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Conjugay for Fourier�Bessel expansionsby
Óscar Ciaurri (Logroño) and Krzysztof Stempak (Wroªaw)
Abstrat. We de�ne and investigate the onjugate operator for Fourier�Bessel ex-pansions. Weighted norm and weak type (1, 1) inequalities are proved for this operatorby using a loal version of the Calderón�Zygmund theory, with weights in most asesmore general than Ap weights. Also results on Poisson and onjugate Poisson integralsare furnished for the expansions onsidered. Finally, an alternative onjugate operator isdisussed.1. Introdution and statement of results. Given ν > −1 onsiderthe di�erential operator(1.1) Lν = −

(
d2

dx2
+

1/4 − ν2

x2

)
,initially de�ned on the spae C∞

c (0, 1). It is a positive and symmetri oper-ator in L2((0, 1), dx). The funtions {ψν
n}n≥1,

ψν
n(x) = dn,ν(λn,νx)

1/2Jν(λn,νx), dn,ν =
√

2 |λ1/2
n,νJν+1(λn,ν)|−1,where {λn,ν}n≥1 denotes the sequene of the suessive positive zeros ofthe Bessel funtion Jν(z), are eigenfuntions of Lν orresponding to theeigenvalues λ2

n,ν ,
Lνψ

ν
n = λ2

n,νψ
ν
n,and form a omplete orthonormal system in L2((0, 1), dx); see [13, ChapterXVII℄ for a omprehensive study of Fourier�Bessel expansions.In partiular,

ψ−1/2
n (x) =

√
2 cos(π(n− 1/2)x), ψ1/2

n (x) =
√

2 sin(πnx),2000 Mathematis Subjet Classi�ation: Primary 42C10; Seondary 44A20.Key words and phrases: Fourier�Bessel expansions, onjugate operator, weighted norminequalities, Ap weights, onjugate Poisson integrals.Researh of the �rst author supported by grant BFM2003-06335-603-03 of the DGI.Researh of the seond author supported by KBN grant # 2 P03A 028 25.[215℄



216 Ó. Ciaurri and K. Stempakfor n = 1, 2, . . . . It may be easily heked that the operator Lν given by
Lν

( ∞∑

n=1

〈f, ψν
n〉ψν

n

)
=

∞∑

n=1

λ2
n,ν〈f, ψν

n〉ψν
non the domain

Dom(Lν) =
{
f ∈ L2((0, 1), dx) :

∞∑

n=1

|λ2
n,ν〈f, ψν

n〉|2 <∞
}
,

with 〈f, ψν
n〉 =

T1
0 f(x)ψν

n(x) dx, is a self-adjoint extension of Lν , has the dis-rete spetrum {λ2
n,ν : n = 1, 2, . . . } and admits the spetral deomposition
Lνf =

∞∑

n=1

λ2
n,νPnf, f ∈ Dom(Lν),where Pnf = 〈f, ψν

n〉ψν
n are the spetral projetions (the inlusion C∞

c (0, 1)
⊂ Dom(Lν) is a onsequene of [6, Lemma 2.2℄). Notie that for ν suh that
0 < |ν| < 1, the operators Lν and L−ν are idential but Lν 6= L−ν .Let

δν = − d

dx
+
ν + 1/2

xdenote the derivative assoiated with Lν . Formally, we de�ne the onjugateoperator by
Rν = δν(Lν)−1/2.This de�nition is motivated by the fat that the (formal) adjoint of δν in

L2((0, 1), dx) is
δ∗ν =

d

dx
+
ν + 1/2

xand a diret omputation then shows that
Lν = δ∗νδν .The preise de�nition of Rν is the following. Sine the spetrum of Lν isseparated from zero, L−1/2

ν is a bounded operator on L2((0, 1), dx) given by
L−1/2

ν f =
∞∑

n=1

1

λn,ν
〈f, ψν

n〉ψν
n, f ∈ L2((0, 1), dx).A alulation that uses (2.1) (see Setion 2) also shows that(1.2) δνψ

ν
n = λn,νψ̃

ν
n, δ∗νψ̃

ν
n = λn,νψ

ν
n,where(1.3) ψ̃ν

n(x) = dn,ν(λn,νx)
1/2Jν+1(λn,νx).



Conjugay for Fourier�Bessel expansions 217Sine the system {ψ̃ν
n}n≥1, ν > −1, is an orthonormal basis in L2((0, 1), dx)(f. Lemma 2.4), we de�ne(1.4) Rνf =

∞∑

n=1

〈f, ψν
n〉ψ̃ν

n, f ∈ L2((0, 1), dx).

(The series on the right onverges in L2((0, 1), dx) and de�nes a boundedoperator there.) In other words, the onjugate operator is furnished by themapping ψν
n 7→ ψ̃ν

n. If ν = −1/2, then ψ
−1/2
n (x) =

√
2 cos(π(n − 1/2)x);moreover, λn,−1/2 = π(n− 1/2), hene a alulation gives

ψ̃−1/2
n (x) =

√
2 sin(π(n− 1/2)x).Therefore, as the orresponding onjugate operator we reover the operatordetermined by the mapping

cos(π(n− 1/2)x) 7→ sin(π(n− 1/2)x),whih di�ers slightly from the lassial onjugate operator Ce for trigono-metri expansions of even funtions on (−1, 1), i.e. the operator given by
cos(πnx) 7→ sin(πnx) (f. [1, p. 100℄).Given a weight funtion w(x) on (0, 1), onsider the following set ofonditions (p′ denotes the onjugate to p, 1/p+ 1/p′ = 1):

sup
0<r<1

( 1\
r

w(x)px−p(ν+3/2) dx
)1/p( r\

0

w(x)−p′xp′(ν+1/2) dx
)1/p′

<∞,(1.5)
sup

0<r<1

( r\
0

w(x)pxp(ν+3/2) dx
)1/p( 1\

r

w(x)−p′x−p′(ν+5/2) dx
)1/p′

<∞,(1.6)
sup

0<u<v<min{1,2u}

1

v − u

( v\
u

w(x)p dx
)1/p( v\

u

w(x)−p′ dx
)1/p′

<∞.(1.7)For a weight w satisfying (1.7) we write wp ∈ Ap,loc and say that wp is aloal Ap weight. The left side of (1.7) is then alled the Ap,loc norm of wp.We allow 1 ≤ p < ∞ when onsidering onditions (1.5)�(1.7). Here andlater on, for p′ = ∞ the above integrals have the usual interpretation. Forexample, the seond fator in (1.5) is taken as ess supx∈(0,r)[w(x)−1xν+1/2].It is easily seen that for a power weight funtion w(x) = xa, a ∈ R, (1.5) issatis�ed if and only if a < −1/p + (ν + 3/2), (1.6) is satis�ed if and only if
a > −(ν + 3/2) − 1/p, and (1.7) is satis�ed for eah a ∈ R. The ondition(1.5) is neessary and su�ient for the weighted Hardy inequality
(1.8) 1\

0

∣∣∣w(x)x−(ν+3/2)
x\
0

f(t) dt
∣∣∣
p
dx ≤ C

1\
0

|w(x)x−(ν+1/2)f(x)|p dx



218 Ó. Ciaurri and K. Stempakto hold, while the ondition (1.6) is neessary and su�ient for(1.9) 1\
0

∣∣∣w(x)xν+3/2
1\
x

f(t) dt
∣∣∣
p
dx ≤ C

1\
0

|w(x)xν+5/2f(x)|p dxto be satis�ed; this follows from [9, Theorems 1 and 2℄. The loal Ap ondition(1.7) for wp is, for 1 < p <∞, su�ient for the estimate(1.10) 1\
0

|Tf(x)w(x)|p dx ≤ C

1\
0

|f(x)w(x)|p dxto hold, where T represents a loal Calderón�Zygmund operator (see [7,De�nition 3.2℄, f. also [11, De�nition 4.2℄). In the ase p = 1 the ondition(1.7) is su�ient for the weighted weak type (1, 1) inequality(1.11) \
{0<x<1 : |Tf(x)|>λ}

w(x) dx ≤ C

λ

1\
0

|f(x)|w(x) dx, λ > 0,to hold. These estimates for loal Calderón�Zygmund operators are on-tained in [7, Theorem 3.3℄ (see also [11, Setion 4℄).Finally, note that if a weight w on (0, 1) satis�es any of the onditions(1.5)�(1.7) then either w ≡ 0 or w(x) > 0 x-a.e. (here the onvention 0 · ∞
= 0 is used), and the same applies to the onditions (1.14) and (1.15).Throughout the paper we use a fairly standard notation. Thus, for aweight w on (0, 1) (a nonnegative measurable funtion suh that w(x) < ∞
x-a.e.) we write Lp(w) and L1,∞(w) to denote the weighted Lp and weightedweak L1 spaes (with respet to Lebesgue measure dx) that onsist of allfuntions f on (0, 1) for whih

‖f‖Lp(w) =
( 1\

0

|f(x)w(x)|p dx
)1/p

<∞,or
‖f‖L1,∞(w) = sup

t>0

(
t

\
{0<x<1 : |f(x)|>t}

w(x) dx
)
<∞,

respetively. If w ≡ 1, we simply write Lp or L1,∞. By Pr and Qr, 0 < r < 1,we denote the usual Poisson and onjugate Poisson kernels,
Pr(x) =

1

2
+

∞∑

n=1

rn cos(nx) =
1 − r2

2(1 − 2r cosx+ r2)
,

Qr(x) =
∞∑

n=1

rn sin(nx) =
r sinx

1 − 2r cosx+ r2
.Notie that for x 6= 2kπ, k ∈ Z, limr→1− Pr(x) = 0 and limr→1− Qr(x) =

1
2 cot(x/2).



