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In the study of iterativemethodswith high order of convergence, Gander provides a general
expression for iterativemethods with order of convergence at least three in the scalar case.
Taking into account an extension of this result, we define a family of iterations in Banach
spaces with R-order of convergence at least four for quadratic equations.
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1. Introduction

Ganderwrites in [1] that solving a nonlinear equation is a problem that has occupiedmathematicians formany centuries.
At the moment this could be generalized to every researcher who studies scientific and engineering problems. It is well
known that there are physical, chemical and engineering problems that employ numerical methods to approximate a
solution of a nonlinear equation [2–5]. In [1] Gander provides an algebraic technique to obtain the iteration of Halley’s
method and other third order iterative methods in the scalar case. In this paper, Section 2, we extend the technique
developed by Gander to obtain a family of iterations with order of convergence at least four when they are applied to solve
quadratic equations.
In Section 3, the iterations given in Section 2 are generalized to Banach spaces in order to considermore general problems

than scalar quadratic equations and prove the semilocal convergence of them by using majorant sequences [6]. Besides, we
provide domains of existence and uniqueness of solutions and give some a priori error estimates, which are obtained from
a similar technique to the one developed in [7] and used later by other authors [8,9].
The study of quadratic equations is interesting, since there are problems which can be expressed by means of them.

For example, equations which appears in the theory of dynamics of gases [10] and equations related with Chandrasekhar’s
work [11], which arise in the theories of radiative transfer, neutron transport and the kinetic theory of gases. An extensive
literature exists on equations of this type, see [12] and the references therein. To finish, two applications are presented,
where known quadratic equations are considered: an equation of molecular interaction [10] and an integral equation of
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Chandrasekhar type [11]. For the integral equation, as a consequence of the high operational costwhen the second derivative
is used, we use a modification of one of the methods considered previously, which has the same order of convergence and
less operational cost.

2. A family of iterations with order of convergence at least four for quadratic equations

We consider a real function f ∈ C (6)[a, b], such that f has a simple zero s ∈ (a, b), and the following iterative methodsx0 ∈ [a, b] given,xn+1 = G(xn) = xn − H(Lf (xn))
f (xn)
f ′(xn)

, n ≥ 0, (1)

where Lf (x) = f (x)f ′′(x)/f ′(x)2 is the degree of logarithmic convexity [13] and H is an analytic real function defined in a
real domain D such that Im(Lf ) ⊆ D. It is well known that method (1) has order of convergence at least four if the zero s
satisfies s = G(s), G′(s) = G′′(s) = G′′′(s) = 0 and G(4)(s) 6= 0 [14]. Following Gander, we impose these conditions to (1) for
obtaining an expression for the function H . From the conditions s = G(s) and G′(s) = G′′(s) = 0, it follows that H(0) = 1
and H ′(0) = 1/2, so that (1) has order of convergence at least three.
Moreover, if f is a quadratic function, then f ′′(x) = C ∈ R, f (n)(x) = 0, for all n ≥ 3, n ∈ N, and it is easy to prove that:

L′f (x) =
f ′′(x)
f ′(x)

(1− 2Lf (x)),

L′′f (x) = −3
f ′′(x)2

f ′(x)2
(1− 2Lf (x)).

In this case,
G′′′(s) = 3

(
H ′(0)− H ′′(0)

)
L′f (s)

2
+
(
H(0)− 3H ′(0)

)
L′′f (s),

so that G′′′(s) = 0 if and only if H ′′(0) = 1/2. If we now consider the analytic real function H , which appears in (1), defined
by

H(Lf (x)) = 1+
1
2
Lf (x)+

1
2
Lf (x)2 +

∑
k≥3

AkLf (x)k, Ak ∈ R, k ≥ 3 (k ∈ N), (2)

where {Ak}k≥3 is a positive non-increasing real sequence, iterations (1) have order of convergence at least four when they
are applied to solve quadratic equations.
Notice that (1) is reduced to the Super-Halley method [15,16]:

xn+1 = xn −
(
1+

Lf (xn)
2 (1− Lf (xn))

)
f (xn)
f ′(xn)

, n ≥ 0, (3)

if A0 = 1 and Ak = 1/2, for all k ∈ N, in (2). And (1) is reduced to the following Chebyshev-like method [17,18]:

xn+1 = xn −
(
1+

1
2
Lf (xn)+

1
2
Lf (xn)2

)
f (xn)
f ′(xn)

, n ≥ 0, (4)

if A0 = 1, A1 = A2 = 1/2 and Ak = 0, for all k ≥ 3 (k ∈ N), in (2).

