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a b s t r a c t

In this paperwe compute andmanipulate the support ofmonomial
resolutions based on iterated mapping cones. We derive in this
way algorithms to obtain homological and numerical invariants of
monomial ideals without actually computing their resolution. Our
computations include Betti diagrams, Hilbert series and irreducible
decompositions. The algorithms derived by the method presented
in the paper are efficient in practice as shown by experiments.
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1. Introduction

Iterated mapping cones are a standard ‘‘divide and conquer’’ strategy to compute free resolutions
of ideals in a polynomial ring. In particular, some well known monomial resolutions arise as iterated
mapping cones (e.g. Taylor (1966), Lyubeznik (1998), Eliahou and Kervaire (1990)) and some families
of monomial ideals are minimally resolved by iterated mapping cones (Charalambous and Evans,
1995; Herzog and Takayama, 2002; Francisco, 2005). The use of this kind of strategy in this context
started with Bayer and Stillman (1992) and has been frequently used thereafter.
In this paper we focus on monomial ideals and our goal is to compute the support of a resolution

based on iterated mapping cones in a combinatorial way, without computing the resolution itself. On
this support we perform reductions eliminating some elements in a way that the remaining elements
still support a resolution of the underlying ideal. We also analyze, by these methods, the computed
support to obtain numerical invariants of the ideal such as Betti numbers, multigraded Hilbert
series, etc.
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An advantage of this method is that it produces simple and efficient algorithms to perform
computations onmonomial ideals, avoiding the computation of the fullminimal free resolution,which
is very hard. Also, analyzing the support of a mapping cone resolution provides tools to analyze other
properties of the ideal (Saenz-de-Cabezón, 2009).

2. Iterated mapping cones and their support. Mayer–Vietoris trees

The cone of a map, or mapping cone, is a standard tool coming from topology. Among other uses,
it provides a recursive way to compute free resolutions of ideals in a polynomial ring.
Let R = k[x1, . . . , xn] be the polynomial ring in n indeterminates with k a field. Let I =

〈f1, . . . , fr〉 ⊆ R be an ideal. Let Ii = 〈f1, . . . , fi〉 be the subideal of I generated by the first i generators
of I . There is a short exact sequence

0→ R/(Ii−1 : fi)
φ
→ R/Ii−1

j
→ R/Ii → 0 (1)

for all i ≤ r . Assume that free resolutions P̃ andP ′ are known for R/(Ii−1 : fi) and R/Ii−1 respectively,
then a resolution of R/Ii is obtained as the mapping cone of the chain complex morphism that lifts
φ to a map from P̃ to P ′. The procedure works with every short exact sequence; the following one,
equivalent to (1), is particularly convenient in our context:

0→ Ĩi
φ
→ Ii−1 ⊕ 〈fi〉

j
→ Ii → 0 (2)

where Ĩi = Ii−1 ∩ 〈fi〉. It is called a Mayer–Vietoris sequence.

Wewill workwithmonomial ideals in R. We use the standardNn-multigradingmd(xi) = (0, . . . ,
i
1

, . . . , 0) in R and denote by R(−α) the free R-module generated by one element in multidegree α. A

multigraded resolution of a monomial ideal I will be denoted by P : · · ·Pi
δi
→ Pi−1 → · · · →

P1
δ1
→ P0 → 0, where the free modulesPi are Nn-graded and each homomorphism δi is multidegree

preserving. In the case P is a minimal resolution, if Pi =
⊕

α∈Nn R
βi,α (−α) then we say that the

(i, α)-th Betti number of I is the nonzero integer βi,α . These are called the multigraded Betti numbers
of I . We say that α ∈ Nn is a Betti multidegree of I if βi,α(I) 6= 0 for some i ∈ N. When we speak of the
collection of Betti multidegrees of I we take into account multiplicities.
In this paper we use sequence (2) to generate our mapping cone resolutions. For a monomial ideal

