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Abstract

We obtain results on the convergence of Padé approximants of Stieltjes-type

meromorphic functions and the relative asymptotics of orthogonal polynomials

on unbounded intervals. These theorems extend some results given by Guillermo

López in this direction substituting the Carleman condition in his theorems by

the determination of the corresponding moment problem.
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1. Introduction and notations

Two of the most striking papers of Guillermo López have been [11] and [12].

In the first, he solved a conjecture posed by A. A. Gonchar 10 years earlier about

the convergence of Padé approximants of Stieltjes-type meromorphic functions.

Gonchar [8] proved the convergence of Padé approximants to Markov-type mero-

morphic function whose measure α is supported on a bounded interval of the

real line, and α′ > 0 a. e. on this interval. In [16], E. A. Rakhmanov showed

that the convergence does not hold for arbitrary positive measures on R. In
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[11] López gave a very general sufficient condition to get convergence of Padé

approximants for Stieltjes-type meromorphic functions (the measure can have

unbounded support on R). The main idea of López was to reduce the problem

to the study of orthogonal polynomial on the unit circle with respect to varying

measures.

In [12] López showed that orthogonal polynomials with respect to varying

measures are an effective tool not only for solving problems on rational ap-

proximation but also for studying questions on orthogonal polynomials involv-

ing fixed measures and observed that orthogonal polynomials with respect to

varying measures on the unit circle provide a unified approach to the study of

orthogonal polynomials on bounded and unbounded intervals. There he obtains

relative asymptotics for orthogonal polynomials on unbounded intervals.

In this paper we extend the results of López in [11] and [12]; here we substi-

tute the Carleman condition on the moments of the measure which he required

by the assumption that the corresponding moment problem be determinate.

This new hypothesis requires a careful analysis on each step of the method de-

veloped by López in [11] and [12]. Our main ideas involve the use of rational

approximation on the unit circle and the relation between determination of the

moment problem and one sided approximation.

Let ν be a positive Borel measure on the real line having finite moments

of every order, i. e. xk ∈ L1(ν), and set ck =
∫

R x
k dν(x), k = 0, 1, . . . The

Hamburger moment problem for ν is determinate if no other measure has the

moments of ν. We denote by M this class of measures. One of the best-known

sufficient condition for the determinacy of the Hamburger moment problem is

the Carleman condition
∑∞

n=0 c
−1/(2n)
2n = ∞. See Section 2 for an example of

a measure whose Hamburger moment problem is determinate but its moments

do not satisfy the Carleman condition. In the same way, when it is addition-
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ally required that the support of the measure is a subset of [0,∞), the term

Stieltjes moment problem is used. In this case the Carleman condition becomes∑∞
n=0 c

−1/(2n)
n = ∞. By M0 we denote the class of positive Borel measures

on [0,∞) with finite moments such that the corresponding Stieltjes moment

problem is determinate.

Let α̂ denote the Cauchy-Stieltjes transform of α

α̂(z) =
∫

1
z − x

dα(x), z ∈ D = C \ [0,+∞),

where α is a positive Borel measure on [0,∞) with finite moments. Let r be a

rational function whose poles lie in D and r(∞) = 0. Let

f(z) = α̂(z) + r(z), z ∈ D. (1)

Given n ∈ Z+, the Padé approximant, πn(z) = pn(z)
qn(z) , of order n at infinity of f

is defined to satisfy:

• pn and qn are polynomials with deg(pn) ≤ n, deg(qn) ≤ n, qn 6≡0.

• qn(z)f(z)− pn(z) =
∑∞

j=n+1An,j/z
j .

The study of the convergence of Padé approximant for Stieltjes type mero-

morphic functions is a delicate matter. As Stieltjes himself pointed out (see [20]

and also [10]) the Stieltjes moment problem for a measure α can be determinate,

so the corresponding Padé approximants of α̂ converge to the Stieltjes transform

α̂, while if we add a mass ε to α the new measure may have an indeterminate

Stieltjes moment problem and, consequently the Padé approximants of the new

Stieltjes transform α̂(z) + ε
z cannot converge; another interesting example can

be found in [16]. We prove the following result:

Theorem 1. If α ∈ M0 and α′ > 0 almost everywhere on (0,∞), then

limn πn = f uniformly on each compact subset of D \ {z : r(z) = ∞} .
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Under the more restrictive assumption on the measure α that its moments

satisfy the Carleman condition this theorem was proved by López in [11]. Our

technique allows us to extend other results obtained by López changing the

Carleman condition by the determinacy of the corresponding moment problem.

Another extension is the following theorem on relative asymptotics of orthogonal

polynomials on R.

Theorem 2. Let ν ∈ M be such that ν′ > 0 almost everywhere in R and let

g ∈ L1(R) be such that g ≥ 0, g dν ∈ M, and there exist a polynomial Q and

p ∈ N such that Q(x)g±1(x)
(1+x2)p ∈ L∞(ν). Then

lim
n→∞

Hn(gdν, z)
Hn(ν, z)

=
S(g,Ω, z)
S(g,Ω, i)

,

uniformly on each compact subset of Ω = {z ∈ C : =z > 0}, where Hn(g dν, z),

Hn(ν, z) are the orthogonal polynomials of degree n with respect to g(x) dν(x)

and ν, respectively, normalized by the condition that both are equal to 1 at i,

and

S(g,Ω, z) = exp
(

1
2πi

∫
R

log g(x)
xz + 1
z − x

dx

x2 + 1

)
, z ∈ Ω,

is the Szegő function for g with respect to the region Ω.

Theorem 1 is proved in Section 4, the proof of Theorem 2 is included in

Section 5, the auxiliary results on the moment problem appear in Section 2,

and Section 3 contains the study of orthogonal polynomials with respect to

varying measures.

2. Moment problem and one sided approximation

Next we give an example of a measure such that its Hamburger moment prob-

lem is determinate, its Radon-Nikodym derivative with respect to the Lebesgue

measure is positive almost everywhere on R but its moments do not satisfy the

Carleman condition.
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Example1. Let

dσ1/2(x) = χ(0,∞)(x)e−
√

xdx, dσ−1 (x) = χ(−∞,0)(x)exdx, x ∈ R,

where χE denotes the indicator function of E. Both measures belong to M

because σ1/2 ∈ M0, σ−1 (−x) ∈ M0, and they do not have mass at zero (see

[10]). Let σ = σ−1 + σ1/2, then σ′ > 0 a. e. on R and the Carleman condition

does not hold. In fact, the 2n-th moment of σ is (2n)! + 2(4n + 1)! > (4n)!,

so the general term in the Carleman series is majorized by something like n−2.