3. Semilocal convergence in Banach spaces

Since the main goal of the paper is to solve more general quadratic equations than the scalar ones by means of iterations
(1), we generalize the previous situation to Banach spaces. To do this, we now consider the problem of approximating a
locally unique solution x? of the nonlinear equation

F(x) = 0, (5)
where F : Ω ⊆ X → Y is a quadratic operator defined on a non-empty open convex subset Ω of a Banach space X with
values in a Banach space Y . From the result given in [1] and the expressions of well-known one-point iterative methods of
R-order of convergence [19] at least three, we consider in Banach spaces the family of iterations:xn+1 = G(xn) = xn − H(LF (xn))ΓnF(xn), n ≥ 0,

H(LF (xn)) =
∑
k≥0

AkLF (xn)k, (6)

where Γn = [F ′(xn)]−1, LF (x)0 = I , A0 = 1, A1 = A2 = 1/2 and {Ak}k≥0 is a positive non-increasing real sequence such
that

∑
k≥0 Akt

k < +∞ for |t| < r . Note that LF (x) ∈ L(Ω) is known as the operator ‘‘degree of logarithmic convexity’’
[13], where L(Ω) is the set of bounded linear operators from Ω into Ω . If LF (xn) exists and ‖LF (xn)‖ < r , then (6) is well
defined [20]. We assume that the operator H : L(Ω)→ L(Ω) is analytical in a neighborhood of zero and the Taylor series
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has a special form. Family of iterations (6) is well defined if the operator H exists. This operator, defined in (6), is such that

H(LF (_)) : Ω
LF
−→ L(Ω)

H
−→ L(Ω),

where H(LF (xn)) =
∑
k≥0 AkLF (xn)

k and LF (x)k is a linear operator in Ω , which denotes the composition of the operator
LF (x) k times.
Notice that iterations (6) with A0 = 1 and A1 = 1/2 have R-order of convergence at least three, see [21].
One of the more used techniques in Banach spaces to prove the convergence of a sequence {xn}, given by an iterative

method, is based on majorant real sequences:
‖xn+1 − xn‖ ≤ tn+1 − tn, n ≥ 0,

where {tn} is a non-negative real increasing sequence [6]. The interesting feature of this technique is that the convergence
of the majorant real sequence {tn} implies the convergence of {xn}. In fact, if {tn} converges to t?, there exists x? such that
{xn} converges to x? and

‖x? − xn‖ ≤ t? − tn, n ≥ 0.
Moreover, from the last inequality, we can obtain error estimates for the sequence {xn} in terms of the sequence {tn}.
The presented results provide sufficient conditions in order to define the sequence given in (6), guarantee its semilocal

convergence to x? and provide error estimates at each step. Moreover, domains of existence and uniqueness of solutions are
also given.
To prove the semilocal convergence and establish the R-order of converge of iterations (6) in Banach spaces, we assume

the following:
(C1) there exists a point x0 ∈ Ω where the operator Γ0 ∈ L(Y ,Ω) is defined and such that ‖Γ0F(x0)‖ ≤ η,
(C2) ‖Γ0F ′′(x)‖ ≤ α, for all x ∈ Ω ,
(C3) β = αη < min{1/2, r}, where r is the radius of convergence of the power series

∑
k≥0 Akt

k,
(C4) B(x0, t?) = {x ∈ X; ‖x− x0‖ ≤ t?} ⊆ Ω , where t? =

1−
√
1−2β
β

η.

Note that ‖F ′′(x)‖ = M ∈ R, for all x ∈ Ω , since F is a quadratic operator.
Next, we prove that the sequence given in (6) is well defined and converges to a solution x? of Eq. (5). Firstly, we have
‖LF (x0)‖ ≤ ‖Γ0F ′′(x0)‖‖Γ0F(x0)‖ ≤ β,

so that H (LF (x0)) is well defined, since x0 ∈ Ω and Γ0F(x0) ∈ Ω . Now taking into account that the real sequence {Ak}k≥0 is
non-increasing, it follows that

‖x1 − x0‖ ≤

(∑
k≥0

Akβk
)
η <

(
1+

β

2(1− β)

)
η < t?.

Therefore, x1 ∈ B(x0, t?) ⊂ Ω .
A simple form of finding a majorant sequence {tn} is to consider the sequence obtained when iterations (6) are applied

to the scalar quadratic equation p(t) = 0, where

p(t) =
α

2
t2 − t + η (7)

is a polynomial which satisfies conditions (C1)–(C2) for t0 = 0, see [6]. In this case, the majorant real sequence is
tn+1 = P(tn) = tn − h(Lp(tn))

p(tn)
p′(tn)

, n ≥ 0,

h(Lp(tn)) =
∑
k≥0

AkLp(tn)k,
(8)

where {Ak}k≥0 is the sequence defined previously. It is easy to prove that (8), starting at t0 = 0, is an increasing sequence
and converges to the smallest root t? of p(t) = 0. From

t1 − t0 = −h(Lp(t0))
p(t0)
p′(t0)

=

(∑
k≥0

Akβk
)
η,

it follows that ‖x1 − x0‖ ≤ t1 − t0.
To prove that (6) is well defined and convergent, we take into account the following decompositions of the operator F

and polynomial p, which are obtained from their corresponding Taylor’s series.

