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Abstract

For each integer n¿ 1 and a multiplicative system S of non-zero integers, we give a distinct
closed model category structure to the category of pointed spaces Top? and we prove that the
corresponding localized category Ho(Top(S;n)

? ), obtained by inverting the weak equivalences, is
equivalent to the standard homotopy category of uniquely (S; n)-divisible, (n − 1)-connected
spaces. A space X is said to be uniquely (S; n)-divisible if for k¿ n the homotopy group
�kX is uniquely S-divisible. This equivalence of categories is given by an (S; n)-colocalization
functor that carries a pointed space X to a space X (S;n). There is also a natural map X (S;n) → X
which is (7nally) universal among all the maps Z → X with Z a uniquely (S; n)-divisible,
(n − 1)-connected space. The structure of closed model category given by Quillen to Top? is
based on maps which induce isomorphisms on all homotopy group functors �k and for any
choice of base point. For each pair (S; n), the closed model category structure given here take
as weak equivalences those maps that for the given base point induce isomorphisms on the
homotopy groups functors �k(Z[S−1];−) with coe;cients in Z[S−1]for k¿ n. We note that the
category Ho(Top(Z−{0};2)

? ) is the homotopy category of rational 1-connected spaces.
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1. Introduction

Quillen [13] introduced the notion of closed model category and proved that the cat-
egories of spaces and of simplicial sets have the structure of a closed model category.
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Moreover, Quillen [14] used this structure to construct localization functors for
1-connected spaces and to 7nd algebraic models for rational homotopy theory. In this
paper, we use this categorical structure to construct colocalization functors and to study
the homotopy category of uniquely S-divisible spaces. These colocalization functors are
just given by the co7brant approximations of an object in the closed model structures
developed in this work.

For each n¿ 1, we take as weak (S; n)-equivalences those maps of Top? which
induce isomorphisms on the homotopy group functors �k(Z[S−1];−) for k¿ n, where
S is a multiplicative system of non-zero integers and �k(Z[S−1];−) denotes the kth
homotopy group functor with coe;cients in Z[S−1]. The abelian group Z[S−1] is the
subgroup (subring) of the rationals Q of all fractions of the form a=b with b∈ S.
The class of weak (S; n)-equivalences is completed with classes of (S; n)-7brations and
(S; n)-co7brations and using these classes we are able to prove the following important
result:

Theorem 3.1. For each n¿ 1, the category Top? together with the families of
(S; n)-7brations, (S; n)-co7brations and weak (S; n)-equivalences, has the structure of
a closed model category.

In this paper we give some algebraic characterizations of the spaces which up to
weak equivalence are (S; n)-co7brant spaces. Recall that an abelian group H is said to
be a uniquely S-divisible group if for any h∈H and s∈ S there is a unique x∈H such
that sx=h. A space is said to be uniquely (S; n)-divisible if the homotopy groups �kX
are uniquely S-divisible for k¿ n. In the last section of this paper, we have proved
the following result:

Theorem 4.1. Let X be a pointed space, then the following statements are equivalent:

(i) X is weakly equivalent to an (S; n)-co7brant space,
(ii) for every abelian group B right-orthogonal to Z[S−1] the reduced singular co-

homology groups H̃ q(X ;B) are trivial and X is an (n− 1)-connected space
(iii) for every s∈ S the reduced singular homology groups H̃ q(X ;Z=s) are trivial and

X is an (n− 1)-connected space.
(iv) the reduced singular homology groups of X are uniquely S-divisible groups and

X is an (n− 1)-connected space,
(v) X is a uniquely (S; n)-divisible, (n− 1)-connected space.

As a consequence of this characterization of (S; n)-co7brant spaces we also have
obtained the following equivalence of categories:

Theorem 4.2. The localized category Ho(Top(S;n)
? ) is equivalent to the homotopy cat-

egory of uniquely (S; n)-divisible, (n− 1)-connected spaces.

In particular for S =Z−{0} and n= 2, one has the rational category of 1-connected
spaces.
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An interesting functor induced by this closed model category is the co7brant approx-
imation. Given a pointed space Y if we take the (S; n)-co7brant approximation, then
the corresponding canonical map Y (S;n) → Y is 7nally universal among all the maps
Z → Y with Z a uniquely (S; n)-divisible, (n − 1)-connected space. This property is
dual to the universal property of the Quillen–Sullivan localization X → X ⊗ Z[S−1].
Moreover, in the localized category of (n − 1)-connected spaces the Quillen–Sullivan
localization functor is left adjoint to the (S; n)-colocalization functor introduced in this
paper.

