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a b s t r a c t

It is well known that for a connected locally path-connected semi-locally 1-connected
space X , there exists a bi-unique correspondence between the pointed d-fold connected
coverings and the transitive representations of the fundamental group of X in the
symmetric groupΣd of degree d.
The classification problem becomes more difficult if X is a more general space,

particularly if X is not locally connected. In attempt to solve the problem for general spaces,
several notions of coverings have been introduced, for example, those given by Lubkin
or by Fox. On the other hand, different notions of ‘fundamental group’ have appeared
in the mathematical literature, for instance, the Brown–Grossman–Quigley fundamental
group, the Čech–Borsuk fundamental group, the Steenrod–Quigley fundamental group, the
fundamental profinite group or the fundamental localic group.
The main result of this paper determines different ‘fundamental groups’ that can be

used to classify pointed finite sheeted connected coverings of a given space X depending
on topological properties of X .

© 2009 Elsevier B.V. All rights reserved.

0. Introduction

If X is a connected locally path-connected and semi-locally 1-connected space and π1(X, x0), x0 ∈ X , its fundamental
group, then the categoryCov (X, x0) of coverings and continuousmaps over (X, x0) is equivalent to the category ofπ1(X, x0)-
sets, i.e. the functor category Setsπ1(X,x

0), where π1(X, x0) is considered as a groupoid with one object and the morphisms
are given by the elements of π1(X, x0). If F is a finite set, a covering with fibre F has an associated π1(X, x0)-set structure
on the set F given by a representation η:π1(X, x0) → Aut(F). It is easy to check that two coverings with fibre F are
isomorphic if and only if the corresponding representations are conjugated. In the case of a connected pointed covering the
conjugation relation is trivial and accordingly, under this correspondence, the connected coverings correspond to transitive
representations.
In 1962, Lubkin [1] published a very nice paper titled ‘‘The theory of covering spaces’’. To avoid the difficulties in the non-

locally connected case he introduced a new concept of space which generalizes notions of topological space and uniform
space. Using Lubkin’s notion of covering space the theory of covering spaces becomes analogous to the Galois theory of
extensions. The finite Galoisian extensions are similar to regular covering spaces and ‘‘Poincare filtered group’’ plays the
role of the Galois group. One of themain results establishes an order-reversing isomorphism from the ordered set of pointed
coverings smaller than a given regular pointed covering (R, r0)→ (X, x0) and the filtered subgroups of the ‘‘Poincare filtered

I The authors acknowledge the financial support provided by the University of La Rioja and the Government of La Rioja, project FOMENTA 2007/03, and
by the Ministry of Science, Education and Sports of the Republic of Croatia, project 177-0372791-0886.
∗ Corresponding author.
E-mail addresses: luis-javier.hernandez@unirioja.es (L.J. Hernández Paricio), vlasta@pmfst.hr (V. Matijević).
URL: http://www.unirioja.es/cu/luhernan/ (L.J. Hernández Paricio).

0022-4049/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2009.05.011

http://www.elsevier.com/locate/jpaa
http://www.elsevier.com/locate/jpaa
mailto:luis-javier.hernandez@unirioja.es
mailto:vlasta@pmfst.hr
http://www.unirioja.es/cu/luhernan/
http://www.unirioja.es/cu/luhernan/
http://www.unirioja.es/cu/luhernan/
http://www.unirioja.es/cu/luhernan/
http://www.unirioja.es/cu/luhernan/
http://www.unirioja.es/cu/luhernan/
http://dx.doi.org/10.1016/j.jpaa.2009.05.011


282 L.J. Hernández Paricio, V. Matijević / Journal of Pure and Applied Algebra 214 (2010) 281–296

group’’P(R, X) which is given by the group of automorphisms of the covering R → X together with a suitable filtration of
subgroups. Then, if one considers all regular coverings and takes the corresponding ‘‘Poincare filtered groups’’, it is possible
to classify all ‘‘connected’’ coverings of a space X .
In 1967, Artin andMazur proved [2, Corollary 10.6] that if C is a locally connected site, closed under arbitrary coproducts,

and K is a hypercovering (see Section 8 of [2]), then the category of locally trivial morphisms over the final object of C
which are trivial over K0, is equivalent to the category of simplicial covering maps over the simplicial set c0(K), where
(c0(K))q = c0(Kq) and c0 is the set of connected components that for a locally connected site is a well-defined functor.
Given a locally connected topological space X , we can consider the locally connected distributive category (site) C =

Sh(X) of the sheaves over X . An open coverU determines a hypercovering K having the given open cover (tU∈U U) as K0.
In this case the hypercovering pro-simplicial set is isomorphic (in the pro-homotopy category) to the Čech nerve associated
with the family of open covers of the space. Now, by Corollary 10.6, we get the classification of the covering mappings of X
which are trivial over the given open cover. The Artin–Mazur fundamental progroup is obtained by applying the standard
fundamental group functor to the hypercovering pro-simplicial set and, as a consequence of Corollary 10.6, it can be used to
classify all the coveringmappings ofX . However, Artin–Mazur techniques cannot be applied to non-locally connected spaces.
In 1972–73, Fox [3,4] introduced the notion of overlay of a metrizable space. Fox’s fundamental theorem of overlays

theory establishes the existence of a bi-unique correspondence between the d-fold overlayings of a connected metrizable
space X and the representations up to conjugation of the fundamental trope of X in the symmetric groupΣd of degree d. In
the case of overlayswith finite number of sheets, the notion of overlay agreeswith the notion of coveringwith a finite fibre F
where F is a set with finite cardinal d. Note that Fox’s result refers to the class of metrizable spaces, but no local connectivity
condition is required.
If G is a profinite group, i.e. the inverse limit of finite groups, we can consider the category C(G) of continuous finite

G-sets. A category, which is equivalent to a category of the form C(G), is said to be a Galois category. Grothendieck [5] gave
an axiomatic description of such category and proved that the associated profinite group is unique up to isomorphism. In
many cases the full subcategory of locally constant objects of a given topos is aGalois category and then, usingGrothendieck’s
result, one can define the profinite fundamental group of the given topos as the profinite group determined by the Galois
category of locally constant objects.
If X is a variety over an algebraically closed field and p: Y → X is finite and etale, then each fibre of p has exactly the same

number of points. Thus, a finite etalemap is a natural analogue of a finite covering space.We define FEt/X to be the category
whose objects are the finite etalemaps p: Y → X (sometimes referred to as finite etale coverings of X) andwhose arrows are
the X-morphisms. An important fact is that FEt/X is a Galois category. The profinite group associated to this Galois category
is the fundamental group of the variety X . We recall that the category of finite sheeted coverings of a connected locally
path-connected and semi-locally 1-connected space Y is equivalent to the category of finite π1(Y )-sets. In this case, taking
the finite completion π̂1(Y ) of π1(Y ), we get that the category of continuous finite π̂1(Y )-sets is equivalent to the category
of finite π1(Y )-sets. If X is a non-singular variety over the field C of complex numbers, one has that the etale fundamental
group of the variety X is the finite completion of the fundamental group of the associated topological space X(C).
In 1989, Moerdijk [6] gave a characterization of the topos of the form B(G) for a prodiscrete localic group G. He

proved that the category of prodiscrete localic groups is equivalent to the category of progroups with epimorphic bonding
homomorphisms. In the case of a locally connected space that equivalence carries the Artin–Mazur fundamental progroup to
the fundamental localic group. In thisway the classification of coverings canbe given in termsof ‘continuous’ representations
of the fundamental localic group. Nevertheless this localic group cannot be used to classify coverings over non-locally
connected spaces.
In 1998, a notion of covering projection was introduced by Hernández [7]. In the case of finite fibres or locally connected

spaces the notion of covering projection is equivalent to the standard covering notion. Consequently, in that case the
category of covering projections for an arbitrary space is equivalent to the category of representations of the fundamental
progroupoid. It is important to remark that there exist two non-isomorphic progroupoids π, π ′ such that the category of
π-sets is equivalent to the category of π ′-sets. This means that the fundamental progroupoid is not unique up to
isomorphism and is determined only up to some equivalent notion of progroupoids. A generalization of this notion for
fibre bundle with locally constant cocycles is given in [8].
Using a different approach, in 2001, Mardešić–Matijević [9] gave a classification of overlays over a connected topological

space. In this paper, for a given resolution {Xi|i ∈ I} of a space X , the relation between the coverings of the spaces Xi and
the overlays of X is analyzed and, as a consequence of this study, an extension of Fox’s classification theorem to the class of
connected spaces is obtained. An interesting study of overlays over spaces which are the inverse limit of torus can be seen
in Eda, Mandić and Matijević [10].
New results on atomic connected categories have been obtained by Dubuc [11]. He proved that an atomic connected

