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Abstract

Let J, denote the Bessel function of order u. The system

J 1 s
2= {6y = {Noc Ton T et (P) }
s=>1

aps|Joz+1 (apa)‘

withn =0,1,...,0> — 1, and where p; denotes the sth positive zero of J,(ax), is orthonormal
in /2(N). In this paper, we study the mean convergence of the Fourier series with respect to this
system. Also, we describe the space in which the span of the system is dense.
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1. Introduction

Let p,; be the sth positive zero of J,(ax), where J, denotes the Bessel function
of order u and a>1. In [9, Section 6.6, Lemma 2], it is proved that if m,n are
positive integers or zero, o> —m—n—7y—1 and not a negative integer,
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and y +m+n> — 1, then

i: Jo<+*,'+2n+l (ps)JoH—y+2m+1 (PS) _ 5iz,m
= (aps‘]%H (aps))z 4(0( + Y + 2}’! + 1)
+ (_1)n+m sin(yn) * Koc(t)
Y 0 t1 ( )

t
X Jyiyion+1 (5> Lyiyioms ( ) dt

with K, the modified Hankel function and 7, the modified Bessel function of the first
kind. The previous formula, being y = 0, provides an orthonormal system in />(N)
given, for o> — 1, by the sequences

. . 2n+l<ps)
g =AU} ={2\/oc+2n+ *—} ., n=0,1,....
{ ()}321 aps|Joz+1(ap)|

We consider the partial sums of the Fourier series with respect to the system
{jz}n>0
n

Sn(b’]) = Z (b)Jk( i b ]k

k=0 s=1

These series are the discrete analogous of Fourier—Neumann series (see [3,10]), so we
will refer to S,b as the discrete Fourier—Neumann series.

Fourier—Neumann series have had a prominent role in the study of band-limited
functions for the Fourier transform (see [1]) and in the analysis of dual integral
equations (see [4]). Moreover, some of the operators appearing in Fourier—Neumann
expansions are related to the disc multiplier for the Fourier transform (see [2,5]). The
analysis of these operators rely on very precise estimates about the uniform
asymptotic behaviour of Bessel’s functions of different orders and their derivatives.
These estimates will be needed, also, when working with discrete Fourier—Neumann
series.

In the same way as the Fourier—Neumann series are used to solve dual
integral equations, the discrete Fourier-Neumann will help us to solve
the dual series equations. In this problem, we must find a sequence {r(s)},-,
such that

é r()pPT,(psx) = f(x) if 0<x<I,
i ()J(Ps)—() if l<x<a

s=1

for a given function f. Dual integral equations have applications to certain physical
problems in a semi-infinite medium. The corresponding problems in which the
medium is confined within a circular cylinder or between a pair of parallel planes can
be reduced to dual series equations (see [8, Chapters 2,9,10, 9, Chapter 6]). We will
deal with dual series equations in a forthcoming paper.
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The aim of this paper is to study the convergence of S,b in the /”(N)-norm. This
involves two problems:

(a) To obtain uniform boundedness of the operator S,b in 7(N).

(b) To find the subspace of /’(N) consisting of the sequences b that can be
approximated in the /7(N)-norm by its discrete Fourier—Neumann series, i.e., to
describe the space

by =5pan{j;},., (closure in /”(N)).

In order to solve (a) we will decompose S, in a suitable way which reduces the
problem to showing the boundedness, with discrete weights, of some operators that
will be compared with the discrete Hilbert transform. Moreover, we will need some
bounds for the Bessel functions and some results on discrete A, weights.

