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a b s t r a c t

The application of high order iterative methods for solving nonlinear integral equations is
not usual in mathematics. But, in this paper, we show that high order iterative methods
can be used to solve a special case of nonlinear integral equations of Fredholm type and
second kind. In particular, those that have the property of the second derivative of the
corresponding operator have associated with them a vector of diagonal matrices once a
process of discretization has been done.
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1. Introduction

In this paper, we are interested in solving the following nonlinear integral equation of Fredholm type and second kind:

x(s) = l(s)+ λ

∫ b

a
K(s, t)H(x(t))dt, s ∈ [a, b], λ ∈ R, (1)

where −∞ < a < b < ∞, f , H and K are known functions and x is a solution to be determined. The analysis and
computation of this kind of Fredholm equation is justified by the dynamicmodel of a chemical reactor [1], which is governed
by control equations [2].

To calculate an approximation of a solution x of Eq. (1) we can use a discrete scheme where a numerical quadrature
is applied, so that solving (1) is then reduced to solve a system of nonlinear equations. If we use the Gauss–Legendre
quadrature [3] to approximate an integral,∫ b

a
g(t) dt ≃

1
2

m−
j=1

βj g(tj),
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where the nodes tj and the weights βj are well-known, (1) is transformed into the following nonlinear system of
equations:

x(ti) = l(ti)+


λ

2

m−
j=1

βjK(ti, tj)H(x(tj))


, i = 1, 2, . . . ,m, (2)

which is written in the form

F(x̄) ≡ (F1(x̄), F2(x̄), . . . , Fm(x̄)) = 0̄, (3)

where F : Rm
→ Rm, x̄ = (x1, x2, . . . , xm)t , l̄ = (l(t1), l(t2), . . . , l(tm))t , xi = x(ti) and

Fi(x̄) = xi − l(ti)−


λ

2

m−
j=1

βjK(ti, tj)H(xj)


, i = 1, 2, . . . ,m.

The Newton method is usually applied to solve nonlinear systems of form (3) and the successive approximations are
given by the following algorithm:

x̄0 given,
F ′(x̄k) c̄k = −F(x̄k), k ≥ 0,
x̄k+1 = x̄k + c̄k.

Whenwe are interested in solving nonlinear systems of equations bymeans of one-point iterativemethods, the efficiency
of the methods depends fundamentally on the order of convergence (ρ) and the operational cost (σ ) of doing an step of the
algorithm. The order of convergence measures the speed of convergence of the method and the operational cost of doing
a step of the algorithm is the number of operations (products and divisions) which are needed when it is applied. So, the
efficiency of an iterative method can be measured by the computational efficiency index, CE = ρ1/σ (see [4]). For example,
for system (3), the computational efficiency of the Newton method is CE = 23/(m3

+12m2
+2m), since the order of convergence

is ρ = 2 and the operational cost per step is σ = (m3
+ 12m2

+ 2m)/3 (see [5]).
In view of the expression of the well known one-point iterative processes of third order of convergence, in [6,7] we

consider the family of iterative processes that includes most of them and is given by
xn+1 = xn − H(LF (xn))ΓnF(xn), n ∈ N,

H(LF (xn)) = I +
1
2
LF (xn)+

−
k≥2

AkLF (xn)k, {Ak}k≥2 ⊂ R+,
(4)

where LF (xn) = ΓnF ′′(xn)ΓnF(xn),Γn = [F ′(xn)]−1 and {Ak}k≥2 is a positive real sequencewith
∑

k≥2 Aktk < +∞ for |t| < r .
In a similar way, in [8] the family

xn+1 = xn − H(LB(xn), LF (xn))ΓnF(xn), n ∈ N,

H(LB(xn), LF (xn)) = I +
1
2
LF (xn)+ LF (xn)

−
k≥2

AkLB(xn)k−1, {Ak}k≥2 ⊂ R+,

is considered, where B(xn) is a bilinear operator from X × X to Y to determine and LB(xn) = ΓnB(xn)ΓnF(xn), that obviously
is reduced to family (4) in the case B = F ′′. As the application of iterative processes with an infinite series is not easily
considerable, the series is truncated in practice, as we can see in [8].

Since the main aim of this paper is to present more efficient one-point iterative methods than the Newton method
from (4), we also truncate the series of (4). Moreover, the parameters Ak that appear in the truncated series can be optimized
to obtain more efficient iterative processes.