2. Preliminaries on closed model categories

We begin by recalling the de7nition of a closed model category (CMC) given by
Quillen [14]. For more properties of closed model categories we refer the reader to
[4,5,8,10].

De�nition 2.1. A closed model category C is a category endowed with three distin-
guished families of maps called co7brations, 7brations and weak equivalences satisfying
the axioms CM1–CM5 below:

CM1. C is closed under 7nite projective and inductive limits.
CM2. If f and g are maps such that gf is de7ned then if two of these f; g and gf

are weak equivalences then so is the third.
Recall that the maps in C form the objects of a category Maps(C) having commu-

tative squares for morphisms. We say that a map f in C is a retract of g if there are
morphisms ’ :f → g and  : g → f in Maps(C) such that  ’ = idf.

A map which is a weak equivalence and a 7bration is said to be a trivial 7bration
and, similarly, a map which is a weak equivalence and a co7bration is said to be a
trivial co7bration.

CM3. If f is a retract of g and g is a 7bration, co7bration or weak equivalence
then so is f.

CM4. (Lifting.) Given a solid arrow diagram

A

i

X

p

B Y

the dotted arrow exists in either of the following situations:

(i) i is a co7bration and p is a trivial 7bration,
(ii) i is a trivial co7bration and p is a 7bration.

CM5. (Factorization.) Any map f may be factored in two ways:

(i) f = pi where i is a co7bration and p is a trivial 7bration,
(ii) f = qj where j is a trivial co7bration and q is a 7bration.
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We say that a map i :A → B in a category has the left lifting property (LLP) with
respect to another map p :X → Y and p is said to have the right lifting property
(RLP) with respect to i if the dotted arrow exists in any diagram of the form above.

The initial object of C is denoted by ∅ and the 7nal object by ?. An object X of
C is said to be 7brant if the morphism X → ? is a 7bration and it is said co7brant
if ∅ → X is a co7bration.

In the category Top of spaces, a map is said to be a Serre 7bration if it has the
right lifting property with respect to the maps

I k → I k+1; (t1; : : : ; tk) → (t1; : : : ; tk ; 0)

({0}= I 0 → I 1 = I; maps 0 into 0) for k¿ 0, where I denotes the closed unit interval.
In this paper we will consider the closed model category Top? of pointed topological

spaces with the following structure: Given a map f:X → Y in Top?, f is said to
be a 7bration if it is a Serre 7bration in the non-pointed category Top; f is a weak
equivalence if f induces isomorphisms �q(f) for q¿ 0 and for any choice of base
point and f is a co7bration if it has the LLP with respect to all trivial 7brations. For
this structure we refer the reader to Quillen [13]. We also recall that Top? has also
a compatible simplicial structure. If K is a 7nite simplicial object and X is a pointed
space then X ⊗ K is de7ned to be

X ⊗ K = X × |K |+=(X ×? ∪?× |K |+);

where |K |+ is the disjoint union of |K | and the one point space ?.
In particular we have the standard pointed cylinder

X ⊗ I = X ⊗ ![1]:

Let Ho(Top?) denote localized categories obtained by formal inversion of weak equiv-
alences de7ned above.

In the category of pointed topological spaces and continuous maps, Top?, we con-
sider a family F = {M# | #∈$} of spaces which are suspensions of CW-complexes
(M# = %N# where N# is a CW-complex). In this section we give a CMC structure
in the category of pointed spaces that will be used in the next sections to prove the
main theorems of this paper. This structure is inspired by the CMC structure given
in [6], which for the case of one space has been developed in [3]. We have included
the signi7cant facts that allow us to prove that the category of pointed spaces admits
this CMC structure. In order to see the diMerence with the CMC structures given in
[10] we have included a characterization of the family of 7brations in Theorem 2.1.
Notice that the family of 7brations of our CMC structure is larger than the class of
Serre 7brations.

We consider the following classes of maps:

De�nition 2.2. Let f :X → Y be a map in Top?,

(i) f is a weak F-equivalence if the induced map

[%kM#; f]: [%kM#; X ] → [%kM#; Y ]
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is an isomorphism for each k¿ 0 and #∈$, where [−;−] denotes the standard
set of pointed homotopy classes.

