
Journal of Pure and Applied Algebra 202 (2005) 22 – 54

www.elsevier.com/locate/jpaa

Lie–Yamaguti algebras related tog2

Pilar Benitoa, Cristina Draperb, Alberto Elduquec,∗
aDepartamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain

bDepartamento de Matemática Aplicada, Campus de El Ejido, Universidad de Málaga, 29071 Málaga, Spain
cDepartamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain

Received 9 November 2004; received in revised form 17 December 2004
Available online 3 March 2005
Communicated by C.A. Weibel

Abstract

Lie–Yamaguti algebras (or generalized Lie triple systems) are intimately related to reductive homo-
geneous spaces. Simple Lie–Yamaguti algebras whose standard enveloping Lie algebra is the simple
Lie algebra of typeG2 are described, making use of the octonions. These examples reveal the much
greater complexity of these systems, compared to Lie triple systems.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a Lie group acting smoothly and transitively on a manifoldM and letH be
the isotropy subgroup at a fixed point; the homogeneous spaceM � G/H is said to be
reductive(see[19]) in case there is a subspacem of the Lie algebrag of G such that

g= h⊕m (1.1)

(whereh is the Lie subalgebra of the closed groupH) and that(AdH)(m) ⊆ m; so that
[h,m] ⊆ m (and the converse is true ifH is connected).
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A pair (g, h) formed by a Lie algebrag over a fieldkand a subalgebrah such that there is
a complementary subspacem of h in gwith [h,m] ⊆ m is called areductive pair(see[21])
and decomposition (1.1) areductive decomposition. In this situation, consider the binary
and ternary multiplications onm given by

x · y = �m([x, y]),
[x, y, z] = [�h([x, y]), z] (1.2)

for any x, y, z ∈ m, where�h and �m denote the projections onh andm relative to
the reductive decomposition and where[ , ] denotes the Lie bracket ing. It is clear that
(m, ·, [ , , ]) satisfies the conditions in the following definition[17, Definition 5.1]:

Definition 1.1. A Lie–Yamaguti algebra(m, ·, [ , , ]) is a vector spacem equipped with a
bilinear operation· : m×m→ m and a trilinear operation[ , , ] : m×m×m→ m such
that, for allx, y, z, u, v,w ∈ m:

(LY1) x · x = 0,
(LY2) [x, x, y] = 0,
(LY3)

∑
(x,y,z)([x, y, z] + (x · y) · z)= 0,

(LY4)
∑
(x,y,z)[x · y, z, t] = 0,

(LY5) [x, y, u · v] = [x, y, u] · v + u · [x, y, v],
(LY6) [x, y, [u, v,w]] = [[x, y, u], v, w] + [u, [x, y, v], w] + [u, v, [x, y,w]].

Here
∑
(x,y,z) means the cyclic sum onx, y, z.

The Lie–Yamaguti algebras withx · y = 0 for anyx, y are exactly the Lie triple systems,
which appear in the study of the symmetric spaces, while the Lie–Yamaguti algebras with
[ , , ] = 0 are the Lie algebras.

Nomizu[19, Theorem 8.1]proved that the set of invariant affine connections on a reductive
homogeneous spaceG/H is in bijection with HomH (m⊗m,m), whereg= h⊕m is the
corresponding reductive decomposition andm is a module forH under the adjoint action.
For connectedH, HomH (m ⊗ m,m) = Homh(m ⊗ m,m). The canonical connection
corresponds to the zero map, while thenatural connection(which has trivial torsion) to
the map� : m ⊗m → m, x ⊗ y �→ 1

2x · y = 1
2�m([x, y]). This bijection makes several

classes of nonassociative algebras (defined onm) play a role in differential geometry (see
for instance[21,18]).

Nomizu[19, Section 19]also showed that, given any affinely connected and connected
manifoldM with parallel torsionT and curvatureR, the tangent space at any point inM
satisfies the above definition withx · y =−T (x, y) and[x, y, z] = −R(x, y)z.

The notion of a Lie–Yamaguti algebra is a natural abstraction made by Yamaguti[24] of
Nomizu’s considerations. Yamaguti called these systemsgeneral Lie triple systems, while
Kikkawa [13] termed themLie triple algebras. The term Lie–Yamaguti algebra, adopted
here, appeared for the first time in[17]. These algebras have been studied by several authors
[14,15,20,21,23], although there is not a general structure theory. In particular, a classifica-
tion of the simple Lie–Yamaguti algebras seems to be a very difficult task.
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Given a Lie–Yamaguti algebra(m, ·, [ , , ]) and any two elementsx, y ∈ m, the linear
mapD(x, y) : m→ m, z �→ D(x, y)(z)=[x, y, z] is, due to (LY5) and (LY6), a derivation
of both the binary and ternary products. Moreover, ifD(m,m) denotes the linear span of
these maps, it is closed under commutation thanks to (LY6). Letg(m) = D(m,m) ⊕ m
with anticommutative multiplication given, for anyx, y, z, t ∈ m, by

[D(x, y),D(z, t)] =D([x, y, z], t)+D(z, [x, y, t]),
[D(x, y), z] =D(x, y)(z)= [x, y, z],
[z, t] =D(z, t)+ z · t . (1.3)

Then it is straightforward[24] to check thatg(m) is a Lie algebra, called thestandard
enveloping Lie algebraof the Lie–Yamaguti algebram. The pair(g(m),D(m,m)) is a
reductive pair and the operations inm coincide with those given by (1.2), whereh =
D(m,m).

Proposition 1.2. (i) Let(m, ·, [ , , ]) be a Lie–Yamaguti algebra. If its standard enveloping
Lie algebra is simple, so is(m, ·, [ , , ]).

(ii) Letg= h⊕m be a reductive decomposition of a simple Lie algebrag, withm �= 0.
Theng is isomorphic to the standard enveloping Lie algebra of the Lie–Yamaguti algebra
(m, ·, [ , , ]) given by(1.2).

Proof. For (i) note that ifn is an ideal ofm (that is,m · n ⊆ n and[m,n,m] ⊆ n) then
D(m,n)⊕ n is easily checked to be an ideal ofg(m).

For (ii) it is enough to note that�h([m,m]) ⊕ m (=[m,m] + m) is an ideal ofg and
that {x ∈ h : [x,m] = 0} is an ideal too. Hence ifg is simple,�h([m,m]) = h which
embeds naturally inD(m,m) ⊆ Endk(m) (k being the ground field). From here, a natural
isomorphism fromg ontog(m) is constructed. �

Our purpose in this paper is to provide examples of simple Lie–Yamaguti algebrasm. We
will restrict ourselves to the algebras whose standard enveloping Lie algebrag(m)=h⊕m
is a central simple Lie algebra of typeG2 with a nonabelian reductive subalgebrah in g(m)
(that is,g(m) is a completely reducible module forh under the adjoint action). It will be
shown that even such restrictive conditions give a large variety of very different possibilities.
This setting is motivated by the existence of several well-known reductive homogeneous
spaces which are quotients of the compact Lie groupG=G2: the six-dimensional sphere
S6 � G/SU(3) (see[8] and references therein), the Stiefel manifoldV7,2 � G/SU(2),
the Grassmann manifold Gr7,2=G/U(2), as well as the symmetric spaceG/SO(4) or the
isotropy irreducible spaceG/SO(3).

While for a simple Lie triple systemm over an algebraically closed field of characteristic
zero with standard enveloping Lie algebrag = h⊕m, eitherh is semisimple or reductive
with a one-dimensional center andm is either an irreducible module overh (this is always
the case ifh is semisimple) or the direct sum of two irreducible contragredient modules, the
examples of Lie–Yamaguti algebras given here will show that no results of this type should
be expected for Lie–Yamaguti algebras. The possibilities for the structure ofm as a module
for h=D(m,m) do not seem to follow any pattern.
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Sagle[20] defined a Lie–Yamaguti algebra(m, ·, [ , , ]) to behomogeneousif there are
scalars�,�, � such that, for anyx, y, z ∈ m

[x, y, z] = �(x · y) · z+ �(y · z) · x + �(z · x) · y. (1.4)

Sagle proved that, given any simple finite-dimensional homogeneous Lie–Yamaguti algebra
(m, ·, [ , , ])over a field of characteristic zero, either(m, ·) is a simple Lie or Malcev algebra,
or it is in another variety defined by the following identity of degree four:

J (x, y, z) · w = J (w, x, y · z)+ J (w, y, z · x)+ J (w, z, x · y),
whereJ (x, y, z)= (x · y) · z+ (y · z) · x + (z · x) · y for anyx, y, z.

It will be shown (Corollary 5.8) that none of the examples considered in this paper are
homogeneous, so that homogeneity seems to be a very restrictive condition.

The paper is organized as follows. Section 2 will review the Cayley–Dickson process,
used to construct the Cayley algebras by means of two copies of a quaternion algebra.
This will be used to obtain a family of reductive subalgebras of the exceptional simple
Lie algebras of typeG2. In Section 3 it will be shown that, over fields of characteristic 0,
these subalgebras are essentially all the possible nonabelian reductive subalgebras, up to
conjugation. Section 4 will be devoted to the detailed description, over algebraically closed
fields of characteristic 0, of the associated reductive pairs and Lie–Yamaguti algebras. Most
of them will be described in terms of the classicaltransvections, inspired by the work of
Dixmier [4]. A misprint in [4, 6.2] will be corrected along the way. Finally, Section 5 will
deal mainly with properties of the binary anticommutative algebras(m, ·) that will have
appeared so far. They will be proven to be simple, and their Lie algebras of derivations and
Lie multiplication algebras will be computed. In particular, this will show that none of these
Lie–Yamaguti algebras are homogeneous in Sagle’s sense. The holonomy algebras will be
computed too in Section 5.

2. The Cayley–Dickson process and related reductive pairs

Throughout this section,kwill denote a ground field of characteristic�= 2,3. The Cayley
algebras overk are the eight-dimensional unital composition algebras. Let us recall briefly
some well-known features of these algebras, which can be found in[22,11].

The Cayley algebras can be obtained fromk by three consecutive applications of the
Cayley–Dickson process, which works as follows. LetA be any unital algebra overkwith
a scalar involutionx �→ x̄ (so thatx + x̄ andxx̄ = x̄x belong tok= k1 for anyx ∈ A) and
let 0 �= � ∈ k. Then the Cayley–Dickson process gives a new algebraB= (A, �)=A⊕Au
(direct sum of two copies ofA, hereu is just a symbol) with multiplication given by

(a + bu)(c + du)= (ac + �d̄b)+ (da + bc̄)u (2.1)

and scalar involution

a + bu= ā − bu. (2.2)

In caseA is a composition algebra with normn(x) = xx̄ = x̄x ∈ k, thenB is again a
composition algebra if and only ifA is associative.
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Then, given nonzero scalars�,�, � ∈ k, K = (k, �) is a quadratic étale algebra (that is,
K is either a quadratic separable field extension ofk or isomorphic tok × k),Q = (K,�)
is a quaternion algebra andC = (Q, �) is a Cayley algebra.

Conversely, letC be any Cayley algebra overk, with normn and standard involution
x �→ x̄. For anyu1, u2, u3 ∈ C such thatn(ui) �= 0, i = 1,2,3, andu1 is orthogonal to
1,u2 orthogonal to 1 andu1, andu3 orthogonal to 1, u1, u2, u1u2, thenK = k1+ ku1 is a
quadratic étale algebra,Q=K ⊕Ku2 is a quaternion algebra andC =Q⊕Qu3 and, in
the three cases, formulae (2.1), (2.2) are satisfied.

Any elementx ∈ C satisfies the quadratic relation

x2 − t (x)x + n(x)= 0, (2.3)

wheret (x)= x+ x̄=n(x,1) (heren(x, y) is the symmetric bilinear form associated to the
norm:n(x, y)=n(x+y)−n(x)−n(y) for anyx, y ∈ C). Moreover, letK be the quadratic
étale subalgebra ofC above, then by Artin’s Theorem,(ab)x = a(bx) for any a, b ∈ K
andx ∈ C, andC becomes in this way a rank 4 free leftK-module. Take 0�= l ∈ K with
t (l)= 0 (for instance,l = u1), then the map:

� : C × C −→ K,

(x, y) �→ n(l)n(x, y)− n(lx, y)l (2.4)

is a nondegenerate hermitian form which, up to a scalar, does not depend onl.
The Lie algebra of derivationsg2 = DerC is a central simple Lie algebra of typeG2,

C0 = {x ∈ C : t (x)= 0} is the nontrivial irreducible module forg2 of minimal dimension
(C = k ⊕ C0 andk is a trivial module forg2) and there is a surjectiveg2-invariant map:

C ⊗ C −→ g2,

x ⊗ y �→ Dx,y = L[x,y] − R[x,y] − 3[Lx,Ry], (2.5)

whereLx : y �→ xy, Rx : y �→ yx denote the left and right multiplications.
If u= u3, then the quaternion subalgebraQ=K ⊕Ku2 above satisfies

C =Q⊕Qu (2.6)

and this is aZ2-grading ofC because of (2.1). Moreover,Q⊥ =Qu (for any subspaceSof
C, S⊥ denotes the orthogonal subspace relative ton). The restriction of� to any ofK, Q,
K⊥ andQ⊥ is nondegenerate.