pointed topos is the classifying topos of the localic group of the automorphism of the point. In a posterior work Dubuc [12]
characterized a Galois topos as the classifying topos of a connected localic groupoid having discrete object space and
prodiscrete localic hom-sets. Recently, Dubuc [13] has introduced the localic progroupoid of an arbitrary topos.
Previously, Joyal-Tierney had proved that an arbitrary topos is the classifying topos of a localic groupoid. Further results

on classifying topos of localic groupoids have been obtained by M. Bunge and I. Moerdijk. These results have interesting
applications to the theory of coverings and overlays. Under some topological conditions on the base space, the category of
arbitrary coproducts of coverings or overlays can be considered as the classifying topos of a localic groupoid.
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In the preceding paragraphs we have considered some notions of coverings in different contexts. We could give here
a description of different notions of fundamental groups which have appeared in the mathematical literature. However,
we prefer to devote Sections 1.5 and 1.6 and Section 2 for explaining different types of fundamental groups, progroups,
topological groups, etc. Furthermore, we analyze some important relations between these invariants.
Our main result is given in Theorem 3.5. This theorem gives the classification of n-sheeted connected coverings of a

connected compact metric space in terms of transitive representations of various types of fundamental ‘groups’ of the space
in appropriate symmetric groups. We write ‘group’ to indicate that we can work with a progroup, a topological group, a
localic group, a near-module or a group. We restrict our considerations to the class of connected compact metric spaces
(although in some cases this restriction is not necessary), because in this class of spaces the different notions of finite
coverings agree which allow us to compare the different approaches. In addition, we analyze the different fundamental
‘groups’ that can be used in dealing with S1-movable spaces, locally connected spaces, locally path-connected spaces or, as
in the classical case, locally path-connected and semi-locally 1-connected spaces.

1. Preliminaries

Firstly, we recall the notion of covering and connected covering.

1.1. Coverings

An open cover of a space Y is a family V of open subsets of Y such that
⋃
V∈V V = Y .

Definition 1.1. A continuous map f : X → Y is said to be a covering if there is an open cover V of the space Y such that for
each V ∈ V there exist an index set I(V ) and a family of open subsets Ui of X , i ∈ I(V ) such that
(i) if i, j ∈ I(V ), i 6= j, Ui ∩ Uj = ∅,
(ii)

⋃
i∈I(V ) Ui = f

−1(V ) and
(iii) the restriction f |Ui :Ui → V is a homeomorphism.
Given two coverings f : X → Y , f ′: X ′ → Y , a covering morphism is a continuous map φ: X → X ′ over Y ; that is, φ

satisfies f ′φ = f . The category of covering and covering morphisms is denoted by Cov(Y ) and the category of connected
coverings and covering morphisms is denoted by Cov0(Y ).

Definition 1.2. Given a pointed space (Y , y0), a continuous pointedmap f : (X, x0)→ (Y , y0) is said to be a pointed covering
if f : X → Y is a covering and f (x0) = y0.
Given two pointed coverings f : (X, x0) → (Y , y0), f1: (X1, x01) → (Y , y0), a pointed covering morphism is a covering

morphismφ: (X, x0)→ (X1, x01) over (Y , y
0). The category of pointed coverings and pointed coveringmorphisms is denoted

by Cov(Y , y0) and the category of pointed connected coverings and pointed covering morphism is denoted by Cov 0(Y , y0).
Given a point y0 ∈ Y , one can consider the fibre f −1(y0). A covering f : X → Y is said to be finite sheeted if f −1(y) is finite

for every y ∈ Y and if f −1(y) has n elements for all y ∈ Y , the covering f is said to be finite n-sheeted. Note that if a space Y
is connected and locally connected, then two fibres f −1(y0), f −1(y1) have the same cardinal.
The corresponding full subcategories of finite n-sheeted coverings are denoted by n-Cov(Y ), n-Cov0(Y ), n-Cov(Y , y0),

n-Cov0(Y , y0) and the sets of isomorphisms classes by n-Cov(Y )/ ∼=, n-Cov0(Y )/ ∼=, n-Cov(Y , y0)/ ∼=, n-Cov0(Y , y0)/ ∼=.
The same notation is used if n is an infinite cardinal.

1.2. Categories and pro-categories

In this paper the following categories and notations will be used:
Top the category of spaces and continuous maps.
Top ∗ the category of pointed spaces (X, x0) and continuous maps preserving the base point.
Grp the category of groups and homomorphisms.
TGrp the category of topological groups and continuous homomorphisms.
Grp R the category of right near-modules over a near-ring R, see [14,15].
Given a category C, the category pro C has as objects functors X: I → Cwhere I is a left filtering small category and given

two objects X: I → C, Y : J → C the hom-set is given by
pro C(X, Y ) = LimjColimi{C(Xi, Yj)}.

Formore properties related to pro-categories, we refer the reader to [16–18].We denote byN the left filtering small category
which has as objects the non-negative numbers {0, 1, . . .} and if p, q ∈ N there is a unique morphism p→ q if and only if
p ≥ q.
A pro-object X: I → C in pro C is said to be a tower if I = N the left filtering small category of non-negative numbers. In

some cases, if a pro-object is isomorphic to a tower, we also say that it is a tower. The full subcategory of pro C determined
by towers is denoted by tow C.
A partially ordered set (L,6) can be considered as a category having morphisms x → y associated with the relations

x 6 y. A lattice L is a partially ordered set Lwhich, considered as a category, has finite limits and colimits. Denote by x∨y the
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coproduct, by x ∧ y the product, by 0 the initial object and by 1 the final object. A distributive lattice L is a lattice in which
the identity x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) holds for all x, y and z. A lattice A, which has infinite coproducts

∨
i∈I yi and

infinite distributive identities x ∧
∨
i∈I yi =

∨
i∈I x ∧ yi, is said to be a frame. A morphism of frames φ: B → A is a map of

partially ordered sets which preserves finite products and arbitrary coproducts.
Frames is the category of frames and frame morphisms.
Locales is the opposite category Framesop.
locGrp is the category of localic groups; that is, group objects in the category Locales.
Sh (X) is the category of sheaves over a topological space X .
Sh (X, x0) is the pointed category of sheaves over a pointed topological space (X, x0).

1.3. Closed model categories

The category Top of spaces and continuous maps admits a closed model structure in the sense of Quillen [19] induced
by week equivalences and Serre fibrations. There are also induced closedmodel structures in the category of pointed spaces
Top∗ and in the corresponding categories of prospaces and pro-pointed spaces pro Top, pro Top∗, see Edwards–Hastings
monography [16]. The categories obtained by formal inversion of week equivalences will be denoted byHo(Top),Ho(Top∗),
Ho(proTop), Ho(pro Top∗). We also consider the categories pro Ho(Top), pro Ho(Top∗).
We refer to [16] for a proof of the following comparison theorem for towers between the hom-set of the category

Ho(pro Top∗) and the hom-set in the category pro Ho(Top∗).

Theorem 1.3. Let X = {Xi}, Y = {Yj} be towers of pointed spaces. Then the sequence

0→ Lim1j Colimi{Ho(Top∗)(ΣXi, Yj)}
→Ho(pro Top∗)({Xi}, {Xj})
→LimjColimi{Ho(Top∗)(Xi, Yj)} → 0

is exact, whereΣ is the suspension functor (A construction of the functors Lim, Lim1 can be seen in Section 1.6.4.)

