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Abstract

Let Jm denote the Bessel function of order m: The system

jan ¼ f janðsÞgsX1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2n þ 1

p Jaþ2nþ1ðpsÞ
apsjJaþ1ðapsÞj

� �
sX1

with n ¼ 0; 1;y; a4	 1; and where ps denotes the sth positive zero of JaðaxÞ; is orthonormal
in l2ðNÞ: In this paper, we study the mean convergence of the Fourier series with respect to this
system. Also, we describe the space in which the span of the system is dense.
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1. Introduction

Let ps be the sth positive zero of JaðaxÞ; where Jm denotes the Bessel function

of order m and a41: In [9, Section 6.6, Lemma 2], it is proved that if m; n are
positive integers or zero, a4	 m 	 n 	 g	 1 and not a negative integer,
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and gþ m þ n4	 1; then
XN
s¼1

Jaþgþ2nþ1ðpsÞJaþgþ2mþ1ðpsÞ
ðapsJaþ1ðapsÞÞ2

¼ dn;m

4ðaþ gþ 2n þ 1Þ

þ ð	1Þnþm sinðgpÞ
p

Z
N

0

KaðtÞ
tIaðtÞ


 Iaþgþ2nþ1
t

a

� �
Iaþgþ2mþ1

t

a

� �
dt

with Ka the modified Hankel function and Im the modified Bessel function of the first

kind. The previous formula, being g ¼ 0; provides an orthonormal system in l2ðNÞ
given, for a4	 1; by the sequences

jan ¼ f janðsÞgsX1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2n þ 1

p Jaþ2nþ1ðpsÞ
apsjJaþ1ðapsÞj

� �
sX1

; n ¼ 0; 1;y :

We consider the partial sums of the Fourier series with respect to the system
f jangnX0

Snðb; jÞ ¼
Xn

k¼0
ckðbÞjakð jÞ; ckðbÞ ¼

XN
s¼1

bðsÞjakðsÞ:

These series are the discrete analogous of Fourier–Neumann series (see [3,10]), so we
will refer to Snb as the discrete Fourier–Neumann series.
Fourier–Neumann series have had a prominent role in the study of band-limited

functions for the Fourier transform (see [1]) and in the analysis of dual integral
equations (see [4]). Moreover, some of the operators appearing in Fourier–Neumann
expansions are related to the disc multiplier for the Fourier transform (see [2,5]). The
analysis of these operators rely on very precise estimates about the uniform
asymptotic behaviour of Bessel’s functions of different orders and their derivatives.
These estimates will be needed, also, when working with discrete Fourier–Neumann
series.
In the same way as the Fourier–Neumann series are used to solve dual

integral equations, the discrete Fourier–Neumann will help us to solve
the dual series equations. In this problem, we must find a sequence frðsÞgsX0

such that

PN
s¼1

rðsÞpb
s JaðpsxÞ ¼ f ðxÞ if 0oxp1;

PN
s¼1

rðsÞJaðpsxÞ ¼ 0 if 1oxoa

8>><
>>:

for a given function f : Dual integral equations have applications to certain physical
problems in a semi-infinite medium. The corresponding problems in which the
medium is confined within a circular cylinder or between a pair of parallel planes can
be reduced to dual series equations (see [8, Chapters 2,9,10, 9, Chapter 6]). We will
deal with dual series equations in a forthcoming paper.
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The aim of this paper is to study the convergence of Snb in the lpðNÞ-norm. This
involves two problems:

(a) To obtain uniform boundedness of the operator Snb in lpðNÞ:
(b) To find the subspace of lpðNÞ consisting of the sequences b that can be

approximated in the lpðNÞ-norm by its discrete Fourier–Neumann series, i.e., to
describe the space

bp;a ¼ span f jangnX0 ðclosure in lpðNÞÞ:

In order to solve (a) we will decompose Sn in a suitable way which reduces the
problem to showing the boundedness, with discrete weights, of some operators that
will be compared with the discrete Hilbert transform. Moreover, we will need some
bounds for the Bessel functions and some results on discrete Ap weights.