On the other hand, it is interesting to emphasize that in [8] the semilocal convergence study of the methods is carried
out under conditions already studied for the operator F ′′ in [7], while in this paper we consider a milder condition to study
the semilocal convergence of our methods.

To carry out the above, a first idea is to consider iterative methods with higher order of convergence than the Newton
method, but in this situation the operational cost can be increased highly, since one-point iterative methods of order of
convergence ρ depend explicitly on the first ρ − 1 derivatives of F [4].

In this paper, we consider third-order one-point iterative methods [9] that do not have the problem of increasing highly
the operational cost when they are applied to solve a nonlinear system of equations. We then consider the family of
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Fig. 1. The computational efficiencies of the Newton and the Chebyshev methods: 23/(m3
+12m2

+2m) and 33/(4m3
+18m2

+8m) , respectively.

methods [7]

x̄0 given,
F ′(x̄k) c̄k = −F(x̄k), k ≥ 0,

F ′(x̄k) d̄
(1)
k = −(c̄k)t F ′′(x̄k) c̄k,

F ′(x̄k) d̄
(2)
k = −(c̄k)t F ′′(x̄k) d̄

(1)
k ,

...

F ′(x̄k) d̄
(p)
k = −(c̄k)t F ′′(x̄k) d̄

(p−1)
k ,

x̄k+1 = x̄k + c̄k +

p−
i=1

αi d̄
(i)
k , α1 =

1
2
, αi ∈ R+,

(5)

whichhave the significant feature of every lineal systemhas the samematrix, F ′(x̄k), so thatweonly have to do a factorization
LU , as the Newtonmethod, whose operational cost is (m3

−m)/3 operations. Despite this feature, at first sight the number of
operations related to (c̄k)t F ′′(x̄k) d̄

(p−1)
k , for each p, ism3

+m2
+m, which increases considerably the operational cost of the

algorithm. In general, the iterative methods of the family are no more efficient than the Newton method, as we can observe
in Fig. 1, where we compare the computational efficiencies of the Newton method, 23/(m3

+12m2
+2m), and the Chebyshev

method [10] (method (5) with p = 1), 33/(4m3
+18m2

+8m).
In Section 2, we see that discretization (2) has the feature of reducing the operational cost of doing (c̄k)t F ′′(x̄k) d̄

(p−1)
k ,

so that we can consider (in terms of m) more efficient methods of family (5) than the Newton method for approximating a
solution of the corresponding equation F(x̄) = 0 given in (3). It is due to the fact that the second Fréchet derivative F ′′(x̄)
has associated with it a vector of diagonal matrices.

In Section 3, we analyze the local and semilocal convergence of family (5) for solving (3). The semilocal convergence is
given under a new type of condition that adapts well to the above problem andwe prove that the order of convergence of (5)
is locally at least three. Domains of existence and uniqueness of solutions of (3) are also given.

In Section 4, we study the optimization of family (5) as a function of the parameter pwhen it is applied to solve (3) and it
is quadratic. Moreover, we present a numerical experiment where a more efficient iterative method of (5) than the Newton
method is applied to solve a quadratic integral equation of type (1).

To finish, in Section 5, we solve a negative common effect of third-order one-point iterativemethods: the reduction in the
region of accessibility of starting points (every starting point from which iterative methods are convergent) with respect to
the Newton method (see [5]). In this case, we use hybrid iterative methods, which are predictor–corrector in the following
way: from a starting point that does not satisfy the semilocal convergence conditions (prediction), a new starting point is
obtained that guarantees the semilocal convergence of the iterative methods to the solution of the problem (correction).

2. On the scheme of discretization

On the one hand, whenwe consider how to solve nonlinear system (3), the operational cost of doing a step of the Newton
method is (m3

+ 12m2
+ 2m)/3 operations and for an iterative method of (5) is (m3

+ 3(p + 5)m2
+ (6p + 5)m)/3. Notice

that the operational cost of (5) is increased when p is increased. On the other hand, we see that discretization (2) has the
feature of reducing the operational cost of computing (c̄k)t F ′′(x̄k) d̄

(p−1)
k , since the second derivative has associated with it

a vector of diagonal matrices, so that we can consider in terms of m, more efficient third order methods of family (5) than
the Newton method for approximating a solution of Eq. (3).
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Fig. 2. The computational efficiencies of the Newton and the Chebyshev methods are respectively 23/(m3
+12m2

+2m) and 33/(m3
+18m2

+11m) when they are
applied to solve (6).

