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a b s t r a c t

The geometrical interpretation of a family of higher order iterative methods for solving
nonlinear scalar equationswas presented in [S. Amat, S. Busquier, J.M. Gutiérrez, Geometric
constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math.
157(1) (2003) 197–205]. This family includes, as particular cases, some of the most
famous third-order iterative methods: Chebyshev methods, Halley methods, super-Halley
methods, C-methods and Newton-type two-step methods. The aim of the present paper is
to analyze the convergence of this family for equations defined between two Banach spaces
by using a technique developed in [J.A. Ezquerro, M.A. Hernández, Halley’s method for
operators with unbounded second derivative. Appl. Numer. Math. 57(3) (2007) 354–360].
This technique allows us to obtain a general semilocal convergence result for these
methods, where the usual conditions on the second derivative are relaxed. On the other
hand, the main practical difficulty related to the classical third-order iterative methods is
the evaluation of bilinear operators, typically second-order Fréchet derivatives. However,
in some cases, the second derivative is easy to evaluate. A clear example is provided by the
approximation of Hammerstein equations, where it is diagonal by blocks. We finish the
paper by applying our methods to some nonlinear integral equations of this type.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper is devoted to the study of the convergence of some iterative methods for numerically approximating the
solution of the nonlinear equations

F(x) = 0,

where F is a nonlinear function ranging from a Banach space X to another Banach space Y .We are interested in the following
family of third-order iterative methods:

xn+1 = xn −


I +

1
2
LF (xn)(I + b(xn)F ′(xn)−1F(xn))−1


F ′(xn)−1F(xn), (1)

where I is the identity operator on X and for each x ∈ X, LF (x) is a linear operator on X defined by

LF (x) = F ′(x)−1F ′′(x)F ′(x)−1F(x),
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assuming that F ′(x)−1 exists. This family depends on the operator b(xn) that we have to make precise in order to define the
above sequence in Banach spaces properly. In fact, b(xn)F ′(xn)−1F(xn) must be linear operators on X; a reasonable choice
for the parameters b(xn) is then b(xn) = −F ′(xn)−1B(xn), with B(xn) any bilinear operator from X × X to Y .

This familywas introduced for scalar equations f (t) = 0 in [1], after a geometrical interpretation of themostwell-known
third-order iterative methods. For instance, for different choices of the parameters b(xn), the following iterative schemes
are included in the family (1):

1. Halley’s method:

tn+1 = tn −


1

1 +
1
2 Lf (tn)


f (tn)
f ′(tn)

.

2. The super-Halley method:

tn+1 = tn −


1 +

Lf (tn)
2(1 − Lf (tn))


f (tn)
f ′(tn)

.

3. Chebyshev’s method:

tn+1 = tn −


1 +

1
2
Lf (tn)


f (tn)
f ′(tn)

.

4. C-methods:

tn+1 = tn −


1 +

1
2
Lf (tn)+ CLf (tn)2


f (tn)
f ′(tn)

, 0 ≤ C ≤ 2.

5. The two-step method:

sn = tn −
f (tn)
f ′(tn)

tn+1 = sn −
f (sn)
f ′(tn)

.

A review of the amount of literature on high order iterative methods in the two last decades (see [2] and its references)
may reveal the importance of these schemes. The main practical difficulty related to the classical third-order iterative
methods is the evaluation of the second-order Fréchet derivative. For a nonlinear system of m equations and m unknowns,
the first Fréchet derivative is a matrix with m2 values, while the second Fréchet derivative has m3 values. This implies a
huge amount of operations in order to evaluate every iteration. Somemethods overcome these difficulties by evaluating the
function and its first derivative several times, such as the two-step method. This method is, in general, cheaper than any
third-ordermethods requiring the evaluation of the second derivative. However, in some cases, the second derivative is easy
to evaluate. A clear example is the approximation of Hammerstein equations. In other cases, we can choose the two-step
method as a good alternative to the classical Newton method.

The rest of the paper is divided into two parts. In Section 2 we define a class of third-order methods and we analyze their
convergence assuming different types of hypothesis [3–5]. In the third section, we present two examples of Hammerstein
equations where we can apply the theory introduced. These equations are examples where the evaluation of the second
derivative is not very expensive since it is diagonal by blocks.