Regarding (b), we define the operator #,, with o> — 3, given by

x)V2
Z b(s x7 0<x<a (1)
a|J1+1 (aps)|
for suitable sequences {b(s)},- .
Now, we consider the formula (see [9, Section 6.6, Lemma 1])
f: 2Jy+ +2n+l(ps)Ja<(psx)
api 3 (apy)
B IF'la+n+1)
2T+ D) I (n+y+1)
x oFi(—nn+ 9+ o+ Lo+ 1;x%)y 0,1 (x)

s=1

x4 (1 = x?)!

which holds for n a positive integer or zero and o, 7> — 1. Taking y = 0, we can write
this last expression, using J#,, as

Ho(2x) = /2 + 2n + 1)x* 2P (1 — 2%y 1, (2)

where PP (x) denotes the nth Jacobi polynomial of order (o, ) for o, f> — 1, and
therefore supp(#,(j*))<[0,1]. So, it is clear that not every sequence can be
approximated by its discrete Fourier—Neumann series. We only need to deal with
sequences such that supp(#,) =0, 1]. This leads us to consider, in a natural way, the
Xpo,;-multiplier for #,, i.e., the operator M, defined by

%a(Mab) = X[O,l]%&b'

The paper is organized as follows: In Section 2, we prove the uniform boundedness
of the operator S,; also, all the tools needed for this are introduced. Section 3
contains the results related to M, and in the last section we identify the spaces b, .

Throughout this paper, unless otherwise stated, we use C (or C)) to denote a
positive constant independent of n (and all other variables), which can assume
different values in different occurrences. Also, in what follows, a, ~ b,, for a,, b, >0,
means C<a,/b,<C
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2. Uniform boundedness of the partial sums
In order to estimate S, we will need appropriate bounds for the Bessel functions.

From the well-known estimates (see [6, 11, Section 3.1(8), p. 40, Section 7.21(1),
p. 199))

xﬂ
e — 142
Ju(x) P (it 1)+0(x ), x—0+ (3)
and
_ ]2 pn m i
Ju(x) = E{cos(x -5 Z) +0(x )}’ x> o0, @
where the O terms depend on u, we have, for u> — %7
|J,¢(x)|<C#x*1/27 x€ (0, o0). (s5)

The formula 2J)(x) = 2J,(x) — Ju41(x) proves the same inequality for J;(x) and

| X
X>3.
2
Some bounds for J,, and J; with constants independent of y are also available. For
instance (see [1,5]),

(li—X)*l if ﬂ/2<x<,u—'u1/37
| (x)|<C p/3 if - uP<x<u+ u'l?, o
n ,u_l/4(x _ﬂ)_]/4 if M+M1/3<x<2'u7
X2 if 2u<x,
WP —x)TE p2<x<p — ptl3,
|/ (x)|<C p23 if u— uA<x<ut u'l?, o
GRS Y7V Y S Vi oo
Pt (x = ) if u+pP<x<op,
X2 if 2u<x.

In the interval 0 <x < /2, for each fe R with ff + u >0 there exists some constant Cp
depending only on f, such that

e\ #
) < =12 (3) ®)

(see [11, Section 3.31, p. 49]). From ZJL(x) = Jy—1(x) — Jus1(x), the same inequality
for J;t(x) can be obtained. It is easy to deduce from (6), (7), and (8) that

()| < Cx VA (|x — | + 1) xe (0, 00), 9)

(I < Cx 4 (x = + W) xe(0,00) (10)

with some constant C independent of u. Bounds as (9) and(10) were used in [3,10].
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Some information about the positive zeros of the function J,, will be needed. Let
be the sth, s>1, positive zero of J,. Then we can show, using (4), that

[Tt ()| ~ 11512 (11)
A very important issue in our reasoning will be to know where p, lies. As for this
point we have

py=ms—3m if p=—3 (12)

po€(sm—fm+3pm, sm—in+fun) if —l<p<d (13)
(see [11, Section 15.33, p. 490]) and

1 1 1 1 . 1 Qu+1)(2u+3)
U € (sn—l—z,un —En,sn—i—zun —Zn> if ,u>§ and ,ux>7
(14)
(see [11, Section 15.35, p. 492)).
The main result in this section is the following.

