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Abstract

Let M be the monoid of all endomaps of a non-empty set N , � the locale of all ideals of
M , and let M be the topos of all M -sets. The core of this paper is formed by a locale B,
a subtopos B ,→ M and two theorems, where B is the locale of all bornologies de3ned on
subsets of N and B is the topos of j-sheaves for a topology j :�→ �. The 3rst theorem shows
a morphism of locales B → � with nucleus j which induces an isomorphism of locales between
B and the sublocale �j ,→ �. The second theorem, which generalizes the 3rst one, gives an
equivalence between the category of Kolmogorov bornological spaces and bounded maps, and the
full subcategory B′ ,→ B formed by all j-sheaves which are separated for the double negation
topology of B.
c© 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

We consider the set B of all bornologies into a non-empty set N and the topos
M of all M -sets and equivariant maps between them, where M is the monoid of all
endomaps N → N . In abstract functional analysis one considers bornologies related
to sequences s :N → X , where N is the set of natural numbers, but the constructions
in this paper work for every non-empty set N and they have a very particular sense
when N is 3nite. The core of this paper is formed by a theorem about bornologies into
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N in the context of locales and a second theorem about bornological spaces, which
generalizes the 3rst one in a context of big categories.
This paper subsumes some results in [6] which are diHerent of those improved in [2].

The basic ideas for the relation between bornologies and toposes were communicated
by Lawvere in several talks [7] during the Bogot*a 1983 workshop on category theory,
but they were not included in the later paper [8]. For locales and toposes we refer to
[1,4,11] and [3] for bornologies.
Now we give a more detailed description of the contents of this work. In Section 1

we deal with the locale B, the locale � of all ideals of M (the subobject classi3er of
M) and the boolean locale P(N ) of all subsets of N . We de3ne two open morphisms
of locales P(N ) → B and P(N ) → � with similar properties. Then we complete in
Section 2 a commutative triangle with a morphism of locales B → � which gives us,
as usual, a nucleus j :�→ � and a sublocale �j = j(�) ,→ �. Our 3rst theorem says
that there exists an isomorphism of locales B ∼= �j.
Section 3 is devoted to the topos M, in particular to study the double negation

topology J@@ and the associated subtopos M@@. We calculate J@@={I ∈�;C ⊂ I}
and M@@ ∼=S, where S is the topos of sets. We also consider the full subcategory
M′ of all @@-separated M -sets. In Section 4 we note that the nucleus j above is
equivariant, so that it de3nes a Grothendieck topology J = j−1(M) and the subtopos
B ,→ M of J-sheaves. Since �j is the subobject classi3er of B, the locale B, with a
natural structure of M -set, is also an object of true values in the topos B. We describe
the shea33cation functor M → B over the subcategory B∩M′. Then, we consider the
double negation topology k :�j → �j in the topos B and we prove that the subcategory
B′ of all j-sheaves which are k-separated is B ∩M′ and Bk

∼=S.
Finally, we obtain in Section 5 a commutative triangle formed with the functors S ,→

K-BOR, S ,→ M′, where K-BOR is the category of all Kolmogorov bornological
spaces (and bounded maps between them), and the functor K-BOR ,→ M′ de3ned by
means of bounded sequences. This diagram is an extension of the diagram of locales in
Section 2. Then we give the second theorem: there exists an equivalence between the
categories K-BOR and B′. Let us note that Johnstone [5, Proposition 3.6] has proved
a similar result involving the category of all subsequential spaces and continuous maps
between them, and the category T′ corresponding to the topos T of all T -sets, where
T is the monoid of all continuous endomaps of N+ (the one point compacti3cation of
the discrete space of natural numbers).

1. Locales of bornologies and locales of ideals

Let N be a non-empty set. A bornology into N is a non-empty family of subsets of
N (called bounded subsets) which is hereditary under inclusion and stable under 3nite
union. Let B denote the set of all bornologies into N , which is ordered in a natural
way. The intersection of bornologies into N is a bornology into N , so that B is a
locale with maximum P(N ), the set of all subsets of N , and minimum {∅}. Let us
note that the locale B also depends on N , but we omit this fact in the notation. The
supremum of a family {i}i in B is the bornology  whose bounded sets are all the
subsets of 3nite unions of bounded sets of the diHerent i’s. If  is a bornology into
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N , we denote by E() the union of all the subsets of N belonging to . If A= E()
we say that  is a bornology on A or a bornology with extent A; we also say that
(A; ) is a bornological space.
Given a locale L, we denote by @ x the negation of an element x∈L and by L@@

the image of the double negation nucleus @@ :L→ L (in general, Lj will denote the
image of a nucleus j :L → L). It is easy to verify that the negation of the locale B
is given by @ =P(N − E()), hence @@ =P(E()). Let us note that there are
monotone maps

