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Abstract

We give a Szeg +o-type theorem for Lp-extremal polynomials with respect to varying

measures on jzj ¼ 1: Also, we present a density theorem and a generalization of the main result

to closed rectifiable Jordan curves and to jzj ¼ 1 with the possible addition of a finite number

of mass points.

r 2003 Elsevier Inc. All rights reserved.

1. Introduction

Orthonormal polynomials with respect to varying measures were introduced
about 25 years ago by Gonchar and López Lagomasino [5] in connection with a
systematic study of the convergence properties of interpolating rational functions
with free poles to Markov functions. In a more general context, such approximants
are called multipoint Padé approximants. In [5], an analogue of the classical Markov
theorem in the theory of continued fractions was proved. Meanwhile, a number of
research papers have been devoted to the subject of orthonormal polynomials with
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respect to varying measures; surveys can be found in [12,17], and Chapter 6 of [15].
The emphasis in the present paper is on strong asymptotic, which in the unweighted
situation is known as Szeg +o asymptotics for Lp-extremal polynomials [4]. Strong
asymptotic results for orthonormal polynomials with respect to varying measures
have been proved in various degree of generality in [2,3,11,14,17].
The classical theory of strong asymptotics has its most simple and perhaps also its

most natural form for orthonormal polynomials with respect to a measure supported
on the unit circle T ¼ fjzj ¼ 1g [16, Chapters XI, XII], or [13, Chapter 3]. Similar
results for orthonormal polynomials on a real interval are then usually deduced from
the results on T in a second step. In [10] López–Lagomasino presents orthogonal
polynomials with respect to varying measures in a such a way that unifies the theory
for the cases of measures with bounded and unbounded support. He also proves
asymptotic results for orthogonal polynomials respect to (a fixed) measure with
unbounded support using orthogonal polynomials respect to varying measures on T:
Also, these polynomials are very important in Potential Theory. The solution of a

number of problems in approximation theory can be reduced to finding the
equilibrium distribution of a charge on a ‘‘conductor’’ in the presence of certain
‘‘external fields’’. Problems of this type arise, for example, in the theory of
convergence of Padé approximants. In [6], Gonchar and Rakhmanov proved a
general theorem which characterizes the limit distribution of the zeros of orthogonal
polynomials with respect to varying measures. Also, Gonchar and Rakhmanov
proved in [7] a general result concerning the exact rate of best rational
approximation for a large class of analytic functions. This result was stated in
terms of equilibrium distributions in the presence of external fields and the proof is
based on the construction of convenient multipoint Padé approximants whose
convergence properties in turn reduces to the study of the limit distribution of zeros
of sequences of polynomials which satisfy complex orthogonal relations with respect
to varying measures.
In this paper, we give a Szeg +o-type theorem for Lp-extremal polynomials with

respect to varying measures on jzj ¼ 1: This result will be stated in this section and
proved in Section 3. Section 2 is devoted to some auxiliary statements. In Section 4,
we present a theorem on density of rational functions and finally, in Section 5, we
give some generalizations of the main result. We begin introducing some notations.
Let m be a finite positive Borel measure on ½0; 2pÞ whose support contains an

infinite set of points. In the sequel, we consider fWng; nAN; a sequence of
polynomials such that, for each nAN; Wn has degree n ðdegWn ¼ nÞ; all its zeros
fwn;i : 1pipng lie in D ¼ fz : jzjo1g; and they satisfy

lim
n-N

Xn

i¼1
ð1	 jwn;ijÞ ¼ þN: ð1Þ

We want to study the asymptotic behavior of polynomials that solve the extremal
problem

tn; p ¼ inf
QnðzÞ¼znþ?

Qn

Wn

����
����

����
����
p

¼ inf
QnAPn;Qnð0Þ¼1

Qn

W �
n

����
����

����
����
p

; ð2Þ
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where Pn is the set of polynomials of degree at most n; W �
n ðzÞ ¼ znWnð1%zÞ; and

jj f jjp ¼ 1

2p

Z
j f jp dm

� �1=p

:

Note that the zeros of W �
n ðzÞ are f 1

wn;i
gi¼1;y;nCE ¼ fjzj41g: From now on, Pn; p

denotes a polynomial such that

Pn; p

Wn

����
����

����
����
p

¼ tn; p:

Let m0 be the Radon–Nikodym derivate of m with respect to the Lebesgue measure.

