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a b s t r a c t

In this work we show the presence of the well-known Catalan numbers in the study of
the convergence and the dynamical behavior of a family of iterative methods for solving
nonlinear equations. In fact, we introduce a family of methods, depending on a parameter
m ∈ N ∪ {0}. These methods reach the order of convergence m + 2 when they are
applied to quadratic polynomials with different roots. Newton’s and Chebyshev’s methods
appear as particular choices of the family appear for m = 0 and m = 1, respectively. We
make both analytical and graphical studies of these methods, which give rise to rational
functions defined in the extended complex plane. Firstly, we prove that the coefficients
of the aforementioned family of iterative processes can be written in terms of the Catalan
numbers. Secondly, we make an incursion into its dynamical behavior. In fact, we show
that the rational maps related to these methods can be written in terms of the entries
of the Catalan triangle. Next we analyze its general convergence, by including some
computer plots showing the intricate structure of the Universal Julia sets associated with
the methods.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The application of iterative methods for solving nonlinear equations f (z) = 0, with f : C→ C can give rise to rational
functions whose dynamics are not well known. The easiest model (attributed to Cayley, see [1] for more details) is obtained
when f (z) is a quadratic polynomial

f (z) = (z − a)(z − b), a, b ∈ C, with a 6= b, (1)

and the iterative process is Newton’s method [2]:

zn+1 = zn −
f (zn)
f ′(zn)

, n ≥ 0. (2)

In this situation, the dynamics of Newton’s iteration are conjugate to the map z → z2 via the Möbius transformation

M(z) = (z − a)/(z − b). (3)

Consequently, if the starting point z0 is inside the unit circle (|z0| < 1) then Newton’s iterates converge to 0, if |z0| > 1,
Newton’s iterates diverge to∞ and if |z0| = 1, Newton’s iterates have a chaotic behavior (see Fig. 1).
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Fig. 1. Universal Julia sets for S0 (Newton’s method) and S1 (Chebyshev’s method).

The situation becomes more complicated if f (z) is a polynomial of degree greater than two. This fact was known yet
in [1,3]. But the study of the dynamics of iterative methods applied to quadratic polynomials can be also complicated if
other iterative methods, different from Newton’s method are considered.
For instance, another well-known example [4] is Chebyshev’s method applied to quadratic polynomials. Chebyshev’s

method is defined by

zn+1 = zn −
(
1+

1
2
Lf (zn)

)
f (zn)
f ′(zn)

n ≥ 0 (4)

where we have denoted

Lf (z) =
f (z)f ′′(z)
f ′(z)2

. (5)

The dynamics of Chebyshev’s method are conjugate, via the Möbius transformation (3), to the map z → z3(z+2)/(2z+1).
Then, its dynamical behavior is more complicated, as shown in Fig. 1.
Following an idea of Gander [5], we consider the following family of iterative methods

zn+1 = Rm(zn) = zn − Hm(Lf (zn))
f (zn)
f ′(zn)

, n ≥ 0,

Hm(w) =
m∑
j=0

Ajwj, Aj ∈ R+, 0 ≤ j ≤ m
(6)

and Lf (z) is defined in (5). Notice that for m = 0 and A0 = 1 we obtain Newton’s method (2) and for m = 1 and A0 = 1,
A1 = 1/2 we obtain Chebyshev’s method (4).
In this paper we present two results for methods (6). Firstly, in Section 2, we find the parameters Ak, k = 0, . . . ,m that

allow methods (6) to reach the order of convergencem+ 2. In fact, these parameters can be written in the following way

Aj =
1
2j
Cj, 0 ≤ j ≤ m, (7)

where Cj are the well-known Catalan numbers [6,7]:

Cj =
1
j+ 1

(
2j
j

)
, j ≥ 0, j ∈ N. (8)

Secondly, in Section 3, we study the dynamics of the methods given in (2). In particular we show that these methods are
conjugate, via the Möbius transformation (3), to the map

Sm(z) = zm+2
Pm(z)

P̂m(z)
, (9)

where

Pm(z) =
m∑
p=0

Bm+1,p+1zp and P̂m(z) =
m∑
p=0

Bm+1,m+1−pzp (10)
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Table 1
First entries of the Catalan triangle introduced in [8].

m p
1 2 3 4 5 6 . . .

