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1. Introduction

Finite-dimensional simple Jordan superalgebras over an algebraically closed field of characteristic zero were classified
by Kac in 1977 [13], with one missing case that was later described by Kantor in 1990 [14]. More recently Racine
and Zelmanov [21] gave a classification of finite-dimensional simple Jordan superalgebras over arbitrary fields of
characteristic different from 2 whose even part is semisimple. Later, in 2002, Martínez and Zelmanov [16] completed the
remaining cases, where the even part is not semisimple.

Here we are interested in describing the maximal subalgebras of the finite-dimensional simple special Jordan
superalgebras with semisimple even part over an algebraically closed field of characteristic zero. Precedents of this work are
the papers of Dynkin in 1952 (see [2,3]),where themaximal subgroups of some classical groups and themaximal subalgebras
of semisimple Lie algebras are classified, the papers of Racine (see [19,20]), who classifies the maximal subalgebras of
finite-dimensional central simple algebras belonging to one of the following classes: associative, associativewith involution,
alternative and special and exceptional Jordan algebras; and the paper by the first author in 1986 (see [4]), solving the same
question for central simple Malcev algebras.

In a previouswork [5], the authors described themaximal subalgebras of finite-dimensional central simple superalgebras
which are either associative or associative with superinvolution. The results obtained there will be useful in what follows.
The maximal subalgebras of the ten-dimensional Kac Jordan superalgebra are determined in [6].

First of all, let us recall some basic facts. A superalgebra over a field F is just a Z2-graded algebra A = A0̄ ⊕ A1̄ over F (so
AαAβ ⊆ Aα+β for α,β ∈ Z2). An element a in Aα (α = 0̄, 1̄) is said to be homogeneous of degree α and the notation ā = α is
used. A superalgebra is said to be nontrivial if A1̄ 6= 0 and simple if A2

6= 0 and A contains no proper graded ideal.
An associative superalgebra is just a superalgebra that is associative as an ordinary algebra. Here are some important

examples:
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(a) A = Mn(F), the algebra of n × n matrices over F, where

A0̄ =

{(
a 0
0 b

)
: a ∈ Mr(F), b ∈ Ms(F)

}
,

A1̄ =

{(
0 c
d 0

)
: c ∈ Mr×s(F), d ∈ Ms×r(F)

}
,

with r + s = n. This superalgebra is denoted by Mr,s(F).
(b) The subalgebra A = A0̄ ⊕ A1̄ of Mn,n(F), with

A0̄ =

{(
a 0
0 a

)
: a ∈ Mn(F)

}
, A1̄ =

{(
0 b
b 0

)
: b ∈ Mn(F)

}
.

This superalgebra is denoted by Qn(F).
Over an algebraically closed field, these two previous examples exhaust the simple finite-dimensional associative

superalgebras, up to isomorphism.
(c) The Grassmann superalgebra:

G = alg〈1, e1, e2, . . . : e2i = 0 = eiej + ejei∀i, j = 1, 2, . . .〉

over a field F, with the grading G = G0̄ ⊕ G1̄, where G0̄ is the vector space spanned by the products of an even number
of ei’s, while G1̄ is the vector subspace spanned by the products of an odd number of ei’s. (The product of zero ei’s is, by
convention, equal to 1.)

Following standard conventions, given a superalgebra A = A0̄ ⊕ A1̄, the graded tensor product G ⊗ A, where G is the
Grassmann superalgebra, becomes a superalgebrawith the product given by (g⊗a)(h⊗b) = (−1)āh̄gh⊗ab for homogeneous
elements g, h ∈ G and a, b ∈ A, and grading given by (G ⊗ A)0̄ = G0̄ ⊗ A0̄ ⊕ G1̄ ⊗ A1̄, (G ⊗ A)1̄ = G0̄ ⊗ A1̄ ⊕ G1̄ ⊗ A0̄. Its even
part G(A) = (G ⊗ A)0̄ is called the Grassmann envelope of the superalgebra A. Moreover, the superalgebra A is said to be a
superalgebra in a fixed variety if G(A) is an ordinary algebra (over G0̄) in this variety. In particular, A is a Jordan superalgebra
if and only if G(A) is a Jordan algebra.

It then follows that over fields of characteristic 6= 2, 3, a superalgebra J = J0̄ ⊕ J1̄ is a Jordan superalgebra if and only if for
any homogeneous elements a, b, c in J:

Lab = (−1)āb̄Lba,

where La denotes the multiplication by a, and

LaLbLc + (−1)āb̄+āc̄+b̄c̄LcLbLa + (−1)b̄c̄L(ac)b = LabLc + (−1)b̄c̄LacLb + (−1)āb̄+āc̄LbcLa

= (−1)āb̄LbLaLc + (−1)āc̄+b̄c̄LcLaLb + La(bc)

= (−1)āc̄+b̄c̄LcLab + (−1)āb̄LbLac + LaLbc. (1.1)

Let A be a superalgebra. A superinvolution is a graded linear map ∗: A → A such that x∗∗
= x, and (xy)∗

= (−1)x̄ȳy∗x∗, for
any homogeneous elements x, y in A.

The simplest examples of Jordan superalgebras over a field of characteristic 6= 2 are the following:

(i) Let A = A0̄ + A1̄ be an associative superalgebra. Replace the associative product in A with the new one: x ◦ y =
1
2 (xy + (−1)x̄ȳyx). With this product A becomes a Jordan superalgebra, denoted by A+.

(ii) Let A be an associative superalgebra with superinvolution ∗. Then the subspace of hermitian elements H(A, ∗) = {a ∈ A :

a∗
= a} is a subalgebra of A+.

In fact, if a Jordan superalgebra J is a subalgebra of A+ for an associative superalgebra A, J is said to be special. Otherwise J
is said to be exceptional. Any graded Jordan homomorphism σ : J → A+ is called a specialization. So J is special if there exists a
faithful specialization of J. Otherwise, J is exceptional. Both examples (i) and (ii) given above are examples of special Jordan
superalgebras.

A specialization u : J → U+ into an associative superalgebra U is said to be universal if the subalgebra of U generated by
u(J) isU, and for any arbitrary specializationϕ : J → A+, there exists a homomorphism of associative superalgebrasχ : U → A
such that ϕ = χ ◦ u. The superalgebra U is called the universal enveloping algebra of J.

In what follows, and unless otherwise stated, only finite-dimensional Jordan superalgebras over an algebraically closed field of
characteristic zero will be considered.

The restriction on the characteristic is necessary because Lie theoretical methods are used. Both the methods and the
results are not valid in general in prime characteristic (see, for instance, Example 5.2).

We recall the classification of the nontrivial simple Jordan superalgebras given by Kac [13] and completed by Kantor [14].

(1) J = K3, the Kaplansky superalgebra:

J0̄ = Fe, J1̄ = Fx + Fy, e2 = e, e · x =
1
2
x, e · y =

1
2
y, x · y = e.
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(2) The one-parameter family of superalgebras J = Dt, with t ∈ F \ {0}:

J0̄ = Fe + Ff , J1̄ = Fu + Fv

e2 = e, f 2 = f , e · f = 0, e · u =
1
2
u, e · v =

1
2
v, f · u =

1
2
u,

f · v =
1
2
v, u · v = e + tf .

Note that Dt
∼= D1/t , for any t 6= 0.

(3) J = K10, the Kac superalgebra. This is a ten-dimensional Jordan superalgebra with six-dimensional even part (see [7,15,1]
or [6] for details).

(4) Let V = V0̄ ⊕ V1̄ be a graded vector space over F, and let ( , ) be a nondegenerate supersymmetric bilinear superform on
V , that is, a nondegenerate bilinear map which is symmetric on V0̄, skewsymmetric on V1̄, and V0̄ and V1̄ are orthogonal
relative to ( , ). Now consider J0̄ = Fe + V0̄, J1̄ = V1̄ with e · x = x, v · w = (v,w)e, for any x ∈ J and v,w ∈ V . This
superalgebra J is called the superalgebra of a superform. If dim V0̄ = 1 and dim V1̄ = 2, the superalgebra of a superform is
isomorphic to Dt with t = 1.

(5) A+, with A a finite-dimensional simple associative superalgebra, that is, either A = Mr,s(F) or A = Qn(F). Note that
M1,1(F)+ is isomorphic to D−1.

(6) H(A, ∗), where A and ∗ are of one of the following types:
(i)

A = Mn,n(F), ∗:

(
a b
c d

)
→

(
dt

−bt

ct at

)
.

(ii)

A = Mn,2m(F), ∗:

(
a b
c d

)
→

(
at ctq

−qtbt qtdtq

)
, where q =

(
0 Im

−Im 0

)
.

The first one is called the transpose superinvolution and H(A, ∗) is denoted then by p(n), and the second one the
orthosymplectic superinvolution and H(A, ∗) is denoted in this case by ospn,2m. The isomorphisms D−2 ∼= D−1/2 ∼= osp1,2
are easy to prove.

(7) Let G be the Grassmann superalgebra. Consider the following product in G:

{f , g} =

n∑
i=1

(−1)f̄
∂f

∂ei

∂g

∂ei
,

and build the vector space, sum of two copies of G: J = G + Gx, with the product in J given by

a(bx) = (ab)x, (bx)a = (−1)ā(ba)x, (ax)(bx) = (−1)b̄{a, b}.

Finally take the following grading in J: J0̄ = G0̄ + G1̄x, J1̄ = G1̄ + G0̄x. This superalgebra is called the Kantor double of the
Grassmann algebra or the Kantor superalgebra.

The ten-dimensional Kac superalgebra and the Kantor superalgebra are the unique exceptional superalgebras in the
above list (see [18,23]). Note that the Kaplansky superalgebra is the unique nonunital simple superalgebra.

Let J be a nonunital Jordan superalgebra, the unital hull of J is defined to be HF(J) = J+ F ·1, where 1 is the formal identity
and J is an ideal inside HF(J). In [25] Zelmanov determined a classification theorem for finite-dimensional semisimple Jordan
superalgebras.