2. Semilocal convergence

In this section, we analyze the semilocal convergence of the family (1) introduced in the previous section. In fact, we
rewrite this family in the following form:

xn+1 = xn −


I +

1
2
LF (xn)H(xn)−1


F ′(xn)−1F(xn), (2)

where H(xn) = I − F ′(xn)−1B(xn)F ′(xn)−1F(xn) and B(xn) is a bilinear operator from X × X to Y to determine. Notice that a
very natural choice for this operator is B(xn) = F ′′(xn) but we can choose it depending on our interests.

Several techniques for finding sufficient conditions for the convergence of third-order processes can be found in the
literature. Initially (see [6]), the strongest assumptions required for studying the convergence were ‖F ′′(x)‖ ≤ M and
‖F ′′′(x)‖ ≤ N . Next (see [7–10]), the condition‖F ′′′(x)‖ ≤ N was replaced by themilder condition‖F ′′(x)−F ′′(y)‖ ≤ L‖x−y‖
or by ‖F ′′(x) − F ′′(y)‖ ≤ L‖x − y‖p, p ∈ [0, 1], that is, F ′′ is Lipschitz continuous or (L, p)-Hölder continuous respectively.
Finally, in [3], the convergence is obtained just assuming that

‖F ′′(x)− F ′′(y)‖ ≤ ω(‖x − y‖),
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whereω is a positive non-decreasing continuous real function.Moreover, only the point condition ‖F ′′(x0)‖ ≤ M is assumed
and not the stronger condition ‖F ′′(x)‖ ≤ M .

Following [3–5] and using an adaptation of their recurrence relations, we can obtain semilocal convergence results for
our family of iterative methods. In this paper, we consider the most general case studied for instance in [5].

First, we remark that the family (2) is a particular case of the family

xn+1 = xn − H(LB(xn), LF (xn))F ′(xn)−1F(xn), (3)

with

H(LB(xn), LF (xn)) = I +
1
2
LF (xn)+ LF (xn)

−
k≥2

AkLB(xn)k−1, {Ak}k≥2 ⊂ R+,

and

LB(xn) = F ′(xn)−1B(xn)F ′(xn)−1F(xn).
We assume that the positive real sequence {Ak}k≥2 is such that

∑
k≥2 Aktk−1 < +∞ for |t| < r . If LB(xn) exists and

‖LB(xn)‖ < r then the method is well defined.
We assume the following hypotheses:

• H1 the operator Γ0 = F ′(x0)−1
∈ L(Y , X) exists and ‖Γ0‖ ≤ β ,

• H2 ‖Γ0F(x0)‖ ≤ η,
• H3 ‖F ′′(x0)‖ ≤ α(F),
• H4 ‖B(x0)‖ ≤ α(B),
• H5 ‖F ′′(x)− F ′′(y)‖ ≤ ωF (‖x − y‖),
• H6 ‖B(x)− B(y)‖ ≤ ωB(‖x − y‖),

where ωF and ωB are continuous non-decreasing functions from R+ to R+ such that ωF (0) = ωB(0) = 0.
In order to improve the error estimate, we assume that a continuous and non-decreasing function φ from [0, 1] to [0, 1]

exists, such that ωF (τ z) ≤ φ(τ)ωF (z) and ωB(τ z) ≤ φ(τ)ωB(z) for τ ∈ [0, 1]. Observe that this is not a new restriction
since we can always take φ(τ) = 1.

We define L =
 1
0 φ(τ)dτ andM =

 1
0 φ(τ)(1 − τ)dτ .

From the initial conditions, we deduce
‖LF (x0)‖ ≤ ‖Γ0‖ ‖F ′′(x0)‖ ‖Γ0F(x0)‖

≤ α(F)βη := a0(F),

‖LB(x0)‖ ≤ ‖Γ0‖ ‖B(x0)‖ ‖Γ0F(x0)‖
≤ α(B)βη := a0(B).

If a0(B) < r, x1 is well defined, since H(LB(x0), LF (x0)) exist and

‖H(LB(x0), LF (x0))‖ ≤ 1 +
1
2
a0(F)+ a0(F)

−
k≥2

Aka0(B)k−1.

