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a b s t r a c t

Every coherent system has a monomial ideal associated with it
and the knowledge of its multigraded Betti numbers provides
reliability bounds for the corresponding system, which are the
tightest among a certain class of such bounds. Some alternative
methods for computing the multigraded Betti numbers are used in
this paper and applied in the study of reliability. We obtain special
results for well known examples and show that computational
commutative algebra techniques can be used beneficially in the
reliability analysis of systems of different types.
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0. Introduction

Improved reliability bounds for multi-state coherent systems can be computed using the
techniques of (computational) commutative algebra. Every coherent multi-state system has a
monomial ideal associated with it and the knowledge of its multigraded Betti numbers provides good
reliability bounds for the corresponding system. This use of monomial ideals in system reliability
was introduced by Giglio and Wynn (2004) following work on so-called discrete tube theory by
Naiman and Wynn (1992, 1997). These methods can be considered as removing redundancy in
the classical Bonferroni–Fréchet bounds of probability theory. The latter correspond to the Taylor
resolution and the improved bounds are based on minimal free resolutions, whose terms are given
by the multigraded Betti numbers. The usual way, then, to obtain these numbers is to compute the
minimal free resolution of the ideal. But this is computationally hard in general. Some alternative
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computational methods are used in this paper and applied in the study of reliability, with tractable
results in some standard cases. Then, we give the tractable results. This application of monomial
resolutions to multi-state coherent systems constitutes a promising new area of application of
symbolic computation.
The first two sections of the paper introduce the basic notions on reliability and monomial ideals

that are needed in the subsequent sections. The following sectionpresents improved reliability bounds
based on the computation of Hilbert series and resolutions of monomial ideals. In the next section we
cover the actual computation of multigraded Betti numbers of monomial ideals, in particular using
Mayer–Vietoris tree based algorithms. Finally, in the last sectionwe apply our ideas to several relevant
coherent systems, in particular (consecutive) k-out-of-n and series–parallel systems.

1. System reliability

A multi-state system is defined here as a system of n components whose states are described by
real variables Y = (Y1, . . . , Yn), which can be in one of a set of states which we define as the n-
dimensional non-negative integer grid Y = Nn. There is a distinguished subset, F ⊂ Y, called the
failure set, with the interpretation that if Y ∈ F the system is said to fail. A member of F is called a
cut. Let ≤ be the usual multivariate inequality y ≤ z ⇔ yi ≤ zi, i = 1, . . . , n, and let y < z when
y ≤ z and yi < zi for at least one i = 1, . . . , n. Also define x ∨ y = (max(x1, y1), . . . ,max(xn, yn)).
Then we call the system coherent if

y ∈ F , y ≤ z ⇒ z ∈ F . (1)

Note that we use y to refer to a particular value (point) in Y and use Y for the random variable
describing the stochastic behavior of the system. Coherency is the principle that if a system has failed
and the components move to a worse (higher) state value then the system remains failed.
In reliability, Y is a random variable, which summarises the consequence of internal degradation

or external shock to the system liable to increase the values of states, although by repair one can also
decrease the value. Indeed, in Markovian systems one can consider Y moving around Y according to
a Markov chain; see, for example, the study of maintenance systems.
A major concern of system reliability is to evaluate or bound the probability of failure P(F ) =

prob{Y ∈ F }. We will be concerned not so much with the dependence of P(F ) on the distribution of
Y , but rather with the set F itself. Thus for any set U ⊆ Y we define the indicator

IU(y) =
{
1 if y ∈ U
0 otherwise.

Then P(F ) = E (IF (Y)) and identities and bounds on indicator functions give identities and bounds
on P(F ), whatever the distribution of Y .

2. Monomial ideals

The first step in the algebraization of coherent systems is to encode a point α = (α1, . . . , αn) ∈ Y
by a monomial xα = xα11 · · · x

αn
n , where x = (x1, . . . , xn) is a vector of variables. We see immediately

from the ‘coherence property’, (1), that F ⊆ Nn is coded into a set of monomials which defines a
monomial ideal IdF in k[x1, . . . , xn] (where k is a field of characteristic 0):

IdF = 〈xα : α ∈ F 〉

and (1) is equivalent to the ‘ideal property’:

xα ∈ IdF , α ≤ β ⇒ xβ ∈ IdF .

Conversely, any monomial ideal gives a failure set, under coherency. The minimal generating sets
for themonomial ideal IdF can be identifiedwith the set,F ∗, ofminimal cuts, in the reliability context.
Thus α is a minimal cut if and only if α ∈ F , β < α ⇒ β /∈ F and moreover IdF = 〈xα | α ∈ F ∗〉.
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A subset U ⊂ Y has a unique generating function:

U(x) =
∑
α∈U

xα,

and identities and inequalities on their indicator functions, IU(y), can be translated precisely to those
for the corresponding generating functions. In particular we shall be interested in identities and
bounds for F (x), the generating function of the failure set F . The generating function for the whole
of Y = Nn and for the monomial ideal generated by a single monomial are respectively

Y(x) =
1

n∏
i=1
(1− xi)

,

{β}(x)=
xβ

n∏
i=1
(1− xi)

.

