The surprising almost everywhere convergence of Fourier-Neumann series

Óscar Ciaurri, Juan Luis Varona*
Dpto. de Matemáticas y Computación, Univ. de La Rioja, 26004 Logroño, Spain

ARTICLE INFO

Article history:

Received 23 June 2007

Keywords:

Bessel functions
Fourier-Neumann series
Almost everywhere convergence

Abstract

For most orthogonal systems and their corresponding Fourier series, the study of the almost everywhere convergence for functions in L^{p} requires very complicated research, harder than in the case of the mean convergence. For instance, for trigonometric series, the almost everywhere convergence for functions in L^{2} is the celebrated Carleson theorem, proved in 1966 (and extended to L^{p} by Hunt in 1967).

In this paper, we take the system

$$
j_{n}^{\alpha}(x)=\sqrt{2(\alpha+2 n+1)} J_{\alpha+2 n+1}(x) x^{-\alpha-1}, \quad n=0,1,2, \ldots
$$

(with J_{μ} being the Bessel function of the first kind and of the order μ), which is orthonormal in $L^{2}\left((0, \infty), x^{2 \alpha+1} \mathrm{~d} x\right)$, and whose Fourier series are the so-called Fourier-Neumann series. We study the almost everywhere convergence of Fourier-Neumann series for functions in $L^{p}\left((0, \infty), x^{2 \alpha+1} \mathrm{~d} x\right)$ and we show that, surprisingly, the proof is relatively simple (inasmuch as the mean convergence has already been established).
© 2009 Elsevier B.V. All rights reserved.

1. Introduction and main theorem

Let J_{μ} denote the Bessel function of the first kind and of the order μ. It is well-known that, for $\alpha \geq-1 / 2$, we have

$$
\int_{0}^{\infty} J_{\alpha+2 n+1}(x) J_{\alpha+2 m+1}(x) \frac{\mathrm{d} x}{x}=\frac{\delta_{n m}}{2(2 n+\alpha+1)}, \quad n, m=0,1,2, \ldots
$$

(see [1, Ch. XIII, 13.41 (7), p. 404] and [1, Ch. XIII, 13.42 (1), p. 405]). Then, the system

$$
j_{n}^{\alpha}(x)=\sqrt{2(\alpha+2 n+1)} J_{\alpha+2 n+1}(x) x^{-\alpha-1}, \quad n=0,1,2, \ldots
$$

is orthonormal in $L^{2}\left((0, \infty), \mathrm{d} \mu_{\alpha}\right)\left(L^{2}\left(\mathrm{~d} \mu_{\alpha}\right)\right.$ from now on $)$, with $\mathrm{d} \mu_{\alpha}(x)=x^{2 \alpha+1} \mathrm{~d} x$. For each suitable function f, take

$$
S_{n}^{\alpha} f(x)=\sum_{k=0}^{n} c_{k}^{\alpha}(f) j_{k}^{\alpha}(x), \quad c_{k}^{\alpha}(f)=\int_{0}^{\infty} f(y) j_{k}^{\alpha}(y) \mathrm{d} \mu_{\alpha}(y)
$$

so $S_{n}^{\alpha} f$ denotes the n-th partial sum of its Fourier series with respect to the system $\left\{j_{n}^{\alpha}\right\}_{n=0}^{\infty}$, which is usually called the Fourier-Neumann series.

[^0]Most orthogonal systems (the trigonometric system, Jacobi, Hermite and Laguerre orthogonal polynomials and functions, etc.) are complete in their corresponding L^{2} space. However, this does not happen with $\left\{j_{n}^{\alpha}\right\}_{n=0}^{\infty}$. To see this, let us consider the so-called modified Hankel transform H_{α}, that is

$$
\begin{equation*}
H_{\alpha} f(x)=\int_{0}^{\infty} \frac{J_{\alpha}(x y)}{(x y)^{\alpha}} f(y) y^{2 \alpha+1} \mathrm{~d} y, \quad x>0 \tag{1}
\end{equation*}
$$