E :B → P(N ) and K; P :P(N )→ B;

where K(A) is the bornology that consists of all 3nite subsets of A and P(A) is
the discrete bornology on A (all subsets of A), so that the double negation map of
B is @@ = P ◦ E :B → B. We shall use the open sublocale (K(N )] of B formed
by all bornologies contained in K(N ), with the corresponding nucleus, j =K(N )→
(−) :B → B, given by the implication in the locale B. The following properties are
easy to prove.

Lemma 1.1. (i) There exist Galois connections K � E � P.
(ii) The equalities E ◦K= id = E ◦P hold.
(iii) K(A ∩ E()) =K(A) ∩  (Frobenius formula).

Proposition 1.2. The locale B satis7es:
(i) The double negation nucleus is K(N )→ (−).
(ii) There exist isomorphisms of locales B@@ ∼= P(N ) ∼= (K(N )].

Proof. (i) By Lemma 1.1; we know that the double negation map of B is the nucleus
P ◦ E associated to the morphism of locales (E;P) :P(N ) → B. We shall prove
that P(E()) = j() for each bornology ; where j =K(N ) → (−). The inclusion
P(E()) ⊂ j() is equivalent to the counit K(E()) ⊂  because the left-hand side
is equal to K(N ) ∩ P(E()) by the Frobenius equality. On the other hand; by two
adjunctions; the inclusion j() ⊂ P(E()) is equivalent to K(E(j())) ⊂ ; where;
by the Frobenius equality; the left-hand side is equal to K(N )∩ (K(N )→ ); that is
K(N ) ∩ .
(ii) By Lemma 1.1 the locale P(N ) is isomorphic to B@@. In fact we have B@@=

ImP, which is the set of all discrete bornologies into N . Moreover, each bornology
 ⊂ K(N ) is of the form  =K(E()) (Frobenius equality) and the locale (K(N )]
is isomorphic to P(N ) through K and E.

Our next step is to consider (right) ideals in the monoid M of all endomaps of
N (with composition), that is, subsets I of M such that f ◦ g∈ I for any f∈ I and
g∈M . Let � be the set of all ideals I of M . Given an ideal I and f∈M the set
(I :f) = {g∈M ;f ◦ g∈ I} is also an ideal. It is well known that � is a locale with
the usual union, intersection, and

I → J = {f∈M ; (I :f) ⊂ (J :f)}; @I = I → ∅= {f∈M ;∀g∈M;f ◦ g ∈ I};
@@I = {f∈M ;∀g∈M;∃h∈M;f ◦ g ◦ h∈ I}:
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Let C be the set of all constant maps of M , so that C ∼= N . The subset C is an
ideal and each subset of C is also an ideal, that is, P(C) = (C] is the open sublocale
of � de3ned by C. Since C is non-empty we have @C = ∅. It is easy to see that
C ∩@@I = C ∩ I , so that @@I ⊂ C → I ; conversely, C → I ⊂@@I is equivalent
to @I ∩ (C → I) = ∅, but this is clear in a Heyting algebra since the left-hand side
is contained in @C. Hence, we have @@I = C → I , and @@I =M if and only if
C ⊂ I .
By means of the formulas

Ext(I) =
⋃

{Im (f);f ∈ I}; Cont(A) = {f ∈ M ; Imf ⊂ A}; c(A) = C ∩ Cont(A);

we de3ne three monotone maps Ext :� → P(N ) and c, Cont :P(N ) → �, and we
say that Ext(I) is the extent of the ideal I and Cont(A) is the content of the subset A.
We shall see later the reason why we call “extent” both E() and Ext(I). If cn is the
constant map valued onto n∈N , then it is clear that Ext(I) = {n∈N ; cn ∈ I} ∼= C ∩ I
and c(A) = {cn; n∈A} ∼= A. It is useful to note that cn ∈ I if f∈ I and n∈ Im (f).
We omit the proof of the next lemma because it is straightforward. Let us note that
C = c(N ), so that this lemma is similar to Lemma 1.1.