(ii) f is an F-7bration if it has the RLP in the category of pointed spaces with
respect to the family T(F) of inclusions

(C%kN# × 0) ∪ (%kN# ⊗ I) → C%kN# ⊗ I

for every k¿ 0 and #∈$.
A map which is both an F-7bration and a weak F-equivalence is said to be

a trivial F-7bration.
(iii) f is an F-co7bration if it has the LLP with respect to any trivial F-7bration.

A map which is both an F-co7bration and a weak F-equivalence is said to be a
trivial F-co7bration.

A pointed space X is said to be F-7brant if the map X → ? is an F-7bration,
and X is said to be F-co7brant if the map ? → X is an F-co7bration.

Remark 2.1. Let C be the path-component of the given base point of X . Note that the
inclusion C → X is always a weak F-equivalence. It as also clear that all objects in
Top? are F-7brant.

Theorem 2.1. Suppose that F has at least a non-trivial CW-complex, and for a map
f :X → Y in Top?, denote by f0 :X0 → Y0 the induced map on the path-components
of the given base points. Then f is an F-7bration if and only if f0 is a Serre
7bration.

Proof. Since the maps of the family T(F) are between 0-connected spaces, one has
that in the category of pointed spaces a map f has the RLP with respect to T(F)
if and only if f0 has the RLP with respect to T(F). Suppose that f0 is a Serre
7bration, because the maps of T(F) are trivial co7brations, it follows that f0 has
the right lifting property with respect to T(F), and therefore f is an F-7bration.
Conversely, for simplicity write by ik :Uk → Vk a map of the family T(F) which is a
co7bration between contractible CW-complexes. Take 0∈ I k as a base point and write
I ∨ I k for the pointed sum. Since the family has at least a non-trivial CW-complex,
for a large integer K it is possible to embed I ∨ I k in UK and to extend to an em-
bedding I ∨ I k+1 → VK in such a way that the embeddings are both co7brations
and the point 1 of I has been identi7ed to the base point of VK . Lifting in the
diagram

I ∨ I k −−−−−→ I ∨ I k�

�
UK −−−−−→ ∗
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gives a retraction r:UK → I ∨ I k . If we consider the induced map r+ id:UK
⋃

(I∨I k ) (I ∨
I k+1) → I ∨ I k+1 we can lift in the diagram

UK

⋃

(I∨I k )

(I ∨ I k+1) −→ I ∨ I k+1

�

�
VK −−−−−−−−−−−−→ ∗

to obtain that (I ∨ I k ; 1) → (I ∨ I k+1; 1) is a retract of the map (UK; ∗) → (VK ; ∗).
Now assume that f has the RLP with respect to UK → VK in the pointed setting,

then f0 has the same lifting property. Therefore f0 has the RLP with respect to
I ∨ I k → I ∨ I k+1 in the pointed setting. Since the domain of f0 is 0-connected, it
follows that f0 ha the RLP with respect I k → I k+1 in the non-pointed setting. This
implies that f0 is a Serre 7bration.

We have the following characterization of the class of trivial F-7brations:

Proposition 2.1. For a map f :X → Y in Top?, the following statements are equiv-
alent:

(i) f is a trivial F-7bration,
(ii) f has the RLP with respect to the family C(F) of inclusions

? → M#; #∈$;

%kM# → C%kM#; k¿ 0; #∈$:

Proof. Let F be the homotopy 7bre of f in Top?. Suppose that f has the RLP with
respect to the maps of C(F). This fact implies that [M#; X ] → [M#; Y ] is surjective
and [%kM#; F] ∼= 0 for k¿ 0 and #∈$. Therefore we have that f is a weak F-
equivalence.

In order to prove that f is an F-7bration, for k¿ 0 and #∈$, consider a commu-
tative diagram of the form

(C%kN# ⊗ 0) ∪ (%kN# ⊗ I) u−→ X�

�
f

C%kN# ⊗ I −−−−−→
v

Y

De7ne Nu: (%kN# ⊗ I) ∪ (C%kN# ⊗ 1) → X , Nv:C%kN# ⊗ I → Y by the formulas
Nu[x; t] = u[x; 1 − t], Nv[x; t] = v[x; 1 − t]. Since Nu[x; 0] = u[x; 1] and Nv[x; 0] = v[x; 1], the
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following diagram is commutative:

(C%kN# ⊗ 0) ∪ (%kN# ⊗ I) ∪ (%kN# ⊗ I) ∪ (C%kN# ⊗ 1) u+ Nu−→ X�

�
f

(C%kN# ⊗ I) ∪ (C%kN# ⊗ I) −−−−−−−−−−−−→
v+ Nv

Y

However, one has that

%kM#
∼= (C%kN# ⊗ 0) ∪ (%kN# ⊗ I) ∪ (%kN# ⊗ I) ∪ (C%kN# ⊗ 1)

C%kM#
∼= (C%kN# ⊗ I) ∪ (C%kN# ⊗ I):

Therefore we can apply that f has the RLP with respect to C(F) to obtain a lifting
h : (C%kN# ⊗ I) ∪ (C%kN# ⊗ I) → X for the diagram above. Now the restriction of h
to the 7rst copy h=(C%kN# ⊗ I) is the desired lifting. Hence one concludes that f is
an F-7bration.

That part (i) implies (ii) is straightforward.

Using the characterization of trivial (S; n)-7brations by the RLP with respect to a
family of maps, one can prove following result.

Theorem 2.2. The category Top? together with the classes of F-7brations,
F-co7brations and weak F-equivalences, has the structure of a closed model
category.

Proof. At this point we assume that all the axioms have been veri7ed (the proofs are
easy) with the exception of axioms CM5 and CM4(ii).

To prove the factorization axiom CM5, the following generalization of the small ob-
ject argument is very useful, see [1,7,10]. This generalization had also been considered
by Joyal [11] to give a closed model structure to the category of simplicial objects in
a Grothendieck Topos.

Let f :X → Y be a map in Top?, we have to prove that f can be factored in two
ways:

(i) f = pi, where i is an F-co7bration and p is a trivial F-7bration,
(ii) f = qj, where j is a weak F-equivalence having the LLP with respect to all

F-7brations and q is an F-7bration.

For instance, in order to obtain the 7rst factorization, we choose a limit ordinal .
whose cardinality is greater than the cardinal of the set of cells of M# for every #∈$.

First we can consider all maps of the form v:M# → Y , #∈$ to construct the space
X 0 = X

∨
(
∨

v M#(v)) and the map p0 :X 0 → Y de7ned by the sum of f and all the
maps v. This map p0 :X 0 → Y has the RLP with respect to the maps ? → M#. Now
we construct the following .-sequence, for any ordinal /6 .

X 0 → X 1 → X 2 → · · · → X / → · · ·
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and compatible maps p/:X / → Y . For / = 0, we have the map p0 :X 0 → Y . Given
an ordinal /, suppose that we have p0 :X 0 → X for any 0¡/. Now we consider two
cases:

Case 1: / is the successor ordinal of 0, then we take all commutative diagrams D
of the form

%kM#
uD

−−−−−→ X 0
�

�
p0

C%kM# −−−−−→
vD

Y

where k¿ 0 and #∈$ . De7ne j/ :X 0 → X /, by the pushout
∨

D

%kM# −−−−−→ X 0

�

�
j/

∨

D

C%kM# −−−−−→ X /

and de7ne p/ :X / → Y by the sum of p0 and all the vD.
Case 2: / is a limit ordinal. In this case we take

X / = Colim
0¡/

X 0;

p/ = Colim
0¡/

p0:

By trans7nite induction we obtain an F-co7bration i :X → X . and a trivial
F-7bration p :X . → Y .

The other factorization f = qj is similarly obtained. In this case, we also have that
j has the LLP with respect to all F-7brations.

Next we verify Axiom CM4(ii). Suppose that i is a trivial F-7bration, by CM5, i can
be factored as i = qj where j :A → W is a weak F-equivalence having the LLP with
respect to all F-7brations and q :W → B is an F-7bration. Since CM2 is veri7ed, q
is a trivial F-7bration. Then, there is a lifting r :B → W for the commutative diagram

A
j−−−−−→ W

i

�

�
q

B id−−−−−→ B

So, the map i is a retract of j. Therefore i also has the LLP with respect to all
F-7brations.
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Remark 2.2. We note that the factorizations above are functorial. This will be inter-
esting when we consider left-derived and right-derived functors. This also implies that
we have functorial cylinders and cocylinders.