As an example, consider just two minimal cuts, F ∗ = {β, γ }. Then the failure ideal is IdF = 〈xβ , xγ 〉,
and the generating function of the associated monomial set is

F (x) =
xα + xβ − lcm(xα, xβ)

n∏
i=1
(1− xi)

= {α}(x)+ {β}(x)− {α ∨ β}(x). (2)

This represents inclusion–exclusion for the failure set of the relevant upper orthants in the original
system Y:

IQ (α)∪Q (β) = IQ (α)(y)+ IQ (β)(y)− IQ (α)∩Q (β)(y) = IQ (α)(y)+ IQ (β)(y)− IQ (α)(y)IQ (β)(y),

where Q (α) = {γ |α ≤ γ }, etc, are the orthants. Note that if we omit the last term on the right
hand side we obtain an upper bound to the indicator function which gives the elementary Bonferroni
bound: prob(Q (a) ∪ Q (b)) ≤ prob(Q (a))+ prob(Q (b)).
A little care is needed with regard to probability statements. For a particular α, P(α) is interpreted

as Prob{Y = α}. This means that α occurs and no other α′, whereas P(Q (α)) is the probability that
α occurs and all worse events. In terms of cuts this means distinguishing the probability of exactly
a particular cut (and nothing else) and the probability of the totality of all outcomes which include
that cut in the sense of being at least as bad in terms of the≤ ordering. In the binary cases, discussed
below,where individual componentsmay fail, thismeans thatQ (α) is all cutswhich simply include the
components indicated by α. In that case P(Q (α)) is themarginal probability of the latter components
being cut.

3. Improved bound via the multigraded Hilbert series

Consider a multigraded R-module,M, over the ring R = k[x1, . . . , xn]with the usual multigrading

md(xi) = (0, . . . ,
i
1, . . . , 0) considered as a k vector space over each of its multigraded components

Mα . If each of the dimensions is finite we can define themultigraded Hilbert series as the formal power
series

H(M; x) =
∑
α∈Nn

dimk(Mα)xα.

For a resolution (Pi, ∂) of the quotient of R by a monomial ideal I we have, from the rank-nullity
principle, that

H(R/I; x) =
d∑
i=0

(−1)iH(Pi; x),

where the Pi, i = 0, . . . , d, are the modules in the resolution of R/I . If the resolution is multigraded
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each Pi =
⊕

α∈Nn γi,αPi,α for scalars γi,α , of which only a finite number are non-zero. Then

H(R/I; x) =

d∑
i=0
(−1)i(

∑
α∈Nn

γi,αxα)

n∏
j=1
(1− xj)

.

If the resolution is minimal then

H(R/I; x) =

d∑
i=0
(−1)i(

∑
α∈Nn

βi,αxα)

n∏
j=1
(1− xj)

,

where βi,α are the multigraded Betti numbers and, importantly,

βi,α ≤ γi,α ∀α, i. (3)

When I = IdF the Hilbert series of I and R/I are, respectively, the generating functions of F and
Y \ F , the latter being the non-failure set (where the systems works), and

H(I; x) =

d∑
i=1
(−1)i−1(

∑
α∈Nn

γi,αxα)∏
i
(1− xi)

.

The key idea for system reliability is that if we truncate this (non-simplified) form of the
multigraded Hilbert series, using exactness and the optimality (3), (i) we obtain upper and lower
bounds for the Hilbert series and (ii) for a minimal resolution these bounds are at least as tight as
for any other resolution:

k+1∑
i=1
(−1)i−1(

∑
α∈Nn

γi,αxα)∏
i
(1− xi)

≤

k+1∑
i=1
(−1)i−1(

∑
α∈Nn

βi,αxα)∏
i
(1− xi)

≤ H(I; x)

≤

k∑
i=1
(−1)i−1(

∑
α∈Nn

βi,αxα)∏
i
(1− xi)

≤

k∑
i=1
(−1)i−1(

∑
α∈Nn

γi,αxα)∏
i
(1− xi)

(4)

k = 1, . . . , d− 1; k odd.
Now, the inequalities in (4) yield inequalities for indicator functions, by the equivalencementioned

above, and we can, for any probability distribution on Y = Nn, capture ‘‘improved’’ inclusion–
exclusion inequalities, based on the βi,α . Moreover they will be the best, that is tightest, within the
class arising from resolutions in this way.
The proof of (4) is based on elementary properties of exact sequences that can be easily extended

to resolutions. Thus, since the Hilbert series of a monomial ideal can be seen as a way to count the
monomials that are in the ideal, and from the equality

d∑
i=1
(−1)i−1(

∑
α∈Nn

βi,αxα)∏
i
(1− xi)

= H(I; x),

we have that the central inequalities in (4) amount to the usual inclusion–exclusion principle applied
to the set of monomials in I . To prove the exterior inequalities in (4), observe that in any non-
minimal resolution redundant generators of the modules in the resolutions occur in pairs appearing
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in consecutive dimensions. Since the resolution is multigraded, the generators in each redundant pair
have the same multidegree. Those such pairs are clearly canceled in the numerator of the expression∑k+1
i=1 (−1)

i−1(
∑
α∈Nn γi,αx

α)∏
i(1−xi)

, except for those in which one of the elements of the pair is in the module of
dimension k+ 2. Let the multidegrees of these be xµ1 , . . . , xµs . Then

k+1∑
i=1
(−1)i−1(

∑
α∈Nn

γi,αxα)∏
i
(1− xi)

=

k+1∑
i=1
(−1)i−1(

∑
α∈Nn

βi,αxα)+ (−1)k(xµ1 + · · · + xµs)∏
i
(1− xi)

,

whence the inequalities.

3.1. Different resolutions

Let F be the failure set for a coherent system and label its elements F ∗ = {α(i), i = 1, . . . , r}.
For an index set J ⊂ {1, . . . , r} define mJ = lcm{xα

(j)
, j ∈ J}. Then the classical inclusion–exclusion

lemma corresponds to the Taylor resolution and we can write the generating function, equivalently
the Hilbert series, as

H(IdF ; x) =

r∑
j=1
(−1)j−1

∑
|J|=j
mJ∏

i
(1− xi)

.