Assume that log m0AL1; let Dpðm; zÞ denote the corresponding Szeg +o function;

that is,

Dpðm; zÞ ¼ exp
1

2pp

Z 2p

0

zþ z

z	 z
log m0ðyÞ dy

� �
; z ¼ eiy; zAD:

Set

Kpðm; zÞ ¼
Dpðm; 0Þ
Dpðm; zÞ if zASa,D;

0 if zASs;

8<
: ð3Þ

where Sa and Ss give a disjoint decomposition of the unit circle such that m0 and ms

live on these sets, respectively. Hereafter, ms denotes the singular part of m with
respect to the Lebesgue measure. Hp; 0opo1; is defined as the class of all functions
f analytic in D such that

sup
0oro1

Z 2p

0

j f ðreiyÞjp dy
	 
1=p

oN:

It is well known that Hp can be identified with the closure in Lp of the set of

polynomials in eiy:
The function Dpðm; zÞ satisfies the following properties:

(1) Dpðm; zÞ is analytic in D; more precisely, Dpðm; zÞAHp;

(2) Dpðm; zÞa0 in D; and Dpðm; 0Þ40;

(3) jDpðm; eiyÞjp ¼ m0ðyÞ almost everywhere (a.e.) in ½0; 2p�:

HpðmÞ is defined as the LpðmÞ closure of the polynomials in eiy: Lp
s ðmÞ ¼ f fALpðmÞ :

f ¼ 0; m0a:e:g and Lp
aðmÞ ¼ f fALpðmÞ : f ¼ 0; msa:e:g: Similarly, we define Hp

s ðmÞ
and Hp

a ðmÞ:
Moreover, if fAHpðmÞ; then there exist unique functions *f; fs such that

f ¼ Kp
*f þ fs; *fAHp; and fsALp

s ðmÞ: ð4Þ

A proof of this result can be seen in [1].
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The main theorem of this paper which will be proved in Section 3 is the
following:

Theorem 1. For 0opoN; the following statements are equivalent:

(i) m satisfies the Szeg +o condition; that is, log m0AL1:
(ii) The following limit exists and is positive

lim
n-N

tn; p40:

(iii) There exists a function SAHpðmÞ with jjSjjpa0; such that

lim
n-N

P�
n; p

W �
n

	 S

����
����

����
����
p

¼ 0:

(iv) There exists a function T analytic in D such that

lim
n-N

P�
n; pðzÞ

W �
n ðzÞ

P�
n; p

W �
n

����
����

����
����
p

¼ TðzÞ

holds uniformly on each compact subset of D:

Moreover, if (i) holds, then

lim
n-N

tn; p ¼ Dpðm; 0Þ;

and the functions in (iii) and (iv) are SðzÞ ¼ Kpðm; zÞ and TðzÞ ¼ 1
Dpðm;zÞ:

2. Auxiliary results

Before we can prove the theorems in the following sections, we need to establish
several auxiliary results.
Let K be a compact set and fan;1;y; an;ngCC\K be a given set of points. Let Fn be

the set of functions of the form

pnðzÞ ¼
bn;0z

n þ bn;1z
n	1 þ?þ bn;n

ðz 	 an;1Þðz 	 an;2Þ?ðz 	 an;nÞ
: ð5Þ

Let f be a continuous function on K :Denote by rnð f Þ the best approximation to f ðzÞ
on K in the class Fn in the sense of Tchebycheff; that is,

jj f 	 rnð f Þjj ¼ minfjj f 	 pnjj : pnAFng

with jj  jj the supremun norm on K :
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Theorem 2. (See Walsh [18, pp. 246–247]). Let the points an;k satisfy jan;kj41: A

necessary and sufficient condition such that

lim
n-N

rnð f ÞðzÞ ¼ f ðzÞ; uniformly in jzjp1; ð6Þ

for every such function f analytic in fjzjp1g is that

lim
n-N

Xn

k¼1
1	 1

jan;kj

	 

¼ þN: ð7Þ

A result due to Keldysh is also useful in the proofs that follow. This theorem appears
in [9]. An extension of Keldysh’s theorem is the following.