1.4. Expansions and resolutions

Given a pointed space (X, x0), a pointed open cover (U,U0) consists of an open cover U of X and an open subset U0
such that x0 ∈ U0 ∈ U. Given (U,U0), (V, V 0) pointed open covers, it is said that (U,U0) > (V, V 0) if U0 ⊆ V 0 and
given any U ∈ U there is V ∈ V such that U ⊆ V . The set of pointed open covers of (X, x0), directed by refinement > will
be denoted by COV(X, x0). Similarly, one has the set COV(X) of open covers of X directed by refinement > and a canonical
cofinal map COV(X, x0)→ COV (X). Associated with an open coverU Porter [20] and Edwards–Hastings [16] consider the
pointed Vietoris simplicial set

V ′q(X, x
0)(U) = {(x0, . . . , xq)| there is U ∈ U, such that x0, . . . , xq ∈ U}

for q ≥ 0. Then we can consider the geometric realization functor to obtain Vq(X, x0)(U) = |V ′q(X, x
0)(U)|. The induced

pro-pointed space

V (X, x0): COV(X, x0)→ Top∗

is the ‘‘expansion’’ used by Edwards–Hastings [16] to study strong shape theory of a general topological space. The composite

COV(X, x0)→ Top∗ → Ho(Top∗)

will be denoted by V̄ (X, x0).
The pointed simplicial Čech nerve of a pointed open cover (U,U0) is given by the simplicial set

C ′q(X, x
0)(U,U0) = {(U0, . . . ,Uq)|U0, . . . ,Uq ∈ U, and U0 ∩ · · · ∩ Uq 6= ∅}

and its realization is denoted by C̄q(X, x0)(U,U0) = |C ′q(X, x
0)(U,U0)|. In this case, if (U,U0) > (V, V 0), we can

choose for each U ∈ U an associated ψ(U) ∈ V such that U ⊂ ψ(U) and ψ(U0) = V 0. The map ψ induces a map
C̄(X, x0)(U,U0)→ C̄(X, x0)(V, V 0) and two different elections induce homotopic maps. Therefore, we get a well-defined
map C̄(X, x0)(U,U0) → C̄(X, x0)(V, V 0) in the homotopy category Ho(Top∗). Then, as a consequence of the mentioned
properties, a well-defined pro-object is obtained:

C̄(X, x0): COV(X, x0)→ Ho(Top∗).

By Dowker theorem, see [21], one has that the pro-objects V̄ (X, x0) , C̄(X, x0) are isomorphic in proHo(Top∗). If the
space X is paracompact, these pro-objects are HPol-expansion in the sense of Mardešić–Segal, [17]. In the case of a compact
metrizable space X , the directed sets COV(X, x0), COV(X) have cofinal sequences {(Ui,U0i )}, {Ui}. If we denote

Cq(X, x0)(Ui,U0i ) = C̄q(X, x
0)(Ui,U0i ),
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we can choose in the bonding homotopy class a representative

Cq(X, x0)(Ui+1,U0i+1)→ Cq(X, x0)(Ui,U0i )

to obtain a tower of spaces that will be denoted by C(X, x0). Note that this construction is not functorial. However, if X is a
metrizable compact space, V (X, x0) (which is functorial) and C(X, x0) are equivalent in the category Ho(pro Top∗).
Given a pointed topological space (X, x0) and a pro-pointed space {(Xi, x0i )} such that each Xi is an ANR (absolute

neighbourhood retract), a pro-map f : (X, x0) → {(Xi, x0i )} is an ANR-resolution if it satisfies the pointed version of the
properties R1 and R2 given in [17, page 74]. If (X, x0) is a paracompact space, then an ANR-resolution is equivalent to
the Vietoris pro-pointed space V (X, x0) in the category Ho(pro Top∗). It is interesting to note that for a compact metric
space (X, x0) one can take an ANR-resolution {(Xi, x0i )|i ∈ N} indexed by the directed set of natural numbers, which is also
equivalent to C(X, x0) in Ho(pro Top∗).
If (X, x0) is a pointed locally connected space, then the category Sh(X, x0) of sheaves on X is a pointed locally connected

site and one can consider the category of hypercoverings HC(Sh(X, x0)). Taking the connected component set functor
c0: Sh(X, x0) → Sets one has the Verdier pro-simplicial set

∏
(Sh(X, x0)) = {c0(K)|K ∈ HC(Sh(X, x0))}. The realization,

|
∏
(Sh(X, x0))|, see [2], is isomorphic to C̄(X, x0) in the category pro Ho(Top∗).

Definition 1.4. Let Z : J → Top∗ be a pro-pointed space, where the bonding morphism are denoted by Z ji : Zj → Zi. The
pro-pointed space Z is said to be Sn-movable, if for any i ∈ J there is j → i in J such that for any k → j in J and for any
pointed map f : Sn → Zj there is a pointed map g: Sn → Zk such that Zki g is homotopic relative to the base point to Z

j
i f . A

pointed space (X, x0) is said to be Sn-movable if the pro-pointed space V (X, x0) is Sn-movable.

Remark 1.5. We have a similar notion for a pro-object in pro Ho(Top∗). As a consequence of Dowker theorem, it is easy to
check that V (X, x0) is Sn-movable if and only if C̄(X, x0) is Sn-movable.

1.5. Fundamental groups and progroups

In this section, we recall different fundamental groups and progroups and introduce adequate notations in order to
distinguish the diverse invariants.

1.5.1. The fundamental group of a pointed space
Let (S1, ∗) be the pointed 1-sphere. If (X, x0) is a pointed space, then

π1(X, x0) = Ho(Top∗)((S1, ∗), (X, x0))

has a group structure and that group is called the fundamental group of (X, x0).

1.5.2. The Spanier normal subgroup of an open cover
Given an open cover U of the space X , one can consider the normal subgroup π1(U, x0) of π1(X, x0) generated by the

elements a that can be represented as a = [αuᾱ], where α is a path of X such that α(0) = x0, u is a loop of X contained in
some U ∈ U and ᾱ is the inverse path of α. The definition of this normal subgroup can be found in Spanier book [22]. Next
we recall the Spanier classification of connected coverings of a connected locally path-connected space.

Definition 1.6. A subgroup H of π1(X, x0) is said to be S-open (S from Spanier) if there is an open cover U such that
H ⊇ π1(U, x0).

Using this definition and taking pointed connected coverings we reformulate the Spanier results on coverings in the
following classification theorem:

Theorem 1.7. The class of connected pointed coverings (Y , y0) → (X, x0) of a connected locally path-connected space (X, x0)
is bijective up to covering isomorphisms with the set of S-open subgroups of π1(X, x0).

1.5.3. Fundamental progroups
The fundamental group functor π1: Top∗ → Grp induces canonical functors

pro Top∗ → pro Grp,
Ho(pro Top∗)→ pro Grp,
pro Ho(Top∗)→ pro Grp

denoted by proπ1 in all cases. If a pro-pointed space X is a tower, then the progroup proπ1(X) will be also denoted by
towπ1(X).
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Given a pointed space (X, x0) its fundamental progroup is given by

proπ1(X, x0) = proπ1(V̄ (X, x0)).

Since V̄ (X, x0) is isomorphic to C̄(X, x0) in pro Ho(Top∗), it follows that proπ1(V̄ (X, x0)) is isomorphic to proπ1(C̄(X, x0)).
If (X, x0) is a pointed locally connected space proπ1(C̄(X, x0)) is also isomorphic to the Artin–Mazur progroup,
proπ1(|

∏
(Sh(X, x0))|), see Section 1.4 and [2].

1.5.4. The Brown–Grossman–Quigley fundamental group
This kind of group has been given in different contexts, in proper homotopy theory by Brown [23], for towers of simplicial

sets by Grossman [24], in (strong) shape theory by Quigley[25] and for exterior spaces by Calcines–Hernández-Pinillos [26].
In this paper we use the following notation:
Associated with the pointed 1-sphere S1, we consider the following pro-pointed space

cS1 = {∨∞0 S
1
⊇ ∨

∞

1 S
1
⊇ ∨

∞

2 S
1
⊇ · · ·}.

Given a pro-pointed space Z in pro Top∗, its Brown–Grossman–Quigley fundamental group is given by

π
BGQ
1 (Z) = Ho(pro Top∗)(cS1, Z).

For a pointed space (X, x0), we can consider the corresponding Vietoris nerve V (X, x0). The Brown–Grossman–Quigley
fundamental group of (X, x0) is given by

π
BGQ
1 (X, x0) = Ho(pro Top∗)(cS1, V (X, x0)).

Taking into account the remarks on pointed compact metrizable space (X, x0) in Section 1.4, it follows that

π
BGQ
1 (X, x0) ∼= Ho(pro Top∗)(cS1, C(X, x0)).

1.5.5. The Steenrod–Quigley fundamental group
Several analogues of this type of fundamental group have been given in different contexts, for example, in proper

homotopy theory by Porter [27] and byHughes andRanicki [40], in homotopy theory of prospaces by Edwards–Hastings [16],
in (strong) shape theory by Quigley [25], Cathey [41] and for exterior spaces by Calcines–Hernández-Pinillos [28,29]. The
reason to include in the name ‘Steenrod’ is the existence of a Theorem of Hurewicz type between these groups and the
Steenrod homology groups.
Consider the constant pro-pointed space SQ S1 = {(S1, ∗)}. For a pointed space (X, x0) its Steenrod–Quigley fundamental

group is given by

π
SQ
1 (X, x

0) = Ho(pro Top∗)(SQ S1, V (X, x0)).

If (X, x0) is a pointed compact metrizable space, then, by the same arguments as above, we get

π
SQ
1 (X, x

0) ∼= Ho(pro Top∗)(SQ S1, C(X, x0)).