Since the minimal resolution is a subresolution of the Taylor resolution, from (4) we can claim
that truncated inclusion–exclusion bounds based on minimal free resolutions are at least as good as
the truncated inclusion–exclusion bounds, sometimes referred to as generalised Bonferroni–Fréchet
bounds, or simply Bonferroni bounds.
It may be that we have repetitions of mj in the Taylor complex. A simplicial complex similar to

the Taylor complex in construction but which is restricted to unique labels (mI = mJ ⇒ I = J) is the
Scarf complex; seeMiller and Sturmfels (2004). If in addition the generators xα, α ∈ F ∗ are in generic
position (no variable xi appears with the same (non-zero) exponent in two distinct generators) then
the Scarf complex gives a minimal free resolution of IdF . In general, a perturbation of this complex
is needed, which may yield non-minimal resolutions; see Giglio and Wynn (2004). Any resolution
of a monomial ideal corresponding to a coherent system gives an expression for the multigraded
Hilbert function that can be truncated to obtain bounds for the reliability of the system. The efficient
computation of the minimal free resolution of a monomial ideal is in general a complicated task
and different approaches to this problem have been given in the literature. Some authors develop
non-minimal resolutions which can be more easily obtained, like the ones given in Taylor (1960) or
Lyubeznik (1998). Other authors give minimal resolutions for some classes of ideals, like stable ideals
in Eliahou and Kervaire (1990) or generic ideals in Miller and Sturmfels (2004). There are a number of
resolutions of other types, like cellular resolutions, resolutions obtained using discrete Morse theory;
see Orlik and Welker (2007), etc. This is a very active area of research.

4. Computation of multigraded Betti numbers of monomial ideals

Sincewe are interested in themultigraded Betti numbers of IdF , we can usemethods that compute
them without necessarily computing the minimal free resolution. These include simplicial Koszul
complexes (see Bayer (1996)) and Mayer–Vietoris trees, introduced in Sáenz-de-Cabezón (2006),
which, in addition to the general algebraic uses, appear to be effective for certain kinds of problems
in reliability. Both methods make use of the equality between the Betti numbers and the dimension
of the Koszul homology modules, which comes from the equivalent ways of computing Tor•(k, I) for
any ideal I ⊆ k[x1, . . . , xn] either using resolutions of I or resolutions of k, such as the Koszul complex
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K(I); see for example Sáenz-de-Cabezón (2006). The basic subjacent identity is

βi,α(I) = dimk(Tori,α(I, k)) = dimk(Hi,α(K(I))

where K(I) denotes the Koszul complex of I .

4.1. Simplicial Koszul complexes

Definition 4.1. Let I be a monomial ideal, α = (a1, . . . , an) ∈ Nn such that xα ∈ I . The Koszul
simplicial complex of I at α is given by

∆Iα = {squarefree vectors τ |x
α−τ
∈ I}.

The following result relates the reduced simplicial homology of the Koszul simplicial complex to
the multidegree α Betti numbers of I (Bayer, 1996; Miller and Sturmfels, 2004):

Theorem 4.2. Let I be a monomial ideal and∆Iα its Koszul simplicial complex at α; then

βi,α(I) = dimk(Hi,α(K(I))) = dimk(H̃i−1(∆Iα)) ∀i.

If we call LI the lcm-lattice of I = 〈m1, . . . ,mr〉, i.e. the lattice with elements labeled by the least
common multiples of subsets of {m1, . . . ,mr} ordered by divisibility, we have that

βi,α(I) = 0 if xα /∈ LI . (5)

Therefore, to compute the dimensions of the multigraded Koszul homology modules of I , i.e.
the multigraded Betti numbers of I , we need only compute the dimensions of the homology of the
simplicial Koszul complexes at the points in LI , which is a finite set.

Remark 4.3. Simplicial homology is computationally expensive in general, but in some applications
it may be a good option for the computation of multigraded Betti numbers. Such an example is given
later, namely k-out-of-n systems in Section 5.1.

4.2. Mayer–Vietoris trees

Given a monomial ideal I minimally generated by {m1, . . . ,mr}, we can construct an analogue of
the well known Mayer–Vietoris sequence from topology, in the following way:

Definition 4.4. For each 1 ≤ s ≤ r define Is := 〈m1, . . .ms〉, Ĩs := Is−1 ∩ 〈ms〉 = 〈m1,s, . . . ,ms−1,s〉,
wheremi,j denotes lcm(mi,mj). Then, for each swe have

· · · −→ Hi+1(K(Is))
∆
−→ Hi(K(Ĩs)) −→ Hi(K(Is−1)⊕ K(〈ms〉)) −→ Hi(K(Is))

∆
−→ · · · (6)

and since the Koszul differential respects multidegrees, we also have a multigraded version of the
sequence. The set of these sequences for each s is called the (recursive)Mayer–Vietoris sequence of I .

Using these exact sequences recursively for every α ∈ Nn we were able to compute the Koszul
homology of I = 〈m1, . . . ,mr〉. The ideals involved can be displayed as a tree, the root of which is
I , and every node J has as children J̃ on the left and J ′ on the right (if J is generated by r monomials,
J̃ denotes J̃r and J ′ denotes Jr−1). This is what we call a Mayer–Vietoris tree of the monomial ideal I ,
and we will denote it as MVT (I). Each node in a Mayer–Vietoris tree is given a position: the root has
position 1 and the left and right children of the node in position p have, respectively, positions 2p and
2p+ 1. The node ofMVT (I) in position p is denoted asMVTp(I).

Remark 4.5. Strictly speaking, the definition of Mayer–Vietoris sequences of monomial ideals is
not fully precise, in the sense that the Mayer–Vietoris sequence associated with a given ideal is
not uniquely defined; it depends on how the minimal generators are sorted. The choice of the last
generator of the ideal I to be the one which defines the Mayer–Vietoris sequence is just a matter of
convenience in notation. The important fact is that we select some particular generator to define
the sequence. With this one, we associate the subindex s which constitutes the breaking point for
generating the sequence. Several selection strategies can be applied to select the distinguished
generator, and they can be changed during the process.
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The properties of Mayer–Vietoris trees allow us to perform Koszul homology computations. The
following propositions are proved in Sáenz-de-Cabezón (2006, 2008) together with other features of
Mayer–Vietoris trees.

Proposition 4.6. If Hi,α(K(I)) 6= 0 for some i, then xα is a generator of some node J in anyMayer–Vietoris
tree MVT (I).