Theorem 1.1 (E. Zelmanov). Let J be a finite-dimensional Jordan superalgebra over a field F of characteristic not 2. Then J is
semisimple if and only if J is a direct sum of simple Jordan superalgebras and unital hulls HK(J1 ⊕ · · · ⊕ Jr) = (J1 ⊕ · · · ⊕ Jr) + K · 1
where Ji are nonunital simple Jordan superalgebras over an extension K of F.

The maximal subalgebras of the Kac Jordan superalgebra (type (3) above) have been determined in [6]. Our purpose in
this paper is to describe the maximal subalgebras of the simple special Jordan superalgebras (types (1), (2), (4), (5) and (6)).
This is achieved completely for the simple Jordan superalgebras of types (1), (2) and (4). For types (5) and (6) the results are
not completed and some questions arose.

In what follows the word subalgebra will always be used in the graded sense, so any subalgebra is graded.
First note that any maximal subalgebra B in a simple unital Jordan superalgebra J, with identity element 1, contains the

identity element. Indeed, if 1 6∈ B, the algebra generated by B and 1: B + F · 1, is the whole J by maximality. So B is a nonzero
graded ideal of J, a contradiction with J being simple. Therefore 1 ∈ B.

The paper is organized as follows. Section 2 deals with the easy problem of determining the maximal subalgebras of the
Kaplansky superalgebra, the superalgebras Dt and the Jordan superalgebras of superforms. Then Section 3 will collect some
known results on universal enveloping algebras and will put them in a way suitable for our purposes. Sections 4 and 5 will
be devoted, respectively, to the description of the maximal subalgebras of the simple Jordan superalgebras A+ and H(A, ∗),
for a simple finite-dimensional associative algebra A, and a superinvolution ∗.
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2. The easy cases

Let us first describe the maximal subalgebras of the simple Jordan superalgebras of types (1), (2), and (4) in Section 1.
The result, whose proof is straightforward, is valid in prime characteristic (6= 2) too.

Theorem 2.1. (i) Let J = K3 be the Kaplansky superalgebra. A subalgebra M of J is maximal if and only if M = J0̄ ⊕ M1̄ where
M1̄ is a vector subspace of J1̄ with dimM1̄ = 1.

(ii) Let J = Dt with t 6= 0. A subalgebra M of J is maximal if and only if either M = J0̄ ⊕ M1̄ where M1̄ is a vector subspace of J1̄
with dimM1̄ = 1, or if t = 1,M = F · 1 + J1̄.

(iii) Let J be the Jordan superalgebra of a nondegenerate bilinear superform. A subalgebra M of J is maximal if and only if either
M = J0̄ ⊕M1̄ whereM1̄ is a vector subspace and dimM1̄ = dim J1̄ −1, or M = (F ·1+M0̄)⊕ J1̄ whereM0̄ is a vector subspace
and dimM0̄ = dim V0̄ − 1.

Note that item (ii) in Theorem 2.1 cover the maximal subalgebras of M1,1(F)+ ∼= D−1 and of osp1,2
∼= D−2.

3. Universal enveloping algebras

In order to determine the maximal subalgebras of the remaining simple special Jordan superalgebras, some previous
results are needed.

Given an associative superalgebra A and a subalgebra B of the Jordan superalgebra A+, B′ will denote the (associative)
subalgebra of A generated by B.

Proposition 3.1. There is no unital subalgebra B of the Jordan superalgebra Qn(F)+ (n ≥ 2), isomorphic to Dt (t 6= 0), and with
B′

= Qn(F).

Proof. Write A = Qn(F), and take a basis {e, f , u, v} of B ∼= Dt as in Section 1. Since B is a unital subalgebra, e + f = 1A.
Therefore, as e2 = e, f 2 = f and ef = f e = (1A − e)e = 0, we may assume also that

e =


Is 0 0 0
0 0 0 0
0 0 Is 0
0 0 0 0

 , f =


0 0 0 0
0 Im 0 0
0 0 0 0
0 0 0 Im

 .

Consider the Peirce decomposition associated to the idempotents e and f , and note that u, v ∈ A1̄ ∩ (Qn(F)+)1/2(e) ∩

(Qn(F)+)1/2(f ). Hence

u =


0 0 0 a
0 0 b 0
0 a 0 0
b 0 0 0

 and v =


0 0 0 c
0 0 d 0
0 c 0 0
d 0 0 0

 ,

for some a, c ∈ Ms×m(F), b, d ∈ Mm×s(F). But this contradicts the assumption that B′ is equal to A, because, for instance,
0 0 x 0
0 0 0 0
x 0 0 0
0 0 0 0

 6∈ B′, for 0 6= x ∈ Ms×s(F).

This finishes the proof. �

Now, if Qn(F) is replaced by Mp,q(F), some knowledge of the universal enveloping algebra of Dt is needed.
I. P. Shestakov determined U(Dt) (see [17]), which is intimately related to the orthosymplectic Lie superalgebra osp(1, 2),

that is, the superalgebra whose elements are the skewsymmetric matrices of M1,2(F) relative to the orthosymplectic
superinvolution, with Lie bracket [a, b] = ab − (−1)āb̄ba:

osp(1, 2) =


 0 β α

−α γ µ
β ν −γ

 : α,β,µ, γ, ν ∈ F

 .

The following elements in osp(1, 2), which form a basis, will be considered throughout:

h =

0 0 0
0 1 0
0 0 −1

 , e =

0 0 0
0 0 1
0 0 0

 , f =

0 0 0
0 0 0
0 1 0

 ,

x =

0 0 −1
1 0 0
0 0 0

 , y =

0 1 0
0 0 0
1 0 0

 .
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These verify [h, e] = 2e, [h, f ] = −2f , [h, x] = x, [h, y] = −y, [e, y] = x, [f , x] = y, [x, x] = −2e, [y, y] = 2f , [x, y] = xy + yx =

h.
Note that ospn,2m denotes the orthosymplectic Jordan superalgebra, while osp(n, 2m) denotes the orthosymplectic Lie

superalgebra.
Then U(Dt) is given by

Theorem 3.2 (I. Shestakov [22]). If t 6= 0,±1, then the universal associative enveloping of Dt is (U(Dt), ι) where U(Dt) =

U(osp(1, 2))/ ideal〈(xy − yx)2 + (xy − yx) +
t

(1+t)2
〉 and

ι : Dt −→ U(Dt)

e 7−→ ι(e) =
1

t − 1
(t1 + (1 + t)(xy − yx)),

f 7−→ ι(f ) =
1

1 − t
(1 + (1 + t)(xy − yx)),

u 7−→ ι(u) = 2x̄,
v 7−→ ι(v) = −(1 + t)ȳ,

where z̄ denotes the class of z ∈ osp(1, 2) modulo the ideal generated by (xy − yx)2 + (xy − yx) +
t

(1+t)2
.

Here U(osp(1, 2)) denotes the universal enveloping algebra of the Lie superalgebra osp(1, 2) (see [12, section 1.1.3]).
Note that the element a = xy − yx ∈ U(Dt) satisfies a2 + a+

t
(1+t)2

= 0, hence if a′
= −(1+ t)a, a′2

− (1+ t)a′
+ t = 0 and

in this way the original version of Shestakov’s Theorem is recovered.
The even part of osp(1, 2), which is the span of the elements h, e, f above, is isomorphic to the three-dimensional simple

Lie algebra sl(2, F), so given any finite-dimensional irreducible U(osp(1, 2))-module V , by restriction V is also a module
for sl(2, F). The well-known representation theory of sl(2, F) shows that h acts diagonally on V (see [11, 7.2 Corollary]),
its eigenvalues constitute a sequence of integers, symmetric relative to 0, and hence V is the direct sum of the subspaces
Vm = {v ∈ V : h · v = mv} with m ∈ Z.

By finite dimensionality, there exists a largest nonnegative integer m with Vm 6= 0. Pick a nonzero element v ∈ Vm (a
highest weight vector). Changing the parity in V if necessary, this element v can be assumed to be even.

Since h(ev) = [h, e]v + e(hv) = (m + 2)ev, it follows that ev = 0, and since h(xv) = [h, x]v + x(hv) = (m + 1)xv, it
follows that xv = 0 too. Let g = osp(1, 2), then g = g− ⊕ h ⊕ g+, where g+ = Fe + Fx, h = Fh, and g− = Ff + Fy, and let
W = W0 = Fw be the module over h + g+ given by hw = mw, ew = 0, and xw = 0. The map W −→ V such that λw 7−→ λv
for any λ ∈ F is a homomorphism of (h + g+)-modules, which can be extended to a homomorphism of g-modules (that is,
of U(osp(1, 2))-modules) as follows:

ϕ : U(g)⊗U(h+g+) W −→ V

a ⊗ w 7−→ av.

Since V is an irreducible osp(1, 2)-module, ϕ is onto. We denote by U(m) the U(g)-module U(g)⊗U(h+g+) W and identify the
element 1 ⊗ w with w. Then:

hyiw = (m − i)yiw, f yiw = yi+2w,

xy2iw = −iy2i−1w, xy2i+1w = (m − i)y2iw,

ey2iw = i(m − i + 1)y2i−2w, ey2i+1w = i(m − i)y2i−1w,

and hence it follows that the set {w, yw, y2w, . . .} spans the vector spaceU(m).We remark that Im = span〈y2m+1w, y2m+2w, . . .〉
is a proper submodule of U(m), and because V is irreducible and the weights of the elements y2m+iw are all different from
m, it follows that ϕ(Im) 6= V , so by irreducibility ϕ(Im) = 0. Thus the set {v, yv, y2v, . . . , y2mv} spans the vector space V .
Again, the theory of modules for sl(2, F) shows that v, y2v, . . . , y2mv are all nonzero (see [11, 7.2]), and hence so are the
elements yv, y3v, . . . , y2m−1v. Note that the elements v, yv, y2v, . . . , y2mv are linearly independent, as they belong to different
eigenspaces relative to the action of h. We conclude that {v, yv, y2v, . . . , y2mv} is a basis of V .

