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Abstract

Let LN+1 be a linear differential operator of order N + 1 with constant coefficients and real eigenvalues
�1, . . . , �N+1, let E(�N+1) be the space of all C∞-solutions of LN+1 on the real line. We show that
for N �2 and n = 2, . . . , N , there is a recurrence relation from suitable subspaces En to En+1 involving
real-analytic functions, and withEN+1=E(�N+1) if and only if contiguous eigenvalues are equally spaced.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recurrence relations for generalized splines have been discussed by several authors since
the appearance of the pioneering work of De Boor and Cox in [4,5], respectively, cf. also
[6,7,11–13,18,20]. In order to motivate our results, let us consider briefly the case of cardinal
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polynomial splines. It is well known that the cardinal B-splines MN+1 and MN (of order N + 1
and N , and support in [0, N + 1] and [0, N ], respectively) are related by the identity

MN+1 (x) = x

N
MN (x) + N + 1 − x

N
MN (x − 1) (1)

for all x ∈ R (see e.g. [3, p. 86]). Analogous recurrence relations were proved for trigonometric
and hyperbolic B-splines in [12,18], respectively, cf. [11] for a unified proof. On the other hand,
Schumaker identified the classes of generalized splines which have B-splines bases computable
by recursion relations analogous to those for polynomial, trigonometric, and hyperbolic splines.
He proved in [17] that, in addition to the preceding spaces, essentially the only other space of
splines admitting such a basis is a certain space of Tchebycheffian splines.

Our objective is to investigate whether there exists a recurrence relation generalizing (1) to the
larger class of cardinal L-splines. This question was asked independently in the Conclusion of
[19, p. 1436]. Cardinal L-splines also arise in a natural way in the study of the so-called cardinal
polysplines, see [1,8–10].

Polynomial and hyperbolic cardinal splines are special cases of cardinal L-splines, also known
as cardinal exponential splines; here it is assumed that L is a linear differential operator of the
form

L =
N+1∏
j=1

(
d

dx
− �j

)
. (2)

Throughout the paper we shall assume that the eigenvalues �1, . . . , �N+1 are real numbers and
we shall often use the notation

�N+1 := (�1, . . . , �N+1) . (3)

The functions in

E(�N+1) := E(�1, . . . , �N+1) := {
f ∈ C∞ (R) : Lf = 0

}
(4)

are called exponential polynomials. A vector space E is called an exponential space of dimension
N + 1 if there exists (�1, . . . , �N+1) ∈ RN+1 such that

E = E (�1, . . . , �N+1) . (5)

A function u : R → R is a cardinal L-spline of order N + 1 if u is (N − 1)-times continuously
differentiable and for every l ∈ Z there exists an fl ∈ E(�N+1) such that u (t) = fl (t) whenever
t ∈ (l, l + 1). There exists (up to a nonzero scalar factor) a unique cardinal L-spline QN+1 of
order N + 1 and support (equal to) [0, N + 1], called the B-spline of order N + 1, see [14]. We
shall also write Q�N+1 or Q(�1,...,�N+1) instead of QN+1.

We will study whether for a given fixed natural number N there exist “good” functions aN, bN :
R → R such that the recurrence relation

QN+1 (x) = aN (x) QN (x) + bN (x) QN (x − 1) (6)

holds for all x ∈ R. Note that aN necessarily coincides with QN+1/QN on (0, 1) and bN with
QN+1/QN (· − 1) on (N, N + 1). Moreover, if aN is known for x ∈ [1, N ], then the function
bN must be of the form

bN (x) = QN+1 (x) − aN (x) QN (x)

QN (x − 1)
(7)
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for x ∈ (1, N). These arguments show that there exist many possibilities for aN and bN . However,
if we require aN to be real-analytic on R then it is uniquely determined by its values on (0, 1), and
then bN is also uniquely determined on (1, N + 1). If in addition bN is real-analytic on (−∞, 2)

and (N, ∞) then bN is completely determined on R. An analogous statement can be made by
interchanging the roles of aN and bN . On the other hand, it is not enough to require that aN and
bN be C∞ to obtain uniqueness, as Example 6 shows.