Theorem 3. (See Bello Hernández et al. [1]).1 Let fzigi¼1;y;L be a set of points in D;

where L can be finite or infinite. Let b be a finite positive Borel measure on ½0; 2pÞ
satisfying the Szeg +o condition and f fngCHpðbÞ (from (4), fn ¼ Kpðb; :Þ *fn þ fn;sÞ;
0opoN; such that

(i) limn-N
*fnð0Þ ¼ 1;

(ii) limn-N
*fnðziÞ ¼ 0; i ¼ 1; 2;y;

(iii)
PL

i¼1ð1	 jzijÞoþN;
(iv) limn-N

R
j fnðeiyÞjpdbðyÞ

 �1=p¼ Dpðb; 0ÞQL
i¼1 jzij

:

Then

(a) limn-N
*fnðzÞ ¼

QL
i¼1

z 	 zi

%ziz 	 1

%zi

jzij2
holds uniformly on each compact subset of D;

and

(b) limn-N

R
fn 	 Kpðb; zÞ

QL
i¼1

z 	 zi

%ziz 	 1

%zi

jzij2

�����
�����
p

db ¼ 0:

If L is an empty set then the right-hand side of (a) is equal to 1; that is,QL
i¼1

z	zi

%ziz	1
%zi

jzi j2
� 1:

3. Proof of Theorem 1

Before proving Theorem 1, we show an intermediate result.
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Theorem 4. For 0opoN

lim
n-N

Pn; p

Wn

����
����

����
����
p

¼ Dpðm; 0Þ;

where 0 replaces Dpðm; 0Þ if log m0ðyÞ is not integrable.

Proof. Let LCN be an indexed sequence such that

lim
nAL

P�
n; p

W �
n

����
����

����
����
p

¼ lim sup
n-N

P�
n; p

W �
n

����
����

����
����
p

: ð8Þ

From a result due to Szeg +o (see [16, p. 297]), we know that if Tn;2 are the extremal

polynomials such that

jjTn;2jj2 ¼ minfjjQnjj2 : Qn monic of degree ng;

then

lim
n

jjTn;2jj22 ¼ lim
n

jjT�
n;2jj

2
2 ¼ D2ðm; 0Þ2; ð9Þ

with D2ðm; 0Þ ¼ 0 if log m0ðyÞ is not integrable. Since the zeros of T�
n;2 lie in E; jnðzÞ ¼

ðT�
n;2ðzÞÞ

2=p is analytic in fjzjp1g; so as (1) holds, from Theorem 2 there exists a

sequence fRmn

W �
mn

gmnAL0CL such that

lim
nAL

sup
jzjp1

Rmn
ðzÞ

W �
mn
ðzÞ 	 jnðzÞ

�����
����� ¼ 0:

In particular, since jnð0Þ ¼ ðT�
n;2ð0ÞÞ

p=2 ¼ 1 ¼ W �
mn
ð0Þ; we have limnALRmn

ð0Þ ¼ 1:

Hence

lim
nAL

Rmn

W �
mn

�����
�����

�����
�����
p

p

¼ lim
nAL

jjjnjj
p
p ¼ lim

nAL
jjT�

n;2jj
2
2 ¼ D2ðm; 0Þ2 ¼ Dpðm; 0Þp

and

lim sup
n-N

P�
n; p

W �
n

����
����

����
����
p

pDpðm; 0Þ: ð10Þ
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On the other hand, using Jensen’s inequality

1

2p

Z 2p

0

P�
n; pðeiyÞ

W �
n ðeiyÞ

�����
�����
p

dmðyÞX 1

2p

Z 2p

0

P�
n; pðeiyÞ

W �
n ðeiyÞ

�����
�����
p

m0ðyÞ dy

X exp
1

2p

Z 2p

0

log
P�

n; pðeiyÞ
W �

n ðeiyÞ

�����
�����
p

dy

( )

� exp
1

2p

Z 2p

0

log m0ðyÞ dy
� �

X

P�
n; pð0Þ

W �
n ð0Þ

����
����
p

Dpðm; 0Þp ¼ Dpðm; 0Þp:

Therefore,

lim inf
n-N

P�
n; p

W �
n

����
����

����
����
p

XDpðm; 0Þ: ð11Þ

With (10) and (11) the theorem is proved. &

Remark 1. We also proved that

lim
n-N

P�
n; p

W �
n

����
����

����
����
p

¼ lim
n-N

1

2p

Z
P�

n; pðzÞ
W �

n ðzÞ

����
����
p

m0ðyÞ dy
 !1=p

¼ Dpðm; 0Þ:

Proof of Theorem 1.

