 3.2. The topos $\mathcal{M}_{\neg\neg}$ verifies:

(i) $\Sigma: \mathcal{M} \to \mathcal{M}_{\neg \neg}$ is the sheafification functor.

(ii) The functor $(-)^N$ induces an equivalence of categories $\mathscr{G} \cong \mathscr{M}_{\neg \neg}$.

We shall add two simple comments. The condition *C*-separated for an *M*-set *X* means that $xc_n = yc_n$ for all $n \in N$ implies x = y, and if *X* is a set of sequences, this is the principle of extensionality for sequences. The monoid *M* is clearly a *C*-sheaf, and actually $\mathbf{J}_{\neg\neg\neg}$ is the canonical topology of the topos \mathcal{M} , since if *M* is \mathbf{J} -sheaf then $\mathbf{J}_{\neg\neg\neg} \subset \mathbf{J}$. We prove it: if $I \in \mathbf{J}$ then $(I : c_n) \in \mathbf{J}$ for all $n \in N$, but *M* is $(I : c_n)$ -sheaf so that $(I : c_n) \neq \emptyset$, that is $(I : c_n) = M$ and $c_n \in I$; hence $C \subset I$.

By using Proposition 3.2 we have a new look for the above UIAO. The functor $\Sigma: \mathcal{M} \to \mathcal{M}_{\neg \neg}$ unifies the opposites $\Delta \circ \Gamma: \mathcal{M}_{\neg \neg} \hookrightarrow \mathcal{M}$ and the inclusion functor with the corresponding idempotents $\Delta \circ \Gamma$, $\Sigma: \mathcal{M} \to \mathcal{M}$, respectively. Let us note that $2=\{0,1\}$ is the subobject classifier of \mathscr{S} and we can use $\mathscr{P}(N) \cong 2^N$ as subobject classifier of $\mathcal{M}_{\neg \neg}$ (Propositions 1.4 and 3.2), in this case the characteristic morphism corresponding to an \mathcal{M} -subset $U \subset X$ in $\mathcal{M}_{\neg \neg}$ is $\varphi: X \to \mathscr{P}(N), \varphi(x) = \{n \in N; xc_n \in U\}$. If X is a set of sequences then φ selects the points of each sequence belonging to U.

Let \mathscr{M}' be the full subcategory of \mathscr{M} formed by all *C*-separated *M*-sets, so that we have a chain $\mathscr{M}_{\neg\neg} \hookrightarrow \mathscr{M}' \hookrightarrow \mathscr{M}$ of full subcategories which are reflexive. The reflector functor $(-)': \mathscr{M} \to \mathscr{M}'$ is given by $X' = \mu(X)$ and the reflector $\mathscr{M}' \to \mathscr{M}_{\neg\neg}$ is Γ , with $\Gamma(\mu(X)) \cong \Gamma(X)$. Let us note that the UIAO's considered above can be reformulated taking \mathscr{M}' instead of \mathscr{M} . It is well known that \mathscr{M}' is a quasitopos (Theorem 10.1 in [5], or Theorem 43.6 in [12]) but we do not use this structure in the present paper.

Example 3.3. The case $N = \{1\}$ is trivial since $\mathcal{M} = \mathcal{M}_{\neg \neg} = \mathcal{G}$, but $N = \{1, 2\}$ is an interesting case. By using the representation given by Lawvere [9], \mathcal{M} is the category of all reflexive directed graphs with an involutive operation $x^* = x\tau$ (corresponding to the transposition $\tau \in \mathcal{M}$, $\tau^2 = \text{id}$, see Example 2.4), $\Gamma(X)$ represents the set of all vertices of X and $\Sigma(X) = \Gamma(X) \times \Gamma(X)$, so that $\mu(x) = (a, b)$ means that x is an arrow from the vertex a to the vertex b (then $\mu(x^*) = (b, a)$). A C-separated graph X (object in \mathcal{M}') is an equivalence relation on the set $\Gamma(X)$. Finally, a C-sheaf is the equality relation on $\Gamma(X)$.