Denote V by V(m) and write ei = yiv. Then,

V(m)0̄ = 〈e0, e2, . . . , e2m〉,

V(m)1̄ = 〈e1, e3, . . . , e2m−1〉.

Observe that

(xy − yx)e2i = (m − i)e2i + ie2i = me2i,

(xy − yx)e2i+1 = xe2i+2 − (m − i)e2i+1 = −(m + 1)e2i+1,

and so the minimal polynomial of the action of xy− yx is (X−m)(X+ (m+1)) = X2
+X−m(m+1), and therefore the finite-

dimensional irreducible U(osp(1, 2))-modules coincide with the irreducible modules for U(osp(1, 2))/ ideal〈(xy − yx)2 +

(xy − yx) − m(m + 1)〉.
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Therefore, if V is a finite-dimensional irreducible U(Dt)-module (t 6= 0,±1), then by Shestakov’s Theorem (Theorem 3.2),
V is an irreducible module for osp(1, 2) in which the minimal polynomial of the action of xy − yx divides X2

+ X +
t

(1+t)2
.

From our above discussion, there must exist a natural number m such that t
(1+t)2

= −m(m + 1), that is, either t = −
m

m+1 or
t = −

m+1
m

. Thus,

Corollary 3.3 (C. Martínez, E. Zelmanov [17, Theorem 5.3]). The universal enveloping algebra U(Dt) (t 6= 0,±1) has a finite-
dimensional irreducible module if and only if there exists a natural number m such that either t = −

m
m+1 or t = −

m+1
m

. In this
case, up to parity exchange, its unique irreducible module is V(m) (that is, the irreducible module for U(osp(1, 2)) annihilated by
the ideal generated by (xy − yx)2 + (xy − yx) − m(m + 1)).

Something can be added here:

Proposition 3.4. Up to scalars, the module V(m) has a unique nonzero even bilinear form (· | ·) such that ρx and ρy, the
multiplication operators by x and y, are supersymmetric, that is, (zv|w) = (−1)|v|(v|zw) for any v,w ∈ V0̄ ∪ V1̄ with z = x, y.

Proof. If ρx,ρy are supersymmetric then ρ[x,x] = 2ρ2
x , ρ[y,y] = 2ρ2

y , and ρ[x,y] = ρxρy + ρyρx are skewsymmetric, that
is, ρe, ρf , and ρh are skewsymmetric. But ρh being skewsymmetric implies that (V(α)|V(β)) = 0 if α + β 6= 0, where
V(α) = {v ∈ V(m) : hv = αv}, because (hV(α)|V(β)) = −(V(α)|hV(β)), and therefore (α + β)(V(α)|V(β)) = 0. Hence we can
check that (· | ·) is determined by (e0|e2m), as

(e1|e2m−1) = (ye0|e2m−1) = (e0|ye2m−1) = (e0|e2m).

So, up to scalars, it can be assumed that (e0|e2m) = 1.
Using that ρy is supersymmetric, recursively we get

(e2r|e2(m−r)) = (−1)r,
(e2r+1|e2(m−r)−1) = (−1)r

and (ei|ej) = 0 otherwise. Now it can be checked that ρx is supersymmetric too. �

Note that (· | ·) is supersymmetric if m is even and superskewsymmetric if m is odd. In the latter case, one can consider
V(m)op with the supersymmetric bilinear superform given by (u|v)′

= (−1)|u|(u|v) where |u| denotes the parity in V(m).
Consider again the finite-dimensional irreducible U(Dt)-module (t = −

m
m+1 or t = −

m+1
m

) V = V(m), with the bilinear
superform in the proposition above. It is known that this determines a superinvolution in A = EndF(V) such that every
homogeneous element f ∈ EndF(V) is mapped to f ∗ verifying (f v,w) = (−1)f̄ v̄(v, f ∗w). Note that, since ρx and ρy are
supersymmetric, Dt is thus embedded in H(EndF(V), ∗) as follows:

Dt −→ H(EndF(V), ∗)

e 7−→
1

t − 1
(tρId + (1 + t)(ρxρy − ρyρx))

f 7−→
1

1 − t
(ρId + (1 + t)(ρxρy − ρyρx))

u 7−→ 2ρx

v 7−→ −(1 + t)ρy.

Moreover, unless t 6= −2,−1/2 (that is, unless m = 1), by dimension count, one has Dt $ H(EndF(V), ∗).
The conclusion of all these arguments is the following:

Proposition 3.5. Let V be a nontrivial finite-dimensional vector superspace and let B be a unital subalgebra of the simple Jordan
superalgebra EndF(V)+, isomorphic to Dt (t 6= 0,±1), and such that B′

= EndF(V). Then one of the following situations holds:

(i) either t = −
m

m+1 or t = −
m+1
m

for an even number m, such that V ∼= V(m), and through this isomorphism B ⊆ H(EndF(V), ∗)
where ∗ is the superinvolution associated to the bilinear superform of Proposition 3.4,

(ii) or t = −
m

m+1 or t = −
m+1
m

for an odd number m such that V ∼= V(m)op and through this isomorphism Dt ⊆ H(EndF(V),�),
where � is the superinvolution associated to the bilinear superform (. | .)′.

Proof. Thehypotheses imply that there is a surjective homomorphismof associative algebraU(Dt) → EndF(V), so V becomes
an irreducible module for U(Dt) and the arguments above apply. �

Since the superalgebra EndF(V), for a superspace V , is isomorphic to Mp,q(F), for p = dim V0̄, q = dim V1̄, the next result
follows:

Corollary 3.6. The simple Jordan superalgebra Mp,q(F)+ contains a unital subalgebra B, isomorphic to Dt (t 6= 0,±1), and such
that B′

= Mp,q(F), if and only if q = p ± 1 and either t = −
p
q
, or t = −

q
p
.
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Proposition 3.1 and Corollary 3.6 give all the possibilities for embeddings of the Jordan superalgebra Dt (t 6= 0,±1) as
unital subalgebras in A+, in such a way that the associative subalgebra generated by Dt is the whole A, A being a simple
associative superalgebra. For these cases, one always has Dt ⊆ H(A, ∗), for a suitable superinvolution. By dimension count,
equality is only possible here if t = −2 (or t = −

1
2 ). This corresponds to the isomorphism D−2 ∼= osp1,2.

For later use, let us recall the following results on universal enveloping algebras of some other Jordan superalgebras (see
[17, Theorems 1.1, 2.1 and 4.1]):

Theorem 3.7 (C. Martínez and E. Zelmanov).

(i) The universal enveloping algebra of p(2) is isomorphic to M2,2(F[t]), where F[t] is the polynomial algebra in the variable t.
(ii) The universal enveloping algebra of M1,1(F) is (U(D), u) with

U(D) =

(
F[z1, z2] + F[z1, z2]a 0

0 F[z1, z2] + F[z1, z2]a

)
⊕

(
0 F[z1, z2] + F[z1, z2]a

−1z2
F[z1, z2]z1 + F[z1, z2]a 0

)

where z1, z2 are variables, a is a root of X2
+ X − z1z2 ∈ F[z1, z2], and u : M1,1(F) → U(D)+ is given by(

α11 α12
α21 α22

)
7→

(
α11 α12 + α21a

−1z2
α12z1 + α21a α22

)
.

Theorem 3.8 (C. Martínez and E. Zelmanov).

(i) U(M+

m,n)(F)
∼= Mm,n(F) ⊕ Mm,n(F) for (m, n) 6= (1, 1);

(ii) U(Q+

n (F)) = Qn(F) ⊕ Qn(F), n ≥ 2;

(iii) U(ospm,n(F)) ∼= Mm,n(F), (m, n) 6= (1, 2);
(iv) U(p(n)) ∼= Mn,n(F), n ≥ 3.

4. Maximal subalgebras of A+

Let B be a maximal subalgebra of A+, A being a simple associative superalgebra (so A is isomorphic to either Mp,q(F) or
Qn(F), for some p and q, or n). If B′

6= A then B′
⊆ C with C a maximal subalgebra of the associative superalgebra A, and then

C+
= B by maximality. Therefore a maximal subalgebra of A+ is of one of the following types, either:

(i) B′
= A and B is semisimple, or

(ii) B = C+ with C a maximal subalgebra of A as associative superalgebra, or
(iii) B′

= A and B is not semisimple.

4.1. B′
= A and B semisimple

Let us assume first that B is a maximal subalgebra of the simple superalgebra A+, with B′
= A and B semisimple.

For themoment being, let us drop themaximality condition, so let us suppose that B is just a semisimple subalgebra of A+

with B′
= A. By Theorem 1.1, B =

∑r
i=1(Ji1 ⊕· · ·⊕ Jiri + Fei)⊕M1 ⊕· · ·⊕Mt whereM1, . . . ,Mt are simple Jordan superalgebras

and Jij are Kaplansky superalgebras.
We claim that B has neither direct summands Mi isomorphic to the Kaplansky superalgebra K3 nor direct summands of

the type (Ji1 ⊕ · · · ⊕ Jiri + Fei). Indeed, otherwise A+ would contain a subalgebra isomorphic to K3. Let e be its nonzero even
idempotent and x, y odd elementswith x·y = e. Then, in the associative superalgebra A (which is isomorphic to eitherMp,q(F)
or Qn(F), and hence there is a trace form), one has trace(e) = trace(x · y) =

1
2 trace(xy − yx) = 0. However, any nonzero

idempotent in a matrix algebra over a field of characteristic 0 has nontrivial trace, a contradiction.
Therefore, B = M1 ⊕ · · · ⊕ Mt , where the Mi’s are unital simple Jordan superalgebras.
Consider now the identity element fi of eachMi. Then B = f1Bf1⊕· · ·⊕ ftBft . If t > 1, it follows that B′

⊂ f1Af1⊕(1− f1)A(1−

f1) $ A, a contradiction. Hence B is simple and, therefore, is isomorphic to one of the following special superalgebras: Dt ,
H(D, ∗) (for a simple associative superalgebra Dwith superinvolution ∗), the superalgebra of a superform, or D+ for a simple
associative superalgebra D. (Recall that K10 and the Kantor superalgebra are exceptional superalgebras.)