Lemma 1.3. (i) There exist Galois connections c � Ext � Cont.
(ii) The equalities Ext ◦ c = id = Ext ◦ Cont hold.
(iii) c(A ∩ Ext(I)) = c(A) ∩ I (Frobenius formula).

Proposition 1.4. The locale � satis7es:
(i) The double negation nucleus is Cont ◦ Ext = C → (−).
(ii) There exist isomorphisms of locales �@@ ∼= P(N ) ∼= (C].

Proof. We know that @@ = C → (−). By Lemma 1.3 (Ext;Cont) :P(N ) → �
is a morphism of locales with nucleus Cont ◦ Ext. Since Lemma 1.3 is similar to
Lemma 1.1; the proof of this proposition is similar to that given in Pro-
position 1.2.

We have found two isomorphic copies of the boolean locale P(N ) into the lo-
cales B and �. These diagrams are examples of “unity and identity of adjoint op-
posites” (UIAO) using the terminology of Lawvere [10]. For instance, the map E
uni7es the opposites K and P, with the idempotent maps K ◦ E and @@, re-
spectively. In these cases, the Frobenius formula gives an isomorphism between the
opposites.

Example 1.5. If N is 3nite then K = P and B = {P(A);A ⊂ N} ∼= P(N ). Hence;
in this case we only consider the isomorphism on the right-hand side in the above
formula. When N = {1} we have M = {id}; P(N ) = {∅; N} ∼= {∅; M} = �. When
N = {1; 2} then P(N ) = {∅; {1}; {2}; N}; M = {id; �; c1; c2} with �2 = id; C = {c1; c2}
and �={∅; C1; C2; C;M} where Ci={ci}; i=1; 2; now we can calculate J@@={C;M}
and �@@ = {∅; C1; C2; M}.
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2. The isomorphism of locales

Our aim in this section is to compare both the locales B and � by means of a
morphism of locales which induces a nucleus j of � such that B ∼= �j. This morphism
of locales and the two morphisms studied in the last section complete a commutative
diagram.

First, we extend to bornologies the notion of content given for subsets. Let  be a
bornology into N . We shall say that Cont()= {f∈M ; Imf∈ } is the content of .
Since the sets Cont(A) and Cont(P(A)) are equals, this terminology is coherent and
we have a monotone map Cont :B → � extending the content P(N )→ � through P.
On the other hand, to any f∈M and I ∈� we associate the bornology

Bor(I) = sup{Bor(f);f∈ I} where Bor(f) =P(Imf);

where the sup is taken in the locale B, so that bounded sets in Bor(I) are subsets
of 3nite unions of some images Imf, with f∈ I . Let us note that the sets E() and
Ext(I) are equal if =Bor(I). The map Bor :�→ B is monotone and also is monotone
the composition j=Cont ◦Bor :�→ � (in fact, we shall see that j is a nucleus). For
the forthcoming 3rst theorem, we need some particular non-constructive properties of
our monoid M that we state without proof.

Lemma 2.1. The following properties of the monoid M hold:
(i) For every non-empty A ⊂ N; there exists f∈M such that A= Imf.
(ii) Given f; g∈M; if Imf ⊂ Im g there exists h∈M such that f = g ◦ h.
(iii) Given f; g∈M and I ∈�; if Imf ⊂ Im g and g∈ I then f∈ I .

Theorem 2.2. There exists an isomorphism of locales B ∼= �j induced by the nucleus
j = Cont ◦ Bor :�→ �.

Proof. We shall prove that

Bor � Cont; Bor(I ∩ J ) = Bor(I) ∩ Bor(J ) and Bor ◦ Cont = id:

Hence the pair (Bor;Cont) is a regular monomorphism of locales and the theorem
follows from the Proposition 1.5.4 in [1].
It is easy to verify the adjunction and Bor(I ∩ J ) ⊂ Bor(I) ∩ Bor(J ). Now, if we

suppose that B is a bounded subset in Bor(I) ∩ Bor(J ) then there exist f1; : : : ; fm ∈ I