4. A topos of *M*-sets for bornologies

We shall consider **B** as an *M*-set with the action given by

$$\beta f = \{ B \subset N; f(B) \in \beta \}.$$

Then the logical operations in **B**, the maps Cont : $\mathbf{B} \to \Omega$ and Bor : $\Omega \to \mathbf{B}$, the nucleus $j = \text{Cont} \circ \text{Bor}$ and the bijection $\Omega_j \cong \mathbf{B}$ (see Section 2) all are equivariant. Since the nucleus j is equivariant, the M-subset $\mathbf{J} = j^{-1}(M)$ of Ω is a (Grothendieck) topology and we can consider the subtopos $\mathscr{B} \hookrightarrow \mathscr{M}$ of \mathbf{J} -sheaves. The subbject classifier of \mathscr{B} is $\Omega_j \cong \mathbf{B}$, so that we can consider \mathbf{B} as an M-set of true values of the topos \mathscr{B} . In this way, given an M-subset $U \subset X$ in \mathscr{B} , we take the characteristic morphism in the form $\varphi: X \to B$,

$$\varphi(x) = \{ B \subset N; \exists f \in M, xf \in U, B \subset \operatorname{Im} f \}.$$

If $U = \Gamma(X)$, then $E(\varphi(x)) = N$ by using the constant maps. We shall call \mathscr{B} the *bornological topos* because there exists the subobject classifier **B** and also because it contains a full reflexive subcategory of bornological spaces as we shall see in the next section. (In [2] we have used a topos, called bounded topos, defined in a similar way by using another monoid of maps.)

Before exploring the relation of the topos \mathscr{B} to bornological spaces, we shall consider the full subcategories $\mathscr{B}_k \hookrightarrow \mathscr{B}' \hookrightarrow \mathscr{B}$ as defined in Section 3, but now from the double negation $k: \Omega_j \to \Omega_j$ in \mathscr{B} , which is the nucleus given by $k(I) = j(\neg \neg I)$, where $\neg \neg$ is the double negation in Ω . We shall denote by \mathbf{J}_k the corresponding topology $k^{-1}(M) \subset \Omega_j$.

Proposition 4.1. (i) $\mathbf{J}_k = \mathbf{J}_{\neg \neg} \cap \Omega_i$. (ii) $\mathscr{B}' = \mathscr{M}' \cap \mathscr{B}$. (iii) $\mathscr{B}_k \cong \mathscr{S}$.

Proof. (i) Given $I \in \Omega_j$ we have $k(I) = j(C \to I) = j(C) \to I$ (with the implication in Ω). Hence $I \in \mathbf{J}_k$ if and only if $j(C) \subset I$, that is $C \subset I$ since $I \in \Omega_j$.

(ii) Like in Lemma 3.1, it is clear that an object X in \mathscr{B} is \mathbf{J}_k -separated if and only if X is j(C)-separated, but $C \subset j(C)$ so that X is j(C)-separated if and only if X is C-separated as an object in \mathscr{M} .

(iii) Like in (ii), $\mathscr{B}_k = \mathscr{M}_{\neg \neg} \cap \mathscr{B} = \mathscr{M}_{\neg \neg}$, and then we use Proposition 3.2. \Box

By the isomorphism $\Omega_j \cong \mathbf{B}$ (Theorem 2.2) the topology $\mathbf{J}_k \subset \Omega_j$ is transformed in the topology $\{\beta \in \mathbf{B}; E(\beta) = N\} \subset \mathbf{B}$ corresponding to the double negation in \mathbf{B} . Moreover, $j(C) = \{f \in M; \text{Im } f \text{ finite}\}$ is the ideal of Ω_j associated to the bornology $\mathscr{K}(N)$.

Topos theory says that there exists a sheafification functor, left exact and left adjoint to the inclusion $\mathscr{B} \hookrightarrow \mathscr{M}$, which we shall denote by $\mathbf{b} : \mathscr{M} \to \mathscr{B}$. In the next proposition we give an explicit description of \mathbf{b} over the subcategory \mathscr{M}' .

