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Abstract

We obtain results on convergence of Padé approximants of Stieltjes-type mero-

morphic functions and relative asymptotics for orthogonal polynomials on un-

bounded intervals. These theorems extend other results of Guillermo López

changing the Carleman condition in his theorems by the determination of the

corresponding moment problem. Our technique allows us to stretch other results

obtained by López.
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1. Introduction and notations

Two of the most striking papers of Guillermo López have been [11] and [12].

In the first, he solved a conjecture posed by A. A. Gonchar 10 years earlier about

the convergence of Padé approximants of Stieltjes-type meromorphic functions.

Gonchar [8] proved the convergence of Padé approximants to Markov-type mero-

morphic function whose measure α is supported on a bounded interval of the

real line, and α′ > 0 a. e. in this interval. Later on, Rakhmanov [16] showed
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that the convergence does not hold for arbitrary positive measure on R. In

[11] López gave a very general sufficient condition to get convergence of Padé

approximants for Stieltjes-type meromorphic functions (the measure can have

unbounded support on R). The main idea of López is to reduce the problem to

study orthogonal polynomial on the unit circle with respect to varying measures.

In [12] López showed that orthogonal polynomials with respect to varying

measures are an effective tool not only for solving problems on rational ap-

proximation but also for studying questions on orthogonal polynomials involv-

ing fixed measures and observed that orthogonal polynomials with respect to

varying measures on the unit circle provide a unified approach to the study of

orthogonal polynomials on bounded and unbounded intervals. There he obtains

relative asymptotics for orthogonal polynomials on unbounded intervals.

In this paper we extend the results of López in [11] and [12]; here we change

the Carleman condition on the moments of the measure by the corresponding

moment problem is determinate. This hypothesis carries a thorough analysis of

the method developed by López in [11] and [12]. Our main ideas are the use of

rational approximation in the unit circle and the relation between determination

of moment problem and one side approximation.

Let α̂ denote the Cauchy-Stieltjes transform of α

α̂(z) =
∫

1
z − x

dα(x), z ∈ D = C \ [0,+∞),

where α is a positive Borel measure on [0,∞) with finite moments,
∫
xk dα(x) <

∞, k = 0, 1, . . . By M0 we denote the class of positive Borel measure on [0,∞)

with finite moments such that the Stieltjes moment is determinate. Let r be a

rational function whose poles lie on D and r(∞) = 0. Let

f(z) = α̂(z) + r(z), z ∈ D. (1)

Given n ∈ Z+, the Padé approximant, πn(z) = pn(z)
qn(z) , of order n at infinite of f
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satisfies:

• pn and qn are polynomials with deg(pn) ≤ n, deg(qn) ≤ n, qn 6≡0.

• qn(z)f(z)− pn(z) =
∑∞

j=n+1An,j/z
j .

The difficulty of the study of convergence of Padé approximant for Stielt-

jes meromorphic function can be valued by the fact that the Stieltjes moment

problem for the measure α can be determinate, so the corresponding Padé ap-

proximants of α̂ converge to the Stieltjes transform α̂; nevertheless after a mass

ε has been added at the origin, the new measure generates an indeterminate

Stieltjes problem and its Padé approximants can not converge to the corre-

sponding Stieltjes transform, α̂(z) + ε
z (see [10]); another interesting example

can be founded in [16]. We obtain the following result:

Theorem 1. If α ∈ M0 and α′ > 0 almost everywhere on (0,∞), then

limn πn = f uniformly on each compact subset of D \ {z : r(z) = ∞} .

Under more restrictive assumption on the measure α this theorem was proved

by López in [11]. He assumes that the moments of the measure α satisfy the

Carleman condition. This is a very well known sufficient conditions for the

determinacy of the Stieltjes moment problem. Our technique allows us to ex-

tend another results obtained by López changing the Carleman condition by the

determination of the corresponding moment problem. The another most impor-

tant extension is the following theorem on relative asymptotics for orthogonal

polynomials on R. A simple example does not cover by López’s condition but

cover by our assumptions is the measure on R with image measure on [0,∞) by

b(x) = x2 equal to e−xλ

Γ(1/λ)dx, 1/2 ≤ λ < 1, x ∈ (0,∞) (see Section 2 for further

details).

Theorem 2. Let M denote the class of positive Borel measure on R with finite

moments whose Hamburger moment problem is determinate. Let ν ∈ M be
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such that ν′ > 0 almost everywhere in R and let g ∈ L1(R) be such that g ≥ 0,

g dν ∈M, and there exist a polynomial Q and p ∈ N such that Q(x)g(x)
(1+x2)p ∈ L∞(ν).

Then

lim
n→∞

Hn(gdν, z)
Hn(ν, z)

=
S(g,Ω, z)
S(g,Ω, i)

,

uniformly on each compact subset of Ω = {z ∈ C : =z > 0}, where Hn(g dν, z),

Hn(ν, z) are the orthogonal polynomials of degree n with respect to g(x) dν(x)

and ν, respectively, normalized by the condition that both are equal to 1 at i,

and

S(g,Ω, z) = exp
(

1
2πi

∫
R

log g(x)
xz + 1
z − x

dx

x2 + 1

)
, z ∈ Ω,

is the Szegő function for g with respect to the region Ω.

Theorem 1 is proved in Section 4, the proof of Theorem 2 is included in

Section 5, the auxiliary results on moment problem appear in Section 2, and

Section 3 contains the study of orthogonal polynomials with respect to varying

measures.

2. Moment problem and one side approximation

Example. First, we observe that there exist measures satisfying conditions

in the Theorem 2 whose moments do not satisfy the Carleman condition. Let

1
2 ≤ λ < 1, if

dσλ(x) =
e−xλ

Γ(1/λ)
dx, x ∈ (0,∞),

then sn =
∫∞
0
xndσλ(x) = Γ((n+1)λ)

λ Γ(1/λ) , so using Stirling’s asymptotic formula we

have that s1/n
n ∼ k n1/λ, where k is a constant, and

∑∞
n=1

1

s
1/2n
n

= ∞ for 1
2 ≤

λ < 1; so by the Carleman condition (for the Stieltjes case) the Stieltjes moment

problem is determinate. The symmetric measures σb
λ on R, whose image measure

in (0,∞) by b(x) = x2 is σλ, has Hamburger moment determinate (see [4] or [10])

and their moments s̃2n = sn, s̃2n+1 = 0 does not satisfy the Carleman condition
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for Hamburger moment problem (
∑∞

n=1
1

s̃
1/2n
2n

<∞ since s̃1/(2n)
2n ∼ k̃ n1/(2λ) and

1
2 ≤ λ < 1). Sometime we use the notation σλ(x2) = σb

λ(x), x ∈ R.