Lemma 3.1. We suppose that conditions (C1)–(C4) are satisfied. Then,

F(xn+1) =
1
2
F ′′(xn)ΓnF(xn)

(∑
k≥3

2(Ak−1 − Ak)LF (xn)k−1
)
ΓnF(xn)+

1
8
F ′′(xn)

(
LF (xn)H̃

(
LF (xn)

)
ΓnF(xn)

)2
,

where H̃(z) = I +
∑
k≥2 2Akz

k−1. �
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Lemma 3.2. Let p be polynomial (7). Then,

p(tn+1) =
1
2
p(tn)

∑
k≥3

2
(
Ak−1 − Ak

)
Lp(tn)k +

1
8
p(tn)Lp(tn)3h̃

(
Lp(tn)

)2
,

where h̃(t) = 1+
∑
k≥2 2Akt

k−1. �

We next observe that, for all x ∈ B(x0, t?), we have

‖I − Γ0F ′(x)‖ ≤
∥∥Γ0 [F ′(x0)− F ′(x)]∥∥ ≤ ∫ x

x0
‖Γ0F ′′(z)‖ dz ≤ α‖x− x0‖

< αt? = 1−
√
1− 2β < 1,

and by the Banach lemma [6], the inverse operator of Γ0F ′(x) exists and∥∥∥[Γ0F ′(x)]−1∥∥∥ ≤ 1
1− ‖I − Γ0F ′(x)‖

<
1

1− αt?
.

From Lemmas 3.1 and 3.2 and using norms, it follows that

‖Γ0F(x1)‖ ≤ ‖LF (x0)‖‖Γ0F(x0)‖

∥∥∥∥∥∑
k≥3

2(Ak−1 − Ak)LF (x0)k−1
∥∥∥∥∥

+
1
8
‖Γ0F ′′(x0)‖‖LF (x0)‖2

∥∥∥H̃(LF (x0))∥∥∥2 ‖Γ0F(x0)‖2
≤ η

∑
k≥3

(Ak−1 − Ak)βk +
β

2

(∑
k≥1

Akβk
)2 = − p(t1)

p′(t0)
,

and consequently,

‖Γ1F(x1)‖ = ‖Γ1F ′(x0)Γ0F(x1)‖ ≤ −
p(t1)
p′(t1)

.

Moreover,

‖LF (x1)‖ ≤
α

1− αt1

(
−
p(t1)
p′(t1)

)
= Lp(t1) < r,∥∥∥H̃(LF (x1))∥∥∥ ≤ 1+∑

k≥2

2AkLp(t1)k−1 = h̃
(
Lp(t1)

)
,

x2 is well defined and

‖x2 − x1‖ ≤
(
1+

1
2
Lp(t1)h̃

(
Lp(t1)

))(
−
p(t1)
p′(t1)

)
= t2 − t1.

Furthermore,
‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ t2 − t1 + t1 − t0 = t2 − t0 < t?

and x2 ∈ B(x0, t?) ⊂ Ω .
Then invoke the induction hypothesis and see that Γn exists, ‖ΓnF(xn)‖ ≤ −p(tn)/p′(tn) and ‖ΓnF ′′(xn)‖ ≤

−p′′(tn)/p′(tn), for all xn ∈ B(x0, t?). In consequence,
‖LF (xn)‖ ≤ Lp(tn) < r.

Following the same procedure as above, we prove that xn+1,

xn+1 = xn −
(
I +
1
2
LF (xn)H̃

(
LF (xn)

))
ΓnF(xn),

is well defined, since xn and ΓnF(xn) belong toΩ and H̃
(
LF (xn)

)
is well defined.

Besides,∥∥∥H̃(LF (xn))∥∥∥ ≤ 1+∑
k≥2

2AkLp(tn)k−1 = h̃
(
Lp(tn)

)
,

‖xn+1 − xn‖ ≤
(
1+

1
2
Lp(tn)h̃

(
Lp(tn)

))(
−
p(tn)
p′(tn)

)
= tn+1 − tn,

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖ + ‖xn − x0‖ ≤ tn+1 − tn + tn − t0 = tn+1 − t0 < t?.
So, xn+1 ∈ B(x0, t?) ⊂ Ω and {xn} is majorized by {tn}.
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In consequence,
‖xn+m − xn‖ ≤ tn+m − tn, n,m ∈ N, (9)

and {xn} is then a Cauchy sequence. Therefore, {xn} is convergent and limn→+∞ xn = l. Now, since ‖F(xn)‖ ≤ p(tn), we
obtain

lim
n→+∞

‖F(xn)‖ ≤ lim
n→+∞

p(tn) = p(t?) = 0.