Proposition 4.2. If X is C-separated then

 $\mathbf{b}(X) = \{s : N \to \Gamma(X); s(N) \in \beta\} \subset \Sigma(X),$

where β is the bornology on $\Gamma(X)$ generated by the family of discrete bornologies $\{\mathscr{P}(\operatorname{Im} \mu(x)); x \in X\}.$

Proof. By Proposition 2.3(ii) the topology **J** is subcanonical, hence $\mathcal{M}_{\neg\neg} \hookrightarrow \mathcal{B}$ and each *M*-set of the form S^N is a **J**-sheaf, in particular $\Sigma(X)$ for all *M*-set *X*. If *X* is *C* separated then $\mu: X \to \Sigma(X)$ is mono and hence $\mathbf{b}(X)$ is the closure of $\mu(X)$ in $\Sigma(X)$, that is, a sequence $s: N \to \Gamma(X)$ belongs to $\mathbf{b}(X)$ if and only if $(\mu(X):s) \in \mathbf{J}$, in other words, there exist maps $f_i \in M$ and elements $x_i \in X$, $1 \leq i \leq n$, such that $N = \operatorname{Im} f_1 \cup \cdots \cup \operatorname{Im} f_n$ and $s \circ f_i = \mu(x_i)$ for every index. Now it is clear that $s \in \mathbf{b}(X)$ implies $s(N) \in \beta$, where β is the bornology in the statement (it is clear that for every $x \in \Gamma(X)$ the condition $\{x\} \in \beta$ holds). Conversely, if $s(N) \in \beta$ then we have $s(N) \cap \operatorname{Im} \mu(x_1) \cup \cdots \cup \operatorname{Im} \mu(x_n)$ for some $x_i \in X$, $1 \leq i \leq n$, and for each index $s(N) \cap$ $\operatorname{Im} \mu(x_i) \neq \emptyset$, so that we can find maps $f_i \in M$ such that $\operatorname{Im} (s \circ f_i) \subset \operatorname{Im} \mu(x_i)$; but then there exists $y_i \in X$ such that $s \circ f_i = \mu(y_i)$, $1 \leq i \leq n$. In fact, if we define a map $g \in M$ by choosing g(n) in the non-empty fibre $\mu(x_i)^{-1}((s \circ f_i)(n))$ then it is easy to check that $(s \circ f_i) = \mu(x_ig)$. Hence we conclude that $s \in \mathbf{b}(X)$. \Box

If we take in Proposition 4.2 a trivial *M*-set *S* we obtain the finite bornology $\mathscr{K}(S)$, so that in this case $\mathbf{b}(S) = \{s : N \to \Gamma(S); s(N) \text{ finite}\}.$

Moreover, we obtain $\mathcal{P}(S)$ from the *M*-set S^N of sequences. Let us note that there exists a UIAO (or an essential localization)

$$\Lambda \dashv \Gamma \dashv (-)^N \colon \mathscr{S} \to \mathscr{B}, \quad \Gamma \circ (-)^N = \mathrm{id} = \Gamma \circ \Lambda$$

where $\Lambda = \mathbf{b} \circ \Delta$. If we take **B** in \mathscr{B} then we have $\Lambda(\Gamma(\mathbf{B})) = \Gamma(\mathbf{B})^N \cong \mathscr{P}(N)$ with the action $Af = f^{-1}(A)$. Let us note that $\Gamma(\mathbf{B}) \cong \Gamma(\mathscr{P}(N)) \cong 2$. The equivariant maps \mathscr{P} , E are, respectively, the unit and the counit of the adjunction $\Lambda \dashv \Gamma$. Since the subcategory $\mathscr{M}' \hookrightarrow \mathscr{M}$ is reflexive (Section 3) the subcategory $\mathscr{B}' \hookrightarrow \mathscr{M}$ is reflexive too.