I consider its minimal generating set as an ordered set {m1, . . . ,mr}. For each 1 ≤ s ≤ r we denote
Is := 〈m1, . . .ms〉 and Ĩs := Is−1 ∩ 〈ms〉 = 〈m1,s, . . . ,ms−1,s〉, wheremi,j denotes lcm(mi,mj).
The ideals involved when using recursively sequence (2) can be displayed as a tree. The root of this

tree is I and every node J has two children: J̃ and J ′. If J is generated by r monomials, J̃ denotes J̃r and J ′
denotes Jr−1. This is whatwe call aMayer–Vietoris tree of themonomial ideal I , denotedMVT(I). When
we speak of the nodes in such a tree we refer to the ideal in the node. Each node in a Mayer–Vietoris
tree has a position: the root has position 1 and the left and right children of the node in position p
have positions 2p and 2p + 1 respectively. The node of MVT(I) in position p is denoted MVTp(I). We
call relevant nodes those in an even position or in position 1. We also assign a dimension to each node:
the root has dimension 0 and the left and right children of any node of dimension d have dimension
d + 1 and d respectively. Note that the dimension of a node is the number of zeros of the binary
expression of the position of that node. Clearly, the relevant nodes in the Mayer–Vietoris tree support
the correspondingmapping cone resolution in the sense that themodulePi is the direct sum of copies
of R generated in the multidegrees given by the generators of the relevant nodes of dimension i in the
tree. See Fig. 1.

Remark 2.1. As the reader may notice, the choice of the last generator of the ideal I to be the one
which defines the sequence is just a matter of convenience in notation. The important fact is that we
select some particular generator to define the sequence. This generator is called the pivot monomial
and is used to generate the sequence. Several selection strategies can be applied to select the pivot
monomial, and they can be changed during the process. Among these strategies, themost relevant are
those called coherent:
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Fig. 1. A Mayer–Vietoris tree of 〈xy2, xyz3, y5, z6〉.

Definition 2.2. Let I be a monomial ideal. Let J = 〈m1, . . . ,mr〉 a node in MVT(I). Letmi be the pivot
monomial in J , then clearly J̃ is generated by a subset of {mji|1 ≤ j ≤ r, j 6= i}. A strategy for the
construction of MVT(I) is said to be coherent if whenevermij is the pivot monomial for J̃ thenmj is the
pivot monomial for J ′ for every node J ∈ MVT(I).

In this paper, unless otherwise specified, we assume the pivot monomial is the first generator
with respect to lex ordering, which is a coherent strategy, provided the generators of the nodes are
numbered in lex ordering. This will not be relevant in this and the next section, but it is the strategy
implemented in the algorithms described in Section 4. Observe that different ways of pivot selection
might lead to very different trees.

The following propositions are a direct consequence of the fact that the relevant nodes of aMayer–
Vietoris tree support a resolution of the corresponding ideal. They are proved in Saenz-de-Cabezón
(2008) together with other features of Mayer–Vietoris trees.

Proposition 2.3. If βi,α(I) 6= 0 for some i, then xα is a generator of some relevant node J in any Mayer–
Vietoris treeMVT(I).

Proposition 2.4. If xα appears only once as a generator of a relevant node J in MVT(I) then there exists
exactly one i ∈ N such that βi,α(I) = 1 and βj,α(I) = 0 for all i 6= j.

The homological degree i to which relevant multidegrees contribute is the dimension of the node
of the Mayer–Vietoris tree in which it appears.

Example 2.5. Consider the ideal I = 〈xy2, xyz3, y5, z6〉 ⊆ k[x, y, z]. A Mayer–Vietoris tree of this
ideal is shown in Fig. 1. Every node is given by a triple (position, dimension) ideal and the
relevant nodes are the ones in strong black color. Observe that this tree has no repeated multidegree
in the relevant nodes, therefore the multigraded Betti numbers of I are read from the tree. In this case
we have β0(I) = 4, β1(I) = 4 and β2(I) = 1. The Betti multidegrees are those of the generators of the
relevant nodes in the tree.