Theorem 1. Let o> — % and 1 <p < oo. Then there exists a constant C independent of n
and b such that

15061l < Cllbllpgys Vel (N) = $<p<s. (15)

First of all, we are going to give an appropriate expression for S,,. For a sequence
bel>(N)n[P(N), it can be described as

o0

Sulboj) =D bls)Ku(s.)) +b()Ka(ji)),

s=1s#j

where
Ki(s,)) = Y 25Vt ()
k=0
So, using the identity

n
Z 2(o + 2k + 1) 2k041 (1) o 2641 (1)
k=0

rt
5 (a1 (0u(0) = 11.(1) i (1)
1T 202 (M s (0) = Wasonsa (1) (1)) for r,
- Pl + (1-%) 50
o+ 2n+2)°
_(Jo,c+2n+2(r))2 _ (1 ( i ) >J§+2n+2(")] for r =1,
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(the case r#¢ can be found in [10] and the case r = ¢ is obtained taking the limit when
t—r), we have
Sub = Wib — Wib + W3b + Wy,b — Ws b — We b,

where

) B adal) b
W) = Zalestanl 2, Valans(am) ) — ()
N 2apj-]zx+1(Pj) - Jat(PS) b(s)
Wﬁw’)__VEUQJWHNSZM#,¢aﬁwﬂﬂkﬂhwﬁz—(@%f’

()" + (1 =) ()

Wi (b,j) = 2b(j)

a? (Jac+1(61191))2 7
20,(p;) = apJi(ps) b(s)
Wan(b.j) = —=r7—— ’
* ( ) \/‘|J1+1 apj x:;#] \/—|J0<+1 ap5)| (ap‘\')z - (apj)z
2ap;J! - J s b(s
WS,n(ba]) == (p] Z (p 2 ( ) 2’
\/_|J“+1 apj =Tt o1 Clp )| (aps) - (apj)

(2l + (1 - ;72>13<p_,->
az(Jot+l (apj))z

W6,n(baj) = 2b(])

with v =oa + 2n + 2.

To prove the boundedness of S,, we will need some results about discrete 4,
weights: Let 1 <p< co. A discrete weight w is said to belong to the 4,(S) class, S=Z,
denoted by we 4,(S), if

p—1 P
<; w(s)) (; wl/(”w(s)) SC(; 1) ,

where I is any subset of S and C is independent of /. The weights in A,(S)
characterize the boundedness of the discrete Hilbert transform

. b(s
Hpp)= Y 2
SES,s#£] J=s
In fact, in [7] it is proved that
Dl (s,0) S ClIbl sy, VOEF(S,w) < weAy(S). (16)

Besides, the norm of the Hilbert transform and the constant in the 4,(S) definition
depend only on each other. This allows us to use the uniform A4,(S) theory: Let us
suppose that a family of weights {w,},- , satisfies the 4,(S) condition with the same
constant C (in this case, we say that w, € 4,(S) uniformly). Then the discrete Hilbert
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transform H is uniformly bounded from / (S, w,) into itself, that is, with a constant

independent of n.
Using the following lemma we will estimate the /7(N)-norm of some of the

operators involved in S,,.

Lemma 1. Let a> — 1 1<p<oo and we A,(N). Then,

(a) the operator
o0

satisfies the inequality
HH*leﬁ(N.w)gCHb”lﬁ(N,w) Vbel’ (N, w),

S=

(b) the operator

H. (b)) = zOC: &

s=1,5#] apj + aps
satisfies the inequality

[Hb|| iy S ClIBI )y VOEP(N, ).

Moreover, the norm of these operators and the constant in the A,(N) definition depend
only on each other.

N

Proof. (a) The result follows by showing that for j —% x<j+
cf o, )
ryiz1/2 (X = )
where H denotes the discrete Hilbert transform, and by taking the function f(y) =
Yot B()s—1/a541/4(¥). In this situation and defining the weight W (x) to be w( )
for j — }<x<j + § and linear in between (so, it is clear that W e4,((0, «))), we can
conclude that

1H-bl

= Z \H_(b,j)I"'w(})
j=1
0 0 j+1/4 p
(w3 [0 ) )

Jj=1 Jj=1
U@md
x—y21/2 (X = p)

H_(b,]) ~ - H(b.))

