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a b s t r a c t

An uncertainty inequality for the Fourier–Dunkl series, introduced by the authors in
[Ó. Ciaurri, J.L. Varona, AWhittaker–Shannon–Kotel’nikov sampling theorem related to the
Dunkl transform, Proc. Amer. Math. Soc. 135 (2007) 2939–2947], is proved. This result is
an extension of the classical uncertainty inequality for the Fourier series.
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1. Introduction

The classical Heisenberg–Pauli–Weyl inequality states that for f ∈ L2(R),∫
R
x2|f (x)|2dx ·

∫
R
ξ 2 |̂f (ξ)|2dξ ≥

1
4

(∫
R
|f (x)|2dx

)2
,

where f̂ (ξ) = (2π)−1/2
∫

R f (x)e
−ixξdx is the one-dimensional Fourier transform. The previous inequality is a consequence

of a more general one given in terms of the variance. For a function f ∈ L2(R), such that ‖f ‖L2(R) = 1, the variance is defined
as

V (f ) = inf
a∈R

∫
R
(x− a)2|f (x)|2dx.

If the integral defining the variance is finite for one value a, then it is finite for every a ∈ R, and in this case the minimum is
attained when a is the mean of f , given by

∫
R x|f (x)|

2dx = 〈xf , f 〉L2(R). With this definition, it is verified that

V (f ) · V (̂f ) ≥
1
4
,

and, in particular,∫
R
(x− a)2|f (x)|2dx ·

∫
R
(ξ − b)2 |̂f (ξ)|2dξ ≥

1
4

(∫
R
|f (x)|2dx

)2
,
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for any a, b ∈ R. Moreover the equality holds if and only if f (x) = Ceibxe−γ (x−a)
2
, for some C ∈ C and some γ > 0. It is

interesting to observe that we can rewrite the variances in terms of norms in the following manner:

V (f ) = ‖(x− 〈xf , f 〉L2(R))f ‖
2
L2(R),

and, by using that ξ f̂ (ξ) = d̂f
dx (ξ) and the Parseval identity,

V (̂f ) =

∥∥∥∥∥
(
d
dx
−

〈
df
dx
, f
〉
L2(R)

)
f

∥∥∥∥∥
2

L2(R)

.

In the n-dimensional case the uncertainty inequality has the form∫
Rn
|x|2|f (x)|2dx ·

∫
Rn
|ξ |2 |̂f (ξ)|2dξ ≥

n2

4

(∫
Rn
|f (x)|2dx

)2
,

being now f̂ (ξ) = (2π)−n/2
∫

Rn f (x)e
−i〈x,ξ〉dx.

It is well known that whenwe consider radial functions inRn, f (x) = g(‖x‖2), the Fourier transform becomes the Hankel
transform of order n/2− 1. Indeed, taking the Hankel transform of order α, with α ≥ −1/2, as

Hαg(s) =
∫
∞

0
g(r)jα(sr)dωα(r), s > 0,

where dωα(r) = (2αΓ (α + 1))−1r2α+1dr and jα(z) = Γ (α + 1)(z/2)−α Jα(z), Jα being the Bessel function of order α, it is
verified that f̂ (ξ) = Hn/2−1g(‖ξ‖2).
From the n-dimensional version of the classical uncertainty inequality, denoting ‖f ‖pLp(I,dw) =

∫
I |f |

pdw, we have

‖rg(r)‖2L2((0,∞),dωn/2−1)‖sHn/2−1g(s)‖
2
L2((0,∞),dωn/2−1)

≥
n2

4
‖g(r)‖4L2((0,∞),dωn/2−1).

In [1], the general inequality

‖rg(r)‖2L2((0,∞),dωα)‖sHαg(s)‖2L2((0,∞),dωα) ≥ (α + 1)
2
‖g(r)‖4L2((0,∞),dωα) (1)

was shown for α ≥ −1/2. They also prove that the equality holds if and only if g(r) = de−cr
2/2 for some d ∈ C and c > 0.