3. Analysis of Mayer–Vietoris trees

We can use the properties of the nodes in a Mayer–Vietoris tree to discover properties of the
mapping cone resolution supported on it, which we call Mayer–Vietoris resolution. Such study has
led to characterizations of several families of ideals for whichMayer–Vietoris resolutions areminimal
and, in some cases, to derive formulas for the (multi)graded Betti numbers of several families of ideals
like Ferrers, Valla, k-out-of-n, consecutive k-out-of-n and others (Saenz-de-Cabezón, 2008; Saenz-de-
Cabezón and Wynn, 2009; Saenz-de-Cabezón, 2009), see Example 3.5 below.
Themodules in the cone of amapφ : A→ B are given by Cone(φ)i = Bi⊕Ai−1 and the differentials

by

dCone(φ)i =

(
dBi φi
0 −dAi−1

)
.
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Thus, when constructing a resolution as a mapping cone, if we keep minimality at each step, we
know that the only possible part of the matrix which can be reduced is that corresponding to φi.
Therefore, the search for pairs of non-minimal elements, also called reduction pairs, in the Mayer–
Vietoris resolution (i.e. scalars in thematrices of its differentials) can be restricted to a search of scalars
in the matrices of the morphisms φ used in the recursive process. As an abuse of notation, when we
speak in the following paragraphs of reduction pairs we refer either to reduction pairs in the Mayer–
Vietoris resolution or to their counterparts in φ.
We first give two obvious necessary conditions on the generators:

C1. Since both the Mayer–Vietoris resolution and the morphisms φ are multigraded, generators
forming a reduction pair must have the same multidegree.

C2. Since reduction pairs correspond to scalars in φ there must be one step in the recursion process
corresponding to some ideal J such that one of the generators in the pair is a generator of P̃i, the
i-th module of the corresponding resolution of J̃ and the other is a generator ofP ′i , the module at
the same homological degree in the resolution of J ′.

For pairs ofmultidegrees satisfying the above conditionswemust findways to detectwhether they
actually form a reduction pair without computing the corresponding matrices. The following result is
useful in this respect. We assume that MVT(I) is constructed using a coherent strategy to ensure that
the lifting of the inclusion φ is again an inclusion. Note that if the strategy is not coherent we must
first perform a minimization of each resolution in the process.

Lemma 3.1. Let µ ∈ Nn be a multidegree such that P̃i = R(−µ)k ⊕
∑

α∈A R(−α) and P ′i =

R(−µ)l ⊕
∑

α∈B R(−α) whereA andB are collections of multidegrees.
If there is no divisor of µ inB then the generators corresponding to the pieces of the multidegree µ in

P̃i and P ′i form k reduction pairs.

Proof. Consider the first k columns of the matrix corresponding to the inclusion φ at level i. If there
is no divisor of µ in B then the last entries of these columns are zeros. Only the first l entries might
be nonzero. Since φ is injective, the first column cannot be formed just by zeros, and then its first
element is nonzero (we re-arrange rows if necessary). Since φ is multigraded, it must be a scalar and
therefore the corresponding generators form a reduction pair. After deleting these generators, we are
in the same situation which we can repeat k times. �

The multidegrees satisfying the above conditions and Lemma 3.1 can be found in the Mayer–
Vietoris tree without the differentials of the resolution. From condition C1 we obtain that only those
multidegrees that are repeated as generators of relevant nodes can be part of a reduction pair. For
condition C2we need some terminology:

Definition 3.2. Let b1 and b2 be two distinct binary numbers. We can say that b1 and b2 have the
following form: b1 = u1 . . . uk0ũ1 . . . ũl1 , b2 = u1 . . . uk1u

′

1 . . . u
′

l2
.We say that b1 and b2 are compatible

if the number of zeros in ũ1 . . . ũl1 and u
′

1 . . . u
′

l2
are equal. Observe that the total number of zeros of

two compatible binary numbers differs by one.
We say that two positive integers n1, n2 ∈ N are compatible if their corresponding binary

expressions are compatible. We say that two sets A,B ⊂ N are compatible if every pair (a, b),
a ∈ A, b ∈ B is compatible.

Nodes in compatible positions give those pairs that satisfy condition C2 above:

Proposition 3.3. Let I be a monomial ideal, µ ∈ Nn a multidegree appearing in the relevant nodes of
positions p1 and p2 of a Mayer–Vietoris tree of I. Let e1 and e2 be their corresponding generators in the
associated resolution of I.
If e1 and e2 are a reduction pair then p1 and p2 are compatible.