Conjugay for Fourier�Bessel expansions 219We write g ∼ ∑∞
n=1 anψ

ν
n to indiate that the Fourier�Bessel expansionof g exists and an represents its nth oe�ient, an = 〈g, ψν

n〉; this, in parti-ular, means that T10 |g(x)ψν
n(x)| dx <∞. The analogous onvention holds forother orthonormal bases that appear later on, for instane {ψ̃ν

n}n≥1.With this notation, the main results of the paper are the following.Theorem 1.1. Let ν > −1 and 1 < p < ∞. Let w(x) be a weight thatsatis�es the onditions (1.5)�(1.7). Then(1.12) ( 1\
0

|Rνf(x)w(x)|p dx
)1/p

≤ C
( 1\

0

|f(x)w(x)|p dx
)1/p

for all f ∈ L2∩Lp(w). Consequently , Rν extends uniquely to a bounded linearoperator on Lp(w). Using the same symbol Rν to denote this extension, ifin addition w satis�es the onditions that result from (1.5) and (1.6) byreplaing ν by ν + 1, then(1.13) Rνf ∼
∞∑

n=1

〈f, ψν
n〉ψ̃ν

n, f ∈ Lp(w).In order to treat weighted weak type (1, 1) inequalities for Rν , for a givenweight funtion w(x) on (0, 1), onsider the following set of onditions:
sup

0<r<1

( 1\
r

(
r

x

)δ w(x)

xν+3/2
dx

)(
ess sup
x∈(0,r)

xν+1/2

w(x)

)
<∞,(1.14)

sup
0<r<1

( r\
0

(
x

r

)δ

xν+3/2w(x) dx

)(
ess sup
x∈(r,1)

1

xν+5/2w(x)

)
<∞.(1.15)In (1.14) and (1.15) we assume that there exists a positive δ suh that theorresponding quantities are �nite. It is easily seen that for a power weightfuntion w(x) = xa, a ∈ R, (1.14) is satis�ed if and only if a ≤ ν + 1/2, and(1.15) is satis�ed if and only if a ≥ −(ν + 5/2). Let Pη, Qη, η real, denotethe Hardy operators ating on funtions de�ned on (0, 1):

Pηf(x) = x−η
x\
0

f(t) dt, Qηf(x) = x−η
1\
x

f(t) dt, 0 < x < 1.The ondition (1.14) is neessary and su�ient for the inequality(1.16) \
{0<x<1 : |Pν+3/2f(x)|>λ}

w(x) dx≤ C

λ

1\
0

|f(x)|x−(ν+1/2)w(x) dx, λ>0,

to hold; this follows from [2, Theorem 2℄ taken with p = q = 1, η = ν + 3/2
> 0, U(x) = w(x) and V (x) = x−(ν+1/2)w(x) for x ∈ (0, 1), and U(x) =
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V (x) = 0 for x ≥ 1. The ondition (1.15) is neessary and su�ient for(1.17) \

{0<x<1 : |Q
−(ν+3/2)f(x)|>λ}

w(x) dx≤ C

λ

1\
0

|f(x)|xν+5/2w(x) dx, λ> 0,

to hold; this follows from [2, Theorems 4 and 5℄ taken with p = q = 1,
η = −(ν + 3/2), U(x) = w(x) and V (x) = xν+5/2w(x) for x ∈ (0, 1), and
U(x) = V (x) = 0 for x ≥ 1.Theorem 1.2. Let ν > −1 and w(x) be a weight that satis�es the on-ditions (1.14), (1.15), and (1.7) with p = 1. Then\

{0<x<1 : |Rνf(x)|>λ}

w(x) dx ≤ C

λ

1\
0

|f(x)|w(x) dx, λ > 0,

for all f ∈ L2 ∩ L1(w). Consequently , Rν extends uniquely to a boundedlinear operator from L1(w) to L1,∞(w).The proofs of our main results, Theorems 1.1 and 1.2, rely on subtle esti-mates of the kernel Rν(x, y) assoiated to the operator Rν (see Proposition3.3), and on an appliation of the aforementioned loal Calderón�Zygmundtheory. This theory, desribed in [11℄, has been adapted to the present set-ting in [7℄. We stress that in the ase ν > 1/2, when Rν(x, y) is a standardCalderón�Zygmund kernel (see Proposition 3.3), restriting the kernel to theloal region
D3 = {(x, y) ∈ (0, 1) × (0, 1) : x/2 < y < 3x/2},i.e. treating Rν by means of the loal Calderón�Zygmund theory, bringsan advantage at least when 1 < p < ∞. Then more weights are allowedsine outside D3, i.e. on the regions D1 = {(x, y) : 0 < y ≤ x/2} and

D2 = {(x, y) : min{1, 3x/2} ≤ y < 1}, weighted Hardy inequalities areapplied. Here are the details. Reall that the (global) Ap ondition for wp,
1 ≤ p <∞, is(1.18) sup

0≤u<v≤1

1

v − u

( v\
u

w(x)p dx
)1/p( v\

u

w(x)−p′ dx
)1/p′

<∞.Here, as in (1.7), the seond integral is understood as ess supx∈(u,v)[w
−1(x)]for p = 1. Clearly, the (global) Ap ondition implies (1.7). We showed in [7,Proposition 2.4℄ that for ν ≥ −1/2 if w satis�es (1.18) then it satis�es (1.5)and (1.6) if p > 1, or (1.14) and (1.15) if p = 1. Therefore, taking into aountthe remarks onerning power weights, it follows that in the ase ν > −1/2in Theorems 1.1 and 1.2 we are onsidering a range of weights substantiallywider than the lassial range of Ap weights. On the other hand, we showed



Conjugay for Fourier�Bessel expansions 221in [7, Proposition 2.5℄ that for ν = −1/2 and 1 < p <∞, if w satis�es (1.5)and (1.6) then it satis�es (1.18). Thus, in the ase ν = −1/2, in Theorem1.1 we onsider preisely the range of Ap weights.A theory of Riesz transforms for the di�erential operator Lν onsideredas a positive symmetri operator on C∞
c (0,∞) ⊂ L2((0,∞), dx) has reentlybeen developed in [3℄ by Betanor, Burazewski, Fariña, Martínez and Torrea(for ν ≥ −1/2); in a slightly di�erent setting the same problem was inves-tigated in [5℄. A self-adjoint extension of this operator is realized in termsof the Hankel transform Hν . Sine for a given ν > −1 the Fourier�Besselexpansions with respet to {ψν

n}n≥1 may be viewed as disrete analogues ofthe (ontinuous) Hankel transform Hν , it follows that, in some sense, theresults of the present paper an be onsidered as a disrete ounterpart ofthe results of [3℄. A di�erene between [3℄ and our paper is that in [3℄ therelevant operators are de�ned as singular integral operators while here theyare initially de�ned as bounded operators on L2.In [10, Setion 18℄ Mukenhoupt and E. M. Stein outlined a theory ofonjugay for Fourier�Bessel expansions in a setting di�erent from ours. Forthe system {φν
n}n≥1, φν

n(x) = ψν
n(x)x−(ν+1/2), omplete and orthonormal in

L2((0, 1), x2ν+1 dx), ν ≥ −1/2, they suggested the mapping f 7→ f̃ ,
f̃(x) = −x

∞∑

n=1

〈f, φν
n〉L2((0,1), x2ν+1 dx)φ

ν+1
n (x),as the appropriate onjugate operator for Fourier�Bessel expansions; in otherwords, the onjugate operator is furnished by the mapping φν

n 7→ −xφν+1
n(note that {−xφν+1

n }n≥1 is an orthonormal basis in L2((0, 1), x2ν+1 dx)). Inthat setting the underlying di�erential operator is
L(ν) = −

(
d2

dx2
+

2ν + 1

x

d

dx

)
.The struture of the paper is as follows. In Setion 2 we gather nees-sary fats and tools that are used later on and prove a number of lemmas.Setion 3 is devoted to proving estimates of the auxiliary kernel Rν(r, x, y)and its gradient, and then de�ning the onjugate kernel Rν(x, y) as the limit

limr→1− Rν(r, x, y), x 6= y, and proving similar estimates for it. The mainresults of this setion are ontained in Propositions 3.1 and 3.2; provingthem we heavily exploit the tehniques developed in our previous papers[6℄ and [7℄. In Setion 4 some results about Poisson and onjugate Poissonintegrals are stated and proved. The proofs of the main results are givenin Setion 5. Finally, in Setion 6 we provide a de�nition of an alterna-tive onjugate operator and state, without proofs, some results onerningthem.



222 Ó. Ciaurri and K. Stempak2. Preliminaries. The Bessel funtion Jν satis�es(2.1) J ′
ν(t) = −ν

t
Jν(t) + Jν−1(t), J ′

ν(t) =
ν

t
Jν(t) − Jν+1(t).The following asymptotis will be used (see [8, p. 122℄):(2.2) √

z Jν(z) =
M∑

j=0

(
Aν,j

zj
sin z +

Bν,j

zj
cos z

)
+HM (z),

where M = 0, 1, . . . and |HM (z)| ≤ Cz−(M+1), z → ∞. At z = 0+ one has(2.3) Jν(z) = O(zν), z → 0+.Given ν > −1 the following pointwise estimates also hold:
|ψν

n(x)| ≤ C

{
(nx)ν+1/2, 0 < x ≤ n−1,

1, n−1 < x < 1,
(2.4)

|ψ̃ν
n(x)| ≤ C

{
(nx)ν+3/2, 0 < x ≤ n−1,

1, n−1 < x < 1.
(2.5)We will also use the fat that(2.6) λn,ν = O(n), dn,λ = O(1).Moreover, Poisson's integral formula will be helpful:(2.7) Jν(z) = Cνz

ν
1\
0

(1 − t2)ν−1/2 cos(zt) dt, ν > −1/2.Lemma 2.1. Let ν > −1 and f ∈ Lp(w), where 1 ≤ p < ∞ and wsatis�es (1.5) and , in addition, the onditions (1.6) and (1.7) if p > 1, or(1.15) and (1.7) if p = 1. Then the oe�ients 〈f, ψν
n〉 exist and satisfy(2.8) 〈f, ψν

n〉 = O(nτ )with some τ = τ(ν, p, w). The analogous statement holds for the system
{ψ̃ν

n}n≥1 provided w satis�es (1.7) and the onditions that result either from(1.5) and (1.6) if p > 1 or from (1.14) and (1.15) if p = 1, upon replaing νby ν + 1.Proof. Using (2.4) gives
1\
0

|f(x)ψν
n(x)| dx ≤ Cnν+1/2

1/n\
0

|f(x)|xν+1/2 dx+ C

1\
1/n

|f(x)| dx.