Denote Γ = {ζ ∈ C : |ζ| = 1}. For β ∈M, let µβ be the image measure of β

in the unit circle by ψ1(z) =
(
i z+1
z−1

)
. Observe that the function x = i z+1

z−1 , z ∈

Γ\{1}, x ∈ R, has inverse z = x+i
x−i . Let MΓ be the class of measure µ on Γ such

that the image measure βµ ∈M. The above change of variables establishes an

one to one correspondence between M and MΓ.

We will use the following Riesz’s lemmas (see [5], page 73, or [18] for the

proof of Lemma 1; and [3], Corollary 3.4. there, or [19] for Lemma 2).

Lemma 1. Suppose that β ∈ M and f is a continuous functions on R such

that there exist constants A > 0, B > 0 and j ∈ Z+ such that

|f(x)| ≤ A+B x2j , x ∈ R.

Then for every ε > 0 there exists N ∈ N such that for any n ≥ N there are

algebraic polynomials un and vn such that deg(un) ≤ n, deg(vn) ≤ n and

un(x) ≤ f(x) ≤ vn(x), ∀x ∈ R,
∫

(vn(x)− un(x)) dβ(x) < ε.

Lemma 2. Suppose that β ∈M and β is non-discrete. Then for every z0 ∈ C

and for every j ∈ N, |x− z0|2jdβ ∈M.

We are also interesting in the case when j < 0 and z0 = i in the Lemma above

(|x− i|2j = 1
(1+x2)−j ). The same conclusion of the lemma above is obtained for

j < 0 in the following two lemmas.

Lemma 3. (see [1], p. 43 or [18]) If β ∈ M, the polynomials are dense in

L2(β).

Lemma 4. (see [18]) Let β be a positive Borel measure on R with finite mo-

ments. Then µ ∈M if and only if the polynomials are dense in L2((1+x2)dµ).
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Let g be a real continuous function on Γ\{1} such that there exist constants

C > 0, D > 0 and j ≥ 0 such that

|g(z)| ≤ C +D
1

|z − 1|2j
, z ∈ Γ \ {1}.

Lemma 5. Let k ∈ Z. Under assumption above on g, given µ ∈MΓ, ε > 0, and

k ∈ Z, there exist two polynomials un+k = un+k(z, z−1), vn+k = vn+k(z, z−1)

such that deg(un+k) ≤ n + k, deg(vn+k) ≤ n + k in each variables z and z−1

and

un+k(z, z−1)
|z − 1|2n

≤ g(z) ≤ vn+k(z, z−1)
|z − 1|2n

, z ∈ Γ \ {1},∫
vn+k(z, z−1)− un+k(z, z−1)

|z − 1|2n
dµ(z) < ε.

Proof. Applying the Lemmas 1–4 to

f(x) =
g
(

x+i
x−i

)
∣∣∣(x+i

x−i

)
− 1
∣∣∣2k

= g

(
x+ i

x− i

)
|x− i|2k

22k
,

and

dβ(x) =
22kdβµ(x)
|x− i|2k

, x ∈ R,

given ε > 0, we obtain polynomials un+k, vn+k of degree at most n+k such that

un+k(x) ≤ f(x) ≤ vn+k(x), x ∈ R,
∫

(vn+k(x)− un+k(x))
22kdβµ(x)
|x− i|2k

< ε.

Changing variables, x = i z+1
z−1 , z ∈ Γ, the above relations are transformed into

un+k

(
i
z + 1
z − 1

)
≤ g(z)
|z − 1|2k

≤ vn+k

(
i
z + 1
z − 1

)
, z ∈ Γ \ {1},∫ (

vn+k

(
i
z + 1
z − 1

)
− un+k

(
i
z + 1
z − 1

))
|z − 1|2kdµ(z) < ε.

Since(
i
z + 1
z − 1

)j

=
(i(z + 1)( 1

z − 1))j |z − 1|2n+2k−2j

|z − 1|2n+2k
=

= (−1)j+122n+2k−j sinj θ(1− cos θ)n+k−j

|z − 1|2n+2k
, z ∈ Γ, z = eiθ,
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the above relations are equivalent to there exist polynomials

ũn+k(z, z−1), ṽn+k(z, z−1)

of degree at most n+ k in each variables z and z−1 such that

ũn+k(z, z−1)
|z − 1|2n

≤ g(z) ≤ ṽn+k(z, z−1)
|z − 1|2n

, z ∈ Γ \ {1},∫
ṽn+k(z, z−1)− ũn+k(z, z−1)

|z − 1|2n
dµ(z) < ε.

�

If ρ ∈M0 and ρb is the measure on R with the image measure ρ on [0,∞) by

the function b(x) = x2, x ∈ R, then ρb ∈M and if, moreover, ρ is a non-discrete

measure, then the Hamburger moment problem is also determinate and for all

j ∈ Z, (1 + x)jdρ(x) ∈ M0 (see [4]); these results are stated in the following

lemmas:

Lemma 6. If ρ ∈ M0 and ρ is a non-discrete measure, then ρ ∈ M and for

all j ∈ Z, (1 + x)jdρ(x) ∈M0.

Lemma 7. If ρ ∈ M0 and ρb is the measure on R with the image measure ρ

on [0,∞) by the function b(x) = x2, x ∈ R, then ρb ∈M.

3. Orthogonal polynomials for varying measure

Let µ be a positive Borel measure on Γ with infinite points in its support

and the sequence of measures

dµn(z) =
dµ(z)
|z − 1|2n

, z ∈ Γ, n ∈ N;

we assume that for each n ∈ N and k ∈ Z+ we have zk ∈ L1(µn). So we can

put each pair (n,m) of natural numbers in correspondence with a polynomial
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ϕn,m(z) = κn,mz
m + . . . (with positive leading coefficient κn,m = κm(µn)) of

degree m, orthonormal with respect to the measure µn:∫
Γ

zk ϕn,m(z) dµn(z) = 0, k = 0, . . . ,m− 1,
1
2π

∫
Γ

|ϕn,m(z)|2 dµn(z) = 1.