Proof. Let b1 and b2 be the binary expressions of p1 and p2, given in the form shown in Definition 3.2.
It is easy to see from the construction of Mayer–Vietoris trees that the number of zeros of the binary
expression of the position of a node gives its dimension. It is also easy to see that the decimal
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expression the common part of b1 and b2, d = u1 . . . uk|10 gives the position of the nearest common
ancestor J of the nodes with positions p1 and p2 in MVT(I).
Since e1 and e2 are a reduction pair in the resolution of I , which is multigraded, then they are a

reduction pair of the resolution of J corresponding to the subtree of MVT(I) hanging from this node.
Two generators of these nodes can be a reduction pair only if they are generators of Pi(J̃) and Pi(J ′)
for the same i. Since the number of zeros in ũ1 . . . ũl1 and u

′

1 . . . u
′

l2
gives the dimension of the nodes

p1 and p2 in the subtree hanging from J , they must be equal, and hence p1 and p2 are compatible. �

Lemma 3.1 is also reproduced in the tree via compatible nodes:

Proposition 3.4. LetA = {a1, . . . , ak} and B = {b1, . . . , bl} be the positions of two sets of compatible
nodes such that the nearest common ancestor J of every pair (a ∈ A, b ∈ B) coincides and such that the
same monomial xµ appears as a generator of each node inA andB . Then,
If there is no divisor of xµ in any node of the subtree hanging from J ′ compatible with the nodes in A

then the generators of multidegree µ inA andB form k reduction pairs.

Proof. The result is just a translation of Lemma 3.1 to MVT(I). �

Example 3.5. Consider the ideals Ck,n ⊆ k[x1, . . . , xn] given by

Ck,n = 〈x1x2 · · · xk, x2x3 · · · xk+1, . . . , xnx1 · · · xk−1〉.

These ideals are called cyclic k-out-of-n. The case k = 2 corresponds to the edge ideals of cycle
graphs. These ideals appear in Bigatti (1997) as an example of ideals with particularly bad behaviour
with respect to the computation of their Hilbert series. Using the results in the above sections, the Betti
numbers of Ck,n ideals (and other related ideals) can be computed without computing their minimal
free resolution, generalizing the results in Jacques (2004); Visscher (2006). The proof consists on an
enumeration too long for the scope of this paper, we show the kind of arguments used byworking the
example C2,6. A Mayer–Vietoris tree of C2,6 is the following (we write i instead of xi and underline the
pivot monomials):

12, 23, 34, 45, 56, 16

123, 1245, 126

1236, 12456

123456 12456

123, 1245

12345 1245

23, 34, 45, 56, 16

1236, 1346, 156

12346, 12356

123456 12356

1346, 156

13456 156

23, 34, 45, 56

· · · · · ·

The tree hanging from node 7 corresponds to a consecutive 2-out-of-5 ideal, which has a minimal
mapping cone resolution, see Saenz-de-Cabezón and Wynn (2009). There is no x1 involved in this
subtree, therefore there is no generator in it appearing in the rest of the tree. A simple exploration
of the rest of the tree shows that the only multidegrees that are repeated as generators of relevant
nodes are x1x2x3x4x5x6 and x1x2x3x6. The first one, x1x2x3x4x5x6, appears in two nodes of dimension 3.
Therefore by Proposition 3.3 they cannot form a reduction pair and then β3,x1x2x3x4x5x6(C2,6) = 2. The
multidegree x1x2x3x6 appears in nodes 4 and 6 (which are compatible) and since there is no divisor
of x1x2x3x6 in the relevant nodes of dimension 1 hanging from node 3, applying Proposition 3.4 we
obtain that the two appearances of x1x2x3x6 are a reduction pair. Hencewe conclude that themapping
Mayer–Vietoris resolution of C2,6 is minimal after one reduction step. �
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Of particular relevance are some extremal elements of the resolution, in particular those
defining the width of the resolution, which are related to the Castelnuovo–Mumford regula-
rity of the ideal. These extremal elements are also extremal in the tree. We define the
regularity of a Mayer–Vietoris tree of a monomial ideal I as reg(MVT(I)) = max{deg(m) −
i|m is a generator of a node of dimension i of MVT(I)}. If reg(MVT(I)) is attained at a generator of a
relevant node that is not part of a reduction pair in MVT(I) then reg(MVT(I)) equals the Castelnuovo–
Mumford regularity of I , if not, then it is an upper bound. However, to find reg(MVT(I)) it is enough
to look at the relevant leaves of the tree.