Proof. (i)3 (ii): It follows from Theorem 4.

(i)) (iii): We consider the function

hnðzÞ ¼
P�

n; pðzÞDpðm; zÞ
W �

n ðzÞDpðm; 0Þ
; ð12Þ

that belongs to Hp: Since hnð0Þ ¼ 1 and jDpðm; eiyÞjp ¼ m0ðyÞ; from Theorem 4,

we have

lim
n-N

1

2p

Z 2p

0

jhnðeiyÞjp dy
� �

¼ 1: ð13Þ

Applying Theorem 3 (here L ¼ | and b is the Lebesgue measure) it follows that

lim
n-N

1

2p

Z 2p

0

jhnðeiyÞ 	 1jp dy
� �

¼ 0:

Hence

lim
n-N

1

2p

Z 2p

0

P�
n; pðeiyÞDpðm; eiyÞ
W �

n ðeiyÞDpðm; 0Þ
	 1

�����
�����
p

dy

( )
¼ 0
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and then

lim
n-N

1

2p

Z 2p

0

P�
n; pðeiyÞ

W �
n ðeiyÞ 	 Dpðm; 0Þ

Dpðm; eiyÞ

�����
�����
p

m0ðyÞ dy
( )

¼ 0:

Therefore, using (13) and again Theorem 4, we obtain (iii) where SðzÞ ¼ Kpðm; zÞ:
(iii)) (i): It follows from the relation

lim inf
n-N

P�
n; p

W �
n

	 c
����

����
����

����
p

¼ 0; ð14Þ

where cðzÞ is such that jjcjjpa0:

Indeed, according to (14) we have that there exists a subsequence fnng such that

lim
n-N

P�
nn; p

W �
nn

	 c

�����
�����

�����
�����
p

¼ 0:

If (i) does not hold, from Theorem 4

lim
n-N

P�
nn; p

W �
nn

�����
�����

�����
�����
p

¼ 0;

and we obtain jjcjjp ¼ 0; which is a contradiction.

(iii)) (iv): The sequence of functions fhng as in (12) satisfies the hypothesis of
Theorem 3, hence limn-N hnðzÞ ¼ 1 holds uniformly on each compact subset of D:
Now, since (i) is equivalent to (iii), using again Theorem 4, we obtain

lim
n-N

P�
n; pðzÞ

W �
n ðzÞ

P�
n; pðzÞ

W �
n ðzÞ

����
����

����
����
p

¼ 1

Dpðm; zÞ:

(iv)) (i). From (iv) and Theorem 4, we have

lim
n-N

P�
n; pð0Þ

W �
n ð0Þ

P�
n; pðzÞ

W �
n ðzÞ

����
����

����
����
p

¼ Tð0Þ ¼ 1

Dpðm; 0Þ
oN;

but this is true if and only if (i) holds. &

4. Density Theorem

In this section we give a density theorem that can be seen as an ‘‘application’’ of
the main result.

We introduce the notation: Rn;k ¼ f h
W �

n
: hAPn	kg:
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Theorem 5. Assume that m is an absolutely continuous measure ma and satisfies Szeg +o’s

condition, then the following statements are equivalent:

(i) For each jAZþ

lim
n-N

1

2p

Z 2p

0

P�
n;n	j; pðeiyÞ
W �

n ðeiyÞ

�����
�����
p

dmaðyÞ ¼ Dpðma; 0Þp;

where Pn;n	j; p is the monic extremal polynomial; that is,

Pn;n	j; p

Wn

����
����

����
����
p

¼ min
Qn	j

Wn

����
����

����
����
p

: Qn	jAPn	j; monic

( )
:

(ii) For each kAZþ; Rn;k is dense in HpðmaÞ:

Proof. (ii)) (i): Here we use the same technique as in the proof of Theorem 4. It is
well known that (ii)3 (i) is true when p ¼ 2 and WnðzÞ ¼ zn (see, for example, [16, p.
297]). Let Tn	k;2 denote the monic extremal polynomials in this case, then given kX0

there exist polynomials Rmn	k of degree mn 	 k such that

lim
n-N

1

2p

Z 2p

0

ðT�
n	kðzÞÞ

2=p 	 Rmn	kðzÞ
W �

mn
ðzÞ

�����
�����
p

m0aðyÞ dy ¼ 0:

Notice that the functions fðT�
n	kÞ

2=pgn are analytic in an open set containing fjzjp1g
because T�

n	k has no zeros in fjzjp1g: Then

(a) limn-N Rmn	kð0Þ ¼ 1;

(b) limn-N

1

2p

R 2p
0

Rmn	kðzÞ
W �

mn
ðzÞ

�����
�����
p

m0aðyÞ dy ¼ Dpðma; 0Þp:

Given LCN an indexed sequence, from (ii) we observe that the sequence fmng can
be chosen in L: Therefore, (i) follows from (a) and (b).
(i)) (ii): Set i; jAZþ; using (i) and Theorem 3, we have

P�
n;n	ðiþjÞ; pðzÞ

W �
n ðzÞ

-Kpðma; zÞ

in LpðmaÞ: Then

ziP�
n;n	ðiþjÞ; pðzÞ
W �

n ðzÞ
-ziKpðma; zÞ;

in HpðmaÞ: Since HpðmaÞ ¼ Hp  Kpðma; Þ and Hp is the closure of the polynomials in

Lp; Rn; j satisfies (ii). &
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5. Generalizations

In this section we give two generalizations of Szeg +o’s theorem for extremal
rational functions. First, for a closed rectifiable Jordan curve C; and second, for sets
of the form F ¼ T,fz1; z2;y; zNg; with ziAD: Szeg +o’s theorem on F respect to a
fixed measure was proved by Kaliaguine [8].
With the same techniques used in Theorem 1, we can prove an analogous theorem

for closed rectifiable Jordan curves. We begin introducing the necessary notation.
Let aAC and let C be a closed rectifiable Jordan curve with length l in the z-plane in
whose interior lies a: Let sðsÞ be a finite positive measure on ½0; lÞ: As usual, by
LpðC; sÞ we denote the space of complex measurable functions on C; such that

jj f jjp;s ¼ 1

2p

Z
C

j f ðzÞjp dsðsÞ
� �1=p

oN; z ¼ zðsÞ; sA½0; lÞ;

with z ¼ zðsÞ a parametrization of C: Let B denote the interior of C and consider the
conformal transformation

x ¼ jðzÞ ¼ aþ z þ b2z
2 þ?; jzjo1; aAB

which maps D onto B; such that a ¼ jð0Þ and j0ð0Þ40: From Caratheodory’s
theorem j can be extended continuously to fjzjp1g so that j is a bijection from
fjzj ¼ 1g to C whose inverse we denote by z ¼ gðxÞ: Then, the measure s induces an

image measure m on jzj ¼ 1 by mðEÞ ¼ sðz	1ðg	1ðEÞÞ ¼ sððg3zÞ	1ðEÞÞ; thus
s0ðsÞjdzj ¼ s0ðsÞjj0ðeiyÞj dy ¼ m0ðyÞ dy:

Let J be the unbounded component of the complement of C and z ¼ fðxÞ the
conformal transformation which maps J onto E so that the points at infinity correspond

to each other and f0ðNÞ40: Let CR denote generically the curve jfðxÞj ¼ R41 in J:

We define dsn ¼ ds
jYnjp; where fYng; nAN is a sequence of polynomials such that for

each n; Yn has exactly degree n; and all its zeros ðan;iÞi¼1;y;nAN have no limit points

interior to CA; A41 and YnðaÞ ¼ 1:

We want to study the asymptotic behavior of the polynomials P̃n; p; that solve the

following extremal problem:

rn;p ¼ inf
QnðaÞ¼1

jjQnjjp;sn
¼ inf

QnðaÞ¼1

1

2p

Z
C

QnðzÞ
YnðzÞ

����
����
p

dsðsÞ
� �1=p

: ð15Þ

First we quote a result analogous to Theorem 2.