We shall show that the two integrals are �nite and, in addition, O(nτ ).By Hölder's inequality we obtain (assuming for simpliity n ≥ 2)
1/n\
0

|f(x)|xν+1/2 dx ≤ ‖f‖Lp(w)

( 1/2\
0

w(x)−p′xp′(ν+1/2)
)1/p′



Conjugay for Fourier�Bessel expansions 223(if p = 1 the last integral beomes ess supx∈(0,1/2)[w(x)−1xν+1/2]). By taking
r = 1/2 either in (1.5) or in (1.14) the very last integral turns out to bea �nite onstant, hene T1/n

0 |f(x)|xν+1/2 dx = O(1).For the seond relevant integral, by using Hölder's inequality we get
1\

1/n

|f(x)| dx ≤ ‖f‖Lp(w)

( 1\
1/n

w(x)−p′ dx
)1/p′

(if p = 1 the last quantity beomes ess supx∈(1/n,1)[w(x)−1]). Sine
1\

1/2

w(x)−p′ dx ≤
1\

1/2

w(x)−p′x−p′(ν+5/2) dx

(or ≤ ess supx∈(1/2,1)[w(x)−1x−(ν+5/2)] if p = 1), and the last quantity is�nite by taking r = 1/2 in (1.6) (or in (1.15) if p = 1), it is su�ient toonsider T1/2
1/nw(x)−p′ dx (or ess supx∈(1/n,1/2)[w(x)−1] if p = 1). We have

1/2\
1/n

w(x)−p′ dx ≤ (max{2, n})p′(ν+1/2)

1/2\
0

w(x)−p′xp′(ν+1/2) dxif 1 < p <∞, or
ess sup

x∈(1/n,1/2)
[w(x)−1] ≤ (max{2, n})ν+1/2 ess sup

x∈(0,1/2)

xν+1/2

w(x)if p = 1. By taking r = 1/2 either in (1.5) or in (1.14) if p = 1, bothoutermost quantities are �nite onstants, hene T11/n |f(x)| dx = O(nτ ).The proof of the statement onerning the system {ψ̃ν
n}n≥1 is ompletelyanalogous, so we omit it.Lemma 2.2. Let ν > −1, 1 < p < ∞ and suppose that w satis�es theonditions (1.5)�(1.7). Then ψν

n ∈ Lp′(w−1), n = 1, 2, . . . , and(2.9) ‖ψν
n‖Lp′ (w−1) = O(nτ )with some τ = τ(ν, p, w). The analogous statement holds for the system

{ψ̃ν
n}n≥1 provided w satis�es (1.7) and the onditions resulting from (1.5)and (1.6) upon replaing ν by ν + 1.Proof. Using (2.4) gives

1\
0

|ψν
n(x)w(x)−1|p′ dx

≤ Cnp′(ν+1/2)

1/n\
0

xp′(ν+1/2)w(x)−p′ dx+ C

1\
1/n

w(x)−p′ dx.Now repeat the arguments from the proof of Lemma 2.1.



224 Ó. Ciaurri and K. StempakLemma 2.3. Let ν > −1. The funtions {ψ̃ν
n}n≥1 given by (1.3) areeigenfuntions of the di�erential operator Lν+1 orresponding to the eigen-values {λ2

n,ν}n≥1,
Lν+1ψ̃

ν
n = λ2

n,νψ̃
ν
n.Proof. A straightforward alulation gives(2.10) Lν+1 = δνδ

∗
ν .The laim follows by using the above and (1.2).Lemma 2.4. Let ν > −1. The funtions {ψ̃ν

n}n≥1 given by (1.3) form anorthonormal basis in L2.Proof. We reall Lommel's formula (see [13, Ch. 5, p. 134℄, where thename �Lommel's formula� is not used, but it ommonly appears in the liter-ature, f. [12℄)
1\
0

xJν+1(ax)Jν+1(bx) dx =





aJ ′
ν+1(a)Jν+1(b) − bJ ′

ν+1(b)Jν+1(a)

b2 − a2
, a 6= b,

1

2
J ′

ν+1(a)
2+

1

2

(
1 − (ν+1)2

a2

)
Jν+1(a)

2, a = b.We also reall the following fats from the theory of Dini series (see [13, p.134℄). Given α > −1 and ̺ ∈ R, the funtions
θα,̺
n (x) = bn

√
xJα(µnx), b−2

n =

1\
0

(θα,̺
n (x))2 dx,

n = 1, 2, . . . , where {µn}n≥1 denotes the sequene of suessive positive zerosof the equation(2.11) xJ ′
α(x) + ̺Jα(x) = 0,form an orthonormal system in L2 for α>−1; moreover, the system {θα,̺

n }n≥1is omplete if α+̺ > 0, and if α+̺ = 0, it beomes omplete after adjoiningthe funtion θα,̺
0 (x) =

√
2(α+ 1)xα+1/2.Now onsider (2.11) with α = ν + 1 (then α > −1). By the identity

xJ ′
ν+1(x) + (ν + 1)Jν+1(x) = xJν(x)the equation (2.11) an be rewritten as
xJν(x) + (̺− ν − 1)Jν+1(x) = 0.Taking ̺ = ν + 1 (note that ̺ + α = 2(ν + 1) > 0) one obtains µn = λn,ν ,hene the funtions

θν+1,ν+1
n (x) = knψ̃

ν
n(x)form an orthonormal and omplete system in L2; using Lommel's formula,one shows that kn = 1, whih �nishes the proof.



Conjugay for Fourier�Bessel expansions 225We will also extensively use the following simpli�ed version of a ombi-nation of [6, Lemmas 4.1 and 4.2℄. The proof of these lemmas is based on(2.2) and good asymptotis of the sequenes {λn,ν}n≥1 and {dn,ν}n≥1 (moresubtle than those in (2.6)).Lemma 2.5. Let ν > −1, ℓ be a nonnegative integer and γ be a realnumber. Then eah of the four funtions(2.12) d2
n,νλ

γ
n,ν

{
sin

cos

}
(λn,ν(x± y)), n = 1, 2, . . . ,is a sum of sixteen terms of the form

nγ

{
sin

cos

}
(πn(x± y))Eγ,ℓ(n, x, y),where

Eγ,ℓ(n, x, y) =
ℓ∑

k=0

Ak(x, y)

nk
+ q(ℓ)n (x, y),

and Ak(x, y), k = 0, 1, . . . , ℓ, q(ℓ)n (x, y), n = 1, 2, . . . , are funtions suhthat |Ak(x, y)| ≤ C, |q(ℓ)n (x, y)| ≤ Cn−ℓ−1, 0 < x, y < 1, with a onstant
C = Cν,ℓ,γ .The lemma follows by taking µ = ν, m = j = 0 in [6, Lemmas 4.1 and4.2℄ (the funtions Ak(x, y) now inorporate some bounded funtions thatappear in those lemmas).Another useful fat is taken from [6, Proposition 4.3℄ (see (4.12) at theend of the proof).Lemma 2.6. We have(2.13) ∣∣∣∣

∞∑

n=[1/|t|]

rn

n

{
sin

cos

}
(nt)

∣∣∣∣ ≤ C, 0 < |t| < 3π/2,

with C not depending on 0 < r < 1 and t.We will frequently use, without further mention, the fat that
N∑

n=1

n̺ =

{
O(N̺+1) for ̺ > −1,

O(logN) for ̺ = −1,and ∞∑

n=N

n̺ = O(N̺+1), ̺ < −1.

By 〈f, g〉 we shall mean T10 f(x)g(x)dx whenever the integral makes sense.



226 Ó. Ciaurri and K. Stempak3. Estimates of the kernel. We �rst de�ne the kernel Rν(r, x, y), 0 <
r < 1,

Rν(r, x, y) =
∞∑

n=1

rnψ̃ν
n(x)ψν

n(y), 0 < x, y < 1,assoiated with the integral operator
Rν,rf(x) =

1\
0

Rν(r, x, y)f(y) dy =
∞∑

n=1

rn〈f, ψν
n〉ψ̃ν

n(x),and prove the following:Proposition 3.1. Let ν > −1. Then
(3.1) |Rν(r, x, y)| ≤ C





x−ν−3/2yν+1/2, 0 < y ≤ x/2,

|x− y|−1, x/2 < y < min{1, 3x/2},
xν+3/2y−ν−5/2, min{1, 3x/2} ≤ y < 1,with C independent of 0 < r < 1, x and y. Consequently , if ν ≥ −1/2 then

|Rν(r, x, y)| ≤ C|x− y|−1, 0 < x, y < 1.Proof. The last statement is a straightforward onsequene of (3.1). Toprove (3.1) we shall onsider three ases determined by the right side of thisestimate.
Case 1: 0 < y ≤ x/2. We split the series de�ning Rν(r, x, y) into

A =
N−1∑

n=1

rnψ̃ν
n(x)ψν

n(y)

=
N−1∑

n=1

rnd2
n,ν(λn,νx)

1/2Jν+1(λn,νx) · (λn,νy)
1/2Jν(λn,νy),

B =
∞∑

n=N

rnψ̃ν
n(x)ψν

n(y)

=

∞∑

n=N

rnd2
n,ν(λn,νx)

1/2Jν+1(λn,νx) · (λn,νy)
1/2Jν(λn,νy),where N = [1/x]. Using (2.6) and (2.3) we obtain

|A| ≤
N−1∑

n=1

d2
n,ν |(λn,νx)

1/2Jν+1(λn,νx)| |(λn,νy)
1/2Jν(λn,νy)|

≤ C(xy)1/2
N−1∑

n=1

n|Jν+1(λn,νx)| |Jν(λn,νy)|

≤ Cxν+3/2yν+1/2
N−1∑

n=1

n2ν+2 ≤ Cx−ν−3/2yν+1/2.