118 L. Español, L. Lamb�an / Journal of Pure and Applied Algebra 176 (2002) 113–125

and g1; : : : ; gn ∈ J such that
B ⊂ Imf1 ∪ · · · ∪ Imfm and B ⊂ Im g1 ∪ · · · ∪ Im gn;

so that B ⊂ ⋃
Bij, where Bij = Imfi ∩ Im gj. For the moment we prove that if A =

Imf ∩ Im g, f∈ I , g∈ J , then A ⊂ Bor(I ∩ J ); in fact, by Lemma 2.1(i) we have
A = Im h with h∈M , but then Im h ⊂ Imf so that h∈ I by Lemma 2.1(iii), and the
same argument shows that h∈ J ; hence h∈ I ∩ J and this means that A is a bounded
in Bor(I ∩ J ). In this way, we have proved that Bij ∈Bor(I ∩ J ) for all Bij and this
implies that B∈Bor(I ∩ J ).
Finally, the counit of the adjunction means that Bor(Cont()) ⊂ ; conversely, if B

is a non-empty bounded set in , then B= Imf by Lemma 2.1(i) and this means that
f∈Cont(), that is B∈Bor(Cont()).

We complete this section by giving an explicit description of the M -subsets �j
and J = j−1(M) of �. The proof of the next proposition uses Lemma 2.1 and it is
straightforward.

Proposition 2.3. For each ideal I ∈�; the following characterizations hold:
(i) I ∈�j if and only if Bor(I) = {B ⊂ N ;∃f∈ I; B ⊂ Imf}.
(ii) I ∈ J if and only if Bor(I) =P(N ).

The condition Bor(I) = P(N ) means that N ∈Bor(I), that is, N = ⋃
16i6m Imfi,

where each fj belongs to I . Let us note that every ideal of the form Cont() belongs
to �j, and that Proposition 2.3(ii) implies C ⊂ I (N =Ext(I)). Moreover, if N is 3nite
then j =@@.

3. The double negation in the topos of M -sets

A set X with an action of a monoid M is called an M -set. An action of M on X is a
map X×M → X , usually denoted simply by xf, such that x(id)=x and (xf)g=x(f◦g)
for every x∈X , f; g∈M . LetM be the topos of M -sets and equivariant maps � :X →
Y , that is, maps preserving the actions: �(xf) = (�(x))f, for every x∈X and f∈M .
The subobject classi3er of M is �, which is an M -set with the action de3ned by
(I :f) = {g∈M ;f ◦ g∈ I}, f∈M . For each M -subset U ⊂ X , the characteristic
morphism ’ :X → � is given by ’(x) = (U : x), where (U : x) = {f∈M ; xf∈U}. In
particular, the characteristic morphism ’ :M → � of an ideal I ⊂ M is the unique
equivariant map de3ned by ’(id)= I . Let Sub(X ) be the set of all subobjects of X in
M, so that � ∼= Sub(M). The logical operations in the locale Sub(X ) are de3ned like
in the case X =M (see Section 1) and for every x∈X the equalities

(U ∪ V : x) = (U : x) ∪ (V : x); (U → V : x) = (U : x)→ (V : x); etc:

hold. In particular, the logical operations of � are equivariant and hence the nucleus
@@ = C → (−) of � is an equivariant map. Recall that I → (−) is not equivariant
for every ideal I (see Lemma 1.1 in [2] for a characterization of this kind of ideals).
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We give a example: if we suppose m = n∈N and take the ideals I = {cm}, J = {cn},
then we have I → (J : cm) =@I and ((I → J ) : cm) = ∅, but cn ∈@I ; hence I → (−)
is not equivariant.
Any M -set X has a subset of 3xed points (x∈X is a 3xed point if xf= x for every

f∈M) denoted #(X ). In particular C = #(M). We have @@U = #(X ) → U , for
every M -subset U ⊂ X , and C ⊂ (#(X ) : x) for every x∈X . It is clear that from the
evaluation map M × N → N and the action X ×M → X we can obtain the set #(X )
as a coequalizer of two maps of the form N × X ×M → N × X . Then the canonical
map N × X → #(X ) corresponds to

$ :X → #(X )N ; $(x)(n) = xcn;

where #(X )N is the set of all maps N → #(X ) in S. Given a set S, the set SN of all
maps N → S in S, which we shall call sequences of S, is an M -set with action the
composition of sequences N → S and endomaps in M . We have #(SN ) ∼= S and $ ∼= id
when X = SN . For the trivial M -set S (action given by the projection S × M → S)
the map $ : S → SN is the natural inclusion given by the constant sequences. In S,
maps g :X → SN are in one-to-one correspondence with maps G :N × X → S, and g
is equivariant if and only if G factorizes by the coequalizer #(X ), so that we have
an adjunction # � (−)N with unit the natural transformation $ de3ned above. The
one-to-one correspondence between the set of all maps h :#(X )→ S and the set of all
equivariant maps H :X → SN is given by H (x) = h ◦ $(x), and if x is a 3xed point
then h(x) is the constant value of H (x). Hence, the topos S of sets is equivalent to
the full subcategory of M formed by all M -sets X such that $ is an isomorphism in
the level X .
It is well known that there exists an geometric morphism ((; #) :M → S, where, for

every set S, ((S) is the set S with the trivial action given by the projection S×M → S.
For instance, for each M -set X , #(X ) is a trivial M -subset of X . Actually, there exists
an essential geometric morphism