<C| [HbI[} ) +

Lr((0,00),W)
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Clearly

eylz1/2 (X — ¥)

where M is the Hardy-Littlewood maximal operator. It is well known that M
satisfies

UM 1 0,00).0) S CUS 0,000,y <= W EAR((0, 00)),

and the constant C only depends on the constant in the 4, definition. From this and
(16) we get the estimate

20y S CUB o0y + 11 12 0,00),7)) S ClIB i ) -

Now, we must prove (17). From (12)~(14) we have |ap; — ap, — n(j — 5)|<C and
|ap; — aps|~|j = s|- So,

||H-b|

’ (b])—lH(b]‘SCic: b(s)|2.

s=1,5#] (] S)
Taking into account that |b(s) \—2fs+ll//f y)|dy and |j—s|~|x—y| for s—
4\y<5 +Z and j —Z\XSJ +Z, with s#j, we conclude
1 0 s+1/4
o)~ HO) < € > gl ol
s=1,5# =

< ”1/4 SO L/ )l
dy<C d
Z g /f yI=1/2 g

s=1,s#j 75~ 1/4 x_y)Z (x—y)2

(b) Taking into account that ap;~s it is easily verified that

0
b~ Y
\:lv;é]]+s

Now, considering the sequence ¢(s) = |b(s)], for s=>1, and ¢(s) = 0, for s<0, and the
weight w(s) = w(]s|) and w(0) = 0, we have

r(Z,w)»

||H+<b,j>||U<N,w><C{ > ﬁ} - qll@)
JEZ||pp

seZ,fsséj] (%)

where d(s) = ¢(—s). So, the desired inequality can be obtained from (16) for
S=z. 0

The following lemma, which shows that some weights are in 4,(N), will be used
later in connection with the previous one:



134 O. Ciaurri | Journal of Approximation Theory 126 (2004) 126—140

Lemma 2. Let o> — % and 1 <p< co. Then

@) if =1<y<p—1,{pi};> 1 €4p(N).
() jra<p<a, {p*|lps — v + V'3 L €4, (N) uniformly in v.

Proof. (a) This part is obvious using (12)—(14) and the equivalence

. ket if e>—1,
> s ~Q loglk +1) if e=—1, (18)
s=1 1 if < —1.

(b) It is clear that, for p~' 447! =1,
wed,(N) < w9?ed,(N).

So, we will check that {p;**|[ps — v| +v'/3|"*} € 4,(N), if $<g<4. Using the
equivalence p; | |ps — v| +v'/3|%* ~ p; (s — v[¥* +v412), it will be enough to
prove that {p{q/“}le eA,(N) and {p;"*p, — V7" L ed,(N) uniformly in v.
Using (a), we have {ps_q/“}S21 € A,(N) for g<4. Now, showing that

—l<u<qg—1,

—l<v<g -1, = {s"|s — 0|"},5,in 4,(N)uniformly in J (19)

—l<u4+w<g—1

and using (12)-(14), {ps_q/4 |ps — v|‘1/4}S>1 € A4(N) uniformly in v, if $<g<4. Taking
into account (18) and the behaviour of the weight in the intervals [1,[5/2]),

[[6/2],[20]) and [[20], c0), where [m] denotes the integer part of m, we can prove
(19). O

Proof (Proof of Theorem 1). First, we are going to prove that §< p<4is anecessary
condition for the uniform boundedness of S,,.
It is clear that the operator
Tyb = Syb— Su_1b = c,(b)j
must be bounded. Then, using duality, this fact implies that
Ivs iy S C. (20)

rewlln

From (5) and taking into account the behaviour of p,, we can prove that j*e’(N) if
I <p< oo. In that case, asymptotic estimates for J,. 5,1 allow us to show that
11

w2 if p<4,
P 1 I
||]n||11’(N) ~ N n4(logn)d if p =4,
1.1
n¥p 3 if p>4.

Then, this and (20) give the necessary condition %< p<4.
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Now, let us suppose that %<p<4. We prove the uniform boundedness of S,b.