Hence
‖x1 − x0‖ ≤ ‖H(LB(x0), LF (x0))‖ ‖Γ0F(x0)‖

≤


1 +

1
2
a0(F)+ a0(F)

−
k≥2

Aka0(B)k−1


‖Γ0F(x0)‖.

Throughout the paper we define:
• a0(F) = α(F)βη,
• a0(B) = α(B)βη,
• b0(B) = βωB(h(a0(B), a0(F))η)η,
• b0(F) = βωF (h(a0(B), a0(F))η)η,
• c0 = f (a0(B), a0(F), b0(F))g(a0(B), a0(F), b0(F)),

where the following auxiliary real functions h, f and g are considered:

h(t, s) = 1 +
1
2
s + s

−
k≥2

Aktk−1,

f (t, s, u) =
1

1 − h(t, s)(s + Lu)
,

g(t, s, u) = h(t, s)

1 + h(t, s)

 s
2

+ Mu


− 1.

Next, we try to generalize the previous bounds to any step of iterative family (3). Then, we define the following auxiliary
sequences:
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• an(B) = f (an−1(B), an−1(F), bn−1(F))(bn−1(B)+ an−1(B))cn−1,
• an(F) = f (an−1(B), an−1(F), bn−1(F))(bn−1(F)+ an−1(F))cn−1,
• bn(B) = f (an−1(B), an−1(F), bn−1(F))bn−1(B)cn−1φ(cn−1),
• bn(F) = f (an−1(B), an−1(F), bn−1(F))bn−1(F)cn−1φ(cn−1),
• cn = f (an(B), an(F), bn(F))g(an(B), an(F), bn(F)).

It is easy to check the following properties of the above sequences.

Lemma 1. (i) If h(a0(B), a0(F))(a0(F) + Lb0(F)) < 1, f (t, s, u) is increasing and f (t, s, u) > 1, for t ∈ (0, a0(B)), s ∈

(0, a0(f )) and u ∈ (0, b0(F)).
(ii) g(t, s, u) is increasing in all the components, with the others fixed.

Lemma 2. If h(a0(B), a0(F))(a0(F) + Lb0(F)) < 1, a1(B) < a0(B) and a1(F) < a0(F), then the sequences {an}, {bn} and {cn}
are decreasing. Besides, c0 < 1.

Lemma 3. Let us suppose that xn ∈ Ω , for n ∈ N. If the hypotheses of the above two lemmas are verified, then the following
relations hold for all n ≥ 1:

• [In]Γn = F ′(xn)−1 exists and ‖Γn‖ ≤ f (an−1(B), an−1(F), bn−1(F))‖Γn‖,
• [IIn]‖ΓnF(xn)‖ ≤ cn−1‖Γn−1F(xn−1)‖ ≤ cn0‖Γ0F(x0)‖,
• [IIIn(B)]‖Γn‖ ‖B(xn)‖ ‖ΓnF(xn)‖ ≤ an(B) and H(LB(xn), LF (xn)) exists,
• [IIIn(F)]‖Γn‖ ‖F ′′(xn)‖ ‖ΓnF(xn)‖ ≤ an(F),
• [IVn]‖xn+1 − xn‖ ≤ h(an(B), an(F))‖ΓnF(xn)‖,
• [Vn]‖xn+1 − x0‖ ≤ h(a0(B), a0(F))

∑n
k=0 c

k
0‖Γ0F(x0)‖,

• [VIn(B)]‖Γn‖ωB(‖xn+1 − xn‖)‖ΓnF(xn)‖ ≤ bn(B),
• [VIn(F)]‖Γn‖ωF (‖xn+1 − xn‖)‖ΓnF(xn)‖ ≤ bn(F).

Proof. We begin by proving that the conditions are satisfied for n = 1.
Firstly, we see that the inverse operator of F ′(x1) exists. Since

F ′(x1)− F ′(x0) =

∫ 1

0
(F ′′(x0 + t(x1 − x0))− F ′′(x0))(x1 − x0)dt +

∫ 1

0
F ′′(x0)(x1 − x0)dt,

it follows that

‖F ′(x1)− F ′(x0)‖ ≤ (LωF (‖x1 − x0‖)+ α(F))‖x1 − x0‖
≤ (LωF (h(a0(B), a0(F))η)+ α(F))h(a0(B), a0(F))η.