Now, if we denote

aij =
1
2
βjK(ti, tj), i, j = 1, 2, . . . ,m,

and A = (aij), then we can write nonlinear system (3) in the following matrix form:

F(x̄) ≡ x̄ − l̄ − λA(H(x1),H(x2), . . . ,H(xm))t = 0̄. (6)

Therefore, the first and the second Fréchet-derivatives of the operator F are given as follows:

F ′(x̄)ȳ = [I − λADiag(H ′(x1),H ′(x2), . . . ,H ′(xm))]ȳ, ∀ȳ ∈ Rm,

where Diag(x̄) denotes the diagonal matrix with the components of the vector x̄ = (x1, x2, . . . , xm) in the diagonal, and F ′′

is the bilinear operator defined by

ȳtF ′′(x̄)z̄ = −λA(H ′′(x1)y1z1,H ′′(x2)y2z2, . . . ,H ′′(xm)ymzm)t ,

for ȳ = (y1, . . . , ym), z̄ = (z1, . . . , zm).
Observe that in this case the number of operations related to F(x̄k) and F ′(x̄k) ism2

+m and 2m2, respectively. In general,
the number of operations related to (c̄k)t F ′′(x̄k) d̄

(p−1)
k is m3

+ m2
+ m, but in the case of considering the previous process

of discretization, the second Fréchet-derivative has associated with it a vector of diagonal matrices and the operational cost
of computing (c̄k)t F ′′(x̄k) d̄

(p−1)
k is then reduced tom2

+ 2m operations.
So, for solving nonlinear system (6), as method (5) requires (m3

+ 3(p + 5)m2
+ (6p + 5)m)/3 operations to do a step,

the particular cases of the Chebyshev and the Newton methods require (m3
+ 18m2

+ 11m)/3 and (m3
+ 12m2

+ 2m)/3
operations per step, respectively. As we can observe in Fig. 2, if m ≥ 3, the computational efficiency of the Chebyshev
method is better than that of the Newton method.

3. Analysis of the convergence and order of convergence

We now present the analysis of the convergence of the family of methods given in (5), which is now written as:
x̄0 given,
x̄n+1 = x̄n − Ψ (LF (x̄n))[F ′(x̄n)]−1F(x̄n), n ≥ 0,

Ψ (LF (x̄)) =

p−
k=0

αkLF (x̄)k, α0 = 1, α1 = 1/2, αk ∈ R+, k ≥ 2,
(7)

where LF (x̄) is the degree of logarithmic convexity defined by

LF (x̄) = F ′(x̄)−1F ′′(x̄)[F ′(x̄)−1F(x̄)] ∈ L(Rm),

and L(Rm) is the set of bounded linear operators from Rm into Rm, provided that the operator [F ′(x̄n)]−1
= Γn exists.

Notice that the method given in (7) with p = 0 is the Newton method.

3.1. Local convergence

Firstly, we prove that the order of convergence of (7) is locally at least three.

Theorem 3.1. Suppose that F : Ω ⊆ Rm
→ Rm is the operator given in (3), whereΩ is a non-empty open convex domain. If F

has a simple root x̄∗
∈ Ω ⊂ Rm, [F ′(x̄)]−1 exists in a neighborhood of x̄∗ and x̄0 is sufficiently close to x̄∗, then iterations (7) have

order of convergence at least three.
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Proof. From Taylor’s formula, we have

0̄ = F(x̄∗) = F(x̄n)− F ′(x̄n)ēn +
1
2!

F ′′(x̄n)ē2n −
1
3!

F ′′′(x̄n)ē3n + O(‖ēn‖4),

where ēn = x̄n − x̄∗. Hence,

ΓnF(x̄n) = ēn −
1
2!
ΓnF ′′(x̄n)ē2n +

1
3!
ΓnF ′′′(x̄n)ē3n + O(‖ēn‖4)

and

LF (x̄n) = ΓnF ′′(x̄n)ēn −
1
2!
ΓnF ′′(x̄n)ΓnF ′′(x̄n)ē2n +

1
3!
ΓnF ′′(x̄n)ΓnF ′′′(x̄n)ē3n + O(‖ēn‖4).