The result is obtained from a more general uncertainty inequality related to the Dunkl transform on the real line.1
The Dunkl transform on the real line is both an extension of the Hankel transform to the whole real line and a

generalization of the Fourier transform. It is defined by the identity

Fα f (y) =
∫

R
f (x)Eα(−iyx)dµα(x), y > 0,

where

Eα(z) = jα(iz)+
z

2(α + 1)
jα+1(iz)

and dµα(x) = (2α+1Γ (α+1))−1|x|2α+1dx. The Fourier transform corresponds with the case α = −1/2 because E−1/2(z) =
ez and dµ−1/2 is, up to a multiplicative factor, the Lebesgue measure on R. This transform is related to the Dunkl operator
on the real line.
The Dunkl operators on Rn are differential-difference operators associated with some finite reflection groups (see [3]).2

We consider the Dunkl operatorΛα , α ≥ −1/2, associated with the reflection group Z2 on R given by

Λα f (x) =
d
dx
f (x)+

2α + 1
x

(
f (x)− f (−x)

2

)
.

The Dunkl kernel Eα is, for α ≥ −1/2 and λ ∈ C, the unique solution of the initial value problem{
Λα f (x) = λf (x), x ∈ R,
f (0) = 1. (2)

1 The first knownproof of (1) is due to Bowie [2]. In [1], the authors comment, in a final remark, that Prof. R. Askey pointed out to them that an unpublished
proof, using expansions in terms of generalized Hermite polynomials, of the uncertainty inequality for the Hankel transform had been obtained by C. T.
Roosenraad in his Ph. D. Thesis in 1969.
2 The paper [4] is an interesting survey about the general theory of the Dunkl operators. Moreover, in the second part of it, the connection of this kind of
operator with the integrable particle systems of Calogero–Moser–Sutherland type is explained.
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The uncertainty inequality for the Hankel transform is deduced from the corresponding result for the Dunkl transform
in terms of the appropriate variances. Being

var(f ) = ‖(x− 〈xf , f 〉L2(R,dµα))f ‖
2
L2(R,dµα)

and

var(Fα f ) = ‖(Λα − 〈Λα f , f 〉L2(R,dµα))f ‖
2
L2(R,dµα)

,

with the usual notation 〈f , g〉L2(I,dw) =
∫
I f gdw, the main result in [1] is the following one: for ‖f ‖L2(R,dµα) = 1,

var(f ) · var(Fα f ) ≥
((
α +

1
2

)
(‖fe‖L2(R,dµα) − ‖fo‖L2(R,dµα))+

1
2

)2
for functions f in the appropriate space and where fo(x) = (f (x)− f (−x))/2 and fe(x) = (f (x)+ f (−x))/2 are the odd and
the even parts of f respectively. This inequality with α = −1/2 gives the classical Heisenberg–Pauli–Weyl inequality in the
real line. Moreover, using that for an even function f it is verified Fα f (y) = Hα f (|y|), we can deduce (1).
For the classical Fourier series, an uncertainty principle was discussed from a physicist’s point of view in [5]. For a

function f ∈ L2(T, dm) such that ‖f ‖L2(T,dm) = 1, dm =
dz
2π being the normalized Lebesgue measure for the torus, and

f (z) =
∑
k∈Z ckz

k, the frequency variance is defined by

varF (f ) =
∑
k∈Z

k2|ck|2 −

(∑
k∈Z

k|ck|2
)2
.

Defining the mean localization of the function as

τ(f ) =
∫

T
z|f (z)|2dm,

the angular variance of f is given by

varA(f ) = 1− |τ(f )|2.

With this notation, the uncertainty inequality for classical Fourier series establishes that

varA(f ) · varF (f ) ≥
1
4
|τ(f )|2. (3)

Again, it is possible to rewrite the variances associated to the uncertainty principle for the trigonometric expansions in terms
of the scalar product in L2(T, dm), as was done for the Fourier and the Hankel transforms. Indeed, we can check easily that

varA(f ) = ‖(z − 〈zf , f 〉L2(T,dm))f ‖
2
L2(T,dm)

and

varF (f ) =

∥∥∥∥∥
(
d
dz
−

〈
df
dx
, f
〉
L2(T,dm)

)
f

∥∥∥∥∥
2

L2(T,dm)

.