Consequently, limn→+∞ F(xn) = 0 and, from the continuity of the operator F , l = x?, where x? is a solution of Eq. (5).
Moreover, ifm→∞ and take n = 0 in (9), we have ‖x? − x0‖ < t? and x? ∈ B(x0, t?).
On the other hand, we prove the uniqueness of the solution x? in B(x0, t??) ∩ Ω , where t?? is the biggest root of the

polynomial (7). To do this, we suppose that y? is another solution of (5) in B(x0, s) ∩Ω . From

0 = Γ0[F(y?)− F(x?)] =
[∫ 1

0
Γ0F ′(x? + t(y? − x?))dt

]
(y? − x?) = T (y? − x?),

it suffices to prove that the operator T is invertible, and consequently, x? = y?. So,

‖I − T‖ ≤
∫ 1

0

∥∥Γ0 (F ′(x? + t(y? − x?))− F ′(x0))∥∥ dt
≤ α

∫ 1

0
‖x? + t(y? − x?)− x0‖dt,

and, since ‖y? − x0‖ < s and ‖x? − x0‖ ≤ t?, it follows that
‖I − T‖ < α(s+ t?)/2.

Now, we look for s such that α(s + t?)/2 ≤ 1 (namely, s = 2/α − t? = t??). Hence, x? is the unique solution of Eq. (5) in
B(x0, t??) ∩Ω .
Now, from the above-mentioned facts, we establish in the following theorem the semilocal convergence and the domains

of existence and uniqueness of solutions for iterations (6). We also give error estimates for sequence (6) in terms of real
sequence (8).

Theorem 3.3. Let F : Ω ⊆ X → Y be a twice Fréchet-differentiable quadratic operator, defined on a non-empty open convex
subsetΩ of a Banach space X with values in a Banach space Y . Suppose (C1)–(C4). Then, sequence {xn}, defined by (6) and starting
at x0, converges to a solution x? of (5) in B(x0, t?), and the solution x? is unique in B(x0, t??) ∩Ω , where t? and t?? are the two
roots of polynomial (7). Moreover,

‖x? − xn‖ ≤ t? − tn, n ≥ 0. � (10)

Finally, we use Ostrowski’s technique to obtain a priori error estimates for iterations (6) from polynomial (7), so that
the terms of the real sequence {tn} do not need to be calculated. From these error estimates, if t? 6= t??, we conclude that
iterations (6) have R-order of convergence at least four when they are applied to quadratic equations.

Theorem 3.4. If polynomial (7) has two positive roots t? and t??, such that t? ≤ t??, and {tn} is the sequence defined in (8), then
(a) if t? < t?? and 3√5φ < 1, where φ = t?/t??, we have

(t?? − t?)
φ4
n

1− φ4n
≤ t? − tn ≤ (t?? − t?)

(
3√5φ

)4n
3√5−

(
3√5φ

)4n , n ≥ 0; (11)

(b) if t? = t?? and C = 5
16 −

∑
k≥3

Ak
2k+1

< 1, we have

t? − tn = t? Cn, n ≥ 0. (12)

Proof. Let (8), an = t? − tn and bn = t?? − tn, for all n ≥ 0. Then,

p(tn) =
α

2
anbn, p′(tn) = −

α

2
(an + bn).

From (8), it follows that

an+1 =
a4n

(an + bn)5

(
a2n + 4anbn + 5b

2
n − 8b

4
n

∑
k≥0

2kAk+3
akn b

k
n

(an + bn)2k+2

)
,

bn+1 =
b4n

(an + bn)5

(
5a2n + 4anbn + b

2
n − 8a

4
n

∑
k≥0

2kAk+3
akn b

k
n

(an + bn)2k+2

)
.
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If t? < t??, then φ = t?/t?? < 1 and

an+1
bn+1
=

(
an
bn

)4
h(an),

where

h(x) =
10x2 + 14dx+ 5d2 − 8(x+ d)4 S(x)
10x2 + 6dx+ d2 − 8x4 S(x)