( � # � (−)N :S → M; # ◦ (−)N ∼= id; # ◦ (= id:
Let us note that this is another example of UIAO (in this case it is also called essential
localization): # uni3es the opposites ( and (−)N which, by composing with #, give
the idempotent functors ( ◦# and )= (−)N ◦# :M → M, respectively. This diagram
of functors is an extension of that given by the Galois connections c � Ext � Cont in
Lemma 1.3, since we have natural inclusion functors P(N ) ,→ S and � ,→ M.
Now we shall see this construction in terms of sheaves. We recall that an equivariant

map j:�→ � is the characteristic morphism of the M -subset J= j−1(M), and j is a
nucleus if and only if J is a topology in the sense of Grothendieck. An M -set X is
an I -sheaf if for every equivariant map H : I → X , there exists a unique equivariant
extension H ′ :M → X of H , that is, there exists a unique x∈X such that H (f) = xf
for every f∈ I ; and X is a J-sheaf ( j-sheaf) if it is an I -sheaf for every ideal I ∈ J. If
we only suppose that the element x∈X is unique when it exists then we say that X is
I -separated or J-separated ( j-separated), respectively. The full subcategory Mj ,→ M
of all J-sheaves is a topos with subobject classi3er �j. The inclusion has a left exact
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left adjoint functor called the shea33cation functor. Limits and exponentials in Mj are
like in M, and colimits in Mj are constructed by shea33cation.
Now we consider the subtopos M@@ ,→ M of sheaves for the nucleus @@ :�→

� (Proposition 1.4), so that the associated topology is J@@ = {I ∈�;C ⊂ I}. The
following elementary results are given without proof.

Lemma 3.1. Every M -set X satis7es:
(i) X is a J@@-sheaf if and only if it is a C-sheaf.
(ii) X is C-separated if and only if $ is a monomorphism.
(iii) X is C-sheaf if and only if $ is an isomorphism.

Proposition 3.2. The topos M@@ veri7es:
(i) ) :M → M@@ is the shea77cation functor.
(ii) The functor (−)N induces an equivalence of categories S ∼=M@@.

We shall add two simple comments. The condition C-separated for an M -set X
means that xcn=ycn for all n∈N implies x=y, and if X is a set of sequences, this is
the principle of extensionality for sequences. The monoid M is clearly a C-sheaf, and
actually J@@ is the canonical topology of the topos M, since if M is J-sheaf then
J@@ ⊂ J. We prove it: if I ∈ J then (I : cn)∈ J for all n∈N , but M is (I : cn)-sheaf
so that (I : cn) = ∅, that is (I : cn) =M and cn ∈ I ; hence C ⊂ I .
By using Proposition 3.2 we have a new look for the above UIAO. The functor

) :M → M@@ uni3es the opposites ( ◦ # :M@@ ,→ M and the inclusion functor
with the corresponding idempotents ( ◦ #, ) :M → M, respectively. Let us note that
2={0; 1} is the subobject classi3er of S and we can use P(N ) ∼= 2N as subobject clas-
si3er of M@@ (Propositions 1.4 and 3.2), in this case the characteristic morphism cor-
responding to an M -subset U ⊂ X in M@@ is ’ :X → P(N ), ’(x)={n∈N ; xcn ∈U}.
If X is a set of sequences then ’ selects the points of each sequence belonging
to U .
Let M′ be the full subcategory of M formed by all C-separated M -sets, so that

we have a chain M@@ ,→ M′ ,→ M of full subcategories which are reQexive. The
reQector functor (−)′ :M → M′ is given by X ′=$(X ) and the reQector M′ → M@@
is #, with #($(X )) ∼= #(X ). Let us note that the UIAO’s considered above can
be reformulated taking M′ instead of M. It is well known that M′ is a quasitopos
(Theorem 10.1 in [5], or Theorem 43.6 in [12]) but we do not use this structure in
the present paper.