Let Φn,m(z) = 1
κn,m

ϕn,m(z) denote the monic orthogonal polynomials of de-

gree m. In some case we shall do explicitly reference to the measure writing

ϕm(µn, z) = ϕn,m(z). The following relations are well known:

Φn,m+1(z) = zΦn,m(z) + Φn,m+1(0)Φ∗n,m(z), (2)

κn,m

κn,m+1
ϕn,m+1(z) = zϕn,m(z) + Φn,m+1(0)ϕ∗n,m(z), (3)

κ2
n,m

κ2
n,m+1

= 1− |Φn,m+1(0)|2; (4)

moreover, we have |Φn,m+1(0)| < 1 and the zeros of ϕn,m lie in the disk |z| < 1.

Here after, if p is a polynomial of degree m, p∗(z) = zmp(1/z).

We need also the following well known Geronimus’ identity (see [7], or [5],

p. 198). ∫
Γ

zj |dz|
|ϕn,m(z)|2

=
∫

Γ

zj dµn(z), j = 0,±1, . . . ,±m. (5)

Let µ′ denote the Radon-Nykodym derivative of µ with respect to the Lebes-

gue measure (|dz|) on Γ. Let µ(z) = µ′(z)|dz|+ µs(z) be the Lebesgue decom-

position of µ; if µ′ > 0 almost everywhere on Γ, we can consider that µ′ = ∞

(⇔ 1
µ′(z) = 0) on the support of µs which has Lebesgue’s measure equal to zero.

We use the notations ‖g‖Lp(µ) = ( 1
2π

∫
|g|pdµ)1/p and L1 = L1(|dz|). Our main

result in this section is the ratio asymptotics limn→∞
ϕn,n+k+1(z)
ϕn,n+k(z) ; for this aim

we need the following two lemmas.

Lemma 8. Let k ∈ Z. If µ′ > 0 a.e. on Γ, then∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

≤ 2 min


∥∥∥∥∥
∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

∥∥∥∥∥
L2(µ)

: wn+k ∈ Pn+k

 ,

(6)
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where Pn+k denotes the set of polynomials of degree at most n + k. Moreover,

if βµ(x) = µ
(

x+i
x−i

)
∈M, then

lim
n→∞

∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

= 0. (7)

Proof.

Let wn+k ∈ Pn+k. Using that (µ′)−1/p ∈ Lp(µ), and the Cauchy-Schwarz

inequality, we have∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

≤

∥∥∥∥∥
∣∣∣∣ ϕn,n(z)
(z − 1)n

∣∣∣∣2 − 1√
µ′(z)

∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣
∥∥∥∥∥

L1(µ)

+

∥∥∥∥∥ 1√
µ′(z)

∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1
µ′(z)

∥∥∥∥∥
L1(µ)

=

∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣
(∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣− 1√
µ′(z)

∣∣∣∣ wn+k(z)
ϕn,n+k(z)

∣∣∣∣
)∥∥∥∥∥

L1(µ)

+

∥∥∥∥∥ 1√
µ′(z)

(∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

)∥∥∥∥∥
L1(µ)

≤

∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣− 1√
µ′(z)

∣∣∣∣ wn+k(z)
ϕn,n+k(z)

∣∣∣∣
∥∥∥∥∥

L2(µ)

+

∥∥∥∥∥
∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

∥∥∥∥∥
L2(µ)

.

But taking (5) into account, we obtain∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣− 1√
µ′(z)

∣∣∣∣ wn+k(z)
ϕn,n+k(z)

∣∣∣∣
∥∥∥∥∥

2

L2(µ)

=

= 1− 2
2π

∫ 2π

0

∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣√µ′(z) dθ +
1
2π

∫ 2π

0

∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣2 dµ(z) =

=

∥∥∥∥∥
∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

∥∥∥∥∥
2

L2(µ)

.

Hence, ∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

≤ 2

∥∥∥∥∥
∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

∥∥∥∥∥
L2(µ)

.

This proves (6).
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Now, let us show (7). The set of continuous functions is dense in L2(µ). The

function 1/
√
µ′ belongs to L2(µ) and is nonnegative, hence it can be approx-

imated in the metric of this space by positive continuous functions. In turn,

using that a positive trigonometric polynomial v(z, z−1) of degree n + k can

be written as v(z, z−1) = |wn+k(z)|2 with wn+k ∈ Pn+k (see [5], p. 211), and

by Lemma 5 every positive continuous function on Γ can be approximated by

functions of the form
∣∣∣wn+k(z)

(z−1)n

∣∣∣
lim

n→∞
min


∥∥∥∥∥
∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

∥∥∥∥∥
L2(µ)

: wn+k ∈ Pn+k

 = 0.

and by (6) the proof is concluded.

�

The following lemma for fixed measure can be founded in [17].

Lemma 9.

|Φn,n+k(0)| ≤

∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

Proof. Set an+k = −Φn,n+k(0) and Sn(z) = <
(
an+kzϕn,n+k(z)/ϕ∗n,n+k(z)

)
,

comparing the squares of the modulus of the left-hand and right-hand sides of

(3) on Γ, we obtain

κ2
n,n+k

κ2
n,n+k+1

|ϕn,n+k+1(z)|2 =

= |ϕn,n+k(z)|2 − 2<
(
an+kzϕn,n+k(z)ϕ∗n,n+k(z)

)
+ |an+k|2|ϕn,n+k(z)|2 =

=
(
1 + |an+k|2

)
|ϕn,n+k(z)|2 − 2Sn(z)|ϕn,n+k(z)|2, z ∈ Γ.

Integrating with respect to dµ(z)
2π|z−1|2n and using (4), we obtain the representation

|an+k|2 =
1
2π

∫
Γ

Sn(z)
|ϕn+k(z)|2

|z − 1|2n
dµ(z).
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Since
∫
Γ
Sn(z)|dz| = 0 and |Sn(z)| ≤ |an+k|, z ∈ Γ, it follows that

|an+k|2 =
1
2π

∫
Γ

Sn(z)
(
|ϕn+k(z)|2

|z − 1|2n
µ′(z)− 1

)
|dz|+ 1

2π

∫
Γ

Sn(z)
|ϕn+k(z)|2

|z − 1|2n
dµs(z)

≤ |an+k|

(∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 µ′(z)− 1

∥∥∥∥∥
L1

+
1
2π

∫
Γ

|ϕn+k(z)|2

|z − 1|2n
dµs(z)

)

= |an+k|

∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

This proves the lemma. �

Combining Lemmas 8 and 9, and the relations (2)–(4) we obtain:

Theorem 3. If µ ∈ MΓ and µ′ > 0 almost everywhere on Γ, then for each

k ∈ Z, we have

lim
n→∞

Φn,n+k+1(z)
Φn,n+k(z)

= lim
n→∞

ϕn,n+k+1(z)
ϕn,n+k(z)

= z,

uniformly on each compact subset of {z ∈ C : 1 ≤ |z|};

lim
n→∞

Φn,n(z)
Φ∗n,n(z)

= lim
n→∞

ϕn,n(z)
ϕ∗n,n(z)

= 0, (8)

uniformly on each compact subset of {z : |z| < 1}; and

lim
n→∞

κn,n+k+1

κn,n+k
= 1, lim

n→∞
Φn,n+k(0) = 0.