5. Kolmogorov bornological spaces and M-sets

We have a chain of categories $\mathscr{S} \hookrightarrow \mathscr{B}' \hookrightarrow \mathscr{B} \hookrightarrow \mathscr{M}$, where \mathscr{B}' is a quasitopos (like \mathscr{M}' , see Section 3) and all others are toposes. In this section we shall identify \mathscr{B}' with a category of bornological spaces.

Let BOR be the category of all bornological spaces (S,β) and bounded maps between them. (Recall that, given bornological spaces (S,β) and (S',β') , a map $f: S \to S'$ is bounded if for every $B \in \beta$ we have $f(B) \in \beta'$.) We have a forgetful functor $E: BOR \to$ \mathscr{S} with left adjoint \mathscr{K} (finite bornology) and right adjoint \mathscr{P} (discrete bornology) such that the equalities $E \circ \mathscr{K} = \mathrm{id} = E \circ \mathscr{P}$ hold, like in Lemma 1.1. Actually, there are natural inclusions $\mathscr{P}(N) \hookrightarrow \mathscr{S}$ and $\mathbf{B} \hookrightarrow BOR$, the last one sending every bornology $\beta \in \mathbf{B}$ to the bornological space $(E(\beta), \beta)$. Our aim in this section is to extend the diagram of locales $\mathscr{P}(N) \to \mathbf{B} \to \Omega$ in Section 2 to a diagram of categories $\mathscr{S} \to BOR \to \mathscr{M}$, and then to induce an equivalence between categories from the second functor. We define the following functor by associating to each bornological space the M-set of its bounded sequences,

$$\Sigma_b$$
: BOR $\to \mathcal{M}, \quad \Sigma_b(S,\beta) = \{s: N \to S; s(N) \in \beta\} \subset S^N,$

with the obvious action $\Sigma(h)(s) = h \circ s$ on the bounded maps. If we consider N with the discrete bornology, then $\Sigma_b = BOR(N, -)$. It is clear that for each bornology $\beta \in \mathbf{B}$ we have $\Sigma_b(E(\beta), \beta) = Cont(\beta)$, so that given an ideal I we have in particular $\Sigma_b(Ext(I), Bor(I)) = j(I)$.

Lemma 5.1. Σ_b is faithful and factorizes through \mathcal{M}' .

Proof. Given a bounded map $h: S \to S'$ we can recover h from $\Sigma_b(h)$ since the constant sequences c_x are bounded and $\Sigma_b(h)(c_x) = h \circ c_x = c_h(x)$ for every $x \in S$; hence Σ_b is faithful. Moreover, we have seen (Proposition 3.2) that S^N is a *C*-sheaf, hence $\Sigma_b(S,\beta) \subset S^N$ is *C*-separated (note that the inclusion is the mono μ in this case). \Box

By Lemma 5.1 we can reduce to \mathcal{M}' the codomain of Σ_b and the new codomain suffices to contain the images of both functors Δ and $(-)^N$, so that it is a good extension of \mathscr{S} yet.

Now we analyse the domain. We say that (S,β) is a *Kolmogorov bornological* (or *K-bornological*) space [3] if every subset $B \subset S$ such that $s(N) \in \beta$ for all $s: N \to B$ satisfies $B \in \beta$. Let K-BOR be the full subcategory of BOR given by all K-bornological spaces. There exists the universal K-bornological space over (S,β) , which is the same set S but with the bornology β^- , $\beta \subset \beta^-$, given by

$$\beta^- = \{B \subset S; s(N) \in \beta \text{ for all } s: N \to B\}.$$

Let us note that a K-bornological space is determined by its bounded sequences, and the bornological spaces (S,β) and (S,β^-) have the same bounded sequences. All spaces $(E(\beta),\beta), \beta \in \mathbf{B}$, are K-bornological and the spaces obtained by using \mathscr{K} or \mathscr{P} also; hence K-BOR is a good extension of **B** for the domain of the new functor of Σ_b .