If B were the superalgebra of a superform over a vector superspace V , let x, y ∈ V1̄ such that x · y = 1A. Then
x · y =

1
2 (xy − yx) = 1A, and again trace(x · y) = 0 6= trace(1A), a contradiction that shows that V1̄ = 0. But then B ⊆ A0̄ and

B′
⊆ A0̄ 6= A, contrary to our hypotheses.
Now, in case B is isomorphic to Dt (t 6= 0), Proposition 3.1 shows that A is not isomorphic to Qn(F) and Corollary 3.6 and

Proposition 3.5 show that either t = 1, and hence there are odd elements x, y such that x · y =
1
2 (xy − yx) = 1A, so the same

argument as in the previous paragraph applies, or B is never a maximal subalgebra of A ∼= Mp,q(F) unless t = −2 (or −
1
2 ). In

this case B is isomorphic to H(D, ∗) for a suitable (D, ∗).
Therefore:
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Lemma 4.1. Let B be a subalgebra of the Jordan superalgebra A+, where A is a finite-dimensional simple associative superalgebra
over an algebraically closed field F of characteristic 0. If B′

= A and B is semisimple, then either B is isomorphic to Dt (t 6=

0, 1,−1,−2,−
1
2 ), or B = D+ or B = H(D, ∗), for a simple associative superalgebra D and a superinvolution ∗. Moreover, if B is a

maximal subalgebra of A+, then the first possibility does not hold.

Our next goal consists in proving that, in case B = D+ or B = H(D, ∗), one has that D is isomorphic to A. For this, the
following result (see [8]) will be used:

Theorem 4.2 (C. Gómez-Ambrosi). Let S be a unital associative superalgebra with superinvolution ∗. Assume that the following
conditions hold:

(i) S has at least three symmetric orthogonal idempotents.
(ii) If S =

∑n
i=1 Sij is the Peirce decomposition related to them, then SijSji = Sii holds for i, j = 1, . . . , n,

and let φ : H(S, ∗) → (A, ·)+ be a homomorphism of Jordan superalgebras, for an associative superalgebra (A, ·). Then φ can be
extended uniquely to an associative homomorphism ϕ : S → A.

We shall proceed in several steps, where the assumptions are that B is just a semisimple subalgebra of A+ with B′
= A:

(a)Assume first that B = H(D, ∗) for a simple associative superalgebrawith involution (D, ∗). Let us denote themultiplication
inD by �. The inclusionmap ι : B = H(D, ∗) → (A, ·)+ is a Jordan homomorphism. Then (Section 1),D is isomorphic toMp,q(F),
for suitable p, q, and ∗ corresponds to either the transpose involution or an orthosymplectic involution. If neither D is a
quaternion superalgebra (isomorphic toM1,1(F)), nor H(D, ∗) is isomorphic to p(2) or osp1,2, then D satisfies the hypotheses
of Theorem 4.2 and, therefore, ι : B → A can be extended to an associative homomorphism τ : D → A. But the subalgebra B′

generated by B in A is the whole A. Hence τ is onto and, as D is simple, it is one-to-one too. Therefore D is isomorphic to A.
Thus, we are left with three cases:
(a.1) If H(D, ∗) is isomorphic to osp1,2 then, since osp1,2 is isomorphic to D−2, H(D, ∗) is isomorphic to D−2.
(a.2) If D, with multiplication �, is isomorphic to M1,1(F)+, with superinvolution ∗ as in (6)(i) in Section 1, then H(D, ∗) is
isomorphic to F1 + Fu, with u2 = 0. Thus, the universal enveloping algebra of H(D, ∗) is F[u], the ring of polynomials over F
on the variable u, and there exists an associative homomorphism ϕ : F[u] → A, which extends ι : B → A. Again, ϕ is onto
since B′

= A. Therefore A should be commutative, a contradiction.
(a.3) Finally, if H(D, ∗) is isomorphic to p(2), Theorem 3.7 shows that its universal enveloping algebra is isomorphic to
M2,2(F[t]), where F[t] is the polynomial algebra on the indeterminate t. As before, this gives a surjective homomorphism φ :

M2,2(F[t]) → A. Recall that A is isomorphic either toMp,q(F) or toQn(F) = Mn(F)⊕Mn(F)u (u2 = 1). Let e1, e2, e3, e4 be primitive
orthogonal idempotents ofM2,2(F), with e1+e2 and e3+e4 being the unital elements in the two simple direct summands of the
even part. Since the restriction of φ toM2,2(F) is injective becauseM2,2(F) is simple, the images φ(e1),φ(e2),φ(e3),φ(e4) are
nonzero orthogonal idempotents in A0̄ with

∑4
i=1 φ(ei) = 1A. Write U = M2,2(F[t]) and consider the Peirce decomposition of

U relative to e1, e2, e3, e4,: U =
∑

Uij, and the Peirce decomposition of A relative to φ(e1),φ(e2),φ(e3),φ(e4): A =
∑

Aij. Since
Uii is isomorphic to F[t], it follows that Aii is commutative (as a quotient of F[t]) for any i = 1, 2, 3, 4. Therefore either p+q = 4
or n = 4, that is A ∼= Q4(F). Consider now the restriction φ|M2,2(F[t])0̄

: M2,2(F[t])0̄ → A. If A ∼= Mp,q(F), with p + q = 4 one has
that φ(M2,2(F[t])0̄) = φ(M2(F[t])) ⊕ φ(M2(F[t])) = A0̄

∼= Mp(F) ⊕ Mq(F), and therefore p = 2 and q = 2, and D ∼= M2,2(F) = A.
If A ∼= Q4(F), then (M2(F[t]) × 0) is an ideal of M2,2(F[t])0̄, and so φ(M2(F[t]) × 0) is an ideal of A0̄

∼= M4(F). Since M4(F) is
simple and φ(e1),φ(e2) are nonzero idempotents, it follows that φ(M2(F[t]) × 0) = A0̄, and so φ(e1) + φ(e2) = 1A, that is a
contradiction because φ(e1) + φ(e2) + φ(e3) + φ(e4) = 1, with φ(e3),φ(e4) nonzero orthogonal idempotents.
(b) Assume now that B = D+ for a simple associative superalgebra D. Consider the opposite superalgebra Dop defined on
the same vector space as D, but with the multiplication given by a � b = (−1)āb̄b · a, and the direct sum D ⊕ Dop, which is
endowed with the superinvolution −: D ⊕ Dop

→ D ⊕ Dop, such that (x, a) = (a, x). Note that if e1, e2, . . . , en are orthogonal
idempotents in D, then (e1, e1), (e2, e2), . . . , (en, en) are also orthogonal idempotents in D ⊕ Dop, and the Peirce spaces are
given by (D ⊕ Dop)ij = Dij ⊕ (Dop)ji. So if D satisfies conditions (i) and (ii) in Theorem 4.2, then so does D ⊕ Dop. Since D+ is
isomorphic to H(D ⊕ Dop,−), there is a homomorphism of Jordan superalgebras φ : H(D ⊕ Dop,−) → A+.
(b.1) Suppose that D is not isomorphic to M1,1(F), nor to Q2(F), then from Theorem 4.2, φ can be extended to an associative
homomorphism ϕ : D⊕ Dop

→ A. As before, ϕ is onto because B′
= A, so D⊕ Dop/Kerϕ is isomorphic to A and either Kerϕ ∼= D

or Kerϕ ∼= Dop, because A is simple. Hence either D ∼= A or Dop ∼= A, that is, dimD = dim A, a contradiction.
(b.2) IfD is isomorphic toM1,1(F) (that is,D is a quaternion superalgebra), consider the universal enveloping algebra (U(D), u)
of D+ (see Theorem 3.7). The Jordan homomorphism ι : D → A+ extends to an associative homomorphism ϕ : U(D) → A
such that ϕ ◦ u = ι. But B′

= A, and hence it follows that ϕ is onto and, therefore, U(D)/Kerϕ ∼= A. Recall that F, the ground
field, is assumed to be algebraically closed, so either A ∼= Qn(F) or A ∼= Mp,q(F). But (U(D)/Kerϕ)0̄ is commutative, so A0̄ is
commutative and therefore either A ∼= Q1(F) or A ∼= M1,1(F), a contradiction to D being isomorphic to M1,1(F).
(b.3) Otherwise D is isomorphic to Q2(F), and hence the universal enveloping algebra (U(D), u) of D+ is isomorphic to D ⊕ D
(see Theorem 3.8). Hence there is a surjective homomorphism ϕ : U(D) → A which extends ι. As before, ϕ is onto and so
U(D)/Kerϕ ∼= A. But A is simple, so Kerϕ ∼= D and A ∼= D, a contradiction.

Therefore, Lemma 4.1 can be improved to:
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Lemma 4.3. Let A be a finite-dimensional simple associative superalgebra over F, and let B be a semisimple subalgebra of A+ with
B′

= A, then either B is isomorphic to Dt (t 6= 0,±1,−2,−
1
2 ), or B equals H(A, ∗), for a superinvolution ∗. Moreover, if B is a

maximal subalgebra of A+, then B = H(A, ∗) for a superinvolution ∗ of A.

Thus, if B is a maximal subalgebra of A, which is semisimple and satisfies B′
= A, Lemma 4.3 shows that B coincides with

the subalgebra of hermitian elements of A relative to a suitable superinvolution. The converse also holds:

Theorem 4.4. Let A be a finite-dimensional simple associative superalgebra over an algebraically closed field of characteristic
zero, and let B be a semisimple subalgebra of A+ such that B′

= A. Then B is a maximal subalgebra of A+ if and only if there is a
superinvolution ∗ in A such that B = H(A, ∗).