Remark 2.3. Hirschhorn [10] and Dror-Farjoun [7] have been working with cellular-
ization functors associated to a set A of objects in a closed model category. Hirschhorn
proves that there is a closed model structure on Top? taking as 7brations the usual Serre
7brations of Top?, as weak equivalences they consider A-cellular equivalences and the
A-cellular co7brations are de7ned by the LLP with respect to all the maps which are
both 7brations and A-cellular equivalences. Taking as set of objects A= {∨#∈$ M#} if
we consider the closed model structure given by Hirschhorn, we have that the class of
weak F-equivalences is exactly the class of A-cellular equivalences. To see this fact
it is necessary to take into account that

∨
#∈$ M# is a suspension space that induces

nice properties in the corresponding function space. However, one has that the class
of F-7brations is larger than the class of 7brations. For example, because 0 → I is
not a Serre 7bration we have that ? + 0 → ? + I is an F-7bration which is not a
Serre 7bration. Therefore the CMC structure given in this work is diMerent to the CMC
structure given in [10]. However, it is interesting to note that a space is F-co7brant
if and only if it is connected and co7brant in the closed model category given by
Hirschhorn.

3. Some closed model categories associated to Z[S−1]

In this paper we consider a multiplicative system S of non-zero integers and a 7xed
n¿ 1. In order to introduce a model structure associated with (S; n) we recall brieOy
the de7nition of homotopy groups with coe;cients. For a more complete description
and properties we refer the reader to Hilton [9]. For k¿ 1, we have the canonical space
M (Z[S−1]; k) which is usually called the Moore space with coe;cient group Z[S−1]
and degree k. For a pointed space X , consider the set of pointed homotopy classes
�k(Z[S−1];X ) = [M (Z[S−1]; k); X ]. This hom-set admits the structure of a group for
k¿ 2 which abelian for k¿ 3. It is said that �k(Z[S−1];X ) is the kth homotopy group
of X with coe;cients in Z[S−1]. In this paper, for q¿ 2 we shall frequently use the
following exact sequence:

0 → Ext(Z[S−1]; �q+1X ) → �q(Z[S−1];X ) → Hom(Z[S−1]; �qX ) → 0:

In the category of pointed topological spaces and continuous maps, Top?, for a set
S of non-zero integers and n¿ 1, we consider the following families of maps:

De�nition 3.1. Let f :X → Y be a map in Top?,

(i) f is a weak (S; n)-equivalence if the induced map

�l(Z[S−1];f): �l(Z[S−1];X ) → �l(Z[S−1];Y )

is an isomorphism for each l¿ n.
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(ii) f is an (S; n)-7bration if it has the RLP with respect to the family T(S; n) of
inclusions

(C%kM (Z[S−1]; n− 1) × 0) ∪ (%kM (Z[S−1]; n− 1) ⊗ I)

→ C%kM (Z[S−1]; n− 1) ⊗ I

for every k¿ 0.
A map which is both an (S; n)-7bration and a weak (S; n)-equivalence is said

to be a trivial (S; n)-7bration.
(iii) f is an (S; n)-co7bration if it has the LLP with respect to any trivial (S; n)-7bration.

A map which is both an (S; n)-co7bration and a weak (S; n)-equivalence is said to be
a trivial (S; n)-co7bration.

A pointed space X is said to be (S; n)-7brant if the map X → ? is an (S; n)-7bration,
and X is said to be (S; n)-co7brant if the map ? → X is an (S; n)-co7bration.

We note that the homotopy group �q(Z[S−1];X ) only depends on the path compo-
nent C of the given base point of X . Therefore the inclusion C → X is always a weak
(S; n)-equivalence. It as also clear that all objects in Top? are (S; n)-7brant.

If we take the family F={M (Z[S−1]; n)}, which only has the Moore space obtained
by the suspension of M (Z[S−1]; n−1), the classes of F-7brations, F-co7brations and
weak F-equivalences given in De7nition 2.2 are exactly the classes of De7nition 3.1.
Then the following result is a consequence of Theorem 2.2.

Theorem 3.1. For each n¿ 1, the category Top? together with the families of (S; n)-
7brations, (S; n)-co7brations and weak (S; n)-equivalences, has the structure of a
closed model category.

We denote by Top(S;n)
? the closed model category Top? with the distinguished

families of (S; n)-7brations, (S; n)-co7brations and weak (S; n)-equivalences and by
Ho(Top(S;n)

? ) the category of fractions obtained from Top(S;n)
? by formal inversion of

the family of weak (S; n)-equivalences.
In a closed model category a map between objects which are co7brant and 7brant

is a homotopy equivalence if and only if it is a weak equivalence. Then one has:

Theorem 3.2 (Whitehead theorem). Let f :X → Y be a map in Top? and suppose
that X and Y are (S; n)-co7brant, then f is a pointed homotopy equivalence if and
only if �k(Z[S−1];f) is an isomorphism for every k¿ n.