We can find many other uncertainty inequalities associated to orthonormal expansions in the literature. For example,
the result for Fourier series was extended to SO(2)-invariant functions on the sphere S2 in [6]. The extension for Sn was
analyzed in [7]. In this last case, the authors obtained the result as a corollary of an uncertainty inequality for ultraspherical
expansions. For the Jacobi expansions, the topic was discussed in [8]. In the paper [9], an uncertainty inequality for
orthogonal expansions of eigenfunctions of certain Sturm–Liouville operatorswas proved. As a consequence, inequalities for
the Laguerre polynomials and for the generalized Hermite polynomials were given. In the nice short note [10], the question
for the discrete Fourier transform was analyzed. The result in this last paper shows that in a finite-dimensional set-up the
uncertainty principle does not hold in the usual fashion.
In other settings, the analysis of uncertainty principles continues intensively. Very recently, in [11], a weighted

uncertainty inequality has been obtained for the Jacobi transform. The proof of this result follows the guidelines given in
[12], where similar inequalities were established for Lie groups. The main idea is, in both cases, the analysis of a semigroup
generated by a positive self-adjoint operator and it is based on an earlier work of Faris [13].
The purpose of this paper is to prove an uncertainty inequality for the Fourier–Dunkl expansions introduced in [14],

where it was used to conclude a sampling theorem of Shannon type in the setting of the Dunkl transform. The orthonormal
system associated with this kind of series is a generalization of the trigonometric one. The next section will contain
Theorem 1, which is the main result of the paper, and the notation to establish it. Some comments are included in that
section also. In the last section we give a proof of Theorem 1.
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2. The uncertainty inequality for the Fourier–Dunkl expansions

In [14], we introduced the sequence of functions

eα,j(x) =
2α/2(Γ (α + 1))1/2

|jα(sj)|
Eα(isjx), j ∈ Z \ {0}, x ∈ (−1, 1), (4)

and eα,0(x) = 2(α+1)/2(Γ (α+ 2))1/2, where {sj}j∈Z are the zeros of the function Im(Eα(ix)) = x
2(α+1) jα+1(x) (with s−j = −sj

and s0 = 0). Theorem 1 in [14] establishes that {eα,j}j∈Z is a complete orthonormal system in L2((−1, 1), dµα). For each
appropriate function f on (−1, 1), we define its Fourier series related to the system {eα,j}j∈Z, which we will call
Fourier–Dunkl series, as

f ∼
∑
j∈Z

aj(f )eα,j, aj(f ) =
∫ 1

−1
f (y)eα,j(y)dµα(y).

To enounce the uncertainty principle related to the Fourier–Dunkl series, we consider the variances defined by

varαA(f ) = ‖(eα,1 − τα(f ))f ‖
2
L2((−1,1),dµα)

,

where

τα(f ) = 〈eα,1f , f 〉L2((−1,1),dµα),

and

varαF (f ) = ‖(Λα − 〈Λα f , f 〉L2((−1,1),dµα))f ‖
2
L2((−1,1),dµα)

.

Note that these expressions are, essentially, generalizations of the variances for the trigonometric expansions.
With the previous notation we will prove the following result

Theorem 1. For f ∈ C1c (−1, 1), with ‖f ‖L2((−1,1),dµα) = 1, and α ≥ −1/2, there holds

varαA(f )var
α
F (f ) ≥

∣∣∣∣ s12 τα(f )−
∫ 1

−1

2α + 1
x

Im(eα,1(x))|fo(x)|2dµα(x)
∣∣∣∣2 , (5)

where fo denotes the odd part of the function f .

The inequality (5) can be written in a more usual way involving the Fourier–Dunkl coefficients of the given function.
It is clear that

varαA(f ) =
∫ 1

−1
|eα,1(x)f (x)|2dµα(x)− |τα(f )|2.

Moreover, if a function f ∈ C2c (−1, 1) has the Fourier–Dunkl expansion

f (x) =
∑
j∈Z

aj(f )eα,j(x), aj(f ) =
∫ 1

−1
f (y)eα,j(y)dµα(y),

we conclude

varαF (f ) = |〈Λ
2
α f , f 〉| − |〈Λα f , f 〉|

2

=

∑
j∈Z

s2j |aj(f )|
2
−

(∑
j∈Z

(sgn j)sj|aj(f )|2
)2
.

The previous facts prove the next corollary.

Corollary 1. For α ≥ −1/2 and f ∈ L2((−1, 1), dµα), with ‖f ‖L2((−1,1),dµα) = 1, the inequality(∫ 1

−1
|eα,1(x)f (x)|2dµα(x)− |τα(f )|2

)∑
j∈Z

s2j |aj(f )|
2
−

(∑
j∈Z

(sgn j)sj|aj(f )|2
)2

≥

∣∣∣∣ s12 τα(f )−
∫ 1

−1

2α + 1
x

Im(eα,1(x))|fo(x)|2dµα(x)
∣∣∣∣2

holds.