Proof. The only thing left is to show that if A is a finite-dimensional simple associative superalgebra endowed with a
superinvolution ∗, then H(A, ∗) is a maximal subalgebra of A+.

Our hypotheses on the ground field imply that, up to isomorphism, we are left with the next two possibilities:

(i) A = Mn,n(F), and
(
a b
c d

)∗

=

(
dt −bt

ct at

)
.

(ii) A = Mn,2m(F), and
(
a b
c d

)∗

=

(
at ctq

−qtbt qtdtq

)
, where q =

(
0 Im

−Im 0

)
.

Note that A = H ⊕ K, where H = H(A, ∗) and K is the set of skewsymmetric elements of (A, ∗).
(i) In the first case

H =

{(
a b
c at

)
: c symmetric, b skewsymmetric

}
,

K =

{(
a b
c −at

)
: b symmetric, c skewsymmetric

}
,

and to check thatH(A, ∗) is amaximal subalgebra of A+ it suffices to prove that Jalg〈H, x〉 = A+ for any nonzero homogeneous
element x ∈ K, where Jalg〈S〉 denotes the subalgebra generated by S.

If 0 6= x ∈ K0̄ then

x =

(
a 0
0 −at

)
with a ∈ Mn(F) and so(

a 0
0 −at

)
+

(
a 0
0 at

)
=

(
2a 0
0 0

)
∈ Jalg〈H, x〉.

We claim that if
(
a 0
0 0

)
∈ Jalg〈H, x〉, then

(
u 0
0 0

)
∈ Jalg〈H, x〉, for any u ∈ Mn(F). Similarly, if

(
0 0
0 a

)
∈ Jalg〈H, x〉, then(

0 0
0 u

)
∈ Jalg〈H, x〉, for any u ∈ Mn(F). Actually, since Mn(F)+ is simple and the ideal generated by a in Mn(F)+ is the vector

subspace spanned by {〈Lb1 . . . Lbm(a) : m ∈ N, b1, . . . , bm ∈ Mn(F)〉} (Lb denotes the left multiplication by b in Mn(F)+), it is
enough to realize that(

Lb1 . . . Lbm(a) 0
0 0

)
= L(b1 0

0 bt1

) . . . L(bm 0
0 btm

) (a 0
0 0

)
∈ Jalg〈H, x〉.

So, if 0 6= x ∈ K0̄, then A0̄ ⊆ Jalg〈H, x〉. In order to prove that A1̄ ⊆ Jalg〈H, x〉, note that(
0 0
In 0

)
∈ H,

and since(
0 0
In 0

)
◦

(
d 0
0 0

)
=

1
2

(
0 0
d 0

)
it follows that(

0 0
u 0

)
∈ Jalg〈H, x〉 for any u ∈ Mn(F).

It remains to prove that(
0 u
0 0

)
∈ Jalg〈H, x〉 for any u ∈ Mn(F),
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and the above implies that(
0 b
0 0

)
∈ Jalg〈H, x〉

for any nonzero skewsymmetric matrix b. But((
0 b
0 0

)
◦

(
0 0
0 Mn(F)

))
◦

(
Mn(F) 0

0 0

)
=

(
0 Mn(F)bMn(F)
0 0

)
⊆ Jalg〈H, x〉

and Mn(F)bMn(F) is a nonzero ideal of the simple algebra Mn(F), so it is the whole Mn(F) and(
0 Mn(F)
0 0

)
⊆ Jalg〈H, x〉.

Therefore, Jalg〈H, x〉 = A+ for any nonzero element x ∈ K0̄.
Now, if 0 6= x ∈ K1̄, then

x =

(
0 b
c 0

)
with b a symmetric and c a skewsymmetric n × n-matrix respectively. Let y ∈ H1̄,

y =

(
0 b̄
c̄ 0

)

with b̄ skewsymmetric and c̄ symmetric, such that x ◦ y 6= 0. Since 0 6= x ◦ y ∈ K0̄ we are back to the ‘even’ case, and so
Jalg〈H, x〉 = A+.
(ii) In the second case (orthosymplectic superinvolution), A = Mn,2m(F) and

H(A, ∗) =

{(
a b

−qtbt d

)
: a symmetric, d =

(
d11 d12
d21 dt

11

)
, d12, d21 skewsymmetric

}
,

K(A, ∗) =

{(
a b

qtbt d

)
: a skewsymmetric, d =

(
d11 d12
d21 −dt

11

)
, d12, d21 symmetric

}
.

We claim that Jalg〈H, x〉 = A+ for any nonzero homogeneous element x ∈ K. If 0 6= x ∈ K1̄, then

x =

(
0 b

qtbt 0

)
and so

x +

(
0 b

−qtbt 0

)
=

(
0 2b
0 0

)
∈ Jalg〈H, x〉

with b ∈ Mn×2m(F). Suppose that
(
0 b
0 0

)
=
∑n,n+2m

i=1,j=n+1 λijeij with λ = λpq 6= 0, where, as usual, eij denotes the matrix whose
(i, j)-entry is 1 and all the other entries are 0, then(

epp ◦

(
0 b
0 0

))
◦ (eqq + eq±m,q±m) =

1
4
(λepq + λp,q±mep,q±m) ∈ Jalg〈H, x〉,

where q ± m means q + m if q ∈ {n + 1, . . . , n + m} and q − m if q ∈ {n + m + 1, . . . , n + 2m}.
Assume that n > 1 and consider the element (eqk − qtekq) ∈ H(A, ∗) with k ∈ {1, . . . , n} and k 6= p, then it follows that

2(eqk −qtekq)◦ epq = epk ∈ Jalg〈H, x〉 with p, k ∈ {1, . . . , n} and k 6= p. Therefore we have found an element
(
a 0
0 0

)
∈ Jalg〈H, x〉

with a ∈ Mn(F) and a 6∈ H(Mn(F), t) (t denotes the usual transpose involution). Since H(Mn(F), t) is maximal subalgebra of
Mn(F)+ (see [19, Theorem 6]) we obtain that

Jalg〈H(Mn(F), t), a〉 = Mn(F)
+

and so(
Mn(F) 0

0 0

)
⊆ Jalg〈H, x〉.

Besides, for any skewsymmetric matrix a ∈ Mn(F) and for every b ∈ Mn×2m(F) one has[(
a 0
0 0

)
◦

(
0 b

−qtbt 0

)]
+

1
2

(
0 ab

−qt(ab)t 0

)
=

(
0 ab
0 0

)
∈ Jalg〈H, x〉,
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and thus
(
0 Mn×2m(F)
0 0

)
⊆ Jalg〈H, x〉, because it is easy to check that

K(Mn(F), t)Mn×2m(F) = Mn×2m(F).

But also(
a 0
0 0

)
◦

(
0 −btqt

b 0

)
+

1
2

(
0 −(ba)tqt

ba 0

)
∈ Jalg〈H, x〉

and hence(
0 0

M2m×n(F) 0

)
⊆ Jalg〈H, x〉 and

(
0 0
0 M2m(F)

)
⊆ Jalg〈H, x〉.

Finally, if n = 1 then λe1j+µe1,j±m ∈ Jalg〈H, x〉, with j+m for j ∈ {n+1, . . . , n+m}, and j−m for j ∈ {n+m+1, . . . , n+2m}.
Now it is clear that(

Mn(F) 0
0 0

)
=

(
F 0
0 0

)
⊆ H(A, ∗) ⊆ Jalg〈H, x〉.

Taking ej1 − e1,j±m ∈ H one has

2(λe1j + µe1,j±m) ◦ (ej1 − e1,j±m) = λe11 + λejj ∈ Jalg〈H, x〉.

Therefore, ejj ∈ Jalg〈H, x〉.

Write ejj =

(
0 0
0 a

)
for a suitable a ∈ M2m(F). Then a 6∈ H(M2m(F), ∗) with ∗ the involution determined by the skewsym-

metric bilinear form with matrix
(
0 I
−I 0

)
, and from the ungraded case (see [19, Theorem 6]) we deduce that

Jalg〈H(M2m(F), ∗), a〉 = M2m(F)+

and therefore
(
0 0
0 M2m(F)

)
⊆ Jalg〈H, x〉. Now it is easy to check that since(

0 b
−qtbt 0

)
◦

(
0 0
0 M2m(F)

)
⊆ Jalg〈H, x〉

then
(

0 M1,2m(F)

M1,2m(F) 0

)
⊆ Jalg〈H, x〉 also in this case.

If x is now a nonzero homogeneous even element then

x =

(
a 0
0 b

)
for a skewsymmetric matrix a and a matrix b = −qtbtq. Consider

y = x ◦

(
0 0
0 I

)
=

(
0 0
0 b

)
∈ Jalg〈H, x〉,

and

z =

(
0 c

−qtct 0

)
such that cb 6= 0. Then

y ◦ z =
1
2

(
0 cb

−bqtct 0

)
∈ Jalg〈H, x〉 ∩ K1̄

and the ‘odd’ case applies. �

4.2. B = C+, C ≤max A

Let us assume now that B = C+ for a maximal subalgebra C of the simple associative superalgebra A. It has to be proved
that C+ is a maximal subalgebra of A+.

Two different cases appear according to the classification of simple associative superalgebras (see [24]):

(1) A is simple as an (ungraded) algebra, that is, A is isomorphic toMp,q(F), for some p, q. In this case, [5, Theorem 2.2] shows
that either C = eAe + eAf + f Af with e, f even orthogonal idempotents in A such that e + f = 1, or C = CA(u) (centralizer
of u), with u ∈ A1̄ and u2 = 1.
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(2) A is not simple as an algebra, and hence it is isomorphic to Qn(F) for some n. Then A = A0̄ + A0̄u with u ∈ Z(A)1̄, u2 = 1
and A0̄ is a simple algebra. In this case, [5, Theorem 2.5] shows that either C = C0̄ + C0̄uwith C0̄ a maximal subalgebra of
A0̄, or C = A0̄, or A0̄ = D0̄ + D1̄ is a Z2-graded algebra and C = D0̄ + D1̄u.