The Z2-grading in (2.6) induces the correspondingZ2-gradingg2 = (g2)0̄ ⊕ (g2)1̄, by
considering even and odd derivations. Note that(g2)0̄ =DQ,Q +DQ⊥,Q⊥ , while (g2)1̄ =
DQ,Q⊥ .

To state our main result of this section we need one extra ingredient. Given anyw ∈ K\k
with n(w) = 1 (take for instancew = x/x̄ for x ∈ K\k with n(x) �= 0 �= t (x)), the map
�w : C → C such that�w(x) = x and�w(xu) = (wx)u = x(wu) for any x ∈ Q, is an
automorphism ofC.

In the next result, several natural subalgebras ofg2 related to the chain of subalgebras
k ⊆ K ⊆ Q ⊆ C in the Cayley–Dickson process are considered.
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Theorem 2.1. Letk,K,Q,C andu,w be as above. Then there are the following isomor-
phisms of Lie algebras:

(i) h1 := {d ∈ g2 : d(Q) ⊆ Q}�so(Q, n) (the orthogonal Lie algebra).
(ii) h2 := {d ∈ g2 : d(Q) ⊆ Q, d(K)= 0}�u(Q⊥,�) (the unitary Lie algebra).

(iii) h3 := {d ∈ g2 : d(Q)= 0}�su(Q⊥,�) (the special unitary Lie algebra).
(iv) h4 := {d ∈ g2 : d�w = �wd}�u(Q,�).
(v) h5 := DQ,Q�su(Q,�).

(vi) h6 := {d ∈ g2 : d(K)= 0}�su(K⊥,�).
(vii) h7 := {d ∈ g2 : d(Q) ⊆ Q, d(u)= 0}�so(Q0, n) (Q0 = {x ∈ Q : t (x)= 0}).
Moreover, all the Lie subalgebrashi , i = 1, . . . ,7 are reductive Lie subalgebras ofg2

(that is, g2 is a completely reducible module forh
i). In particular, all the pairs(g2, h

i ) are
reductive.

Proof. (i) Sinceg2 ⊆ so(C, n),Q⊥ =Qu is invariant underh1. Henceh1 = (g2)0̄ = {d ∈
g2 : d(Q) ⊆ Q, d(Qu) ⊆ Qu} is the even part of theZ2-grading ofg2 induced by the
Z2-grading in (2.6). In particular,(g2, h

1) is not only a reductive pair, but a symmetric pair.
Now, sinceQ⊥ =Qu generatesC as an algebra, the linear map:

� : h1 −→ so(Q, n),

d �→ �d , (2.7)

whered(xu)= �d(x)u for anyx ∈ Q, is well defined and one-to-one. Note that�d is the
restriction toQ of R−1

u dRu. For anya, b ∈ Q0, the mapsLa,Rb belong toso(Q, n) and
the map

Q−
0 ⊕Q−

0 −→ so(Q, n),

(x, y) �→ Lx − Ry , (2.8)

is an isomorphism of Lie algebras. HereQ−
0 denotes the Lie algebraQ0 with the multipli-

cation given by[x, y]=xy−yx, hence a central simple three-dimensional Lie algebra (and
any such algebra arises in this way). The map in (2.8) is clearly one-to-one so, by dimen-
sion count, it is a bijection. Alternatively,so(Q, n) is spanned by the mapsz �→ n(x, z)y−
n(y, z)x = (zx̄ + xz̄)y − x(z̄y + ȳz)=−(xȳ)z+ z(x̄y)=−1

2

(
Lxȳ−yx̄ − Rx̄y−ȳx

)
(z).

On the other hand, using (2.1), it is checked that, for anyx ∈ Q0, the linear mapsdx,Dx
defined by

dx(Q)= 0, dx(qu)= (xq)u,

Dx(q)= [x, q], Dx(qu)= (−qx)u (2.9)

for anyq ∈ Q, are derivations ofC and�(dx) = Lx , �(Dx) = −Rx , so that� in (2.7) is
an isomorphism, as required.

This argument also shows thath1 = sL ⊕ sR (direct sum of ideals), where

sL = dQ0 and sR =DQ0, (2.10)

both ideals being isomorphic to the simple Lie algebraQ−
0 .
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(ii) The linear map	 : h1 → so(Q⊥, n), d �→ d|Q⊥ (the restriction toQ⊥) is one-

to-one too, and	(h2) ⊆ so(Q⊥, n) ∩ EndK(Q⊥) = u(Q⊥,�) (� as in (2.4)), which is
four-dimensional. Moreover,sL ⊆ h2 and forx ∈ Q0,Dx ∈ h2 if and only if [x,K] = 0,
if and only if x ∈ K. HencesL ⊕ DK0 = h2, whereK0 = K ∩ C0. By dimension count
h2 = sL ⊕DK0�u(Q

⊥,�).
(iii) Since sL ⊆ h3 ⊆ h2 = sL ⊕ DK0 andDK0�h

3, it follows that h3 = sL =
[h2, h2]�su(Q⊥,�).

(iv) Since�w|Q= IQ (the identity map onQ), h4 ⊆ h1. Consider now the map� in (2.7)
and take anyd ∈ h1 andx ∈ Q. Then

d�w(xu)= d((wx)u)= �d(wx)u,

�wd(xu)= (w�d(x))u, (2.11)

so thatd ∈ h4 if and only if �d ∈ so(Q, n) ∩ EndK(Q)= u(Q,�), and�(h4)= u(Q,�).
Also, for anyx ∈ Q0, �(Dx) = −Rx ∈ EndK(Q), but�(dx) = Lx ∈ EndK(Q) if and

only if x ∈ Q0 ∩K =K0. Henceh4 = �−1(u(Q,�))= dK0 ⊕ sR.
(v) h5=DQ,Q=DQ0,Q0 is an ideal ofh1= sL⊕ sR because[d,Dx,y]=Ddx,y +Dx,dy

for anyx, y ∈ C andd ∈ g2. Its dimension is at most three (as it is the image of the exterior
power
2Q0) and does not annihilateQ. Henceh5 =DQ,Q = sR = [h4, h4]�su(Q,�).

(vi) This is proven in[8, Proposition 4.7].
(vii) C =Q⊕Qu= k1⊕ ku⊕Q0 ⊕Q0u and any element inh7 is determined by its

action onQ0. Hence the map� : h7 → so(Q0, n), d �→ d|Q0 is one-to-one. Also, for any
x ∈ Q0, dx+Dx ∈ h7 and, by dimension counth7={dx+Dx : x ∈ Q0}�so(Q0, n). Note
thath7 is a “diagonal subalgebra” inh1 = sL ⊕ sR = dQ0 ⊕DQ0 and, with�x = dx +Dx ,

�x(q)= [x, q], �x(qu)= [x, q]u (2.12)

for anyq ∈ Q.
Finally, it is clear that we have the reductive decompositionsg2 = hi ⊕mi with m1 =

(g2)1̄ = {d ∈ g2 : d(Q) ⊆ Q⊥, d(Q⊥) ⊆ Q},m2 = (g2)1̄ ⊕DK⊥∩Q,m3 = (g2)1̄ ⊕DQ0,
m4 = (g2)1̄ ⊕ dK⊥∩Q, m5 = (g2)1̄ ⊕ dQ0, m6 = DK,K⊥ (see[8, Section 4]) andm7 =
(g2)1̄ ⊕ {dx −Dx : x ∈ Q0}.

It remains to be shown that all thehi ’s are reductive ing2 and for this, it is enough to
check it under the additional assumption ofk being algebraically closed.

Then forh1=sL⊕sR, g2=h1⊕m1 withm1=(g2)1̄ being the tensor product of the two-
dimensional natural module forsL�sl2(k) and the four-dimensional irreducible module
for sR�sl2(k) [1, Theorem 3.2], and hencem1 is irreducible forh1. Nowh2=sL⊕DK0 and
K0 = ka with t (a)= 0 �= n(a). ThenDa is a semisimple element ofsR andg2 = h2 ⊕m2

with m2 = m1 ⊕ DK⊥∩Q, m1 being the direct sum of four copies of the natural two-
dimensional module forsL andDK⊥∩Q the sum of two one-dimensional trivial modules

for sL. On each of these summands,Da acts as a scalar. Henceh2 is reductive ong2. For
i = 3, g2 = h3 ⊕m3 with h3 = sL andm3 = sR ⊕m1,m1 being the sum of four copies of
the natural module forh3 = sL andsR being a trivial module forh3. Also,h4 = dK0 ⊕ sR
som4= dK⊥∩Q⊕m1,m1 being the sum of two copies of the four-dimensional irreducible
module forsR�sl2(k) anddK⊥∩Q the sum of two one-dimensional trivial modules forsR,
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da acting as a scalar on each of these irreducible modules. Similarly,h5=sR som5=sL⊕m1,
m1 being the sum of two copies of the four-dimensional irreducible module forsR andsL

being a trivialsR-module. Forh6 it is known thatm6 is the sum of the two contragredient
three-dimensional irreducible modules forh6�sl3(k) (see[8, Section 4]or [1, Section 5]).
Finally, forh7={dx +Dx : x ∈ Q0}, let�x =dx +Dx as above. Then (2.12) shows thatC0
is the sum of two adjoint modules forh7�Q−

0 and the trivial moduleku. Then the vector
subspacem7={dx− 1

3Dx : x ∈ Q0}⊕m1 can be checked to be the orthogonal complement

toh7 relative to the Killing form ing2 (see also Theorem 4.5). The first summand inm7 is an
adjoint module forh7, whilem1=DQ0,Qu=DQ0,u+span{Dx,xu : x ∈ Q0} (which follows
from the identityDxy,z+Dyz,x+Dzx,y=0 [22, (3.73)]). But the span of{Dx,xu : x ∈ Q0}
is, up to isomorphism, a quotient of the symmetric powerS2(Q0), which is the direct sum
of the five-dimensional irreducible module forh7 and a trivial one-dimensional module.
Besides,DQ0,u is an adjoint module forh7. Since the dimension ofm1 is 8, it follows that
m1 is the sum of the adjoint moduleDQ0,u and the irreducible five-dimensional module
span{Dx,xu : x ∈ Q0} for h7. This finishes the proof. �

3. Nonabelian reductive subalgebras ofg2

The purpose in this section is to show that the subalgebras in Theorem 2.1 essentially
cover all the nonabelian reductive subalgebrash of g2 (that is,g2 is a completely reducible
h-module).

Throughout this section, the characteristic of the ground fieldkwill be assumed to be 0.
Sinceg2 = DerC is a completely reducible Lie algebra of linear transformations on

the Cayley algebraC, so is any reductive subalgebrah [12, Chapter III, exercise 20]. This
implies [12, Chapter III, Theorem 10]thath = [h, h] ⊕ Z(h), with [h, h] semisimple and
Z(h) the center ofh, whose elements are semisimple transformations onC.

First recall[22] that a Cayley algebraC is termedsplit in case it contains an idempotent
e �= 0,1, and this happens if and only if its normn is isotropic. If this is the case, there is a
Peirce decomposition:

C = ke1 ⊕ ke2 ⊕ U ⊕ V , (3.1)

with e1= e, e2=1− e,U = e1U =Ue2,V = e2V =V e1 ande2U =Ue1= e1V =V e2=0.
Then dual bases{x1, x2, x3} of U and{y1, y2, y3} of V can be chosen so that (1� i, j�3) :

e1xi = xi = xie2, e2xi = 0= xie1,

e2yi = yi = yie1, e1yi = 0= yie2,

x2
i = 0= y2

i ,

xixj = ijkxk, yiyj = ijkyk,

xiyj =−�ij e1, yixj =−�ij e2, (3.2)
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whereijk is the totally skewsymmetric tensor with123= 1 and�ij is the usual Kronecker
symbol, and

n(e1)= 0= n(e2), n(e1, e2)= 1,

n(ei, xj )= 0= n(ei, yj ),
n(xi)= 0= n(yi), n(xi, yj )= �ij . (3.3)

If h= {d ∈ DerC | d(e1)= 0= d(e2)}, then we are in the situationh= h6 of Theorem
2.1, whereK = ke1 ⊕ ke2 andh�sl3(k), U andV being contragredient modules forh.
Moreover,Q= k1⊕ (⊕3

i=1k(xi + yi)) is a quaternion subalgebra, andC =Q⊕Qu with
u = e1 − e2, so that{d ∈ DerC : d(Q) ⊆ Q, d(u) = 0} is a typeh7 subalgebra inside
h= h6.

Lemma 3.1. LetCbeaCayley algebra over analgebraically closed field k of characteristic
0 and lets be a three-dimensional simple subalgebra ofDerC. Then either:

(i) there exists a quaternion subalgebra Q of C invariant unders, or
(ii) s acts irreducibly onC0 (={x ∈ C : t (x)= 0}).