Remark 1. Using quantitative results on polynomial approximation (for results

on quantitative one side polynomial approximation on R see, for example, [6]),

and Lemmas 8 and 9 we can estimate the rate of convergence of the Φn,n+k(0)

to 0.

Remark 2. In [2] (Lemma 2) it is proved that condition (8) implies that

for all continuous function A on Γ there exist two sequences of polynomials

{un+k(z)}∞n=1, {vn+k(z)}∞n=1 with deg un+k(z) ≤ n + k, deg vn+k(z) ≤ n + k,

such that

lim
n→∞

max
{∣∣∣∣A(z)−

un+k(z) + vn+k( 1
z )

|ϕn,n+k(z)|2

∣∣∣∣ : z ∈ Γ
}

= 0. (9)
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Moreover, if f is nonnegative on Γ we can find polynomials un+k(z), n ∈ N,

such that

lim
n→∞

max

{∣∣∣∣∣A(z)−
∣∣∣∣un+k(z)
ϕn+k(z)

∣∣∣∣2
∣∣∣∣∣ : z ∈ Γ

}
= 0. (10)

Because of Lemma 8 and∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

=

=
1
2π

∫ ∣∣∣∣∣
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∣∣∣∣∣µ′(z)|dz|+ 1
2π

∫ ∣∣∣∣∣
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∣∣∣∣∣ dµs(z) =

=
1
2π

∫ ∣∣∣∣∣
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 µ′(z)− 1

∣∣∣∣∣ |dz|+ 1
2π

∫ ∣∣∣∣ϕn,n+k(z)
(z − 1)n

∣∣∣∣2 dµs(z)

we obtain:

Lemma 10. If µ ∈MΓ and µ′ > 0 almost everywhere on Γ, we have

lim
n→∞

∫
Γ

∣∣∣∣∣
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 µ′(z)− 1

∣∣∣∣∣ |dz| = 0,

lim
n→∞

∫
Γ

∣∣∣∣∣∣∣∣ϕn,n+k(z)
(z − 1)n

∣∣∣∣√µ′(z)− 1
∣∣∣∣2 |dz| = 0. (11)

Therefore, for any A ∈ L∞(µ)

lim
n→∞

∫
Γ

A(z)
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 µ′(z) |dz| = ∫ A(z) |dz|,

lim
n→∞

∫
Γ

f(z)
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 dµ(z) =
∫
f(z) |dz|.

The proof of (11) can be seen in Lemma 2 of [12]. The above lemma for

fixed measures appears in [15] (see [15], Theorem 2.1 and Corollaries 2.2 and

5.1).

Lemma 11. Let µ be a positive Borel measure on Γ with µ′ > 0 a. e. on Γ,

and let h ≥ 0, h ∈ L1(µ).
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(a) If, in addition, h dµ ∈ MΓ and there exists a polynomial Q such that

|Q|h−1 ∈ L∞(µ), then, for each k ∈ Z and any continuous function A

on Γ,

lim
n

∫
Γ

A(z)|Q(z)|2
∣∣∣∣ϕn+k(hdµn, z)
ϕn+k(µn, z)

∣∣∣∣2 |dz| = ∫
Γ

A(z)|Q(z)|2h−1(z) |dz|.

(b) If, instead, µ ∈ MΓ and there exists a polynomial Q such that |Q|h ∈

L∞(µ), then, for each k ∈ Z and any continuous function A on Γ,

lim
n

∫
Γ

A(z)|Q(z)|2
∣∣∣∣ ϕn+k(µn, z)
ϕn+k(hdµn, z)

∣∣∣∣2 |dz| = ∫
Γ

A(z)|Q(z)|2h(z) |dz|.

Proof: Assertions (a) and (b) are proved using the same arguments; we will

carry out the proof of (a). Note that from condition (a) (see Remark 2) it

follows that there exists a rational sequence { un+k(z,1/z)
|ϕn+k(h dµn,z)|2 } which converges

to A|Q|2 uniformly on Γ, where un+k(z, 1/z) is a polynomial of degree at most

n+ k in both variables z and 1/z, so using Geronimus’ identity (5) and Lemma

10, we have

lim
n

∫
Γ

A(z)|Q(z)|2
∣∣∣∣ϕn+k(hdµn, z)
ϕn+k(µn, z)

∣∣∣∣2 |dz| =
= lim

n

∫
Γ

un+k(z, 1/z)
|ϕn(h dµn, z)|2

∣∣∣∣ϕn+k(hdµn, z)
ϕn+k(µn, z)

∣∣∣∣2 |dz| =
= lim

n

∫
Γ

un+k(z, 1/z)
|ϕn+k(µn, z)|2

|dz| = lim
n

∫
Γ

un+k(z, 1/z) dµn(z) =

= lim
n

∫
Γ

h−1(z)
un+k(z, 1/z)
|ϕn(h dµn, z)|2

|ϕn(h dµn, z)|2h(z) dµn(z) =

=
∫

Γ

A(z)|Q(z)|2h−1(z) |dz|.

�

Remark 3. Following the same method of López in [12] we can obtain the

Lemma 11 when A is any Riemann integrable function Γ.

Another result of independent interest is the weak star limit of |z−1|2n

|ϕn,n+k(z)|2 .
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Theorem 4. If µ ∈ MΓ and µ′ > 0 almost everywhere on Γ, then for each

k ∈ Z we have

lim
n→∞

∫
Γ

A(z)
|z − 1|2n

|ϕn,n+k(z)|2
|dz| = lim

n→∞

∫
Γ

A(z) dµ(z), (12)

for all continuous function A on Γ; it means that the weak star limit of |z−1|2n

|ϕn,n+k(z)|2

is µ.

Proof. Taking real and imaginary part we can assume that A is a real function.