1.5.6. The Borsuk–Čech fundamental group
This group was introduced by Borsuk [30] and it can be defined (similarly to the case of the Čech homology) by taking an

inverse limit. Given a pointed space (X, x0) its Borsuk–Čech fundamental group is given by

πBC1 (X, x
0) = Lim(proπ1(X, x0)).

Note that this group can be obtained also as the hom-set

πBC1 (X, x
0) = pro Ho(Top∗)(SQ S1, V̄ (X, x0))

or equivalently

πBC1 (X, x
0) = pro Ho(Top∗)(SQ S1, C̄(X, x0)).
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1.5.7. The fundamental localic group
We consider the following constructions in order to define the fundamental localic group of a locally connected pointed

space (X, x0).
The reader can find the basic facts about locals in the book [31] and in Moerdijk’s paper [6].
Each topological space (X,O(X)) has an associated frame O(X) in Frames and a locale locX in the opposite category

Locales. For a locale L, O(L) also denotes the corresponding frame. A continuous map f : X → Y has an associated map
locf : locX → locY which is dual to the map f −1:O(Y )→ O(X).
The restriction of functor loc: Top → Locales to sober spaces gives a full embedding. Another interesting property is

that loc preserves products of locally compact spaces.
A localic group is a group object in the category of locales; a locale G equipped with maps m:G × G → G, r:G → G

and e: 1→ G satisfying the usual identities, where 1 denotes the terminal object in the category of locales. The category of
localic groups and localic morphisms will be denoted by locGrp.
Since a discrete group is a locally compact group, one has that loc(G× G) ∼= loc(G)× loc(G). Using this property we can

show that, for a discrete group G, locG has an induced localic group structure.
We also denote by loc the following functor

loc: pro Grp→ loc Grp

which carries a progroup H = {Hi|i ∈ I} to loc(H) = Lim{loc(Hi)}, where Hi is considered as a discrete group and Lim is the
inverse limit in the category locGrp.
A localic group G is said to be prodiscrete if it is isomorphic to some loc(H) for an inverse systemH = {Hi|i ∈ I} of discrete

groups.
Given a pointed space (X, x0), we can consider the fundamental progroup proπ1(X, x0). The fundamental localic group of

(X, x0), denoted by locπ1(X, x0), is given by

locπ1(X, x0) = loc(proπ1(X, x0)).

For a locally connected pointed space (X, x0), one has that, in the category pro Ho(Top∗), the pro-pointed space C̄(X, x0)
is isomorphic to the realization of the pro-simplicial pointed set given by the Verdier functor |

∏
(Sh(X, x0))|. In this case

we get

locπ1(X, x0) ∼= loc
(
proπ1

∣∣∣∏(Sh(X, x0))
∣∣∣) .

1.6. Well-known transformations between fundamental groups

1.6.1. Brown–Grossman–Quigley and Steenrod–Quigley homotopy groups
The Brown–Grossman–Quigley homotopy groups and the Steenrod–Quigley homotopy groups are related by a long exact

sequence given in different contexts by Quigley [25], Porter [27], Hernández [32] and G. Pinillos-Hernández-Rivas [33].

Theorem 1.8. Let (X, x0) be a pointed space. Then the following long sequence

. . .→ π
BGQ
q+1 (X, x

0)→ π SQq (X, x
0)→ πBGQq (X, x0) −→ πBGQq (X, x0)→

. . .→ π
BGQ
1 (X, x0)→ π

SQ
0 (X, x

0)→ π
BGQ
0 (X, x0) −→ π

BGQ
0 (X, x0)

is exact.

1.6.2. Fundamental progroups and Brown–Grossman–Quigley homotopy groups
In 1975, Brown [23] gave a definition of the proper fundamental group Bπ∞1 (X) of a σ–compact space X with a base ray.

He also constructed a functor P∞: towGrp −→ Grp which gives the relation between the tower of fundamental groups
{π1(Xi)}, where Xi is a base of ‘‘neighbourhoods at infinity’’, and Brown’s proper fundamental group.
There is another relation between global tower of groups and global versions of Brown-Grossmanhomotopy groups given

by a global version P of Brown’s functor. We refer the reader to [34] and [32] for the exact formulation of this global and
other versions of this functor.
In the context of shape theory we have the following:

Theorem 1.9. Let (X, x0) be a pointed compact metrizable space. If {(Xi, ∗)|i ≥ 0} is a pointed ANR-resolution of (X, x0), then

πBGQq (X, x0) ∼= P∞{πq(Xi, ∗)}.

1.6.3. Fundamental progroup and fundamental localic group
In the next sections, the following result given in Moerdijk’s paper [6] will be used.
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A progroup H = {Hi|i ∈ I} is said to be surjective if the bonding maps Hi → Hj are surjective. We denote by
pro Grpsurjective the full subcategory determined by surjective progroups. Similarly, loc Grp|prodiscrete denotes the full
subcategory determined by prodiscrete localic groups.

Theorem 1.10. The functor loc: pro Grp→ loc Grp restricts to an equivalence of categories

loc: pro Grpsurjective → loc Grp|prodiscrete.

1.6.4. Limit and first derived functor
In this paper we shall also use the inverse limit functor and its first derived in the case of tower of groups.
Let · · · → G2

p1
−→G1

p0
−→G0 be a tower of groups. Consider the map d :

∏
∞

i=0 Gi →
∏
∞

i=0 Gi given by

d(g0, g1, g2, . . .) = (g−10 p0(g1), g
−1
1 p1(g2), g

−1
2 p2(g3), . . .).

Then the inverse limit is given by Lim{Gi, pi} = Kerd . We have the right action
∏
∞

i=0 Gi ×
∏
∞

i=0 Gi →
∏
∞

i=0 Gi given
by x · g = (x0, x1, x2, . . .) · (g0, g1, g2, . . .) = (g−10 x0p0(g1), g

−1
1 x1p1(g2), g

−1
2 x2p2(g3), . . .). The pointed set of orbits of

this action is denoted by Lim1{Gi, pi} and is called the first derived of the Lim functor. We shall use notations Lim{Gi} and
Lim1{Gi} for short. For more properties of these functors we refer the reader to [18,16].

1.6.5. Stennrod-Quigley and Borsuk–Čech homotopy groups
The exact sequence given in Theorem 1.8 and the Lim and Lim1 functors are related as follows.

Theorem 1.11. Let (X, x0) be a pointed compact metrizable space. If {(Xi, ∗)|i ≥ 0} is a pointed ANR-resolution of (X, x0), then
in the exact sequence

. . .→ π
BGQ
q+1 (X, x

0)→ π SQq (X, x
0)→ πBGQq (X, x0) −→ πBGQq (X, x0)→ · · ·

we have that Ker(πBGQq (X, x0) −→ πBGQq (X, x0)) ∼= Lim{πq(Xi, ∗)} and for q > 0, Coker(πBGQq (X, x0) −→ πBGQq (X, x0)) ∼=
Lim1{πq(Xi, ∗)}. Consequently, the following sequence is exact

1→ Lim1{πq(Xi, ∗)} → π SQq (X, x
0)→ Lim{πq(Xi, ∗)} → 1.

2. More fundamental (pro)groups and relations

In this section, we give some newversions of fundamental groups and progroups andwe establish new relations between
different invariants.

2.1. The Spanier fundamental topological group and progroup

In Section 1.5.2, for each open cover U ∈ COV(X) we have considered the normal subgroups π1(U, x0) introduced by
Spanier [22].
This is the reason because we call Spanier fundamental topological group and Spanier fundamental progroup to the

following invariants:

Definition 2.1. Let (X, x0) be a pointed space. The fundamental groupπ1(X, x0) providedwith the unique topological group
structure on π1(X, x0) having as neighbourhood base at the identity element the family of normal subgroups

{π1(U, x0)|U ∈ COV(X)}

will be called the Spanier fundamental topological group and it will be denoted byΠ Sp1 (X, x
0).

Let π Sp1 (X,U, x
0) denote the quotient group

π
Sp
1 (X,U, x

0) = π1(X, x0)/π1(U, x0).

It is easy to see that if U > V then π1(U, x0) ⊆ π1(V, x0). This inclusion induces an epimorphism π
Sp
1 (X,U, x

0) →

π
Sp
1 (X,V, x

0).

Definition 2.2. Let (X, x0) be a pointed space. The progroup

{π
Sp
1 (X,U, x

0)}U∈COV(X)

will be called the Spanier fundamental progroup and denoted by proπ Sp1 (X, x
0).
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Let (X, x0) be a connected locally path-connected pointed space. Take an open cover U such that if U ∈ U then U is
path-connected and take x0 ∈ U0 ∈ U. It is easy to check that there is an induced epimorphism

π
Sp
1 (X,U, x

0)→ π1C̄X(U,U0).