We have σ ∈ M since σ1/2 ∈ M with infinite index of determinacy because it

is absolute continuous with respect to Lebesgue’s measure and the determinate

measures of finite index are discrete (see [3]); moreover, the measure σ−1 satisfies

the condition
∫
e1/2|x| dσ−1 (x) < ∞, so by a Theorem of Yuditskii (see [22])

σ = σ−1 +σ1/2 ∈M. Observe that the same conclusions can be drawn if σ1/2 is

changed by dσλ(x) = χ(0,∞)(x)e−xλ

dx with 1
2 ≤ λ < 1.

Denote Γ = {ζ ∈ C : |ζ| = 1}. For β ∈M, let µβ be the image measure of β

on the unit circle by ψ1(z) =
(
i z+1
z−1

)
. Observe that the function x = i z+1

z−1 , z ∈

Γ\{1}, x ∈ R, has inverse z = x+i
x−i . Let MΓ be the class of measures µ on Γ such

that the image measure βµ ∈ M. The above change of variables establishes a

one to one correspondence between M and MΓ.

We will use the following Riesz’ Lemmas (see [5], page 73, or [18] for the

proof of Lemma 1; and [3], Corollary 3.4, or [19] for Lemma 2).

Lemma 1. Suppose that β ∈M and f is a continuous function on R such that

there exist constants A > 0, B > 0 and j ∈ Z+ such that

|f(x)| ≤ A+B x2j , x ∈ R.

Then for every ε > 0 there exists N ∈ N such that for any n ≥ N there are

1Prof. Christian Berg let me know this example.
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algebraic polynomials un and vn such that deg(un) ≤ n, deg(vn) ≤ n and

un(x) ≤ f(x) ≤ vn(x), ∀x ∈ R,
∫

(vn(x)− un(x)) dβ(x) < ε.

Lemma 2. Suppose that β ∈ M and β is not discrete. Then for every z0 ∈ C

and for every j ∈ N, |x− z0|2jdβ ∈M.

We are also interested in the case when j < 0 and z0 = i in the lemma above

(|x− i|2j = 1
(1+x2)−j ). The same conclusion of the lemma above is obtained for

j < 0 and z0 = i using the following two lemmas.

Lemma 3. (see [1], p. 43 or [18]) If β ∈ M, the polynomials are dense in

L2(β).

Lemma 4. (see [18]) Let β be a positive Borel measure on R with finite mo-

ments. Then β ∈M if and only if the polynomials are dense in L2((1+x2)dβ).

Let g be a real continuous function on Γ\{1} such that there exist constants

C > 0, D > 0 and j ≥ 0 for which

|g(z)| ≤ C +D
1

|z − 1|2j
, z ∈ Γ \ {1}.

Lemma 5. Let k ∈ Z. Under the previous assumption on g, given µ ∈ MΓ,

ε > 0, and k ∈ Z, there exist two polynomials un+k = un+k(z, z−1), vn+k =

vn+k(z, z−1) such that deg(un+k) ≤ n + k, deg(vn+k) ≤ n + k in each variable

z and z−1 and

un+k(z, z−1)
|z − 1|2n

≤ g(z) ≤ vn+k(z, z−1)
|z − 1|2n

, z ∈ Γ \ {1},∫
vn+k(z, z−1)− un+k(z, z−1)

|z − 1|2n
dµ(z) < ε.

Proof. Applying Lemmas 1–4 to

f(x) =
g
(

x+i
x−i

)
∣∣∣(x+i

x−i

)
− 1
∣∣∣2k

= g

(
x+ i

x− i

)
|x− i|2k

22k
,
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and

dβ(x) =
22kdβµ(x)
|x− i|2k

, x ∈ R,

it follows that for each ε > 0, there exist polynomials un+k, vn+k of degree at

most n+ k such that

un+k(x) ≤ f(x) ≤ vn+k(x), x ∈ R,
∫

(vn+k(x)− un+k(x))
22kdβµ(x)
|x− i|2k

< ε.

Changing variables, x = i z+1
z−1 , z ∈ Γ, the above relations are transformed into

un+k

(
i
z + 1
z − 1

)
≤ g(z)
|z − 1|2k

≤ vn+k

(
i
z + 1
z − 1

)
, z ∈ Γ \ {1},

∫ (
vn+k

(
i
z + 1
z − 1

)
− un+k

(
i
z + 1
z − 1

))
|z − 1|2kdµ(z) < ε.

Since(
i
z + 1
z − 1

)j

=
(i(z + 1)( 1

z − 1))j |z − 1|2n+2k−2j

|z − 1|2n+2k
=

= (−1)j+122n+2k−j sinj θ(1− cos θ)n+k−j

|z − 1|2n+2k
, z ∈ Γ, z = eiθ,

the relations above are equivalent to the existence of polynomials

ũn+k(z, z−1), ṽn+k(z, z−1)

of degree at most n+ k in each variables z and z−1 such that

ũn+k(z, z−1)
|z − 1|2n

≤ g(z) ≤ ṽn+k(z, z−1)
|z − 1|2n

, z ∈ Γ \ {1},∫
ṽn+k(z, z−1)− ũn+k(z, z−1)

|z − 1|2n
dµ(z) < ε.

�

If ρ ∈ M0 and ρb is the measure on R with image measure ρ on [0,∞) by

the function b(x) = x2, x ∈ R, then ρb ∈ M and if, moreover, ρ is not discrete

measure, then the Hamburger moment problem is also determinate and for all

j ∈ Z, (1 + x)jdρ(x) ∈ M0 (see [4]); these results are stated in the following

lemmas:
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Lemma 6. If ρ ∈ M0 and ρ is not discrete, then ρ ∈ M and for all j ∈ Z,

(1 + x)jdρ(x) ∈M0.

Lemma 7. If ρ ∈ M0 and ρb is the measure on R with the image measure ρ

on [0,∞) by the function b(x) = x2, x ∈ R, then ρb ∈M.

3. Orthogonal polynomials with respect to varying measures

Let µ be a positive Borel measure on Γ with infinitely many points in its

support and consider the sequence of measures

dµn(z) =
dµ(z)
|z − 1|2n

, z ∈ Γ, n ∈ N.

We assume that for each n ∈ N and k ∈ Z+ we have zk ∈ L1(µn). Given

a pair (n,m) of natural numbers there exists a unique polynomial ϕn,m(z) =

κn,mz
m + . . . (with positive leading coefficient κn,m = κm(µn)) of degree m,

orthonormal with respect to the measure µn; that is,∫
Γ

zk ϕn,m(z) dµn(z) = 0, k = 0, . . . ,m− 1,
1
2π

∫
Γ

|ϕn,m(z)|2 dµn(z) = 1.