Regarding (b), we define the operator Ha; with aX	 1
2
; given by

Haðb; xÞ ¼
XN
s¼1

bðsÞ JaðpsxÞ
ffiffiffiffiffiffi
2x

p

ajJaþ1ðapsÞj
; 0oxoa ð1Þ

for suitable sequences fbðsÞgsX1:

Now, we consider the formula (see [9, Section 6.6, Lemma 1])XN
s¼1

2Jaþgþ2nþ1ðpsÞJaðpsxÞ
a2p

gþ1
s J2aþ1ðapsÞ

¼ Gðaþ n þ 1Þ
2gGðaþ 1Þ Gðn þ gþ 1Þ xað1	 x2Þg


 2F1ð	n; n þ gþ aþ 1; aþ 1; x2Þw½0;1�ðxÞ

which holds for n a positive integer or zero and a; g4	 1: Taking g ¼ 0; we can write
this last expression, using Ha; as

Hað jan ; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðaþ 2n þ 1Þ

p
xaþ1=2Pða;0Þ

n ð1	 2x2Þw½0;1�; ð2Þ

where P
ða;bÞ
n ðxÞ denotes the nth Jacobi polynomial of order ða; bÞ for a; b4	 1; and

therefore suppðHað janÞÞD½0; 1�: So, it is clear that not every sequence can be
approximated by its discrete Fourier–Neumann series. We only need to deal with
sequences such that suppðHaÞD½0; 1�: This leads us to consider, in a natural way, the
w½0;1�-multiplier for Ha; i.e., the operator Ma defined by

HaðMabÞ ¼ w½0;1�Hab:

The paper is organized as follows: In Section 2, we prove the uniform boundedness
of the operator Sn; also, all the tools needed for this are introduced. Section 3
contains the results related to Ma and in the last section we identify the spaces bp;a:

Throughout this paper, unless otherwise stated, we use C (or C1) to denote a
positive constant independent of n (and all other variables), which can assume
different values in different occurrences. Also, in what follows, anBbn; for an; bn40;
means Cpan=bnpC1:
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2. Uniform boundedness of the partial sums

In order to estimate Sn we will need appropriate bounds for the Bessel functions.
From the well-known estimates (see [6, 11, Section 3.1(8), p. 40, Section 7.21(1),
p. 199])

JmðxÞ ¼
xm

2mGðmþ 1Þ þ Oðxmþ2Þ; x-0þ ð3Þ

and

JmðxÞ ¼
ffiffiffiffiffiffi
2

px

r
cos x 	 mp

2
	 p
4

� �
þ Oðx	1Þ

h i
; x-N; ð4Þ

where the O terms depend on m; we have, for mX	 1
2
;

jJmðxÞjpCmx	1=2; xAð0;NÞ: ð5Þ

The formula 2J 0
mðxÞ ¼ a

x
JmðxÞ 	 Jmþ1ðxÞ proves the same inequality for J 0

mðxÞ and
x41

2
:

Some bounds for Jm and J 0
m with constants independent of m are also available. For

instance (see [1,5]),

jJmðxÞjpC

ðm	 xÞ	1 if m=2oxpm	 m1=3;

m	1=3 if m	 m1=3pxpmþ m1=3;

m	1=4ðx 	 mÞ	1=4 if mþ m1=3pxp2m;
x	1=2 if 2mpx;

8>>>><
>>>>:

ð6Þ

jJ 0
mðxÞjpC

m	1=2ðm	 xÞ	1=2 if m=2oxpm	 m1=3;

m	2=3 if m	 m1=3pxpmþ m1=3;

m	3=4ðx 	 mÞ1=4 if mþ m1=3pxp2m;
x	1=2 if 2mpx:

8>>>><
>>>>:

ð7Þ

In the interval 0oxpm=2; for each bAR with bþ mX0 there exists some constant Cb

depending only on b; such that

jJmðxÞjxbpCbmb	1=2
e

4

� �m
ð8Þ

(see [11, Section 3.31, p. 49]). From 2J 0
mðxÞ ¼ Jm	1ðxÞ 	 Jmþ1ðxÞ; the same inequality

for J 0
mðxÞ can be obtained. It is easy to deduce from (6), (7), and (8) that

jJmðxÞjpCx	1=4ðjx 	 mj þ m1=3Þ	1=4; xAð0;NÞ; ð9Þ

jJ 0
mðxÞjpCx	3=4ðjx 	 mj þ m1=3Þ1=4; xAð0;NÞ ð10Þ

with some constant C independent of m: Bounds as (9) and(10) were used in [3,10].

ARTICLE IN PRESS
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Some information about the positive zeros of the function Jm will be needed. Let ms

be the sth, sX1; positive zero of Jm: Then we can show, using (4), that

jJmþ1ðmsÞjBm	1=2s : ð11Þ
A very important issue in our reasoning will be to know where ms lies. As for this
point we have

ms ¼ ps 	 1
2
p if m ¼ 	1

2
; ð12Þ

msAðsp	 1
4
pþ 1

2
mp; sp	 1

8
pþ 1

4
mpÞ if 	 1

2
omp1

2
ð13Þ

(see [11, Section 15.33, p. 490]) and

msA spþ 1
2
mp	 1

2
p; spþ 1

2
mp	 1

4
p

� �
if m4

1

2
and ms4

ð2mþ 1Þð2mþ 3Þ
p

ð14Þ
(see [11, Section 15.35, p. 492]).
The main result in this section is the following.