(defined for suitable functions). In the usual way, H_{α} can be extended to functions $f \in L^{2}\left(\mathrm{~d} \mu_{\alpha}\right)$; it becomes an isometry on $L^{2}\left(\mathrm{~d} \mu_{\alpha}\right)$, where H_{α}^{2} is the identity. Moreover, the Bessel functions and the Jacobi polynomials are related by means of

$$
\begin{equation*}
\int_{0}^{\infty} J_{\alpha+2 n+1}(t) J_{\alpha}(x t) \mathrm{d} t=x^{\alpha} P_{n}^{(\alpha, 0)}\left(1-2 x^{2}\right) \chi_{[0,1]}(x) \tag{2}
\end{equation*}
$$

see, for instance, [2, Ch. 8.11, (5), p. 47]. From this formula, $H_{\alpha} j_{n}^{\alpha}$ is supported on [0, 1], so consequently $\left\{j_{n}^{\alpha}\right\}_{n=0}^{\infty}$ is not complete in $L^{2}\left(\mathrm{~d} \mu_{\alpha}\right)$. Furthermore, (2) allows expressing $H_{\alpha} j_{n}^{\alpha}$ in terms of the Jacobi polynomials (which are a complete system). Then, by using that H_{α} is an isometry on $L^{2}\left(\mathrm{~d} \mu_{\alpha}\right)$, the subspace $B_{2, \alpha}=\overline{\operatorname{span}\left\{j_{n}^{\alpha}\right\}_{n=0}^{\infty}}\left(\right.$ closure in $\left.L^{2}\left(\mathrm{~d} \mu_{\alpha}\right)\right)$ can be identified with $E_{2, \alpha}=\left\{f \in L^{2}\left(\mathrm{~d} \mu_{\alpha}\right): M_{\alpha} f=f\right\}$, where M_{α} is the multiplier defined by

$$
H_{\alpha}\left(M_{\alpha} f\right)=\chi_{\left[0,{ }_{1]}\right.} H_{\alpha} f .
$$

Let us point out that, as $H_{\alpha} j_{n}^{\alpha}$ is supported on [0, 1], we have $M_{\alpha} j_{n}^{\alpha}=j_{n}^{\alpha}$ so $j_{n}^{\alpha} \in E_{2, \alpha}$, indeed.
The $L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$-mean convergence of the Fourier-Neumann series was studied by one of the authors in [3], and later extended in [4]. An important part of these papers is devoted to identifying $B_{p, \alpha}=\overline{\operatorname{span}\left\{j_{n}^{\alpha}\right\}_{n=0}^{\infty}}\left(\operatorname{closure}\right.$ in $\left.L^{p}\left(d \mu_{\alpha}\right)\right)$. When $p \neq 2, H_{\alpha}$ can be defined on $L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ under some circumstances, but it is not an isometry, and then the relation (2) can no longer be used. However, for a certain range of p 's (summed up in (4)), the extension of the multiplier M_{α} as a bounded operator from $L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ into itself can be done in the usual way, by using suitable bounds of the Bessel functions. The operator M_{α} has several interesting properties, such as $M_{\alpha}^{2} f=M_{\alpha} f$ and

$$
\begin{equation*}
\int_{0}^{\infty} f(y) M_{\alpha} g(y) \mathrm{d} \mu_{\alpha}(y)=\int_{0}^{\infty} M_{\alpha} f(y) g(y) \mathrm{d} \mu_{\alpha}(y) \tag{3}
\end{equation*}
$$

which is valid whenever $f \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ and $g \in L^{p^{\prime}}\left(\mathrm{d} \mu_{\alpha}\right)$ (with $1 / p+1 / p^{\prime}=1$). Moreover, the space $E_{p, \alpha}=\left\{f \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)\right.$: $\left.M_{\alpha} f=f\right\}$ can be defined, and some of its properties proved: $E_{s, \alpha} \subseteq E_{r, \alpha}$ when $s<r$ (the inclusion being continuous and dense), the duality $E_{p, \alpha}^{\prime}=E_{p^{\prime}, \alpha}$ and, finally, $B_{p, \alpha}=E_{p, \alpha}$. The details can be found in [3,5].

The goal of this paper is to analyze the almost everywhere convergence of the Fourier-Neumann series $S_{n}^{\alpha} f$ for functions $f \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$, with $\alpha \geq-1 / 2$. A partial study is done in [4], but now we are going to extend it, showing a further result.

For most orthogonal systems and their corresponding Fourier series, the study of the almost everywhere convergence for functions in L^{p} is rather complicated, much more than that of the mean convergence. For instance, for trigonometric series, the almost everywhere convergence for functions in L^{2} was conjectured by Lusin in 1915, and proved by Carleson in 1966 (extended by Hunt in 1967 for L^{p} with $1<p<\infty$). However, we are going to see that the proofs of the almost everywhere convergence of the Fourier-Neumann series for functions in $L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ are, surprisingly, relatively simple (supposing that the mean convergence has been previously established).