Moreover, from (7), it follows

ēn+1 = x̄n+1 − x̄∗
= ēn −


I +

1
2
LF (x̄n)+

p−
k=2

αkLF (x̄n)k

ΓnF(x̄n)

=
1
2
ΓnF ′′(x̄n)ē2n −

1
6
ΓnF ′′′(x̄n)ē3n + O(‖ēn‖4)

−
1
2
ΓnF ′′(x̄n)ē2n +

1
2
(ΓnF ′′(x̄n))2ē3n + O(‖ēn‖4)− α2(ΓnF ′′(x̄n))2ē3n + O(‖ēn‖4)

=


−

1
6
ΓnF ′′′(x̄n)+


1
2

− α2


(ΓnF ′′(x̄n))2


ē3n + O(‖ēn‖4).

Therefore, (7) has order of convergence at least three. �

3.2. Semilocal convergence

Secondly, an analysis of the semilocal convergence is given. Basic results concerning the convergence of (7) have been
published under assumptions of Newton–Kantorovich type [14]; for instance, in [7], we assume the following conditions:

(K1) There exists a point x̄0 ∈ Ω where the operator Γ0 = [F ′(x̄0)]−1
∈ L(Rm) is defined and ‖Γ0‖ ≤ β,

(K2) ‖Γ0F(x̄0)‖ ≤ η,

(K3) ‖F ′′(x̄)‖ ≤ M , ∀x̄ ∈ Ω ,
(K4) ‖F ′′(x̄)− F ′′(ȳ)‖ ≤ K‖x̄ − ȳ‖, K ≥ 0, x̄, ȳ ∈ Ω .

According to these conditions, the number of problems that can be solved is limited. In general, we cannot analyze the
convergence of (7) to a solution of (6), since in general F ′′ is not bounded. Moreover, it is not easy to locate a domain where
the solution lies.

In order to considermore general situations as those of the nonlinear integral equations of type (1), we relax the previous
convergence conditions such that they are adjusted better to this type of integral operators. An elegant alternative consists
of relaxing the strong condition (K3) by

‖F ′′(x̄)‖ ≤ ω(‖x̄‖), x̄ ∈ Ω, (8)

where ω : R+ ∪ {0} → R+ ∪ {0} is a continuous real function such that ω(0) ≥ 0 and ω is a monotone function. We then
analyze the semilocal convergence of (7) in Rm by assuming only (K1), (K2) and (8), so that fewer convergence conditions
are required.

According to expression (7), we obtain the following decomposition for any operator F .

Lemma 3.2. Let F : Ω ⊆ Rm
→ Rm be a sufficiently differentiable operator on a non-empty open convex domainΩ . Then,

F(x̄n+1) = −F ′′(x̄n)


ΓnF(x̄n)


p−

k=1

αkLF (x̄n)k−1


ΓnF(x̄n)



+

∫ 1

0
F ′′(x̄n + t(x̄n+1 − x̄n))(x̄n+1 − x̄n)2(1 − t) dt. (9)

Proof. From Taylor’s formula, we have

F(x̄n+1) = F(x̄n)+ F ′(x̄n)(x̄n+1 − x̄n)+

∫ x̄n+1

x̄n
F ′′(x̄)(x̄n+1 − x̄) dx̄,
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for x̄n+1 ∈ Ω . Now, taking x̄ = x̄n + t(x̄n+1 − x̄n) and (7), we obtain (9), since

F ′(x̄n)(x̄n+1 − x̄n) = −F ′(x̄n)


ΓnF(x̄n)+


p−

k=1

αkLF (x̄n)k

ΓnF(x̄n)



= −F(x̄n)− F ′′(x̄n)


ΓnF(x̄n)

p−
k=1

αkLF (x̄n)k−1


ΓnF(x̄n). �

From now on, the results are adapted to the particular case of F being given by (3). We convert conditions (K1), (K2)
and (8) into this situation and construct a system of recurrence relations which allows us to establish the convergence
of (7).

To do this, we use the following notation:

‖x̄ − l̄ − λAH(x̄)‖ = φ(x̄), (10a)

1 − |λ| ‖A‖ ‖H ′(x̄)‖ = ϑ(x̄), (10b)

|λ| ‖A‖ ‖H ′′(x̄)‖ = χ(x̄). (10c)

Lemma 3.3. Let x̄0 ∈ Ω such that

(C1) |λ| ‖A‖ ‖H ′(x̄0)‖ < 1.