The main purpose of the paper is to find out under which conditions both aN and bN can be
chosen to be real-analytic on R. Let us introduce the following terminology: we say that there
exists a real-analytic recurrence relation from E(�N) to E(�N+1) if there exist real-analytic
functions aN, bN defined on R such that (6) holds for all x ∈ R. The following is our main result:

Theorem 1. Let (�1, . . . , �N+1) ∈ RN+1. Then there exists a sequence of exponential spaces En

of dimension n, n = 1, . . . , N + 1,

E1 ⊂ E2 ⊂ · · · ⊂ EN ⊂ EN+1 = E(�1, . . . , �N+1) (8)

with real-analytic recurrence relations from En to En+1 for n = 2, . . . , N , if and only if there exist
�, � ∈ R and a permutation � of {1, 2, . . . , N + 1} such that ��(k) = �+(k − 1) �, 1�k�N +1.

Let us note that the sufficiency part follows from [11,18] in the setting of L-splines with arbitrary
knots; but it is also an easy byproduct of our methods of proof. This makes the paper self-contained.

Finally, we mention that recurrence relations of a different nature were obtained by Dyn and
Ron in [6,7]. When specialized to cardinal L-splines, and under the assumption �1 �= �N+1, their
results yield the following four-term recurrence relation (see e.g. [8]):

Q(�1,�2,...,�N+1) (x) = e−�N+1Q(�2,...,�N+1) (x)

�1 − �N+1
− e−�1Q(�1,...,�N) (x)

�1 − �N+1

−Q(�2,...,�N+1) (x − 1)

�1 − �N+1
+ Q(�1,...,�N) (x − 1)

�1 − �N+1
.

2. Preliminaries

The general theory of cardinal L-splines was developed by Micchelli [14], cf. also [8, Chapter
13]. Let (�1, . . . , �N+1) ∈ CN+1. We define the function �N+1 for the operator L given in (2) as
the unique function in the space E(�N+1) such that

dm

dxm
�N+1 (0) = 0 for m = 0, . . . , N − 1 and

dN

dxN
�N+1 (0) = 1. (9)

We shall also write �(�1,...,�N+1) instead of �N+1. Another useful way to explain properties of
�N+1 is the identity

�(�1,...,�N+1) (x) := [
�1, . . . , �N+1

]
hx, (10)

where hx is the function defined by hx (t) = ext and
[
�1, . . . , �N+1

]
is the divided difference

operator with respect to the variable t , see [16]. Recall that for pairwise distinct �1, . . . , �N+1 and



256 J.M. Aldaz et al. / Journal of Approximation Theory 145 (2007) 253–265

for any suitable function f

[
�1, . . . , �N+1

]
f =

N+1∑
j=1

djf
(
�j

)
, dj :=

N+1∏
k=1,k �=j

(
�j − �k

)−1
. (11)

Note that �(�1) (x) = e�1x ; furthermore �(�1,�1)(x) = xe�1x for �1 = �2 and

�(�1,�2) (x) = e�1x − e�2x

�1 − �2
for �1 �= �2. (12)

From identity (11) one obtains the following simple consequence:

Lemma 2. Let �1, �2, . . . , �N+1 be pairwise distinct complex numbers and let N �1. Then there
exist nonzero constants cj , j = 2, . . . , N + 1, such that

�N+1 (x) =
N+1∑
j=2

cj�(�1,�j ) (x) . (13)

The last lemma can be generalized to the case of arbitrary �1, . . . , �N+1: for 0�k�N one has
the identity

[
�1, . . . , �N+1

]
f = [

�k+1, . . . , �N+1
]
Fk with Fk(y) := [

�1, . . . , �k, y
]
f. (14)