Let Φn,m(z) = 1
κn,m

ϕn,m(z) denote the monic orthogonal polynomials of degree

m. Sometimes we make explicit reference to the measure by writing ϕm(µn, z) =

ϕn,m(z). The following relations are well known:

Φn,m+1(z) = zΦn,m(z) + Φn,m+1(0)Φ∗n,m(z), (2)

κn,m

κn,m+1
ϕn,m+1(z) = zϕn,m(z) + Φn,m+1(0)ϕ∗n,m(z), (3)

κ2
n,m

κ2
n,m+1

= 1− |Φn,m+1(0)|2. (4)

Moreover, we have |Φn,m+1(0)| < 1 and the zeros of ϕn,m lie in the disk |z| < 1.

Hereafter, if p is a polynomial of degree m, by p∗(z) = zmp(1/z) we denote the

reversed polynomial.
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We also need the following well known identity due to Geronimus (see [7],

or [5], p. 198).∫
Γ

zj |dz|
|ϕn,m(z)|2

=
∫

Γ

zj dµn(z), j = 0,±1, . . . ,±m. (5)

Let µ′ denote the Radon-Nykodym derivative of µ with respect to the Lebes-

gue measure |dz| on Γ. Let µ(z) = µ′(z)|dz| + µs(z) be the Lebesgue decom-

position of µ; if µ′ > 0 almost everywhere on Γ, we can consider that µ′ = ∞

(⇔ 1
µ′(z) = 0) on the support of µs which has Lebesgue measure equal to zero.

We use the notations ‖g‖Lp(µ) = ( 1
2π

∫
Γ
|g|pdµ)1/p and L1 = L1(|dz|). Our main

result in this section is the ratio asymptotics limn→∞
ϕn,n+k+1(z)
ϕn,n+k(z) . To this aim

we need the following two lemmas.

Lemma 8. Let k ∈ Z. If µ′ > 0 a.e. on Γ, then∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

≤ (6)

2 min


∥∥∥∥∥
∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

∥∥∥∥∥
L2(µ)

: wn+k ∈ Pn+k

 ,

where Pn+k denotes the set of polynomials of degree at most n + k. Moreover,

if µ ∈MΓ, then

lim
n→∞

∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

= 0. (7)

Proof.

Let wn+k ∈ Pn+k. Using that (µ′)−1/p ∈ Lp(µ), and the Cauchy-Schwarz

inequality, we have∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

≤

∥∥∥∥∥
∣∣∣∣ ϕn,n(z)
(z − 1)n

∣∣∣∣2 − 1√
µ′(z)

∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣
∥∥∥∥∥

L1(µ)

+

∥∥∥∥∥ 1√
µ′(z)

∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1
µ′(z)

∥∥∥∥∥
L1(µ)
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=

∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣
(∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣− 1√
µ′(z)

∣∣∣∣ wn+k(z)
ϕn,n+k(z)

∣∣∣∣
)∥∥∥∥∥

L1(µ)

+

∥∥∥∥∥ 1√
µ′(z)

(∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

)∥∥∥∥∥
L1(µ)

≤

∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣− 1√
µ′(z)

∣∣∣∣ wn+k(z)
ϕn,n+k(z)

∣∣∣∣
∥∥∥∥∥

L2(µ)

+

∥∥∥∥∥
∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

∥∥∥∥∥
L2(µ)

.

Taking (5) into account, we obtain∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣− 1√
µ′(z)

∣∣∣∣ wn+k(z)
ϕn,n+k(z)

∣∣∣∣
∥∥∥∥∥

2

L2(µ)

=

= 1− 2
2π

∫ 2π

0

∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣√µ′(z) dθ +
1
2π

∫ 2π

0

∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣2 dµ(z) =

=

∥∥∥∥∥
∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

∥∥∥∥∥
2

L2(µ)

.

Hence, ∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

≤ 2

∥∥∥∥∥
∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

∥∥∥∥∥
L2(µ)

.

This proves (6).

Now, let us show (7). The set of continuous functions is dense in L2(µ). The

function 1/
√
µ′ belongs to L2(µ) and is nonnegative, hence it can be approx-

imated in the metric of this space by positive continuous functions. In turn,

using that a positive trigonometric polynomial v(z, z−1) of degree n + k can

be written as v(z, z−1) = |wn+k(z)|2 with wn+k ∈ Pn+k (see [5], p. 211), and

by Lemma 5 every positive continuous function on Γ can be approximated by

functions of the form
∣∣∣wn+k(z)

(z−1)n

∣∣∣ in L2(µ) it follows that

lim
n→∞

min


∥∥∥∥∥
∣∣∣∣wn+k(z)
(z − 1)n

∣∣∣∣− 1√
µ′(z)

∥∥∥∥∥
L2(µ)

: wn+k ∈ Pn+k

 = 0.

and by (6) the proof is complete.

�
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The following lemma for fixed measures may be found in [17].

Lemma 9.

|Φn,n+k(0)| ≤

∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

Proof. Set an+k = −Φn,n+k(0) and Sn(z) = <
(
an+kzϕn,n+k(z)/ϕ∗n,n+k(z)

)
.

Comparing the squares of the modulus of the left-hand and right-hand sides of

(3) on Γ, we obtain

κ2
n,n+k

κ2
n,n+k+1

|ϕn,n+k+1(z)|2 =

= |ϕn,n+k(z)|2 − 2<
(
an+kzϕn,n+k(z)ϕ∗n,n+k(z)

)
+ |an+k|2|ϕn,n+k(z)|2 =

=
(
1 + |an+k|2

)
|ϕn,n+k(z)|2 − 2Sn(z)|ϕn,n+k(z)|2, z ∈ Γ.

Integrating with respect to dµ(z)
2π|z−1|2n and using (4), we obtain the representation

|an+k|2 =
1
2π

∫
Γ

Sn(z)
|ϕn+k(z)|2

|z − 1|2n
dµ(z).