Proof. Notice that sincek is algebraically closed,s�sl2(k).
The setH ={x ∈ C : sx=0} is a composition subalgebra ofCandH �= C sinces �= 0.

Therefore the dimension ofH is either 1, 2 or 4. If dimkH =4,H is a quaternion subalgebra
and (i) is satisfied.

Assume now that dimkH=2. Because of the hypotheses onk,H=ke1⊕ke2 for orthogonal
idempotentse1 ande2 and hence, with the above notations,s ⊆ h={d ∈ DerC : d(e1)=0=
d(e2)} andU andVare three-dimensionals-modules. SinceU∩H=0=V ∩H ,U andVare
adjoint modules fors. A basis{d1, d2, d3} of s can be taken so that[di, dj ] = ijkdk for any
i, j =1,2,3 (recall thatijk is the totally antisymmetric tensor with123=1). Then a basis
{x1, x2, x3} ofU can be taken withdixj = ijkxk and the dual basis{y1, y2, y3} inV relative
to the pairing given by the normn : U×V → k. Since 0=n(dixj , yk)+n(xj , diyk) for any
i, j, k, diyj = ijkyk too. Besides,n(xixj , xk)= n(xi, xkx̄j )=−n(xi, xkxj )= n(xi, xj xk)
for anyi, j, k and it follows thatxixj = �ijkyk and, similarly,yiyj = �ijkxk for suitable
�,� ∈ k. But 1= n((x1 + y1)(x2 + y2))= n(�x3 + �y3)= ��.

Let � ∈ k with �3 = � = �−1. Note that{e1, e2,�xi,�−1yi : i = 1,2,3} is a basis ofC
with multiplication table as in (3.2). ThenQ= k1⊕ (⊕3

i=1k(�xi + �−1yi)
)

is a quaternion
subalgebra ofC invariant unders.

Finally, assume dimkH=1, soH=k1, and letV (m)be the irreducible module forsl2(k)of
dimensionm+1. Then, by complete reducibility,C0�⊕ri=1V (mi)withm1+· · ·+mr+r=7
andm1, . . . , mr�1. If r = 1 we are done (and we are in case (ii)). By invariance of the
norm n, the submodules ofC0 corresponding toV (mi) andV (mj ) with mi �= mj are
orthogonal and it is well-known thatV (m) possess a nonzerosl2(k)-invariant quadratic
form if and only ifm is even. The only possibility left withr >1 isC0�V (2) ⊕ V (1) ⊕
V (1). But, by invariance of the multiplication and sinceV (2) ⊗ V (2)�V (4) ⊕ V (2) ⊕
V (0), the submodule ofC corresponding tok1⊕V (2) is a quaternion subalgebra invariant
unders. �
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Remark 3.2. With the same notations as in the above proof, ifs acts irreducibly onC0,
thenC0 becomes the unique seven-dimensional irreducible moduleV (6) for s and the
multiplicationC0 ⊗ C0 → C0, x ⊗ y �→ xy + 1

2n(x, y)1= 1
2[x, y] and the restriction of

the norm toC0 give, up to scalars, the uniques-invariant mapsV (6)⊗ V (6)→ V (6) and
V (6) ⊗ V (6)→ V (0). Since[[x, y], y] = xy2 + y2x − 2yxy = 4xy2 − 2(xy + yx)y =
2n(x, y)y−4n(y)x for anyx, y ∈ C0, the norm is determined by the multiplication. Then,
up to conjugation by an automorphism ofC, there is a unique possibility for such ans. In
this caseg2 is isomorphic toV (2)⊕V (10) as a module fors. (See[4] for a model ofCand
g2 based on such a subalgebras�sl2(k).)

Theorem 3.3. Let C be a Cayley algebra over an algebraically closed field k of character-
istic 0, let g2 = DerC and leth be a reductive nonabelian subalgebra ing2. Then either:

(i) there existsi = 1, . . .7 such thath= hi as in Theorem2.1 (for suitableK,Q, u,w),
or

(ii) h= h8 is three-dimensional simple andC0 is irreducible forh.

Proof. Let h be a reductive nonabelian subalgebra ing2, then the rank ofh is either 1
or 2. If it is 1, thenh�sl2(k) and because of Lemma 3.1 either item (ii) is satisfied or
there exists a quaternion subalgebraQ of C invariant underh. Henceh ⊆ {d ∈ DerC :
d(Q) ⊆ Q} = h1 = sL ⊕ sR (notation as in Theorem 2.1 and its proof). Let�L and�R
be the projections ofh1 ontosL andsR, respectively. If�R(h) = 0, h = sL = h3, while if
�L(h)=0,h= sR=h5. Otherwise�L|h and�R|h are isomorphisms by simplicity, and so is
(�L|h)(�R|h)−1 : sR → sL. Therefore, there is a Lie algebra automorphism� : Q−

0 → Q−
0

such thath= {d�(x) +Dx : x ∈ Q0}. But � extends to an automorphism� of Q (�(1)= 1
and�(x) = �(x) for anyx ∈ Q0), because, as in Remark 3.2, the norm is determined by
the Lie bracket inQ0 and hence it is invariant under�. By the Skolem–Noether theorem
(see, for instance,[10, Theorem 4.3.1]), there is an invertible elementc ∈ Q such that
�(x) = cxc−1 for anyx ∈ Q. ButC =Q ⊕Qu =Q ⊕Qv with v = cu and because of
(2.9) (d�(x) +Dx)(v)= (�(x)c)u− (cx)u= (cxc−1c − cx)u= 0 and hence, changingu
by v, h ⊆ h7 in Theorem 2.1 and, by dimension count,h= h7.

Assume now that the rank ofh is 2; then eitherh is a sum of a three-dimensional simple
ideal and a one-dimensional center, or a sum of two simple three-dimensional ideals, orh

is simple of type eitherA2 orC2. In the latter case (typeC2), h has no irreducible modules
of dimension 2, 3 or 7. Then{x ∈ C0 : hx = 0} �= 0, so the composition subalgebra
H = {x ∈ C : hx = 0} has dimension 2 or 4, and henceh ⊆ h3 or h ⊆ h6, a contradiction.

If h is simple of typeA2, its irreducible modules have dimensions 1, 3, 6 or�8 and
hence againH = {x ∈ C : hx = 0} �= k is a composition subalgebra of dimension 2 or 4,
and the only possibility here isH =K (two-dimensional) andh= h6.

Now, if a is a three-dimensional simple ideal ofh,h=a⊕bwith b={d ∈ h : [d, a]=0} �=
0. Thea-moduleC0 cannot be irreducible, since then the elements ofb should act onC0 as
scalars (Schur’s lemma) and nonzero scalars cannot be derivations. Hence, the arguments
at the beginning of the proof show thata is eitherh3= sL, h5= sR, orh7. In the latter case,
the last part of the proof of Theorem 2.1 shows thatg2 is the direct sum of three copies
of the adjoint module forh7 plus a five-dimensional irreducible module, and henceb= 0,
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a contradiction. Ifa = sL (respectively,sR), thenb is contained in{d ∈ g2 : [d, a] = 0}
which equalssR (respectively,sL), therefore eitherh= sL ⊕ sR = h1, orh= sL ⊕ kDx or
h= kdx ⊕ sR for somex ∈ Q0. In the last two cases, sinceh is reductive ing2,Dx or dx
is a semisimple element ofg2 and hencen(x) �= 0. This shows that eitherh= h2 or h= h4

with K = k1+ kx. �

Remark. The semisimple subalgebras of the simple Lie algebras overC have been de-
scribed in[6]. Up to conjugation there are four possibilities forsl2(k) to be a subalgebra of
g2 and exactly one possibility forsl2(k)⊕ sl2(k) and forsl3(k).

Because of Remark 3.2 and since any two quadratic étale subalgebras (respectively, any
two quaternion subalgebras) of a Cayley algebra over an algebraically closed field are
conjugate under an automorphism of the algebra, the next result follows:

Corollary 3.4. Over analgebraically closed field of characteristic0,there are exactly eight
conjugacy classes of reductive nonabelian subalgebras in the Lie algebrag2.

Now, the restriction on the field to be algebraically closed will be removed.

Corollary 3.5. Let C be a Cayley algebra over a field k of characteristic0 and leth be a
reductive nonabelian subalgebra ing2 = DerC. Then either:

(i) there existsi = 1, . . . ,6 such thath= hi (for suitableK,Q, u,w), or
(ii) h is three-dimensional simple, there exists a quadratic étale subalgebra K of C anni-

hilated byh and, as a module forh, C is the direct sum of the trivial module K and
two adjoint modules, or

(iii) h is three-dimensional simple andC0 is irreducible as anh-module.

Proof. Let k̂ be an algebraic closure ofkand letĥ= k̂⊗kh, Ĉ= k̂⊗kC. Thenĥ is reductive
in ĝ2 = k̂⊗kg2, which is identified naturally with Der̂C. If ĥ acts irreducibly onĈ0, so

doesh on C0. Now assume that̂h = ĥi , i = 1, . . . ,7 (ĥ
i

as in Theorem 2.1 for suitable

K̂, Q̂, û, ŵ). For i = 1, Ĉ0 = Q̂0 ⊕ Q̂û is the direct sum of two irreduciblêh
1
-modules of

different dimensions and, therefore, so isC0 as anh-module (the centralizer of the action
of ĥ on Ĉ0 is k̂ × k̂, so the centralizer of the action ofh onC0 is eitherk × k or a quadratic
field extension ofk, but this latter option is not possible as dimkC0 is odd). IfV is the unique
three-dimensional irreducible module forh in C0, thenk̂⊗k(k1⊕V )= Q̂, and henceQ :=
k1⊕ V is a quaternion subalgebra ofC andh= h1 = {d ∈ g2 : d(Q) ⊆ Q}. For i = 2,3,
Q̂= {x ∈ Ĉ : [ĥ, ĥ]x = 0} and thusQ := {x ∈ C : [h, h]x = 0} is a quaternion subalgebra
of C with Q̂ = k̂⊗kQ. From here it follows that eitherh = h2, for a suitableK ⊆ Q, or
h = h3. For i = 4 or 5,[ĥ, ĥ] decomposeŝC0 into an irreducible module of dimension 3,
namelyQ̂0 and the sum of two irreducible two-dimensional modules. Hence again there is
a unique three-dimensional irreducible[h, h]-submoduleVwithQ= k1⊕ V a quaternion
subalgebra such that̂Q= k̂⊗kQ, andh= h4 or h= h5. If i = 6, K̂ = {x ∈ Ĉ : ĥx = 0}, so
thatK := {x ∈ C : hx = 0} is a quadratic composition subalgebra ofC annihilated byh
andh= h6.
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We are left with the casêh= ĥ7
. HereL̂ : =k̂1⊕ k̂û= {x ∈ Ĉ : ĥx = 0} is a quadratic

composition subalgebra of̂C and so isL := {x ∈ C : hx=0} inC. Besides,̂L⊥=Q̂0⊕Q̂0û

is the direct sum of two copies of the adjoint module forĥ, soL⊥ is the sum of two copies of
the adjoint module forh (because ifM andNare twoh-modules such that̂k⊗kM andk̂⊗kN
are isomorphic and completely reducible asĥ-modules, thenM andN are isomorphic, as
any isomorphism of̂h-modulesk̂⊗kM � k̂⊗kN is, in particular, an isomorphism of the
h-modulesk̂⊗kM andk̂⊗kN , which are direct sums of copies of the completely reducible
modulesM andN). �

It is possible to be more explicit in case (ii) of Corollary 3.5 and to show that, under
certain restrictions,h is h7 (for suitableQ andu):

Proposition 3.6. Let C be a Cayley algebra over a field k of characteristic0 and leth be
a three-dimensional simple subalgebra ofg2 = DerC, such thatL = {x ∈ C : hx = 0} is
a quadratic composition subalgebra of C andL⊥ is the direct sum of two adjoint modules
for h. If for any a ∈ L with n(a) �= 0, there is an elementb ∈ L with 0 �= b3 ∈ ka, then
h= h7 for suitable Q and u.

Proof. The Lie subalgebrah has a basis{d1, d2, d3} with [di, dj ] = ijk�kdk, 0 �= �k ∈ k,
whereijk is the totally skewsymmetric tensor with123= 1. Letv1 ∈ L⊥ with n(v1) �= 0
andd1(v1)= 0. Suchv1 exists since over̂k, d1 splitsL̂⊥ asS(0)⊕ S(�)⊕ S(−�) for some
0 �= � ∈ k̂, whereS(�) = {x ∈ L̂⊥ : d1x = �x} and, by invariance, the restriction of
the normn to S(0) = k̂⊗k{x ∈ L⊥ : d1x = 0} is nondegenerate. Then theh-submodule
generated byv1 is isomorphic to the adjoint module, under an isomorphism that mapsd1
to v1. Thus, there are elementsv2, v3 ∈ L⊥such that

divj = ijk�kvk

for any i, j . Let � : C × C → L be the hermitian form defined as in (2.4). Sincen
is h-invariant,n(kerd1, d1(L

⊥)) = 0, andL kerd1 ⊆ kerd1 becaused1(L) = 0. Hence
n(Lv1, v2)= 0= n(Lv1, v3), so�(v1, v2)= 0= �(v1, v3). Similarly,�(v2, v3)= 0. Also,
n(v2)= 1

2n(v2, v2)= 1
2�2
n(v2, d3v1)= −1

2�2
n(d3v2, v1)= �1

2�2
n(v1, v1)= �1

�2
n(v1) �= 0 and

n(v3)= �1
�3
n(v1) �= 0. Therefore,{v1, v2, v3} is a�-orthogonalL-basis ofL⊥.