This is easy to check for pairwise distinct �k+1, . . . , �N+1, using the classical recurrence relation
for divided differences. The continuity of divided differences gives then the general case. Using
this the following is easily established:

Lemma 3. Let �1, . . . , �N+1 be complex numbers, define Fx (�) = �(�1,�) (x) and denote by F
(l)
x

its lth derivative with respect to the variable �. Suppose that, up to a permutation, (�2, . . . , �N+1)

is equal to (�1, . . . , �1, . . . , �r , . . . , �r ) where �1, . . . , �r are pairwise distinct and �j has mul-
tiplicity �j > 0 for j = 1, . . . , r . Then there exist nonzero constants cj,l , j = 1, . . . , r; l =
1, . . . , �j − 1, such that

�N+1 (x) =
r∑

j=1

�j −1∑
l=0

cj,lF
(l)
x

(
�j

)
. (15)

Set �+
N+1 (x) := �N+1 (x) for x�0 and �+

N+1 (x) := 0 for x < 0. The basic cardinal L-spline
QN+1 is defined (up to a factor) as the unique cardinal L-spline of order N + 1 with support in
[0, N + 1]. The basic spline QN+1 can be introduced via divided differences, see [11,14]. We use
the formula

QN+1 (x) =
N+1∑
j=0

sN+1,j�
+
N+1 (x − j) , (16)
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where the coefficients sN+1,j are defined by the equation

N+1∏
j=1

(
e−�j − z

)
=

N+1∑
j=0

sN+1,j z
j . (17)

Later we shall use the identity

N+1∑
j=0

sN+1,j�N+1(x − j) = 0 (18)

which implies that QN+1(x) = 0 for all x�N + 1. Further we need the formulas sN+1,N+1 =
(−1)N+1, and

sN+1,0 = e−(�1+···+�N+1), sN+1,1 = −e−(�1+···+�N+1)
N+1∑
i=1

e�i . (19)

3. Real-analytic recurrence relations: necessary conditions

First, note that for N = 1 there exists always a real-analytic recurrence relation from E(�1) to
E(�1, �2). Indeed, Q(�1) is given by Q(�1) (x) = e�1x1[0,1], where 1[0,1] denotes the characteristic
function of the interval [0, 1]. Then

Q(�1,�2) (x) = a1 (x) Q(�1) (x) + b1 (x) Q(�1) (x − 1) , (20)

where a1 and b1 are defined by real-analytic continuation of the functions Q(�1,�2)/Q(�1) on
(0, 1) and Q(�1,�2)/Q(�1) (· − 1) on (1, 2), respectively.

3.1. Uniqueness

We shall assume that L is of the form (2), where all �j are real if not otherwise stated. Then
�N+1 (x) �= 0 for all x ∈ R \ {0} since �N+1 has at most N real zeros on R. Further we know
that QN+1 (x) > 0 for all x ∈ (0, N + 1).

Proposition 4. For any N �2, uniqueness of the functions aN and bN satisfying (6) is guaranteed
by requiring either aN to be real-analytic on R and bN to be real-analytic on (−∞, 2) and (N, ∞)

or bN to be real-analytic on R and aN to be real-analytic on (−∞, 1) and (N − 1, ∞).

Proof. By (6), (16), (19), we have for all x ∈ (0, 1)

aN (x) = QN+1 (x)

QN (x)
= sN+1,0�N+1 (x)

sN,0�N (x)
= e−�N+1

�N+1 (x)

�N (x)
, (21)

and for all x ∈ (N, N + 1) using (18) and sN+1,N+1 = (−1)N+1

bN (x) = QN+1 (x)

QN (x − 1)
= −�N+1 (x − N − 1)

�N (x − N − 1)
. (22)