Thus, all themultidegrees of Koszul generators (equivalently Betti numbers) of I appear inMVT (I).
For a sufficient condition, we need the following notation: among the nodes inMVT (I)we call relevant
nodes those in an even position or in position 1.

Proposition 4.7. If xα appears only once as a generator of a relevant node J in MVT (I) then there exists
exactly one generator in H∗(K(I)) which has multidegree α.

The homological degree to which relevant multidegrees contribute can also be read from their
position in the tree (in fact it is given by the number of zeros of the binary expression of the position
of the corresponding node).

4.2.1. Mayer–Vietoris ideals
Let I be a monomial ideal and MVT (I) a Mayer–Vietoris tree of I . Let α ∈ Nn; let β i,α(I) = 1 if α

is the multidegree of some non-repeated generator in some relevant node of dimension i in MVT (I)
and β i,α(I) = 0 in other case. Let β̂i,α(I) be the number of times α appears as the multidegree of some
generator of dimension i in some relevant node inMVT (I). Then for all α ∈ Nn we have

β i,α(I) ≤ βi,α(I) ≤ β̂i,α(I).

Definition 4.8. Let I be a monomial ideal.

• If there exists aMayer–Vietoris tree of I such that there is no repeated generator in the ideals of the
relevant nodes, thenwe say that I is aMayer–Vietoris ideal of type A. In this case, β i,α(I) = βi,α(I) =
β̂i,α(I) ∀i ∈ N, α ∈ Nn.
• If β i,α(I) = βi,α(I) for all α ∈ Nn then we say that I is aMayer–Vietoris ideal of type B1.
• If β̂i,α(I) = βi,α(I) for all α ∈ Nn then we say that I is aMayer–Vietoris ideal of type B2.

Remark 4.9. It is not hard to show (see Sáenz-de-Cabezón (2006, 2008)) that Mayer–Vietoris trees
provide resolutions of the corresponding ideals. Therefore, the alternating sums of the upper bounds
β̂i,α(I) of the Betti numbers that are given by these trees provide reliability bounds in the sense
exposed above. If the corresponding ideal is Mayer–Vietoris of type A or B2 then the resolution given
by the Mayer–Vietoris tree is minimal. If it is of type B1 and not of type B2, the minimal resolution is
not directly obtained by the tree (we need to perform further computations to minimize it) but the
multigraded Betti numbers are immediately read from the tree, so sharp reliability bounds are also
provided. Observe that generic ideals areMayer–Vietoris of type B1. In the other cases, the resolutions
obtained by the tree are not minimal in general, but their size is relatively small and therefore the
reliability bounds provided by Mayer–Vietoris trees are fairly good on average for general ideals.

5. Special examples in reliability

Classical system reliability deals with two-state or binary systems in which Y = {0, 1}d: every
component can fail or not fail. Because in general such systems are not generic, theminimal resolution
cannot be derived from the Scarf complex and some kind of algorithm for finding the minimal
resolution must be used. In Giglio and Wynn (2004) a special perturbation method was used. A
starting point for the present collaboration arose when it transpired that some of the examples in
that paper were indeed minimal resolutions and some not. This pointed to systematic application
of a minimal free resolution method to reliability. We begin with two classical problems, k-out-of-n
and consecutive k-out-of-n systems and then address an important class of problems at the heart of
reliability theory, namely series and parallel systems. In these problems our aim is always to derive
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the multigraded Betti numbers which give the optimal bounds in the sense of (4). The results may be
purely computational, for example in some complex case, or may lead to a theoretical result in which
the Betti numbers can be given a closed form or be related to the structure of the problem in some
way.

5.1. k-out-of-n systems

A k-out-of-n system is one in which if at least k out of a total of n components fail then the system
is said to fail. There is a considerable literature in the areawithin reliability but it may first have arisen
in the context of occupancy problems and is covered in the classical text (Feller, 1968–1971) the first
edition ofwhichwas in 1950 and contains a footnote onM. Fréchet. The formula in Feller (1968–1971)
Chapter IV, Section 5, is exactly as derived here by our methods.
A k-out-of-n system can be modeled by the ideal

Ik,n = 〈xµ : xµ is a squarefree monomial of degree k in n variables〉.

For example, I3,5 = 〈xyz, xyu, xyv, xzu, xzv, xuv, yzu, yzv, yuv, zuv〉 is the ideal corresponding to the
3-out-of-5 problem. Observe that Ik,n has a minimal generating set which consists of

(n
k

)
monomials.

Using the result pointed in Eq. (5), we know that for any ideal I , we have to check the Koszul homology
only in the multidegrees that are in the lcm-lattice of I , namely LI . It is easy to see that LIk,n consists
of all squarefree monomials involving a number of variables between k and n. The following lemma
characterizes the Koszul simplicial complex at each of these multidegrees:

Lemma 5.1. If xα ∈ LIk,n has k + i non-zero indices, k < k + i ≤ n, the simplicial Koszul complex ∆
Ik,n
α

consists of all possible j-faces with 0 ≤ j ≤ i− 1 and the empty face.

Proof. Let xα be a squarefree monomial consisting of the product of k+ i variables, k < k+ i ≤ n. If
we divide xα by the product of j ≥ 0 of these variables then: If j ≤ i then the resultingmonomial is the
product of a set of k+ i− j variables, and thus, a j− 1 face is present in the Koszul simplicial complex.
If j > i then the result of the division is the product of k+ i− j variables, with j > i, k+ i− j < k, and
thus this product is not in Ik,n, so no j− 1 face is in the simplicial Koszul complex for j > i. �

Thus, the (α, i)-th Betti number at the multidegree given by any combination of k+ i variables is
dimk(H̃i−1(Ck,i)), where Ck,i is the subcomplex of the k+ i-dimensional simplex∆k+i having as facets
all the (i− 1)-faces. And then, βi(Ik,n) =

( n
k+i

)
· dimk(H̃i−1(Ck,i)), for all i ∈ {0, . . . , n− k}.