(1.a) Assume that A is simple as an algebra, and that there are even orthogonal idempotents e, f such that C = eAe+eAf + f Af .
Take an element aα ∈ Aα \ Cα, so one has that faαe 6= 0. Now the element (e ◦ aα) ◦ f =

1
4 (eaαf + faαe) lies in Jalg〈C+, aα〉.

Since (f Af ◦ faαe) ◦ eAe = f AfaαeAe, and AfaαeA = A, because A is simple, it follows that f Ae ⊆ Jalg〈C+, aα〉, and therefore C+ is
a maximal subalgebra of A+. So we have that in this case this condition is also sufficient to be a maximal subalgebra of A+.
(1.b) If A is simple as an algebra, but C = CA(u), for an element u ∈ A1̄ with u2 = 1, let V be the irreducible A-module (unique,
up to isomorphism), so that A can be identified with EndF(V). Then u lies in End(V)1̄, and if {v1, . . . , vs} is a basis of the F-
vector space V1̄, it follows that {u(v1), . . . , u(vs)} is an F-basis of V0̄, and so p = q and, since u2 = 1, the coordinate matrix of
u in this basis is

u =

(
0 Is
Is 0

)
.

Therefore CA(u) = Qp(F), and then one can check easily that Qp(F) is maximal in Mp,p(F).
(2.a) Assume now that A is not simple as an algebra, so A = A0̄ + A0̄u, with u ∈ Z(A)1̄, u2 = 1 and A0̄ a simple algebra,
and that C = C0̄ + C0̄u, with C0̄ a maximal subalgebra of A0̄. As for the ungraded case (see [19, page 192]) it follows that
Jalg〈C+

0̄ , a0̄〉 = A+

0̄ for any a0̄ ∈ A0̄ \ C0̄. Thus A0̄ ⊆ Jalg〈C+, a0̄〉. Moreover since 1 ∈ C0̄, then u ∈ C and it follows that
b0̄ ◦ u =

1
2 (b0̄u + ub0̄) = b0̄u ∈ Jalg〈C+, a0̄〉 for any b0̄ ∈ A0̄. Thus A0̄u ⊆ Jalg〈C+, a0̄〉 and Jalg〈C+, a0̄〉 = A+. Now take an

element a1̄ ∈ A1̄ \ C1̄. Then a1̄ = a0̄u with a0̄ ∈ A0̄ \ C0̄. Since u lies in C, it follows that a1̄ ◦ u = a0̄ ∈ Jalg〈C+, a1̄〉, with
a0̄ ∈ A0̄ \ C0̄ and the ‘even’ case applies.
(2.b) If A is not simple as an algebra and C = A0̄, let b be any odd element: b ∈ A1̄ = A0̄u. Thus b = b0̄u, for some b0̄ ∈ A0̄. Then
a0̄ ◦ b = (a0̄ ◦ b0̄)u, so Jideal〈b0〉u ⊆ Jalg〈A+

0̄ , b〉 (where Jideal〈b0̄〉 denotes the ideal generated by b0̄ in the Jordan algebra A+

0̄ ).
By simplicity of A+

0̄ , A0̄u ⊆ Jalg〈A+

0̄ , b〉, that is, C+ is a maximal subalgebra of A+.
(2.c) Finally, assume that A is not simple as an algebra, and A0̄ (which is isomorphic to Mp(F) for some p) is Z2-graded:
A0̄ = D0̄ ⊕ D1̄, and C = D0̄ ⊕ D1̄u, where u ∈ Z(A)1̄, u2 = 1. Here, as an associative superalgebra (Z2-graded algebra),
A0̄ is isomorphic to Mr,s(F) for some r, s. Identify A0̄ to Mr,s(F), so that D0̄ =

{(
a 0
0 b

)
: a ∈ Mr(F), b ∈ Ms(F)

}
, and D1̄ ={(

0 u
v 0

)
: u ∈ Mr×s(F), v ∈ Ms×r(F)

}
. Let us show that C+ is a maximal subalgebra of A+. Since A+

= C+
⊕ (D1̄ ⊕ D0̄u), it is

enough to check that for any nonzero element x ∈ D0̄u ∪ D1̄, the subalgebra of A+ generated by C+ and x: Jalg〈C+, x〉, is the
whole A+.

Take 0 6= x ∈ D0̄u. Then

x =

(
x0 0
0 x1

)
u

with x0 ∈ Mr(F), and x1 ∈ Ms(F) not being both zero. Without loss of generality, assume that x0 6= 0, and take elements(
b 0
0 0

)
∈ C

with 0 6= b ∈ Mr(F). Then(
b 0
0 0

)
◦ x =

(
b 0
0 0

)
◦

(
x0 0
0 x1

)
u =

(
b ◦ x0 0
0 0

)
u ∈ Jalg〈C+, x〉

for any b ∈ Mr(F). Therefore(
Jideal〈x0〉 0

0 0

)
u ⊆ Jalg〈C+, x〉

and because of the simplicity of Mn(F)+,(
Mr(F) 0
0 0

)
u ⊆ Jalg〈C+, x〉.

Thus(
Mr(F) 0
0 0

)
u ◦

(
0 Mr×s(F)

Ms×r(F) 0

)
u =

(
0 Mr×s(F)

Ms×r(F) 0

)
⊆ Jalg〈C+, x〉,

that is, D1̄ ⊆ Jalg〈C+, x〉, and so D1̄ ◦ D1̄u = D0̄u ⊆ Jalg〈C+, x〉 and Jalg〈C+, x〉 = A.
Take now an element 0 6= x ∈ D1̄. Then an element d1̄u ∈ C+ can be found such that 0 6= x ◦ d1̄u ∈ D0̄u∩ Jalg〈C+, x〉, so the

previous arguments apply.
This concludes the proof of the next result:

Theorem 4.5. Let A be a finite-dimensional simple associative superalgebra over an algebraically closed field of characteristic
zero, and let B be a maximal subalgebra of A+ such that B′

6= A (where B′ denotes the associative subalgebra generated by B in A).
Then B is a maximal subalgebra of A+ if and only if there is a maximal subalgebra C of the superalgebra A such that B = C+.
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4.3. B′
= A and B is not semisimple

This situation does not appear in the ungraded case [19]. However, consider the associative superalgebra A = M1,1(F)
and the subalgebra B of A+ spanned by {e11, e22, e12 + e21}, which, by dimension count, is obviously maximal and satisfies
that B′

= A. The radical of B consists of the scalar multiples of e12 + e21, so it is nonzero.

Question. Is this, up to isomorphism, the only possible example of a maximal subalgebra B of A+, A being a simple finite-
dimensional superalgebra over an algebraically field F of characteristic 0, such that B′

= A and B is not semisimple?

5. Maximal subalgebras of H(A, ∗)

Consider now the Jordan superalgebra J = H(A, ∗), where A is a finite-dimensional simple associative superalgebra over
an algebraically closed field F of characteristic zero, and ∗ is a superinvolution of A.

Up to isomorphism [10, Theorem 3.1], it is known that A = Mp,q(F) and that ∗ is either the orthosymplectic or the
transpose superinvolution, that is, H(A, ∗) is either ospn,2m or p(n).

Let B be a maximal subalgebra of H(A, ∗), then again three possible situations appear:

(i) either B′
= A and B is semisimple,

(ii) or B′
6= A,

(iii) or B′
= A and B is not semisimple.

5.1. B′
= A and B semisimple

Let us assume first that B is a maximal subalgebra of the simple superalgebra H(A, ∗), with B′
= A and B semisimple. From

Lemma 4.3, we know that either B is isomorphic to Dt (t 6= 0,±1,−2,−
1
2 ), or B = H(A,�) with � a superinvolution. In the

first case we remark that we have given only necessary conditions in Proposition 3.5 if B′
= A and 1A ∈ B. In the second case,

one has B = H(A,�) ⊆ H(A, ∗),, but Theorem 4.4 shows that H(A,�) is maximal in A+, thus obtaining a contradiction.
Therefore:

Theorem 5.1. Let J be the Jordan superalgebra H(A, ∗), where A is a finite-dimensional simple associative superalgebra over an
algebraically closed field of characteristic zero, and ∗ a superinvolution in A. If B is a maximal subalgebra of J such that B′

= A and
B is semisimple, then B = Dt (t 6= 0,±1,−2,−

1
2 ) and (A, ∗) is given by Proposition 3.5.

Question. Given a natural numberm, and with t equal either to −
m

m+1 or to −
m+1
m

, is Dt isomorphic to a maximal subalgebra
of the Jordan superalgebra H(EndF(V), ∗) (V and ∗ as in Proposition 3.5)?

For m = 2 or m = 3, this has been checked to be the case.
It should be noted that if the characteristic of the field is not zero, then Theorem 5.1 is not valid, as the next example

shows:

Example 5.2. Let F be an algebraically closed field of characteristic 5, and let V be the superspace: V0̄ = Fv1 + Fv2 + Fv3,
V1̄ = Fw1 + Fw2. Consider the associative superalgebra A = EndF(V) ∼= M3,2(F) and the subalgebra B of A+ generated by the
endomorphisms e, f , x, y such that

e(vi) = vi i = 1, 2, 3, e(wj) = 0 j = 1, 2,
f (vi) = 0 i = 1, 2, 3, f (wj) = wj j = 1, 2,
x(v1) = 0, x(v2) = 4w1, x(v3) = 3w2, x(w1) = 2v1, x(w2) = 4v2,
y(v1) = w1, y(v2) = 4w2, y(v3) = 0, y(w1) = v2, y(w2) = v3.