Then, the operator [I − λAH ′(x̄0)]−1
∈ L(Rm) is well-defined and

‖[I − λAH ′(x̄0)]−1
‖ ≤

1
ϑ(x̄0)

= β.

Proof. Taking into account that

[I − [I − λAH ′(x̄0)]]ȳ = [λAH ′(x̄0)]ȳ, ∀ȳ ∈ Rm,

and

‖λAH ′(x̄0)‖ ≤ |λ| ‖A‖ ‖H ′(x̄0)‖ < 1,

the proof follows from Banach’s lemma. �

After that, we assume that the operator F given in (6) satisfies condition (C1) and the following:

(C2) φ(x̄0)
ϑ(x̄0)

= η,

(C3) χ(x̄) ≤ ω(‖x̄‖), ∀x̄ ∈ Ω , where ω : R+ ∪ {0} → R+ ∪ {0} is a continuous real function such that ω(0) ≥ 0 and ω is a
monotone function.

(C4) The equation

4t − 2ψ(βηϕ(t))((1 + βηϕ(t))t + η)− βηϕ(t)ψ(βηϕ(t))2(t − 2η) = 0 (11)

has at least one positive root, where

ϕ(t) =


ω(‖x̄0‖ + t) if ω is non-decreasing,
ω(‖x̄0‖ − t) if ω is non-increasing,

and

ψ(t) =

p−
k=0

αktk, α0 = 1, α1 =
1
2
. (12)

We denote the smallest root of the previous equation by R. Notice that Rmust be less than ‖x̄0‖ if ω is non-increasing.

Let a0 = βηϕ(R) and define the scalar sequence:

an+1 = anf (an)2g(an), n ≥ 1, (13)

where

f (t) =
1

1 − tψ(t)
, g(t) = ψ(t)


1 +

t
2
ψ(t)


− 1. (14)
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Using a technique based on recurrence relations, under conditions (C1)–(C4), we prove methods (7) are convergent to a
solution of (3). Also, we find the domains where the solution is located and unique. So, we construct a system of recurrence
relations which allows us to establish the convergence of iterations (7).

From initial conditions (C1)–(C4) and (10), we have

‖LF (x̄0)‖ ≤
φ(x̄0)
ϑ(x̄0)2

χ(x̄0) ≤ ω(‖x̄0‖)βη = a0.

Then x1 is well defined and

‖Ψ (LF (x̄0))‖ ≤

p−
k=0

αkak0 = ψ(a0).

Moreover,

‖x̄1 − x̄0‖ ≤ ψ(a0)η.

In the following result we give the recurrence relations which are needed to prove the semilocal convergence of (7).

Lemma 3.4. Suppose that x̄0, x̄n ∈ Ω , for n ∈ N. If a0ψ(a0) < 1 and f (a0)2g(a0) < 1. Then, the following relations are
satisfied:

(I) There exists [I − λAH ′(x̄n)]−1 and 1
ϑ(x̄n)

≤
f (an−1)
ϑ(x̄n−1)

,

(II) φ(x̄n)
ϑ(x̄n)

≤ f (an−1)g(an−1)
φ(x̄n−1)
ϑ(x̄n−1)

,

(III) ϕ(R) φ(x̄n)
ϑ(x̄n)2

≤ an and there exists Ψ (LF (x̄n)),

(IV) ‖x̄n+1 − x̄n‖ ≤ ψ(an)
φ(x̄n)
ϑ(x̄n)

,

(V) ‖x̄n+1 − x̄0‖ ≤ (
∑n

i=0 ψ(ai) (
∏i−1

k=0 f (ak)g(ak)))η.

Proof. We prove the result by invoking induction of an inductive process for n. Firstly, we prove that (I)–(V) are satisfied
for n = 1. From

A[H ′(x̄1)− H ′(x̄0)] =

∫ 1

0
AH ′′(x̄0 + t(x̄1 − x̄0))(x̄1 − x̄0)dt

and taking norms, it follows

|λ| ‖A‖ ‖H ′(x̄1)− H ′(x̄0)‖ ≤ ϕ(R)‖x̄1 − x̄0‖ ≤ ϕ(R)ψ(a0)η.