Theorem 1. Let aX	 1
2

and 1opoN: Then there exists a constant C independent of n

and b such that

jjSnbjjlpðNÞpCjjbjjlpðNÞ; 8bAlpðNÞ 3 4
3
opo4: ð15Þ

First of all, we are going to give an appropriate expression for Sn: For a sequence

bAl2ðNÞ-lpðNÞ; it can be described as

Snðb; jÞ ¼
XN

s¼1;saj

bðsÞKnðs; jÞ þ bð jÞKnð j; jÞ;

where

Knðs; jÞ ¼
Xn

k¼0
jakðsÞjakð jÞ:

So, using the identityXn

k¼0
2ðaþ 2k þ 1ÞJaþ2kþ1ðrÞJaþ2kþ1ðtÞ

¼

rt

r2 	 t2
½rJaþ1ðrÞJaðtÞ 	 tJaðrÞJaþ1ðtÞ

þrJ 0
aþ2nþ2ðrÞJaþ2nþ2ðtÞ 	 tJaþ2nþ2ðrÞJ 0

aþ2nþ2ðtÞ� for rat;

r2½ðJ 0
aðrÞÞ

2 þ 1	 a2

r2

� �
J2a ðrÞ

	ðJ 0
aþ2nþ2ðrÞÞ

2 	 1	 ðaþ 2n þ 2Þ2

r2

 !
J2aþ2nþ2ðrÞ� for r ¼ t;

8>>>>>>>>>><
>>>>>>>>>>:
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(the case rat can be found in [10] and the case r ¼ t is obtained taking the limit when
t-r), we have

Snb ¼ W1b 	 W2b þ W3b þ W4;nb 	 W5;nb 	 W6;nb;

where

W1ðb; jÞ ¼ 2JaðpjÞffiffiffi
a

p
jJaþ1ðapjÞj

XN
s¼1;saj

apsJaþ1ðpsÞffiffiffi
a

p
jJaþ1ðapsÞj

bðsÞ
ðapsÞ2 	 ðapjÞ2

;

W2ðb; jÞ ¼ 2apjJaþ1ðpjÞffiffiffi
a

p
jJaþ1ðapjÞj

XN
s¼1;saj

JaðpsÞffiffiffi
a

p
jJaþ1ðapsÞj

bðsÞ
ðapsÞ2 	 ðapjÞ2

;

W3ðb; jÞ ¼ 2bð jÞ
ðJ 0

aðpjÞÞ2 þ ð1	 a2
p2

j

ÞJ2a ðpjÞ

a2ðJaþ1ðapjÞÞ2
;

W4;nðb; jÞ ¼ 2JnðpjÞffiffiffi
a

p
jJaþ1ðapjÞj

XN
s¼1;saj

apsJ
0
nðpsÞffiffiffi

a
p

jJaþ1ðapsÞj
bðsÞ

ðapsÞ2 	 ðapjÞ2
;

W5;nðb; jÞ ¼ 2apjJ
0
nðpjÞffiffiffi

a
p

jJaþ1ðapjÞj
XN

s¼1;saj

JnðpsÞffiffiffi
a

p
jJaþ1ðapsÞj

bðsÞ
ðapsÞ2 	 ðapjÞ2

;

W6;nðb; jÞ ¼ 2bð jÞ
ðJ 0

nðpjÞÞ2 þ ð1	 n2
p2

j

ÞJ2n ðpjÞ

a2ðJaþ1ðapjÞÞ2

with n ¼ aþ 2n þ 2:
To prove the boundedness of Sn; we will need some results about discrete Ap

weights: Let 1opoN: A discrete weight w is said to belong to the ApðSÞ class, SDZ;

denoted by wAApðSÞ; if

X
sAI

wðsÞ
 ! X

sAI

w	1=ðp	1ÞðsÞ
 !p	1

pC
X
sAI

1

 !p

;

where I is any subset of S and C is independent of I : The weights in ApðSÞ
characterize the boundedness of the discrete Hilbert transform

Hðb; jÞ ¼
X

sAS;saj

bðsÞ
j 	 s

:

In fact, in [7] it is proved that

jjHbjjlpðS;wÞpCjjbjjlpðS;wÞ; 8bAlpðS;wÞ 3 wAApðSÞ: ð16Þ

Besides, the norm of the Hilbert transform and the constant in the ApðSÞ definition
depend only on each other. This allows us to use the uniform ApðSÞ theory: Let us
suppose that a family of weights fwngnX0 satisfies the ApðSÞ condition with the same
constant C (in this case, we say that wnAApðSÞ uniformly). Then the discrete Hilbert
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transform H is uniformly bounded from lpðS;wnÞ into itself, that is, with a constant
independent of n:
Using the following lemma we will estimate the lpðNÞ-norm of some of the

operators involved in Sn:

Lemma 1. Let aX	 1
2
; 1opoN and wAApðNÞ: Then,

(a) the operator

H	ðb; jÞ ¼
XN

s¼1;saj

bðsÞ
apj 	 aps

satisfies the inequality

jjH	bjjlpðN;wÞpCjjbjjlpðN;wÞ 8bAlpðN;wÞ;

(b) the operator

Hþðb; jÞ ¼
XN

s¼1;saj

bðsÞ
apj þ aps

satisfies the inequality

jjHþbjjlpðN;wÞpCjjbjjlpðN;wÞ 8bAlpðN;wÞ:

Moreover, the norm of these operators and the constant in the ApðNÞ definition depend

only on each other.

Proof. (a) The result follows by showing that for j 	 1
4
pxpj þ 1

4

H	ðb; jÞ 	 1
p

Hðb; jÞ
����

����pC

Z
jx	yjX1=2

j f ðyÞj
ðx 	 yÞ2

dy; ð17Þ

where H denotes the discrete Hilbert transform, and by taking the function f ðyÞ ¼P
N

s¼1 bðsÞw½s	1=4;sþ1=4�ðyÞ: In this situation and defining the weight WðxÞ to be wð jÞ
for j 	 1

4
pxpj þ 1

4
and linear in between (so, it is clear that WAApðð0;NÞÞ), we can

conclude that

jjH	bjjp
lpðN;wÞ

¼
XN
j¼1

jH	ðb; jÞjpwð jÞ

pC
XN
j¼1

jHðb; jÞjpwð jÞ þ
XN
j¼1

Z jþ1=4

j	1=4

Z
jx	yjX1=2

j f ðyÞj
ðx 	 yÞ2

dy

 !p

WðxÞ dx

 !

pC jjHbjjp
lpðN;wÞ þ

Z
jx	yjX1=2

j f ðyÞj
ðx 	 yÞ2

dy

�����
�����

�����
�����
p

Lpðð0;NÞ;W Þ

0
@

1
A:
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ClearlyZ
jx	yjX1=2

j f ðyÞj
ðx 	 yÞ2

dypCMð f ; xÞ;

where M is the Hardy–Littlewood maximal operator. It is well known that M

satisfies

jjMf jjLpðð0;NÞ;W ÞpCjj f jjLpðð0;NÞ;W Þ 3 WAApðð0;NÞÞ;

and the constant C only depends on the constant in the Ap definition. From this and

(16) we get the estimate

jjH	bjjLpðwÞpCðjjbjjlpðN;wÞ þ jj f jjLpðð0;NÞ;W ÞÞpCjjbjjlpðN;wÞ:

Now, we must prove (17). From (12)–(14) we have japj 	 aps 	 pð j 	 sÞjpC and

japj 	 apsjBj j 	 sj: So,

H	ðb; jÞ 	 1
p

Hðb; jÞ
����

����pC
XN

s¼1;saj

jbðsÞj
ð j 	 sÞ2

:

Taking into account that jbðsÞj ¼ 2
R sþ1=4

s	1=4 j f ðyÞj dy and j j 	 sjBjx 	 yj for s 	
1
4
pyps þ 1

4
and j 	 1

4
pxpj þ 1

4
; with saj; we conclude

H	ðb; jÞ 	 1
p

Hðb; jÞ
����

����pC
XN

s¼1;saj

1

ð j 	 sÞ2
Z sþ1=4

s	1=4
j f ðyÞj dy

B
XN

s¼1;saj

Z sþ1=4

s	1=4

j f ðyÞj
ðx 	 yÞ2

dypC

Z
jx	yjX1=2

j f ðyÞj
ðx 	 yÞ2

dy:

(b) Taking into account that apsBs it is easily verified that

jHþðb; jÞjB
XN

s¼1;saj

jbðsÞj
j þ s

:

Now, considering the sequence cðsÞ ¼ jbðsÞj; for sX1; and cðsÞ ¼ 0; for sp0; and the
weight %wðsÞ ¼ wðjsjÞ and %wð0Þ ¼ 0; we have

jjHþðb; jÞjjLpðN;wÞpC
XN

sAZ;	saj

cðsÞ
j þ s

( )
jAZ

������
������

������
������
lpðZ; %wÞ

¼ CjjHðdÞjjlpðZ; %wÞ;

where dðsÞ ¼ cð	sÞ: So, the desired inequality can be obtained from (16) for
S ¼ Z: &