Example 3.3. The case N = {1} is trivial since M=M@@ =S; but N = {1; 2} is an
interesting case. By using the representation given by Lawvere [9]; M is the category
of all reQexive directed graphs with an involutive operation x∗ = x� (corresponding
to the transposition �∈M; �2 = id; see Example 2.4); #(X ) represents the set of all
vertices of X and )(X )=#(X )×#(X ); so that $(x)= (a; b) means that x is an arrow
from the vertex a to the vertex b (then $(x∗)= (b; a)). A C-separated graph X (object
in M′) is an equivalence relation on the set #(X ). Finally; a C-sheaf is the equality
relation on #(X ).
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4. A topos of M -sets for bornologies

We shall consider B as an M -set with the action given by

f = {B ⊂ N ;f(B)∈ }:
Then the logical operations in B, the maps Cont :B → � and Bor :�→ B, the nucleus
j =Cont ◦ Bor and the bijection �j ∼= B (see Section 2) all are equivariant. Since the
nucleus j is equivariant, the M -subset J= j−1(M) of � is a (Grothendieck) topology
and we can consider the subtopos B ,→ M of J-sheaves. The subobject classi3er of
B is �j ∼= B, so that we can consider B as an M -set of true values of the topos B.
In this way, given an M -subset U ⊂ X in B, we take the characteristic morphism in
the form ’ :X → B,

’(x) = {B ⊂ N ;∃f∈M; xf∈U; B ⊂ Imf}:
If U = #(X ), then E(’(x)) = N by using the constant maps. We shall call B the
bornological topos because there exists the subobject classi3er B and also because it
contains a full reQexive subcategory of bornological spaces as we shall see in the next
section. (In [2] we have used a topos, called bounded topos, de3ned in a similar way
by using another monoid of maps.)
Before exploring the relation of the topos B to bornological spaces, we shall consider

the full subcategories Bk ,→ B′ ,→ B as de3ned in Section 3, but now from the double
negation k :�j → �j in B, which is the nucleus given by k(I) = j(@@I), where
@@ is the double negation in �. We shall denote by Jk the corresponding topology
k−1(M) ⊂ �j.

Proposition 4.1. (i) Jk = J@@ ∩ �j. (ii) B′ =M′ ∩B. (iii) Bk
∼=S.

Proof. (i) Given I ∈�j we have k(I) = j(C → I) = j(C) → I (with the implication
in �). Hence I ∈ Jk if and only if j(C) ⊂ I ; that is C ⊂ I since I ∈�j.
(ii) Like in Lemma 3.1, it is clear that an object X in B is Jk -separated if and only

if X is j(C)-separated, but C ⊂ j(C) so that X is j(C)-separated if and only if X is
C-separated as an object in M.
(iii) Like in (ii), Bk =M@@ ∩B=M@@, and then we use Proposition 3.2.

By the isomorphism �j ∼= B (Theorem 2.2) the topology Jk ⊂ �j is transformed
in the topology {∈B;E() = N} ⊂ B corresponding to the double negation in B.
Moreover, j(C) = {f∈M ; Imf 3nite} is the ideal of �j associated to the bornology
K(N ).
Topos theory says that there exists a shea33cation functor, left exact and left adjoint

to the inclusion B ,→ M, which we shall denote by b :M → B. In the next proposition
we give an explicit description of b over the subcategory M′.

Proposition 4.2. If X is C-separated then

b(X ) = {s :N → #(X ); s(N )∈ } ⊂ )(X );
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where  is the bornology on #(X ) generated by the family of discrete bornologies
{P(Im $(x)); x∈X }.

Proof. By Proposition 2.3(ii) the topology J is subcanonical; hence M@@ ,→ B and
each M -set of the form SN is a J-sheaf; in particular )(X ) for all M -set X . If X is
C separated then $ :X → )(X ) is mono and hence b(X ) is the closure of $(X ) in
)(X ); that is; a sequence s :N → #(X ) belongs to b(X ) if and only if ($(X ) : s)∈ J;
in other words; there exist maps fi ∈M and elements xi ∈X ; 16 i6 n; such that
N = Imf1 ∪ · · · ∪ Imfn and s ◦ fi = $(xi) for every index. Now it is clear that
s∈ b(X ) implies s(N )∈ ; where  is the bornology in the statement (it is clear that
for every x∈#(X ) the condition {x}∈  holds). Conversely; if s(N )∈  then we have
s(N )∩ Im $(x1)∪ · · · ∪ Im $(xn) for some xi ∈X ; 16 i6 n; and for each index s(N )∩
Im $(xi) = ∅; so that we can 3nd maps fi ∈M such that Im (s ◦ fi) ⊂ Im $(xi); but
then there exists yi ∈X such that s ◦fi = $(yi); 16 i6 n. In fact; if we de3ne a map
g∈M by choosing g(n) in the non-empty 3bre $(xi)−1((s ◦ fi)(n)) then it is easy to
check that (s ◦ fi) = $(xig). Hence we conclude that s∈ b(X ).