Proposition 3.6. Let I be amonomial ideal andMVT(I) aMayer–Vietoris tree of I. reg(MVT(I)) is attained
at one of the relevant leaves ofMVT(I).

Proof. For each node MVTp(I) of dimension i define its regularity as reg(MVTp(I)) = max{deg(m)−
i|m is a generator of MVTp(I)}, then reg(MVT(I)) is the maximum of the regularities of its nodes. It is
clear that if MVTp(I) has only two generators then reg(MVT2p(I)) ≥ reg(MVTp(I)) and MVT2p(I) is a
relevant leaf of MVT(I). Now, if MVTp(I) has more than two generators, then:

- If we choose as pivot monomial one of maximum degree, then reg(MVT2p(I)) ≥ reg(MVTp(I)) and
MVT2p(I) has a number of generators strictly smaller than MVTp(I).
- If we do not choose as pivot monomial one of maximum degree then reg(MVT2p+1(I)) =
reg(MVTp(I)) and MVT2p+1(I) has one generator less than MVTp(I).

Then, for each nodewe know that there is another nodewith at least the same regularity and a strictly
smaller number of generators. Iterating the process we reach a node with two generators and hence
the result holds. �

4. Computations based on Mayer–Vietoris trees

The concepts and results in the previous section lead naturally to an algorithm that constructs
and reduces Mayer–Vietoris trees. Such an algorithm consists of two stages. The first stage takes a
monomial ideal I and constructs MVT(I) and the second stage uses the results in Section 3 to decide
whether each of the multidegrees that are repeated in relevant nodes of MVT(I) is part of a reduction
pair or not. The final output of the algorithm consists of two lists L1 and L2. The first list, L1, is formed
by all multidegrees in the relevant nodes of MVT(I) (together with their dimensions) that are not
part of any reduction pair in the Mayer–Vietoris resolution of I . The second list, L2, contains all those
multidegrees for which the second stage of the algorithm could not decide whether they are part of a
reduction pair. Observe that L1 is contained in the support of the minimal free resolution of I and that
L1 and L2 together support a Mayer–Vietoris resolution of I which is minimal whenever L2 is empty.
We will use the name decided to refer to the list L1 and undecided to refer to L2.

4.1. Pseudo Betti diagram

Recall that a Betti diagram of an ideal I is a matrix whose entry (i, j) is βi,i−j(I). The graded output
of the algorithm just described can be seen as a pseudo Betti diagramwhich differs from the usual Betti
diagram in that the entry (i, j) contains two numbers, the first one being a lower bound of βi,j−i(I) and
the second one an upper bound. In our case the lower bound is the sum of elements of degree j− i in
the i-th entry of the decided list and for the upper bound we must add the corresponding number
from the undecided list. If both bounds coincide (i.e. there is no undecided element of degree j − i
at dimension i) we just output the correct value of βi,j−i(I).

Remark 4.1. A well known strategy to compute the multigraded Betti numbers of monomial ideals
consists in interpreting the Betti numbers at each multidegree as the reduced homology of a certain
simplicial complex (Miller and Sturmfels, 2004). The problem is reduced then to compute simplicial
homology with coefficients on a field, which amounts to linear algebra computations. However, the
computational cost of this approach advises to reduce asmuch as possible the candidatemultidegrees
in which reduced homology of the corresponding simplicial complexes must be computed. In this
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respect, some research efforts have been made in the last decade, see Bayer and Taylor (2009) as a
recent example. The approach usingMayer–Vietoris trees has several advantages in this context. First,
it produces a typically small set of such candidates i.e. those in the undecided list. Second, for each
such candidate it gives a list of possible degrees in which the reduced homology of the corresponding
simplicial complex might not vanish, so that the size of the final linear algebra problem is reduced.