Actually we proof a more general result: “for all real continuous function A in

Γ \ {1} such that there exists constants Ã > 0, B̃ > 0 and j ∈ Z such that

|A(z)| ≤ Ã+
B̃

|z − 1|2j
, z ∈ Γ \ {1},

the relation (12) holds.”

Let k and f fixed. Using Lemma 5 given ε > 0 we can found polynomials

un+k = un+k(z, z−1) and vn+k = vn+k(z, z−1) of degree at most n+k such that

un+k(z, z−1)
|z − 1|2n

≤ A(z) ≤ vn+k(z, z−1)
|z − 1|2n

, z ∈ Γ \ {1},∫
Γ

(vn+k(z, z−1)− un+k(z, z−1))dµn(z) < ε

Moreover, using Geronimus’ identity (5) we obtain∫
Γ

un+k(z, z−1) dµn(z) =
∫

Γ

un+k(z, z−1)
|z − 1|2n

|z − 1|2n

|ϕn,n+k(z)|2
|dz| ≤

≤
∫

Γ

A(z)
|z − 1|2n

|ϕn,n+k(z)|2
|dz| ≤

∫
Γ

vn+k(z, z−1)
|z − 1|2n

|z − 1|2n

|ϕn,n+k(z)|2
|dz| =

=
∫

Γ

vn+k(z, z−1) dµn(z)

and ∫
Γ

un+k(z, z−1) dµn(z) ≤
∫

Γ

A(z) dµ(z) ≤
∫

Γ

vn+k(z, z−1) dµn(z)

Therefore ∣∣∣∣∫
Γ

A(z)
|z − 1|2n

|ϕn,n+k(z)|2
|dz| −

∫
Γ

A(z) dµ(z)
∣∣∣∣ < ε.
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Now, we can obtain the relative asymptotics of orthogonal polynomials. The

following result under more restrictive assumptions on the measure µ and on

the function h was proved by López in [12].

Theorem 5. Let µ ∈MΓ such that µ′ > 0 a. e. Let h be such that h dµ ∈MΓ

and there exists a polynomial Q such that |Q|h±1 ∈ L∞(µ). Then for each k ∈ Z

we have

lim
n

ϕn+k(hdµn, z)
ϕn+k(µn, z)

= S(h, {|ζ| > 1}, z),

uniformly in each compact subset of {z ∈ C : |z| > 1}, where

S(h, {|ζ| > 1}, z) = exp
(

1
4π

∫
Γ

log h(ζ)
ζ + z

ζ − z
dζ

)
is the Szegő function of h in {z ∈ C : |z| > 1}.

Proof: It will be more convenient for us to prove the equivalent relation

lim
n

ϕ∗n+k(hdµn, z)
ϕ∗n+k(µn, z)

= S∗(z), |z| < 1.

where S∗(z) = S(h, {|ζ| > 1}, 1/z). Using Theorem 3 it is sufficient to prove the

above relation for k = 0. Without loss of generality, we can consider that the

polynomial Q in the assumptions of the theorem has no zeros inside the disk

{|z| < 1} and, therefore, Q(z)ϕ∗n+k(hdµn,z)

ϕ∗n+k(µn,z) is an analytic function in {|z| < 1}

and Q(z)ϕ∗n+k(hdµn,z)

ϕ∗n+k(µn,z) 6= 0, |z| < 1. Then, according to Poisson’s formula,

log
∣∣∣∣Q(z)ϕ∗n+k(hdµn, z)

ϕ∗n+k(µn, z)

∣∣∣∣2 =
1
2π

∫
Γ

log
∣∣∣∣Q(ζ)ϕ∗n+k(hdµn, ζ)

ϕ∗n+k(µn, ζ)

∣∣∣∣2 P (z, ζ) |dζ|,

where P (z, ζ) = 1−|z|2
|ζ−z|2 is the Poisson kernel. Using Jensen’s inequality, we

obtain∣∣∣∣Q(z)ϕ∗n+k(hdµn, z)
ϕ∗n+k(µn, z)

∣∣∣∣2 ≤ 1
2π

∫
Γ

∣∣∣∣Q(ζ)ϕ∗n+k(hdµn, ζ)
ϕ∗n+k(µn, ζ)

∣∣∣∣2 P (z, ζ) |dζ|,
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Since |ϕ∗n+k(µn, ζ)| = |ϕn+k(µn, ζ)|, |ϕ∗n+k(hdµn, ζ)| = |ϕn+k(hdµn, ζ)|, |ζ| = 1

and using Lemma 11 we obtain

lim sup
n

∣∣∣∣Q(z)ϕ∗n+k(hdµn, z)
ϕ∗n+k(µn, z)

∣∣∣∣2 ≤ 1
2π

∫
Γ

h−1(ζ) |Q(ζ)|2 P (z, ζ) |dζ|, |z| < 1,

(13)

which in turn yields that the sequence {ϕ∗n+k(hdµn,z)

ϕ∗n+k(µn,z) } is uniformly bounded

inside (on each compact subset) of the disk {|z| < 1} (we recall that Q has no

zeros in {|z| < 1}). Let us consider an arbitrary subsequence Λ ⊂ N such that

{ϕ∗n+k(hdµn,z)

ϕ∗n+k(µn,z) : n ∈ Λ} converges and denote its limit by SΛ. In virtue of what

was said above, it is sufficient for us to prove that for any such sequence Λ we

have S∗ = SΛ. Let r ∈ (0, 1) be arbitrary. Using Lemma 11 once more, we

obtain

1
2π

∫
Γ

|Q(rζ)SΛ(rζ)|2 |dζ| = lim
n∈Λ

1
2π

∫
Γ

∣∣∣∣Q(rζ)ϕ∗n+k(hdµn, rζ)
ϕ∗n+k(µn, rζ)

∣∣∣∣2 |dζ|
≤ lim

n∈Λ

1
2π

∫
Γ

∣∣∣∣Q(ζ)ϕ∗n+k(hdµn, ζ)
ϕ∗n+k(µn, ζ)

∣∣∣∣2 |dζ| = lim
n∈Λ

1
2π

∫
Γ

h−1(ζ) |Q(ζ)|2 |dζ|.