Hence

‖I − Γ0F ′(x1)‖ ≤ ‖Γ0‖ ‖F ′(x1)− F ′(x0)‖
≤ β(LωF (h(a0(B), a0(F))η)+ α(F))h(a0(B), a0(F))η
= (a0(F)+ Lb0(F))h(a0(B), a0(F))
< 1.

From Banach’s lemma, Γ1 exists and [I1] follows, since

‖Γ1‖ ≤ ‖Γ1F ′(x0)‖ ‖Γ0‖

≤
‖Γ0‖

1 − (a0(F)+ Lb0(F))h(a0(B), a0(F))
.

Now, we prove [II1]. For this, we use the following decomposition for the operator F , obtained from Taylor’s formula:

F(x1) = F(x0)+ F ′(x0)(x1 − x0)+
1
2
F ′′(x0)(x1 − x0)2 +

∫ x1

x0
(F ′′(x)− F ′′(x0))(x1 − x)dx.

On the other hand, by the definition of the method

F ′(x0)(x1 − x0) = −F(x0)− F ′′(x0)Γ0F(x0)


I
2

+

−
k≥2

AkLB(x0)k−1


Γ0F(x0).
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Then, taking x = x0 + t(x1 − x0) in the Taylor expansion, it follows that

F(x1) = −F ′′(xn)Γ0F(x0)


I
2

+

−
k≥2

AkLB(x0)k−1


ΓnF(x0)+

1
2
F ′′(x0)(x1 − x0)2

+

∫ 1

0
(F ′′(x0 + t(x1 − x0))− F ′′(x0))(x1 − x0)2(1 − t)dx

= F ′′(x0)


−Γ0F(x0)


I
2

+

−
k≥2

AkLB(x0)k−1


Γ0F(x0)+

1
2
(x1 − x0)2



+

∫ 1

0
(F ′′(x0 + t(x1 − x0))− F ′′(x0))(x1 − x0)2(1 − t)dx.

Taking norms,

‖F(x1)‖ ≤ f (a0(B), a0(F), b0(F))g(a0(B), a0(F), b0(F))‖Γ0F(x0)‖
= c0‖Γ0F(x0)‖

and [II1] holds.
Moreover, from

‖B(x1)‖ ≤ ‖B(x1)− B(x0)‖ + ‖B(x0)‖
≤ ωB(h(a0(B), a0(F))η)+ α(B),

and

‖F ′′(x1)‖ ≤ ‖F ′′(x1)− F ′′(x0)‖ + ‖F ′′(x0)‖
≤ ωF (h(a0(B), a0(F))η)+ α(F),

we obtain [IIIn(B)] and [IIIn(B)] respectively, since

‖Γ1‖ ‖B(x1)‖ ‖Γ1F(x1)‖ ≤ f (a0(B), a0(F), b0(F))β(ωB(h(a0(B), a0(F))η)+ α(B))c0η
≤ f (a0(B), a0(F), b0(F))(b0(B)+ a0(B))c0 = a1(B),

and similarly

‖Γ1‖ ‖F ′′(x1)‖ ‖Γ1F(x1)‖ ≤ f (a0(B), a0(F), b0(F))(b0(F)+ a0(F))c0 = a1(F).

Therefore ‖LB(x1)‖ ≤ a1(B) and since {an(B)} is a decreasing sequence, a1(B) < r . Then (H(LB(x1), LF (x1))) exists and
it follows that

‖(H(LB(x0), LF (x0)))‖ ≤ h(a1(B), a1(F)).

As a consequence of the above, [IV1] is immediate:

‖x2 − x1‖ ≤ ‖(H(LB(x0), LF (x0)))‖ ‖Γ1F(x1)‖
≤ h(a1(B), a1(F))‖Γ1F(x1)‖.

Besides,

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖
≤ h(a1(B), a1(F))‖Γ1F(x1)‖ + h(a0(B), a0(F))‖Γ0F(x0)‖,

and taking into account that the real function h is increasing, [V1] follows:

‖x2 − x0‖ ≤ h(a0(B), a0(F))(1 + c0)‖Γ0F(x0)‖.