As shown in[9, Section 3], the product inC is given by

(a + x)(b + y)= (ab − �(x, y))+ (ay + b̄x + x ∗ y)
for anya, b ∈ L, x, y ∈ L⊥, wherex ∗ y is an anticommutative product inL⊥ satisfying
a(x ∗ y)= (āx) ∗ y = x ∗ (āy), �(x ∗ y, z)= �(z ∗ x, y) for anya ∈ L andx, y, z ∈ L⊥.
Now,v1∗v2 is �-orthogonal tov1 andv2, so thatv1∗v2 ∈ Lv3. Using the above properties
it follows that there is an elementa ∈ L, with n(a) �= 0, such that

vi ∗ vj = ijk�kavk

for anyi, j . In casea ∈ k,Q= k1+ kv1 + kv2 + kv3 is a quaternion subalgebra invariant
underh,C=Q⊕Qu for any 0 �= u ∈ L∩C0, andh=h7. Also, substitutingvi bywi=bvi
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for anyb ∈ L with n(b) �= 0 we getwi ∗ wj = ijk�k
b̄3a
n(b)
wk, so the same conclusion is

obtained if there existsb ∈ L such that 0�= b3 ∈ ka, as required. �

Note that the condition in Proposition 3.6 is satisfied for the real octonion division algebra,
sinceL is always isomorphic toC in this case.

Remarks 3.7. (a) Let us give an example of the situation in item (ii) of Corollary 3.5, where
h is not of typeh7. Take the split Cayley algebraC over the rational numbers with a basis
as in (3.2). Lets be the three-dimensional simple Lie algebra with basis{d1, d2, d3} such
that[di, dj ]= ijkdk acting onCby means ofdie1= die2=0,di x̃j = ijkx̃k, di ỹj = ijkỹk,
wherex̃1 = x1, x̃2 = x2, x̃3 = 2x3 andỹ1 = y1, ỹ2 = y2 andỹ3 = 1

2y3.Thens ⊆ DerC and
C =Qe1 ⊕Qe2 ⊕U ⊕ V , whereU (respectively,V) is the span of thexi ’s (resp. theyi ’s).
BothU andV are adjoint modules fors. If Q were a quaternion subalgebra ofC invariant
unders, thenQ0 would be an adjoint module fors, so we could find a� ∈ Q such that

Q= Q1⊕ (⊕3
i=1Q(x̃i + �ỹi )), (3.4)

but(x̃1+�ỹ1)(x̃2+�ỹ2)= y3+�2x3= �2

2 (x̃3+ 4
�2 ỹ3). Therefore we should have4�2 =�,

which is impossible.
(b) It can be shown that the possibility in item (iii) of Corollary 3.5 can happen if and

only if there exists an elementx ∈ C0 such thatn(x) = 15 (see[5, Teorema 21]for the
(very technical) details).

(c) In all the reductive pairs(g2, h
i ), 1� i�8, in Theorem 3.3,g2=hi⊕(hi )⊥ (orthogonal

relative to the Killing form), and(hi )⊥ is a direct sum of irreduciblehi-modules, none of
which appears in the adjoint representation ofhi if i �= 7 (see the last part of the proof
of Theorem 2.1). Therefore, fori �= 7,mi = (hi )⊥ is the uniquehi-invariant complement
to hi .

However, (h7)⊥ is the direct sum of two copies of the adjoint module and a five-
dimensional irreducible module forh7 (which is three-dimensional simple). Hence in this
case, there is a whole family ofh7-invariant complements. This will make an important
difference for this case in the next section, where an infinite family of nonisomorphic
Lie–Yamaguti algebras appears associated to the same reductive pair.

(d) If h is an abelian reductive subalgebra ofg2, then the elements ofh are semisimple
linear transformations ofC [12, Chapter III, Theorem 10]and soh is contained in a Cartan
subalgebra ofg2 (and all the Cartan subalgebras are conjugate). This determines the abelian
reductive subalgebras ofg2.

4. Description of the Lie–Yamaguti algebras

The aim of this section is the explicit description of the binary and ternary products of
the Lie–Yamaguti algebras associated to the reductive pairs(g2, h

i ), i=1, . . . ,8 (Theorem
3.3) over an algebraically closed fieldkof characteristic 0. This assumption on the field will
be assumed throughout the section.
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Most of the reductive subalgebrashi contain copies ofsl2(k). A useful description of the
irreducible modulesV (n) for sl2(k) (which, for simplicity, will be denoted byVn) and of
thesl2(k)-invariant mapsVn ⊗ Vm → Vp is given in terms of the classicaltransvections
(see[4] and the references therein). Let us briefly recall the basic features.

Let k[x, y] be the polynomial algebra in two indeterminatesx andy, and identifysl2(k)
with the following subalgebra of derivations ofk[x, y]:

span

{
x

�
�x

− y �
�y
, x

�
�y
, y

�
�x

}
⊆ Derk[x, y].

Let Vn = kn[x, y] denote the linear space of the degreen homogeneous polynomials, so
thatVn is invariant undersl2(k) and this gives, up to isomorphism, the unique(n + 1)-
dimensional irreducible representation ofsl2(k), �n : sl2(k)→ Endk(Vn).

For anyf ∈ Vn andg ∈ Vm, thetransvection(f, g)q is defined by

(f, g)q =
{0 if q >min(n,m),
(n− q)!
n!

(m− q)!
m!

q∑
i=0
(−1)i

(
q

i

)
�qf

�xq−i�yi
�qg

�xi�yq−i
otherwise,

so that(f, g)q ∈ Vn+m−2q . In particular(f, g)0 = fg.
For anyf ∈ Vn andm, q�0, consider the linear map:

T mq,f : Vm −→ Vm+n−2q ,

g �→ (f, g)q .

Notice that forf ∈ V2:

T m1,f =
1

2m
�m

(
�f
�x

�
�y

− �f
�y

�
�x

)
∈ Endk(Vm).

In particular,sl2(k) � sl(V1) = span{T 1
1,f : f ∈ V2} and, forf, g ∈ V2, [T 1

1,f , T
1

1,g] =
2T 1

1,(f,g)1
(see[1, (2.2)]). ThusV2, with the bracket given by( , )1 is isomorphic tosl2(k) �

sl(V1) by means off �→ 1
2T

1
1,f .

Let us denote byWn the degreen homogeneous polynomials in the new indeterminates
X, Y . A nice description of the Cayley algebraC overk and ofg2 = DerC is given in[1,
Corollary 2.3 and Theorem 3.2]:

C = (W0 ⊕W2)⊕ (V1⊗kW1),

g2 = (V2 ⊕W2)⊕ (V1⊗kW3). (4.1)

Here k1 = W0, while K = k1 ⊕ kXY (XY ∈ W2) is a quadratic étale subalgebra and
Q=W0⊕W2 is a quaternion subalgebra. The multiplication ing2 is given, for anyf, f1, f2 ∈
V2, F,F1, F2 ∈ W2, g, g1, g2 ∈ V1 andG,G1,G2 ∈ W3 by{ [f1, f2] = (f1, f2)1, [F1, F2] = (F1, F2)1, [V2,W2] = 0,

[f, g ⊗G] = 1
2 (f, g)1 ⊗G, [F, g ⊗G] = 3

2 g ⊗ (F,G)1,[g1 ⊗G1, g2 ⊗G2] = −2(G1,G2)3g1g2 − 2(g1, g2)1(G1,G2)2.

(4.2)
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Moreover,

h1 = {d ∈ g2 : d(Q) ⊆ Q} = V2 ⊕W2,

h3 = sL = dQ0 = {d ∈ g2 : d(Q)= 0} = V2, (4.3)

and, in consequence,

h5 = sR =W2. (4.4)

(Notation as in Theorem 2.1.) Also, withw = 4
√−1XY andu=−x ⊗ Y + y ⊗X,

h2 = {d ∈ g2 : d(Q) ⊆ Q, d(K)= 0} = V2 ⊕ kXY ,

h4 = {d ∈ g2 : �wd = d�w} = kxy ⊕W2.

Now we are ready to describe the uniquehi-invariant complementmi to hi in g2 and its
binary and triple products (1.2) fori = 1, . . . ,5. The proof is obtained by straightforward
computations using (4.2) and (1.2).

Theorem 4.1.With the notations above, the Lie–Yamaguti algebras associated to the
reductive pairs(g2, h

i ), for i = 1, . . . ,5,are determined as follows:

(i) m1 = V1⊗kW3, with binary and triple products given by

m1 ·m1 = 0,

[g1 ⊗G1, g2 ⊗G2, g3 ⊗G3]
= −(G1,G2)3(g1g2, g3)1 ⊗G3 − 3(g1, g2)1g3 ⊗ ((G1,G2)2,G3)1.

(ii) m2 = Ŵ2 ⊕ (V1⊗kW3), with Ŵ2 = kX2 + kY 2, and binary product:
Ŵ2 · Ŵ2 = 0,
F · (g ⊗G)= 3

2 g ⊗ (F,G)1,
(g1 ⊗G1) · (g2 ⊗G2)=−2(g1, g2)1 ̂(G1,G2)2,

(hereF̂ = F − �2F

�X�Y XY for anyF ∈ W2), and triple product:



[F1, F2, F3] = ((F1, F2)1, F3)1,

[F1, F2, g ⊗G] = 3
2 g ⊗ ((F1, F2)1,G)1,

[F, g ⊗G,m2] = 0,

[g1 ⊗G1, g2 ⊗G2, F ] = −2(g1, g2)1
�2(G1,G2)2

�X�Y
(XY , F )1,

[g1 ⊗G1, g2 ⊗G2, g3 ⊗G3] = −(G1,G2)3(g1g2, g3)1 ⊗G3

−3(g1, g2)1
�2(G1,G2)2

�X�Y
g3 ⊗ (XY ,G3)1.
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(iii) m3 =W2 ⊕ (V1⊗kW3) and
F1 · F2 = (F1, F2)1,

F · (g ⊗G)= 3
2 g ⊗ (F,G)1,

(g1 ⊗G1) · (g2 ⊗G2)=−2(g1, g2)1(G1,G2)2,{ [W2,m
3,m3] = 0= [m3,m3,W2],

[g1 ⊗G1, g2 ⊗G2, g3 ⊗G3] = −(G1,G2)3(g1g2, g3)1 ⊗G3.

(iv) m4 = V̂2 ⊕ (V1⊗kW3), with V̂2 = kx2 + ky2, and
V̂2 · V̂2 = 0,

f · (g ⊗G)= 1
2 (f, g)1 ⊗G,

(g1 ⊗G1) · (g2 ⊗G2)=−2(G1,G2)3ĝ1g2

(heref̂ = f − �2f

�x�y xy for anyf ∈ V2),

[f1, f2, f3] = ((f1, f2)1, f3)1,

[f1, f2, g ⊗G] = 1
2 ((f1, f2)1, g)1 ⊗G,

[f, g ⊗G,m4] = 0,

[g1 ⊗G1, g2 ⊗G2, f ] = −2(G1,G2)3
�2(g1g2)

�x�y
(xy, f )1,

[g1 ⊗G1, g2 ⊗G2, g3 ⊗G3]
= − (G1,G2)3

�2(g1g2)

�x�y
(xy, g3)1 ⊗G3

−3(g1, g2)1g3 ⊗ ((G1,G2)2,G3)1.

(v) m5 = V2 ⊕ (V1⊗kW3) and
f1 · f2 = (f1, f2)1,

f · (g ⊗G)= 1
2 (f, g)1 ⊗G,

(g1 ⊗G1) · (g2 ⊗G2)=−2(G1,G2)3g1g2,{ [V2,m
5,m5] = 0= [m5,m5, V2],

[g1 ⊗G1, g2 ⊗G2, g3 ⊗G3] = −3(g1, g2)1g3 ⊗ ((G1,G2)2,G3)1.

(In all these equations, f, f1, f2, f3 ∈ V2 or V̂2,F,F1, F2, F3 ∈ W2 or Ŵ2, g, g1, g2, g3 ∈
V1 andG,G1,G2,G3 ∈ W3.)