We start analyzing W;. Using rzz_’ 7= ,]T, + %Jr,, we can write
Wib=—W/!b+ Wib,

where

1 N Ja(Pj) Jct-&-l(ps) .
WD) = e (apy (ﬁuw @’ “”)

and

2 N Ja(l’./) JotJrl(ps) §). i
W00 = 5 1 (e )

From (5), (11), (a) in Lemma 1 and (a) in Lemma 2 it can be concluded that, for

l<p<oo,
U (G 9)

Joc+1(pj) .
{ \/aJaHrl (Clpj) |b(j)| }j;1

In a similar way, but considering (b) in Lemma 1, it is possible to deduce that, if

l<p< oo,
U (om0},

Ja+1(pj) . }
_LetWi) g <Clbllpn.
{ \/5J1+1(apj) | ( )| j=1 I°(N) || ||l )

The operator W, works like ;. The boundedness of W3 follows from (5), (11) and
the bound |J(x)|<C,x""/?, which holds for x>l in fact, we have
[W3(b,j)| < Clb(j)].

Now, we will check that Wi, is uniformly bounded in /”(N) for ‘3—‘<p<4.
Using this and taking into account that the adjoint operator of Wi, is —Ws,,
we will obtain that W5, also satisfies the desired inequality in the same interval of

values of p.
As for Wy, we can write

IWbllpoy< C

IP(N)

<C < C1b]lpny-

IP(N)

IWEbllpoy < C

IP(N)

<C

Winb = =W, b+ W;,b,

where

o Ly 7(p) |
Wanlb:d) = 3 alhn(ap - (ﬁux“(aps) ”(””)
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and

A L)
Winlbd) = 3 e (ap (\/5|J1+1(aps) 3 )”)‘

In this way, using consecutively (9), (11), (a) in Lemma 1, (b) in Lemma 2, (10) and,
again, (11) we have

||Wi,nb|\/v(N)
J/

<C {H (j'i(mb(s),j)}
\/‘_l| a+1(aps)| j=1 IP(N,{}ﬁ’M\\p/*vHV'/"\*"M}j%)
V()

e

w+1(ap; 2 (N =127 )

< 6]

By (b) in Lemma 1, we can deduce the estimate for an
Now, estimates (6)—(8) allow us to conclude that | W ,(b,/)| < C|b(j)|. So, we can
prove the uniform boundedness of W,, ending the proof. [

3. The y ;-multiplier for the operator 7,

It is well known that the sequence of functions {2 }S>1 forms a complete

alJ, +l(0px
orthonormal system in L?([0, a], dx), usually called Bessel system. Now, we define the
operator #,, for o> — 1, by

f] /f J(p] dX, J:1727
al o ap])l

for suitable functions f. The operator #, gives the Fourier coefficients associated
with the Bessel system and its inverse operator is #,. So, it is not difficult to check
that

||fof||12(N) = ||f||L2([o,a],dx) and Ay (J.S) =f
for f e L*([0, a], dx). Moreover, for be/>(N), we have
A bl 12 0.aax) = 1Pllpny  and 7, (A 2D) = b.

The following relation between #, and #, can be proved in an easy way:

Zb ()I,(f.)) = /%bx x) dx (21)

for fe L*([0,a],dx) and be*(N).
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Using ¢, the operator M, can be described, at least for be>(N)n/’(N), as
M,b = ja(X[U.l]‘%fxb)' (22)

This description will be very useful in the proof of the following result.

Theorem 2. Let o> —% and 1 <p< oo. Then there exists a constant C such that
||Mtxb||lﬂ(N) < CHb”lP(N) Vbelz(N) NIP(N).

Therefore, M, can be extended to an operator (also denoted M,) bounded from IP(N)

into itself such that

@) A (Myb) = yo.1)H# b, VbeP(N) N IP(N),

(b) M2b = M,b, VbelP(N),

(©) for belP(N) and cel{(N), p~' + ¢~ = 1, we have

i b(s)M,(c,s) = i M, (b, s)c(s).

Proof. From (22), we obtain
. 2b(s)

M, (b,j) =
| ( J) x:%;éj az“]c(+l(aps)||]a

2b( ) ! 2
AT /0 (Ju(py0)) 2 dix.