1 1
2 2 1
3 5 4 1
4 14 14 6 1
5 42 48 27 8 1
6 132 165 110 44 10 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

and

Bm,p :=
p
m

(
2m
m− p

)
, m, p ∈ N, p ≤ m. (11)

Notice that he numbers Bm,p defined in (11) are the entries of the Catalan triangle introduced in [8]. In Table 1 we can see
the first rows of this triangle.
Although the numbers Bn,p are not as famous as Catalan numbers, they have also several applications. As a sample, we

cite now some of them:

(i) Bm,p is the number of leaves at level p+ 1 in all ordered trees withm+ 1 edges.
(ii) Bm,p is the number of walks ofm steps, each in direction N, S, W or E, starting at the origin, remaining in the upper half
plane and ending at height p.

(iii) Bm,p denotes the number of pairs of non-intersecting paths of lengthm and distance p.

Moreover, they satisfy the recurrence relation

Bm,p = Bm−1,p−1 + 2Bm−1,p + Bm−1,p+1, p ≥ 2

and many other identities as shown in [9,10,8,11].
In addition, in [10] the following new identity

i∑
p=1

Bm,pBm,m+p−i(m+ 2p− i) = (m+ 1)Cm

(
2(m− 1)
i− 1

)
, i ≤ m, (12)

was proved. As we can see in this paper, this identity is key in the understanding of the dynamical behavior of the methods
given in (6).
Finally, in Section 3 we study the dynamics of the methods given in (6). In particular, we prove that these root-finding

algorithms are generally convergent for quadratic polynomials. In addition,wepresent some computer graphics showing the
intricate dynamical structure of the Universal Julia sets associated with these methods when they are applied to quadratic
polynomials.

2. Local convergence for quadratic polynomials

The family of iterative methods we consider in this paper appears as a generalization of a result of Gander [5], where he
proves that all iterative method written astk+1 = tk − H(Lf (tk))

f (tk)
f ′(tk)

H(0) = 1, H ′(0) = 1/2, |H ′′(0)| <∞,

has at least cubic order of convergence. Now we consider the methods introduced in (6) with A0 = 1 and A1 = 1/2. Taking
into account Gander’s result they have at least cubic order of convergence. Then we look for the parameters A2, A3, . . . , Am
that provides us an order of convergencem+ 2, withm ∈ N. In this paper we find these parameters when methods (6) are
applied to a quadratic complex polynomial (1).

Theorem 1. Let f : C→ C be the quadratic polynomial (1). Then, for m ≥ 0, the methods given in (6) with the coefficients Aj
defined in (7), have order of convergence at least m+ 2.

Proof. Let Rm(z) be the rational function defined in (6), that is,

Rm(z) = z − Hm
(
Lf (z)

) f (z)
f ′(z)

.
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It is well known that the method given in (6) converges with order q if

Rm(α) = α, R′m(α) = R
′′

m(α) = · · · = R
(q−1)
m (α) = 0, R(q)m (α) 6= 0,

where α is a solution of f (z) = 0.
Firstly, notice that, as α is a simple root, we can write

Lf (z) = (z − α)h(z),

with h(α) 6= 0.
Now, it is easy to show that Rm(α) = α. In addition, we have

R′m(z) = 1−
m∑
j=0

jAjLf (z)j−1(1− 2Lf (z))Lf (z)−
m∑
j=0

AjLf (z)j(1− Lf (z))

= (1− A0)+ (−2A1 + A0)Lf (z)+
m∑
j=2

(
(2j− 1)Aj−1 − (j+ 1)Aj

)
Lf (z)j + (2m+ 1)AmLf (z)m+1.

As Aj are defined by (7), we deduce that

R′m(z) =
m∑
j=2

(
(2j− 1)Aj−1 − (j+ 1)Aj

)
Lf (z)j + (2m+ 1)AmLf (z)m+1

= (2m+ 1)Am(z − α)m+1h(z)m+1,

and consequently, R′m(α) = 0.
In addition,

R(j+1)m (z) = (2m+ 1)Am
j∑
i=0

(
j
i

)
((z − α)m+1)(i)(h(z)m+1)(j−i)

= (2m+ 1)Am
j∑
i=0

(
j
i

)
(m+ 1)m · · · (m+ 2− i)((z − α)m+1−i)(h(z)m+1)(j−i).