Thus, QSΛ ∈ H2({|z| < 1}), and therefore the limit limr→1Q(rζ)S∗Λ(rζ) exists

almost everywhere for ζ ∈ Γ. On the other hand, according to (13), for each

fixed z ∈ Γ, we have

|Q(rz)SΛ(rz)|2 ≤ 1
2π

∫
Γ

h−1(ζ) |Q(ζ)|2 P (rz, ζ) |dζ|,

It is well known (see, for example, [20], Section 9.5) that the limit as r → 1

of the righthand side of this inequality exists for almost all z ∈ Γ and it is

equal a.e. to h−1(ζ)|Q(ζ)|2. Therefore, |SΛ(z)|2 ≤ h−1(z) almost everywhere on

Γ. Working with { ϕ∗n+k(µn,z)

ϕ∗n+k(h dµn,z)}, we obtain that the inverse inequality is also

satisfied. So |SΛ(z)|2 = h−1(z) a. e. on Γ, which in turn yields

log |Sλ(z)| = 1
2π

∫
Γ

log |S(ζ)|P (z, ζ) |dζ| =

=
1
4π

∫
Γ

log h−1(ζ)P (z, ζ) |dζ| = log |S∗(z)|
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Since

SΛ(0) = lim
n∈Λ

κn+k(h dµn)
κn+k(µn)

> 0

and S∗(0) > 0, it follows that logSΛ(z) = logS∗(z), |z| < 1, and thus SΛ(z) =

S∗(z). The theorem is established.

�

Asymptotic formulas can be obtained from Theorem 5 for Szego’s kernel

Kn+k(µn, z, ζ) =
n+k∑
j=0

ϕj(µn, z)ϕj(µn, ζ)

and the Christofel functions

ωn+k(µn) = inf
p∈Pn+k

∫
Γ

∣∣∣∣p(ζ)p(z)

∣∣∣∣2 dµn(ζ).

where Pn is the set of all polynomials of degree ≤ n. We recall other expressions

for these functions (see, for example, [20], Chapter XI):

Kn+k(µn, z, ζ) =
ϕ∗n+k(µn, z)ϕ∗n+k(µn, ζ)− zζϕn+k(µn, z)ϕn+k(µn, ζ)

1− z ζ

=
ϕ∗n+k+1(µn, z)ϕ∗n+k+1(µn, ζ)− ϕn+k+1(µn, z)ϕn+k+1(µn, ζ)

1− z ζ

and

ωn+k(z) = Kn+k(µn, z, z)−1.

Corollary 1. Under the assumption of Theorem 5 we have

lim
n

Kn+k(h dµn, z, ζ)
Kn+k(µn, z, ζ)

= S(h, z)S(h, ζ), |z| > 1, |ζ| > 1,

and, in particular,

lim
n

ωn+k(h dµn, z)
ωn+k(µn, z)

= |S(h, z)|−2
.

Let ρ be a positive Borel measure in ∆ = [−1, 1]; set dρn(u) = dρ(u)
(1−u)n and as-

sume that uk ∈ L1(ρn) for each k ≥ 0. Let ln,m(u) = τn,mu
m+. . . be the orthog-

onal polynomial of degree m with respect to the measure dρn(u) whose leading

coefficient, τn,m, is supposed to be positive, and Ln,m(u) = ln,m(u)/τn,m.
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Lemma 12. If ρ′ > 0 a.e. in (−1, 1) and its image measure ρ
(

x−1
x+1

)
∈ M0,

then for each j ∈ Z we have

lim
n→∞

τn+j+1

τn+j
= 2,

lim
n→∞

ln,n+j+1(u)
ln,n+j(u)

= u+
√
u2 − 1 def= ϕ(u) = 2 lim

n→∞

Ln,n+j+1(u)
Ln,n+j(u)

,

uniformly on each compact subset of C \∆.

Proof. The proof is carried out as usual, reducing it to the case of the circle.

Let µ be the measure on the unit circle Γ defined by

µ(eiθ) = ρ(cos θ) = ρ

(
1
2

(
z +

1
z

))
, z = eiθ, θ ∈ [0, 2π).

Let dµn(z) = dµ(z)
|z−1|4n , z ∈ Γ, and let ϕ2n,m(z) = κn,mz

m + . . . and Φ2n,m(z) =

ϕ2n,m(z)
κn,m

the corresponding orthogonal polynomials on Γ:

1
2π

∫
Γ

ϕ2n,j(z)ϕ2n,k(z) dµn(z) = δj,k, j, k = 0, 1, . . .

these polynomials are connected with the polynomials ln,m and Ln,m by the

well known relations

ln,m(x) =
ϕ2n,2m(z) + ϕ∗2n,2m(z)

zm
√

2π(1 + Φ2n,2m(0))
, Ln,m(x) =

ϕ2n,2m(z) + ϕ∗2n,2m(z)

(2z)m
√

(1 + Φ2n,2m(0))
,

(14)

with x = 1
2 (z + 1

z ).

We have

µ

(
x+ i

x− i

)
= ρ

(
1
2

(
x+ i

x− i
+
x− i

x+ i

))
= ρ

(
x2 − 1
x2 + 1

)
= ρ

(
t− 1
t+ 1

)
,

where t = x2, t ∈ [0,∞), x ∈ R. By Lemma 7, the measure µ satisfies the

assumptions of the Theorem 3; using this theorem and the relations (14), we

immediately complete the proof of the lemma.

�
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4. Padé approximants of Stieltjes-type meromorphic functions

In this section we prove Theorem 1; more precisely, let α be as in Theorem

1, let Qn be the denominator of the Padé approximant of f normalized by

Qn(−1) = (−1)n, and let Ln be the orthogonal polynomials with respect to α

normalized also by Ln(−1) = (−1)n.

Theorem 6. If α′ > 0 a.e. on (0,∞) and the Stieltjes moment problem for α

is determinate, then the following statements hold:

1.

lim
n→∞

Qn(z)
Ln(z)

=
d∏

j=1

(
1 + z)(1 + aj)(Φ(z)− Φ(aj))

4Φ(z)(z − aj)

)
, z ∈ D,

where a1, . . . , ad are the poles of r (counting their multiplicity) and Φ(z) =

(
√
z + i)/(

√
z − i) is the conformal mapping of D onto the exterior of the

unit circle (Φ(−1) = ∞)

2. limn πn = f uniformly on each compact subset of D \ {z : r(z) = ∞} .