Since �n vanishes only at 0, with multiplicity n, the function �N+1/�N has a real-analytic
extension to all R. Thus, if we require aN to be real-analytic on R, then aN is uniquely defined
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by (21) on R. Since (6) implies (7) for all x ∈ (1, N + 1), the function bN is uniquely defined
on (1, N + 1). If we want bN to be real-analytic on (N, ∞) we have to define bN (x) on (N, ∞)

by (22). If we want it to be real-analytic on (−∞, 2), we have to define bN as the real-analytic
extension of bN restricted to (1, 2). Using (7), (16) for x ∈ (1, 2), and (21) it is simple to see that
for x ∈ (1, 2)

bN (x) = sN+1,1�N+1 (x − 1)

sN,0�N (x − 1)
− sN,1

sN,0

sN+1,0�N+1 (x)

sN,0�N (x)
. (23)

An entirely analogous argument works in the second case of the proposition. �

3.2. Nonanalytic recurrence relations

The preceding proof also yields the following result.

Theorem 5. Let N �2, be a natural number. Then there exist a real-analytic function aN : R →
R and a function bN ∈ CN−2 (R), real-analytic on R\{2, . . . , N}, such that for all x ∈ R

QN+1 (x) = aN (x) QN (x) + bN (x) QN (x − 1) . (24)

Positivity over the interval (0, N + 1) of the functions aN and bN appearing in the recurrence
relation is always desirable from the viewpoint of stability, cf. also the polynomial case in (1).
From (21) it is clear that aN in Theorem 5 is always positive on the half line (0, ∞). Moreover
(23) implies that bN (1) = − sN,1

sN,0
aN (1) > 0 since aN (1) > 0, sN,0 > 0, and sN,1 < 0, cf. (19).

However, in general bN is not positive on (1, N + 1), cf. Example 12.
The following example shows that the functions aN and bN are not unique if they are only

required to be C∞, even in the polynomial case.

Example 6. Let � = (0, 0, 0) and take N = 2 in (1), i.e. M3 (x) = x
2 M2 (x) + 3−x

2 M2 (x − 1).
Then there exist c, d ∈ C∞ (R), c �≡ 0, d �≡ 0 such that 0 = c (x) M2 (x) + d (x) M2 (x − 1).
Thus, M3 (x) = (

x
2 + c (x)

)
M2 (x) + ( 3−x

2 + d (x)
)
M2 (x − 1) is a different decomposition

with C∞-coefficients.

To see why such c and d exist, one may simply take c �= 0 to be a C∞-function with support con-
tained in the open interval (1, 2). Define d just by the equation d (x) = −c (x) M2 (x) /M2 (x − 1)

for x ∈ (1, 2) and 0 otherwise. Then d is a C∞-function.

3.3. Necessary conditions

Lemma 7. Let L�N+1 = ∏N+1
j=1

(
d
dx

− �j

)
and (�1, . . . , �N+1) ∈ RN+1. If � �= 0 is a solution

of L�N+1� = 0, then there exists an M > 0 such that � has zeros only in a strip | Re z| �M .

Proof. This follows from the asymptotics of �, since it is a sum of exponentials and all �j are
real. �

Theorem 8. Let N �2 and FN := �N+1/�N . Then each property below implies the next one:
(i) there exists a real-analytic recurrence relation from E(�N) to E(�N+1);
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(ii) there exist nonzero constants AN, BN such that for all x ∈ R

ANFN (x) + BNFN (x − 1) + FN (x − N − 1) = 0; (25)

(iii) the function FN has an entire extension.

Proof. For (i) ⇒ (ii) suppose that there exist real-analytic functions aN and bN on the real line
satisfying the recurrence relation (6). Comparing (22) with (23) one obtains (25) where

AN = − sN+1,0sN,1

s2
N,0

, BN := sN+1,1

sN,0
. (26)

It is clear from (19) that AN and BN are nonzero.
Let us prove now (ii) ⇒ (iii). Clearly �N+1/�N is a meromorphic function. Hence we can

write �N+1/�N = 	N+1/	N , where 	N+1 and 	N are entire functions without any common
zero, and for j = N, N +1, each zero of 	j is a zero of �j . Now (25) implies that for each z ∈ C

0 = AN	N+1 (z) 	N (z − 1) 	N (z − N − 1)

+BN	N+1 (z − 1) 	N (z) 	N (z − N − 1)

+	N+1 (z − N − 1) 	N (z) 	N (z − 1) .