The following lemma, which shows that some weights are in ApðNÞ; will be used
later in connection with the previous one:

ARTICLE IN PRESS
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Lemma 2. Let aX	 1
2 and 1opoN: Then

(a) if 	1ogop 	 1; fpg
sgsX1AApðNÞ:

(b) if 4
3
opo4; fp

p=4
s jjps 	 nj þ n1=3j	p=4gsX1AApðNÞ uniformly in n:

Proof. (a) This part is obvious using (12)–(14) and the equivalence

Xk

s¼1
seB

keþ1 if e4	 1;
logðk þ 1Þ if e ¼ 	1;
1 if eo	 1:

8><
>: ð18Þ

(b) It is clear that, for p	1 þ q	1 ¼ 1;
wAApðNÞ 3 w	q=pAAqðNÞ:

So, we will check that fp
	q=4
s jjps 	 nj þ n1=3jq=4gsX1AAqðNÞ; if 4

3
oqo4: Using the

equivalence p
	q=4
s jjps 	 nj þ n1=3jq=4Bp

	q=4
s ðjps 	 njq=4 þ nq=12Þ; it will be enough to

prove that fp
	q=4
s gsX1AAqðNÞ and fp

	q=4
s jps 	 njq=4gsX1AAqðNÞ uniformly in n:

Using (a), we have fp
	q=4
s gsX1AAqðNÞ for qo4: Now, showing that

	1ouoq 	 1;
	1ovoq 	 1;
	1ou þ woq 	 1

8><
>: ) fsujs 	 djvgsX1in ApðNÞuniformly in d ð19Þ

and using (12)–(14), fp
	q=4
s jps 	 njq=4gsX1AAqðNÞ uniformly in n; if 4

3
oqo4: Taking

into account (18) and the behaviour of the weight in the intervals ½1; ½d=2�Þ;
½½d=2�; ½2d�Þ and ½½2d�;NÞ; where ½m� denotes the integer part of m; we can prove
(19). &

Proof (Proof of Theorem 1). First, we are going to prove that 4
3
opo4 is a necessary

condition for the uniform boundedness of Sn:
It is clear that the operator

Tnb ¼ Snb 	 Sn	1b ¼ cnðbÞjan
must be bounded. Then, using duality, this fact implies that

jj jan jjlpðNÞjj jan jjlqðNÞpC: ð20Þ

From (5) and taking into account the behaviour of ps; we can prove that janAlpðNÞ if
1opoN: In that case, asymptotic estimates for Jaþ2nþ1 allow us to show that

jj jan jjlpðNÞB

n
1
p
	1
2 if po4;

n	1
4ðlog nÞ

1
4 if p ¼ 4;

n
1
3p
	1
3 if p44:

8>>><
>>>:

Then, this and (20) give the necessary condition 4
3
opo4:

ARTICLE IN PRESS
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Now, let us suppose that 43opo4: We prove the uniform boundedness of Snb:

We start analyzing W1: Using
2r

r2	t2
¼ 1

r	t
þ 1

rþt
; we can write

W1b ¼ 	W 1
1 b þ W 2

1 b;

where

W 1
1 ðb; jÞ ¼ JaðpjÞffiffiffi

a
p

jJaþ1ðapjÞj
H	

Jaþ1ðpsÞffiffiffi
a

p
jJaþ1ðapsÞj

bðsÞ; j

� �

and

W 2
1 ðb; jÞ ¼ JaðpjÞffiffiffi

a
p

jJaþ1ðapjÞj
Hþ

Jaþ1ðpsÞffiffiffi
a

p
jJaþ1ðapsÞj

bðsÞ; j

� �
:

From (5), (11), (a) in Lemma 1 and (a) in Lemma 2 it can be concluded that, for
1opoN;

jjW 1
1 bjjlpðNÞpC H	

Jaþ1ðpsÞffiffiffi
a

p
jJaþ1ðapsÞj

bðsÞ; j

� �� �
jX1

�����
�����

�����
�����
lpðNÞ

pC
Jaþ1ðpjÞffiffiffi
a

p
Jaþ1ðapjÞ

����
����jbð jÞj

� �
jX1

�����
�����

�����
�����
lpðNÞ

pCjjbjjlpðNÞ:

In a similar way, but considering (b) in Lemma 1, it is possible to deduce that, if
1opoN;

jjW 2
1 bjjlpðNÞpC Hþ

Jaþ1ðpsÞffiffiffi
a

p
jJaþ1ðapsÞj

bðsÞ; j

� �� �
jX1

�����
�����

�����
�����
lpðNÞ

pC
Jaþ1ðpjÞffiffiffi
a

p
Jaþ1ðapjÞ

����
����jbð jÞj

� �
jX1

�����
�����

�����
�����
lpðNÞ

pCjjbjjlpðNÞ:

The operator W2 works like W1: The boundedness of W3 follows from (5), (11) and

the bound jJ 0
aðxÞjpCax	1=2; which holds for x41

2
; in fact, we have

jW3ðb; jÞjpCjbð jÞj:
Now, we will check that W4;n is uniformly bounded in lpðNÞ for 4

3
opo4:

Using this and taking into account that the adjoint operator of W4;n is 	W5;n;
we will obtain that W5;n also satisfies the desired inequality in the same interval of

values of p:
As for W1; we can write

W4;nb ¼ 	W 1
4;nb þ W 2

4;nb;

where

W 1
4;nðb; jÞ ¼ JnðpjÞ

2
ffiffiffi
a

p
jJaþ1ðapjÞj

H	
J 0
nðpsÞffiffiffi

a
p

jJaþ1ðapsÞj
bðsÞ; j

� �
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and

W 2
4;nðb; jÞ ¼ JnðpjÞ

2
ffiffiffi
a

p
jJaþ1ðapjÞj

Hþ
J 0
nðpsÞffiffiffi

a
p

jJaþ1ðapsÞj
bðsÞ; j

� �
:

In this way, using consecutively (9), (11), (a) in Lemma 1, (b) in Lemma 2, (10) and,
again, (11) we have

jjW 1
4;nbjjlpðNÞ

pC H	
J 0
nðpsÞffiffiffi

a
p

jJaþ1ðapsÞj
bðsÞ; j

� �� �
jX1

�����
�����

�����
�����
lpðN;fp

p=4
j

jjpj	njþn1=3j	p=4gjX1Þ

pC
J 0
nðpjÞffiffiffi

a
p

Jaþ1ðapjÞ

����
����jbð jÞj

� �
jX1

�����
�����

�����
�����
lpðN;fp

p=4
j

jjpj	njþn1=3j	p=4gjX1Þ

pCjjbjjlpðNÞ:

By (b) in Lemma 1, we can deduce the estimate for W 2
4;n:

Now, estimates (6)–(8) allow us to conclude that jW6;nðb; jÞjpCjbð jÞj: So, we can
prove the uniform boundedness of W6;n; ending the proof. &

3. The v½0;1�-multiplier for the operator Ha

It is well known that the sequence of functions fJaðpsxÞ
ffiffiffiffi
2x

p

ajJaþ1ðapsÞjgsX1 forms a complete

orthonormal system in L2ð½0; a�; dxÞ; usually called Bessel system. Now, we define the
operator Ja; for aX	 1

2; by

Jað f ; jÞ ¼
Z a

0

f ðxÞ JaðpjxÞ
ffiffiffiffiffiffi
2x

p

ajJaþ1ðapjÞj
dx; j ¼ 1; 2;y

for suitable functions f : The operator Ja gives the Fourier coefficients associated
with the Bessel system and its inverse operator isHa: So, it is not difficult to check
that

jjJaf jjl2ðNÞ ¼ jj f jjL2ð½0;a�;dxÞ and HaðJaf Þ ¼ f

for fAL2ð½0; a�; dxÞ: Moreover, for bAl2ðNÞ; we have
jjHabjjL2ð½0;a�;dxÞ ¼ jjbjjl2ðNÞ and JaðHabÞ ¼ b:

The following relation between Ha and Ja can be proved in an easy way:XN
s¼1

bðsÞJað f ; jÞ ¼
Z a

0

Haðb; xÞf ðxÞ dx ð21Þ

for fAL2ð½0; a�; dxÞ and bAl2ðNÞ:

ARTICLE IN PRESS
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Using Ja; the operator Ma can be described, at least for bAl2ðNÞ-lpðNÞ; as
Mab ¼ Jaðw½0;1�HabÞ: ð22Þ

This description will be very useful in the proof of the following result.