Moreover, from

‖Γ1‖ωB(‖x2 − x1‖)‖Γ1F(x1)‖ ≤ f (a0(B), a0(F), b0(F))βωB(h(a1(B), a1(F))c0η)c0η
≤ f (a0(B), a0(F), b0(F))b0(B)c0φ(c0) = b1(B)

and

‖Γ1‖ωF (‖x2 − x1‖)‖Γ1F(x1)‖ ≤ f (a0(B), a0(F), b0(F))βωF (h(a1(B), a1(F))c0η)c0η
≤ f (a0(B), a0(F), b0(F))b0(F)c0φ(c0) = b1(F),

[VI1(B)] and [VI1(B)] hold.
After that, by applying mathematical induction, the proof is complete. �
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Using this lemma it is easy to obtain the following semilocal result.

Theorem 1. Let F : Ω ⊆ X → Y be a nonlinear operator that is twice Fréchet differentiable on a non-empty open convex
domain Ω . Suppose that the conditions [I1]–[VI1(F)] are satisfied. Assume that a0 < r, a1(B) < a0(B), a1(F) < a0(F) and
h(a0(B), a0(F))(a0(F) + Lb0(F)) < 1. If B(x0, R) ⊆ Ω , where R =

h(a0(B),a0(F))η
1−c0

, then the family of iterative processes given

by (3), starting from x0, converges to a solution x∗ of F(x) = 0. In this case, {xn} and x∗ belong to B(x0, R).

For the uniqueness we have:

Theorem 2. Let us suppose that the hypotheses of Theorem 1 hold. Assume that there exists a positive root R̄ of the equation

βL
R̄ − R

∫ R̄

R
ωF (u)udu + βα(F)(R + R̄)− 1 = 0.

Then, the solution x∗ of F(x) = 0 is unique in B(x0, R̄)

Ω .

We refer the reader to [5] for more details.

3. Approximation of the solution of Hammerstein equations

In many problems, an equation in the form

F(x) = 0,

where F is a nonlinear function ranging from a Banach space X to another, Y , has to be discretized in order to be
solved computationally. The discretization process will produce a system of nonlinear scalar equations which increases
its complexity as the discretization becomes finer. Thus, we approximate the solution of the original equation by means of
the solution of the discretized one, xn, verifying

Fn(xn) = 0.

In this section, we are interested in pointing out a class of equations where the third-order methods studied in this paper
are a good alternative to the Newton and two-step methods.

We shall consider an important special case of integral equations, known as the Hammerstein equations:

u(s) = ψ(s)+

∫ 1

0
H(s, t)f (t, u(t))dt. (4)

These equations are related to boundary value problems for differential equations. For some of them, third-order methods
using second derivatives are useful for their effective (discretized) solution.

The discrete version of (4) is

xi = ψ(ti)+

m−
j=0

γjH(ti, tj)f (tj, xj), i = 0, 1, . . . ,m, (5)

where 0 ≤ t0 < t1 < · · · < tm ≤ 1 are the grid points of some quadrature formula
 1
0 f (t)dt ≈

∑m
j=0 γjf (tj), and xi = x(ti).

Using the quadrature rule of integration in steps, we obtain a system of nonlinear equations. For simplicity, in this paper
we consider the trapezoidal rule. The second Fréchet derivative of the associated discrete system is diagonal by blocks.

In order to illustrate our theoretical results numerically, let us consider the following two Hammerstein equations:

x(s) = 1 −
1
4

∫ 1

0

s
t + s

1
x(t)

dt, s ∈ [0, 1] (6)

and

x(s) = 1 +

∫ 1

0
G(s, t)(x(t)7/3x(t)3/3)dt, s ∈ [0, 1], (7)

with the kernel
(1 − s)t, t ≤ s
s(1 − t) s ≤ t. (8)

These equations verify the hypothesis of Theorem 1. Notice that the first one verifies the classical conditions on the
second derivative, that is ‖F ′′(x)‖ ≤ M and ‖F ′′(x)−F ′′(y)‖ ≤ L‖x−y‖ (see [2]), but the second one only verifies themilder
conditions ‖F ′′(x0)‖ ≤ M and

‖F ′′(x)− F ′′(y)‖ ≤ ω(‖x − y‖),

where ω is a positive non-decreasing continuous real function (see [3]).
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Table 1
Errors for the methods (9)–(12), applied to Eq. (6) with x0 = 1.5.