Notice that ‖I − [F ′(x̄0)]−1F ′(x̄1)‖ ≤ β|λ| ‖A‖ ‖H ′(x̄1)− H ′(x̄0)‖. Therefore,

β|λ| ‖A‖ ‖H ′(x̄1)− H ′(x̄0)‖ ≤ βϕ(R)ψ(a0)η = a0ψ(a0) < 1.

Thus, from Banach’s Lemma, the operator [F ′(x̄1)]−1
= [I − λAH ′(x̄1)]−1 exists and

1
ϑ(x̄1)

≤
1

1 − ‖I − Γ0F ′(x1)‖
1

ϑ(x̄0)
≤

1
1 − a0ψ(a0)

1
ϑ(x̄0)

=
f (a0)
ϑ(x̄0)

.

Now, from (9) and taking into account g , we have

φ(x̄1)
ϑ(x̄1)

≤ f (a0)


p−

k=1

αkak0 +

∫ 1

0
a0ψ(a0)2(1 − t) dt


φ(x̄0)
ϑ(x̄0)

= f (a0)

ψ(a0)− 1 +

1
2
a0ψ(a0)2


φ(x̄0)
ϑ(x̄0)

≤ f (a0)g(a0)η,

ϕ(R)
φ(x̄1)
ϑ(x̄1)2

≤ f (a0)2g(a0)a0 = a1,

and therefore (II) and (III) hold. From the condition f (a0)2g(a0) < 1, it is easy to prove that {an} is a decreasing sequence.
Thus,

‖Ψ (LF (x̄1))‖ ≤

p−
k=0

αkak1 = ψ(a1)

and (IV) and (V) hold, since

‖x̄2 − x̄1‖ ≤ ψ(a1)
φ(x̄1)
ϑ(x̄1)

,

‖x̄2 − x̄0‖ ≤ ‖x̄2 − x̄1‖ + ‖x̄1 − x̄0‖ ≤ (ψ(a0)+ ψ(a1)f (a0)g(a0))η.
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We suppose that (I)–(V) are satisfied for n and prove them for n + 1. By hypothesis, we have x̄j+1 ∈ Ω , j = 1, 2, . . . , n. If

A[H ′(x̄n+1)− H ′(x̄n)] =

∫ 1

0
AH ′′(x̄n + t(x̄n+1 − x̄n)) (x̄n+1 − x̄n)dt,

then

|λ| ‖A‖ ‖H ′(x̄n+1)− H ′(x̄n)‖ ≤ ϕ(R)‖x̄n+1 − x̄n‖ ≤ ϕ(R)ψ(an)
φ(x̄n)
ϑ(x̄n)

.

Notice that

‖I − [F ′(x̄n)]−1F ′(x̄n+1)‖ ≤
1

ϑ(x̄n)
|λ| ‖A‖ ‖H ′(x̄n+1)− H ′(x̄n)‖

and

1
ϑ(x̄n)

|λ| ‖A‖ ‖H ′(x̄n+1)− H ′(x̄n)‖ ≤ ϕ(R)
φ(x̄n)
ϑ(x̄n)2

ψ(an) = anψ(an) < 1.

Thus, from Banach’s Lemma, the operator [F ′(x̄n+1)]
−1

= [I − λAH ′(x̄n+1)]
−1 exists and

1
ϑ(x̄n+1)

≤
1

1 − ‖I − [F ′(x̄n)]−1F ′(x̄n+1)‖

1
ϑ(x̄n)

≤
1

1 − anψ(an)
1

ϑ(x̄n)
=

f (an)
ϑ(x̄n)

.

Now, from (9), it follows that

φ(x̄n+1)

ϑ(x̄n+1)
≤ f (an)g(an)

φ(x̄n)
ϑ(x̄n)

.

Therefore,

ϕ(R)
φ(x̄n+1)

ϑ(x̄n+1)
≤ f (an)2g(an)an = an+1

and

‖Ψ (LF (x̄n+1))‖ ≤

p−
k=0

αkakn+1 = ψ(an+1).

We also observe that

‖x̄n+2 − x̄n+1‖ ≤ ψ(an+1)
φ(x̄n+1)

ϑ(x̄n+1)
,

‖x̄n+2 − x̄0‖ ≤ ‖x̄n+2 − x̄n+1‖ + ‖x̄n+1 − x̄0‖

≤ ψ(an+1)


n∏

k=0

f (ak)g(ak)


η +


n−

i=0

ψ(ai)


i−1∏
k=0

f (ak)g(ak)


η,

and, by hypothesis, we have

‖x̄n+2 − x̄0‖ ≤


n+1−
i=0

ψ(ai)


i−1∏
k=0

f (ak)g(ak)


η,

and the proof of the lemma is complete. �

3.2.1. Main result
Now, we give results where some properties of the real functions defined in (14) and the real sequence {an} are provided.