To describe the Lie–Yamaguti algebra associated to the reductive pair(g2, h
6) in Theorem

2.1, the model ofg2 considered in[1, Remarks after Theorem 5.3]or [12, Chapter IV]is
quite useful: LetV be a three-dimensional vector space overk and fix a nonzero alternating
trilinear map det: V × V × V → k, which allows us to identify the second exterior power
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2V with the dual vector spaceV ∗ (v ∧ w �→ det(v,w,−)), and
2V ∗ with V. Also,
V ∗⊗kV is identified with Endk(V ) (v∗ ⊗ v : w �→ v∗(w)v). Then:

g2 = sl(V )⊕ V ⊕ V ∗,

where

• sl(V ) is a Lie subalgebra ofg2,
• [f, v] = f (v), [f, v∗] = −v∗ ◦ f (composition of maps) for anyf ∈ sl(V ), v ∈ V and
v∗ ∈ V ∗ (natural actions ofsl(V ) onV andV ∗),

• [v∗, v] = 3v∗ ⊗ v − v∗(v)IV (∈ sl(V )), for v ∈ V andv∗ ∈ V ∗, and
• [v,w] = 2v ∧ w, [v∗, w∗] = 2v∗ ∧ w∗, for anyv,w ∈ V andv∗, w∗ ∈ V ∗.

In this model, the reductive subalgebrah6 (the unique, up to conjugation, reductive subal-
gebra isomorphic tosl3(k)) can be identified withsl(V ). Therefore:

Theorem 4.2. The Lie–Yamaguti algebra associated to the reductive pair(g2, h
6) ism6=

V ⊕ V ∗, with multiplications:{
V · V ∗ = 0,
v · w = 2v ∧ w,
v∗ · w∗ = 2v∗ ∧ w∗,{ [V, V,m6] = 0= [V ∗, V ∗,m6],
[v, v∗, w] = −3v∗(w)v + v∗(v)w,
[v, v∗, w∗] = 3w∗(v)v∗ − v∗(v)w∗

for anyv,w ∈ V andv∗, w∗ ∈ V ∗.

Now, to deal with the Lie–Yamaguti algebras associated to the reductive pair(g2, h
7),

the model in[1, Section 6]is instrumental.
Let S be any three-dimensional simple Lie algebra (henceS�sl2(k) sincek is alge-

braically closed) and let� be its Killing form. Consider the orthogonal Lie algebra

so(S,�)= {� ∈ Endk(S) : �(�(x), y)+ �(x, �(y))= 0 ∀x, y ∈ S},
which coincides with adS (�S) and its five-dimensional irreducible module of zero trace
symmetric operators:

sym0(S,�)= {� ∈ Endk(S): �(�(x), y)= �(x, �(y)) ∀x, y ∈ S and tr(�)= 0}.
LetA= k1+ ka1 + ka2 be the commutative (not associative)k-algebra with

1a = a ∀a ∈ A, a2
1 = 3

4 + a1, a2
2 =−3

4 + a1, a1a2 =−a2,

endowed with a trace linear formt : A→ kwith t (1)=1,t (a1)=t (a2)=0, a skewsymmetric
bilinear form〈 | 〉 such that〈1|A〉 = 0, 〈a1|a2〉 = 3

4 and a linear mapl : A → A given by
l(1) = 0, l(a1) = a2 and l(a2) = a1. This is the case� = 1 in [1, Section 6](sincek is
algebraically closed, any 0�= � ∈ k gives the same result in[1]). Then[1, Theorem 6.1]
asserts that

g2 = (so(S,�)⊗kA)⊕ sym0(S,�), (4.5)
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with the multiplication given by

[�⊗ c, �⊗ d] = [�, �] ⊗ cd + 〈c|d〉(��+ ��− 2
3 tr(��)IS),

[�⊗ c,�] = (��+ ��)⊗ l(c)+ t (c)[�,�],
[�,�] = [�,�] ⊗ 1 (4.6)

for any�, � ∈ so(S,�), c, d ∈ A and�,� ∈ sym0(S,�). (Notice that the brackets on the
right denote the usual bracket in Endk(S).)

A more convenient basis{1, u, v} of A can be chosen withu= a1 + a2 andv = a1 − a2.
Then

u2 = 2v, v2 = 2u, uv = 3
2,

t (1)= 1, t (u)= t (v)= 0,

〈u|v〉 = −3
2, 〈1|u〉 = 0= 〈1|v〉,

l(1)= 0, l(u)= u, l(v)=−v. (4.7)

For the Lie algebraS, we may takeV2 with the bracket( , )1 (recall thatV2 with this
bracket is isomorphic tosl(V1) by means off �→ 1

2T
1

1,f ). Then the Killing form is a scalar
multiple of ( , )2 : V2 × V2 → k = V0. By Dixmier [4, Lemme 4.3]

Endk(V2)= kIV2 ⊕ {T 2
1,f : f ∈ V2} ⊕ {T 2

2,g : g ∈ V4}, (4.8)

so necessarily

so(S,�)= {T 2
1,f : f ∈ V2} (=adV2), and

sym0(S,�)= {T 2
2,g : g ∈ V4}. (4.9)

Lemma 4.3. For anyf, f1, f2 ∈ V2 andg, g1, g2 ∈ V4:

(1) [T 2
1,f1
, T 2

1,f2
] = T 2

1,(f1,f2)1
,

(2) [T 2
1,f , T

2
2,g] = 2T 2

2,(f,g)1
,

(3) [T 2
2,g1
, T 2

2,g2
] = −2T 2

1,(g1,g2)3
,

(4) T 2
1,f1
T 2

1,f2
+ T 2

1,f2
T 2

1,f1
− 2

3tr(T 2
1,f1
T 2

1,f2
)IV2 = T 2

2,f1f2
,

(5) T 2
1,f T

2
2,g + T 2

2,gT
2

1,f =−T 2
1,(f,g)2

.

Proof. Let us check, for instance, (4). Bysl2(k)-invariance, and since there exists, up
to scalars, a uniquesl2(k)-invariant linear mapV2 ⊗ V2 → V4 (namely,f1 ⊗ f2 �→
(f1, f2)0 = f1f2), there exists a scalar� such that

T 2
1,f1
T 2

1,f2
+ T 2

1,f2
T 2

1,f1
− 2

3tr(T 2
1,f1
T 2

1,f2
)IV2 = �T 2

2,f1f2
.

Now, takef1=f2=x2 and apply both sides of the equation above toy2 to get 2(x2, (x2, y2)1)1
= �(x4, y2)2. But (x2, (x2, y2)1)1 = (x2, xy)1 = 1

2x
2, while (x4, y2)2 = x2. Hence�= 1.

All the other computations are similar.�
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As an immediate consequence of this lemma and the previous arguments one gets:

Corollary 4.4. The Lie algebrag2 is, up to isomorphism:

g2 = (V2⊗kA)⊕ V4,

with multiplication given by:

[f1 ⊗ c, f2 ⊗ d] = (f1, f2)1 ⊗ cd + 〈c|d〉f1f2,

[f ⊗ c, g] = −(f, g)2 ⊗ l(c)+ 2t (c)(f, g)1,

[g1, g2] = −2(g1, g2)3 ⊗ 1

for anyf, f1, f2 ∈ V2, g, g1, g2 ∈ V4 and where the algebra A and the maps〈 | 〉, l and t
have been defined in(4.7).

By uniqueness in Corollary 3.4, up to conjugationh7 = V2 ⊗ 1 in the Corollary above;
but now theh7-invariant complements are precisely the subspaces:

m7
�,� = (V2⊗kA�,�)⊕ V4, (4.10)

with �,� ∈ k, and whereA�,� = k(u− �1)+ k(v − �1).
For�,�= 0,A�,� = ker t andm7

0,0 will be denoted simply bym7.

Theorem 4.5. (a)The multiplications in the Lie–Yamaguti algebram7
�,� are given by

(f1 ⊗ c) · (f2 ⊗ d)= (f1, f2)1 ⊗ ��,�(cd)+ 〈c|d〉f1f2,

(f ⊗ c) · g =−(f, g)2 ⊗ ��,�(l(c))+ 2t (c)(f, g)1,

g1 · g2 = 0,

[f1 ⊗ c, f2 ⊗ d, f3 ⊗ e] = ((f1, f2)1, f3)1 ⊗ t�,�(cd)e,
[f1 ⊗ c, f2 ⊗ d, g] = 2t�,�(cd)((f1, f2)1, g)1,

[f1 ⊗ c, g, f2 ⊗ d] = −((f1, g)2, f2)1 ⊗ t�,�(l(c))d,
[f ⊗ c, g1, g2] = −2t�,�(l(c))((f, g1)2, g2)1,

[g1, g2, f ⊗ c] = −2((g1, g2)3, f )1 ⊗ c,
[g1, g2, g3] = −4((g1, g2)3, g3)1

for anyf, f1, f2, f3 ∈ V2, g, g1, g2, g3 ∈ V4 andc, d, e ∈ A�,�,where��,� : A→ A�,� is
the projection parallel tok1 (��,�(1)= 0, ��,�|A�,� = IA�,� ) andt�,� : A→ k is the linear
map such thatt�,�(1)= 1, t�,�(u)= � andt�,�(v)= �.

(b) In particular, for � = � = 0, t�,� = t , so t�,� ◦ l = 0. In this casem7 =m7
0,0 is the

orthogonal complement toh7 relative to the Killing form ofg2, and the formulae above
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simplify to
(f1 ⊗ c) · (f2 ⊗ d)= (f1, f2)1 ⊗ �(cd)+ 〈c|d〉f1f2,

(f ⊗ c) · g =−(f, g)2 ⊗ l(c),
g1 · g2 = 0,

[f1 ⊗ c, f2 ⊗ d, f3 ⊗ e] = ((f1, f2)1, f3)1 ⊗ t (cd)e,
[f1 ⊗ c, f2 ⊗ d, g] = 2t (cd)((f1, f2)1, g)1,

[f1 ⊗ c, g, f2 ⊗ d] = 0,

[f ⊗ c, g1, g2] = 0,

[g1, g2, f ⊗ c] = −2((g1, g2)3, f )1 ⊗ c,
[g1, g2, g3] = −4((g1, g2)3, g3)1

for anyf, f1, f2, f3 ∈ V2, g, g1, g2, g3 ∈ V4 andc, d, e ∈ A0,0, where�= �0,0.
(c)For �,�, �′,�′ ∈ k, the Lie–Yamaguti algebrasm7

�,� andm
7
�′,�′ are isomorphic if and

only if (�′,�′) equals one of the following:

(�,�), (��,�2�), (�2�,��), (�, �), (��,�2�), (�2�,��),

where1 �= � ∈ k is a cube root of1; that is, if and only if (�′,�′) belongs to the orbit of
(�,�) under the action of the symmetric groupS3 onk2, determined by(12).(�,�)= (�, �),
(123).(�,�)= (��,�2�).

Proof. The first part is a direct consequence of the Corollary above and of (1.2).
Note that(V2⊗1)⊕V4 is a subalgebra ofg2 and the decompositiong2=((V2⊗1)⊕V4)⊕

V2⊗u⊕ V2⊗v is aZ3-grading. Hence the orthogonal complement to(V2⊗1)⊕V4, relative
to the Killing form, isV2⊗k ker t =V2 ⊗ u ⊕ V2 ⊗ v. Moreover,V2 ⊗ 1 andV4 are clearly
orthogonal relative to any invariant bilinear form ofg2, since they are not contragredient
modules for the subalgebrah7 = V2 ⊗ 1�sl2(k). Hence(h7)⊥ = (V2⊗k ker t)⊕ V4 =m7

and part (b) follows.
For the third part, assume that� : m7

�,� → m7
�′,�′ is an isomorphism of Lie–Yamaguti

algebras. Then� extends to an automorphism (also denoted by�) of g2 = h7 ⊕ m7
�,� =

h7 ⊕ m7
�′,�′ , which is the standard enveloping Lie algebra of bothm7

�,� andm7
�′,�′ , such

that�(h7)= h7, that is,�(V2 ⊗ 1)= V2 ⊗ 1. Sinceh7�sl2(k), there is an elementsof the
special linear groupSL2(k) such that�|h7 is given by the natural action ofsonV2. But the
maps( , )p areSL2(k)-invariant, sos ∈ SL2(k) can be extended to an automorphism�s
of g2 such that

�s(f ⊗ c)= s.f ⊗ c,
�s(g)= s.g

for anyf ∈ V2, c ∈ A andg ∈ V4, wheres.f ands.g denote the action ofSL2(k) onV2
andV4. Moreover,�s leaves bothm7

�,� andm7
�′,�′ invariant. Thus, we may change� by

� ◦ �−1
s and hence assume that�|h7 is the identity map; that is,�(f ⊗ 1) = f ⊗ 1 for
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anyf ∈ V2. Then�|m7
�,�

: m7
�,� → m7

�′,�′ is h7-invariant, besides being an isomorphism

of Lie–Yamaguti algebras. SinceV2 andV4 are irreducible modules forh7, Schur’s lemma
shows that there exist a bijective linear map� : A → A and a nonzero scalar� ∈ k such
that�(1)= 1, �(A�,�)= A�′,�′ and