Our next goal is then to compute the dimension of the reduced homology of the complexes Ck,i.
Since all faces in dimension less than or equal to i − 1 are present in the complex, we know that Ck,i
has zero homology at all dimensions except possibly at dimension i− 1. The chain complex of Ck,i has
the following form:

0→ Ci−1
δi−1
→ · · · → C1

δ1
→ C0 → 0.

We have H̃j(Ck,i) = 0∀j < i− 1; thus ker δj/im δj+1 = 0 and dimk(ker δj) = dimk(im δj+1) for all
j < i− 1. On the other hand, we have the usual equality

dimk(ker δj) = dimk(Cj)− dimk(im δj).

Putting these together we have that

dimk(H̃i−1(Ck,i)) = dimk(ker δi−1) =
(
k+ i
i

)
−

(
k+ i
i− 1

)
+ · · · + (−1)i−1

(
k+ i
1

)
+ (−1)i.

We can use now the following combinatorial identity:(
k+ i
i

)
−

(
k+ i
i− 1

)
+ · · · + (−1)i−1

(
k+ i
1

)
+ (−1)i =

(
i+ k− 1
k− 1

)
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and we obtain that for every α ∈ LI where α is the product of k+ i variables, we have that

βi,α(Ik,n) =
(
i+ k− 1
k− 1

)
.

and since we have
( n
k+i

)
such α’s, it follows that

βi(Ik,n) =
(
n
k+ i

)(
i+ k− 1
k− 1

)
∀0 ≤ i ≤ n− k.

These considerations lead us to the following formula for themultigraded Hilbert series of I:

H(Ik,n; x) =

n−k∑
i=0
(−1)i

(i+k−1
k−1

)
(
∑

α∈[n,k+i]
xα)∏

i
(1− xi)

,

where [n, k+ i] denotes the set of vectors with 1 in the indices of the (k+ i)-subsets of {1, . . . , n} and
0 in the other entries.

Example 5.2. For I3,5 we have

H(I3,5; x) =
xyz + xyu+ xyv + xzu+ xzv + xuv + yzu+ yzv + yuv + zuv

(1− x)(1− y)(1− z)(1− u)(1− v)

−
3(xyzu+ xyzv + xyuv + xzuv + yzuv)
(1− x)(1− y)(1− z)(1− u)(1− v)

+
6(xyzuv)

(1− x)(1− y)(1− z)(1− u)(1− v)
,

and the Betti numbers of I3,5 are then: β0 = 10, β1 = 15 and β2 = 6.

Remark 5.3. k-out-of-n systems constitute an example in which the application of simplicial
homology is an optimal way to obtain themultigraded Betti numbers of the corresponding ideal. Also,
it is not hard to show that a k-out-of-n ideal isMayer–Vietoris of type B2. Therefore, itsMayer–Vietoris
tree provides the minimal resolution.

Remark 5.4. Let us consider now systems of n components in which every component can reach a
finite number of states {0, 1, . . . , i}. Assume that such a system fails whenever the sum of the states
of its components reaches a level k. We call such a system an i-multi-state k-out-of-n system. The
reason for this terminology is that a 1-multi-state k-out-of-n system is just the ordinary k-out-of-n
system studied above (considering the value 1 indicates failure).
These systems are modelled by ideals of the form Jk

[n,i] minimally generated by all monomials in n
variables of degree k such that each variable has an exponent less than or equal to i. It is not difficult to
see that all ideals Jk

[n,i] are Mayer–Vietoris of type B2 and therefore their Mayer–Vietoris resolution is
minimal. These ideals have even linear resolutions, as can be seen from an inspection of their Mayer–
Vietoris trees.

5.2. Consecutive k-out-of-n systems

Consecutive, also called ‘‘sequential’’, k-out-of-n systems fail whenever at least k consecutive
components in an ordered list of n components fail. This is also covered by Feller (1968–1971)
Chapter XIII. It is of some interest that (Dohmen, 2003) investigates them using a version of the
methods in Naiman and Wynn (1992) and Naiman and Wynn (1997). In addition to a significant
literature within reliability, the topic has received renewed interest because of its use in the fast
detection of fluctuations in data streams using statistics collected from windows of data: so-called
‘‘scan statistics’’; see Glaz et al. (2001). In the probability literature the emphasis is in computing
probabilities under given distributional assumptions, whereas, as pointed out in Section 1, the bounds
that we derive are distribution free.
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Consecutive k-out-of-n systems can be modelled by the ideals

Īk,n = 〈xµ : µ is a squarefree monomial in n variables formed by k consecutive variables〉.

For example, Ī3,5 = 〈xyz, yzu, zuv〉 is the ideal corresponding to the consecutive 3-out-of-5
system. In order to find the multigraded Betti numbers and Hilbert series of Īk,n we will use its
lexicographic Mayer–Vietoris tree. The explicit construction of this tree will give us the results
that we need. We will denote the monomials by their subscripts in brackets, e.g. the monomial
x1x3x6 will be denoted by [1, 3, 6]; since we are dealing with squarefree monomials, this notation
suffices.
We sort the generators of Īk,n using the lexicographic order. The construction of MVT (Īk,n) is as

follows:

(1) The root node is just Īk,n, which is minimally generated by n− k+ 1 monomials.
(2) The right child of the root, i.e. MVT3(Īk,n), is Īk,n−1, so we hang here the corresponding
tree.

(3) The left child of the root,MVT2(Īk,n), consists of the following n− 2k+ 1 monomials:
- [j, . . . (j+ k− 1), (n− k+ 1), . . . , n] for 1 ≤ j ≤ n− 2kwhich are the least commonmultiples
of each of the first n − 2k generators of the root with the last one. These generators have 2k
variables.
- [n − k, . . . , n] which is the lcm of the last two generators of MVT1(Īk,n) and divides [n − k −
j, . . . , n] for 1 ≤ j ≤ (k − 1) and hence these latter will not appear as minimal generators of
this node. This generator has k+ 1 variables and since we are using lexicographic order, it will
appear as the last generator inMVT2(Īk,n).