Under more restrictive assumption on the measure α this theorem was proved

by López in [11]. The general scheme of the proof of the above theorem follows

the technique developed in [11] (which at the same time in some steps use ideas

of Gonchar [8]). The results in Section 3 allow us to extend the corresponding

results in [11] under the more general conditions studied here. For an easy

reading we include some details. The schedule of the proof is the following:

Carrying out a bilinear transformation we pass to the problem of the convergence

of Padé approximants Πn = gn/hn for functions of type F (ζ) = ρ̂(ζ) + R(ζ),

where ρ is a measure on ∆ = [−1, 1]; moreover, F has asymptotic expansion

in powers of (ζ − 1) and the Padé approximants correspond to this expansion.

For the new convergence problem, it is possible to apply a known method of

Gonchar, based on the fact that the denominators hn of the new approximants
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satisfy incomplete orthogonality relations with respect to a certain (varying)

measure with compact support. This allows us to reduce the study of the

asymptotic behavior of qn to the question of the existence of the asymptotics of

the ratio of orthogonal polynomials with respect to this same measure.

Proof of Theorem 6.

Step 1. Let us make the change of variables x = (1+u)/(1−u), x ∈ (0,∞), u ∈

(−1, 1), in the integral (1) and take z = (1 + ζ)/(l − ζ) in the argument

of f . It can be checked directly that

f

(
1 + ζ

l − ζ

)
= (1− ζ) (ρ̂(ζ) +R(ζ)) , (15)

where

dρ(u) =
1
2
(1− u)dα

(
1 + u

1− u

)
and (1− ζ)R(ζ) = r

(
1 + ζ

1− ζ

)
.

Put

F (ζ) = ρ̂(ζ) +R(ζ) =
∫

∆

dρ(t)
ζ − t

+R(ζ), ζ ∈ C \∆,

let Πn = gn/hn be the Padé approximant of orden n of the function F

corresponding to the point ζ = −1 (this point corresponds to z = ∞). We

have

hn(ζ) = (1− ζ)nQn

(
1 + ζ

1− ζ

)
, gn(ζ) = (1− ζ)n−1Pn

(
1 + ζ

1− ζ

)
, (16)

and

Πn(ζ) =
1

ζ − 1
πn

(
1 + ζ

1− ζ

)
. (17)

Moreover, if dρn(u) = dρ(u)
(1−u)n , u ∈ (−1, 1), andR(ζ) = ld−1(ζ)

td(ζ) , and td(ζ) =∏d
j=1(ζ − bj), then∫

∆

ujhn(u) td(u) dρn(u) = 0, j = 0, 1, . . . , n− d− 1, (18)

F (ζ)−Πn(ζ) =
(1− ζ)2n

s(ζ)hn(ζ)td(ζ)

∫
∆

s(u)hn(u)td(u)
ζ − u

dρn(u), (19)
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where s(u) is an arbitrary polynomial of degree ≤ n− d.

Combining (15) and (17) the convergence of {πn} to f uniformly in each

compact subset of C\{[0,∞)∪{r = ∞}} is equivalent to the convergence

of {Πn} to F uniformly in each compact subset of C \ {∆ ∪ {R = ∞}}.

If td = 1 (⇔ r ≡ 0), then using Stieltjes’ theorem we know limn πn(z) =

f(z) uniformly in each compact subset of C \ {[0,∞) ∪ {r = ∞}} or

equivalent limn Πn(z) = F (z) uniformly in each compact subset of C \

{[−1, 1] ∪ {R = ∞}} and by formula (19) with s = 1 we obtain

lim
n→∞

(1− ζ)2n

Ln,n(ζ)

∫
Ln,n(u)
ζ − u

dρn(u) = 0, (20)

where ln,m(ζ) = τn,mζ
m + . . . is the orthogonal polynomial of degree m

with respect to the measure dρn whose leading coefficient, τn,m, is sup-

posed to be positive, and Ln,m(ζ) = ln,m(ζ)/τn,m.

Step 2. By Lemma 12 for each j ∈ Z we have

lim
n→∞

ln,n+j+1(ζ)
ln,n+j(ζ)

= ζ+
√
ζ2 − 1 def= ϕ(ζ) = 2 lim

n→∞

Ln,n+j+1(ζ)
Ln,n+j(ζ)

, ζ ∈ C\∆.

In view of the orthogonality relations (18), the polynomial hn(ζ)td(ζ) can

be represented in the form of a finite linear combination of the orthogonal

polynomials Ln,m

hn(ζ)td(ζ) = λ∗n,0Ln,n+d(ζ)+λ∗n,1Ln,n+d−1(ζ)+. . .+λ∗n,2dLn,n−d(ζ). (21)

Take λn =
(∑2d

j=0 |λ∗n,j |
)−1

, λn,j = λnλ
∗
n,j , j = 0, . . . , 2d and Sn+d(ζ) =

λnhn(ζ)td(ζ); since qn 6≡0, λn is finite. We have

Ψn(ζ) =
Sn+d(ζ)
Ln,n+d(ζ)

=
2d∑

j=1

λn,j
Ln,n+d−j(ζ)
Ln,n+d(ζ)

,
2d∑

j=1

|λn,j | = 1.

From the condition of the theorem, by Lemma 12 it follows that

lim
n→∞

Ln,n+d−j(ζ)

Ln,n+d(ζ)
= ψ(ζ)j , j = 0, 1, . . . , 2d,
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where ψ(ζ) = 2/ϕ(ζ). The function ψ is a one-to-one representation of

C\∆ onto the disk of radius 2. Consequently the sequence Ψn is uniformly

bounded. From those same relations it follows that any limit function of

the sequence {Ψn} is a polynomial of degree ≤ 2d of ψ(ζ). So in any

compact subset of C\∆, for all sufficiently large n, there lie no more than

d zeros of the polynomial hn.

Further, let cap (K) denote the logarithmic capacity of the compact set K.

By limcap fn(z) = f(z), z ∈ G, we will denote the convergence in capacity

inside G (this notation means that for any ε > 0 and any compact set

K ⊂ G we have limε→0 cap (K ∩ {|fn − f| > ε}) = 0 ). Let us show that

limcapΠn(ζ) = F(ζ), (22)

in C \∆.

We fix a compact K ⊂ C \∆. Let δ > 0 be sufficiently small so that the

δ- neighborhood Kδ of K is contained in C \∆ together with its closure.