From now on, we shall consider the commutative diagram in the form

Given an *M*-set *X*, by taking the set $\Gamma(X)$ with the K-bornology generated by the bornology defined in Proposition 4.1, we produce from Γ the functor $\Gamma_b: \mathscr{M}' \to$ K-BOR. In fact, for every equivariant map $H: X \to Y$, the restriction $H: \Gamma_b(X) \to$ $\Gamma_b(Y)$ is bounded because, given $x \in X$ and the generating bounded sequence $\mu(x):$ $N \to \Gamma_b(X)$, the map $H \circ \mu(x): N \to \Gamma_b(Y)$ is bounded since $H \circ \mu(x) = \mu(H(x))$ by the naturality of μ . In particular, $\Gamma_b(M)$ is (isomorphic to) the set N with the discrete bornology, and every point $x: M \to X$ is transformed by Γ_b in the sequence $\mu(x) = \{xc_n\}: N \to \Gamma(X)$ of all fixed points in its orbit. Now, we give the second theorem of this paper.

Theorem 5.2. There exists and adjunction $\Gamma_b \dashv \Sigma_b : K\text{-BOR} \to \mathcal{M}'$ which induces an equivalence of categories $K\text{-BOR} \cong \mathcal{B}'$.

Proof. If we consider the one-to-one correspondence defined by the adjunction $\Gamma \dashv (-)^N$ (see Section 3) then it is easy to verify that $h: \Gamma_b(X) \to S$ is bounded if and only if $H: X \to S^N$, $H(x) = h \circ \mu(x)$, satisfies $H(X) \subset \Sigma_b(S)$. Hence, we have the adjunction $\Gamma_b \dashv \Sigma_b$ and we shall describe the induced equivalence.

For the counit we have $\Gamma_b \circ \Sigma_b \cong$ id. In fact, given a K-bornological space (S, β) , since $\Gamma_b(\Sigma_b(S)) \cong S$ as sets, we observe that the new K-bornology β' on S is generated by the inclusion $\mu: \Sigma_b(S) \hookrightarrow S^N$, that is, by the sets s(N) where s is a bounded sequence for β . We must prove that $\beta = \beta'$. Every $B \subset S$ such that $B \subset s_1(N) \cup \cdots \cup$ $s_r(N)$ with $s_i \in \Sigma_b(S)$, $1 \le i \le r$, belongs to β , so that $\beta' \subset \beta$ since β is K-bornology. Conversely, given $B \in \beta$, we must prove that $B \in \beta'$, which is a consequence, because β' is K-bornology, of the condition $s(N) \in \beta'$ for every $s: N \to B$; but $s \in \Sigma_b(S)$ since $B \in \beta$, so that the condition follows.

For the unit, by Proposition 4.2, we must prove that given a *C*-separated *M*-set *X*, the equivariant map $\mu_b: X \to \Sigma_b(\Gamma_b(X))$ (μ with restricted codomain) is an isomorphism if and only if *X* is a **J**-sheaf. But by Proposition 4.2 and the property $\Sigma_b(S, \beta) = \Sigma_b(S, \beta^-)$ we have $\mathbf{b}(X) = \Sigma_b(\Gamma_b(X))$, so that μ_b is an iso if and only if $X \cong \mathbf{b}(X)$ is a **J**-sheaf.

The equivalence $\mathscr{G} \cong \mathscr{M}_{\neg \neg} = \mathscr{B}_k$ (Propositions 3.2 and 4.1) is the restriction to the discrete bornologies of the equivalence in Theorem 5.2. Note that if N is finite all the Kolmogorov bornologies are discrete. As a corollary of Theorem 5.2 we conclude that the category K-BOR is a quasitopos. Actually, we can obtain also this result from the fact that BOR is a quasitopos [12, p. 99]. Given two object S, T in K-BOR, we shall describe the exponential T^S in terms of exponential in \mathscr{B}' . If $X = \Sigma_b(S)$ and $Y = \Sigma_b(T)$, then $\Gamma_b(Y^X) \cong \mathscr{B}'(X,Y) \cong \text{K-BOR}(S,T)$ with the K-bornology determined by the bounded sequences $\mu(\xi): N \to \Gamma_b(Y^X)$, $\xi \in Y^X$. Recall that $\xi: M \times X \to Y$ is an equivariant map and $\mu(\xi)(n) = \xi c_n$, $n \in N$, is the equivariant map given by $(\xi c_n)(f,s) = \xi(c_{f(n)},s)$, $f \in M$, $s \in X$. By the above bijection, $\mu(\xi)$ corresponds to $w: N \to \text{K-BOR}(S,T)$, where for every $n \in N$ w(n) define an equivariant map $\omega_n \in \Gamma_b(Y^X)$ by $\omega_n(f,s)(m) = w(f(n))(s(m))$, but this means that the map $w^{\wedge}: N \times S \to T$, $w^{\wedge}(n,x) = w(n)(x)$ is bounded with N discrete. Hence, the bornology in T^S is in fact the equibounded bornology.