Iter. Chebyshev Halley Two-step C =
1
2

1 1.8 10−2 1.7 10−2 4.2 10−3 1.710−2

2 1.2 10−6 1.0 10−6 4.0 10−9 8.210−7

3 0 0 0 0

We consider m = 20 in the quadrature trapezoidal formula and as the exact solution that obtained numerically by the
Newton method. In Tables 1 and 3, we summarize the numerical results for different methods in the family (2):

• Chebyshev’s method, obtained for B(xn) = 0 and H(xn) = I:

xn+1 = xn −


I +

1
2
LF (xn)


F ′(xn)−1F(xn). (9)

• Halley’s method, obtained for B(xn) = −1/2F ′′(xn) and H(xn) = I + (1/2)LF (xn):

xn+1 = xn −


I +

1
2
LF (xn)[I + (1/2)LF (xn)]−1


F ′(xn)−1F(xn). (10)

• The 1/2-method, obtained for B(xn) = F ′′(xn)[I + LF (xn)]−1 and H(xn) = [I + LF (xn)]−1:

xn+1 = xn −


I +

1
2
LF (xn)+

1
2
LF (xn)


F ′(xn)−1F(xn). (11)

• The two-step method, defined by

yn+1 = xn − F ′(xn)−1F(xn), (12)
xn+1 = yn+1 − F ′(xn)−1F(yn+1).

and obtained in (2) if we consider B(xn) the bilinear operator from X × X to Y such that

1
2
LF (xn)H(xn)−1F ′(xn)−1F(xn) = F ′(xn)−1F(yn+1).

For a comparison, we have selected four iterative methodsMi without involving second derivatives, introduced in [11–13].

• M1 [11]:

yn+1 = xn − F ′(xn)−1F(xn), (13)

xn+1 = yn+1 −
1
2
F ′(xn)−1 F ′(xn)− F ′(yn+1)


F ′(xn)−1F(xn).

• M2 [12]:

yn+1 = xn − F ′(xn)−1F(xn), (14)

xn+1 = xn −
1
2


F ′(xn)−1

+


2F ′


1
2
(xn + yn+1)


− F ′(xn)

−1

F(xn).

• M3 [13]:

yn+1 = xn − F ′(xn)−1F(xn), (15)

xn+1 = xn −
1
2


F ′(xn)−1

+ F ′(yn+1)
−1 F(xn).

• M4 [13]:

yn+1 = xn − F ′(xn)−1F(xn), (16)

xn+1 = xn −
1
2


F ′(xn)+ F ′(yn+1)

−1 F(xn).

The stopping criterion that we consider is ‖F(xn)‖ ≤ 10−16.
In Tables 1–4 we show the errors (working with the max-norm) of the four aforementioned methods selected from the

family (2) and four other methods that do not belong to this family.
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Table 2
Errors for the methods (13)–(16), applied to Eq. (6) with x0 = 1.5.

Iter. M1 M2 M3 M4

1 2.1 10−2 3.7 10−2 7.2 10−3 2.710−2

2 2.3 10−6 2.1 10−6 1.2 10−8 1.210−6

3 0 0 0 0

Table 3
Errors for the methods (9)–(12), applied to Eq. (7) with x0 = 0.

Iter. Chebyshev Halley Two-step C =
1
2

1 2.1 10−2 1.4 10−2 5.2 10−2 1.610−2

2 1.8 10−6 1.1 10−6 7.8 10−7 1.210−6

3 0 0 0 0

Table 4
Errors for the methods (13)–(16), applied to Eq. (7) with x0 = 0.

Iter. M1 M2 M3 M4

1 5.1 10−2 2.7 10−2 4.3 10−2 4.710−2

2 1.3 10−6 2.3 10−6 3.2 10−6 2.210−6

3 0 0 0 0
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