Conjugay for Fourier�Bessel expansions 227To get the same estimate for |B| it is enough to show that for 0 < r < 1,
0 < x < 1, 0 < y ≤ x/2 and ν > −1/2,(3.2) ∣∣∣

∞∑

n=N

rnψ̃ν
n(x)dn,νλ

ν+1/2
n,ν cos(λn,νy)

∣∣∣ ≤ Cx−ν−3/2,and the analogous estimate with the exponents ν+1/2 and −ν−3/2 replaedby (ν + 2) + 1/2 and −(ν + 2)− 3/2 respetively (the latter is needed in thease −1 < ν ≤ −1/2 only). Indeed, using (3.2) and Poisson's formula (2.7)applied to Jν(λn,νy) gives, for ν > −1/2,
|B| = Cν

∣∣∣
∞∑

n=N

rnψ̃ν
n(x)dn,ν(λn,νy)

ν+1/2
1\
0

(1 − t2)ν−1/2 cos(λn,νyt) dt
∣∣∣

≤ Cyν+1/2
1\
0

(1 − t2)ν−1/2
∣∣∣

∞∑

n=N

rnψ̃ν
n(x)dn,νλ

ν+1/2
n,ν cos(λn,νyt)

∣∣∣ dt

≤ Cx−ν−3/2yν+1/2.In the ase −1 < ν ≤ −1/2, applying the identity
Jν(z) = −Jν+2(z) +

2(ν + 1)

z
Jν+1(z)gives

B = −
∞∑

n=N

rnψ̃ν
n(x)dn,ν(λn,νy)

1/2Jν+2(λn,νy)

+ 2(ν + 1)
∞∑

n=N

rnψ̃ν
n(x)dn,ν(λn,νy)

−1/2Jν+1(λn,νy).Now, using Poisson's formula (2.7) for Jν+1(λn,νy) and Jν+2(λn,νy) (togetherwith the assumption y ≤ x/2 in the �rst summand) and applying (3.2) weobtain the result.Proving (3.2) (the proof of its ounterpart with the aforementioned re-plaements in exponents is ompletely analogous, hene we do not treat itseparately) we use (2.2) to expand (λn,νx)
1/2Jν+1(λn,νx) and hoose M tobe the unique nonnegative integer satisfying M − 1 ≤ ν + 1/2 < M . It isthen lear that(3.3) ∣∣∣

∞∑

n=N

rnψ̃ν
n(x)dn,νλ

ν+1/2
n,ν cos(λn,νy)

∣∣∣ ≤ C
M∑

j=0

x−j(|Cj| + |Sj |) +GM ,where{Sj

Cj

}
=

∞∑

n=N

rnd2
n,νλ

−j+ν+1/2
n,ν

{
sin

cos

}
(λn,ν(x± y)), j = 0, 1, . . . ,M ,

GM =

∞∑

n=N

d2
n,ν |HM (λn,νx)|λν+1/2

n,ν .



228 Ó. Ciaurri and K. StempakThen GM is well ontrolled. Indeed, using (2.6) and M > ν + 1/2 gives
GM ≤ Cx−(M+1)

∞∑

n=N

n−M−1/2+ν ≤ Cx−(M+1)N−M+1/2+ν ≤ Cx−ν−3/2.

Taking into aount (3.3), to �nish the proof of (3.2) it remains to hekthat both |Sj | and |Cj| are bounded by Cxj−ν−3/2. It follows from Lemma2.5 that for given j = 0, 1, . . . ,M , Sj and Cj are sums of sixteen series of theform(3.4) ∞∑

n=N

rnn−j+ν+1/2E−j+ν+1/2,M−j(n, x, y)

{
sin

cos

}
(πn(x± y)).It is therefore lear that our task is redued to estimating the absolute valueof eah of the series in (3.4) by Cxj−ν−3/2. Given j = 0, . . . ,M , we usethe expression for E−j+ν+1/2,M−j(n, x, y) from Lemma 2.5 to show that theabsolute value of(3.5) Rj,k =

∞∑

n=N

rnn−j−k+ν+1/2

{
sin

cos

}
(πn(x± y))

is, for k = 0, . . . ,M − j, bounded by Cxj−ν−3/2, and
∣∣∣∣

∞∑

n=N

rnn−j+ν+1/2q(M−j)
n (x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ Cxj−ν−3/2.

For the term involving q(M−j)
n (x, y), using the fat that −M − 1/2+ ν < −1gives

∣∣∣∣
∞∑

n=N

rnn−j+ν+1/2q(M−j)
n (x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C
∞∑

n=N

n−M−1/2+ν

≤ CxM−ν−1/2,whih is enough for our purpose.The hypothesis made on M shows that −j − k + ν + 1/2 > −1 for
j = 0, . . . ,M and k = 0, . . . ,M − j when M − 1 < ν + 1/2, and the same istrue for j = 0, . . . ,M − 1 and k = 0, . . . ,M − j − 1 when M − 1 = ν + 1/2.Hene, in these ases,

∣∣∣∣
N−1∑

n=1

rnn−j−k+ν+1/2

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C
N∑

n=1

n−j−k+ν+1/2

≤ Cxj+k−ν−3/2 ≤ Cxj−ν−3/2.Consequently, in (3.5) we an extend the sum to start from n = 1 and then



Conjugay for Fourier�Bessel expansions 229use [6, Lemma 3.3℄ to estimate the omplete sum. Thus,
|R̃j,k| =

∣∣∣∣
∞∑

n=1

rnn−j−k+ν+1/2

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ Cxj−ν−3/2.

This ompletes the estimate of Rj,k, k = 0, 1, . . . ,M− j, exept for the asesof Rj,M−j when M − 1 = ν + 1/2 for j = 0, . . . ,M . In these exeptionalases we have to show that |Rj,M−j| ≤ Cxj−M . Sine Rj,M−j takes theform of the series in (2.13) with t = π(x± y), Lemma 2.6 and the fat that
N = [1/x] ∼ [1/x+ y] ∼ [1/|x− y|] give the bound |Rj,M−j| ≤ C ≤ Cxj−M .
Case 2: x/2 < y < min{1, 3x/2}. We use (2.2) with M = 1 to expandthe funtions (λn,νx)

1/2Jν+1(λn,νx) and (λn,νy)
1/2Jν(λn,νy). Then, taking

N = [1/x] ∼ [1/y], we write Rν(r, x, y) as the sum
F (r, x, y) +

1∑

j,l=0

x−jy−lOj,l(r, x, y) + J1(r, x, y) + J2(r, x, y) +G1(r, x, y),

where
F (r, x, y) =

N−1∑

n=1

rnd2
n,ν(λn,νx)

1/2Jν+1(λn,νx) · (λn,νy)
1/2Jν(λn,νy),and, for the remainder sum that starts from n = N , the Oj,l terms apturethe part that omes from the main parts of the aforementioned expansionsand are sums of four terms of the form

Dj,l

∞∑

n=N

rnd2
n,νλ

−j−l
n,ν

{
sin

cos

}
(λn,νx)

{
sin

cos

}
(λn,νy),

(Dj,l is a produt of Aν+1,j or Bν+1,j and Aν,l or Bν,l depending on the hoieof sine or osine); J1 gathers the part that omes from the main parts of theseond expansion and the remainder of the �rst one, hene its absolute valueis bounded by
|J1(r, x, y)| ≤ C

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νH1(λn,νx)

{
sin

cos

}
(λn,νy)

∣∣∣∣

+ Cy−1

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλ

−1
n,νH1(λn,νx)

{
sin

cos

}
(λn,νy)

∣∣∣∣

(the symbol ∑2
1 indiates that we add two series, one for the hoie of thesine and the other for the osine); J2 ats as J1 but with the position of both



230 Ó. Ciaurri and K. Stempakexpansions swithed, and its absolute value is ontrolled by
|J2(r, x, y)| ≤ C

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,ν

{
sin

cos

}
(λn,νx)H1(λn,νy)

∣∣∣∣

+ Cx−1

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλ

−1
n,ν

{
sin

cos

}
(λn,νx)H1(λn,νy)

∣∣∣∣;and �nally G1 aptures the part that omes from the remainders,
G1(r, x, y) =

∞∑

n=N

rnd2
n,νH1(λn,νx)H1(λn,νy).We will now analyze separately eah of the summands in the above deom-position of Rν(r, x, y) and bound them by C|x− y|−1.For F (r, x, y), using (2.3) and (2.6) we have

|F (r, x, y)| ≤ Cxν+3/2yν+1/2
N−1∑

n=1

n2ν+2

≤ Cx2ν+2N2ν+3 ≤ Cx−1,whih is dominated by C|x− y|−1 in the region onsidered.For J1(r, x, y) (the same reasoning works for J2(r, x, y)), using H1(z) =
O(z−2), z ≥ 1, and again (2.3) and (2.6), shows that

|J1(r, x, y)| ≤ Cx−2
( ∞∑

n=N

n−2 + y−1
∞∑

n=N

n−3
)

≤ Cx−2(N−1 + y−1N−2) ≤ Cx−1.In a similar way we show that
|G1(r, x, y)| ≤ C(xy)−2

∞∑

n=N

n−4 ≤ Cx−4N−3 ≤ Cx−1.The remainder of the proof onsists in a more deliate analysis of the
x−jy−lOj,l(r, x, y) terms. We start with the x−1y−1O1,1(x, y) term. It is learthat

|x−1y−1O1,1(r, x, y)| ≤ Cx−2
∞∑

n=N

n−2 ≤ Cx−2N−1 ≤ Cx−1.

Using Lemma 2.5 with γ = −1 and ℓ = 0 yields |x−1O1,0(r, x, y)| ≤
C|x− y|−1 one we show that

1

x

∣∣∣∣
∞∑

n=N

rn

n
E−1,0(n, x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C
1

x
log

(
2x

|x− y|

)
.