Finally, we conclude that if *N* is the set \mathbb{N} of all natural numbers then the bornological topos \mathscr{B} is a convenient topos to study the boundedness properties of spaces in functional analysis. A natural number object in \mathscr{B} is $\mathbb{N}_b = \mathbf{b}(\mathbb{N}) = \{s : \mathbb{N} \to \Gamma(X); s(\mathbb{N}) \text{ finite}\}$, and then the objects of integers and rationals are $\mathbb{Z}_b = \mathbf{b}(\mathbb{Z})$ and $\mathbb{Q}_b = \mathbf{b}(\mathbb{Q})$, respectively; but $\mathbf{b}(\mathbb{R})$ is not the object of Dedekind reals. It can be proved that this object is $\mathbb{R}_b = \Sigma_b(\mathbb{R})$ when we consider the set \mathbb{R} of all real numbers with the usual bornology, that is, \mathbb{R}_b is the classical space ℓ^{∞} of real bounded sequences. Hence, the category of

K-bornological real vector spaces is equivalent to the category MOD_b of \mathbb{R}_b -modules in \mathscr{B}' .

Acknowledgements

The topos \mathscr{B} constructed from \mathbb{N} was described by Lawvere [7] in an equivalent way: finite products preserving presheaves on the category of all countable sets. We thank F.W. Lawvere for his inspiration and encouragement in spite of our temporary desertion of the subject.

References

- F. Borceux, Handbook of Categorical Algebra (3 Vols.). Cambridge University Press, Cambridge, 1994.
- [2] L. Español, L. Lambán, A tensor-hom adjunction in a topos related to vector topologies and bornologies, J. Pure Appl. Algebra 154 (2000) 143–158.
- [3] H. Hogbe-Nlend, Bornologies and Functional Analysis, North-Holland, Amsterdam, 1977.
- [4] P.T. Johnstone, Topos Theory, Academic Press, London, 1977.
- [5] P.T. Johnstone, On a topological topos, Proc. London Math. Soc. 3 (38) (1979) 237-271.
- [6] L. Lambán, Construcciones en topos que extienden relaciones entre categorías de espacios topológicos y bornológicos, Universidad de Zaragoza, Publ. Sem. Mat. García de Galdeano, Ser. II 2 (27), Zaragoza, (1990).
- [7] F.W. Lawvere, Taking categories seriously. Talks given at Bogotá, Seminario-Taller sobre la Teoría de las Categorías y sus aplicaciones, August 1983 (unpublished part).
- [8] F.W. Lawvere, Taking categories seriously, Rev. Colombiana Mat. XX (1986) 147-178.
- [9] F.W. Lawvere, Qualitative distinctions between some toposes of generalized graphs, Proceedings of AMS Boulder 1987 Symposium on Categories in Computer Science and Logic, Contemp. Math. 92 (1989) 261–299.
- [10] F.W. Lawvere, Unity and identity of opposites in calculus and physics, Appl. Categorical Structures 4 (1996) 167–174.
- [11] S. Mac Lane, I. Moerdijk, Sheaves in Geometry and Logic, A First Introduction to Topos Theory, Springer, New York, 1992.
- [12] O. Wyler, Lecture Notes on Topoi and Quasitopoi, World Scientific, Singapore, 1991.