Since
∫
Γ
Sn(z)|dz| = 0 and |Sn(z)| ≤ |an+k|, z ∈ Γ, it follows that

|an+k|2 =
1
2π

∫
Γ

Sn(z)
(
|ϕn+k(z)|2

|z − 1|2n
µ′(z)− 1

)
|dz|+ 1

2π

∫
Γ

Sn(z)
|ϕn+k(z)|2

|z − 1|2n
dµs(z)

≤ |an+k|

(∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 µ′(z)− 1

∥∥∥∥∥
L1

+
1
2π

∫
Γ

|ϕn+k(z)|2

|z − 1|2n
dµs(z)

)

= |an+k|

∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

This proves the lemma. �

Combining Lemmas 8 and 9, and the relations (2)–(4), we obtain

Theorem 3. If µ ∈ MΓ and µ′ > 0 almost everywhere on Γ, then for each

k ∈ Z, we have

lim
n→∞

Φn,n+k+1(z)
Φn,n+k(z)

= lim
n→∞

ϕn,n+k+1(z)
ϕn,n+k(z)

= z,
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uniformly on each compact subset of {z ∈ C : 1 ≤ |z|};

lim
n→∞

Φn,n(z)
Φ∗n,n(z)

= lim
n→∞

ϕn,n(z)
ϕ∗n,n(z)

= 0, (8)

uniformly on each compact subset of {z : |z| < 1}; and

lim
n→∞

κn,n+k+1

κn,n+k
= 1, lim

n→∞
Φn,n+k(0) = 0.

Remark 1. Using quantitative results of polynomial approximation (for results

on quantitative one sided polynomial approximation on R see, for example, [6]),

and Lemmas 8 and 9, we can estimate the rate of convergence of the Φn,n+k(0)

to 0.

Remark 2. In [2] (Lemma 2) it is proved that condition (8) implies that for

every continuous function A on Γ there exist two sequences of polynomials

{un+k(z)}∞n=1, {vn+k(z)}∞n=1 with deg un+k(z) ≤ n + k, deg vn+k(z) ≤ n + k,

such that

lim
n→∞

max
{∣∣∣∣A(z)−

un+k(z) + vn+k( 1
z )

|ϕn,n+k(z)|2

∣∣∣∣ : z ∈ Γ
}

= 0. (9)

Moreover, if f is nonnegative on Γ we can find polynomials un+k(z), n ∈ N,

such that

lim
n→∞

max

{∣∣∣∣∣A(z)−
∣∣∣∣un+k(z)
ϕn+k(z)

∣∣∣∣2
∣∣∣∣∣ : z ∈ Γ

}
= 0. (10)

Because of Lemma 8 and∥∥∥∥∥
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∥∥∥∥∥
L1(µ)

=

=
1
2π

∫
Γ

∣∣∣∣∣
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∣∣∣∣∣µ′(z)|dz|+ 1
2π

∫
Γ

∣∣∣∣∣
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 − 1
µ′(z)

∣∣∣∣∣ dµs(z) =

=
1
2π

∫
Γ

∣∣∣∣∣
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 µ′(z)− 1

∣∣∣∣∣ |dz|+ 1
2π

∫
Γ

∣∣∣∣ϕn,n+k(z)
(z − 1)n

∣∣∣∣2 dµs(z),

we obtain
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Lemma 10. If µ ∈MΓ and µ′ > 0 almost everywhere on Γ, we have

lim
n→∞

∫
Γ

∣∣∣∣∣
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 µ′(z)− 1

∣∣∣∣∣ |dz| = 0,

lim
n→∞

∫
Γ

∣∣∣∣∣∣∣∣ϕn,n+k(z)
(z − 1)n

∣∣∣∣√µ′(z)− 1
∣∣∣∣2 |dz| = 0. (11)

Therefore, for any A ∈ L∞(µ)

lim
n→∞

∫
Γ

A(z)
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 µ′(z) |dz| = ∫
Γ

A(z) |dz|,

lim
n→∞

∫
Γ

A(z)
∣∣∣∣ϕn,n+k(z)

(z − 1)n

∣∣∣∣2 dµ(z) =
∫

Γ

A(z) |dz|.

The proof of (11) can be seen in Lemma 2 of [12]. The above lemma for

fixed measures appears in [15] (see Theorem 2.1, Corollary 2.2, and Corollary

5.1).

Lemma 11. Let µ be a positive Borel measure on Γ with µ′ > 0 a. e. on Γ,

and let h ≥ 0, h ∈ L1(µ).

(a) If, in addition, h dµ ∈ MΓ and there exists a polynomial Q such that

|Q|h−1 ∈ L∞(µ), then, for each k ∈ Z and any continuous function A

on Γ,

lim
n

∫
Γ

A(z)|Q(z)|2
∣∣∣∣ϕn+k(hdµn, z)
ϕn+k(µn, z)

∣∣∣∣2 |dz| = ∫
Γ

A(z)|Q(z)|2h−1(z) |dz|.

(b) If, instead, µ ∈ MΓ and there exists a polynomial Q such that |Q|h ∈

L∞(µ), then, for each k ∈ Z and any continuous function A on Γ,

lim
n

∫
Γ

A(z)|Q(z)|2
∣∣∣∣ ϕn+k(µn, z)
ϕn+k(hdµn, z)

∣∣∣∣2 |dz| = ∫
Γ

A(z)|Q(z)|2h(z) |dz|.

Proof: Assertions (a) and (b) are proved using the same arguments; we will

carry out the proof of (a). Note that from condition (a) (see Remark 2) it follows

that there exists a rational sequence { un+k(z,1/z)
|ϕn+k(h dµn,z)|2 } which converges to A|Q|2

14



uniformly on Γ, where un+k(z, 1/z) is a polynomial of degree at most n+ k in

both variables z and 1/z. Using the Geronimus identity (5) and Lemma 10, we

have

lim
n

∫
Γ

A(z)|Q(z)|2
∣∣∣∣ϕn+k(hdµn, z)
ϕn+k(µn, z)

∣∣∣∣2 |dz| =
= lim

n

∫
Γ

un+k(z, 1/z)
|ϕn(h dµn, z)|2

∣∣∣∣ϕn+k(hdµn, z)
ϕn+k(µn, z)

∣∣∣∣2 |dz| =
= lim

n

∫
Γ

un+k(z, 1/z)
|ϕn+k(µn, z)|2

|dz| = lim
n

∫
Γ

un+k(z, 1/z) dµn(z) =

= lim
n

∫
Γ

h−1(z)
un+k(z, 1/z)
|ϕn(h dµn, z)|2

|ϕn(h dµn, z)|2h(z) dµn(z) =

=
∫

Γ

A(z)|Q(z)|2h−1(z) |dz|.

�

Remark 3. Following the same method employed by López in [12], we can

obtain Lemma 11 when A is any Riemann integrable function on Γ.

Another result of independent interest is the weak star limit of |z−1|2n

|ϕn,n+k(z)|2 |dz|.