We show that 	N has no zero in the complex plane, so 	N+1/	N is entire. Suppose there exists
a zero of 	N . By Lemma 7 there exists an K ∈ R such that all zeros of �N (and hence of 	N )
satisfy Re z�K . Let K0 be the infimum of

{
Re z : 	N (z) = 0

}
. Then there exists a zero z0 of

	N with Re z0 < K0 + 1
2 . It follows that 	N (z0 − 1) �= 0 and 	N (z0 − N − 1) �= 0. Then the

equation above shows that 0 = AN	N+1 (z0) 	N (z0 − 1) 	N (z0 − N − 1). By (ii), AN �= 0, so
we conclude that 	N+1 (z0) = 0. This contradicts the fact that 	N+1 and 	N have no common
zeros. �

Theorem 9. Assume that �1, . . . , �N+1 are given with �1 �= �2. Suppose that for each n =
2, . . . , N there exists a real-analytic recurrence relation from E(�1, . . . , �n) to E(�1, . . . , �n+1).
Then there exist pairwise distinct nonzero integers m3, . . . , mN+1 such that

�j − �1 = mj (�2 − �1) for j = 3, . . . , N + 1. (27)

We first prove the following two lemmas:

Lemma 10. With the notations of Lemma 3, given (�1, . . . , �N+1), the following holds: All func-
tions �n/�2, 2�n�N + 1, have entire extensions if and only if so do all functions F

(l)
x

(
�j

)
/�2

for 0� l��j − 1 and j = 1, . . . , r .

Proof. Sufficiency is clear since by Lemma 3,�n is a linear combination of the functionsF
(l)
x

(
�j

)
.

For the necessity, use induction over N . For N = 1 the statement is trivial. Suppose now that
�n/�2, 2�n�N + 1, have entire extensions, so they have entire extensions for 2�n�N. By
the induction hypothesis each summand (necessarily nonzero) of �N/�2 in the corresponding
sum arising from (15) has an entire extension. By Lemma 3, �N+1/�2 is a linear combina-
tion of multiples of the same summands and one more term with a nonzero coefficient, either
the value Fx

(
�j

)
/�2 for a new �j or of the type F

(l)
x

(
�j

)
/�2 at an old one. Since the other

summands and �N+1/�2 have entire extensions it follows that the new term also has an entire
extension. �
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Lemma 11. Suppose that �1 �= �2. Given � ∈ C, the function x 
−→ �(�1,�) (x) /�(�1,�2) (x)

has an entire extension if and only if there exists a nonzero m ∈ Z such that

� − �1 = m (�2 − �1) . (28)

Moreover, if x 
−→ �(�1,�) (x) /�(�1,�2) (x) has an entire extension, it cannot be so for x 
−→
d
d��(�1,�) (x) /�(�1,�2) (x).

Proof. Suppose that x 
−→ �(�1,�) (x) /�(�1,�2) (x) has an entire extension. Then by (12), any

nonzero complex zero z0 of e�1z − e�2z must be a zero of z 
−→ �(�1,�) (z). Since z0 :=
2
i/ (�2 − �1) is a zero of e�1z − e�2z we conclude that 0 = �(�1,�) (z0). This implies that

� �= �1, and e�z0 − e�1z0 = 0. The existence of some nonzero integer m satisfying (28) follows
immediately.