If we take in Proposition 4.2 a trivial M -set S we obtain the 3nite bornology K(S),
so that in this case b(S) = {s :N → #(S); s(N )3nite}.
Moreover, we obtain P(S) from the M -set SN of sequences. Let us note that there

exists a UIAO (or an essential localization)

- � # � (−)N : S → B; # ◦ (−)N = id = # ◦ -
where - = b ◦ (. If we take B in B then we have -(#(B)) = #(B)N ∼= P(N ) with
the action Af=f−1(A). Let us note that #(B) ∼= #(P(N )) ∼= 2. The equivariant maps
P, E are, respectively, the unit and the counit of the adjunction - � #. Since the
subcategory M′ ,→ M is reQexive (Section 3) the subcategory B′ ,→ M is reQexive
too.

5. Kolmogorov bornological spaces and M -sets

We have a chain of categories S ,→ B′ ,→ B ,→ M, where B′ is a quasitopos
(like M′, see Section 3) and all others are toposes. In this section we shall identify
B′ with a category of bornological spaces.
Let BOR be the category of all bornological spaces (S; ) and bounded maps between

them. (Recall that, given bornological spaces (S; ) and (S ′; ′), a map f : S → S ′ is
bounded if for every B∈  we have f(B)∈ ′.) We have a forgetful functor E : BOR →
S with left adjoint K (3nite bornology) and right adjoint P (discrete bornology) such
that the equalities E◦K=id=E◦P hold, like in Lemma 1.1. Actually, there are natural
inclusions P(N ) ,→ S and B ,→ BOR, the last one sending every bornology ∈B to
the bornological space (E(); ). Our aim in this section is to extend the diagram of
locales P(N ) → B → � in Section 2 to a diagram of categories S → BOR → M,
and then to induce an equivalence between categories from the second functor.



L. Español, L. Lamb�an / Journal of Pure and Applied Algebra 176 (2002) 113–125 123

We de3ne the following functor by associating to each bornological space the M -set
of its bounded sequences,

)b : BOR → M; )b(S; ) = {s :N → S; s(N )∈ } ⊂ SN ;

with the obvious action )(h)(s) = h ◦ s on the bounded maps. If we consider N
with the discrete bornology, then )b =BOR(N;−). It is clear that for each bornology
∈B we have )b(E(); ) = Cont(), so that given an ideal I we have in particular
)b(Ext(I);Bor(I)) = j(I).

Lemma 5.1. )b is faithful and factorizes through M′.

Proof. Given a bounded map h : S → S ′ we can recover h from )b(h) since the
constant sequences cx are bounded and )b(h)(cx)=h◦cx=ch(x) for every x∈ S; hence
)b is faithful. Moreover; we have seen (Proposition 3.2) that SN is a C-sheaf; hence
)b(S; ) ⊂ SN is C-separated (note that the inclusion is the mono $ in this case).

By Lemma 5.1 we can reduce to M′ the codomain of )b and the new codomain
suRces to contain the images of both functors ( and (−)N , so that it is a good
extension of S yet.
Now we analyse the domain. We say that (S; ) is a Kolmogorov bornological (or

K-bornological) space [3] if every subset B ⊂ S such that s(N )∈  for all s :N → B
satis3es B∈ . Let K-BOR be the full subcategory of BOR given by all K-bornological
spaces. There exists the universal K-bornological space over (S; ), which is the same
set S but with the bornology −,  ⊂ −, given by

− = {B ⊂ S; s(N )∈  for all s :N → B}:
Let us note that a K-bornological space is determined by its bounded sequences,

and the bornological spaces (S; ) and (S; −) have the same bounded sequences. All
spaces (E(); ), ∈B, are K-bornological and the spaces obtained by using K or P
also; hence K-BOR is a good extension of B for the domain of the new functor of )b.
From now on, we shall consider the commutative diagram in the form