Theorem 4. If µ ∈ MΓ and µ′ > 0 almost everywhere on Γ, then for each

k ∈ Z we have

lim
n→∞

∫
Γ

A(z)
|z − 1|2n

|ϕn,n+k(z)|2
|dz| = lim

n→∞

∫
Γ

A(z) dµ(z), (12)

for every continuous function A on Γ. That is, the weak star limit of |z−1|2n

|ϕn,n+k(z)|2 |dz|

is µ.

Proof. Taking real and imaginary parts, we can assume that A is a real func-

tion. Actually, we prove the more general statement that for every real contin-

uous function A in Γ \ {1} such that there exists constants Ã > 0, B̃ > 0 and

j ∈ Z for which

|A(z)| ≤ Ã+
B̃

|z − 1|2j
, z ∈ Γ \ {1},

15



relation (12) holds.

Let k and A be fixed. Using Lemma 5 given ε > 0 we can find polynomials

un+k = un+k(z, z−1) and vn+k = vn+k(z, z−1) of degree at most n+k such that

un+k(z, z−1)
|z − 1|2n

≤ A(z) ≤ vn+k(z, z−1)
|z − 1|2n

, z ∈ Γ \ {1},∫
Γ

(vn+k(z, z−1)− un+k(z, z−1))dµn(z) < ε.

Moreover, using the Geronimus identity (5) we obtain

∫
Γ

un+k(z, z−1) dµn(z) =
∫

Γ

un+k(z, z−1)
|z − 1|2n

|z − 1|2n

|ϕn,n+k(z)|2
|dz| ≤

≤
∫

Γ

A(z)
|z − 1|2n

|ϕn,n+k(z)|2
|dz| ≤

∫
Γ

vn+k(z, z−1)
|z − 1|2n

|z − 1|2n

|ϕn,n+k(z)|2
|dz| =

=
∫

Γ

vn+k(z, z−1) dµn(z)

and ∫
Γ

un+k(z, z−1) dµn(z) ≤
∫

Γ

A(z) dµ(z) ≤
∫

Γ

vn+k(z, z−1) dµn(z).

Therefore, ∣∣∣∣∫
Γ

A(z)
|z − 1|2n

|ϕn,n+k(z)|2
|dz| −

∫
Γ

A(z) dµ(z)
∣∣∣∣ < ε.

�

Now, we can obtain the relative asymptotics of orthogonal polynomials. The

following result under more restrictive assumptions on the measure µ and on

the function h was proved by López in [12].

Theorem 5. Let µ ∈ MΓ be such that µ′ > 0 a. e. Let h be such that

h dµ ∈MΓ and suppose there exists a polynomial Q such that |Q|h±1 ∈ L∞(µ).

Then, for each k ∈ Z we have

lim
n

ϕn+k(hdµn, z)
ϕn+k(µn, z)

= S(h, {|ζ| > 1}, z),

16



uniformly in each compact subset of {z ∈ C : |z| > 1}, where

S(h, {|ζ| > 1}, z) = exp
(

1
4π

∫
Γ

log h(ζ)
ζ + z

ζ − z
|dζ|

)
is the Szegő function of h in {z ∈ C : |z| > 1}.

Proof: It will be more convenient for us to prove the equivalent relation

lim
n

ϕ∗n+k(hdµn, z)
ϕ∗n+k(µn, z)

= S∗(z), |z| < 1.

where S∗(z) = S(h, {|ζ| > 1}, 1/z). Using Theorem 3, it is sufficient to prove

the above relation for k = 0. Without loss of generality, we can consider that

the polynomial Q in the assumptions of the theorem has no zeros inside the disk

{|z| < 1} and, therefore, Q(z)ϕ∗n+k(hdµn,z)

ϕ∗n+k(µn,z) is an analytic function in {|z| < 1}

and Q(z)ϕ∗n+k(hdµn,z)

ϕ∗n+k(µn,z) 6= 0, |z| < 1. Then, according to Poisson’s formula,

log
∣∣∣∣Q(z)ϕ∗n+k(hdµn, z)

ϕ∗n+k(µn, z)

∣∣∣∣2 =
1
2π

∫
Γ

log
∣∣∣∣Q(ζ)ϕ∗n+k(hdµn, ζ)

ϕ∗n+k(µn, ζ)

∣∣∣∣2 P (z, ζ) |dζ|,

where P (z, ζ) = 1−|z|2
|ζ−z|2 is the Poisson kernel. Using Jensen’s inequality, we

obtain∣∣∣∣Q(z)ϕ∗n+k(hdµn, z)
ϕ∗n+k(µn, z)

∣∣∣∣2 ≤ 1
2π

∫
Γ

∣∣∣∣Q(ζ)ϕ∗n+k(hdµn, ζ)
ϕ∗n+k(µn, ζ)

∣∣∣∣2 P (z, ζ) |dζ|,

Since |ϕ∗n+k(µn, ζ)| = |ϕn+k(µn, ζ)| and |ϕ∗n+k(hdµn, ζ)| = |ϕn+k(hdµn, ζ)|, |ζ| =

1, using Lemma 11 we obtain

lim sup
n

∣∣∣∣Q(z)ϕ∗n+k(hdµn, z)
ϕ∗n+k(µn, z)

∣∣∣∣2 ≤ 1
2π

∫
Γ

h−1(ζ) |Q(ζ)|2 P (z, ζ) |dζ|, |z| < 1.

(13)

In turn, this yields that the sequence {ϕ∗n+k(hdµn,z)

ϕ∗n+k(µn,z) } is uniformly bounded inside

(on each compact subset) of the disk {|z| < 1} (we recall that Q has no zeros

in {|z| < 1}). Let us consider an arbitrary subsequence Λ ⊂ N such that

{ϕ∗n+k(hdµn,z)

ϕ∗n+k(µn,z) : n ∈ Λ} converges and denote its limit by SΛ. In virtue of what

17



was said above, it is sufficient for us to prove that for any such sequence Λ we

have S∗ = SΛ. Let r ∈ (0, 1) be arbitrary. Using Lemma 11 once more, we

obtain

1
2π

∫
Γ

|Q(rζ)SΛ(rζ)|2 |dζ| = lim
n∈Λ

1
2π

∫
Γ

∣∣∣∣Q(rζ)ϕ∗n+k(hdµn, rζ)
ϕ∗n+k(µn, rζ)

∣∣∣∣2 |dζ|
≤ lim

n∈Λ

1
2π

∫
Γ

∣∣∣∣Q(ζ)ϕ∗n+k(hdµn, ζ)
ϕ∗n+k(µn, ζ)

∣∣∣∣2 |dζ| = lim
n∈Λ

1
2π

∫
Γ

h−1(ζ) |Q(ζ)|2 |dζ|.