, S(x) =
∑
k≥0

2kAk+3
xk(x+ d)k

(2x+ d)2k+2

and d = t?? − t?. Observe that 1 ≤ h(x) ≤ 5, so that

φ4
n
≤ · · · ≤

(
an−1
d+ an−1

)4
≤

an
an + d

≤ 5
(
an−1
an−1 + d

)4
≤ · · · ≤

1
3√5

(
3√5 φ

)4n
and (11) is satisfied, since 3√5φ < 1.
On the other hand, if t? = t??, then an = bn,

an =
an−1
16

(
5− 8

∑
k≥3

Ak
2k

)
and (12) is satisfied, since C < 1. �

Remark 3.5. From Theorem 3.4, more precise a priori error estimates can be given for particular iterations (6) in Banach
spaces:

- if (6) is reduced to the Super-Halley method, we have

t? − tn = (t?? − t?)
φ4
n

1− φ4n
, n ≥ 0,

where φ = t?/t?? and t? < t??, and if t? = t??, we have

t? − tn = t? (1/4)n, n ≥ 0;

- if (6) is reduced to Chebyshev-like method (4), we have

(t?? − t?)
φ4
n

1− φ4n
≤ t? − tn ≤ (t?? − t?)

(
3√5φ)4

n

3√5− ( 3
√
5φ)4n

, n ≥ 0,

where φ = t?/t?? and t? < t??, and if t? = t??, we have

t? − tn = t? (5/16)n, n ≥ 0.

In both cases we deduce that the R-order of convergence of the methods is at least four when they are applied to solve
quadratic equations, which is well known, see [4,18].

4. Applications

In this section, we illustrate the previous results with two applications, where two quadratic equations are shown: an
equation of molecular interaction and a Chandrasekhar’s equation.
In the equation of molecular interaction, we have to solve a boundary value problemwith a partial differential equation.

To do this, we consider a discretization procedure and use two different iterations (6) to solve the corresponding system of
equations. Moreover, a priori error estimates are obtained according to Theorems 3.3 and 3.4 and the speed of convergence
is computationally justified.
For Chandrasekhar’s equation, we first provide domains of existence and uniqueness of solution by using Theorem 3.3,

and secondly we discretize the problem to approximate a solution of the equation by means of Chebyshev-like method (4).
In this case, due to the expression of the corresponding operator F ′′ in the application of (4), whose operational cost is high,
we use a modification of (4) to reduce the operational cost, where F ′′ is not used, but preserves the speed of convergence.

4.1. Equation of molecular interaction

Firstly, we consider the following equation of molecular interaction, that appears in the theory of dynamics of gases [10]:

uxx + uyy = u2,
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with the boundary conditions:
u(x, 0) = 2x2 − x+ 1, 0 ≤ x ≤ 1,
u(1, y) = 2, 0 ≤ y ≤ 1,
u(x, 1) = 2, 0 ≤ x ≤ 1,
u(0, y) = 2y2 − y+ 1, 0 ≤ y ≤ 1.

We first discretize the problem, then define a uniform mesh with knots

Pi,j = (ih, jh), h =
1
n+ 1

, i, j = 0, 1, . . . , n+ 1,

and we approach the second derivatives of u in the points Pi,j by the following formulas:

uxx(Pi,j) =
u(Pi+1,j)− 2u(Pi,j)+ u(Pi−1,j)

h2
, i, j = 1, . . . , n,

uyy(Pi,j) =
u(Pi,j+1)− 2u(Pi,j)+ u(Pi,j−1)

h2
, i, j = 1, . . . , n.

We denote xi,j = u(Pi,j), i, j = 0, 1, . . . , n+ 1, and obtain the system

− xi+1,j − xi−1,j − xi,j+1 − xi,j−1 + 4xi,j = −h2x2i,j, i, j = 1, . . . , n. (13)

Observe that the values x0,j, xn+1,j, xi,0 and xi,n+1 are given by the boundary conditions. Let m = n2 and we order
xi,j (i, j = 1, . . . , n) in the following way

x1 = x1,1, . . . , xn = xn,1, xn+1 = x1,2, . . . , xm = xn,n.

System (13) can be written as

Ax+ Φ(x) = b,

where

A =



B −I 0 · · · 0

−I B −I
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −I

0 · · · 0 −I B

 ∈ M(m×m),

B =



4 −1 0 · · · 0

−1 4 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 4

 ∈ M(n× n).

I is the identitymatrix inRn, x = (x1 . . . , xm)t ,Φ(x) = h2(x21 . . . , x
2
m)
t and b is a vector formed from the boundary conditions.