The following open questions arise:
Under which topological conditions is π Sp1 (X,U, x

0)→ π1C̄X(U,U0) a monomorphism?
Are the progroups proπ Sp1 (X, x

0), proπ1(C̄(X, x0)) isomorphic?
The following lemma and proposition give a partial answer to these questions:

Lemma 2.3. Let U be an open cover of a topological space X such that

(i) If U ∈ U then U is path-connected,
(ii) If U, V ∈ U then U ∩ V is path-connected.

If x0 ∈ U0 ∈ U, then the natural epimorphism π Sp1 (X,U, x
0)→ π1C̄X(U,U0) is a monomorphism.

Proof. Consider the natural epimorphism θ :π Sp1 (X,U, x
0) → π1CX(U,U0). Take a loop f : I → X , f (0) = x0 =

f (1) and suppose that θ([f ]) is given as the finite sequence of 1-simplexes associatedwith the vertexesU0, . . . ,Ui−1,Ui,Ui+1,
. . . ,Un = U0, x0 ∈ U0 and we have a partition 0 = t0 < t1 < · · · < ti < ti+1 < · · · < tn < tn+1 = 1
such that f (t1) ∈ U0 ∩ U1, . . . , f (ti) ∈ Ui−1 ∩ Ui, f (ti+1) ∈ Ui ∩ Ui+1, . . . , f (tn) ∈ Un−1 ∩ U0. The elementary rela-
tions between chains of 1-simplexes are of the following form: If Ui−1 ∩ Ui ∩ Ui+1 6= ∅, then the chain associated with
U0, . . . ,Ui−1,Ui,Ui+1, . . . ,Un = U0 is equivalent to the chain associated with U0, . . . ,Ui−1,Ui+1, . . . ,Un = U0. Take
x ∈ Ui−1 ∩ Ui ∩ Ui+1, since Ui−1 ∩ Ui, Ui ∩ Ui+1 are path-connected, there are paths α, β such that Im(α) ⊂ Ui−1 ∩ Ui
and α(0) = f (ti), α(1) = x and Im(β) ⊂ Ui ∩ Ui+1 and β(0) = x, β(1) = f (ti+1). Note that the loop αβ(f |[ti,ti+1]) is
contained in Ui ∈ U. Therefore f and f |[t0,ti]αβ(f |[ti,ti+1])(f |[t0,ti])f represent the same element in π

Sp
1 (X,U, x

0). However
f |[t0,ti]αβ(f |[ti,ti+1])(f |[t0,ti])f is homotopic relative to {0, 1} to f1 = f |[t0,ti]αβf |[ti+1,1]. Now we have that θ([f1]) is repre-
sented by the chain U0, . . . ,Ui−1,Ui+1, . . . ,Un = U0 and that Im(f1) ⊂ U0 ∪ Ui ∪ Ui+1 ∪ Un. Now suppose that for θ([f ])
afterm elementary equivalences, we get the trivial 1-simplexes chain associated toU0,U1 = U0. We have f and fm represent
the same element in π Sp1 (X,U, x

0). Since Im(fm) ⊂ U0 one has that fm and f represent the zero element in π
Sp
1 (X,U, x

0).
This implies that θ is a monomorphism. �

Proposition 2.4. Let X be a connected topological space having property that for any open cover V there exists a refinement U
such that

(i) If U ∈ U then U is path-connected,
(ii) If U, V ∈ U then U ∩ V is path-connected.

Then the progroups proπ Sp1 (X, x
0), proπ1(C̄(X, x0)) are isomorphic.

Proof. From the properties (i) and (ii) it follows that the family

{(U,U0)|x0 ∈ U0 ∈ U,U open cover satisfying (i) ,(ii)}

is cofinal in COV(X .x0). Given (U,U0) in the cofinal family, by Lemma 2.3 one has that π Sp1 (X,U, x
0)→ π1C̄X(U,U0) is an

isomorphism. Then the progroups proπ Sp1 (X, x
0), proπ1(C̄(X, x0)) are isomorphic. �

As a consequence of the existence of the continuous homomorphisms

Π
Sp
1 (X, x

0)→ π
Sp
1 (X,U, x

0)→ π1CX(U,U0),

we obtain an induced continuous homomorphism

Π
Sp
1 (X, x

0)→ πBC1 (X, x
0),

assuming that πBC1 (X, x
0) is provided with the inverse limit topology.

In general, this canonical homomorphism is neither an epimorphismnor amonomorphism. In the following example, this
map is amonomorphismbut not an epimorphism. In Steenrod’s Reviews, subject van Kampen’s theorem, there is a reference
to an article which discusses a one point union of two cones over the earring. This space has no nontrivial covering space,
though it is locally connected and has uncountable fundamental group. (See also Theorem 2.6 [35].) One can check that for
this space the above map is not a monomorphism.

Example 2.5. The Hawaiian earring E is a compact metric space formed by the union of a sequence of circles C1, C2, C3, . . .
which are all tangent to each other at the same point and such that the sequence of radii converges to zero. In Fig. 1, circles
Cn, n ≥ 1, with center (0, 1n ) and radius

1
n are chosen.
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Fig. 1. The Hawaiian earring.

In this example, taking x0 = (0, 0), one has the following properties:
(i) There is a sequence of open covers U1,U2, . . . ,Un, . . . such that Un+1 refines Un and Un satisfies the properties

given in Lemma 2.3. We can also take U0n ∈ Un such that x0 ∈ U0n and (Un,U0n ) is cofinal in COV(E, x
0).

(ii) Moreover, one can takeUn such that C̄X(Un,U0) has the homotopy type of a wedge of (n− 1) pointed circles.
(iii) The natural epimorphism π Sp1 (E,Un, x0)→ π1C̄E(Un,U0) is an isomorphism.
(iv) The progroups proπ Sp1 (E, x

0), proπ1(C̄(E, x0)) are isomorphic.
(v) The continuous homomorphism

Π
Sp
1 (E, x

0)→ πBC1 (E, x
0)

is not an epimorphism. Denote by xi the generator of the fundamental group of the circle Ci, i ≥ 1, Consider the sequence of
elements

an−1 = [x1, x2][x1, x3] · · · [x1, xn−1] ∈ π1C̄E(Un,U0),

where [x, y] = xyx−1y−1 is the commutator of x, y. Since the map

π1C̄E(Un+1,U0)→ π1C̄E(Un,U0)

carries xi to xi for i < n and xn to 1, it follows that an is carried to an−1. Therefore {an}n≥1 determines an element in
πBC1 (E, x

0) =Lim π1C̄E(Un,U0). Notice that x1 is included (n−1) times in the reduced word of an for n ≥ 3. Nevertheless, if
b ∈ Π Sp1 (E, x

0) and Nn(x1) denotes the number of times that x1 appears in the reduced image of b by the mapΠ
Sp
1 (E, x

0)→

π1C̄E(Un,U0), one has that there is some N0 such that Nn(x1) ≤ N0 for all n ≥ 1. This implies that {an}n≥1 is not in the
image of the mapΠ Sp1 (E, x

0)→ πBC1 (E, x
0).

(vi) The continuous homomorphism Π Sp1 (E, x
0) → πBC1 (E, x

0) is injective. Different proofs have been given by Morgan
and Morrison [36], de Smit [37] and Fabel [38].
We have given a reformulation of Spanier [22] results in terms of S-open subgroups in Theorem 1.7 and taking transitive

representations, see Definition 3.1, we have the following equivalent version:

Theorem 2.6. If (X, x0) is a connected locally path-connected pointed space and (F , x0) is a discrete pointed space whose
cardinal is denoted by |F |, then |F |-Cov0(X, x0)/ ∼= is bijective to the set of transitive continuous representations of the form
Π
Sp
1 (X, x

0)→ Aut(F).

Proof. Notice that for an S-open subgroup H ofΠ = Π Sp1 (X, x
0) such that (Π/H,H) is pointed bijective to (F , x0)we have

an induced transitive continuous representation Π → Aut(F) given by a · (bH) = (ab)H for a, b ∈ Π . Conversely, for
a transitive continuous representation Π → Aut(F) and a base point x0 in F we have the S-open subgroup given by the
isotropy group at x0. �

Note that, for a locally path-connected connected space X , there does not exist a connected covering of X having fibres
whose cardinality is higher than the cardinal of its fundamental group.
Recall that π Sp1 (X,U, x

0) = π1(X, x0)/π1(U, x0). Then the family of continuous epimorphisms Π
Sp
1 (X, x

0) →

π
Sp
1 (X,U, x

0) induces a pro-map

φ:Π Sp1 (X, x
0)→ {π

Sp
1 (X,U, x

0)} = proπ Sp1 (X, x
0).