We will restrict our analysis to the "natural" interval $p \in\left(p_{0}(\alpha), p_{1}(\alpha)\right)$ given by

$$
\begin{equation*}
p_{0}(\alpha)=\frac{4(\alpha+1)}{2 \alpha+3}<p<\frac{4(\alpha+1)}{2 \alpha+1}=p_{1}(\alpha) \tag{4}
\end{equation*}
$$

In fact, the first requirement for having the partial sum of the Fourier-Neumann series in $L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ (with $1<p<\infty$) is that $j_{n}^{\alpha} \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ for every n. By using well-known estimates for the Bessel functions (namely (6) and (7), this is equivalent to $p>p_{0}(\alpha)$. And, since the Fourier coefficients $c_{n}^{\alpha}(f)$ must exist for every $f \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$, we must have $j_{n}^{\alpha} \in L^{p^{\prime}}\left(\mathrm{d} \mu_{\alpha}\right)$ for every n, where $1 / p+1 / p^{\prime}=1$. This is equivalent to $p<p_{1}(\alpha)$.

As we can see in [3], the range (4) is just the one for which the multiplier $M_{\alpha}: L^{p}\left(\mathrm{~d} \mu_{\alpha}\right) \rightarrow L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ is a bounded operator, which allows defining the subspaces $E_{p, \alpha}$. However, the interval of mean convergence of the Fourier-Neumann series is not all of the range (4), but

$$
\begin{equation*}
\max \left\{\frac{4}{3}, p_{0}(\alpha)\right\}<p<\min \left\{4, p_{1}(\alpha)\right\} \tag{5}
\end{equation*}
$$

That is, if p satisfies (5) and $f \in E_{p, \alpha}$, then $S_{n}^{\alpha} f \rightarrow f$ when $n \rightarrow \infty$ in the $L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$-norm. Conversely, (5) is a necessary condition for the mean convergence. When $f \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$, the Fourier-Neumann series converges to $M_{\alpha} f$ (recall that $M_{\alpha} f=f$ for functions in $E_{p, \alpha}$).

In [4] we prove that, if p satisfies (5), $S_{n}^{\alpha} f \rightarrow f$ almost everywhere for every $f \in E_{p, \alpha}$ (and the convergence is to $M_{\alpha} f$ for $f \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$). Here, we extend this result by removing the condition $4 / 3<p<4$ (which affects the case $-1 / 2 \leq \alpha<0$) for the almost everywhere convergence. Thus, we have

Theorem. Let us have $\alpha \geq-1 / 2$ and p satisfying (4). Then,

$$
S_{n}^{\alpha} f \rightarrow M_{\alpha} f
$$

almost everywhere for every $f \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$.

2. Auxiliary results

The Bessel functions satisfy the asymptotic formulas (see, for instance, [1, Ch. III, 3.1 (8), p. 40] and [1, Ch. VII, 7.21 (1), p. 199])

$$
\begin{align*}
& J_{\nu}(x)=\frac{x^{\nu}}{2^{\nu} \Gamma(v+1)}+O\left(x^{\nu+2}\right), \quad x \rightarrow 0^{+}, \tag{6}\\
& J_{v}(x)=\left(\frac{2}{\pi x}\right)^{1 / 2}\left[\cos \left(x-\frac{v \pi}{2}-\frac{\pi}{4}\right)+O\left(x^{-1}\right)\right], \quad x \rightarrow \infty . \tag{7}
\end{align*}
$$

We will also use bounds with constants independent of the parameter v of the Bessel function. These bounds are a consequence of the very precise estimates that appear in [6]. To be more precise, we will use the following bound that can be found in $[4,3]$:

$$
\begin{equation*}
\left|J_{v}(x)\right| \leq C x^{-1 / 4}\left(|x-v|+v^{1 / 3}\right)^{-1 / 4}, \quad x \in(0, \infty) \tag{8}
\end{equation*}
$$

where C is a positive constant independent of v.
With this information, let us estimate $\left\|j_{n}^{\alpha}\right\|_{L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)}$:
Lemma 1. Let $\alpha \geq-1 / 2$ and $p>p_{0}(\alpha)$. Then, $\left\{j_{n}^{\alpha}\right\}_{n=0}^{\infty} \subseteq L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ and

$$
\left\|j_{n}^{\alpha}\right\|_{L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)} \leq C \begin{cases}n^{-(\alpha+1)+2(\alpha+1) / p}, & \text { if } p<4 \\ n^{-(\alpha+1) / 2}(\log n)^{1 / 4}, & \text { if } p=4 \\ n^{-(5 / 6+\alpha)+(6 \alpha+4) /(3 p)}, & \text { if } p>4\end{cases}
$$

with C a positive constant independent of n.
Proof. The assertion that $j_{n}^{\alpha} \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ for every $n=0,1,2, \ldots$ follows from (6) and (7). Then, estimates (8) show that $\left\|j_{n}^{\alpha}\right\|_{L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)}$ is bounded above by a constant times the right hand side. For a similar expression, see [7].