Thus, QSΛ ∈ H2({|z| < 1}), and therefore the limit limr→1Q(rζ)S∗Λ(rζ) exists

almost everywhere for ζ ∈ Γ. On the other hand, according to (13), for each

fixed z ∈ Γ, we have

|Q(rz)SΛ(rz)|2 ≤ 1
2π

∫
Γ

h−1(ζ) |Q(ζ)|2 P (rz, ζ) |dζ|.

It is well known (see, for example, [21], Section 9.5) that the limit as r → 1

of the righthand side of this inequality exists for almost all z ∈ Γ and it is

equal a.e. to h−1(ζ)|Q(ζ)|2. Therefore, |SΛ(z)|2 ≤ h−1(z) almost everywhere on

Γ. Working with { ϕ∗n+k(µn,z)

ϕ∗n+k(h dµn,z)}, we obtain that the inverse inequality is also

satisfied. So |SΛ(z)|2 = h−1(z) a. e. on Γ, which implies

log |SΛ(z)| = 1
2π

∫
Γ

log |SΛ(ζ)|P (z, ζ) |dζ| =

=
1
4π

∫
Γ

log h−1(ζ)P (z, ζ) |dζ| = log |S∗(z)|

Since

SΛ(0) = lim
n∈Λ

κn+k(h dµn)
κn+k(µn)

> 0

and S∗(0) > 0, it follows that logSΛ(z) = logS∗(z), |z| < 1, and thus SΛ(z) =

S∗(z). The theorem has been established.

�

Asymptotic formulas can be obtained from Theorem 5 for the Szego kernel

Kn+k(µn, z, ζ) =
n+k∑
j=0

ϕj(µn, z)ϕj(µn, ζ)
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and the Christofel functions

ωn+k(µn, z) = inf
p∈Pn+k

∫
Γ

∣∣∣∣p(ζ)p(z)

∣∣∣∣2 dµn(ζ).

where Pn is the set of all polynomials of degree ≤ n. Other expressions for these

functions (see, for example, [21], Chapter XI) are

Kn+k(µn, z, ζ) =
ϕ∗n+k(µn, z)ϕ∗n+k(µn, ζ)− zζϕn+k(µn, z)ϕn+k(µn, ζ)

1− z ζ

=
ϕ∗n+k+1(µn, z)ϕ∗n+k+1(µn, ζ)− ϕn+k+1(µn, z)ϕn+k+1(µn, ζ)

1− z ζ

and

ωn+k(z) = Kn+k(µn, z, z)−1.

Corollary 1. Under the assumptions of Theorem 5, we have

lim
n

Kn+k(h dµn, z, ζ)
Kn+k(µn, z, ζ)

= S(h, z)S(h, ζ), |z| > 1, |ζ| > 1.

In particular,

lim
n

ωn+k(h dµn, z)
ωn+k(µn, z)

= |S(h, z)|−2
.

Let ρ be a positive Borel measure in ∆ = [−1, 1]. Set dρn(u) = dρ(u)
(1−u)n and

assume that uk ∈ L1(ρn) for each k ≥ 0. Let ln,m(u) = τn,mu
m + . . . be the

orthonormal polynomial of degree m with respect to the measure dρn(u) whose

leading coefficient τn,m is supposed to be positive. Set Ln,m(u) = ln,m(u)/τn,m.

Lemma 12. If ρ′ > 0 a.e. on (−1, 1) and ρ
(

x−1
x+1

)
∈ M0, then for each j ∈ Z

we have

lim
n→∞

τn+j+1

τn+j
= 2

and

lim
n→∞

ln,n+j+1(u)
ln,n+j(u)

= u+
√
u2 − 1 def= ϕ(u) = 2 lim

n→∞

Ln,n+j+1(u)
Ln,n+j(u)

,

uniformly on each compact subset of C \∆.
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Proof. The proof is carried out as usual, reducing it to the case of the unit

circle. Let µ be the measure on the unit circle Γ defined by

µ(eiθ) = ρ(cos θ) = ρ

(
1
2

(
z +

1
z

))
, z = eiθ, θ ∈ [0, 2π).

Let dµn(z) = dµ(z)
|z−1|4n , z ∈ Γ. Let ϕ2n,m(z) = κn,mz

m + . . . and Φ2n,m(z) =

ϕ2n,m(z)
κn,m

be the corresponding orthonormal and monic orthogonal polynomials,

respectively, on Γ. In particular,

1
2π

∫
Γ

ϕ2n,j(z)ϕ2n,k(z) dµn(z) = δj,k, j, k = 0, 1, . . . .

These polynomials are connected with the polynomials ln,m and Ln,m by the

well known relations

ln,m(x) =
ϕ2n,2m(z) + ϕ∗2n,2m(z)

zm
√

2π(1 + Φ2n,2m(0))
, Ln,m(x) =

ϕ2n,2m(z) + ϕ∗2n,2m(z)

(2z)m
√

(1 + Φ2n,2m(0))
,

(14)

with x = 1
2 (z + 1

z ).

We have

µ

(
x+ i

x− i

)
= ρ

(
1
2

(
x+ i

x− i
+
x− i

x+ i

))
= ρ

(
x2 − 1
x2 + 1

)
= ρ

(
t− 1
t+ 1

)
,

where t = x2, t ∈ [0,∞), x ∈ R. By Lemma 7, the measure µ satisfies the

assumptions of the Theorem 3. Using this theorem and the relations (14), we

immediately complete the proof of the lemma.

�

4. Padé approximants of Stieltjes-type meromorphic functions

In this section we prove Theorem 1. More precisely, let α be as in Theorem

1, let Qn be the denominator of the Padé approximant of f normalized by

Qn(−1) = (−1)n, and let Ln be the orthogonal polynomials with respect to α

normalized also by Ln(−1) = (−1)n.
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Theorem 6. If α′ > 0 a.e. on (0,∞) and α ∈ M0, then the following state-

ments hold:

1.

lim
n→∞

Qn(z)
Ln(z)

=
d∏

j=1

(
(1 + z)(1 + aj)(Φ(z)− Φ(aj))

4Φ(z)(z − aj)

)
, z ∈ D,

where a1, . . . , ad are the poles of r (counting their multiplicity) and Φ(z) =

(
√
z + i)/(

√
z − i) is the conformal mapping of D onto the exterior of the

unit circle (Φ(−1) = ∞)

2. limn πn = f uniformly on each compact subset of D \ {z : r(z) = ∞} .