Proposition 2.7. Let D be a discrete group. Then the map φ induces an isomorphism

φ∗: pro Grp(proπ Sp1 (X, x
0),D)→ TGrp(Π Sp1 (X, x

0),D).

Proof. It follows from the fact that Π Sp1 (X, x
0) → π

Sp
1 (X,U, x

0) is an epimorphism and one has to take into account that
{π1(U, x0)} is a base of neigbourhoods at the identity element. �
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2.2. The near-module structure of the fundamental Brown–Grossman–Quigley homotopy group and the P -functor

Associated with the category C with coproducts, one has the category, tow C, of towers in C and the category, pro C, of
pro-objects in C. An object G in C induces a pro-object cG:N −→ C given by

(cG)i =
∑
j≥i

G, i ∈ N

and the bonding maps are given by inclusions

(cG)i+1 =
∑
j≥i+1

G −→
∑

j≥i
G = (cG)i.

Associated with the infinity cyclic group C∞ of the category of groups Grp, we have the pro-object cC∞
(cC∞)i = ?j≥i C∞, i ∈ N.

The endomorphism group PC∞ = pro Grp(C∞, C∞) has the structure of a zero-symmetric unitary left near-ring.
For any object X of pro Grp, we consider the natural action

pro Grp(cC∞, X)× pro Grp(cC∞, cC∞) −→ pro Grp(cC∞, X)
which associates (f , ϕ) to f ϕ, for every f ∈ pro Grp(cC∞, X) and every ϕ ∈ pro Grp(cC∞, cC∞).
The morphism set pro Grp(cC∞, X) has a group structure and the action satisfies the left distributive law:
f (α + β) = f α + f β, f ∈ pro Grp(cC∞, X), α, β ∈ P cC∞.

Notice that the sum + need not be commutative. In this case, P cC∞ becomes a zero-symmetric unitary left near-ring and
pro Grp(cC∞, X) is a right P cC∞-group; that is, a right near-module over the near ring P cC∞, see [14,15].
Denote by Grp

P cC∞
the category of P cC∞-groups (near-modules).

Then the enriched version of Brown’s functor, denoted byP instead ofP∞, is the functorP : pro Grp→ Grp
P cC∞

, given
byPX = pro Grp(cC∞, X) for a progroup X and similarly formorphisms. Properties of this version of the functor are studied
in [32].
For a group Y , we can consider the reduced product IY =

∏
i≥0 Y/ ∼ of Y as the quotient of

∏
i≥0 Y given by the relation:

(y0, y1, . . .) ∼ (y′0, y
′

1, . . .) if there is a positive integer k0 such that for k ≥ k0, yk = y
′

k. We denote by [(y0, y1, . . .)] the
equivalence class of (y0, y1, . . .). The same construction can be given for a set, pointed set or abelian group.
We remark that a group Y can be considered as a constant progroup, and in this case, one has that PY ∼= IY . Moreover,

IY has the structure of a right P cC∞-group.
If F is a set, then there exists a natural transformation η:PAutF → AutP F , given by η[(f0, f1, . . .)]([z0, z1, . . .)] =

[(f0(z0), f1(z1), . . .)], where fi ∈ AutF and zi ∈ F , i ∈ N.

Proposition 2.8. If F is a finite set, then η:PAutF → AutP F is a monomorphism.

Proof. Suppose that η[(f0, f1, . . .)] = η[(f ′0, f
′

1, . . .)], then for every p = [(z0, z1, . . .)], there is ip such that fi(zi) = f
′

i (zi) for
all i ≥ ip. For each z ∈ F we have the element p(y) = [(y, y, . . .)] and the positive integer ip(z) verifies fi(z) = f ′i (z) for all
i ≥ ip(z) . Then if i0 = max{ip(z)|z ∈ F} one has that fi(z) = f ′i (z) for all i ≥ i0 and all z ∈ F . This implies that fi = f

′

i for all
i ≥ i0. Therefore [(f0, f1, . . .)] = [(f ′0, f

′

1, . . .)], that is, η is a monomorphism. �

Definition 2.9. Let X be a progroup. A group homomorphism θ :PX → AutPF is said to be a P -factorizable representation
if there is a P cC∞-group homomorphism φ:PX → PAutF such that ηφ = θ .

Definition 2.10. An object X of tow Grp is said to be finitely generated if there is an (effective) epimorphism of the form∑
finite cC∞ −→ X .

The following theorem has been proved in [34].

Theorem 2.11. The restriction functor P : tow Grp/fg −→ Grp
P cC∞

is a full embedding, where tow Grp/fg denotes the full
subcategory of tow Grp determined by finitely generated towers.

For a given pro-pointed space Z , we can consider the action given by
Ho(pro Top∗)(cS1, Z)× Ho(pro Top∗)(cS1, cS1)→ Ho(pro Top∗)(cS1, Z).

Now we can apply the comparison Theorem 1.3 to obtain that
Ho(pro Top∗)(cS1, cS1) ∼= LimjColimi{Ho(Top∗)(cS1i , cS

1
j )}

∼= LimjColimi{Grp((C∞)i, (C∞)j)}
∼= pro Grp(cC∞, cC∞) = P cC∞.

Therefore, the Brown–Grossman–Quigley group πBGQ1 (Z) of a pro-pointed space has an enriched structure of a near-module
over the near-ring P cC∞. Accordingly, we say that π

BGQ
1 (Z) has the structure of a P cC∞-group.
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Definition 2.12. Given a pro-pointed space Z , the group πBGQ1 (Z) enriched with P cC∞-group structure is said to be the
Brown–Grossman–Quigley fundamental P cC∞-group and it will be denoted by Π

BGQ
1 (Z). If (X, x0) is a pointed space the

Brown–Grossman–Quigley fundamental P cC∞-group is given byΠ
BGQ
1 (V (X, x0)).

It is easy to check that the following diagram is commutative up to isomorphisms.

tow Top∗
towπ1 //

Π
BGQ
1 %%KKKKKKKKKK tow Top

Pyysssssssss

Grp
P cC∞

Proposition 2.13. Let Z be a tower of pointed spaces. Then, there exists a natural P cC∞-group isomorphism, ΠBGQ1 (Z) ∼=
P towπ1(Z).

2.2.1. The Borsuk–Čech topological fundamental group
The Borsuk–Čech fundamental group of a pointed space (X, x0) is given by πBC1 (X, x

0) = Lim proπ1(X, x0). This group
can be enriched with the following topological structure: In the progroup proπ1(X, x0) = {π1(C̄(X, x0)(U,U0))}, we take
the discrete topology on eachπ1(C̄(X, x0)(U,U0)) and then the inverse limit topology on the inverse limit groupπBC1 (X, x

0).
The corresponding topological group is denoted byΠBC1 (X, x

0).

2.2.2. The Steenrod–Quigley topological fundamental group of a connected compact metrizable space
If (X, x0) is a pointed connected compact metrizable space we have that

π
SQ
1 (X, x

0) ∼= Ho(pro Top∗)(SQ S1, C(X, x0))
and, by Theorem 1.11, there exists a canonical epimorphism

π SQq (X, x
0)→ ΠBC1 (X, x

0).

This canonical map induces the initial topology on π SQq (X, x
0) satisfying that π SQ1 (X, x

0) → ΠBC1 (X, x
0) is continuous

and any other topology with this property is finer than the initial topology. The group π SQ1 (X, x
0) endowed with the

above topology is denoted byΠ SQ1 (X, x
0) and is called the Steenrod–Quigley topological fundamental group of a connected

compact metrizable space.
The Kernel of this map Lim1{π2(Xi, ∗)} is contained in the intersection of all neighbourhoods of the identity element.

Then we have

Proposition 2.14. Let (X, x0) be a pointed connected compact metrizable space.
(i) If (X, x0) is S2-movable, then the mapΠ SQ1 (X, x

0)→ ΠBC1 (X, x
0) is a homeomorphism,

(ii) If D is a discrete group, the induced map

TGpr(ΠBC1 (X, x
0),D)→ TGpr(Π SQ1 (X, x

0),D)

is an isomorphism.

3. Representations of groups and progroups and finite sheeted coverings

Firstly, we recall the notion of transitive representation for groups.

Definition 3.1. Given a group G, a representation η:G → Aut(S) into the group of automorphism of a set S is said to be
transitive if for every a, b ∈ S there exists g ∈ G such that η(g)(a) = b.