(4) The following nodes to consider are MVT4(Īk,n) and MVT5(Īk,n), but only if MVT2(Īk,n) has more
than one generator, i.e. if 2k < n; otherwise they are empty.
- MVT4(Īk,n) consists of n − 2k generators, namely the lcms of the first n − 2k generators of
MVT2(Īk,n) with the last one. These have the form [j, . . . (j + k − 1), (n − k), . . . , n] for 1 ≤
j ≤ n − 2k and, hence, this node is equivalent to Īk,n−k−1 with each monomial in it multiplied
by [n− k, . . . , n]. Hence, we hang here a tree ‘isomorphic’ toMVT (Īk,n−k−1).
- MVT5(Īk,n) is completely analogous to MVT4(Īk,n) and hence equivalent to Īk,n−k−1 but this
time each monomial in it is multiplied by [n − k + 1, . . . , n]. Hence, we also hang here a
tree isomorphic to MVT (Īk,n−k−1). The trees that we have hanging from the corresponding
nodes are of the same form, except that they have fewer variables; in particular they are of
the form MVT (Īk,j) with j < n. Eventually, we will have the situation in which 2k ≥ n
and in this case, the left child of the root has only one generator, namely [j − k, . . . , j], and
the right node is the consecutive k-out-of-(j − 1) tree, so we proceed in this manner until
j = k+ 1.

Example 5.5. Here is the tree corresponding to the consecutive 2-out-of-6 system:
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Taking into account the properties of the Mayer–Vietoris trees of these ideals, we see that we can
read the multigraded Betti numbers directly from the tree:

Proposition 5.6. The ideal corresponding to the consecutive k-out-of-n system is Mayer–Vietoris of
type A.

Proof. Assume that we have Īk,n as the root of our tree, sorted with respect to lexicographic order;
then the variable n appears only in the left child of the root, and it will appear in every multidegree
of every node in the tree hanging from this node. Thus, no multidegree of the tree hanging from the
left child will appear in the tree hanging from the right child, and vice versa. If 2k ≥ n then we are
done, since the left node has just one generator, and the tree hanging from the right node is the one
corresponding to the k-out-of-(n−1) system. If the left child of the root hasmore than one generator,
thenwe look at its children,MVT4(Īk,n) andMVT5(Īk,n). The generators of the first one are not present in
any node seen so far, and all of them contain the variables (n− k), . . . , n; moreover, every generator
of the nodes of the tree hanging from it will have these variables. On the other hand, the variable
n− k does not appear in the generators ofMVT5(Īk,n); hence, no multidegree of a generator in the tree
hanging from it will appear in the tree hanging from MVT4(Īk,n) and vice versa. Finally, we see that
no multidegree appearing in any relevant node of the tree hanging from MVT5(Īk,n) is in MVT2(Īk,n).
We know thatMVT5(Īk,n) is generated by the generators ofMVT2(Īk,n) except the last one. Now, every
generator of every node in the tree hanging fromMVT5(Īk,n)will have at least 2k+1 different variables,
k of which will be (n−k+1), . . . , n, and on the other hand, the generators inMVT2(Īk,n) have at most
2k different variables. �

With this proposition we have that collecting all the generators of the relevant nodes inMVT (Īk,n)
we have the multigraded Betti numbers of Īk,n in this case; since no generator in the relevant nodes is
repeated, we have that the Betti number at eachmultidegree is 1, and everymultidegree appears only
once in the minimal resolution of the ideal. The description of the tree and its recursive construction
give us alsomeans to count howmanymultidegrees appear in each dimension (i.e. the Betti numbers)
and whichmultidegrees are present. A thorough description of this process would be tedious, but it is
not difficult to obtain a complete list of themultidegrees of the Betti numbers, and hence, of theHilbert
series. However, here we only give an idea of the procedure; an algorithm has been implemented by
the authors to generate this list. The main lines of the construction of this list of multidegrees are the
following.

(1) In dimension 0 collect all the generators of Īk,n.
(2) In dimension 1 collect all themultidegrees of the form [j, . . . , j+k] for 1 ≤ j ≤ (n−k).2Moreover,
for 2k + 1 ≤ j ≤ n, add the multidegrees [1, . . . , k, (j − k + 1), . . . , j], . . . , [(j − 2k), . . . , (j −
k− 1), (j− k+ 1), . . . , j].

(3) For every dimension l add the corresponding multidegrees that appear in Īk,j−k−1 in dimension
(l−2) ≥ 0multiplied by [(j−k), . . . , j] and themultidegrees that appear in Īk,j−k−1 in dimension
(l− 1) ≥ 0 multiplied by [(j− k+ 1), . . . , j] for all (2k+ 1) ≤ j ≤ n.

Example 5.7. As we can see from the tree of Ī2,6, the Betti numbers are β0 = 5, β1 = 7, β2 = 4,
β3 = 1. The multigraded Hilbert series is

H(R/Ī2,6; x) =
1− (xy+ yz + zt + tu+ uv)

(1− x)(1− y)(1− z)(1− t)(1− u)(1− v)

+
(xyuv + yzuv + tuv + xytu+ ztu+ yzt + xyz)
(1− x)(1− y)(1− z)(1− t)(1− u)(1− v)

2 Note that in the case 2k ≥ n these are the only ones that we have to add, and the corresponding formula is equivalent to
the one appearing in Dohmen (2003).
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−
(xytuv + yztuv + xyzuv + xyztu)

(1− x)(1− y)(1− z)(1− t)(1− u)(1− v)

+
(xyztuv)

(1− x)(1− y)(1− z)(1− t)(1− u)(1− v)
.