�(f ⊗ c)= f ⊗ �(c), �(g)= �g

for anyf ∈ V2, c ∈ A andg ∈ V4.
Now, the fact that� is an automorphism of the Lie algebrag2 is equivalent to the following

conditions on� and�:

�(cd)= �(c)�(d),

〈�(c)|�(d)〉 = �〈c|d〉,
�(l(c))= �l(�(c)),

t (�(c))= t (c),
�2 = 1

for anyc, d ∈ A. But l(u)= u andl(v)=−v by (4.7), so the third condition forces either
�=1 and�(u)=�u, �(v)=�v, or�=−1 and�(u)=�v, �(v)=�u, for some 0�= �, � ∈ k.
The first condition, withc = u andd = v shows that� = �−1, and withc = d = u that
�2 = �−1 or �3 = 1. Conversely, with�=±1 and�3 = 1, the linear map� : A→ A given
by �(1)= 1 and{

�(u)= �u, �(v)= �−1v if �= 1,
�(u)= �v, �(v)= �−1u if �=−1,

satisfies the conditions above. Finally, since�(u− �1), �(v − �1) ∈ A�′,�′ , it follows that

with � = 1, �(u − �1) = �u − �1 ∈ A�′,�′ , so�u − �1 = �(u − �−1�1) and�′ = �−1�,

and in the same vein,�′ = ��. The argument for�=−1 is similar, and this completes the
proof. �

The only reductive pair left is(g2, h
8). This appears in[4, Section 6], whereg2 is con-

structed as

B5,�,�,� = V2 ⊕ V10,

where 0�= �,�, � ∈ k satisfy 378��= 5�2 and with the multiplication given by:

[f1 + g1, f2 + g2] = (�(f1, f2)1 + �(g1, g2)9)

+ (5�(f1, g2)1 + 5�(g1, f2)1 + �(g1, g2)5)

for anyf1, f2 ∈ V2 andg1, g2 ∈ V10.
A word of caution is needed here as this is not exactly what appears in[4]. Actually, in

[4, 6.2] no 5’s appear multiplying the�’s in the second line, but this is needed to get the
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Jacobi identity satisfied for two elements inV2 and an element inV10. Also, the condition
378��= 5�2 appears erroneously as 25��= 378�2 in [4, 6.2].

Now, the mapf + g �→ �−1f + �−1g gives an isomorphismB5,�,�,��B5,��, �
2
� �,��

, so

we may take�= 1, �= 1 and�= 5
378 in what follows. Therefore,

g2 = V2 ⊕ V10,

where the multiplication is determined by

[f1 + g1, f2 + g2] = ((f1, f2)1 + 5
378 (g1, g2)9)

+ (5(f1, g2)1 + 5(g1, f2)1 + (g1, g2)5)

for anyf1, f2 ∈ V2 andg1, g2 ∈ V10.
By uniqueness (Corollary 3.4), we may identifyh8 with V2 above and hence:

Theorem 4.6. The Lie–Yamaguti algebra associated to the reductive pair(g2, h
8) ism8=

V10 with multiplications:

g1 · g2 = (g1, g2)5,

[g1, g2, g3] = 25
378 ((g1, g2)9, g3)1

for anyg1, g2, g3 ∈ V10.

The binary algebra(m8, ·) has been considered in[3].
This finishes our description of the Lie–Yamaguti algebras.

5. Binary products

In this section, several aspects of the Lie–Yamaguti algebras described so far will be
looked at, with special attention to the anticommutative algebras(mi , ·), i = 1, . . . ,8 over
an algebraically closed fieldk of characteristic 0 (although many of the arguments remain
valid over more general fields). This assumption on the field will be assumed throughout in
this last section too.

5.1. Simplicity of the binary algebras

First, the simplicity of the algebras(mi , ·) will be proved. (Note that Proposition 1.2
shows that all the Lie–Yamaguti algebras involved are simple, but this does not imply
the simplicity under the binary product.) To do so, the description ofg2 in (4.1) will be
particularly useful. As in[1, Remarks after Theorem 3.2], a usefulZ-grading ofg2 can be
given by assigning a degree 6 tox, −6 toy, 1 toX and−1 toY. Since{x2, xy, y2} is a basis
of V2, {X2, XY , Y 2} of W2, {x, y} of V1 and{X3, X2Y,XY 2, Y 3} of W3, a degree is thus
assigned to any basis element ing2 (for instance, the degree ofx⊗XY 2 is 6+ (1−2)=5).
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Theng2 decomposes as

g2 = (g2)−12 ⊕ (g2)−9 ⊕ (g2)−7 ⊕ (g2)−5 ⊕ (g2)−3 ⊕ (g2)−2

⊕ (g2)0 ⊕ (g2)2 ⊕ (g2)3 ⊕ (g2)5 ⊕ (g2)7 ⊕ (g2)9 ⊕ (g2)12, (5.1)

where(g2)0 = kxy ⊕ kXY (a Cartan subalgebra ofg2) and dim(g2)i = 1 for any i =
±2,±3,±5,±7,±9,±12. (This is just the eigenspace decomposition relative to the ele-
menth in a Cartan subalgebra with�(h) = 2, �(h) = 3, where� and� are the short and
long roots in a simple system of roots.)

Note that, from (4.3) and (4.4),sL = V2 = (g2)−12 ⊕ [(g2)−12, (g2)12] ⊕ (g2)12, while
sR =W2 = (g2)−2 ⊕ [(g2)−2, (g2)2] ⊕ (g2)2.

By straightforward computations with (4.2) (or by taking into account the properties of
root spaces) we obtain:

Lemma 5.1.

• [(g2)i , (g2)j ] = (g2)i+j if (g2)i �= 0 �= (g2)j andi + j �= 0.
• For any odd i with(g2)i �= 0, [(g2)i , (g2)−i]�sL ∪ sR.

As usual, aZ2-graded nonassociative algebraA = A0̄ ⊕ A1̄ is said to be graded simple
if it contains no proper graded ideal of A. The next well-known result will be useful too:

Lemma 5.2. If A = A0̄ ⊕ A1̄ is a graded simple algebra, then either A is simple(as an
ungraded algebra) or dimA0̄ = dimA1̄.

Proof. Assume thatA is not simple and letI be a nontrivial ideal ofA. Then both(I ∩A0̄)⊕
(I ∩A1̄) and�0̄(I )⊕ �1̄(I ) are graded ideals ofA (here�i denotes the projection ontoAi ,
i = 0̄, 1̄), with 0⊆ (I ∩ A0̄)⊕ (I ∩ A1̄) ⊆ I ⊆ �0̄(I )⊕ �1̄(I ) ⊆ A. By the simplicity of
A as a graded algebra,I ∩ A0̄ = 0= I ∩ A1̄ and�0̄(I )= A0̄, �1̄(I )= A1̄. Hence both�0̄
and�1̄ induce linear bijectionsI → A0̄ andI → A1̄, whence the result. �

Recall that(m1, ·) is the trivial algebra, since(g2, h
1) is a symmetric pair (that is, the

decompositiong2 = h1 ⊕m1 is aZ2-grading).

Theorem 5.3. The nonassociative algebras(mi , ·), i = 2, . . . ,8, i �= 7, and the algebras
(m7

�,�, ·), �,� ∈ k, are all simple.

Proof. For anyi=2, . . . ,5,hi ⊆ (g2)0̄ andmi= (mi ∩ (g2)0̄)⊕ (g2)1̄, so that it is enough,
by Lemma 5.2, to prove that(mi , ·) is graded simple. Now, Lemma 5.1 implies that any
nonzero graded idealI = (I ∩ (g2)0̄) ⊕ (I ∩ (g2)1̄) satisfiesI ∩ (g2)1̄ �= 0, and another
application of Lemma 5.1 gives thatmi ∩ (g2)0̄ ⊆ I . But (g2)1̄ = (mi ∩ (g2)0̄) · (g2)1̄, so
(g2)1̄ ⊆ I too, andI =mi .

The casei = 6 has been treated explicitly in[8] (and can be checked directly too),
while [4, Proofs of 2.2 and 2.3]shows that(m8, ·) is simple. This can be achieved too
using[7, Theorem 3.4], which shows that Der(m8, ·) ⊆ Lie(m8, ·) (the Lie multiplication
algebra), so that any ideal of(m8, ·) is invariant under its Lie algebra of derivations. Now,
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the irreducibility ofm8 as a module forh8 (whose action onm8 is contained in this algebra
of derivations) gives the result.

Finally,m7
�,�=(V2⊗kA�,�)⊕V4 by (4.10) and the first three equations in Theorem 4.5.a)

force that any nonzero idealI of (m7
�,�, ·) satisfiesI+V4=m7

�,�. ButI ⊇ I ·V4=m7
�,� ·V4,

which is anh7-module with nonzero projection onV4, unless(�,�)=(0,0). By irreducibility
of V4 as anh7-module, and sinceV4 appears only once in the decomposition ofm7

�,� as a

sum of irreducibleh7-modules, this shows that, for(�,�) �= (0,0), V4 ⊆ m7
�,� · V4 ⊆ I .

On the other hand, if� = 0= �, I ⊇ I · V4 =m7
0,0 · V4 = V2⊗kA0,0 and henceI contains

(V2⊗kA0,0)
·2 (the square under the binary product·), which again is a module forh7 with

nonzero projection onV4, so it containsV4. �

5.2. Lie derivation algebras

The computation of the Lie algebra of derivations of our Lie–Yamaguti algebras follows
easily from the next auxiliary result, which has its own independent interest. Recall[12, p.
11] that a Lie algebra is said to becompleteif all its derivations are inner and its center is
0. Simple Lie algebras over fields of characteristic 0 are complete.

Lemma 5.4. Let(m, ·, [ , , ]) be a Lie–Yamaguti algebra such that its standard enveloping
Lie algebrag(m) is complete. LetN(m)={x ∈ m : D(x,m)=0, D(m,m)(x)=0}.Then

Der(m, ·, [ , , ])=D(m,m)⊕ {Lx : x ∈ N(m)}
(direct sumof ideals),whereLx denotes the leftmultiplicationby x in(m, ·) (Lx : y �→ x ·y).

Proof. Any d ∈ Der(m, ·, [ , , ]) extends to a derivation ofg(m)=D(m,m)⊕m by means
of d(D(x, y))=[d,D(x, y)] (=D(d(x), y)+D(x, d(y))) for anyx, y ∈ m. By hypothesis,
there is an element̂d ∈ D(m,m) and an elementx ∈ m such thatd = ad(d̂ + x). But
bothd andd̂ preserveD(m,m) andm so that[x,m] ⊆ m and[x,D(m,m)] ⊆ D(m,m),
conditions which are equivalent, because of (1.3), toD(x,m) = 0 andD(m,m)(x) = 0.
Conversely, for anyx ∈ N(m), Eqs. (LY2)–(LY5) in Definition 1.1 imply easily that
Lx ∈ Der(m, ·, [ , , ]). In particular, this shows that[Lx,Ly] = Lx·y for any y ∈ m.
Also, [D(u, v), Lx] = LD(u,v)(x) = 0 for anyx ∈ N(m); so thatD(m,m) andLN(m) are
ideals of Der(m, ·, [ , , ]). Finally, if for somex ∈ N(m) we have thatLx is a finite sum∑
i D(xi, yi), then[∑i D(xi, yi)− x,m] = 0 and

∑
i D(xi, yi)− x belongs to the center

of g(m), which is trivial. Hencex = 0. �

In all our examples of Lie–Yamaguti algebras(m, ·, [ , , ]) in the previous section, the
Lie algebraD(m,m) is the corresponding adhi |m by Proposition 1.2. Hence, as a direct
consequence of the Lemma above and the arguments in the previous section one gets:

Proposition 5.5.

• Der(mi , ·, [ , , ])= adhi |mi , for i = 1,2,4,6,8,

• Der(m7
�,�, ·, [ , , ])= adh7|m7

�,�
,

• Der(mi , ·, [ , , ])= adh1|mi , for i = 3,5.
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A more subtle question is the computation of the Lie algebra of derivations of the binary
anticommutative algebras(m, ·).

Theorem 5.6.

• Der(m1, ·)= gl(m1);
• Der(mi , ·) = adhi |mi , for i = 2,6,8,which is a Lie algebra of typeZ ⊕ A1, A2 and
A1, respectively, where Z denotes a one-dimensional center;

• Der(m3, ·)= adh1|m3, of typeA1 ⊕ A1;
• Der(m4, ·) is a Lie algebra of typeZ ⊕ C2;
• Der(m5, ·) is a Lie algebra of typeA1 ⊕ C2;
• Der(m7

�,�, ·)= adh7|m7
�,�
for any�,� ∈ k.