Given an M -set X , by taking the set #(X ) with the K-bornology generated by
the bornology de3ned in Proposition 4.1, we produce from # the functor #b :M′ →
K-BOR. In fact, for every equivariant map H :X → Y , the restriction H :#b(X ) →
#b(Y ) is bounded because, given x∈X and the generating bounded sequence $(x) :
N → #b(X ), the map H ◦ $(x) :N → #b(Y ) is bounded since H ◦ $(x) = $(H (x))
by the naturality of $. In particular, #b(M) is (isomorphic to) the set N with the
discrete bornology, and every point x :M → X is transformed by #b in the sequence
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$(x) = {xcn} :N → #(X ) of all 3xed points in its orbit. Now, we give the second
theorem of this paper.

Theorem 5.2. There exists and adjunction #b � )b :K-BOR → M′ which induces an
equivalence of categories K-BOR ∼= B′.

Proof. If we consider the one-to-one correspondence de3ned by the adjunction # �
(−)N (see Section 3) then it is easy to verify that h :#b(X ) → S is bounded if and
only if H :X → SN ; H (x) = h ◦ $(x); satis3es H (X ) ⊂ )b(S). Hence; we have the
adjunction #b � )b and we shall describe the induced equivalence.
For the counit we have #b ◦ )b ∼= id. In fact, given a K-bornological space (S; ),

since #b()b(S)) ∼= S as sets, we observe that the new K-bornology ′ on S is generated
by the inclusion $ :)b(S) ,→ SN , that is, by the sets s(N ) where s is a bounded
sequence for . We must prove that = ′. Every B ⊂ S such that B ⊂ s1(N ) ∪ · · · ∪
sr(N ) with si ∈)b(S), 16 i6 r, belongs to , so that ′ ⊂  since  is K-bornology.
Conversely, given B∈ , we must prove that B∈ ′, which is a consequence, because
′ is K-bornology, of the condition s(N )∈ ′ for every s :N → B; but s∈)b(S) since
B∈ , so that the condition follows.
For the unit, by Proposition 4.2, we must prove that given a C-separated M -set X , the

equivariant map $b :X → )b(#b(X )) ($ with restricted codomain) is an isomorphism if
and only if X is a J-sheaf. But by Proposition 4.2 and the property )b(S; )=)b(S; −)
we have b(X )=)b(#b(X )), so that $b is an iso if and only if X ∼= b(X ) is a J-sheaf.

The equivalence S ∼= M@@ = Bk (Propositions 3.2 and 4.1) is the restriction
to the discrete bornologies of the equivalence in Theorem 5.2. Note that if N is
3nite all the Kolmogorov bornologies are discrete. As a corollary of Theorem 5.2
we conclude that the category K-BOR is a quasitopos. Actually, we can obtain also
this result from the fact that BOR is a quasitopos [12, p. 99]. Given two object S,
T in K-BOR, we shall describe the exponential TS in terms of exponential in B′.
If X = )b(S) and Y = )b(T ), then #b(YX ) ∼= B′(X; Y ) ∼= K-BOR(S; T ) with the
K-bornology determined by the bounded sequences $(2) :N → #b(YX ), 2∈YX . Recall
that 2 :M × X → Y is an equivariant map and $(2)(n) = 2cn, n∈N , is the equivari-
ant map given by (2cn)(f; s) = 2(cf(n); s), f∈M , s∈X . By the above bijection, $(2)
corresponds to w :N → K-BOR(S; T ), where for every n∈N w(n) de3ne an equivari-
ant map !n ∈#b(YX ) by !n(f; s)(m) = w(f(n))(s(m)), but this means that the map
w∧ :N × S → T , w∧(n; x)=w(n)(x) is bounded with N discrete. Hence, the bornology
in TS is in fact the equibounded bornology.
Finally, we conclude that if N is the set N of all natural numbers then the bornologi-

cal topos B is a convenient topos to study the boundedness properties of spaces in func-
tional analysis. A natural number object in B is Nb=b(N)={s :N→ #(X ); s(N) 3nite},
and then the objects of integers and rationals are Zb = b(Z) and Qb = b(Q), respec-
tively; but b(R) is not the object of Dedekind reals. It can be proved that this object is
Rb=)b(R) when we consider the set R of all real numbers with the usual bornology,
that is, Rb is the classical space l∞ of real bounded sequences. Hence, the category of
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K-bornological real vector spaces is equivalent to the category MODb of Rb-modules
in B′.
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