Theorem 2. Let aX	 1
2

and 1opoN: Then there exists a constant C such that

jjMabjjlpðNÞpCjjbjjlpðNÞ 8bAl2ðNÞ-lpðNÞ:

Therefore, Ma can be extended to an operator (also denoted Ma) bounded from lpðNÞ
into itself such that

(a) HaðMabÞ ¼ w½0;1�Hab; 8bAl2ðNÞ-lpðNÞ;
(b) M2

ab ¼ Mab; 8bAlpðNÞ;
(c) for bAlpðNÞ and cAlqðNÞ; p	1 þ q	1 ¼ 1; we haveXN

s¼1
bðsÞMaðc; sÞ ¼

XN
s¼1

Maðb; sÞcðsÞ:

Proof. From (22), we obtain

Maðb; jÞ ¼
XN

s¼1;saj

2bðsÞ
a2jJaþ1ðapsÞjjJaþ1ðapjÞj

Z 1

0

JaðpsxÞJaðpjxÞx dx

þ 2bð jÞ
a2ðJaþ1ðapjÞÞ2

Z 1

0

ðJaðpjxÞÞ2x dx:

Lommel’s formula

Z 1

0

JaðrxÞJaðtxÞx dx ¼

1

r2 	 t2
ðrJaþ1ðrÞJaðtÞ 	 tJaðrÞJaþ1ðtÞÞ if rat;

ðJ 0
aðrÞÞ

2 þ 1	 a2

r2

� �
J2a ðrÞ if r ¼ t

8>><
>>:

leads us to

Mab ¼ W1b 	 W2b þ W3b;

where W1; W2 and W3; are bounded operators as we saw in the proof of
Theorem 1.
Now, taking into account that JaðHabÞ ¼ b and using standard density

arguments, statements (a) and (b) follow easily. So, let us prove (c).
Let U1 and U2 be the bilinear operators on lpðNÞ 
 lqðNÞ given by

U1ðb; cÞ ¼
XN
s¼1

bðsÞMaðc; sÞ

and

U2ðb; cÞ ¼
XN
s¼1

Maðb; sÞcðsÞ:
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U1 and U2 are well defined by Hölder inequality. So, if U1 ¼ U2; for all

ðb; cÞAðl2ðNÞ 
 l2ðNÞÞ-ðlpðNÞ 
 lqðNÞÞ; which is a dense subset of lpðNÞ 
 lqðNÞ;
we can obtain (c). Using (22) and (21) twice we finish the proof:

U1ðb; cÞ ¼
XN
s¼1

bðsÞJðw½0;1�Hac; sÞ ¼
Z a

0

w½0;1�ðxÞHaðb;xÞHaðc; xÞ dx

¼
XN
s¼1

Jaðw½0;1�Hab; sÞcðsÞ ¼ U2ðb; cÞ: &

4. The ep;a spaces

As a standard consequence of Theorem 1, we obtain that Snb-b; in lpðNÞ; for all
bAbp;a; if

4
3
opo4 and aX	 1

2
: This will be more interesting if we can describe the

spaces bp;a: We do it in this section.

From Theorem 2, for aX	 1
2
and 1opoN we can define the spaces

ep;a ¼ fbAlpðNÞ : Mab ¼ bg ¼ MaðlpðNÞÞ;

endowed with the topology induced by lpðNÞ:
It is clear, using lp1ðNÞClp2ðNÞ; that ep1;aCep2;a for 1op1op2oN: In the next

proposition we will prove that the dual space ðep;aÞ� is isomorphic to eq;a; p	1 þ
q	1 ¼ 1; in the standard sense.

Proposition 1. Let aX	 1
2
; 1opoN and let T be a bounded linear operator on ep;a

into R: Then, there exists a unique sequence cAeq;a; p	1 þ q	1 ¼ 1; such that

TðbÞ ¼
XN
s¼1

bðsÞcðsÞ 8bAep;a: ð23Þ

Furthermore jjT jjBjjcjjlqðNÞ:

Proof. Let us take TAðep;aÞ�: By the Hahn–Banach theorem, T can be extended to

TAðlpðNÞÞ� preserving its norm jjT jj: By duality, there exists dAlqðNÞ such that

TðbÞ ¼
XN
s¼1

bðsÞdðsÞ 8bAlpðNÞ

and jjT jj ¼ jjdjjlpðNÞ: Taking c ¼ Mad; from (b) in Theorem 2, it follows that cAeq;a:

Let see that this sequence is what we need. For bAep;a; from (c) in Theorem 2, we

have

TðbÞ ¼
XN
s¼1

bðsÞdðsÞ ¼
XN
s¼1

Maðb; sÞdðsÞ ¼
XN
s¼1

bðsÞMaðd; sÞ ¼
XN
s¼1

bðsÞcðsÞ:

By Hölder inequality we obtain jjT jjpjjMadjjlqðNÞ; thus the equivalence

jjT jjBjjcjjlqðNÞ follows immediately.
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To prove the uniqueness, we assume that pX2 and that there exists c and c0 in ep;a

satisfying (23). ThenXN
s¼1

bðsÞðcðsÞ 	 c0ðsÞÞ ¼ 0 8bAlpðNÞ:

Taking b ¼ c 	 c0Aeq;aCep;a it follows that c 	 c0 ¼ 0: The case po2 is a simple
consequence of this considering that lqðNÞ is reflexive and, since eq;a is closed, then

eq;a is also reflexive. &

The following result characterizes the spaces bp;a:

Theorem 3. Let aX	 1
2 and 4

3op: Then bp;a ¼ ep;a:

Proof. Case p ¼ 2: The spaces b2;a and e2;a are well defined. Also Mað janÞ ¼ jan : In
other words, b2;aDe2;a: If they were not equal, by the Hahn–Banach theorem, there

should exits some TAðe2;aÞ�; Ta0; such that Tð janÞ ¼ 0; 8n: But ðe2;aÞ� ¼ e2;a; so

there exists a sequence fAe2;a; fa0; such that
P

N

s¼1 fðsÞjanðsÞ ¼ 0; 8n: Then

0 ¼
XN
s¼1

fðsÞjanðsÞ ¼
XN
s¼1

Maðf; sÞjanðsÞ ¼
Z 1

0

Haðf; xÞHað jan ; xÞ dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðaþ 2n þ 1Þ

p Z 1

0

Haðf; xÞxaþ1=2Pða;0Þ
n ð1	 2x2Þ dx

for every nonnegative integer n: Now, the Jacobi polynomials P
ða;bÞ
n ðxÞ are a

complete orthogonal system with respect to the measure ð1	 xÞað1þ xÞb dx: A

change of variable proves that the functions xaþ1=2P
ða;0Þ
n ð1	 2x2Þ are a complete

orthogonal system with respect to the Lebesgue measure on ð0; 1Þ: Thus, Haf ¼ 0
on ð0; 1Þ: Since fAe2;a; we also haveHaf ¼ 0 on (1,a). Therefore,Haf ¼ 0 and we
get the contradiction f ¼ 0:

Case p42: By the preceding case, we have janAe2;aCep;a: Thus, bp;aDep;a: Now, let

bAep;a: Given e40; there exists a sequence cAl2ðNÞ-lpðNÞ such that jjb 	 cjjlpðNÞpe:

Let d ¼ Mac; then dAl2ðNÞ-lpðNÞ and Mad ¼ d; so that dAe2;a-ep;a ¼ b2;a-ep;a:

Since Ma is continuous, jjb 	 djjlpðNÞ ¼ jjMaðb 	 cÞjjlpðNÞpCe: As dAb2;a; there exists

d 0Aspanf jangnX0 such that jjd 	 d 0jjl2ðNÞpe: Now, the inclusion e2;aCep;a gives jjd 	
d 0jjLpðNÞpCe; so that, by the triangle inequality, jjb 	 d 0jjLpðNÞpCe: This gives the
inclusion ep;aDbp;a:

Case po2: Again it is clear that janAep;a and then bp;aDep;a: The other inclusion

follows if we prove that the only operator TAðep;aÞ� such that TðbÞ ¼ 0 for all bAbp;a

is T ¼ 0: For such an operator, we have, in particular, Tð janÞ ¼ 0 for all nX0: On

other hand, by the duality ðep;aÞ� ¼ eq;a; p	1 þ q	1 ¼ 1; there exists fAeq;a such that

TðbÞ ¼
XN
s¼1

bðsÞfðsÞ 8bAep;a
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and XN
s¼1

janðsÞfðsÞ ¼ 0 8nX0: ð24Þ

Now, using the preceding case, Theorem 1 and (24), we conclude that f ¼ 0: &

The previous theorem allow us to obtain the following corollary.

Corollary 1. Let aX	 1
2

and 4
3
opo4: Then limn-N Snb ¼ Mab; in lpðNÞ; 8bAlpðNÞ:

Proof. Let us consider bAlpðNÞ: Then MabAep;a: Now, by Theorems 1 and 3

SnðMabÞ-Mab; in lpðNÞ: So, we only need to show that SnðMabÞ ¼ Snb; and this is
clear because, by (c) in Theorem 2,

cnðMabÞ ¼
XN
s¼1

Maðb; sÞjanðsÞ ¼
XN
s¼1

bðsÞMað jan ; sÞ

¼
XN
s¼1

bðsÞjanðsÞ ¼ cnðbÞ: &

References
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[3] Ó. Ciaurri, J.J. Guadalupe, M. Pérez, J.L. Varona, Mean and almost everywhere convergence of

Fourier–Neumann series, J. Math. Anal. Appl. 236 (1999) 125–147.
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