Proof. For i = 1, this is clear since(m1, ·) is a trivial algebra, fori = 6 this appears in[9].
For i = 8, as shown in the proof of Theorem 5.3, adh8|m8 ⊆ Der(m8, ·) ⊆ Lie(m8, ·),

which is contained in the orthogonal Lie algebraso(m8,�), relative to the restriction tom8

of the Killing form � of g2 (note that�(h8,m8)= 0). But the restriction of� tom8 is, up
to scalars, the uniqueh8-invariant bilinear form onm8 by irreducibility. As remarked in[4,
Proof of 5.7], h8 is maximal inso(m8,�), and Der(m8, ·) �= Lie(m8, ·), since(m8, ·) is
not a Lie algebra. Hence adh8|m8 = Der(m8, ·) and Lie(m8, ·)= so(m8,�).

For i = 2 one hash2 = (g2)−12 ⊕ (g2)0 ⊕ (g2)12 andm2 = ⊕i �=0,±12(g2)i in (5.1), so
thatd2 = Der(m2, ·) is Z-graded. Letm2

0̄
=⊕i evenm

2
i =m2−2 ⊕m2

2 andm2
1̄
=⊕i oddm

2
i .

For anyd ∈ d2
j for odd j, d(m2

l ) = 0 for any oddl �= ±2− j . But using Lemma 5.1 one

checks that⊕ l odd
l �=±2−j

m2
l generates(m2, ·). Henced(m2) = 0. Now, letd ∈ d2

j for even

j. If j �= 0,±4, thend(m2
0̄
) = 0. Also, any 0 �= d ∈ d2

−4 is determined by its action on

m2
9= (g2)9, since the subspacem2

9, together withm2−2⊕m2
3⊕m2

5⊕m2−7⊕m2−9 (which is
annihilated byd) generates(m2, ·). Note that(g2)2 = kX2, (g2)−2 = kY 2 and[X2, Y 2] =
(X2, Y 2)1 =XY . Hence we may assume (up to a scalar) thatd|m2

9
= (adY 2)2|m2

9
(�= 0), so

d(m2
7)= d(Y 2 ·m2

9)= Y 2 · d(m2
9), sinced(Y 2) ∈ m2−6 = 0, and thusd|m2

7
= (adY 2)2|m2

7

too. Butm2
7 = k(x ⊗X2Y ), d(X2)= �Y 2 for some� ∈ k and

d(X2) · (x ⊗XY 2)= d(X2 · (x ⊗XY 2))−X2 · d(x ⊗X2Y )

= [(adY 2)2,adX2](x ⊗X2Y )

=−(adXY adY 2 + adY 2 adXY)(x ⊗X2Y ) (as [X2, Y 2] =XY)
= 0

asXYacts with eigenvalue−1
4 onx⊗X2Y and 1

4 on[Y 2, x⊗X2Y ]. We conclude that�=0

sod(m2
0̄
)= 0. Similarly, anyd ∈ d2

4 satisfiesd(m2
0̄
)= 0. If d ∈ d2

0, it acts as a scalar�l on

eachm2
l , and since by the derivation property�2+�−9=�−7 and�−2+�−7=�−9, it follows

that�2 = −�−2 and hence there is an� ∈ k such that(d − � adXY)(m2
0̄
) = 0. Moreover,

anyd ∈ d2
0̄ = ⊕j evend

2
j with d(m2

0̄
) = 0 satisfies the condition thatd|m2

1̄
commutes with
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adm2
0̄
|m2

1̄
, and hence with the action ofW2 onm2

1̄
= V1⊗kW3. By irreducibility ofW3, it

follows thatd|m2
1̄
∈ Endk(V1) ⊗ 1. Also, if d ∈ d2

j , with j �= 0, its trace is 0, and any

d ∈ d2
0 with d(m2

0̄
)= 0 acts as a scalar� onx ⊗W3 and another scalar� ony ⊗W3. From

0 = d(m2
2) it follows that 0= d((x ⊗ X3) · (y ⊗ XY 2)) and we deduce that� + � = 0.

Therefored|V1⊗kW3 ∈ sl(V1) ⊗ 1= adsL|V1⊗kW3. We conclude thatd2 = d2
0̄ is contained

in (k adXY + adsL)|m2, whenced2 = adh2|m2.
Now, considerd3=Der(m3, ·). Hereh3=V2=[h2, h2], andm3=W2⊕(V1⊗kW3), which

inherits theZ2-grading ofg2. Since(W2, ·)�sl2(k), for anyd ∈ d3
0̄, there is anF ∈ W2 such

that(d−adF)|m3
0̄
=0, so(d−adF)|m3

1̄
is an endomorphism ofV1⊗kW3 commuting with the

action ofW2. As before, we conclude thatd − adF ∈ adh3|m3
1̄

and henced ∈ ad(g2)0̄|m3.

It is also clear that ad(g2)0̄|m3 =adh1|m3 ⊆ d3 by Theorem 5.5.Now, ifd ∈ d3
0̄ andz ∈ m3

1̄
,

[d, Lz] = Ld(z), soLm3
1̄
∩ d3

1̄ is d3
0̄-invariant. Butm3

1̄
= V1⊗kW3 is an irreducible module

for d3
0̄, so for anyd ∈ d3

1̄ andu ∈ m3
0̄
, Ld(u) = [d, Lu] = [d,adu|m3] ∈ d3

1̄ ∩ Lm3
1̄
= 0

and henced(u)= 0. Thus,d(m3
0̄
)= 0, sod|m3

1̄
is a homomorphism fromV1⊗kW3 intoW2

commuting with the action ofm3
0̄
; so it is 0. The conclusion is thatd3 = adh1|m3.

Ford5=Der(m5, ·), h5=W2,m5=V2⊕ (V1⊗kW3). As for i= 3, for anyd ∈ d3
0̄, there

is anf ∈ V2 such thatd̃ = d − adf annihilatesm5
0̄
, so thatd̃ commutes with the action

of V2 and hencẽd|m5
1̄

is of the form 1⊗ �, for � ∈ Endk(W3). Using (4.2) one concludes

easily that� ∈ sp(W3, ( , )3) (the symplectic Lie algebra). The same arguments as fori=3
give thatd5= adm5

0̄
|m5 ⊕ sp(W3, ( , )3), a Lie algebra of typeA1⊕C2. (Note that[4, 4.3]

shows thatsp(W3, ( , )3)�W2 ⊕W6 under a suitable bracket.)
Ford4=Der(m4, ·), h4=kxy⊕W2 andm4=(kx2⊕ky2)⊕(V1⊗kW3), som4

0̄
=m4−12⊕

m4
12, h4 = (g2)−2 ⊕ (g2)0 ⊕ (g2)2. Hered4

1̄ = 0 since anyd ∈ d4
j , for odd j, annihilates

all but at most one subspacem4
l for odd l, and these subspaces generatem4. On the other

hand, as fori = 2, anyd ∈ d4
0 acts as a scalar�l on anym4

l , and since�3 = �12 + �−9 and
�−9 = �−12+ �3, it follows that�−12=−�12 so that(d − � adxy)|m4

0̄
= 0 for some� ∈ k.

Also, anyd ∈ d4
j for evenj �= 0, either annihilatesm4

1̄
, and thus is 0, or annihilatesm4

0̄
.

Besides, anyd ∈ d4
0̄ with d(m4

0̄
)= 0 satisfies the condition thatd|m4

1̄
is an endomorphism

of m4
1̄
= V1⊗kW3 commuting with the action ofV2 and, as fori = 5, we conclude that

d4 = k adxy|m4 ⊕ sp(W3, ( , )3) (where we identifysp(W3, ( , )3) with a subalgebra of
gl(m4) in the natural way).

The situation ford7
�,� = Der(m7

�,�, ·) is a bit more complicated. First, we need the next
two results:

(i) Let � : V4 → V2 be a linear map such that(�(g1), g2)2= (g1,�(g2))2 for anyg1, g2 ∈
V4. Then�= 0.

(ii) Let � : V2 → V2 be a linear map such that�((f, g)2) = −(�(f ), g)2 for anyf ∈ V2
andg ∈ V4. Then�= 0.
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These can be checked directly or, using the identification ofV4 with the subspace
sym0(V2, (., .)2) in (4.8) and (4.9), they are equivalent to the following easily checked
properties about a three-dimensional vector spaceVendowed with a nondegenerate bilinear
form b:

(i’) Let � : sym0(V , b) → V be a linear map such thatf (�(g)) = g(�(f )) for any
f, g ∈ sym0(V , b), then�= 0.

(ii’) Let � : V → V be a linear map such that�f + f �= 0 for anyf ∈ sym0(V , b), then
�= 0.

For (i’) takefu=b(u,−)u for any isotropic vectoru (recall that the ground field is assumed
to be algebraically closed, so there are plenty of isotropic vectors). Thenb(u,�(fv))u =
b(v,�(fu))v, so thatb(u,�(fv))=0 for any linearly independent isotropic vectorsuandv.
Since there are bases of isotropic vectors linearly independent to a given one, we conclude
that�(fv)= 0 for any isotropic vectorv, and hence�= 0, as thefv ’s spansym0(V , b). As
for (ii’), � commutes with[sym0(V , b), sym0(V , b)] = so(V , b), so it is a scalar multiple
of the identity by Schur’s lemma, and this scalar is necessarily 0.

Now, letd ∈ Der(m7
�,�, ·) and letd(g)= �1(g)⊗ ũ+ �2(g)⊗ ṽ+�(g) for anyg ∈ V4,

where�1,�2 : V4 → V2 and � : V4 → V4 are linear maps. Herẽu = u − �1 and
ṽ = v − �1 (recall (4.7)). Taking into account the multiplication rules in Theorem 4.5, for
anyg1, g2 ∈ V4, the coefficient of̃u in 0= d(g1 · g2)= d(g1) · g2 + g1 · d(g2) is

−(�1(g1), g2)2 + (g1,�1(g2))2 = 0

so, by property (i) above, we conclude that�1=0 and, similarly, that�2=0. Therefore,V4
is invariant under Der(m7

�,�, ·). For anyf ∈ V2, d(f ⊗ ũ)= �1(f )⊗ ũ+ �2(f )⊗ ṽ+�(f )
for some linear maps�1, �2 : V2 → V2 and� : V2 → V4. The coefficient of̃v in

d((f ⊗ ũ) · g)= d(f ⊗ ũ) · g + (f ⊗ ũ) · d(g) (5.2)

is

−�2((f, g)2)= (�2(f ), g)2

so, property (ii) above gives�2 = 0. Similarly,d(V2 ⊗ ṽ) ⊆ V2 ⊗ ṽ ⊕ V4. Therefore, for
any d ∈ Der(m7

�,�, ·), there are linear maps�1, �2 : V2 → V2, �1,�2 : V2 → V4 and
� : V4 → V4 such that

d(f ⊗ ũ)= �1(f )⊗ ũ+ �1(f ),

d(f ⊗ ṽ)= �2(f )⊗ ṽ + �2(f ),

d(g)= �(g)

for anyf ∈ V2 andg ∈ V4. The coefficient of̃u in (5.2) is

−�1((f, g)2)=−(�1(f ), g)2 − (f,�(g))2, (5.3)

or [�1, T
2

2,g]=−T 2
2,�(g). By symmetry, also[�2, T

2
2,g]=−T 2

2,�(g), so that[�1−�2, T
2

2,g]=0

for anyg ∈ V4. But {T 2
2,g : g ∈ V4} = sym0(V2, (., .)2), which generates Endk(V2) as an
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associative algebra. Thus�1 − �2 is a scalar multiple of the identity. Now, one half of the
coefficient ofṽ in

d((f1 ⊗ ũ) · (f2 ⊗ ũ))= d(f1 ⊗ ũ) · (f2 ⊗ ũ)+ (f1 ⊗ ũ) · d(f2 ⊗ ũ)
gives

�2((f1, f2)1)= (�1(f1), f2)1 + (f1, �1(f2))1 (5.4)

for anyf1, f2 ∈ V2 and, symmetrically,

�1((f1, f2)1)= (�2(f1), f2)1 + (f1, �2(f2))1. (5.5)

If (5.5) is subtracted from (5.4), we check that the scalar map�1− �2 is 0, or�1= �2 which,
by (5.5), is a derivation of(V2, (., .)1) � sl2(k), and hence there exists an elementh ∈ V2
such that�1 = T 2

1,h. Then, from Corollary 4.4, the new derivation̂d = d − adh ⊗ 1|m7
�,�

satisfies

d̂(f ⊗ ũ)= �1(f ), d̂(f ⊗ ṽ)= �2(f ), d̂(g)= �̂(g)

for anyf ∈ V2, g ∈ V4, for a suitable linear map̂� : V4 → V4. In this situation, Eq. (5.3)
(with �1 = 0 and�̂ instead of�) proves thatT 2

2,�̂(g) = 0 for anyg ∈ V4, and hence that

�̂= 0. Finally, for anyf ∈ V2 andg ∈ V4, d̂(f ⊗ ũ) · g = 0= (f ⊗ ũ) · d̂(g) (d̂(g)= 0),
while

d̂((f ⊗ ũ) · g)= d̂(−(f, g)2 ⊗ ũ− 2�(f, g)1)=−�1((f, g)2).