Now, let us note that, for $x \in(0, \infty)$ fixed, the Bessel function $\left\langle J_{\nu}(x)\right|$ has a huge decay when v grows to ∞ (and consequently the same happens with $\left|j_{n}^{\alpha}(x)\right|$ when $\left.n \rightarrow \infty\right)$. In fact, according to [1, Ch. III, 3.31 (1), p. 49], we have

$$
\begin{equation*}
\left|J_{v}(x)\right| \leq \frac{2^{-v} x^{v}}{\Gamma(v+1)}, \quad v \geq-1 / 2 \tag{9}
\end{equation*}
$$

Then, we have
Lemma 2. Let $\alpha \geq-1 / 2$ and p with $1<p<p_{1}(\alpha)$. Then, for any $f \in L^{p}\left(d \mu_{\alpha}\right)$ the Fourier series $\sum_{n=0}^{\infty} c_{n}^{\alpha}(f) j_{n}^{\alpha}(x)$ converges absolutely for every $x \in(0, \infty)$. (Note that we do not assert that this convergence is to $f(x)$, not even almost everywhere.)

Proof. Recall that

$$
\begin{equation*}
c_{n}^{\alpha}(f)=\int_{0}^{\infty} f(y) j_{n}^{\alpha}(y) y^{2 \alpha+1} \mathrm{~d} y \tag{10}
\end{equation*}
$$

Since $p<p_{1}(\alpha)$, it follows that $p^{\prime}>p_{0}(\alpha)$ (with $1 / p+1 / p^{\prime}=1$). Then, from Lemma 1 , we have $j_{n}^{\alpha} \in L^{p^{\prime}}\left(\mathrm{d} \mu_{\alpha}\right)$ and, moreover, $\left\|j_{n}^{\alpha}\right\|_{L^{p^{\prime}}\left(\mathrm{d} \mu_{\alpha}\right)} \leq C n^{\delta}$ for some constant $\delta=\delta(p, \alpha)$. Thus, by Hölder's inequality,

$$
\left|c_{n}^{\alpha}(f)\right| \leq\|f\|_{L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)}\left\|j_{n}^{\alpha}\right\|_{L^{p^{\prime}}\left(\mathrm{d} \mu_{\alpha}\right)} \leq C\|f\|_{L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)} n^{\delta}
$$

On the other hand, as a consequence of (9), we have

$$
\begin{aligned}
\left|j_{n}^{\alpha}(x)\right| & =\sqrt{2(\alpha+2 n+1)}\left|J_{\alpha+2 n+1}(x)\right| x^{-\alpha-1} \\
& \leq \frac{\sqrt{2(\alpha+2 n+1)} 2^{-(\alpha+2 n+1)} x^{2 n}}{\Gamma(\alpha+2 n+2)}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left|c_{n}^{\alpha}(f) j_{n}^{\alpha}(x)\right| \leq C\|f\|_{L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)} \frac{n^{\delta+1 / 2}(x / 2)^{2 n}}{\Gamma(\alpha+2 n+2)} \tag{11}
\end{equation*}
$$

and the series $\sum_{n=0}^{\infty} c_{n}^{\alpha}(f) j_{n}^{\alpha}(x)$ converges absolutely.

3. Proof of the theorem

By Lemma $2, S_{n}^{\alpha} f$ converges to some g pointwise when p satisfies (4). We want to prove that, almost everywhere, $g=f$ if $f \in E_{p, \alpha}$, or, more generally, $g=M_{\alpha} f$ if $f \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$.

As established in the introduction, we know that, when p satisfies (5), $S_{n}^{\alpha} f$ converges to $M_{\alpha} f$ in the $L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$-norm; then, $S_{n}^{\alpha} f$ has a subsequence that converges to $M_{\alpha} f$ almost everywhere. Consequently $g=M_{\alpha} f$ and the convergence $S_{n}^{\alpha} f \rightarrow M_{\alpha} f$ almost everywhere is proved under the hypothesis (5).