We notice that B ∼= D1 and also that B′
= A. Then consider the superinvolution ∗ on A determined by the supersymmetric

form, ( , ), such that

(v1, v3) = 1, (v2, v2) = 1, (w1,w2) = 1

and all the other values for basic elements being zero or obtained by supersymmetry. Under the isomorphism A ∼= M3,2(F)
induced by the basis above, the superinvolution ∗ is given by:

a11 a12 a13 b14 b15
a21 a22 a23 b24 b25
a31 a32 a33 b34 b35
c41 c42 c43 d11 d12
c51 c52 c53 d21 d22

 ∗
−−−→


a33 a23 a13 −c53 c43
a32 a22 a12 −c52 c42
a31 a21 a11 −c51 c41
b35 b25 b15 d22 −d12

−b34 −b24 −b14 −d21 d11

 .

Straightforward computations show that B is a maximal subalgebra of H(A, ∗). �
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5.2. B′
6= A

Assume now that the maximal subalgebra B of H(A, ∗) satisfies B′
6= A. The following result settles this case:

Theorem 5.3. Let J be the Jordan superalgebra H(A, ∗), where A is a finite-dimensional simple associative superalgebra over an
algebraically closed field of characteristic zero, and ∗ is a superinvolution in A. Let B be a subalgebra of J such that B′

6= A (where
as always B′ is the subalgebra of A generated by B). Then B is maximal if and only if there are even idempotents e, f ∈ A with
e + f = 1 such that B = H(C, ∗) and one of the following possibilities occurs:

(i) either C = eAe + f Af , e∗
= e, f ∗ = f , H(eAe, ∗)′

= eAe, and H(f Af , ∗)′
= f Af .

(ii) or C = eA + Ae∗
+ f f ∗Af f ∗, with H(f f ∗Af f ∗, ∗)′

= f f ∗Af f ∗.

Note [9] that given a finite-dimensional simple associative superalgebra C over F with a superinvolution ∗, the associative
subalgebra H(C, ∗)′ is the whole C unless (C, ∗) is either a quaternion superalgebra with the transpose superinvolution or a
quaternion algebra with the standard involution.

Proof. If B′
6= A, and since B ⊆ H(A, ∗), it follows that B′ is closed under the superinvolution ∗, and so B′

⊆ Cwith C amaximal
subalgebra of (A, ∗). But using the maximality of B and that B ⊆ H(A, ∗), one concludes that B = H(C, ∗). Recall that H(A, ∗)
is isomorphic either to p(n) or to ospn,2m.

If B = H(C, ∗)with C amaximal subalgebra of (A, ∗), then the results in [5] show that either C = (eAe+eAf +f Af )∩(e∗Ae∗
+

f ∗Ae∗
+ f ∗Af ∗) with e, f even orthogonal idempotents, or C = CA(u) with u ∈ A1̄, 0 6= u2 ∈ F, u∗

∈ Fu. In this last case, since
u∗

∈ Fu it follows that u∗
= αu with α ∈ F. But (u∗)∗

= u and so α2
= 1, that is, α = ±1. Thus u2 = (u2)∗

= −(u∗)2 = −u2, a
contradiction.

Thus, C is of the first type, and then [5, Proposition 4.6] gives two possible cases.
In the first case there is an idempotent e of A such that C = eAe + f Af and e∗

= e, f = 1 − e. If H(C, ∗)′
6= C then either

H(eAe, ∗)′
6= eAe or H(f Af , ∗)′

6= f Af . It may be assumed that H(eAe, ∗)′
6= eAe, and then the results in [9] show that either

eAe is a quaternion superalgebra with the restriction ∗|eAe being the transpose superinvolution or is a quaternion algebra
contained in A0̄, with the standard involution. In both cases e = e1 + e2 with e1, e2 orthogonal idempotents and e∗

1 = e2.
Consider D = e1A+Ae2+ f Af and take 0 6= e1af ∈ e1Af , then e1af + fa∗e2 ∈ H(D, ∗) and e1af + fa∗e2 6∈ H(C, ∗). In the same vein,
take c ∈ A with e2cf 6= 0. Then e2cf + f c∗e1 ∈ H(A, ∗) \ H(D, ∗). Therefore B = H(C, ∗) $ H(D, ∗) $ H(A, ∗) and B = H(C, ∗) is
not maximal. So B′

= H(C, ∗)′
= C if B = H(C, ∗) with C = eAe + f Af and e∗

= e.
In the second case [5, Proposition 4.6], there is an idempotent e in A such that e, e∗, f f ∗ are mutually orthogonal

idempotents with 1 = e + e∗
+ f f ∗, and C = eA + Ae∗

+ f f ∗Af f ∗. Hence H(C, ∗) = H(f f ∗af f ∗) + {ea + a∗e∗
: a ∈ A}.

If H(f f ∗Af f ∗, ∗)′
6= f f ∗Af f ∗, then f f ∗Af f ∗ is a quaternion superalgebra with superinvolution such that f f ∗ = e1 + e2 with

e1, e2 orthogonal idempotents and e∗

1 = e2. Consider the subalgebra D = eA+Ae∗
+ e2A+Ae1. As H(C, ∗) $ H(D, ∗) $ H(A, ∗),

H(C, ∗) is not maximal. Therefore, if B = H(C, ∗) with C = eA + Ae∗
+ f f ∗Af f ∗, and e, e∗, f f ∗ mutually orthogonal idempotents

such that e + e∗
+ f f ∗ = 1, then H(f f ∗Af f ∗, ∗)′

= f f ∗Af f ∗.
The proof of the converse will be split according to the different possibilities:

(i.1): The superinvolution ∗ on A is the transpose superinvolution, and the conditions in item (i) of the Theorem hold:
Then ∗ is determined, after identifying A with EndF(V), by a nondegenerate odd symmetric superform ( , ). That is,,

(V0̄, V0̄) = (V1̄, V1̄) = 0 and (a0, b1) = (b1, a0) for any a0 ∈ V0̄, b1 ∈ V1̄.
In this situation we claim that a basis {x1, . . . , xn, y1 . . . , yn} of V can be chosen such that {x1, . . . , xn} is a basis of V0̄,

{y1, . . . , yn} is a basis of V1̄, and the coordinate matrices of the superform and of e present the following form, respectively,
0 0 I 0
0 0 0 I
I 0 0 0
0 I 0 0

 ,


I 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0

 .

This follows from the fact that the eigenspaces of the idempotent transformation e are orthogonal relative to ( , ), as e∗
= e.

Under these circumstances, we may identify H(A, ∗) to

p(n) =

{(
a b
c at

)
: b skewsymmetric, c symmetric

}
in such a way that the subalgebra H(eAe + f Af , ∗) becomes the subspace of the matrices (in block form)

a1 0 c1 0
0 a2 0 c2
d1 0 at1 0
0 d2 0 at2

 ,

where a1, c1, d1 belong to Mi(F), a2, c2, d2 belong to Mj(F), i + j = n, and c1, c2 are skewsymmetric matrices, while d1, d2 are
symmetric.

It must be proved that for any homogeneous element x, Jalg〈H(C, ∗), x〉 = H(A, ∗) holds.
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Let x ∈ H(A, ∗)0̄ \ H(C, ∗)0̄, that is,

x =
∑
1≤k≤i
1≤r≤j

λkr(ek,i+r + en+i+r,n+k) +
∑
1≤r≤j
1≤k≤i

µrk(ei+r,k + en+k,n+i+r),

where er,s denotes the matrix with 1 in the (r, s)th entry and 0 in all the other entries. Suppose that there exists λpq 6= 0. The
same proof works if µpq 6= 0.

Since H(C, ∗)′
= C and i > 1 (as H(eAe, ∗)′

= eAe), an index s ∈ {1, . . . , i} can be chosen with s 6= p, such that
u = es,p + en+p,n+s ∈ H(C, ∗). Let v = ep,p + en+p,n+p and w = ei+q,i+q + en+i+q,n+i+q (note that v,w ∈ H(C, ∗)). Then

((v ◦ x) ◦ w) ◦ u =
1
8
λpq(es,i+q + en+i+q,n+s) ∈ Jalg〈H(C, ∗), x〉.

Denote this element by α, and then 0 6= α ∈ e1Af1 + f ∗1 Ae
∗

1. Now

((e1ae1 + e∗

1a
∗e∗

1) ◦ α) ◦ (f1bf1 + f ∗1 b
∗f ∗1 ) = e1ae1αf1bf1 + f ∗1 b

∗f ∗1αe∗

1a
∗e∗

1

belongs to Jalg〈H(C, ∗), x〉. Since {ae1αf1b : a, b ∈ A} is an ideal of A, and A is simple, it holds that {ae1αf1b : a, b ∈ A} = A, and
so e1af1 + f ∗1 a

∗e∗

1 ∈ Jalg〈H(C, ∗), x〉 for any a ∈ A.

Consider now an element y ∈ f1Af
∗

1 ∩ H(C, ∗). Since j > 1 (because H(f Af , ∗)′
= f Af ), we can pick up the element

y = el,k − el+1,k−1, with l = i + 1 and k = n + i + 2. Take z = ek−1,p + e1,l ∈ H(e1Af1 + f ∗1 Ae
∗

1, ∗) ⊆ Jalg〈H(C, ∗), x〉 and
v = ep,1 ∈ H(C, ∗)∩ e∗

1Ae1, with p = n+1. Then (y ◦ z) ◦ v =
1
4 (−el+1,1 − ep,k) ∈ (f1Ae1 + e∗

1Af
∗

1 )∩H(A, ∗)0̄. As before we obtain
that f1ae1 + e∗

1a
∗f ∗1 ∈ Jalg〈H(C, ∗), x〉, and H(A, ∗)0̄ ⊆ Jalg〈H(C, ∗), x〉.