Conversely, from (28) and (12), one may derive that

�(�1,�) (x) /�(�1,�2) (x) = 1

m

em(�2−�1)x − 1

e(�2−�1)x − 1
. (29)

Since Xm−1
X−1 = 1 + X + · · · + Xm−1 we conclude that x 
−→ �(�1,�) (x) /�(�1,�2) (x) has an

entire extension.
Finally, suppose that (28) holds for some nonzero m. Then, with z0 as above, we get

d

d�
�(�1,�) (z0) �= 0. (30)

Since �(�1,�2) (z0) = 0 it follows that d
d��(�1,�) (x) /�(�1,�2) (x) is not entire. �

Proof of Theorem 9. Suppose that for each n = 2, . . . , N there exists a real-analytic recurrence
relation from E(�1, . . . , �n) to E(�1, . . . , �n+1). By Theorem 8 all functions �n+1/�n, 2�n�N

have entire extensions. Thus, so do all functions �n/�2, 2�n�N . The previous two lemmas
prove that, if �1 �= �2, (27) holds for nonzero integers. Furthermore �1, . . . , �N+1 are pairwise
distinct by the second statement of Lemma 11. �

We have already seen that the coefficient function aN in (24) is positive on (0, ∞). It is a natural
question whether the coefficient function bN is also positive on [1, N + 1]. By example we show
that bN (x) can be negative on the interval (1, 2).

Example 12. Let � = (0, 1, �3) with �3 > 1, and set

C�3 (x) := �3 (�3 − 1) b2 (x) �2 (x) �2 (x − 1) . (31)

Then C�3 and b2 have the same sign on (1, 2), and a computation shows that

C�3 (x) = (1 + e)
(
ex − ex−1

)
+ (

1 − ex
)
(1 + e) e(x−1)�3

+
(
ex−1 − e

)
ex�3 − (

1 − ex
)
e�3 + �3

(
1 − ex−1

) (
1 − ex

)
e�3 .

Take x = 3
2 . Then, since e1.5�3 is the dominating term and the coefficient

(
e0.5 − e

)
is negative,

C�3

( 3
2

)
< 0 whenever �3 is large enough. So b2

( 3
2

)
is also negative.
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4. Existence of real-analytic recurrence relations: a characterization

At first we notice the following simple observation:

Proposition 13. If there is a real-analytic recurrence relation from the exponential space E

(�1, . . . , �N) to E (�1, . . . , �N+1), then there is also one from E (c + �1, . . . , c + �N) to
E (c + �1, . . . , c + �N+1) for any c ∈ R.

Proof. For simplicity sake put c + �N = (c + �1, . . . , c + �N). Using the fact that �c+�N
(x) =

ecx��N
(x) it is not difficult to see that Qc+�N

(x) = cNecxQ�N
(x) for some nonzero constant

cN . Assuming the recurrence relation Q�N+1 (x) = aN (x) Q�N
(x) + bN (x) Q�N

(x − 1), it is
obvious that

c−1
N+1cNQc+�N+1 (x) = aN (x) Qc+�N

(x) + ecbN (x) Qc+�N
(x − 1) . � (32)

In the following we shall make use of a general remark: let UN+1 be the linear space of
functions over an open interval I , spanned by the functions 1, X, . . . , XN−1 and a real-analytic
function u (X) over I . Then, given a ∈ I , one can define an element �u in UN+1 which satisfies
�u (a) = · · · = �(N−1)

u (a) = 0 by

�u (X) = u (X) −
N−1∑
k=0

u(k) (a)

k! (X − a)k . (33)

By expanding u(X) in a Taylor series about a this implies

�u (X) = (X − a)N
∞∑

k=0

u(k+N) (a)

(k + N)! (X − a)k . (34)

Lemma 14. Suppose �N = (0, �2, . . . , (N − 1) �2) and �N+1 = (�N, M�2), with a natural
number M �N �1, and let �N, �N+1 be defined by (9). Then �N+1/�N is an entire function of
the form

�N+1 (x)

�N (x)
= cR

(
e�2x

)
(35)

for some non-zero constant c and a polynomial R defined by

R(X) = (X − 1)

M−N∑
k=0

(
M

k + N

)
(X − 1)k . (36)