4.2. Hilbert series

The numerator of themultigraded Hilbert series of a monomial ideal I equals the alternating sum of
themultidegrees that support anymultigraded resolution of I countingmultiplicities. This expression
of the numerator of the multigraded Hilbert series is redundant (even in the case we use the minimal
free resolution) in the sense that some cancellations can be done among the summands in it, but
it is the most adequate form for some applications (Saenz-de-Cabezón and Wynn, 2009). Since any
resolution can be used to obtain such an expression of the multigraded Hilbert series, we can use
the relevant nodes of any Mayer–Vietoris trees avoiding the minimization step. This provides a
fast algorithm for the computation of Hilbert series. After the minimization step, a more compact
expression can be given, which still comes from a resolution of I .

4.3. Irreducible decompositions and related computations

The computation of the irredundant irreducible decomposition of a monomial ideal I is equivalent
to the computation of the Alexander dual of I , the facets of its Scarf complex or the maximal
standard monomials of I (Miller and Sturmfels, 2004; Bigatti and Sáenz-de-Cabezón, 2009; Roune,
2009) and all this is equivalent to the computation of its multigraded Betti numbers at dimension
n− 1. A specialization of the Mayer–Vietoris algorithm for the computation of the multigraded Betti
numbers at dimension n − 1 uses the Mayer–Vietoris tree of the artinian closure Î of I and performs
two types of prunings on this tree. The first type, pruning by number of generators, is done whenever
we do not have enough generators to reach projective dimension n − 1 (from Taylor resolution we
know that to reach projective dimension kwe need at least k+1 generators). The second one, pruning
by number of indeterminates, is done when we do not have all the indeterminates involved in the
intermediate nodes. In this way we obtain a set of multidegrees that are candidates to be in the set
{µ ∈ Nn|βn−1,µ(Î) 6= 0} and for these candidates there is a simple and fast test to detect whether
there is homology at that multidegree. The algorithm is presented in Bigatti and Sáenz-de-Cabezón
(2009) where the details are given.

4.4. Euler characteristic of simplicial complexes

Let χ(∆) be the Euler characteristic of a simplicial complex. The Euler–Poincaré formula states that
χ(∆) =

∑
i(−1)

iβi(∆) where βi(∆) are the Betti numbers of ∆. Every simplicial complex ∆ has an
associated Stanley–Reisner ideal I∆ which is a squarefree monomial ideal. By Hochster’s formula (see
Miller and Sturmfels (2004) for instance) the Euler characteristic of∆ can be computed from the Betti
numbers of I∆ ofmultidegree x1 · · · xn. For everymonomial ideal I , a multidegreeµ and any resolution
P of I we have that∑

i

(−1)iβi,µ(I) =
∑
i

(−1)iρi,µ(P ),

where ρi,µ(P ) is the rank of the multidegree µ piece of the module at homological degree i of P .
Then, we can compute the Euler characteristic of a simplicial complex∆ using any resolution of I∆. In
particular, we can use Mayer–Vietoris resolutions. For this computation we use the Mayer–Vietoris
tree of I∆, prune it by number of generators and keep only those nodes with the generator x1 · · · xn
(note that these are leaves in the tree). Using the corresponding alternating sum, we obtain χ(∆).
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Fig. 2. Time in seconds against size of MVT resolution in random ideals.

4.5. Experiments

4.5.1. Basic algorithm
Our algorithms have been implemented using the C++ library CoCoALib (CoCoATeam, 2010),

which is easy to use and brings together the capabilities of the C++ programming language and built-
in algebraic structures. It is part of the CoCoA system (CoCoATeam, 2009).
We first show the behaviour of the construction and reduction of Mayer–Vietoris trees for

random ideals. Fig. 2 shows the time of the construction of a Mayer–Vietoris tree against size of the
corresponding resolution, where size is understood as the sum of the ranks of the modules in the
resolution. We used ideals in 10, 20, 50 and 100 variables. The number of generators ranges between
0 and 50 and the exponent in each of the variables ranges also from 0 to 50. Fig. 3 shows the difference
between the size of the resolution obtained running the first part of theMVT algorithm and the size of
the resolution after applying the reduction described in Section 3. Both sizes are compared to the size
of the minimal free resolution of these ideals. The examples are denoted by the number of variables
v and number of minimal generators g . Observe that in Fig. 3 the size of the resolution of the last four
examples (marked with an asterisk) has beenmultiplied by 1000 so that it could be seen in the figure.