De�nition 3.2. The (S; n)-co7brant space obtained through the factorization of ? → Y
as the composite of an (S; n)-co7bration and a trivial (S; n)-7bration, will be called the
(S; n)-colocalization of Y and it will be denoted by Y (S;n). The trivial (S; n)-7bration
Y (S;n) → Y will be called the (S; n)-colocalization map of Y .

De�nition 3.3. An abelian group A is said to be left-orthogonal to B and B is said
to be right-orthogonal to A if Hom(A; B) ∼= 0 and Ext(A; B) ∼= 0. Given classes A
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and B, if for every A of A and every B of B, A is left-orthogonal to B, the class
A is said to be left-orthogonal to B and B is said to be right-orthogonal to A. We
denote by Aort the class of abelian groups which are right-orthogonal to A and by
ortB the class abelian groups which are left-orthogonal to B. An abelian group which
is right-orthogonal to Z[S−1] will be also called an Ext-S-complete abelian group. A
space X is said to be Ext-(S; n)-complete if for k¿ n, �kX is Ext-S-complete.

Theorem 3.3. Let X be an (S; n)-co7brant space, and Y (S;n) → Y the (S; n)-
colocalization of a space Y , then

Ho(Top?)(X; Y (S;n)) → Ho(Top?)(X; Y )

is an isomorphism. In particular, if Y is an Ext-(S; n)-complete space, then

Ho(Top?)(X; Y ) ∼= ?:

Remark 3.1. If X is an (S; n)-co7brant space and B is an abelian group which is
right-orthogonal to Z[S−1], then the reduced cohomology of X with coe;cients in B
is trivial.

Remark 3.2. If B is an abelian group which is right-orthogonal to Z[S−1], if we denote
C[S−1] = Z[S−1]=Z, one has that Hom(C[S−1]; B) ∼= 0 and Ext(C[S−1]; B) ∼= B. If
S is the multiplicative system generated by a prime p, for a given abelian group D
the group Ext(C[S−1]; D) is usually called the Ext-p-completion of D. We refer the
reader to [12] for questions related with Ext-p-completions.

Remark 3.3. In order to give the factorizations of axiom CM5, we have chosen a
determined limit ordinal. Since the standard Moore space M (Z[S−1]; n) has a countable
number of cells, then for this case we can choose the continuum limit ordinal ℵ1.

4. (S; n)-co�brant spaces and uniquely S-divisible spaces

In this section, we observe that an (S; n)-co7brant space is (n−1)-connected and its
reduced singular homology groups are uniquely S-divisible. This fact implies
that the homotopy groups of an (S; n)-co7brant space are also uniquely S-divisible
abelian groups. On the other hand, we prove that if X is a uniquely (S; n)-divisible,
(n− 1)-connected space, then X is weakly equivalent to an (S; n)-co7brant space. This
gives an algebraic characterization of (S; n)-co7brant spaces.

Proposition 4.1. If X is an (S; n)-co7brant space, then X is (n− 1)-connected.

Proof. For any ordinal /6ℵ1, consider the ℵ1-sequence given in Theorem 2.2:

X 0 → X 1 → X 2 → · · · → X / → · · ·
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where X 0 =
∨

f M (Z[S−1]; n)f for all maps f :M (Z[S−1]; n) → X . For X / we have
two cases:

If / is the successor ordinal of 0, then X / is the homotopy co7bre of a map of the
form

∨
D M (Z[S−1];mD) → X 0, mD¿ n.

If / is a limit ordinal. We have that

X / = Colim
0¡/

X 0:

By trans7nite induction we obtain an (S; n)-co7brant space X ℵ1 and a trivial (S; n)-
7bration p :X ℵ1 → X . Now we can apply Theorem 3.2 to obtain that p is also a weak
equivalence.

It is easy to see that X 0 is an (n− 1)-connected space and taking into account that
a Moore space of the form M (Z[S−1];mD) with mD¿ n is (n− 1)-connected, one has
that the pushouts and colimits of the construction above give again (n− 1)-connected
spaces. Therefore X ℵ1 is an (n−1)-connected space. Because p is a weak equivalence
one has that X is (n− 1)-connected.