Conjugay for Fourier�Bessel expansions 231The form of E−1,0 redues this task to showing the estimates(3.6) ∣∣∣∣
∞∑

n=N

rn

n

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C log

(
2x

|x− y|

)

and ∣∣∣∣
∞∑

n=N

rn

n
q(0)
n (x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C,

where |q(0)
n (x, y)| ≤ Cn−1. The very last series is absolutely onvergent andthe bound follows. The estimate (3.6) is the same as [6, (5.3)℄ and was provedthere. The estimate for y−1O0,1(r, x, y) follows analogously.It remains to onsider the ase of O0,0(r, x, y). Using Lemma 2.5 with

γ = 0 and ℓ = 1 shows that eah of the four terms of O0,0(r, x, y) is a sumof sixteen terms of the form(3.7) ∞∑

n=N

rn

(
A0 +

A1(x, y)

n
+ q(1)

n (x, y)

){
sin

cos

}
(πn(x± y)),

where |q(1)
n (x, y)| ≤ Cn−2 for 0 < x, y < 1. The expression in (3.7) equalsthe expression in (5.4) of [6℄ orresponding to the ase s = 0. We proved in[6℄ (f. the proof of [6, Proposition 5.1℄) that this expression equals

u(x, y)Pr(π(x− y)) + v(x, y)Qr(π(x− y)),where u and v are bounded funtions on (0, 1)×(0, 1), plus some terms whoseabsolute values are bounded by either C log(2x/|x− y|) or C(2 − x− y)−1.Eah of the aforementioned bounds is stronger than C|x− y|−1; in additionalso Pr(π(x − y)) as well as |Qr(π(x − y))| are bounded by C|x − y|−1 for
0 < x, y < 1. Hene the estimate |O0,0(r, x, y)| ≤ C|x− y|−1 follows.
Case 3: min{1, 3x/2} ≤ y < 1. We split the series de�ning Rν(r, x, y)into A and B (as in the ase 0 < y ≤ x/2) but this time we set N = [1/y].Then we get

|A| ≤
N−1∑

n=1

d2
n,ν |(λn,νx)

1/2Jν+1(λn,νx)| |(λn,νy)
1/2Jν(λn,νy)|

≤ C(xy)1/2
N−1∑

n=1

n|Jν+1(λn,νx)| |Jν(λn,νy)|

≤ Cxν+3/2yν+1/2
N−1∑

n=1

n2ν+2 ≤ Cxν+3/2y−ν−5/2.To get the analogous estimate of |B| it is enough to show that for 0 < r < 1,
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0 < x ≤ 2y/3, 0 < y < 1 and ν > −1,(3.8) ∣∣∣

∞∑

n=N

rndn,νλ
ν+3/2
n,ν cos(λn,νx)ψ

ν
n(y)

∣∣∣ ≤ Cy−ν−5/2.Indeed, using (3.8) and Poisson's formula (2.7) applied to Jν+1(λn,νx) gives,for ν > −1,
|B| = Cν+1

∣∣∣
∞∑

n=N

rndn,ν(λn,νx)
ν+3/2

1\
0

(1 − t2)ν+1/2 cos(λn,νxt) dt ψ
ν
n(y)

∣∣∣

≤ Cxν+3/2
1\
0

(1 − t2)ν+1/2
∣∣∣

∞∑

n=N

rndn,νλ
ν+3/2
n,ν cos(λn,νxt)ψ

ν
n(y)

∣∣∣ dt

≤ Cxν+3/2y−ν−5/2.Proving (3.8) we use (2.2) to expand (λn,νy)
1/2Jν(λn,νy) and hoose Mto be the positive integer satisfying M − 1 ≤ ν + 3/2 < M . It is then learthat(3.9) ∣∣∣

∞∑

n=N

rn cos(λn,νx)dn,νλ
ν+3/2
n,ν ψν

n(y)
∣∣∣ ≤ C

M∑

j=0

y−j(|Cj| + |Sj |) +GM ,where {Sj

Cj

}
=

∞∑

n=N

rnd2
n,νλ

−j+ν+3/2
n,ν

{
sin

cos

}
(λn,ν(x± y)),

j = 0, 1, . . . ,M , and
GM =

∞∑

n=N

d2
n,ν |HM (λn,νy)|λν+3/2

n,ν .Then GM is well ontrolled. Indeed, using (2.6) gives
GM ≤ Cy−(M+1)

∞∑

n=N

n−M+1/2+ν ≤ Cy−(M+1)N−M+3/2+ν ≤ Cy−ν−5/2.Taking into aount (3.9), to �nish the proof of (3.8) it remains to hekthat both |Sj| and |Cj | are bounded by Cyj−ν−5/2. It follows from Lemma2.5 that for given j = 0, 1, . . . ,M , Sj and Cj are sums of sixteen series of theform(3.10) ∞∑

n=N

rnn−j+ν+3/2E−j+ν+3/2,M−j(n, x, y)

{
sin

cos

}
(πn(x± y)).It is therefore lear that our task is redued to estimating the absolute valueof eah of the series in (3.10) by Cyj−ν−5/2. Given j = 0, . . . ,M , we usethe expression for E−j+ν+3/2,M−j(n, x, y) from Lemma 2.5 to show that the
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∞∑

n=N

rnn−j−k+ν+3/2

{
sin

cos

}
(πn(x± y)),

is, for k = 0, . . . ,M − j, bounded by Cyj−ν−5/2 and
∣∣∣∣

∞∑

n=N

rnn−j+ν+3/2q(M−j)
n (x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ Cyj−ν−5/2.

For the term involving q(M−j)
n (x, y), using the fat that−M+1/2+ν<−1gives

∣∣∣∣
∞∑

n=N

rnn−j+ν+3/2q(M−j)
n (x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C
∞∑

n=N

n−M+1/2+ν

≤ CM−ν−3/2,whih is enough for our purpose. The hypothesis made on M shows that
−j−k+ν+3/2 > −1 for j = 0, . . . ,M and k = 0, . . . ,M − j when M −1 <
ν + 3/2, and the same is true for j = 0, . . . ,M − 1 and k = 0, . . . ,M − j − 1when M − 1 = ν + 3/2. Hene, in these ases,

∣∣∣∣
N−1∑

n=1

rnn−j−k+ν+3/2

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C
N−1∑

n=1

n−j−k+ν+3/2

≤ Cyj+k−ν−5/2 ≤ Cyj−ν−5/2.Consequently, in (3.5) we an extend the sum to start from n = 1 and thenuse [6, Lemma 3.3℄ to estimate the omplete sum. Thus,
|R̃j,k| =

∣∣∣∣
∞∑

n=1

rnn−j−k+ν+3/2

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ Cyj−ν−5/2.This ompletes the estimate of Rj,k, k = 0, 1, . . . ,M − j, exept the ases of
Rj,M−j when M − 1 = ν + 3/2 for j = 0, . . . ,M . In these exeptional asesan argument analogous to that from the end of the proof of Case 1 applies.This �nishes onsidering Case 3 and ompletes the proof of Proposi-tion 3.1.Proposition 3.2. Let ν > −1. Then(3.12) |∇x,yRν(r, x, y)| ≤ C|x− y|−2, x/2 < y < min{1, 3x/2},with C independent of 0 < r < 1, x and y. Moreover , if ν ≥ 1/2 then

|∇x,yRν(r, x, y)| ≤ C|x− y|−2, 0 < x, y < 1.



234 Ó. Ciaurri and K. StempakProof. We use (2.1) (see also (1.2)) to �nd that
dψ̃ν

n(x)

dx
= −2ν + 1

2x
ψ̃ν

n(x) + λn,νψ
ν
n(x),

dψν
n(y)

dy
=

2ν + 1

2y
ψν

n(y) − λn,νψ̃
ν
n(y).In this way (in both ases, exhanging summation and di�erentiation is easilyseen to be possible)

∂Rν

∂x
(r, x, y) = −2ν + 1

2x
Rν(r, x, y) +

∞∑

n=1

rnλn,νψ
ν
n(x)ψν

n(y),(3.13)
∂Rν

∂y
(r, x, y) =

2ν + 1

2y
Rν(r, x, y) −

∞∑

n=1

rnλn,νψ̃
ν
n(x)ψ̃ν

n(y).(3.14)For the �rst summands on the right of (3.13) and (3.14), using (3.1), it islear that ∣∣∣∣
2ν + 1

x
Rν(r, x, y)

∣∣∣∣ ≤
C

x|x− y| ≤
C

|x− y|2 ,and the same estimate holds for ∣∣2ν+1
y Rν(r, x, y)

∣∣.To treat the seond summands we de�ne
R(1)

ν (r, x, y) =
∞∑

n=1

rnλn,νψ
ν
n(x)ψν

n(y)

=
∞∑

n=1

rnd2
n,νλn,ν(λn,νx)

1/2Jν(λn,νx) · (λn,νy)
1/2Jν(λn,νy)and

R̃(1)
ν (r, x, y) =

∞∑

n=1

rnλn,νψ̃
ν
n(x)ψ̃ν

n(y)

=

∞∑

n=1

rnd2
n,νλn,ν(λn,νx)

1/2Jν+1(λn,νx) · (λn,νy)
1/2Jν+1(λn,νy),and proeed analogously to the proof of (3.1) in x/2 < y < min{1, 3x/2}. A-tually, we shall onsider the ase of R̃

(1)
ν (r, x, y) only sine treating

R
(1)
ν (r, x, y) is ompletely analogous.Now, we use the asymptoti expansion (2.2) with M = 2, to expand thefuntions (λn,νx)

1/2Jν+1(λn,νx) and (λn,νy)
1/2Jν+1(λn,νy) and take N =

[1/x] ∼ [1/y] to write R̃(1)
ν (r, x, y) as the sum

F (r, x, y) +
2∑

j,l=0

x−jy−lOj,l(r, x, y) + J1(r, x, y) + J2(r, x, y) +G2(r, x, y).
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F (r, x, y) =

N−1∑

n=1

rnd2
n,νλn,ν(λn,νx)

1/2Jν+1(λn,νx) · (λn,νy)
1/2Jν+1(λn,νy),and, for the remainder sum that starts from n = N , the Oj,l terms apturethe part that omes from the main parts of the aforementioned expansionsand are sums of four terms of the form

Dj,l

∞∑

n=N

rnd2
n,νλ

−j−l+1
n,ν

{
sin

cos

}
(λn,ν(x± y));

J1 gathers the part that omes from the main parts of the seond expansionand the remainder of the �rst one, hene
|J1(r, x, y)| ≤ C

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλn,νH2(λn,νx)

{
sin

cos

}
(λn,νy)

∣∣∣∣

+ Cy−1

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νH2(λn,νx)

{
sin

cos

}
(λn,νy)

∣∣∣∣

+ Cy−2

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλ

−1
n,νH2(λn,νx)

{
sin

cos

}
(λn,νy)

∣∣∣∣;

J2 ats as J1 but with the position of both expansions swithed, and
|J2(r, x, y)| ≤ C

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλn,ν

{
sin

cos

}
(λn,νx)H2(λn,νy)

∣∣∣∣

+ Cx−1

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,ν

{
sin

cos

}
(λn,νx)H2(λn,νy)

∣∣∣∣

+ Cx−2

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλ

−1
n,ν

{
sin

cos

}
(λn,νx)H2(λn,νy)

∣∣∣∣;and �nally G2 aptures the part that omes from the remainders,
G2(r, x, y) =

∞∑

n=N

rnd2
n,νλn,νH2(λn,νx)H2(λn,νy).We will now analyze separately eah of the summands in the above deom-position of R̃(1)

ν (r, x, y) and bound them by C|x− y|−2.For F (r, x, y), using (2.3) and (2.6), we have
|F (r, x, y)| ≤ C(xy)ν+3/2

N−1∑

n=1

n2ν+4 ≤ Cx2ν+3N2ν+5 ≤ Cx−2,whih is dominated by C|x− y|−2 in the region onsidered.