The systems in the previous way are known as almost linear systems. Although in general the use of iterative processes that
bear the computation of the second derivative is not viable (mainly for big dimensions), they can be taken into account in
this type of systems, since the second derivative of the operator is constant.
If for example we now consider the case n = 3 (andm = 9), the vector b is given by

b = (7/4, 1, 27/8, 1, 0, 2, 27/8, 2, 4)t ,

and (13) can be written as

F(x) = Ax+ Φ(x)− b = 0,

so that F ′(x) is the linear operator given by the matrix

A+
1
8


x1 0 · · · 0

0 x2
. . .

...
...

. . .
. . . 0

0 · · · 0 x9


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Table 1
A priori error estimates (10).

n Chebyshev-like method (4) Super-Halley method (3)

1 5.40570 . . .× 10−4 1.27736 . . .× 10−4

2 1.48624 . . .× 10−16 9.26994 . . .× 10−20

3 8.49486 . . .× 10−67 2.57121 . . .× 10−80

Table 2
A priori error estimates (11).

n Chebyshev-like method (4) Super-Halley method (3)

1 6.38706 . . .× 10−4 1.27736 . . .× 10−4

2 2.89685 . . .× 10−16 9.26994 . . .× 10−20

3 1.22605 . . .× 10−65 2.57121 . . .× 10−80

and F ′′(x) is the constant bilinear operator:

F ′′(x)u v =
1
8
u v, u, v ∈ R9.

For the finite dimensional case, the computation of the Chebyshev-like method (4) is obtained according to the following
stages:

1. Stage: Compute one LR-decomposition of F ′ by the Gauss elimination.
2. Stage: Solve the linear system: F ′(xk)ck = −F(xk).
3. Stage: Solve the linear system: F ′(xk)zk = F ′′(xk)(ck)2.
4. Stage: Solve the linear system: F ′(xk)wk = F ′′(xk)ckzk.
5. Stage: Define: xk+1 = xk + ck − 1

2 (zk − wk).

If we use the Super-Halley method, then the stages are now:

1. Stage: Compute one LR-decomposition of F ′ by the Gauss elimination.
2. Stage: Solve the linear system: F ′(xk)ck = −F(xk).
3. Stage: Compute one LR-decomposition of F ′(xk)+ F ′′(xk)ck by the Gauss elimination.
4. Stage: Solve the linear system:

[F ′(xk)+ F ′′(xk)ck]dk = −F(xk)+
1
2
F ′′(xk)c2k .

5. Stage: Define: xk+1 = xk + dk.

In view of the previous algorithms, we note that the application of Chebyshev-like method (4) only uses one LR-
decomposition, whereas the Super-Halley method uses two LR-decompositions.
On the other hand, we notice that F ′′(x)y is a linear application and the associated matrix is diagonal. If x = (x1, . . . , xm)

and y = (y1, . . . , ym), the matrix associated to F ′′(x)y is

2h2diag{y1, . . . , ym},

so that the application of F ′′(x)y is simple.
We consider the following norms of x and A:

‖x‖∞ = max
1≤i≤m

|xi|, ‖A‖ = sup
x∈Rm
x6=0

‖Ax‖∞
‖x‖∞

= max
1≤i≤m

(
n−1∑
j=1

|aij|

)
,

where x ∈ Rm and A ∈ M(m×m). On the other hand, we denote the nth iteration by xn = (x
(n)
1 , x

(n)
2 , . . . , x

(n)
9 )

t . If we choose
x(0)i = 1, for i = 1, 2, . . . , 9, the hypotheses of convergence Theorem 3.3 are satisfied, αη = 0.0984298 . . . < 1/2, so that
method (6) converges to a solution of system (13). Moreover, the domains of existence and uniqueness of solution of (13)
are respectively {u ∈ R9 | ‖u− x0‖∞ ≤ 0.823331 . . .} and {u ∈ R9 | ‖u− x0‖∞ ≤ 15.0375 . . .}.
In Tables 1 and 2, the error estimates obtained when Chebyshev-like method (4) and Super-Halley method (3) are

applied to solve system (13) are shown. Notice that they are similar. However, observe that Ostrowski’s technique used
in Table 2 has the advantage of not having to calculate the terms of the scalar sequence {tn} if we know the roots of majorant
polynomial (7). In Table 1, we obtain a priori error estimates (10) using the majorizing sequence. Observe that the a priori
error estimates given in Tables 1 and 2 are rather sharp and the ones for the Super-Halley method are the same, as we can
see from Remark 3.5.
After four iterations applying Chebyshev-like method (4) and using stopping criterion ‖xn − x?‖∞ < 10−150, we obtain

the numerical solution x? of (13), which is given in Table 3.
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Table 3
Numerical solution x? of system (13).

x?1 1.02591171169 . . .
x?2 1.20971388713 . . .
x?3 1.51670303095 . . .
x?4 1.20971388713 . . .
x?5 1.38770378643 . . .
x?6 1.62587249195 . . .
x?7 1.51670303095 . . .
x?8 1.62587249195 . . .
x?9 1.76429948544 . . .