Proof. By the assumptions of the lemma, the space E(�N+1) is generated by 1, e�2x, . . . ,

e�2(N−1)x and eM�2x . So we are working, up to a change of variable X := e�2x , in the space
1, X, . . . , XN−1, XM over the interval I = (0, ∞). Use now the above notations �u for u(X) =
XM and a = 1 in (33). Then there exists a nonzero constant dN+1 with

�N+1 (x) = dN+1�u

(
e�2x

)
. (37)
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Similarly, for the system 1, X, . . . , XN−2, v(X) with v(X) = XN−1, one has that �v (X) =
(X − 1)N−1 and �N (x) = dN�v

(
e�2x

)
for some dN �= 0. An immediate consequence of (34)

is that �u(X)
�v(X)

is equal to R(X) defined in (36). This completes the proof of the lemma. �

The following proposition provides the central step in the proof of our main theorem. In par-
ticular it shows that for the exponential space E(0, . . . , N) there exist two different exponential
spaces E1 and E2 admitting a real-analytic recurrence relation from E(0, . . . , N) to Ej for j = 1, 2,
namely E1 = E(0, . . . , N + 1) and E2 = E(−1, 0, . . . , N).

Proposition 15. Given two real numbers �, � with � �= 0, an integer N �1, and an integer M ,
M /∈ {0, . . . , N − 1}, let us set

�N := (�, � + �, . . . , � + (N − 1)�), �N+1 := (�, � + �, . . . , � + (N − 1)�, � + �M).

Then, the following assertions are equivalent:
(i) There exists a real-analytic recurrence relation from E(�N) to E(�N+1);

(ii) M = N or M = −1.

Proof. Assume that (i) holds. Due to Proposition 13, we may assume that � = 0. We will show
that M = N if M > 0 and M = −1 if M < 0.

First, assume that M > 0. Then M > N by our assumptions and we can use the last lemma: if
M > N , then the polynomial R defined in (36) has degree M −N +1�2. Now (35) and Theorem
8 yield

ANR
(
e�2x

)
+ BNR

(
e�2(x−1)

)
+ CNR

(
e�2(x−N−1)

)
= 0. (38)

Putting � = e−�2 and X = e�2x one arrives at

ANR (X) + BNR (�X) + CNR
(
�N+1X

)
= 0 (39)

for all X > 0, hence for all X ∈ R. Then (AN + BN + CN) R (0) = 0, and differentiation gives
the following two relations:

(AN + �BN + CN�N+1)R′(0) = (AN + �2BN + CN�2N+2)R′′(0) = 0. (40)

Since R(0), R′(0) and R′′(0) are nonzero and �2 �= 0, this implies AN = BN = CN = 0, a
contradiction. Hence M = N .

Now assume that M < 0. We will see that this is reduced to the previous case. We apply
Proposition 13 with c := −(N − 1)�: so assumption (i) with � = 0 implies that there exists a
real-analytic recurrence relation from E(c + �N) to E(c + �N+1). Now c + �N consists of the
values

− (N − 1)� + j� = (−�)(N − 1 − j) (41)

for j = 0, . . . , N − 1 and

c + �N+1 = −(N − 1)� + M� = (−�)(N − 1 − M). (42)

Since M < 0 we know that M̃ := N − 1 − M > 0. By the first case applied to c + �N and
c + �N+1 we conclude that M̃ = N which clearly implies that M = −1.
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For (ii) ⇒ (i) we assume at first that M = N . Then the real change of variable X = e�2x

transforms the cardinal spline spaces based on E(�N) and E(�N+1) into the polynomial splines
of degree N and N + 1 on (0, ∞) relative to the simple knots tj := e�2j . Recurrence relations
are known in such spaces, and their coefficients are real-analytic. This implies the statement by
taking the inverse transform x = �−1

2 ln X. The case M = −1 is handled in a similar way. �

Proposition 16. Let � be a real number. Suppose �N = (�, . . . , �) and �N+1 = (�N, �) for
� ∈ R. Then the following assertions are equivalent:
(i) There exists a real-analytic recurrence relation from E(�N) to E(�N+1);

(ii) � = �.