Then, R′m(α) = R
′′
m(α) = · · · = R

(m+1)
m (α) = 0 and

R(m+2)m (α) = (2m+ 1)(m+ 1)!Amh(α)m+1 6= 0.

This finishes the proof. �

3. Dynamical behavior

In this section, we study the general convergence of methods (6) for quadratic polynomials (1). The idea of general
convergence of a method for polynomials of a given degree was introduced in [12,13]. To be more precise, a given method
is generally convergent if the method converges to a root for almost every starting point and for almost every polynomial
of a given degree.
First we give some definitions and properties of rational functions that we will use below. For more information about

these concepts, the interested reader can consult the book of Beardon [1].
Let us denote by C∞ = C ∪ {∞} the extended complex plane (Riemann Sphere). R(z) = P(z)/Q (z) is a rational map on

C∞ for polynomials P(z) and Q (z) coprime and not both zero. ζ is a fixed point of R if R(ζ ) = ζ .
For z ∈ C∞, we define the forward orbit of z as the set

Orb(z) = {z, R(z), R2(z), . . . , Rk(z), . . .}

where Rk(z) is the kth composition of R.
A rationalmap R, dividesC∞ in two subsets, that are known as Fatou set and Julia set. Fatou set, denotedF (R) is defined as

the set of points z0 ∈ C∞ such that the family of iterates Rn is a normal family in some neighborhood Uz0 of z0. That is, every
infinite sequence of Rn contains a subsequence Rnk that converges locally uniformly on Uz0 to some continuous function
g ∈ C(C∞). Recall that Rnk → g locally uniformly on Uz0 if for all z ∈ Uz0 , R

nk → f uniformly on some neighborhood of z.
The Julia set, J(R), is the complement of the Fatou set, J(R) = C∞ − F (R).
Roughly speaking, the orbits of the points in F (R) exhibit stable behavior but the orbits of the points in J(R) exhibit

chaotic behavior.
The basin of attraction of a fixed point ζ of a rational map R is the set

C(ζ ) = {z ∈ C∞|Rn(z)→ ζ , for n→∞}.
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It is well-known, [1], that C(ζ ) ⊆ F (R) and J(R) = ∂C(ζ ).
In addition, ifM(z) is a Möbius map

M(z) =
αz + β
γ z + δ

, αδ − βγ 6= 0,

and R, S are conjugate rational maps viaM , i.e. S = MRM−1, then F (S) = M(F (R)) and J(S) = M(J(R)).
In [14] is also introduced the concept of universal Julia set for a root-finding algorithmGf . Thus, a root-finding algorithmGf

has a universal Julia set (for polynomials of degree d) if there exists a rational map R such that for every degree d polynomial
f , J(Gf ) is conjugate by a Möbius map to J(R).
As the rationalmap arising fromNewton’smethod applied to the quadratic polynomial (1) is conjugate to themap z → z2

via the Möbius transformation (3), the universal Julia set for Newton’s method applied to quadratic polynomials is the unit
circle [14,12].
The universal Julia set for Chebyshev’smethod applied to quadratic polynomials (from now on denotedJ1) is also known

(see also [14]). The rational map arising from Chebyshev’s method applied to quadratic polynomial (1) is conjugate to the
map

z → S1(z) = z3
z + 2
2z + 1

via the Möbius transformation (3). The dynamic structure of J1 is shown in Fig. 1.
As we can see the universal Julia set for Chebyshev’s method applied to quadratic polynomials is more complicated than

for Newton’s method. The map S1(z) has precisely two forward invariant Fatou components: a superattracting component
where iterates converge to∞ in magenta in Fig. 1 and a superattracting component where iterates converge to 0 (in cyan in
Fig. 1). On the other hand, the unit circle is forward invariant and it is contained in J1 and moreover, J1 has zero Lebesgue
measure on C (see [14]).
Newton’s and Chebyshev’s methods are the two first cases of the methods in family (6). Now we look for the universal

Julia set for the rest of themethods when they are applied to quadratic polynomials. Wewill show that the above properties
are not exclusive of Newton’s and Chebyshev’s methods.