Under more restrictive assumption on the measure α this theorem was proved

by López in [11]. The general scheme of the proof of the above theorem follows

the technique developed in [11] (which at the same time in some steps uses ideas

from Gonchar [8]). For convenience of the reader, we include some details. The

scheme of the proof is the following: Carrying out a bilinear transformation we

pass to the problem of the convergence of Padé approximants Πn = gn/hn for

functions of type F (ζ) = ρ̂(ζ) + R(ζ), where ρ is a measure on ∆ = [−1, 1];

moreover, F has asymptotic expansion in powers of (ζ − 1) and the Padé ap-

proximants correspond to this expansion. For the new convergence problem, it

is possible to apply a known method of Gonchar, based on the fact that the

denominators hn of the new approximants satisfy incomplete orthogonality re-

lations with respect to a certain (in this case varying) measure with compact

support. This allows us to reduce the study of the asymptotic behavior of qn

to the question of the existence of the asymptotics of the ratio of orthogonal

polynomials with respect to this same measure.

Proof of Theorem 6.

Step 1. Let us make the change of variables x = (1+u)/(1−u), x ∈ (0,∞), u ∈

(−1, 1), in the integral (1) and take z = (1 + ζ)/(1 − ζ) in the argument

21



of f . It can be checked directly that

f

(
1 + ζ

1− ζ

)
= (1− ζ) (ρ̂(ζ) +R(ζ)) , (15)

where

dρ(u) =
1
2
(1− u)dα

(
1 + u

1− u

)
and (1− ζ)R(ζ) = r

(
1 + ζ

1− ζ

)
.

Put

F (ζ) = ρ̂(ζ) +R(ζ) =
∫

∆

dρ(t)
ζ − t

+R(ζ), ζ ∈ C \∆,

let Πn = gn/hn be the Padé approximant of orden n of the function F

corresponding to the point ζ = 1 (this point corresponds to z = ∞). We

have

hn(ζ) = (1− ζ)nQn

(
1 + ζ

1− ζ

)
, gn(ζ) = (1− ζ)n−1Pn

(
1 + ζ

1− ζ

)
, (16)

and

Πn(ζ) =
1

ζ − 1
πn

(
1 + ζ

1− ζ

)
. (17)

Moreover, if dρn(u) = dρ(u)
(1−u)n , u ∈ (−1, 1), R(ζ) = ld−1(ζ)

td(ζ) , and td(ζ) =∏d
j=1(ζ − bj), then∫

∆

ujhn(u) td(u) dρn(u) = 0, j = 0, 1, . . . , n− d− 1, (18)

F (ζ)−Πn(ζ) =
(1− ζ)2n

s(ζ)hn(ζ)td(ζ)

∫
∆

s(u)hn(u)td(u)
ζ − u

dρn(u), (19)

where s(u) is an arbitrary polynomial of degree ≤ n− d.

Combining (15) and (17) the convergence of {πn} to f , uniformly on each

compact subset of C\{[0,∞)∪{r = ∞}}, is equivalent to the convergence

of {Πn} to F uniformly on each compact subset of C \ {∆ ∪ {R = ∞}}.

If td = 1 (⇔ r ≡ 0), then using Stieltjes’ theorem we know limn πn(z) =

f(z) uniformly on each compact subset of C \ {[0,∞) ∪ {r = ∞}} or
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equivalently limn Πn(z) = F (z) uniformly on each compact subset of C \

{[−1, 1] ∪ {R = ∞}}. By formula (19) with s = 1, we obtain

lim
n→∞

(1− ζ)2n

Ln,n(ζ)

∫
∆

Ln,n(u)
ζ − u

dρn(u) = 0, (20)

where ln,m(ζ) = τn,mζ
m + . . . is the orthogonal polynomial of degree m

with respect to the measure dρn whose leading coefficient τn,m is supposed

to be positive, and Ln,m(ζ) = ln,m(ζ)/τn,m.

Step 2. By Lemma 12 for each j ∈ Z we have

lim
n→∞

ln,n+j+1(ζ)
ln,n+j(ζ)

= ζ+
√
ζ2 − 1 def= ϕ(ζ) = 2 lim

n→∞

Ln,n+j+1(ζ)
Ln,n+j(ζ)

, ζ ∈ C\∆.

In view of the orthogonality relations (18), the polynomial hn(ζ)td(ζ) can

be represented in the form of a finite linear combination of the orthogonal

polynomials Ln,m

hn(ζ)td(ζ) = λ∗n,0Ln,n+d(ζ)+λ∗n,1Ln,n+d−1(ζ)+. . .+λ∗n,2dLn,n−d(ζ). (21)

Take λn =
(∑2d

j=0 |λ∗n,j |
)−1

, λn,j = λnλ
∗
n,j , j = 0, . . . , 2d and Sn+d(ζ) =

λnhn(ζ)td(ζ). Since qn 6≡0, λn is finite. We have

Ψn(ζ) =
Sn+d(ζ)
Ln,n+d(ζ)

=
2d∑

j=1

λn,j
Ln,n+d−j(ζ)
Ln,n+d(ζ)

,
2d∑

j=1

|λn,j | = 1.

¿From the condition of the theorem, by Lemma 12 it follows that

lim
n→∞

Ln,n+d−j(ζ)

Ln,n+d(ζ)
= ψ(ζ)j , j = 0, 1, . . . , 2d,

where ψ(ζ) = 2/ϕ(ζ). The function ψ is a one-to-one representation of

C\∆ onto the disk of radius 2. Consequently, the sequence Ψn is uniformly

bounded. From those same relations it follows that any limit function of

the sequence {Ψn} is a polynomial of degree ≤ 2d of ψ(ζ). So in any
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compact subset of C\∆, for all sufficiently large n, there lie no more than

d zeros of the polynomial hn.

Further, let cap (K) denote the logarithmic capacity of the compact set K.

By limcap fn(z) = f(z), z ∈ G, we will denote the convergence in capacity

inside G (this notation means that for any ε > 0 and any compact set

K ⊂ G we have limε→0 cap (K ∩ {|fn − f| > ε}) = 0 ). Let us show that

limcapΠn(ζ) = F(ζ), (22)

in C \∆.

We fix a compact K ⊂ C \∆. Let δ > 0 be sufficiently small so that the

δ- neighborhood Kδ of K is contained in C \∆ together with its closure.