Lommel’s formula

1
Gl e

%1‘2(7‘]0%1(7)-]@([) - [Joz(r)-]a+1([)) if r#t,

72

1
o (rx)J, (tx)x dx =
/0 (J5(r)* + (1 -~ ‘:—j)Jg(r) if r=1t

leads us to
M,b = Wb — W>b+ Wsb,

where W), W, and Wj, are bounded operators as we saw in the proof of
Theorem 1.

Now, taking into account that #,(#,b) =b and using standard density
arguments, statements (a) and (b) follow easily. So, let us prove (c).

Let U, and U, be the bilinear operators on /7(N) x [9(N) given by

Ui(b,c) = Zw: b(s)My(c,s)

=1

Y

and

Uy(b,c) = Z M, (b,s)c(s).
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U; and U, are well defined by Hoélder inequality. So, if U; = U,, for all
(b,c)e(I>(N) x P(N))n (P(N) x (N)), which is a dense subset of /7(N) x I4(N),
we can obtain (c¢). Using (22) and (21) twice we finish the proof:

Uib,d) = 3 b(s) 9 (ron #or5) = / o () a(b, x) o, x)
s=1
=Y Al
s=1

o X[Ovl]%abvs)c(s) = Uz(b,C). 0

4. The ¢, , spaces

As a standard consequence of Theorem 1, we obtain that S,b— b, in ”(N), for all
beby,, if §<p<4 and o> — % This will be more interesting if we can describe the
spaces b, ,. We do it in this section.

From Theorem 2, for o> —% and 1<p< oo we can define the spaces

epo = {BEP(N) : Myb = b} = M,(IP(N)),

endowed with the topology induced by 7(N).

It is clear, using /7' (N)c/”2(N), that e, ,<e,,, for 1 <p;<p»<oo. In the next
proposition we will prove that the dual space (e,,)" is isomorphic to e, p T+
¢~' =1, in the standard sense.

Proposition 1. Let o> — %, l<p< oo and let T be a bounded linear operator on ey,
into R. Then, there exists a unique sequence c€ ey, p ' +q7 ' =1, such that

. Z b(s)e(s) Vbeeys. (23)

Furthermore ||T|| ~||c

14(N)*

Proof. Let us take T€(e,,)". By the Hahn—Banach theorem, T can be extended to
Te(lP(N))" preserving its norm ||T||. By duality, there exists de/?(N) such that

= z@: b(s)d(s) Vbel’(N)
s=1

and |[T[| = ||d||;n)- Taking ¢ = M,d, from (b) in Theorem 2, it follows that ceey,.
Let see that this sequence is what we need. For bee,,, from (c) in Theorem 2, we
have

b(s

1

= 200: b(s)d(s) = i M, (b,s) i M,(d,s) =

o0
s=1 s=1 —

s

By Hélder inequality we obtain ||7||<[[M.d||uq, thus the equivalence
I T'|[~Ilellu() follows immediately.
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To prove the uniqueness, we assume that p>2 and that there exists c and ¢’ in e, ,
satisfying (23). Then

zw: b(s)(c(s) = (s)) =0 Vbel(N).
s=1

Taking b =c — c'ee ey, it follows that ¢ — ¢ = 0. The case p<2 is a simple
consequence of this considering that /7(N) is reflexive and, since ¢, , is closed, then
ey 1s also reflexive. [

The following result characterizes the spaces b,,.
Theorem 3. Let o> — 1 and $<p. Then b, , = e,,.

Proof. Case p = 2: The spaces by, and e, are well defined. Also M,(j*) =j%. In
other words, by, e, ,. If they were not equal, by the Hahn—Banach theorem, there
should exits some T'e(ex,)", T#0, such that T'(;%) =0, Vn. But (e2,)" = €24, SO
there exists a sequence ¢ €es,, ¢ #0, such that > 7, ¢(s)/%(s) = 0, Vn. Then

Oiz‘b ]n ZM¢a ]n /%(]5, (]na)
:\/2(<x—|—2n—|—1)/ Ho(, x)x* V2P (1 = 2x%) dx
0
(

for every nonnegative integer n. Now, the Jacobi polynomials Pn“’ﬂ ) (x) are a
complete orthogonal system with respect to the measure (1 —x)*(1 + x)’ dx. A
change of variable proves that the functions x**!/ szf"O)(l —2x?) are a complete
orthogonal system with respect to the Lebesgue measure on (0, 1). Thus, #,¢ =0
on (0, 1). Since ¢ e, ,, we also have #,¢p = 0 on (1,a). Therefore, #,¢p = 0 and we
get the contradiction ¢ = 0.