236 Ó. Ciaurri and K. StempakFor J1(r, x, y) (the same reasoning works for J2(r, x, y)), using H2(z) =
O(z−3), z ≥ 1, and again (2.3) and (2.6), shows that

|J1(r, x, y)| ≤ Cx−3
( ∞∑

n=N

n−2 + y−1
∞∑

n=N

n−3 + y−2
∞∑

n=N

n−4
)

≤ Cx−3(N−1 + y−1N−2 + y−2N−3) ≤ Cx−2.In a similar way we show that
|G2(r, x, y)| ≤ C(xy)−3

∞∑

n=N

n−5 ≤ Cx−6N−4 ≤ Cx−2.

The remainder of the proof is an analysis of the x−jy−lOj,l(r, x, y) terms.We start with the x−2y−2O2,2(x, y) term. It is lear that
|x−2y−2O2,2(r, x, y)| ≤ Cx−4

∞∑

n=N

n−3 ≤ Cx−4N−2 ≤ Cx−2.The same bound is obtained for |x−2y−1O2,1(x, y)| and |x−1y−2O1,2(x, y)|.The estimate of |x−2O2,0(r, x, y)| by C|x−y|−2 uses Lemma 2.5 with γ =
−1 and ℓ = 0, and is essentially ontained in the estimate of |x−1O1,0(r, x, y)|already disussed when proving (3.1) in the region x/2 < y < min{1, 3x/2}.The estimates of |y−2O0,2(r, x, y)| and |x−1y−1O1,1(r, x, y)| follow analo-gously.The estimate of |x−1O1,0(r, x, y)| by C|x − y|−2 uses Lemma 2.5 with
γ = 0 and ℓ = 1, and is essentially ontained in the estimate of |O0,0(r, x, y)|already disussed when proving (3.1) in the relevant region. The estimate of
|y−1O0,1(r, x, y)| follows analogously.It remains to onsider the ase of O0,0(r, x, y). We use Lemma 2.5 with
γ = 1 and ℓ = 2 to onlude that eah of the four terms of O0,0(r, x, y) is asum of sixteen terms of the form(3.15) ∞∑

n=N

rnn

(
A0 +

A1(x, y)

n
+
A2(x, y)

n2
+q(2)

n (x, y)

){
sin

cos

}
(πn(x± y)),

where |q(2)
n (x, y)| ≤ Cn−3 for 0 < x, y < 1. It is immediate to see that theseries resulting from taking into aount the remainder q(2)

n (x, y) is abso-lutely onvergent, hene its absolute value is bounded by a onstant. Theseries resulting from taking into aount A1 and A2 were already (impliitly)disussed and are bounded by C|x−y|−2 in the region onsidered. The seriesresulting from taking into aount A0 was disussed in [7℄ (f. the proof of[7, Proposition 4.1℄), and was also shown to be bounded by C|x− y|−2.This �nishes estimating R̃(1)
ν , hene proving the �rst part of the propo-sition. To prove the seond part we �rst onsider the �rst summands on the



Conjugay for Fourier�Bessel expansions 237right of (3.13) and (3.14). Sine |Rν(r, x, y)| ≤ C|x− y|−1, 0 < x, y < 1, for
0 < y ≤ x/2 we have

∣∣∣∣
2ν + 1

x
Rν(r, x, y)

∣∣∣∣ ≤
C

x|x− y| ≤
C

|x− y|2 ,while for min{1, 3x/2} ≤ y < 1 we obtain, by using the bottom line of (3.1),
∣∣∣∣
2ν + 1

x
Rν(r, x, y)

∣∣∣∣ ≤ C

(
x

y

)ν+1/2 1

y2
≤ C

|x− y|2 .Similarly, for min{1, 3x/2} ≤ y < 1 we get
∣∣∣∣
2ν + 1

y
Rν(r, x, y)

∣∣∣∣ ≤
C

y|x− y| ≤
C

|x− y|2 ,while for 0 < y ≤ x/2, by using the top line of (3.1) we obtain
∣∣∣∣
2ν + 1

y
Rν(r, x, y)

∣∣∣∣ ≤ C

(
y

x

)ν−1/2 1

x2
≤ C

|x− y|2 .To treat the seond summands on the right of (3.13) and (3.14) we pro-eed analogously to the proof of (3.1) in the regions 0 < y ≤ x/2 and
min{1, 3x/2} ≤ y < 1, obtaining the bounds

|R(1)
ν (r, x, y)| ≤ C

{
x−ν−5/2yν+1/2, 0 < y ≤ x/2,

xν+1/2y−ν−5/2, min{1, 3x/2} ≤ y < 1,

|R(2)
ν (r, x, y)| ≤ C

{
x−ν−7/2yν+3/2, 0 < y ≤ x/2,

xν+3/2y−ν−7/2, min{1, 3x/2} ≤ y < 1.It is easily seen that for ν ≥ 1/2 this is su�ient to bound |R(i)
ν (r, x, y)|,

i = 1, 2, by C|x − y|−2 in the regions onsidered. This �nishes the proof ofthe proposition.Proposition 3.3. Let ν > −1. Then for every x 6= y, 0 < x, y < 1, thelimit
Rν(x, y) = lim

r→1−
Rν(r, x, y) = lim

r→1−

∞∑

n=1

rnψ̃ν
n(x)ψν

n(y)exists and satis�es
(3.16) |Rν(x, y)| ≤ C





x−ν−3/2yν+1/2, 0 < y ≤ x/2,

|x− y|−1, x/2 < y < min{1, 3x/2},
xν+3/2y−ν−5/2, min{1, 3x/2} ≤ y < 1,and(3.17) |∇Rν(x, y)| ≤ C|x− y|−2, x/2 < y < min{1, 3x/2}.



238 Ó. Ciaurri and K. StempakMoreover , if ν ≥ −1/2 then the middle estimate of (3.16) holds for 0 <
x, y < 1, and the same is true for (3.17) if ν ≥ 1/2; in all ases C isindependent of x and y.Proof. One we prove the existene of the limit, the required estimatesfollow diretly from Propositions 3.1 and 3.2. More preisely, justifying (3.17)also requires the identity(3.18) ∂

∂y
( lim
r→1−

Rν(r, x, y)) = lim
r→1−

∂

∂y
Rν(r, x, y)and a similar one for ∂/∂x. Assuming for a moment that limr→1− Rν(r, x, y)exists, what is still needed to prove (3.18) is the fat that for �xed 0 < x < 1,the onvergene on the right of (3.18) is loally uniform in y. Using (3.14) itis su�ient to hek that for given 0 < x < 1, the onvergene of Rν(r, x, y)and R̃(1)

ν (r, x, y) as r → 1− is loally uniform in y. For Rν(r, x, y) this willbe explained below in the proof of the existene of limr→1− Rν(r, x, y). For
R̃

(1)
ν (r, x, y) the argument is essentially the same, so we omit the details (alook into the proof of Proposition 3.2 is helpful). Analogous omments applywhen ∂/∂y in (3.18) is replaed by ∂/∂x.We expand the funtions (λn,νx)

1/2Jν+1(λn,νx) and (λn,νy)
1/2Jν(λn,νy)by using (2.2) with M = 1 to get

Rν(r, x, y) =
1∑

j,l=0

x−jy−lOj,l(r, x, y) + J1(r, x, y) + J2(r, x, y) +G1(r, x, y).