Investigation of the operation of the algorithm leads to recurrence relations for the (standard) Betti
numbers. First label βi,k,n = βi(Īk,n) and note that 1 ≤ k ≤ n. For n ≤ 2kwe have

β0,k,n = n− k+ 1
β1,k,n = n− k
βi,k,n = 0, for i ≥ 2.

For n ≥ 2k+ 1 we have

β0,k,n = n− k+ 1
β1,k,n = n− 2k+ 1+ β1,k,n−1
βi,k,n = βi−2,k,n−k−1 + βi−1,k,n−k−1 + βi,k,n−1, for i ≥ 2.

Using standard methods we obtain the double generating function

Gk(x, y) =
∞∑
i=0

∞∑
n=k

βi,k,nxiyn =
yk(1+ xy)

(1− y)(1− x2yk+1 − xyk+1 − y)
.

We first fix k. Then, briefly, the large bracket in the denominator derives from the general form of the
generating function. The other terms derive from the boundary conditions which operate for small i
and n. We can confirm that

∑
∞

i=0(−1)
iβi,k,n = 1 by considering Gk(−1, y) andwe obtain a generating

function for
∑
i βi,k,n:

Gk(1, y) =
yk(1+ y)

(1− y)(1− 2yk+1 − y)
1 ≤ k ≤ n.

This analysis points to the possibility of obtaining the generating function for the multigraded Betti
numbers, or equivalently a closed form for the Hilbert series itself. In further researchwewill develop
probabilistic statements and asymptotic results in particular as n→∞.

5.3. Series and parallel systems

We turn now to the series–parallel system, a special although very natural type of network.
Consider an edge p joining two nodes I and O. We call such a network a basic series–parallel network.
Consider now two series–parallel networks N1 and N2. We can connect them in series or in parallel,
and the result is a series–parallel network. This is done in the following way:

• First, we rename the edges in each node so that each edge has a different label. If the edge pS for
some set S of subindices is in network iwe can rename it p{i}∪S . After this, we can still rename them
just by counting them in lexicographic order.
• If the initial (input) node of Ni is labelled Ii and its final (output) node is labelled Oi for i = 1, 2,
then the parallel union of N1 and N2, which we will denote as N = N1 × N2, identifies I1 and I2 in
one node I , which will be the initial node of N , and identifies O1 and O2 in one node O, which will
be its final node.
• With the same notation as above, the series union of N1 and N2, which we will denote as N =
N1+N2, has as initial node I1, as final node O2, and identifies O1 and I2 in one intermediate node S.

We just formalize these considerations in the following definition of series–parallel networks:

Definition 5.8. We say that a network N is a parallel–series network if either N consists of an input
node, an output node and a edge joining them, or if N = N1 + N2 or N = N1 × N2 with N1,N2
series–parallel networks.
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Fig. 1. Example of series–parallel network construction.

These constructions can be seen in Fig. 1, in which the label of the edge pS is just S.
Given any network N (not necessary a series–parallel one), we associate a monomial ideal with it

as follows: Consider one variable xS for each connection S inN . Then, themonomial ideal IN associated
with N is minimally generated by the monomials xS1 · · · xSk where S1, . . . , Sk is a minimal cut in the
network N (Dohmen, 2003; Giglio and Wynn, 2004). Let us consider now the ideals associated with
series–parallel networks. It is clear that the ideal IN of a network N with just one edge p1 connecting
two nodes I and O is just IN = 〈x1〉. The construction operations+ and× that we have just seen have
their counterpart in the ideals of the resulting networks:

Proposition 5.9. Let N1 and N2 be two networks the edges of which are labelled (after renaming as seen
above) p1, . . . , pn1 and pn1+1, . . . , pn1+n2 . Then,

IN1+N2 = IN1 + IN2 IN1×N2 = IN1 ∩ IN2
where IN1+N2 and IN1×N2 are ideals in k[x1, . . . , xn1+n2 ].

Proof. We have that for any network N ,

IN = 〈xS |S = {s1, . . . , sks} is a minimal cut in N〉.

Anyminimal cut in N1 or N2 is a minimal cut in N1+N2, and there is nomixture among them. Then
it is clear that the generating set of IN1+N2 is just the union of the generating sets of IN1 and IN2 , each
being generated in a different set of variables.
Now, the minimal cuts of N1 × N2 can be always considered as a combination of one minimal cut

in N1 and one minimal cut in N2 and there are no other minimal paths. Since there is no intersection
between the set of variables of IN1 and IN2 the combination of minimal cuts simply means product of
their variables, and hence the result. �

Example 5.10. Consider the networks in Fig. 1, where := expresses relabeling. After relabeling, the
edges in N1 are p1 and p2, and the edges in N2 are p3 and p4. We have that

IN1 = 〈x1, x2〉, IN2 = 〈x3x4〉, IN1+N2 = 〈x1, x2, x3x4〉, IN1×N2 = 〈x1x3x4, x2x3x4〉.

Mayer–Vietoris trees give a goodway to compute themultigraded Betti numbers of series–parallel
ideals, and hence, the reliability of the corresponding network:

Proposition 5.11. The ideals associated with series–parallel networks, i.e. series–parallel ideals, are
Mayer–Vietoris ideals of type A.
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Proof. If N is a basic series–parallel network with unique edge p1 then IN = 〈x1〉 which is Mayer–
Vietoris of type A. Now consider two series–parallel networks N1 and N2 whose ideals are Mayer–
Vietoris of type A, i.e. there is some strategy for selecting the pivot monomials when constructing a
Mayer–Vietoris tree such that it is of type A. We have to prove that IN1 + IN2 and IN1 ∩ IN2 are Mayer–
Vietoris of type A:

• The generators of IN1+IN2 are the union of the generating sets of IN1 and IN2 .We sort themso that the
generators of IN2 all appear after the generators of IN1 . We now proceed, taking as pivot monomial
always a generator of IN2 following the strategy used to build the minimal Mayer–Vietoris tree
of IN2 . Doing so, we have that MVTp(IN1 + IN2) has as generators the generators of IN1 , each one
multiplied by some product of the variables of IN2 and also the generators ofMVTp(IN2). So far, we
have no repeated generators in the relevant nodes: Assume that there is some generator repeated
in two relevant nodes at positions p and q; then they have the same exponents in the variables of
IN1 and the same in the variables of IN2 . If the generator has only variables of the second ideal, being
equal would mean that they are equal in MVT (IN2). Since those generators with ‘mixed variables’
are all of the formm ·m′ withm a minimal generator of IN1 , no two of these are repeated.
This procedure takes us to nodes in which no further element only in the variables of IN2 is

available. From this moment, on each node we follow the strategy ofMVT (IN1), since these nodes
in positions p have as generators all the minimal generators of IN−1 times some polynomial m′p in
the variables of the second ideal. Since them′p are different for different p, we have that all the trees
hanging from these nodes are isomorphic to MVT (IN1); therefore, there is no repeated generator
in the relevant nodes in each of them. There is also no repetition among the different ‘copies’ of
MVT (IN1) because eachm

′
p is unique.

• IN1×N2 : Let us denote by m1, . . . ,mr the generators of IN1 , and by n1, . . . , ns the generators of
IN2 . Assume without loss of generality that the minimal Mayer–Vietoris trees of IN1 and IN2 were
obtainedusing always the last generator as the pivotmonomial. Then IN1×N2 = IN1∩IN2 is generated
by {minj|i = 1, . . . , r; j = 1, . . . , s}. To buildMVT (IN1×N2) consider as pivot monomialmrns; then,
MVT2(IN1×N2) is generated by

mrn1ns, . . . ,mrns−1ns,m1mrns, . . . ,mr−1mrns.

Now, select mr−1ns as pivot monomial in MVT3(IN1×N2) and we obtain that MVT6(IN1×N2) is
generated by

mr−1n1ns, . . . ,mr−1ns−1ns,m1mr−1ns, . . . ,mr−2mr−1ns.

It is clear that since IN1 and IN2 areMayer–Vietoris of typeA and they are generated in disjoint sets of
variables, there is no repeated relevant multidegree inside the subtree hanging fromMVT2(IN1×N2)
or inside the subtree hanging fromMVT6(IN1×N2).
On the other hand we have that no multidegree appears in a relevant node in both trees. The

reason is the following: Every multidegree in MVT2(IN1×N2) is of the form nσmα with s ∈ σ and
r ∈ α; and every element inMVT6(IN1×N2) is of the form nσ ′mα′ with s ∈ σ

′, α′ ⊆ {1, . . . , r − 1}. If
nσmα = nσ ′mα′ then in particularmα = mα′ , but then they would be repeated inMVT (IN1), which
is a contradiction.
Following the same argument while taking elements of the form mins as pivot monomials in

the nodes of dimension 0 we obtain the same contradiction, based on the fact that MVT (IN1) has
no repeated relevant multidegrees. Then we turn to taking pivot monomials of the form mins−1
(i ∈ {1, . . . , r}) and we can follow a symmetric argument, the contradiction coming now from
the fact thatMVT (IN2) has no repeated relevant multidegrees. A recursive application of these two
arguments yields the result.

So, both IN1+N2 and IN1×N2 are Mayer–Vietoris of type A. �

6. Conclusions

It has been a long standing challenge to obtain improved bounds of Bonferroni type in system
reliability, with many different types of improvement being suggested. We have shown that, among
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a class of bounds of resolution type, which include the classical case (equivalent to the Taylor
resolution), the minimal free resolution is optimal and moreover this resolution is completely
described by the multigraded Betti numbers. The computation of these numbers is usually done via
minimal free resolutions, but these are in general hard to compute. In certain important classes of
systems, alternative methods, such as the one proposed by the first author, can be used to obtain the
multigraded Betti numbers in a more efficient way. On one hand, these alternative methods should
be used for such situations, and on the other hand, algebraic techniques can be used in many cases to
improve the bounds given in the literature on coherent systems.
We have studied three types of system: two rather special and one, the series–parallel systems,

which is rather more general. But there are many other systems of which a leading example is given
by a general network and gives rise to the area of network reliability. Immediate questions are: What
are the multigraded Betti numbers for a general network and are there fast algorithms which use the
network structure?
Anadvantage of the currentmethods is that they apply naturally to themulti-state coherent system

cases which are less thoroughly covered in the reliability literature. Indeed, the key connection is to
code a state by the exponent of a monomial ideal. A big challenge from both the viewpoints of algebra
and reliability is to generalise the notion of coherency. Thiswould require ‘‘geometries’’ different from
that of unions of upper orthants to be included. Other geometries were used in the original work on
discrete tubes (Naiman and Wynn (1992), Naiman and Wynn (1997)), and include unions of balls or
half-spaces.
The connection of the present work with that in Dohmen (2003) needs to be studied. In addition

to his application of discrete tube theory to reliability, that author makes interesting links with other
areas of combinatorics such as lace expansions, chromatic numbers and the Whitney broken circuit
theorem. It is likely thatminimal free resolutions andmultigraded Betti numbers will be found to play
a role in those theories also.
As pointed out, the bounds givenhere are distribution free: they are independent of the distribution

of the randomvariable Y defining the (stochastic) system. Butwhere the distribution takes a particular
form, e.g. independent failure of components or, say, a Markov chain, it is to be hoped that there
is synergy between the minimal bounds given here and the distributions. This may lead to useful
formulae for failure probabilities in particular cases. In statistics and probability there is interest in
extreme events, for example for testing some kinds of simple null hypotheses, such as independence.
Wehave goodprospects in the case of (consecutive) k-out-of-nof findingnew results for so-called scan
statistics. Our bounds may contribute to an asymptotic theory as the failure set is pushed outwards,
so that the first few terms of the bounds give simple formulae. To ask the question bluntly: Do
multigraded Betti numbers play a part in certain large deviation theories?
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