Theorem 6 (See Walsh [18], pp. 252–253). Let C be a closed rectifiable Jordan curve

and let the points ðan;iÞi¼1;y;nAN be given with no limit points interior to CA: If f is an

analytic function on and within CT ; there exists a sequence rn of functions of the form

(5) such that

lim
n-N

rnðxÞ ¼ f ðxÞ;

uniformly for x on each closed subset of interior of CR; where R ¼ A2TþTþ2A
2ATþA2þ1 :
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Using this result we can obtain a theorem analogous to Theorem 1:

Theorem 7. For 0opoN; the following statements are equivalent:

(i) s satisfies the Szeg +o condition.
(ii) The following limit exists and is positive:

lim
n-N

rn; p40:

(iii) There exists SALpðC; sÞ with jjSjjp;sa0; such that

lim
n-N

P̃n; pðxÞ
YnðxÞ

	 SðxÞ
����

����
����

����
p;s
¼ 0:

(iv) There exists a function T analytic in B such that

lim
n-N

P̃n; pðxÞ
YnðxÞ
P̃n; p

Yn

����
����

����
����
p;s

¼ TðxÞ

holds uniformly on each compact subset of B:

Moreover, if (i) holds, limn-N rn; p ¼ Dpðs; aÞ; SðxÞ ¼ Jpðs; xÞ; and TðxÞ ¼ 1
Dpðs;xÞ;

where Dpðs; xÞ ¼ Dpðm; gðxÞÞ and Jpðs; xÞ ¼ Kpðm; gðxÞÞ:

This theorem can also be given for sets of the form F ¼ T,fz1; z2;y; zNg with
zkAD: Let bn be a varying measure such that bn ¼ mn þ Z; where Z is a discrete

measure with mass Ak40 at the point zk; k ¼ 1;y;N; and dmn ¼ dm
jW �

n j
p the varying

measure with m and Wn as in Section 1.
Here, we study the asymptotic behavior of the polynomials T�

n; pðz; bnÞ; that solve
the extremal problem

ln; p ¼ min
Pnð0Þ¼1

1

2p

Z
jzj¼1

PnðzÞ
W �

n ðzÞ

����
����
p

dmðyÞ þ
XN

k¼1
jPnðzkÞjpAk

( )1=p

: ð16Þ

Theorem 8. For 0opoN the following statements are equivalent:

(i) m satisfies the Szeg +o condition.
(ii) The following limit exists and is positive:

lim
n-N

ln; p40:
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(iii) There exists a function SAHpðmÞ with jjSjjp;ma0 such that

lim
n-N

T�
n; pðz; bnÞ
W �

n ðzÞ
	 SðzÞ

����
����

����
����
p;m
¼ 0:

(iv) There exists a function T analytic in D such that

lim
n-N

T�
n; pðz; bnÞ
W �

n ðzÞ
T�

n; pð:; bnÞ
W �

n

����
����

����
����
p;m

¼ TðzÞ

holds uniformly on each compact subset of D:

Moreover, if (i) holds

lim
n-N

ln; p ¼ Dpðm; 0Þ

and the functions in (iii) and (iv) are SðzÞ ¼ Dpðm;0Þ
Dpðm;zÞ and TðzÞ ¼ 1

Dpðm;zÞ; respectively.

Proof. We will only prove (i)3 (ii) because the rest of the proof is similar to that
given in Theorem 1.
Since Ak40;

ln; pX inf
Qnð0Þ¼1

1

2p

Z
jzj¼1

QnðzÞ
W �

n ðzÞ

����
����
p

dmðyÞ
( )1=p

¼ tn; p;

and from Theorem 1

lim inf
n-N

ln; pXDpðm; 0Þ: ð17Þ

Now, let VN be the polynomial whose zeros are z1; z2;y; zN and let T�
n	N; p; with

T�
n	N; pð0Þ ¼ 1; be the extremal polynomial for the measure jVN ðzÞ

VN ð0Þj
p

dmn; that is,

lp
n; pp inf

Qn	N ð0Þ¼1

Z
jzj¼1

Qn	NðzÞ
W �

n ðzÞ

����
����
p

VNðzÞ
VNð0Þ

����
����
p

dm

¼
Z
jzj¼1

T�
n	N; pðzÞ
W �

n ðzÞ

����
����
p

VNðzÞ
VNð0Þ

����
����
p

dm:

Using the Theorem 4, we have

lim
n-N

Z
jzj¼1

T�
n	N; pðzÞ
W �

n ðzÞ

����
����
p

VNðzÞ
VNð0Þ

����
����
p

dm ¼ Dp

VNðzÞ
VNð0Þ

����
����
p

dm; 0
	 
p

:
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From the properties of the Szeg +o function, we obtain that

Dp

VNðzÞ
VNð0Þ

����
����
p

dm; 0
	 


¼ Dpðm; 0Þ

and hence

lim sup
n-N

ln; ppDpðm; 0Þ: ð18Þ

The result follows from (17) and (18). &
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