The notion of transitive representation for progroups can be given as follows:

Definition 3.2. Given a progroup {Gi} with bonding homomorphisms G
j
i:Gj → Gi and a set S, a representation η: {Gi} →

Aut(S) is said to be transitive if for any homomorphism fi:Gi → Aut(S) representing the pro-map, η = [fi], there exists a
map j→ i in I such that for any k→ j the induced representation fiGki :Gk → Aut(S) is transitive.

Note that, for a finite set S, a pro-homomorphism η: {Gi} → Aut(S) represented by fi0 :Gi0 → Aut(S) has the property
that the induced progroup { Im(fi0G

j
i0
)} is isomorphic to a constant progroup. In this case, the action is transitive if the action

of this constant progroup (group) is transitive.
Now we can use the functors P : pro Grp → Grp

P cC∞
and loc: pro Grp → loc Grp to define the following transitivity

analogues:
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Definition 3.3. Let S be a finite set. A P -factorizable representation

θ :πBGQ1 (X, x0)→ Aut(P S), θ = ηφ,

is said to be transitive (see Definition 2.9) if there exists a transitive representation ψ: proπ1(X, x0) → Aut(S) such that
P (ψ) = φ.
Similarly, a localic representation θ : locπ1(X, x0) → locAut(S) is said to be transitive if there exists a transitive

representation η: proπ1(X, x0)→ Aut(S) such that loc(η) = θ .

In the following proposition, we show that a connected locally connected space is S1-movable.

Proposition 3.4. Let X be a connected, locally connected space. Then, for any base point x0 ∈ X, the pointed space (X, x0) is
S1-movable.

Proof. By Definition 1.4 and Remark 1.5 one can prove that C̄(X, x0) = {C̄(X, x0)(U,U0)} is S1-movable. Let (U,U0) be
a pointed open cover. Since X is locally connected, there exists a pointed open cover (V, V0) which refines (U,U0) and
such that any V ∈ V is connected (in particular V0 is connected). Let (U′,U ′0) be a pointed open cover which refines
(V, V0). Now we take a pointed open cover (W,W0) such that any W ∈ W is connected, (W,W0) refines (U′,U ′0) and
we can suppose that (W,W0) has the following additional property: if W1 ⊂ W , W ∈ W , W1 is a non-empty connected
open subset, then W1 ∈ W . Take V0, V1, . . . , Vn = V0 a chain such that Vi ∩ Vi+1 6= ∅. Note that x0 ∈ Vn ∩ V0 and take
xi ∈ Vi−1 ∩ Vi. The connected subspace Vi determines the following family {W ∈ W |W ⊂ Vi}. Since Vi is connected and
{W ∈ W |W ⊂ Vi} is an open cover of Vi there is W i0, . . .W

i
ki
∈ W such that xi−1 ∈ W i0, W

i
j−1 ∩ W

i
j 6= ∅, xi ∈ W

i
ki
. Now

the canonical map π1(C(X, x0)(W,W0)) → π1(C(X, x0)(U′,U ′0)) → π1(C(X, x0)(V, V0)) applies the loop represented
by W 10 , . . . ,W

1
k1
,W 20 , . . .W

2
k2
, . . . ,W n0 , . . .W

n
kn , W

1
0 = W0 = W

n
kn into a loop which is homotopic to one represented by

V0, V1, . . . , Vn. Therefore C̄(X, x0) = {C̄(X, x0)(U,U0)} is S1-movable. Accordingly, (X, x0) is S1-movable. �

Next we give the main result of the paper. We remark that, in some cases, the restriction to compact metrizable spaces
or to coverings satisfying the finite fibre condition is not necessary. Firstly, we include Table 1 which explains the notation
and refers to papers or sections where it is introduced.

Theorem 3.5. Let (X, x0) be a connected compact metrizable pointed space. Consider the set n− Cov0(X, x0)/ ∼= of n-sheeted
connected pointed coverings p: (Y , y0)→ (X, x0) up to covering isomorphisms. Then

(i) n− Cov0(X, x0)/ ∼= is bijective to the set of transitive representations of the form proπ1(X, x0)→ Σn,
(ii) Let F be a finite set with n elements. Then n− Cov0(X, x0)/ ∼= is bijective to the subset of hom-set

Grp
P cC∞

(Π
BGQ
1 (X, x0),PAut(F)),

which is in a biunivoque correspondence with P -factorizable transitive representations of the form π
BGQ
1 (X, x0) →

Aut(P F).
(iii) If (X, x0) is S1-movable, then n− Cov0(X, x0)/ ∼= is bijective to the set of transitive continuous representations of the form

ΠCB1 (X, x
0)→ Σn.

(iv) If (X, x0) is S1-movable, then n− Cov0(X, x0)/ ∼= is bijective to the set of transitive continuous representations of the form
Π
SQ
1 (X, x

0)→ Σn.
(v) If (X, x0) is locally connected, then n− Cov0(X, x0)/ ∼= is bijective to the set of transitive representations of the form

proπ1(X, x0) ∼= proπ1
(∣∣∣∏(Sh(X, x0))

∣∣∣)→ Σn.

(vi) If (X, x0) is locally connected, then n− Cov0(X, x0)/ ∼= is bijective to the set of transitive localic representations of the
form

locπ1(X, x0) ∼= locπ1
(∣∣∣∏(Sh(X, x0))

∣∣∣)→ locΣn.

(vii) If (X, x0) is locally connected, then n− Cov0(X, x0)/ ∼= is bijective to the set of transitive continuous representations of
the formΠCB1 (X, x

0)→ Σn.
(viii) If (X, x0) is locally path-connected, then n− Cov0(X, x0)/ ∼= is bijective to the set of transitive continuous representations

of the formΠ Sp1 (X, x
0)→ Σn.

(ix) If (X, x0) is locally path-connected, then n− Cov0(X, x0)/ ∼= is bijective to the set of transitive representations of the form
proπ Sp1 (X, x

0)→ Σn.
(x) If (X, x0) is locally path-connected, and semi-locally 1-connected, then n− Cov0 / ∼= is bijective to the set of representations
of the form π1(X, x0)→ Σn.
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Table 1

proπ1(X, x0) Fundamental progroup [16,4,17,18]
Σn Symmetric group or degree n
C∞ Infinite cyclic group
cC∞ Tower of groups; (cC∞)i = ?j≥i C∞, i ∈ N [34,32]
P Brown’s functor [23,34]
P cC∞ Endomorphism near-ring [34,14,15]
Grp Category of groups
Grp

P cC∞
Category of near-modules over P cC∞ [14,34]

Π
BGQ
1 (X, x0) Brown–Grossman–Quigley fundamental group enriched with a

near-module structure over P cC∞
[34,32]

π
BGQ
1 (X, x0) Brown–Grossman–Quigley fundamental group [24,23,25],

(without the structure of a near-module) [27,39,34]
S1-movable Their bonding morphisms satisfy Definition 1.4
pro-pointed space certain lifting property
S1-movable Pointed space which has a Definition 1.4
pointed space S1-movable resolution
ΠBC1 (X, x

0) Borsuk–Čech fundamental group [16,5]
enriched with the prodiscrete topology Section 2.2.1

Π
SQ
1 (X, x

0) Šteenrod-Quigley fundamental group [25,16]
enriched with a topology Section 2.2.2

Sh(X, x0) The category of sheaves Sh(X) over a space X with a base point
Sh(X)→ Sets, where Sets is the category of sets

[31]

|
∏
(Sh(X, x0))| Pro-object in Ho(Top∗) obtained using [2]

X loc connected the realization and the Verdier
∏
functors

proπ1(|
∏
(Sh(X, x0))|) Artin–Mazur fundamental progroup [2]

X loc connected obtained using the Verdier functor
Frames Category of complete Heyting algebras [31,6]
Locales Dual category of Frames [31,6]
Localic group Group object in Locales [31,6]
Localic fundamental Localic inverse limit of the [6]
group locπ1(X, x0) groups of the fundamental progroup
locπ1(|

∏
(Sh(X, x0))|) Localic inverse limit of the groups [2,6]

X loc connected of the fundamental Artin–Mazur progroup
locAut(F) Localic version of the discrete group Aut(F)
Π
Sp
1 (X, x

0) Spanier fundamental topological group Definition 2.1
proΠ Sp1 (X, x

0) Spanier fundamental progroup Definition 2.2
π1(X, x0) Fundamental group

Proof. We remark that (i) is well known, you can see a proof in [4] using the terminology of tropes of groups in [7] or
in [9] and (viii) has been proved in Theorem 2.6.
(i) implies (ii): The functor P : pro Grp→ Grp

P cC∞
induces the following hom-set map

pro Grp(proπ1(X, x0),Aut(F))→ Grp
P cC∞

(P (proπ1(X, x0)),PAut(F)).