De�nition 4.1. A pointed space X is said to be uniquely (S; n)-divisible if for k¿ n
the homotopy groups �k(X ) are uniquely S-divisible. Similarly we have the notion of
(S; n)-divisible and of (S; n)-torsion.

Proposition 4.2. Suppose that X is a uniquely (S; 2)-divisible, 1-connected space. Then
for q¿ 1 one has:

�qX ∼= Hom(Z[S−1]; �qX ) ∼= �q(Z[S−1];X ):

Proof. We note that if B is a uniquely S-divisible abelian group, then Hom(Z[S−1]; B) ∼=
B and Ext(Z[S−1]; B) ∼= 0. For the last isomorphism you can see that any epimorphism
B → Z[S−1] has a section. Now from the exact sequence

0 → Ext(Z[S−1]; �q+1X ) → �q(Z[S−1];X ) → Hom(Z[S−1]; �qX ) → 0

the desired result follows.

The following result gives up to weak equivalence some algebraic characterizations
of (S; n)-co7brant spaces.

Theorem 4.1. Let X be a pointed space, then the following statements are equivalent:

(i) X is weakly equivalent to an (S; n)-co7brant space,
(ii) for every abelian group B right-orthogonal to Z[S−1] the reduced singular co-

homology groups H̃ q(X ;B) are trivial and X is an (n− 1)-connected space,
(iii) for every s∈ S the reduced singular homology groups H̃ q(X ;Z=s) are trivial and

X is an (n− 1)-connected space,
(iv) the reduced singular homology groups of X are uniquely S-divisible groups and

X is an (n− 1)-connected space,
(v) X is a uniquely (S; n)-divisible, (n− 1)-connected space.
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Proof. (i) =¿ (ii). Proposition 4.1 and Remark 3.1.
(ii) =¿ (iii). Note that if s∈ S then any Z=s-module M is right-orthogonal to

Z[S−1]. Therefore the reduced cohomology of X with coe;cients in a Z=s-module M
vanishes if s∈ S. By the universal coe;cient theorem for Z=s-module chain complexes
we have that Hom(H̃ q(X ;Z=s); M) ∼= 0 and Ext(H̃ q(X ;Z=s); M) ∼= 0. In particular one
has that Hom(H̃ q(X ;Z=s); H̃ q(X ;Z=s)) ∼= 0. This implies that H̃ q(X ;Z=s) ∼= 0. Then
we have that the reduced homology of X with coe;cients in Z=s is trivial.

(iii) ¡ = ¿ (iv). This is obvious from the universal coe;cient theorem. If A is
an abelian group, then A ⊗ Z=sZ and Tor(A;Z=sZ) are respectively the cokernel and
kernel of multiplication bys on A, so these group vanish if and only if A is uniquely
s-divisible.

(iv) ¡=¿ (v). It follows from Serre mod C theory, see [15]. A 1-connected space
has uniquely S-divisible homology groups if and only if it has uniquely S-divisible
homotopy groups.

(v) =¿ (i). Let p:X (S;n) → X be the S-co7brant approximation of X . By Proposi-
tion 4.2, if (v) holds, then for every q¿ n, �q(Z[S−1];X ) is isomorphic to �q(X ) and
similarly for X (S;n). Therefore, p is a weak equivalence and X is weakly equivalent to
an (S; n)-co7brant space.

Theorem 4.2. The localized category Ho(Top(S;n)
? ) is equivalent to the homotopy cat-

egory of uniquely (S; n)-divisible, (n− 1)-connected spaces.

Proof. By Theorem 3.1 Top(S;n)
? has the structure of a closed model category. There-

fore the localized category Ho(Top(S;n)
? ) is equivalent to homotopy category of (S; n)-

co7brant spaces (in this case all spaces are (S; n)-7brant). Now by Theorem 4.1 one
has that a space X is (S; n)-co7brant if and only if X is a uniquely (S; n)-divisible,
(n − 1)-connected space. Then Ho(Top(S;n)

? ) is equivalent to homotopy category of
uniquely (S; n)-divisible, (n− 1)-connected spaces.

Now we study the relationship between the homotopy groups of a space X and the
homotopy groups of its (S; n)-colocalization X (S;n).