Proof. Due to Proposition 13, we may assume that � = 0. By Theorem 8 and assumption (i)
there exist nonzero constants AN, BN, CN such that for all x ∈ R

AN

�N+1

�N

(x) + BN

�N+1

�N

(x − 1) + CN

�N+1

�N

(x − N − 1) = 0. (43)

Suppose that � �= 0. Note that �N (x) = xN−1/ (N − 1)! and, according to (33) and Lemma 14,
there exists a nonzero constant dN+1 such that

�N+1 (x) = dN+1(e
�x − R (x)), R (x) =

N−1∑
k=0

(�x)k

k! . (44)

Multiply (43) with [x(x − 1)(x − N − 1)]N−1. It follows that there exists a polynomial Q such
that

e�xP (x) − Q (x) = 0 for all x ∈ R, (45)

where the polynomial P is defined by

P(x) = AN [(x − 1)(x − N − 1)]N−1 + BNe−�[x(x − N − 1)]N−1

+CNe−�(N+1)[x(x − 1)]N−1.

This is impossible unless P = Q = 0. But P = 0 implies AN = BN = CN = 0. Thus we cannot
have � �= 0.

For (ii) ⇒ (i) note that E(�N+1) is the classical polynomial spline space. �

Now we are going to prove our main result stated as Theorem 1.

Proof of Theorem 1. Proof of the necessity by induction. For N = 1 there is nothing to prove.
Suppose that there exists a sequence of exponential spaces E1 ⊂ E2 ⊂ · · · ⊂ EN ⊂ EN+1 =
E(�N+1) with real-analytic recurrence relations from En to En+1 for n = 2, . . . , N . The recursive
assumption enables us to assume, without loss of generality, that �j = �+ (j −1)� for 1�j �N .

Suppose that � �= 0. From Theorem 9 we can deduce that �N+1 = � + �M for some integer
M different from 0, . . . , N − 1. Proposition 15 ensures that either M = N or M = −1. If
M = N , then the equality �j = � + (j − 1)� is valid for j = N + 1 too. If M = −1, then
��(j) = �̃ + (j − 1)� for 1�j �N + 1, with �̃ := � − �, and with �(1) = N + 1, �(j) := j − 1
for j = 2, . . . , N + 1.

The case � = 0 follows from Proposition 16.
Sufficiency follows from Propositions 15 and 16. �
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Consider the exponential space E (�1, �2). For simplicity assume that �1 = 0, and put � =
�2 − �1. Then the proof of our main theorem shows how to construct all increasing sequences
of exponential spaces admitting analytic relations, starting from E (�1, �2) = E (0, �) in the
following (uncomplete) scheme:

E (0, �)

↙ ↘
E(−�, 0, �) E(0, �, 2�)

↙ ↘ ↙ ↘
E (−2�, −�, 0, �) E (−�, 0, �, 2�) E (0, �, 2�, 3�)

(46)

Let us look at the particular case that �N+1 = (�1, . . . , �N+1) is ordered, so �1 � · · · ��N+1.
Then there exists a real-analytic recurrence relation from E(�1, . . . , �n) to E(�1, . . . , �n+1) for
n = 2, . . . , N , if and only if

�n = �1 + (n − 1) (�2 − �1) . (47)

The following description is obvious from the above scheme:

Theorem 17. Let (�1, . . . , �N+1) ∈ RN+1. Then there exist real-analytic recurrence relations
from E(�1, . . . , �n) to E(�1, . . . , �n+1) for n = 1, 2, . . . , N if and only if for 3�j �N + 1

�j = �1 + mj(�2 − �1) (48)

with either mj+1 = min{m1, . . . , mj } − 1 or mj+1 = max{m1, . . . , mj } + 1, and with m1 =
0, m2 = 1.

It follows from our results that the only exponential spaces admitting real-analytic recurrence
relations are either the classical polynomial spaces, or transformations of polynomial spaces via
an exponential map, cf. the discussion in Section 6 in [17].
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