In order to apply Theorem 2.11, we have to prove that proπ1(X, x0) and Aut(F) are finitely generated in the sense of
Definition 2.10. Since (X, x0) is a connected compact metrizable pointed space, we can take a cofinal sequence of open
covers (U0,U0) ≤ (U1,U1) ≤ · · · (Ui,Ui) such that for every i ≥ 0 the Čech nerve C(X, x0)(Ui,Ui) is a finite CW-complex
with finite presented fundamental group and a finite set of generators Si. Denote by F [S] the free group generated by a set
S. We can take the following tower of groups · · · → F [t∞i=2 Si] → F [t∞i=1 Si] → F [t∞i=0 Si] which is isomorphic to cC∞. The
family of epimorphisms F [Si] → π1(C(X, x0)(Ui,Ui)) induces an epimorphism F [t∞k≥i Si] → π1(C(X, x0)(Ui,Ui)) for each
i and then we have an effective epimorphism cC∞ → proπ1(X, x0). Therefore proπ1(X, x0) is finitely generated. Now since
Aut(F) is a finite group, there is a finite set S of generators and a natural epimorphism F [S] → Aut(F). Then we get induced
epimorphisms F [t∞k≥i S] → Aut(F) and an effective epimorphism cC∞ → Aut(F). Now, applying Theorem 2.11 we obtain
that

pro Grp(proπ1(X, x0),Aut(F)) ∼= Grp
P cC∞

(P (proπ1(X, x0)),PAut(F)).

By Proposition 2.13, we have that P (proπ1(X, x0)) ∼= Π
BGQ
1 (X, x0). Then

pro Grp(proπ1(X, x0),Aut(F)) ∼= Grp
P cC∞

(Π
BGQ
1 (X, x0),PAut(F)).

By Proposition 2.8, if F is a finite set, then η:PAutF → AutP F is a monomorphism. Thus

Grp
P cC∞

(Π
BGQ
1 (X, x0),PAut(F)) ∼= {θ ∈ Grp(πBGQ1 (X, x0),Aut(P F))|θ is P−factorizable}.
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Therefore, we also have

{ψ ∈ pro Grp(proπ1(X, x0),Aut(F))|ψ is transitive}
∼= {θ ∈ Grp(πBGQ1 (X, x0),Aut(P F))|θ is P -factorizable and transitive}.

(i) implies (iii): Given the natural map Lim proπ1C(X, x0) → proπ1C(X, x0) in proGrp and the discrete group Σn
considered as constant progroup, there is an induced map

φ: pro Grp(proπ1C(X, x0),Σn)→ pro Grp(Lim proπ1C(X, x0),Σn).

The inverse limit, Lim proπ1C(X, x0), provided with the inverse limit topology, see Section 2.2.1, is the Borsuk–Čech
topological fundamental groupΠBC1 (X, x

0). A map from the progroup, proπ1C(X, x0), to the discrete finite group,Σn, can be
represented by a homomorphism of the form

π1(C(X, x0)(U,U0))→ Σn

which is carried by φ to the continuous map

ΠBC1 (X, x
0) = Lim proπ1C(X, x0)→ π1(C(X, x0)(U,U0))→ Σn.

Therefore the image of φ is contained in TGrp(ΠBC1 (X, x
0),Σn) ⊂ Grp(ΠBC1 (X, x

0),Σn).
Next, we shall take into account the following properties:
(1) the progroup proπ1C(X, x0) is isomorphic to a tower (this follows since (X, x0) is a connected compact metrizable

pointed space),
(2) the tower proπ1C(X, x0) is isomorphic to a tower {Gi|i ∈ N} which has surjective bonding homomorphisms

η
j
i:Gj → Gi (this property can be obtained from the fact that (X, x0) is S1-movable).
Taking the discrete topology on Gi, from the properties (1) and (2) we obtain thatΠBC1 (X, x

0) ∼= Lim {Gi}, the canonical
map ηi:ΠBC1 (X, x

0)→ Gi is a continuous epimorphism and the topology onΠBC1 (X, x
0) is the initial topology induced by ηi,

i ∈ N (we remark that for an arbitrary progroup with surjective bonding maps in general the canonical map Lim {Gj} → Gj
need not be an epimorphism.)
Given a continuous homomorphism f :ΠBC1 (X, x

0) → Σn, we have that Kerf is an open neighbourhood of the identity
element. Therefore there exists ηi:ΠBC1 (X, x

0)→ Gi such that Kerηi ⊂Ker f . This implies that f factors as f̄ ηi and f̄ :Gi → Σn
represent a map in pro Grp(proπ1C(X, x0),Σn)which is applied by φ into f . Given a homomorphism h:Gi → Σn such that
ηih = 0, since ηi is an epimorphism it follows that h = 0. Therefore

pro Grp(proπ1C(X, x0),Σn)→ TGrp(ΠBC1 (X, x
0),Σn)

is an isomorphism. We also remark that transitivity property is also preserved by this isomorphism.
(iii) implies (iv): Since, by Proposition 2.14, one has that

TGpr(ΠBC1 (X, x
0),Σn)→ TGpr(Π SQ1 (X, x

0),Σn)

is an isomorphism and it is easy to check that the transitivity property is also preserved.
(i) implies (v): If (X .x0) is a pointed locally connected space, proπ1(C̄(X, x0)) is isomorphic to the Artin–Mazur progroup,

proπ1(|
∏
(Sh(X, x0))|), see Section 1.4 and [2].

(i) implies (vi): Since (X, x0) is locally connected connected space we have that proπ1(X, x0) is a surjective group. The
constant progroupΣn is also surjective. Then applying Theorem 1.10 we obtain the bijection

pro Grp(proπ1(X, x0),Σn) ∼= loc Grp(loc(proπ1(X, x0)), locΣn)

Taking into account Definition 3.3, we have that the transitivity property is preserved by this bijection.
(iii) implies (vii): Since, by Proposition 3.4, one has that if (X, x0) is a connected locally connected space, then (X, x0) is

S1-movable.
(viii) implies (ix): It follows from Proposition 2.7.
(ix) implies (x): In this case, one has that proπ Sp1 (X, x

0) is isomorphic to π1(X, x0). �

Remark 3.6. The profinite completion Ĝ of a topological group G satisfies that for any finite discrete group H the canonical
map G → Ĝ induces an isomorphism TGrp(Ĝ,H) → TGrp(G,H). The prodiscrete completion in general does not verify a
similar property for discrete groups, but under the conditions of Theorem 3.5 the above property is also satisfied for discrete
groups. Moreover one has the following:
(a) The topological groupΠBC1 (X, x

0) is prodiscrete and we have

Π̌
SQ
1 (X, x

0) ∼= Π
CB
1 (X, x

0) ∼= Π̌
Sp
1 (X, x

0).

(b) There are induced isomorphisms on the profinite completions,

Π̂
SQ
1 (X, x

0) ∼= Π̂
CB
1 (X, x

0) ∼= Π̂
Sp
1 (X, x

0).

(c) The progroups proπ1(X, x0) and proπ
Sp
1 (X, x

0) have the same profinite progroup completion.
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Remark 3.7. (a) If Y is connected, locally path-connected and semi-locally simply connected, then fundamental group
π1(Y , y0) satisfies that the category Cov(Y ) is equivalent to the category of π1(Y , y0)-sets.
(b) If Y is connected, locally path-connected, thenΠ Sp1 (Y , y

0), proπ Sp1 (Y , y
0) satisfy that the category Cov(Y ) is equivalent

to the category of continuousΠ Sp1 (Y , y
0)-sets and to the category of proπ Sp1 (Y , y

0)-sets.
(c) If Y is connected, locally connected, then proπ1(Y , y0), locπ1(Y , y0) satisfy that the category Cov(Y ) is equivalent to

the category of continuousΠ Sp1 (Y , y
0)-sets and to the category of proπ Sp1 (Y , y

0)-sets.
(d) If Y is a space, and CovProj(Y ) denotes the category of covering projection given in [7,8] then CovProj(Y ) is

equivalent to the category of proπ(Y )-sets, where π(Y ) is the fundamental progroupoid of Y . If Y is locally connected
then CovProj(Y ) = Cov(Y ).
(e) It is interesting to remark that in general Cov(Y ) is not closed by arbitrary coproducts. However we can extend these

categories by taking arbitrary coproducts to obtain the classifying topos of the corresponding fundamental ‘groups’.
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