Here the Oj,l terms apture the part that omes from the main parts of theaforementioned expansions and are linear ombinations of terms of the form
∞∑

n=1

rnd2
n,νλ

−j−l
n,ν

{
sin

cos

}
(λn,νx)

{
sin

cos

}
(λn,νy);

J1 gathers the part that omes from the main parts of the seond expansionand the remainder of the �rst one, hene it is a linear ombination of termsof the form
y−δ

∞∑

n=1

rnd2
n,νλ

−δ
n,νH1(λn,νx)

{
sin

cos

}
(λn,νy), δ = 0, 1;

J2 ats as J1 but with the position of both expansions swithed, hene it isa linear ombination of terms of the form
x−δ

∞∑

n=1

rnd2
n,νλ

−δ
n,ν

{
sin

cos

}
(λn,νx)H1(λn,νy), δ = 0, 1;



Conjugay for Fourier�Bessel expansions 239and �nally G1 aptures the part that omes from the remainders,
G1(r, x, y) =

∞∑

n=1

rnd2
n,νH1(λn,νx)H1(λn,νy).Due to the bound H1(z) = O(z−2), z ≥ 1, it is evident that eah of theseries as in G1(r, x, y) or in the terms entering either J1 or J2, but withthe fator rn removed, is absolutely onvergent sine, for su�iently large n,either |H1(λn,νx)| ≤ C(xn)−2 or |H1(λn,νy)| ≤ C(yn)−2 applies (or both).Thus the orresponding expressions onverge as r → 1−. In addition, theonvergene is loally uniform in y. It is therefore su�ient to analyze the

Oj,l terms. Given j, l ∈ {0, 1} we use Lemma 2.5 with ℓ = 1 and γ = −j − l.Then Oj,l an be written as a linear ombination of terms of the form
∞∑

n=1

rn

(
A0 +

A1(x, y)

n
+ q(1)

n (x, y)

){
sin

cos

}
(πn(x± y)),

where |q(1)
n (x, y)| ≤ Cn−2. Splitting the last series into three expressions or-responding to A0, A1/n and q(1)

n we see that the expression orresponding to
q
(1)
n onverges as r → 1− due to the fat that the series as in this expression,but with the fator rn removed, is absolutely onvergent; in addition theonvergene is loally uniform in y. The �rst two expressions also onvergeas r → 1−, loally uniformly in y (see the proof of [7, Proposition 4.2℄).The proof of the proposition is omplete.Remark 3.4. In the ase ν = −1/2, we have

R−1/2(x, y) =
sin π

2x cos π
2 y

(
cos2 π

2x+ sin2 π
2 y

)

sin π
2 (x+ y) sin π

2 (x− y)
+ sin

π

2
x cos

π

2
y.This is beause, as a diret alulation shows,

R−1/2(r, x, y)

= cos

(
π

2
(x+ y)

)
Qr(π(x+ y)) − sin

(
π

2
(x+ y)

)(
Pr(π(x+ y)) − 1

2

)

+ cos

(
π

2
(x− y)

)
Qr(π(x− y)) − sin

(
π

2
(x− y)

)(
Pr(π(x− y)) − 1

2

)
,hene

R−1/2(x, y)

= cos

(
π

2
(x+ y)

)
1

2 tan
(

π
2 (x+ y)

) + cos

(
π

2
(x− y)

)
1

2 tan
(

π
2 (x− y)

)

+
1

2
sin

(
π

2
(x+ y)

)
+

1

2
sin

(
π

2
(x− y)

)
.



240 Ó. Ciaurri and K. StempakAn appliation of trigonometri identities then gives the required equality.The fat that R−1/2(x, y) is a C1 funtion on (0, 1) × (0, 1) \ {x = y} andsatis�es estimates onsistent with those of Proposition 3.3 now follows byinspetion.Finally, we show that the kernel Rν(x, y) is assoiated with Rν in thesense of Calderón�Zygmund theory.Proposition 3.5. Let f, g ∈ C∞
c (0, 1) have disjoint supports. Then

(3.19) 〈Rνf, g〉 =

1\
0

1\
0

Rν(x, y)f(y)g(x)dy dx.

Proof. Let g =
∑∞

n=1〈g, ψ̃ν
n〉ψ̃ν

n (reall that the system ψ̃ν
n is an orthonor-mal basis in L2). Sine, by de�nition, Rνf =

∑∞
n=1〈f, ψν

n〉ψ̃ν
n, Parseval'sidentity (for the system {ψ̃ν

n}n≥1) gives(3.20) 〈Rνf, g〉 =
∞∑

n=1

〈f, ψν
n〉〈g, ψ̃ν

n〉.We will show that the right sides of (3.19) and (3.20) oinide. Denote by
F (x, y) the funtion from Proposition 3.3 that majorizes |Rν(x, y)|; then itis lear that

1\
0

1\
0

|F (x, y)f(y)g(x)| dy dx <∞.Therefore the dominated onvergene theorem justi�es the seond equalityin the following hain of equalities:
〈Rνf, g〉 =

1\
0

1\
0

lim
r→1−

Rν(r, x, y)f(y)g(x)dy dx

= lim
r→1−

1\
0

1\
0

Rν(r, x, y)f(y)g(x)dy dx

= − lim
r→1−

1\
0

Rν,rf(x)g(x)dx = − lim
r→1−

∞∑

n=1

rn〈f, ψν
n〉〈g, ψ̃ν

n〉.The third equality is explained in the proof of [6, Theorem 1.1℄, the fourthone is a onsequene of [6, (1.10)℄ and Parseval's identity. Finally, sine by [6,Lemma 2.2℄ (and its slight modi�ation for the system {ψ̃ν
n}n≥1) the series

∑∞
n=1〈f, ψν

n〉〈g, ψ̃ν
n〉 onverges, the last limit equals the right side of (3.20).



Conjugay for Fourier�Bessel expansions 2414. Poisson and onjugate Poisson integrals. The Poisson semigroup
{P ν

t }t≥0 assoiated with Lν is, by the spetral theorem, given on L2 by
P ν

t = e−t(Lν)1/2
.For f ∈ L2 with the expansion f =

∑∞
n=1〈f, ψν

n〉ψν
n, we then have

P ν
t f =

∞∑

n=1

e−tλn,ν 〈f, ψν
n〉ψν

n(onvergene in L2).We extend this de�nition by de�ning, for an appropriate f with theexpansion f ∼ ∑∞
n=1〈f, ψν

n〉ψν
n, its Poisson integral fν(x, t) by(4.1) fν(x, t) =

∞∑

n=1

e−tλn,ν 〈f, ψν
n〉ψν

n(x), 0 < x < 1, t > 0.

We also de�ne the onjugate Poisson integral f̃ν(x, t) of f by(4.2) f̃ν(x, t) =
∞∑

n=1

e−tλn,ν 〈f, ψν
n〉ψ̃ν

n(x), 0 < x < 1, t > 0.

Lemma 4.1. Let ν > −1 and f ∈ Lp(w), where 1 ≤ p < ∞ and wsatis�es (1.7) and , in addition, (1.5) and (1.6) if p > 1, or (1.14) and(1.15) if p = 1. Then the Poisson and onjugate Poisson integrals of f givenby (4.1) and (4.2) are well de�ned C∞ funtions on (0, 1)×(0,∞), harmoniin the sense that they satisfy the di�erential equations(4.3) (∂2
t − Lν,x)fν(x, t) = 0, (∂2

t − Lν+1,x)f̃ν(x, t) = 0.Moreover , f̃ν(x, t) and fν(x, t) are related by the �Cauhy�Riemann type�equations(4.4) ∂

∂t
f̃ν(x, t) = δν,xf

ν(x, t),
∂

∂t
fν(x, t) = δ∗ν,xf̃

ν(x, t).Proof. Lemma 2.1 ensures the existene of the oe�ients 〈f, ψν
n〉 and,together with (2.4) and (2.5), shows that fν(x, t) and f̃ν(x, t) are well de-�ned, i.e., the relevant series onverge. The fat that fν(x, t) and f̃ν(x, t)are twie di�erentiable and satisfy (4.3) follows from term by term di�er-entiation of the de�ning series ((2.10) and the seond identity in (1.2) arehelpful). C∞ is then a onsequene of the fat that the operators ∂2

t − Lν,xand ∂2
t −Lν+1,x are hypoellipti on (0, 1)×(0,∞). The identities (4.4) followby di�erentiating term by term the de�ning series and using (1.2).It may be easily heked that for f ∈ Lp(w), 1 ≤ p <∞, where w satis�esthe assumptions of Lemma 4.1, fν and f̃ν given by (4.1) and (4.2) have the



242 Ó. Ciaurri and K. Stempakfollowing integral form:(4.5) fν(x, t) =

1\
0

P ν(t, x, y)f(y) dy, f̃ν(x, t) =

1\
0

P̃ ν(t, x, y)f(y) dy,where
P ν(t, x, y) =

∞∑

n=1

e−tλn,νψν
n(x)ψν

n(y), P̃ ν(t, x, y) =
∞∑

n=1

e−tλn,ν ψ̃ν
n(x)ψν

n(y).For ν = ±1/2, a alulation shows that with r = e−πt one has
P 1/2(t, x, y) = Pr(π(x− y)) − Pr(π(x+ y)),

P̃−1/2(t, x, y) =
1√
r
R−1/2(r, x, y)(see the lines following Remark 3.4 for the expliit form of R−1/2(r, x, y)).5. Proofs of the main results. We de�ne the integral operators R1

νand R2
ν by

R1
νf(x) =

x/2\
0

Rν(x, y)f(y) dy, R2
νf(x) =

1\
min{1,3x/2}

Rν(x, y)f(y) dy.

By taking p = 2 and w(x) ≡ 1 in (1.8) and (1.9) it follows that R1
ν and

R2
ν are bounded on L2 (see the omputations in the proof of Theorem 1.1below). Thus

R3
ν = Rν −R1

ν −R2
νis also bounded on L2. Moreover, by Proposition 3.5, R3

ν is assoiated withthe kernel Rν(x, y)χD3(x, y), whih, by Propositions 3.1 and 3.2, is a loalCalderón�Zygmund kernel. Thus R3
ν is a loal Calderón�Zygmund operator.Proof of Theorem 1.1. By using the weighted Hardy inequality (1.8) weobtain

1\
0

|w(x)R1
νf(x)|p dx =

1\
0

∣∣∣w(x)

x/2\
0

Rν(x, y)f(y) dy
∣∣∣
p
dx

≤ C

1\
0

(
w(x)x−ν−3/2

x/2\
0

yν+1/2|f(y)| dy
)p
dx

≤ C

1\
0

|w(x)f(x)|p dx.Similarly, using the weighted Hardy inequality (1.9) we get
1\
0

|w(x)R2
νf(x)|p dx ≤ C

1\
0

|w(x)f(x)|p dx.