Now it will be proved that H(A, ∗)1̄ is contained in Jalg〈H(C, ∗), x〉. Take y = ek,n+i+t − ei+t,n+k ∈ H(A, ∗)1̄ ∩ (e1Af
∗

1 + f1Ae
∗

1),
with k ∈ {1, . . . , i}, t ∈ {1, . . . , j} andwe claim that y ∈ Jalg〈H(C, ∗), x〉. Since H(f Af , ∗)′

= f Af , there exists s ∈ {1, . . . , j}with
s 6= t, and consider then the elements z = en+i+s,n+k + ek,i+s ∈ Jalg〈H(C, ∗), x〉, and u = ei+s,n+i+t − ei+t,n+i+s ∈ H(C, ∗). Then it
follows that z ◦ u =

1
2y ∈ Jalg〈H(C, ∗), x〉. In the same way we obtain that (e∗

1Af1 + f ∗1 Ae1) ∩ H(A, ∗)1̄ ⊆ Jalg〈H(C, ∗), x〉.
So for any x ∈ H(A, ∗)0̄ \ H(C, ∗)0̄, H(A, ∗) = Jalg〈H(C, ∗), x〉 holds.
Now let x ∈ H(A, ∗)1̄ \ H(C, ∗)1̄. Then

x =
∑
1≤k≤i
1≤r≤j

λkr(ek,n+i+r − ei+r,n+k) +
∑
1≤k≤i
1≤r≤j

µkr(en+k,i+r + en+i+r,k)

and assume that for some (p, q), one has λpq 6= 0.
Since u = en+p,p ∈ H(C, ∗), 0 6= 2x ◦ u = −

∑
1≤q≤j λpq(ei+q,p + en+p,n+i+q) ∈ H(A, ∗)0̄ \ H(C, ∗)0̄, and the above case applies.

In the same way, if µpq 6= 0 we obtain that H(C, ∗) is a maximal subalgebra of H(A, ∗).

(i.2): The superinvolution ∗ on A is an orthosymplectic superinvolution, and the conditions in item (i) of the Theorem hold:
In this and the following cases, we will content ourselves to establish the setting in which one can apply the same kind

of not very illuminating arguments like those used in case (i.1).
Here, after identifying A to EndF(V), the superinvolution ∗ is determined by a nondegenerate symmetric superform ( , )

on V , that is, ( , )|V0̄×V0̄
is symmetric, ( , )|V1̄×V1̄

is skewsymmetric and (V0̄, V1̄) = (V1̄, V0̄) = 0.
Since e is idempotent and self-adjoint, there is a basis of V in which the coordinate matrices of the superform and of e

are, respectively,



I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 I
0 0 −I 0 0 0
0 0 0 −I 0 0

 ,



I 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0

 ,

where 0, respectively I, denotes the zero matrix, respectively identity matrix (of possibly different orders). Let n be the
dimension of V0̄, 2m the dimension of V1̄, i the rank of the restriction e|V0̄ , j = n − i, 2k the rank of e|V1̄ and l = m − k. Hence,
identifying by means of this basis H(A, ∗) to ospn,2m, the idempotent e decomposes as e = e1 + e2 + e∗

2, with e1 =
∑i

s=1 es,s,
e2 =

∑k
s=1 en+s,n+s and e∗

2 =
∑k

s=1 en+m+s,n+m+s. Similarly, f = 1 − e decomposes as f = f1 + f2 + f ∗2 .
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The elements of H(C, ∗) are then the matrices (in block form)



c11 0
... b11 0 b13 0

0 c22
... 0 b22 0 b24

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bt13 0
... a11 0 a13 0

0 bt24
... 0 a22 0 a24

−bt11 0
... a31 0 at11 0

0 −bt22
... 0 a42 0 at22


with c11 ∈ Mi(F) and c22 ∈ Mj(F) symmetric matrices, a11 ∈ Mk(F), a22 ∈ Ml(F), b11, b13 ∈ Mi×k(F), b22, b24 ∈ Mj×l(F), a13, a31 ∈

Mk(F) skewsymmetric matrices, and a24, a42 ∈ Ml(F) skewsymmetric too.
Note that it is possible that either e1 or f1 may be 0. If, for instance, f1 = 0, then since H(f Af , ∗)′

= f Af , it follows that l > 1.
In this setting, routine arguments like the ones for (i.1) apply.

(ii.1): The superinvolution ∗ on A is the transpose superinvolution, and the conditions in item (ii) of the Theorem hold:
Here a basis {x1, . . . , xn, y1 . . . , yn} of V ({x1, . . . , xn} being a basis of V0̄ and {y1, . . . , yn} of V1̄), so that the coordinate

matrices of the superform and of the idempotents e, e∗ and f f ∗ are, respectively,

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0

 ,



I 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 I

 ,



0 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,



0 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0

 .

This follows from the fact that e, e∗ and f f ∗ are orthogonal idempotents with 1 = e + e∗
+ f f ∗, so

V0̄ = S(1, e)0̄ ⊕ S(1, f f ∗)0̄ ⊕ S(1, e∗)0̄,

V1̄ = S(1, e∗)1̄ ⊕ S(1, f f ∗)1̄ ⊕ S(1, e)1̄,

where S(1, g) denotes the eigenspace of the endomorphism g of eigenvalue 1, and from the fact that f f ∗ is self-adjoint, so

V = (S(1, e)0̄ ⊕ S(1, e∗)1̄) ⊕ (S(1, f f ∗)0̄ ⊕ S(1, f f ∗)1̄) ⊕ (S(1, e∗)0̄ ⊕ S(1, e)1̄) .

After the natural identifications, the elements of H(C, ∗) = H(eA + Ae∗
+ f f ∗Af f ∗, ∗) are the matrices (in block form)



a11 a12 a13
... c11 c12 c13

0 a22 a23
... −ct12 c22 0

0 0 a33
... −ct13 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 d13
... at11 0 0

0 d22 d23
... at12 at22 0

dt
13 dt

23 d33
... at13 at23 at33



,

where c11, c22 are skewsymmetric matrices and d22, d33 symmetric matrices. Since H(f f ∗Af f ∗, ∗)′
= f f ∗Af f ∗, it follows that

f f ∗Af f ∗ is not a quaternion superalgebra and so the order of the blocks in the (2, 2) position is > 1.
This is the setting where routine computations can be applied.

(ii.2): The superinvolution ∗ on A is an orthosymplectic superinvolution, and the conditions in item (ii) of the Theorem hold:
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Here, with the same sort of arguments as before, the coordinate matrices in a suitable basis of the orthosymplectic
superform, and of the idempotents f f ∗, e and e∗ are, respectively:

I 0 0 0 0 0 0
0 0 I 0 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I
0 0 0 −I 0 0 0
0 0 0 0 −I 0 0


,



I 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 0


,



0 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 I


.

Now, the superinvolution ∗, identifying the elements in H(A, ∗)with their coordinatematrices in the basis above, is given
by: 

a11 a12 a13 a14 a15 a16 a17

a21 a22 a23 a24 a25 a26 a27
a31 a32 a33 a34 a35 a36 a37
a41 a42 a43 a44 a45 a46 a47
a51 a52 a53 a54 a55 a56 a57
a61 a62 a63 a64 a65 a66 a67
a71 a72 a73 a74 a75 a76 a77


→



at11 at31 at21 at61 at71 −at41 −at51
at13 at33 at23 at63 at73 −at43 −at53
at12 at32 at22 at62 at72 −at42 −at52

−at16 −at36 −at26 at66 at76 −at46 −at56
−at17 −at37 −at27 at67 at77 −at47 −at57
at14 at34 at24 −at64 −at74 at44 at54
at15 at35 at25 −at65 −at75 at45 at55


.

Therefore the Jordan superalgebra H(A, ∗) consists of the following matrices:

a11 a12 a13
... a14 a15 a16 a17

at13 a22 a23
... a24 a25 a26 a27

at12 a32 at22
... a34 a35 a36 a37

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−at16 −at36 −at26
... a44 a45 a46 a47

−at17 −at37 −at27
... a54 a55 −at47 a57

at14 at34 at24
... a64 a65 at44 at54

at15 at35 at25
... −at65 a75 at45 at55



,

where a11, a23, a32 are symmetric matrices, while a46, a57, a64, a75 are skewsymmetric matrices. Besides, the elements of
H(C, ∗) = H(eA + Ae∗

+ f f ∗Af f ∗, ∗) are the matrices which, in block form, look like

a11 0 a13
... a14 0 a16 a17

at13 a22 a23
... a24 a25 a26 a27

0 0 at22
... 0 0 0 a37

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−at16 0 −at26
... a44 0 a46 a47

−at17 −at37 −at27
... a54 a55 −at47 a57

at14 0 at24
... a64 0 at44 at54

0 0 at25
... 0 0 0 at55



.

Now again routine arguments with matrices give the result. �
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5.3. B′
= A and B is not semisimple

As for the maximal subalgebras of the Jordan superalgebras A+, this situation does not appear in the ungraded case [19].
However, consider the associative superalgebra A = M1,2(F), with the natural orthosymplectic superinvolution. Thus, the
Jordan superalgebra J = H(A, ∗) is

J = osp1,2 =


a −c b
b d 0
c 0 d

 : a, b, c, d ∈ F

 .

The subspace

B =


a −b b
b d 0
b 0 d

 : a, b, d ∈ F


is a maximal superalgebra of J, and it satisfies B′

= A, while it is not semisimple, as its radical coincides with its odd part

Question. Is this, up to isomorphism, the only possible example of a maximal subalgebra B of H(A, ∗), A being a simple
finite-dimensional superalgebra over an algebraically field F of characteristic 0, such that B′

= A and B is not semisimple?

It seems that a broader knowledge of nonsemisimple Jordan superalgebras is needed here.
The solution to the above question is also related to the Question after Theorem 5.1. Actually, if this question is answered

in the affirmative, then the subalgebra B isomorphic to Dt (t 6= 0,±1,−2,−
1
2 ) in Theorem 5.1 would indeed be maximal

in H(A, ∗). Otherwise, any maximal subalgebra S containing B would satisfy S′
= A (as B′

= A already) and would not be
semisimple (because of Theorem 5.1).
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