Proposition 4.3. Let X (S;n) be the (S; n)-colocalization of a pointed space X . Then
for q¿ n the following sequence is exact

0 → Ext(Z[S−1]; �q+1X ) → �q(X (S;n)) → Hom(Z[S−1]; �qX ) → 0:

Corollary 4.1. Suppose that B is an abelian group and K(B; q) the Eilenberg–Mac
Lane space at degree q¿ 2. Then K(B; n)(S;n) is an Eilenberg–Mac Lane space such
that �n(K(B; n)(S;n)) ∼= Hom(Z[S−1]; B). For m¿n, K(B;m)(S;n) has two possible non
trivial homotopy groups

�m−1(K(B;m)(S;n)) ∼= Ext(Z[S−1]; B);

�m(K(B;m)(S;n)) ∼= Hom(Z[S−1]; B):
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Remark 4.1. The multiplicative system S can be seen as a co7nite directed set. We
can assume that all the integers of S are positive. Given s′, s∈ S we say that s′¿ s if
there is an integer t such that s′ = ts. Given an abelian group B we can construct the
pro-group SB directed by S as follows: De7ne SB(s) = B for all s∈ S. If s′ = ts the
bounding map SBs

s
′:SB(s′) → SB(s) is de7ned by SBs

s
′(x) = tx for every x∈ SB(s′). It

is easy to check that

Hom(Z[S−1]; B) ∼= lim(SB);

Ext(Z[S−1]; B) ∼= lim1(SB):

Remark 4.2. Given a pointed space X , we can associate to the loop space 6X the
pro-space S6X directed by S as follows: De7ne S6X (s) = 6X for all s∈ S. If s′ = ts
the bounding map S6X (s′) → S6X (s) is de7ned by sending a loop ! to the composite
!t . The homotopy limit holimS6X is weakly equivalent to the space 6(X (S;n)).

Remark 4.3. For n¿ 1, and a multiplicative system S of non-zero integers, we have
the Sullivan–Quillen localization, that for an (n − 1)-connected space X gives a lo-
calization map X → X ⊗ Z[S−1], such that X ⊗ Z[S−1] is a uniquely (S; n)-divisible,
(n − 1)-connected space. This map is initially universal among every map f:X → Z
with Z a uniquely (S; n)-divisible, (n− 1)-connected space. Using the (homotopy) uni-
versal property of the map Y (S;n) → Y , for every (n − 1)-connected space X , and a
pointed space Y , one has

Ho(Top?)(X ⊗ Z[S−1]; Y ) ∼= Ho(Top?)(X; Y (S;n)):

In particular for q¿ n, the homotopy groups of Y (S;n) can be obtained as

�q(Y (S;n)) ∼= Ho(Top?)(Sq; Y (S;n)) ∼= Ho(Top?)(Sq ⊗ Z[S−1]; Y ):

Remark 4.4. For n = 2, and the multiplicative system S = Z − {0} we have a “cora-
tionalization” functor and a canonical map Y (S;2) → Y that gives an equivalence of
the localized category and homotopy category of rational 1-connected spaces. We re-
mark that we can also de7ne a functor and a colocalization map Y (S;1) → Y . The
functor Y (S;1) becomes more complicated because 1-connected spaces do not have nice
properties.

Remark 4.5. Suppose that X is an 1-connected space and for the ring R = Z=p, we
consider the Bous7eld–Kan R-completion X → R∞X , see [2,12]. If we take the multi-
plicative system S generated by p and n=2, we have the (S; n)-colocalization X (S;n) →
X and the homotopy 7bre F of the map X → R∞X . Since the homotopy groups of
R∞X are Ext-p-complete, one has that the hom-set Ho(Top?)(X (S;2); R∞X ) is trivial.
Therefore there is a canonical map X (S;n) → F . On the other hand, if we assume that
in each �kX the p-torsion elements are of bounded order, one has the exact sequence

· · · → �k+1X → Ext(C[ 1
p ]; �k+1X ) → �kF → �kX → Ext(C[ 1

p ]; �kX → · · ·
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(recall that C[1=p] denotes the quotient Z[1=p]=Z) and consequently the exact sequence

0 → Ext(Z[ 1
p ]; �k+1X ) → �kF → Hom(Z[ 1

p ]; �kX ) → 0:

Therefore we have that �kF are uniquely p-divisible. With the additional condition
Ext(Z[ 1

p ]; �2X ) ∼= 0, we have that F is also 1-connected. In this case, there is also a
canonical map F → X (S;2) and we have that F is weakly equivalent to X (S;2).
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