Theorem 2. Let f (z) = (z − a)(z − b) be the quadratic complex polynomial (1). Let Sm(z) be the conjugate map of Rm(z) via
the Möbius map (3), that is, Sm(z) = MRmM−1(z). Then, for m ≥ 0,

Sm(z) = zm+2
Pm(z)

P̂m(z)
,

where Pm(z) and P̂m(z) are the polynomials defined in (10) and (11) respectively.
Proof. The inverse of the Möbius mapM defined in (3) isM−1(z) = bz−a

z−1 . If ω = M
−1(z)we have:

f (ω) =
z(b− a)2

(z − 1)2
, f ′(ω) =

(z + 1)(b− a)
(z − 1)

,

and then

Lf (ω) =
f (ω)f ′′(ω)
f ′(ω)2

=
2z

(z + 1)2
.

Consequently,

Sm(z) = MRmM−1(z) = MRm(ω) =
z
(
z −

m∑
k=1
Ck zk

(z+1)2k

)
1− z

m∑
k=1
Ck zk

(z+1)2k

=

z2
(
(z + 1)2m −

m∑
k=1
Ckzk−1(z + 1)2(m−k)

)
(z + 1)2m − z

m∑
k=1
Ckzk(z + 1)2(m−k)

.

Notice that

(z + 1)2m =
2m∑
j=0

(
2m
j

)
z j,

zk−1(z + 1)2(m−k) =
2(m−k)∑
j=0

(
2(m− k)
j

)
z j+k−1 =

2m−(k+1)∑
j=k−1

(
2(m− k)
j+ 1− k

)
z j.
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Then,

(z + 1)2m −
m∑
k=1

Ckzk−1(z + 1)2(m−k) =
2m∑
j=0

(
2m
j

)
z j −

m∑
k=1

Ck
2m−(k+1)∑
j=k−1

(
2(m− k)
j+ 1− k

)
z j

=

m−1∑
j=0

((
2m
j

)
−

j+1∑
k=1

Ck

(
2(m− k)
j+ 1− k

))
z j

+

2(m−1)∑
j=m

((
2m
j

)
−

2m−(j+1)∑
k=1

Ck

(
2(m− k)
j+ 1− k

))
z j

+

(
2m
2m− 1

)
z2m−1 + z2m.

Let us consider now Jonah’s formula for Catalan numbers [15], that establish the following property:(
n
j− 1

)
=

j∑
i=1

Ci

(
n− 2i
j− i

)
, n ≥ 0, j ≥ 1. (13)

We can use this formula to deduce the following equalities:(
2m
j

)
−

j+1∑
k=1

Ck

(
2(m− k)
j+ 1− k

)
= 0,

2(m−1)∑
j=m

((
2m
j

)
−

2m−(j+1)∑
k=1

Ck

(
2(m− k)
j+ 1− k

))
z j = zm

m−2∑
j=0

((
2m
j+m

)
−

m−j−1∑
k=1

Ck

(
2(m− k)

j+m+ 1− k

))
z j,

and
2(m−1)∑
j=m

((
2m
j

)
−

2m−(j+1)∑
k=1

Ck

(
2(m− k)
j+ 1− k

))
z j = zm

m−2∑
j=0

((
2m
j+m

)
−

(
2m

m− j− 2

))
z j.

Consequently, the numerator of Sm(z) is:

z2
(
(z + 1)2m −

m∑
k=1

Ckzk−1(z + 1)2(m−k)
)
= zm+2

(
m−2∑
j=0

((
2m
j+m

)
−

(
2m

m− j− 2

))
z j + 2mzm−1 + zm

)
.

In a similar way, the denominator of Sm(z) is

(z + 1)2m − z
m∑
k=1

Ckzk(z + 1)2(m−k) =
m∑
j=0

(
2m
j

)
z j −

m∑
j=2

(
2m
j− 2

)
z j

+ zm+1
(
m−1∑
j=0

((
2m

j+ q− 1

)
−

(
2m

m− j− 1

))
z j
)

= 1+ 2mz +
m∑
j=2

((
2m
j

)
−

(
2m
j− 2

))
z j.