Case p>2: By the preceding case, we have j ee,, ce,,. Thus, b, Se,,. Now, let

bee,,. Given ¢>0, there exists a sequence ce*(N)n/7(N) such that ||p — ¢| | ()
Let d = M,c; then de’(N)n/P(N) and M,d = d, so that deey,ney, = bz‘ar\ep,“.
Since M, is continuous, |[b — d||; ) = |[Mu(b — ¢)|[pn) < Ce. As d€bs,, there exists
d'espan{j;},- such that ||d — d'|[n) <& Now, the inclusion e, <e,, gives ||d —
d'|| () < Cé, so that, by the triangle mequahty, |6 — d'|[15(ny < Ce. This gives the
1nclus10n €0 Shpy.

Case p<2: Again it is clear that jiee,, and then b,,<e,,. The other inclusion
follows if we prove that the only operator 7 € (e, )" such that 7'(b) = 0 for all be b, ,
is T'=0. For such an operator, we have, in particular, T(j%) = 0 for all n=0. On
other hand, by the duality (e,,)" = e,4, p~' + ¢! = 1, there exists ¢ ee,, such that

= i b(s)p(s) Vbee,,
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and
o0
> Jis)¢(s) =0 V¥n=0. (24)
s=1
Now, using the preceding case, Theorem 1 and (24), we conclude that ¢ =0. [
The previous theorem allow us to obtain the following corollary.
Corollary 1. Let o> — 1 and$<p<4. Thenlim,_, . S,b = M,b, in I"(N), Vbe I’ (N).
Proof. Let us consider be/’(N). Then M,bee,,. Now, by Theorems 1 and 3

Sy(M,b)— M,b, in IP(N). So, we only need to show that S, (M,b) = S,b, and this is
clear because, by (c) in Theorem 2,

cn(Mb) = Y My(b,s)ji(s) = Y b(s)Mu(j;.5)

8
8

References

[1] J.A. Barcelo, A. Cordoba, Band-limited functions: ”-convergence, Trans. Amer. Math. Soc. 313
(1989) 655-669.

[2] A. Carbery, E. Romera, F. Soria, Radial weights and mixed norm inequalities for the disc multiplier,
J. Funct. Anal. 109 (1992) 52-75.

[3] O. Ciaurri, I.J. Guadalupe, M. Pérez, J.L. Varona, Mean and almost everywhere convergence of
Fourier-Neumann series, J. Math. Anal. Appl. 236 (1999) 125-147.

[4] O. Ciaurri, 1.J. Guadalupe, M. Pérez, J.L. Varona, Solving dual integral equations on Lebesgue
spaces, Studia Math. 142 (2000) 253-267.

[5] A. Cordoba, The disc multiplier, Duke Math. J. 58 (1989) 21-29.

[6] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions, Vol. II,
McGraw-Hill, New York, 1953.

[71 R. Hunt, B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for the conjugate function and
the Hilbert transform, Trans. Amer. Math. Soc. 176 (1973) 227-251.

[8] ILN. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951 (Republication: Dover,
New York, 1995).

[9] CJ. Tranter, Bessel Functions with Some Physical Applications, English University Press, London,
1968.

[10] J.L. Varona, Fourier series of functions whose Hankel transform is supported on [0, 1], Constr.
Approx. 10 (1994) 65-75.
[11] G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Edition, Cambridge University

Press, Cambridge, 1944.



	Discrete Fourier-Neumann series
	Introduction
	Uniform boundedness of the partial sums
	The chi[0,1]-multiplier for the operator Halpha
	The ep,alpha spaces
	References