Let cn(ζ) = ζd′ + . . . be the polynomial whose zeros are the zeros of Sn+d

that lie on C \ ∆. By virtue of what was said above, for all sufficiently

large n we have d′ ≤ 2d. Multiplying (19), with s = 1, by cn(ζ) and using

(21), we obtain

cn(ζ)(Πn(ζ)− F (ζ)) = cn(ζ)
Ln,n+d(ζ)
Sn+d(ζ)

2d∑
j=1

λn,j
Ln,n+d−j(ζ)
Ln,n+d(ζ)

In,j(ζ),

where

In,j(ζ) =
∫

∆

Ln+d−j(u)
Ln+d−j(ζ)

(1− ζ)2n dρn(u)
ζ − u

= (1− ζ)2(j−d)

∫
∆

Ln+d−j(u)
Ln+d−j(ζ)

(1− ζ)2(n+d−j) dρ
(j)
n (u)
ζ − u

,

and

dρ(j)
n (u) =

dρ(j)(u)

(1− u)2(n+d−j)
, dρ(j)(u) = (1− u)2(d−j)dρ(u).

It is obvious that for each fixed j = 0, 1, . . . , 2d the measure ρ(j) satisfies

the same conditions as the measure ρ (see Lemma 6). Hence, using (20)
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it follows that limn→∞ In,j(ζ) = 0, uniformly on each compact subset K

of C \ ∆, for each j = 0, 1, . . . , 2d. From what was said above, it is also

obvious that the sequence of functions cn(ζ)
Ψn(ζ) , which are analytic on K, is

uniformly bounded on K. Therefore,

lim
n
cn(ζ)(F (ζ)−Πn(ζ)) = 0, ζ ∈ K.

Since by the Fekete’s lemma cap ({ζ : |cn(ζ)| < ε}) = ε1/d′ for each ε > 0,

and d′ ≤ 2d, relation (22) follows.

Suppose that U is a region whose closure is a compact set in C \∆ which

contains all the poles of F (ζ) in C \∆. As we proved above, the number

of poles of Πn in U, for all sufficiently large n, is not greater than d.

The number of poles of F in U is equal to d. Under these conditions it

follows from (22), by virtue of Gonchar’s lemma ([9], Lemma 1), that for

all sufficiently large n the number of poles of Πn in U is equal to d, and

these poles tend to the poles of F as n → ∞ (each pole of F attracts as

many poles of Πn as its order). In turn, this yields that

lim
n→∞

Πn(ζ) = F (ζ)

uniformly in each compact subset of C \ {∆ ∪ {b1, . . . , bd}}

Step 3. It remains to complete the proof of statement (a). Taking into consid-

eration (16), we have to prove

lim
n→∞

hn(ζ)
Ln,n(ζ)

= (2ϕ(ζ))−d
d∏

j=1

ϕ(ζ)− ϕ(bj)
ζ − bj

, (23)

uniformly on each compact subset of C\(∆∪{b1, . . . , bd}), where b1, . . . , bd

are the poles of r.

The information obtained about the behavior of the zeros of hn(z) (the

poles of Πn) inside C \∆, we can conclude that any limit function of the
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sequence {Ψn(ζ) = Sn+d(ζ)
Ln+d(ζ)} has the form

2d∑
j=0

λjψ
j(z) = C

d∏
j=1

(ψ(z)− ψ(bj))2

where |C| ∈ (0,+∞). In particular, for any convergent subsequence of

{Ψn(ζ)} we have

Ψn(∞) = λ∗n,0λn, lim
n

Ψn(∞) = C
d∏

j=1

ψ(bj). (24)

Since the leading coefficient of hn is equal to 1, the quantity λ∗n,0 can take

only the two values 1 (if deg(hn) = n) or 0 (if dedeg(hn) < n). By virtue

of the compactness of the sequence, from the above relation it follows,

first, that λ∗n,0 = 1 (deg(hn) = n) for all sufficiently large n, and second,

that lim infn→∞ λn > 0. Hence the sequence of functions

hn(ζ)td(ζ)
Ln,n+d(ζ)

= 1 +
2d∑

j=1

λ∗n,j

Ln,n+j−d(ζ)
Ln,n+d(ζ)

is uniformly bounded, just like {Ψn}. Using the same arguments as above,

based on (16), the behavior of the zeros of hn in C\∆, and the normalizing

conditions, we conclude that

lim
n

hn(ζ)td(ζ)
Ln,n+d(ζ)

=
2d∏

j=1

(
1− ψ(ζ)

ψ(bj)

)
,

uniformly on each compact subset of C \ (∆ ∪ {b1, . . . , bd}). Considering

that ψ(ζ) = 2/ϕ(ζ) and limn
Ln,n(ζ)

Ln,n+d(ζ) = (ψ(ζ))−d uniformly on each

compact subset of C \∆, part (a) of the theorem is proved.

�

Remark 4. Part 1 of Theorem 6 gives an interesting example of relative as-

ymptotics. We will look at a more general result in the next section.
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5. Relative asymptotics of orthogonal polynomials on the real line

In this section we prove Theorem 2. Let µν be the image measure of ν by the

function (i z+1
z−1 ), z ∈ Γ. Then the orthogonal polynomials Hn(ν, z) with respect

to ν normalized by Hn(ν, i) = 1 are related to the orthogonal polynomial with

respect to dµn(z) = dµν(z)
|z−1|2n by

(z − 1)nHn(ν, ω) =
ϕ∗n(µn, z)ϕ∗n(µn, 1)− zϕn(µn, z)ϕn(µn, 1)

κn(µn)ϕ∗n(µn, 1)(1− z)

=
Kn(µn, z, 1)

κn(µn)ϕ∗n(µn, 1)
,

where z = ω+i
ω−i , ω ∈ Ω, and |z| > 1. Writing the above formula for Hn(g dν, ω),

we obtain

Hn(g dν, ω)
Hn(ν, ω)

=
ϕn(g̃ dµn, z)
ϕn(µn, z)

κn(g̃ dµn)
κn(µn)

ϕ∗n(eg dµn,z)
ϕn(eg dµn,z)

(
ϕ∗n(eg dµn,1)
ϕn(eg dµn,1)

)
− z

ϕ∗n(µn,z)
ϕn(µn,z)

(
ϕ∗n(µn,1)
ϕn(µn,1)

)
− z

.

where g̃(z) = g(i z+1
z−1 ). Combining Theorem 3 and Theorem 5 the proof follows.

Remark 5. The previous results passes over easily to the case of orthogonality

on [0,+∞). A measure α, supp(α) ⊂ [0,+∞) can be put in correspondence

with a measure ν on R symmetric with respect to 0, dν(x) = |x|dα(x2) (see

[12], Theorem 4).
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