This finishes the proof. �

Theorem 3. The rational map Sm(z), (m ≥ 0), defined in (9) satisfies these properties:

1. Sm(z) has precisely two forward invariant Fatou components: a superattracting component where iterates converge to∞ and
a superattracting component where iterates converge to 0.

2. The unit circle S1(z) = {z ∈ C; |z| = 1} is forward invariant and it is contained in J(Sm).
3. m(J(Sm)) = 0, where m is the Lebesgue measure on C.

Proof. Firstly, notice that, from (9), the expression of the first derivative of the conjugate map Sm is given by

S ′m(z) =
zm+1

P̂m(z)2

(
(m+ 2)Pm(z)P̂m(z)+ z

(
P ′m(z)P̂m(z)− Pm(z)P̂

′

m(z)
))
.
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Fig. 2. Universal Julia sets for S2 and S3 .
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Fig. 3. Universal Julia sets for S8 and S∞ (the Euler method).

Taking into account (12), we have

S ′m(z) =
(m+ 2)Cm+1zm+1(1+ z)2m

P̂m(z)2
. (14)

Now, from (14), notice that z = 0, z = ∞ and z = −1 are the only critical points of Sm(z). It is known (see, for
example [1]) that there is at least one critical point associated with each forward invariant Fatou component. As z = 0 and
z = ∞ are superattracting fixed points of Sm(z), both of them give rise to a Fatou component.
On the other hand, the critical point z = −1 maps to z = 1. This is, Sm(−1) = 1, and z = 1 is a fixed point of Sm(z). As

S ′m(1) =
(m+ 2)Cm+122m

P̂m(1)2
> 1, m ≥ 0,

z = 1 is a repelling fixed point of Sm(z) and consequently, z = −1 ∈ J(Sm). So, Sm has precisely two forward invariant
Fatou components.
Secondly, notice that for z ∈ S1, |Pm(z)| = |P̂m(z)| for Pm(z) and P̂m(z) defined in (10). In fact, as Pm(z) = zmP̂m(1/z),

P̂m(1/z) = P̂m(z̄) and

P̂m(z̄) = P̂m(e−iθ ) =
m∑
p=0

Bm+1,m+1−p(cos(θp)− i sin(θp)) = P̂m(z).

Then, for z ∈ S1, |P̂m(z)| = |P̂m(z̄)| = |P̂m(1/z)| = |Pm(z)| and S1 ⊆ J(Sm).
Finally, as we have seen the critical points of Sm(z) have finite forward orbits, then it follows from a result of Carleson

and Gamelin [16] that m(J(Sq)) = 0. �

Now, we analyze graphically the dynamical behavior of the rational maps Sm for different values of m. Following [17],
we plot the attraction basins associated with the two roots of a quadratic polynomial (1) when we apply Sm. The attraction
basins clarify the structures of the universal Julia sets associated with the corresponding iterative methods.
In this way, in Figs. 2 and 3 we have represented the basins for methods (9) with orders of convergence 4 (m = 2), 5

(m = 3), 10 (m = 8) and the special casem→∞.
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Remark 4. The special case obtained when m → ∞ produces an interesting situation. The corresponding method in the
family (6) is the well-known Euler method, also called Cauchy’s method, [18–21]:

zn+1 = zn − H(Lf (zn))
f (zn)
f ′(zn)

, n ≥ 0,

H(w) =
1−
√
1− 2w
w

.

Roughly speaking, this method applied to quadratic polynomial has ‘‘order of convergence infinity’’. This means that we
reach one root of polynomial p in only one step, starting from any point in C∞.
If we calculate the conjugate map S∞ associated with the Euler method via the Möbius transformation (3), we obtain:

S∞(z) =
{
0, |z| < 1
∞, |z| > 1.

Obviously this map has only two fixed points: z = 0 and z = ∞. Both of them are superattracting.

For a detailed study about iteration of rational functions theory the works of Beardon [1] and Blanchard [3], can be
consulted amongst many others works.
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