The extension to functions in L2((−1, 1), dµα) can be done by using a standard density argument.
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Remark 1. By using that E−1/2(z) = eiz , it is easy to check that

e−1/2,j(x) =
(π
2

)1/4
eijπx, j ∈ Z.

So, {e−1/2,j} is, up to a multiplicative constant, the trigonometric system associated to the classical Fourier series.
For a function g ∈ L2(T, dm), with unitary norm, we can consider the function f (x) =

(
π
2

)1/4 g(eiπx) ∈ L2((−1, 1),
dµ−1/2). With this definition, it is easy to check that ‖f ‖L2((−1,1),dµ−1/2) = ‖g‖L2(T,dm) = 1. From this fact, using the identities

|τ−1/2(f )|2 =
√
π

2
|τ(g)|2,

‖e−1/2f ‖2L2((−1,1),dµ−1/2) =
√
π

2
‖zg(z)‖2L2(T,dm) =

√
π

2
,

var−1/2A (f ) =
√
π

2
varA(g),

var−1/2F (f ) = π2 varF (g) = s21 varF (g),

we can deduce (3) from (5).

Remark 2. When we consider real even and odd functions the Fourier–Dunkl series can be seen as Fourier–Dini and
Fourier–Bessel series respectively. From this fact, applying Theorem 1 to even or odd functions, we can deduce uncertainty
inequalities for these kinds of series.

3. Proof of Theorem 1

Some technical facts are needed to prove Theorem 1. They are included in the next lemma.

Lemma 1. For α ≥ −1/2, the following statements hold:

(a) Λαeα,j = isjeα,j.
(b) For functions f ∈ C1c (−1, 1),

Λα(|f |2)(x) = 2 Re(f (x)Λα f (x))−
2(2α + 1)

x
|fo(x)|2.

(c) For functions f , g ∈ C1c (−1, 1),

〈Λα f , g〉L2((−1,1),dµα) = −〈f ,Λαg〉L2((−1,1),dµα).

Proof. (a) is a consequence of (2), the initial value problem satisfied by the function Eα used to define the system {eα,j}j∈Z.
The proof of (b) is elementary. To conclude (c) it is enough apply integration by parts in the integral defining the scalar
product. �

Proof of Theorem 1. Using the Cauchy–Schwarz inequality we have

varαA(f )var
α
F (f ) ≥

∣∣∣∣∫ 1

−1
(eα,1(x)− τα(f ))f (x)(Λα f (x)− 〈Λα f , f 〉L2((−1,1),dµα)f (x))dµα(x)

∣∣∣∣2
=

∣∣∣∣∫ 1

−1
(eα,1(x)− τα(f ))f (x)Λα f (x)dµα(x)

∣∣∣∣2 . (6)

In a similar way we obtain

varαA(f )var
α
F (f ) ≥

∣∣∣∣∫ 1

−1
(eα,1(x)− τα(f ))f (x)Λα f (x)dµα(x)

∣∣∣∣2 . (7)

Now, adding (6) and (7) and using (b) in Lemma 1, we get

varαA(f )var
α
F (f ) ≥

∣∣∣∣∫ 1

−1
(eα,1(x)− τα(f )) Re(f (x)Λα f (x))dµα(x)

∣∣∣∣2
=

∣∣∣∣∫ 1

−1
(eα,1(x)− τα(f ))

(
1
2
Λα|f (x)|2 +

2α + 1
x
|fo(x)|2

)
dµα(x)

∣∣∣∣2 . (8)
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With the identities in (b) and (a) of Lemma 1, it follows that∫ 1

−1
(eα,1(x)− τα(f ))Λα|f (x)|2dµα(x) = −

∫ 1

−1
Λα(eα,1(x)− τα(f ))|f (x)|2dµα(x)

= −is1

∫ 1

−1
eα,1(x)|f (x)|2dµα(x)

= −is1〈eα,1f , f 〉L2((−1,1),dµ).

Taking into account that Re(eα,1(x)) is even and Im(eα,1(x)) is odd, the equality∫ 1

−1
(eα,1(x)− τα(f ))

2α + 1
x
|fo(x)|2dµα(x) = i

∫ 1

−1

2α + 1
x

Im(eα,1(x))|fo(x)|2dµα(x)

holds. In this manner, we conclude the proof by substituting the two previous identities in the last line of (8). �
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