Table 4
Errors and the computational order of convergence for the Chebyshev-like and Super-Halley methods.

n Chebyshev-like method (4) Super-Halley method (3) ρCH−L ρS−H

1 4.48909 . . .× 10−5 8.80779 . . .× 10−6 3.91068 . . . 3.92133 . . .
2 1.27535 . . .× 10−21 3.79989 . . .× 10−25 4.01161 . . . 4.01240 . . .
3 5.33834 . . .× 10−88 7.57164 . . .× 10−103

Considering the same stopping criterion in Table 4,we obtain the errors ‖xn−x?‖∞. If we nowconsider the computational
order of convergence [22]:

ρ ≈ ln
‖xn+1 − x?‖∞
‖xn − x?‖∞

/
ln
‖xn − x?‖∞
‖xn−1 − x?‖∞

, n ∈ N, (14)

Chebyshev-like method (4) and the Super-Halley method reach computationally the R-order of convergence at least four
obtained in Remark 3.5. See Table 4, where ρCH-L and ρS-H denote respectively the computational orders of convergence of
the Chebyshev-like and Super-Halley methods.

4.2. Chandrasekhar’s equation

Secondly, we use the results obtained previously to obtain domains of existence and uniqueness of solutions and some
error estimates for a particular quadratic integral equation of the type:

x(s) = f (s)+ λx(s)
∫ 1

0
κ(s, t)x(t)dt. (15)

Eq. (15) appears in [11] and arise from the study of the radiative transfer theory, the transport of neutrons and the kinetic
theory of the gases. It is studied in [12] and, under certain conditions for the kernel, in [23,4].
We consider the max-norm, the kernel κ(s, t) as a continuous function in s, t ∈ [0, 1] such that 0 < κ(s, t) < 1 and

κ(s, t)+ κ(t, s) = 1. Moreover, we assume that f (s) ∈ C[0, 1] is a given function and λ is a real constant.
Notice that finding a solution of (15) is equivalent to solving the equation F(x) = 0, where F : C[0, 1] → C[0, 1] and

F(x)(s) = x(s)− f (s)− λx(s)
∫ 1

0
κ(s, t)x(t)dt, x ∈ C[0, 1], s ∈ [0, 1].

In particular, we consider

F(x)(s) = x(s)− 1−
x(s)
4

∫ 1

0

s
s+ t

x(t)dt, x ∈ C[0, 1], s ∈ [0, 1]. (16)

Note that the operator F ′ is such that F ′(x) ∈ L(C[0, 1]), for every x ∈ C[0, 1], and F ′(x)y is a continuous function given by

[F ′(x)y](s) = y(s)−
x(s)
4

∫ 1

0

s
s+ t

y(t)dt −
y(s)
4

∫ 1

0

s
s+ t

x(t)dt, s ∈ [0, 1],

for every x, y ∈ C[0, 1], and the second Fréchet derivative is given by

[F ′′(x)(y, z)](s) = −
y(s)
4

∫ 1

0

s
s+ t

z(t)dt −
z(s)
4

∫ 1

0

s
s+ t

y(t)dt, s ∈ [0, 1],

where x, y, z ∈ C[0, 1].
Notice that a reasonable choice of the starting point is x0(s) = 1, for all s ∈ [0, 1], since x(0) = 1. Next, we calculate the

constants η and α. Since,

F(x0)(s) = −
1
4

∫ 1

0

s
s+ t

dt = −
s
4
ln
s+ 1
s
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Table 5
Weights and knots for the Gauss–Legendre formula (m = 8).

j tj βj

1 0.0198550717512 . . . 0.101228536290 . . .
2 0.101666761293 . . . 0.222381034453 . . .
3 0.237233795041 . . . 0.313706645877 . . .
4 0.408282678752 . . . 0.362683783378 . . .
5 0.591717321247 . . . 0.362683783378 . . .
6 0.762766204958 . . . 0.31370664587 . . .
7 0.898333238706 . . . 0.222381034453 . . .
8 0.980144928248 . . . 0.101228536290 . . .

and

max
s∈[0,1]

∣∣∣∣∫ 1

0

s
s+ t

dt
∣∣∣∣ = maxs∈[0,1]

(
s ln
s+ 1
s

)
= ln 2,

it follows that

‖F(x0)‖ ≤
ln 2
4
.

Moreover,

‖I − F ′(x0)‖ ≤
1
2
ln 2 < 1,

and therefore there exists Γ0 = F ′(x0)−1 and

‖Γ0‖ ≤
1

1− ‖I − F ′(x0)‖
≤

2
2− ln 2

.