Let cn(ζ) = ζd′ + . . . be the polynomial whose zeros are the zeros of Sn+d

that lie on C \ ∆. By virtue of what was said above, for all sufficiently

large n we have d′ ≤ 2d. Multiplying (19), with s = 1, by cn(ζ) and using

(21), we obtain

cn(ζ)(Πn(ζ)− F (ζ)) = cn(ζ)
Ln,n+d(ζ)
Sn+d(ζ)

2d∑
j=1

λn,j
Ln,n+d−j(ζ)
Ln,n+d(ζ)

In,j(ζ),

where

In,j(ζ) =
∫

∆

Ln+d−j(u)
Ln+d−j(ζ)

(1− ζ)2n dρn(u)
ζ − u

= (1− ζ)2(j−d)

∫
∆

Ln+d−j(u)
Ln+d−j(ζ)

(1− ζ)2(n+d−j) dρ
(j)
n (u)
ζ − u

,

and

dρ(j)
n (u) =

dρ(j)(u)

(1− u)2(n+d−j)
, dρ(j)(u) = (1− u)2(d−j)dρ(u).
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It is obvious that for each fixed j = 0, 1, . . . , 2d the measure ρ(j) satisfies

the conditions just like the measure ρ (see Lemma 6). Hence, using (20)

it follows that limn→∞ In,j(ζ) = 0, uniformly in each compact C \∆, for

each j = 0, 1, . . . , 2d. From what was said above, it is also obvious that

the sequence of functions cn(ζ)
Ψn(ζ) , which are analytic on K, is uniformly

bounded on K. Therefore,

lim
n
cn(ζ)(F (ζ)−Πn(ζ)) = 0, ζ ∈ K.

Since by the Fekete’s lemma cap ({ζ : |cn(ζ)| < ε}) = ε1/d′ for each ε > 0,

and d′ ≤ 2d, relation (22) follows.

Suppose that U is a region whose closure is a compact set in C \∆ which

contains all the poles of F (ζ) in C \∆. As we proved above, the number

of poles of Πn in U, for all sufficiently large n, is not greater than d.

The number of poles of F in U is equal to d. Under these conditions it

follows from (22), by virtue of Gonchar’s lemma ([9], Lemma 1), that for

all sufficiently large n the number of poles of Πn in U is equal to d, and

these poles tend to the poles of F as n → ∞ (each pole of F attracts as

many poles of Πn as its order of multiplicity). In turn, this yields that

lim
n→∞

Πn(ζ) = F (ζ)

uniformly in each compact subset of C \ {∆ ∪ {b1, . . . , bd}}

Step 3. It remains to complete the proof of statement (a). Taking into consid-

eration (16) we have to prove

lim
n→∞

hn(ζ)
Ln,n(ζ)

= (2ϕ(ζ))−d
d∏

j=1

ϕ(ζ)− ϕ(bj)
ζ − bj

, (23)

uniformly on each compact subset of C\(∆∪{b1, . . . , bd}), where b1, . . . , bd

are the poles of r.
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The information obtained about the behavior of the zeros of hn(z) (the

poles of Πn) inside C \∆, we can conclude that any limit function of the

sequence {Ψn(ζ) = Sn+d(ζ)
Ln+d(ζ)} has the form

2d∑
j=0

λjψ
j(z) = C

d∏
j=1

(ψ(z)− ψ(bj))2

where |C| ∈ (0,+∞). In particular, for any convergent sequence of

{Ψn(ζ)} we have

Ψn(∞) = λ∗n,0λn, lim
n

Ψn(∞) = C
d∏

j=1

ψ(bj). (24)

Since the leading coefficient of hn is equal to 1, the quantity λ∗n,0 can take

only the two values 1 (if deg(hn) = n) or 0 (if dedeg(hn) < n). By virtue

of the compactness of the sequence, from the above relation it follows,

first, that λ∗n,0 = 1 (deg(hn) = n) for all sufficiently large n, and second,

that lim infn→∞ λn > 0. Hence the sequence of functions

hn(ζ)td(ζ)
Ln,n+d(ζ)

= 1 +
2d∑

j=1

λ∗n,j

Ln,n+j−d(ζ)
Ln,n+d(ζ)

is uniformly bounded, just like {Ψn}. Using the same arguments as above,

based on (16), the behavior of the zeros of hn in C\∆, and the normalizing

conditions, we conclude that this sequence converges uniformly inside C \

∆:

lim
n

hn(ζ)td(ζ)
Ln,n+d(ζ)

=
2d∏

j=1

(
1− ψ(ζ)

ψ(bj)

)
,

uniformly on each compact subset of C \ {∆ ∪ {b1, . . . , bd}}. Considering

that ψ(ζ) = 2/ϕ(ζ) and limn
Ln,n(ζ)

Ln,n+d(ζ) = (ψ(ζ))−d uniformly on each

compact subset of C \∆, the part (a) of the theorem is proved.

�
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5. Relative asymptotics of orthogonal polynomials on the real line

In this section we prove of Theorem 2. Let µν be the image measure of ν

by the function (i z+1
z−1 ), z ∈ Γ, then the orthogonal polynomial Hn(ν, z) with

respect to ν normalized byHn(ν, i) = 1 are related to the orthogonal polynomial

with respect to dµn(z) = dµν(z)
|z−1|2n by the relation

(z − 1)nHn(ν, ω) =
ϕ∗n(µn, z)ϕ∗n(µn, 1)− zϕn(µn, z)ϕn(µn, 1)

κn(µn)ϕ∗n(µn, 1)(1− z)

=
Kn(µn, z, 1)

κn(µn)ϕ∗n(µn, 1)
,

where z = ω+i
ω−i , ω ∈ Ω, and |z| > 1. Writing the above formula for Hn(g dν, ω),

we obtain

Hn(g dν, ω)
Hn(ν, ω)

=
ϕn(g dµn, z)
ϕn(µn, z)

κn(g dµn)
κn(µn)

ϕ∗n(g dµn,z)
ϕn(g dµn,z)

(
ϕ∗n(g dµn,1)
ϕn(g dµn,1)

)
− z

ϕ∗n(µn,z)
ϕn(µn,z)

(
ϕ∗n(µn,1)
ϕn(µn,1)

)
− z

,

then combining Theorem 3 and Theorem 5 the proof is concluded.

Remark 4. The previous results pass over easily to the case of orthogonality on

[0,+∞). A measure α, supp(α) ⊂ [0,+∞) can be put in correspondence with

a measure ν on R symmetrical with respect to 0, dν(x) = |x|dα(x2) (see [12],

Theorem 4).
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type meromorphic functions and comparative asymptotics of orthogonal

polynomials, Mat. Sb. 136(178) (1988), 206–226; English transl. in Math.

USSR Sb. 64 (1989), 207–227.

27
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