4.5.2. Pseudo Betti diagram
The main goal of the algorithm we present is to compute multigraded Betti numbers without

actually computing minimal free resolutions. Of course one point we must show is that this is faster
than computing the full resolution, even if it is a priori obvious. Table 1 shows timings of algorithms
computing the minimal free resolutions (when possible) in the computer algebra systems Macaulay2
(Grayson and Stillman, 2009) and Singular (Greuel et al., 2005) together with the times of the
computations of Mayer–Vietoris trees.2 The results of these experiments show that the computation
of Mayer–Vietoris trees is, as expected, much faster than the computation of the full resolution. In
particular, for large ideals for which the computation of the resolution is unfeasible, we can obtain
information on the Betti numbers using this approach. Even if in principle the minimality of the
correspondingMayer–Vietoris resolution is not guaranteed, the output of the algorithm says whether
there were some undecided multidegrees or not. In all examples computed there were no undecided
elements, so we in fact obtained the actual Betti numbers.

2 The entries marked with an asterisk in column Singular where computed using the command lres which does not
guarantee the minimal resolution, in these cases the minimal resolution could not be computed using the Singular command
mres. OOM in the table stands for Out Of Memory.
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Fig. 3. Size of MVT resolution before and after the reduction step compared to size of minimal free resolution.

Table 1
Timings of the examples in Fig. 3.

Variables Min. gens. Macaulay2 Singular MVT
10 34 2’40 1’66 0’02
15 31 21’3 148’38* 0’1
25 24 36’57 391’15* 0’62
50 20 OOM 3280’19* 6’32
100 19 OOM 922’71* 3’65
5 12 0 0 0
5 25 0 0 0
5 50 0’01 0 0’01
5 100 0’08 0’65 0’02

Table 2 shows the performance of the MVT algorithm for computing Castelnuovo–Mumford
regularity vs. the algorithms implemented in Singular andMacaulay2 for different kinds of monomial
ideals. The columns showing times for Singular and Macaulay2 show on one hand the algorithms in
the Singular library mreg.bib that implements the algorithm by Bermejo, Gimenez and Greuel
based on the results in Bermejo and Gimenez (2006) and in the other hand the Macaulay2 command
regularity. The Mayer–Vietoris tree algorithm is not suitable for the computation of Castelnuovo–
Mumford regularity in some cases. A trivial example, shown in Table 2 with the notation n = k is
the ideal generated by the indeterminates of the ring. It has a linear resolution, hence its regularity is
one, which is immediately computed by algorithms like the one in Bermejo and Gimenez (2006), but
its Mayer–Vietoris tree has size 2n and the full tree is computed when we use this algorithm. On the
other hand, in random ideals the comparison between the two algorithms in Table 2 shows that MVT
is a good alternative for this kind of computations. Here the point is that the algorithms in Singular
and Macaulay2 are much more general than ours, both work for homogeneous polynomial ideals in
any characteristic. The results show that it is worth working on algorithms specifically targeted to
monomial ideals. The examples computed gave always the correct result for the regularity although
in general we can only expect bounds.

4.5.3. Hilbert series
FormultigradedHilbert serieswe consider the CoCoA implementation of Bigatti’s algorithm (Bigatti,

1997) given in the function HilbertSeriesMultiDeg. Tables 3 and 4 show Mayer–Vietoris trees (MVT)
vs. Bigatti’s algorithm in two different kinds of ideals. In Table 3 we use Valla ideals (Valla, 2004), a
class of zero-dimensional ideals whose resolution size is relatively big with respect to the number
of variables. We see that Bigatti’s algorithm is very efficient on these ideals. Table 4 shows the same
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Table 2
Singular, Macaulay2 andMVT times for the computation of Castelnuovo–
Mumford regularity.