This is the argument used in [4]. Let us see how to remove the condition $4 / 3<p<4$. For that, we are going to apply the summation process used in [5]. Thus, let us take

$$
R_{n}^{\alpha} f=\frac{\lambda_{0} S_{0}^{\alpha} f+\cdots+\lambda_{n} S_{n}^{\alpha} f}{\lambda_{0}+\cdots+\lambda_{n}}
$$

with $\lambda_{k}=2(\alpha+2 k+2)$. Actually, as established in that paper, this method is equivalent to the one given by the Cesàro means of order 1, but the kernels that appear with R_{n}^{α} are easier to handle, and consequently the use of R_{n}^{α} is more convenient for studying the uniform boundedness of the operators involved (and hence the mean convergence).

In [5] it is proved that, when p satisfies (4) (i.e., without $4 / 3<p<4$), $B_{p, \alpha}=E_{p, \alpha}$ and $R_{n}^{\alpha} f \rightarrow f$ in the $L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$-norm for every $f \in E_{p, \alpha}$. For general $f \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$, we always have $M_{\alpha} f \in E_{p, \alpha}$ (because $M_{\alpha}^{2} f=M_{\alpha} f$). Moreover, by using (3) and $M_{\alpha} j_{k}^{\alpha}=j_{k}^{\alpha}$, it follows that $c_{k}^{\alpha}(f)=c_{k}^{\alpha}\left(M_{\alpha} f\right)$ for every k, and so $R_{n}^{\alpha} f=R_{n}^{\alpha}\left(M_{\alpha} f\right)$. As $R_{n}^{\alpha}\left(M_{\alpha} f\right)$ converges in mean to $M_{\alpha} f$, also $R_{n}^{\alpha} f$ converges in mean to $M_{\alpha} f$. Then, there exists a subsequence of $R_{n}^{\alpha} f$ that converges almost everywhere to $M_{\alpha} f$.

On the other hand, R_{n}^{α} is a regular summation process. Then, by Lemma 2 , given $f \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ with p satisfying (4), we have that $R_{n}^{\alpha} f(x)$ converges for every $x \in(0, \infty)$ to the same function $g(x)$ that is the pointwise limit of $S_{n}^{\alpha} f(x)$.

Thus, for p satisfying (4), we have: a subsequence of $R_{n}^{\alpha} f$ converges almost everywhere to $M_{\alpha} f, S_{n}^{\alpha} f$ converges almost everywhere to g, and $R_{n}^{\alpha} f$ converges almost everywhere to g. From these facts, $g=M_{\alpha} f$ and the theorem is proved.
Open question. What happens for $S_{n}^{\alpha} f$ with $f \in L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ and $1<p \leq p_{0}(\alpha)$? Under these conditions, every $c_{k}^{\alpha}(f)$ exists, so the partial sums $S_{n}^{\alpha} f$ are well defined. Furthermore, Lemma 2 ensures that, pointwise, $S_{n}^{\alpha} f(x)$ converges to some function $g(x)$. But, what is $g(x)$? Let us note that, when $1<p \leq p_{0}(\alpha)$, the bounded multiplier $M_{\alpha}: L^{p}\left(\mathrm{~d} \mu_{\alpha}\right) \rightarrow L^{p}\left(\mathrm{~d} \mu_{\alpha}\right)$ no longer exists.

References

[1] G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed, Cambridge Univ. Press, Cambridge, 1944.
[2] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Tables of Integral Transforms, vol. II, McGraw-Hill, New York, 1954.
[3] J.L. Varona, Fourier series of functions whose Hankel transform is supported on [0, 1], Constr. Approx. 10 (1994) 65-75.
[4] Ó. Ciaurri, J.J. Guadalupe, M. Pérez, J.L. Varona, Mean and almost everywhere convergence of Fourier-Neumann series, J. Math. Anal. Appl. 236 (1999) 125-147.
[5] Ó. Ciaurri, K. Stempak, J.L. Varona, Mean Cesàro-type summability of Fourier-Neumann series, Studia Sci. Math. Hung. 42 (2005) 413-430.
[6] J.A. Barceló, A. Córdoba, Band-limited functions: L^{p}-convergence, Trans. Amer. Math. Soc. 313 (1989) 655-669.
[7] K. Stempak, A weighted uniform L^{p}-estimate of Bessel functions: a note on a paper of Guo, Proc. Amer. Math. Soc. 128 (2000) $2943-2945$.

[^0]: * Corresponding author.

 E-mail addresses: oscar.ciaurri@unirioja.es (Ó. Ciaurri), jvarona@unirioja.es (J.L. Varona).
 URL: http://www.unirioja.es/dptos/dmc/jvarona (J.L. Varona).