Since(V2, V4)2 = V2, we conclude that�1 = 0 and, in the same way,�2 = 0. Therefore,
d̂ = 0 andd ∈ adh7

�,�, as required. �

5.3. Lie multiplication algebras

Recall that theLie multiplication algebraof a nonassociative algebraA is the Lie sub-
algebra Lie(A) of gl(A) generated by the operators of left and right multiplications by the
elements ofA. As before, let us denote by� both the Killing form ofg2 and its restriction
tomi , i = 1, . . . ,8, which is nondegenerate sincemi is the orthogonal complement tohi

for any i.
Since the anticommutative algebra(m1, ·) is trivial, so is its Lie multiplication algebra.

For the remaining cases, there is a uniform description.

Theorem 5.7. Lie(mi , ·)= so(mi ,�), for anyi = 2, . . . ,8.

Proof. For i = 6 this appears in[9, Theorem 4.5]and for i = 8 the result has already
appeared in the proof of the previous result.

Note that for anyu, v,w ∈ mi
�(u · v,w)= �([u, v], w)= �(u, [v,w])= �(u, v · w),

so Lie(mi , ·) ⊆ so(mi ,�). Fori �= 1,6,7,8,mi inherits theZ2-grading ofg2 in (4.1), thus
�(mi

0̄
,mi

1̄
) = 0 andso(mi ,�) is generated byso(mi ,�)1̄ (={� ∈ so(mi ,�) : �(mi

j̄
) ⊆
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mi
j+1
, j = 0,1}), which is spanned by the linear maps�(u, .)v − �(v, .)u for u ∈ mi

0̄
,

v ∈ mi
1̄
. In particular, as a module forhi , so(mi ,�)1̄ is isomorphic tomi

0̄
⊗kmi1̄. The

required result would follow if we could establish that the map

� : mi
0̄
⊗mi

1̄
−→ so(mi ,�)1̄,

u⊗ v �→ [Lu,Lv]
is one-to-one. Note also that theZ-grading in (5.1) induces an associatedZ-grading on
so(mi ,�) too (preserved by�).

For i = 2,m2 = (kX2 ⊕ kY 2)⊕ (V1⊗kW3), h
2 = V2 ⊕ kXY and

m2
0̄
⊗m2

1̄
= (⊕j=±2(g2)j

)⊗ (⊕j∈{±3,±5,±7,±9}(g2)j
)

and to show that� is one-to-one, it is enough to show that

�
(
(g2)±2⊗k(g2)±j

) �= 0

for anyj = 3,5,7,9, and that

�
(
(g2)2⊗k(g2)j−2

) �= �
(
(g2)−2⊗k(g2)j+2

)
for j =±5,±7. This is obtained by routine verifications. For instance, for 0�= zj ∈ (g2)j
for any j,

z2 · (z9 · z−9)− z9 · (z2 · z−9)=−z9 · (z2 · z−9) �= 0

by Lemma 5.1, so�((g2)2⊗k(g2)9) �= 0. Also

z2 · (z5 · z2)− z5 · (z2 · z2)= z2 · (z5 · z2) �= 0,

while

z−2 · (z9 · z2)− z9 · (z−2 · z2)= 0,

which shows that�((g2)2⊗k(g2)5) �= �((g2)−2⊗k(g2)9).
For i = 4,m4 = (kx2 ⊕ ky2)⊕ (V1⊗kW3), h

4 = kxy ⊕W2, and one proceeds similarly.
For i = 3,5,7 different arguments will be used. First, fori = 3,m3 =W2 ⊕ (V1⊗kW3),

h3 = V2. As a module forV2�sl2(k),m3
0̄
= 3V (0) andm3

1̄
= 4V (1), whereV (j) denotes

the irreduciblesl2(k)-module of dimensionj +1 (which, up to isomorphism, isVj ). Hence
m3

0̄
⊗km3

1̄
�12V (1) and it is enough to find 12 independent eigenvectors of eigenvalue 1

for the action ofh = −4 adxy in Lm3
1̄
+ [[Lm3

1̄
, Lm3

1̄
], Lm3

1̄
] (⊆ so(m3,�)1̄). Note thath

acts with eigenvalue 1 on(g2)j for odd j >0 and eigenvalue−1 on (g2)j for odd j <0.
Therefore, it is enough to prove that

• [[L(g2)9
, L(g2)7

], L(g2)−5] (⊆ so(m3,�)11) has dimension 1,
• L(g2)9

+ [[L(g2)9
, L(g2)5

], L(g2)−5] (⊆ so(m3,�)9) has dimension 2,
• L(g2)7

+ [[L(g2)3
, L(g2)7

], L(g2)−3] + [[L(g2)9
, L(g2)7

], L(g2)−9] (⊆ so(m3,�)7) has
dimension 3,
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• L(g2)5
+ [[L(g2)9

, L(g2)5
], L(g2)−9] + [[L(g2)3

, L(g2)5
], L(g2)−3] (⊆ so(m3,�)5) has

dimension 3,
• L(g2)3

+ [[L(g2)3
, L(g2)7

], L(g2)−7] (⊆ so(m3,�)3) has dimension 2, and
• [[L(g2)3

, L(g2)5
], L(g2)−7] (⊆ so(m3,�)1) has dimension 1,

and all these are routinely checked.
For i=5,m5=V2⊕ (V1⊗kW3), h

5=W2 and, as a module forW2�sl2(k),m5
0̄
�3V (0)

andm5
1̄
�2V (3), som5

0̄
⊗km5

1̄
�6V (3). It is enough to find 6 independent eigenvectors for

h = −4 adXY with eigenvalue 3 inso(m5,�)1̄ ∩ Lie(m5, ·). Note that hereh acts with
eigenvalue 3 on(g2)9 ⊕ (g2)−3 = V1 ⊗ X3, 1 on (g2)7 ⊕ (g2)−5 = V1 ⊗ X2Y , −1 on
(g2)5 ⊕ (g2)−7 = V1 ⊗XY 2 and−3 on(g2)3 ⊕ (g2)−9 = V1 ⊗ Y 3. Now

• L(g2)9
+ [[L(g2)9

, L(g2)5
], L(g2)−5] (⊆ so(m3,�)9) has dimension 2,

• L(g2)−3 + [[L(g2)−3, L(g2)−7], L(g2)7
] (⊆ so(m3,�)−3) has dimension 2,

• [[L(g2)9
, L(g2)7

], L(g2)5
] (⊆ so(m3,�)21) has dimension 1, and

• [[L(g2)−3, L(g2)−5], L(g2)−7] (⊆ so(m3,�)−15) has dimension 1 too,

thus obtaining the required independent eigenvectors.
Finally, for i = 7 consider the model in Corollary 4.4 and Theorem 4.5. The decomposi-

tionm7 = (V2 ⊗ (u + v)) ⊕ ((V2 ⊗ (u − v)) ⊕ V4) is aZ2-grading and, as a module for
V2 ⊗ 1�sl2(k),m7

0̄
⊗km7

1̄
�V (2)⊗k(V (2)⊕ V (4))�V (6)⊕ 2V (4)⊕ 2V (2)⊕ V (0). In

order to prove thatso(m7,�)= Lie(m7, ·), it is enough to check thatLm7
1̄
+ [Lm7

0̄
, Lm7

1̄
] =

so(m7,�)1̄. But [Lx2⊗(u+v), Lx4] is a nonzero highest weight vector of weight 6 for
h=−4 ad(xy⊗1),Lx4 and[Lx2⊗(u+v), Lx3y]−[Lxy⊗(u+v), Lx4] are linearly independent
highest weight vectors of weight 4,[Lx2⊗(u+v), Lxy⊗(u−v)] − [Lxy⊗(u+v), Lx2⊗(u−v)] and
Lx2⊗(u−v) are linearly independent highest weight vectors of weight 2, while the nonzero
vector[Lx2⊗(u+v), Ly2⊗(u−v)]−2[Lxy⊗(u+v), Lxy⊗(u−v)]+ [Ly2⊗(u+v), Lx2⊗(u−v)] is an-
nihilated byV2 ⊗ 1. �

Corollary 5.8. None of the Lie–Yamaguti algebras(mi , ·), i=1, . . . ,8,are homogeneous
(see(1.4)).

Proof. The casei = 1 is obvious, as the binary product is trivial. Hence we may assume
i�2. According to[20], if (m, ·, [ , , ]) is any finite-dimensional simple homogeneous
Lie–Yamaguti algebra, then either:

(1) (m, ·) is a Lie algebra and[x, y, z] = (x · y) · z for anyx, y, z ∈ m, or
(2) (m, ·) is a Malcev algebra and[x, y, z] = −(x · y) · z− x · (y · z)+ y · (x · z) for any
x, y, z ∈ m, or

(3) (m, ·) satisfies a specific degree 4 identity and[x, y, z]= 1
4(2(x·y)·z−x·(y·z)+y·(x·z))

for anyx, y, z ∈ m.

Moreover, in all three cases, Der(m, ·)= Der(m, ·, [ , , ])=D(m,m).
Then, in all three cases,[Lm, Lm] ⊆ Lm +D(m,m) andD(m,m) ⊆ Lm + [Lm, Lm].

Therefore, Lie(m, ·)= Lm +D(m,m).
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But for i=2, . . . ,8,D(mi ,mi )=adhi |mi andLmi +D(mi ,mi ) does not make up all of
so(mi ,�)= Lie(mi ,�) (by dimension count). Hence these algebras are not homogeneous.

�

5.4. Holonomy algebras

Given a reductive homogeneous spaceM � G/H with reductive decompositiong=h⊕m
as in (1.1), anyG-invariant affine connection onM is uniquely described by a bilinear
multiplication� : m×m→ m such that AdH |m is a subgroup of automorphisms of the
(nonassociative) algebra(m, �). In this way, the space ofG-invariant affine connections is
in bijection with the space HomH (m⊗m,m) (see[16, Chapter X]) or, if H is connected
with Homh(m⊗m,m). The computation of this space in all our examples[5] is an exercise
about plethysms, that is, it amounts to decomposingm andm ⊗ m into direct sums of
irreducible submodules.

There are always two distinguished such connections: thecanonical connection, given by
�=0, and thenatural connection(with trivial torsion), given by�(x, y)= 1

2�m([x, y])= 1
2x·y

for anyx, y ∈ m. Theholonomy algebra(the Lie algebra of the holonomy group) is the
smallest Lie subalgebra ofgl(m) containing the curvature tensors

R(x, y)= [�x, �y] − �x·y − ad�h([x, y])|m (5.6)

for anyx, y ∈ m, and closed under commutators by the operators of left multiplication�x
(y �→ �x(y)= �(x, y)) for anyx ∈ m.

This holonomy algebra makes sense for any reductive decomposition (1.1) (and hence
for any Lie–Yamaguti algebra) over arbitrary fields:

Definition 5.9. Let g = h ⊕ m be a reductive decomposition of a Lie algebra and let
� ∈ Homh(m⊗km,m). Then theholonomy algebraof �: hol(m, �), is the smallest Lie
subalgebra ofgl(m) containing thecurvature operatorsR(x, y) in (5.6) for anyx, y ∈ m,
and closed under commutators by the operators{�x = �(x, .) : x ∈ m}.

We will finish the paper with the computation of the holonomy algebra in our examples
of Lie–Yamaguti algebras.

For the canonical connection (�x=0 for anyx), it is clear thathol(m,0)=ad�h([m,m]),
which equalsD(m,m) for the reductive decompositionsg(m) = D(m,m) ⊕ m of any
Lie–Yamaguti algebra.

For the natural connection,�x = 1
2Lx for anyx ∈ m, so that

R(x, y)= 1
4 [Lx,Ly] − 1

2 Lx·y −D(x, y)

for anyx, y ∈ m.
In all our reductive pairs(gi , hi ), i = 2, . . . ,8,D(mi ,mi ) ⊆ so(mi ,�)= Lie(mi , ·), so

hol(mi , �) is contained in Lie(mi , ·) and, by its very own definition,hol(mi , �) is an ideal
of the simple Lie algebra Lie(mi , ·)= so(mi ,�). Simple case by case considerations show
thathol(mi , �) �= 0 for anyi, and hence:
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Proposition 5.10. For �(x, y)= 1
2x · y, the holonomy algebras of the reductive decompo-

sitionsg2 = hi ⊕mi , i = 1, . . . ,8 are given by:

hol(mi , �)=
{

adh1|m1 for i = 1,
so(mi ,�) for i �= 1.

6. Concluding remarks

The large variety of Lie–Yamaguti algebras that appear in this paper suggests that some
restrictions have to be imposed in order to obtain general results on these algebras.

A natural restriction is to consider those Lie–Yamaguti algebras(m, ·, [ , , ]) which
are irreducible modules for theirinner derivation Lie algebrasD(m,m) [2]. This irre-
ducibility condition is more restrictive than the simplicity one. Geometrically, these are
the Lie–Yamaguti algebras related to the irreducible homogeneous spaces[25]. In work in
progress, it has been proved that theseirreducibleLie–Yamaguti algebras are tightly related
to other algebraic systems, like Jordan pairs and Freudenthal triple systems.
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