Example Singular Macaulay2 MVT
n = 5 0 0 0
n = 20 0 0 6’17
n = 25 0 0 25’5
v10g34 1’66 1’29 0’02
v15g31 163’11 23’08 0’1
v25g24 428’60 35’20 0’62
v50g20 3904’71 OOM 6’32
v100g19 1103’45 OOM 3’65

Table 3
HilbertSeriesMultiDeg and MVT times for some Valla ideals.

Example Min. gens. HilbertSeriesMultiDeg MVT
Valla(6,4,2) 126 0’08 0’02
Valla(8,4,2) 330 0’23 0’1
Valla(10,4,2) 715 0’78 0’62
Valla(12,4,2) 1365 4’72 3’42
Valla(14,4,2) 2380 24’23 19’09
Valla(16,4,2) 3876 OOT 117’23
Valla(8,5,3) 792 0’57 0’5
Valla(8,7,3) 3432 2’39 9’27
Valla(10,5,3) 2002 3’21 3’95
Valla(10,7,3) 11440 33’93 121’42
Valla(12,5,3) 4368 21’02 23’17
Valla(12,7,3) 31824 OOT 1037’77

Table 4
HilbertSeriesMultiDeg and MVT times for consecutive k-out-of-n ideals.

n I5,n I10,n I15,n
20 0’05::0’02 0’02::0 0’02::0
25 0’1::0’07 0’04::0 0’02::0
30 0’57::0’32 0’09::0’02 0’03::0
35 4’09::1’73 0’12::0’03 0’04::0’01
40 62’39::7’38 0’18::0’09 0’07::0’01
45 OOT::46’29 0’5::0’3 0’14::0’03

comparison in consecutive k-out-of-n ideals (Saenz-de-Cabezón andWynn, 2009), whose resolution is
relatively small with respect to the number of variables. In this case, we see that when the number
of variables grows the MVT algorithm behaves better. These experiments show that the performance
of the MVT algorithm is comparable to that of Bigatti’s algorithm. We can also observe that the MVT
algorithm is more sensitive to the growth of the number of generators when the number of variables
is small, while Bigatti’s algorithm seems to bemore sensitive to the growth of the number of variables.
The entries in Table 4 are of the form {Time taken by HilbertSeriesMultiDeg} :: {Time taken by MVT}.
In these tables OOT stands for Out Of Time.

4.5.4. Other computations
We finish with a brief comment on other computations made using Mayer–Vietoris trees. The

performance of the Mayer–Vietoris tree algorithm when computing irreducible decompositions of
monomial ideals was described in Bigatti and Sáenz-de-Cabezón (2009)where it was shown that even
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Table 5
Macaulay2 and MVT times for the computation of Euler
characteristic of the simplicial complex corresponding to some
squarefree monomial ideals.

Example Macaulay2 MVT
v20g500 1’76 0’36
v20g622 2’34 0’53
v20g2000 7’54 3’49
v20g4000 OOM 12’77
v30g300 22’64 1’41
v20g600 OOM 4’68
v30g1253 OOM 3’49

if it is not an algorithm specifically targeted to irreducible decompositions, it is closer than others to
the Slice algorithm (Roune, 2009), which is the fastest algorithm available for this computation.
In the case of Euler characteristic we show some times comparing the computation of Euler

characteristic using the fvector function of the Macaulay2 package SimplicialComplex and
using MVT, see Table 5. The table shows that the behaviour of our algorithm is quite efficient for this
computation. In this case, the column example of Table 5 shows the number of variables and generators
of I∆ in each example.

5. Conclusions

We have presented in this paper a set of algorithms that perform homological computations on
monomial ideals without computing their minimal free resolution. They are based onMayer–Vietoris
trees, which display the support of the iterated mapping cone resolution corresponding to Mayer–
Vietoris short exact sequences. We have shown that this approach provides efficient computation of
the basic homological andnumerical invariants ofmonomial ideals.Moreover, simplemodifications of
the algorithm provide goodmethods for the computation of irreducible decompositions of monomial
ideals and Euler characteristic of simplicial complexes.
There is a lack of specific methods for monomial ideals in the most widely used computer algebra

systems. Since the study of monomial ideals has been significantly improved in the last years due to
their applicability in several areas, it is reasonable tomake effortsworking onmethods and algorithms
specifically targeted to monomial ideals.
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