Conjugay for Fourier�Bessel expansions 243Finally, the orresponding Lp(w) inequality for R3
ν is a onsequene of (1.10)(see [7, Theorem 3℄). Thus (1.12) follows.To prove (1.13) we �x f ∈ Lp(w) and hoose a sequene fk ∈ L2 ∩

Lp(w) suh that fk → f in Lp(w) as k → ∞. Then, by the very de�nition,
Rνf = limk→∞Rνfk (onvergene in Lp(w)). Sine Rνf ∈ Lp(w) and theaforementioned modi�ations of (1.5) and (1.6) hold, Rνf has an expansionwith respet to {ψ̃ν

n}n≥1 (see Lemma 2.1). In addition, for any n = 1, 2, . . . ,the mapping g 7→ 〈g, ψ̃ν
n〉 is a bounded funtional on Lp(w) (see Lemma2.2). Therefore 〈Rνfk, ψ̃
ν
n〉 → 〈Rνf, ψ̃

ν
n〉 as k → ∞. On the other hand,sine g 7→ 〈g, ψν

n〉 is also a bounded funtional on Lp(w) (see Lemma 2.2),we have 〈fk, ψ
ν
n〉 → 〈f, ψν

n〉 as k → ∞. But by (1.4), 〈Rνfk, ψ̃
ν
n〉 = −〈fk, ψ

ν
n〉,hene (1.13) follows.Proof of Theorem 1.2. Argue as in the �rst part of the proof of Theorem1.1 but using (1.16), (1.17) and (1.11) instead of (1.8), (1.9) and (1.10).6. An alternative onjugay mapping. Let

δ̂ν =
d

dx
+
ν − 1/2

xdenote an alternative derivative assoiated with Lν . One an easily hekthat the (formal) adjoint of δ̂ν in L2 is
δ̂∗ν = − d

dx
+
ν − 1/2

x
,and a diret omputation then shows that δ̂∗ν δ̂ν = Lν . Hene, another possibleformal de�nition of the onjugate operator is

R̂ν = δ̂ν(Lν)−1/2.A alulation also shows that
δ̂νψ

ν
n = λn,νψ̂

ν
n, δ̂∗νψ̂

ν
n = λn,νψ

ν
n,where(6.1) ψ̂ν

n(x) = dn,ν(λn,νx)
1/2Jν−1(λn,νx).An analogue of Lemma 2.4 now reads:Lemma 6.1. Let ν>0. The funtions {ψ̂ν

n}n≥0, where ψ̂ν
0 (x)=

√
2ν xν−1/2and , for n ≥ 1, ψ̂ν

n are given by (6.1), form an orthonormal basis in L2.Proof. We use the fats and notation of the proof of Lemma 2.4, andonsider (2.11) with α = ν − 1 (then α > −1). By the identity
aJ ′

ν−1(a) − (ν − 1)Jν−1(a) = −aJν(a)the equation (2.11) an be rewritten as
−xJν(x) + (̺+ ν − 1)Jν−1(x) = 0.



244 Ó. Ciaurri and K. StempakTaking ̺ = −ν + 1 (note that ̺ + α = 0) one obtains µn = λn,ν and thefuntions
θν−1,−ν+1
n (x) = knψ̂

ν
n(x)form an orthonormal system in L2. The system beomes omplete uponadding the funtion √

2ν xν−1/2. Now, using Lommel's formula, we an showthat kn = 1, and the proof is omplete.Thus we de�ne(6.2) R̂νf =
∞∑

n=1

〈f, ψν
n〉ψ̂ν

n, f ∈ L2.

(The series on the right onverges in L2.) That means that R̂ν is furnishedby the mapping ψν
n 7→ ψ̂ν

n. In the partiular ase ν = 1/2, as the orre-sponding onjugate operator we reover Co, the lassi onjugay mappingfor trigonometri expansions of odd funtions on (−1, 1) (f. [1, p. 100℄),
Co : sin(πnx) 7→ cos(πnx).Given ν > 0, the following pointwise estimates hold:(6.3) |ψ̂ν

n(x)| ≤ C

{
(nx)ν−1/2, 0 < x ≤ n−1,

1, n−1 < x < 1.Lemma 6.2. Let ν > 0. The statement analogous to (2.8) from Lemma
2.1 holds for the system {ψ̂ν

n}n≥0 provided w satis�es (1.7) and the onditionsthat result either from (1.5) and (1.6) if p > 1, or from (1.14) and (1.15) if
p = 1, upon replaing ν by ν − 1.Lemma 6.3. Let ν > 0. The statement analogous to (2.9) from Lemma
2.2 holds for the system {ψ̂ν

n}n≥0 provided w satis�es (1.7) and the onditionsresulting from (1.5) and (1.6) upon replaing ν by ν − 1.It may be heked that for the kernel de�ned by
R̂ν(r, x, y) =

∞∑

n=1

rnψ̂ν
n(x)ψν

n(y),the analogues of Propositions 3.1 and 3.2 hold. More preisely, the estimatein (3.1), orresponding to the ase min{1, 3x/2} ≤ y < 1 has to be replaedby Cxν−1/2y−ν−1/2. Consequently, the result orresponding to Proposition3.3 now reads:Proposition 6.4. Let ν > 0. Then for every x 6= y, 0 < x, y < 1, thelimit
R̂ν(x, y) = lim

r→1−
R̂ν(r, x, y) = lim

r→1−

∞∑

n=1

rnψ̂ν
n(x)ψν

n(y)
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|R̂ν(x, y)| ≤ C





x−ν−3/2yν+1/2, 0 < y ≤ x/2,

|x− y|−1, x/2 < y < min{1, 3x/2},
xν−1/2y−ν−1/2, min{1, 3x/2} ≤ y < 1.Consequently , if ν ≥ 1/2 then

|R̂ν(x, y)| ≤ C|x− y|−1, 0 < x, y < 1.Moreover ,
|∇R̂ν(x, y)| ≤ C|x− y|−2, x/2 < y < min{1, 3x/2}(all estimates hold with C independent of x and y).Remark 6.5. In the ase ν = 1/2, we have(6.4) R̂1/2(x, y) =

sin(πy)

cos(πy) − cos(πx)
.This is beause, as a diret alulation shows,

R̂1/2(r, x, y) = Qr

(
π(x+ y)

)
−Qr(π(x− y))hene

R̂1/2(x, y) =
1

2

(
1

tan
(

π
2 (x+ y)

) − 1

tan
(

π
2 (x− y)

)
)

and thus (6.4) follows. The fat that R̂1/2(x, y) is a C1 funtion on (0, 1) ×
(0, 1) \ {x = y} and satis�es estimates onsistent with those of Proposi-tion 6.4 now follows by inspetion (note, however, that the restrition on therange of x and y in the gradient estimate is essential). We also mention that
R̂1/2(x, y) is the kernel of the operator Co (f. [1, p. 100℄).Similarly, the result orresponding to Proposition 3.5 is the following.Proposition 6.6. Let f, g ∈ C∞

c (0, 1) have disjoint supports. Then
〈R̂νf, g〉 =

1\
0

1\
0

R̂ν(x, y)f(y)g(x)dy dx.We now state results onerning R̂ν , analogous to those in Theorems 1.1and 1.2.Theorem 6.7. Let ν > 0 and 1 < p < ∞. Let w(x) be a weight thatsatis�es (1.7), and also (1.5) and (1.6) with ν replaed by ν − 1. Then(6.5) ( 1\
0

|R̂νf(x)w(x)|p dx
)1/p

≤ C
( 1\

0

|f(x)w(x)|p dx
)1/p

for all f ∈ L2∩Lp(w). Consequently , R̂ν extends uniquely to a bounded linearoperator on Lp(w). Using the same symbol R̂ν to denote this extension, if in
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Rνf ∼

∞∑

n=1

〈f, ψν
n〉ψ̂ν

n, f ∈ Lp(w).Theorem 6.8. Let ν > 0 and w(x) be a weight that satis�es (1.7) with
p = 1, and (1.14) and (1.15) with ν replaed by ν − 1. Then(6.6) \

{0<x<1 : |R̂νf(x)|>λ}

w(x) dx ≤ C

λ

1\
0

|f(x)|w(x) dx, λ > 0,

for all f ∈ L2 ∩ L1(w). Consequently , R̂ν extends uniquely to a boundedlinear operator from L1(w) to L1,∞(w).The onditions imposed on w in Theorem 6.7 for ν = 1/2 are (1.7) and
sup

0<r<1

( 1\
r

w(x)px−p dx
)1/p( r\

0

w(x)−p′ dx
)1/p′

<∞,(6.7)
sup

0<r<1

( r\
0

w(x)pxp dx
)1/p( 1\

r

w(x)−p′x−2p′ dx
)1/p′

<∞.(6.8)It was proved in [1, Theorem 3℄ that in the ase ν = 1/2, (6.5) holds if andonly if
(6.9)

( v\
u

w(x)p dx
)1/p( v\

u

w(x)−p′(x(1 − x))p′ dx
)1/p′

≤ C(v2 − u2)(2 − (u+ v)), 0 ≤ u < v ≤ 1.Therefore, it follows from our Theorem 6.7 and [1, Theorem 3℄ that a weight
w satisfying (1.7), (6.7) and (6.8) must satisfy (6.9). We annot, however,expet an equivalene of the set of onditions (1.7), (6.7) and (6.8), with theondition (6.9): Theorem 6.7 was stated for general ν, hene it does not takeinto aount the fat that for ν = 1/2 the orresponding kernel vanishes at
y = 1.Similarly, the onditions imposed on w in Theorem 6.8 for ν = 1/2 are(1.7) with p = 1 and

sup
0<r<1

( 1\
r

(
r

x

)δw(x)

x
dx

)(
ess sup
x∈(0,r)

1

w(x)

)
<∞,(6.10)

sup
0<r<1

( r\
0

(
x

r

)δ

xw(x) dx

)(
ess sup
x∈(r,1)

1

x2w(x)

)
<∞(6.11)(in (6.10) and (6.11) we assume that there exists a positive δ suh that theorresponding quantities are �nite).



Conjugay for Fourier�Bessel expansions 247It was proved in [1, Theorem 3℄ that in the ase ν = 1/2, (6.6) holdsif and only if the weight w satis�es (6.9) with p = 1. Therefore, it followsfrom our Theorem 6.8 and [1, Theorem 3℄ that a weight w satisfying (1.7)with p = 1, (6.10) and (6.11) must satisfy (6.9) with p = 1. The remarksonerning the lak of equivalene between the set of onditions (1.7) with
p = 1, (6.10) and (6.11), with the ondition (6.9) onsidered for p = 1, alsoapply in this ase.
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