In consequence, conditions (C1) and (C2) are satisfied, since

‖Γ0F(x0)‖ ≤
ln 2

4− 2 ln 2
= η, ‖Γ0F ′′(x)‖ ≤

ln 2
2− ln 2

= α, x ∈ C[0, 1].

Moreover, conditions (C3), αη = 0.140659 . . . < 1/2, and (C4) are also satisfied, and consequently operator (16) has a zero
in {x ∈ C[0, 1] | ‖x− 1‖∞ ≤ 0.287048 . . .} and is unique in {x ∈ C[0, 1] | ‖x− 1‖∞ ≤ 3.48373 . . .}.
Finally, we approximate numerically a solution of F(x) = 0, where F is given in (16) by means of a discretization

procedure. We then approach the integral which appears in (16) by the Gauss–Legendre quadrature formula:∫ 1

0
f (t)dt ≈

1
2

m∑
j=1

βjf (tj),

where βj are the weights and tj the knots tabulated in Table 5 form = 8.
If we denote by xi the approximations of x(ti), i = 1, . . . , 8, we obtain the following nonlinear system:

xi ≈ 1+
1
8
xi

8∑
j=1

aijxj, where aij =
tiβj

8(ti + tj)
, i = 1, . . . 8. (17)

Now, we denote x = (x1, . . . , x8)T, 1 = (1, . . . , 1)T, A = (aij) andwe canwrite nonlinear system (17) in thematrix form:

F(x) = x− 1− x� Ax,

where� denotes the scalar product. F ′(x) is then the linear operator given by

F ′(x)y = y− (x� Ay+ y� Ax) ,

and F ′′(x) is the bilinear operator:

F ′′(x)y z = − (z � Ay+ y� Az) .

Contrary to the previous equation of molecular interaction, we observe for this equation that it is necessary to calculate
two scalar products and two matrix products, so that the operational cost is increased considerably when Chebyshev-like
method (4) is applied. The efficiency of this method in Banach spaces can be improvedwithout any additional computations
if F ′′ is replaced in each step by Taylor’s formula using F ′, since the order of convergence of the method is preserved. So,
from Taylor’s formula, we have

F ′(yn) = F ′(xn)+ F ′′(xn)(yn − xn),
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Table 6
Numerical solution x? of system (17).

x?1 1.02171973146 . . .
x?2 1.07318638173 . . .
x?3 1.12572489365 . . .
x?4 1.16975331216 . . .
x?5 1.20307175130 . . .
x?6 1.22649087463 . . .
x?7 1.24152460059 . . .
x?8 1.24944851669 . . .

Table 7
Errors and the computational order of convergence for method (18).

n method (18) ρ

1 4.20528 . . .× 10−5 4.13255 . . .
2 1.07373 . . .× 10−20 4.02218 . . .
3 2.05799 . . .× 10−83

Fig. 1. Approximated solution and domain of existence of solutions.

where yn = xn − ΓnF(xn), since F is a quadratic operator (F (n)(x) = 0, for all n ≥ 3). Then,

F ′′(xn)ΓnF(xn) = F ′(xn)− F ′(yn), LF (xn) = I − ΓnF ′(yn).

Consequently, Chebyshev-like method (4) for quadratic operators can be written as:

xn+1 = xn −
(
2I −

3
2
ΓnF ′(yn)+

1
2

(
ΓnF ′(yn)

)2)
ΓnF(xn), n ≥ 0. (18)

Starting at xn, for the finite dimensional case, the computation of the (n+ 1)-step of (18) proceeds as follows:

1. Stage: Compute one LR-decomposition of F ′ by the Gauss elimination.
2. Stage: Solve the linear system: F ′(xn)zn = −F(xn).
3. Stage: Set yn = xn + zn.
4. Stage: Solve the linear system: F ′(xn)un = F ′(yn)zn.
5. Stage: Solve the linear system: F ′(xn)vn = F ′(yn)un.
6. Stage: Set xn+1 = xn + 2 zn − 3

2 un +
1
2 vn.

Notice that the linear systems considered above have the same associated matrix and then we only need one LR-
decomposition of the matrix F ′(xn) in each step and it is not necessary to consider F ′′.
Iteration (18) reaches the numerical solution appearing in Table 6 after four iterations, using stopping criterion ‖xn+1 −

xn‖∞ < 10−150 and starting at x0 = 1. Observe that the R-order of convergence at least four is computationally reached by
method (18), see Table 7.
Now, we denote the ratio of existence domain obtained above by R = 0.287048 . . ., and observe that the interpolated

approximation shown in Fig. 1, along with the starting function x0 = 1, lie in the domain of existence.
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