We then establish the semilocal convergence of the third-order methods given in (7).

Lemma 3.5. Let ψ , f and g be the three real functions given in (12) and (14). If a0ψ(a0) < 1, then f (t) is an increasing function
and f (t) > 1 for t ∈ (0, a0). Moreover, g(t) is an increasing function for t > 0.

Lemma 3.6. Let ψ , f and g be the three real functions given in (12) and (14). If a0ψ(a0) < 1 and f (a0)2g(a0) < 1, then the
sequence {an} given in (13) is decreasing. Moreover, f (a0)g(a0) < 1.
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Proof. To prove the thesis we use mathematical induction. By hypothesis,

a1 = f (a0)2g(a0)a0 < a0.

Besides, taking into account f (a0) > 1, it follows f (a0)g(a0) < 1. We now suppose that ak < ak−1 for all k ≤ n. As a
consequence,

an+1 < an ⇔ f (an)2g(an) < 1,

since f (an)2g(an) < f (a0)2g(a0) < 1. The proof is then complete. �

After that, we suppose that the operator [F ′(x̄0)]−1 exists at some x̄0 ∈ Ω .

Theorem 3.7. Let F : Ω ⊆ Rm
→ Rm be the operator given in (3), whereΩ is a non-empty open convex domain. We suppose

that [F ′(x̄0)]−1 exists for some x̄0 ∈ Ω and conditions (C1)–(C4) hold. If

a0ψ(a0) < 1, f (a0)2g(a0) < 1 (15)

and B(x̄0, R) ⊆ Ω , then methods (7), starting from x̄0, generate a sequence {x̄n} which converges to a solution x̄∗
∈ B(x̄0, R) of

Eq. (3).

Proof. Taking into account (C1)–(C4), we obtain x̄1 ∈ B(x̄0, R). Besides, from Lemma 3.4 and following mathematical
induction, we obtain x̄n ∈ B(x̄0, R) ⊆ Ω , for all n ∈ N.

To establish the convergence of (7) we prove that {x̄n} is a Cauchy sequence. To do this, we consider n,m ∈ N and

‖x̄n+m − x̄n‖ ≤

n+m−1−
k=n

‖x̄k+1 − x̄k‖ ≤

n+m−1−
k=n

ψ(a0)(f (a0)g(a0))kη

≤ ψ(a0)(f (a0)g(a0))n


m−1−
k=0

(f (a0)g(a0))k

η

= ψ(a0)(f (a0)g(a0))n
1 − (f (a0)g(a0))m

1 − f (a0)g(a0)
η, (16)

since {an} is a non-increasing sequence. Therefore, {x̄n} is a Cauchy sequence and we have that limn→∞ x̄n = x̄∗. On the
other hand, we note that {‖I − λAH ′(x̄n)‖} is a bounded sequence, since

‖I − λAH ′(x̄n)‖ ≤ |λ| ‖A‖ ‖H ′(x̄n)− H ′(x̄0)‖ + ‖I − λAH ′(x̄0)‖

≤ R
∫ 1

0
ϕ(R) dt + ‖I − λAH ′(x̄0)‖.

Thus, from

1
ϑ(x̄n)

≤ ‖I − λAH ′(x̄n)‖
φ(x̄n)
ϑ(x̄n)

and limn→∞
φ(x̄n)
ϑ(x̄n)

= 0, we have that φ(x̄∗) = 0. By the continuity of H , we obtain x̄∗
− f̄ − λAH(x̄∗) = 0̄ and x̄∗ is therefore

a solution of the equation F(x̄∗) = 0̄ with F given in (6). �

3.2.2. Uniqueness of the solution
Now, we provide a result about the uniqueness of the solution x∗ of F(x̄∗) = 0̄ with F given in (3).

Theorem 3.8. Let F be the operator given in (3). We suppose that conditions (C1)–(C4) hold. Then, the solution x̄∗ of the equation
F(x̄∗) = 0̄ is unique in B(x̄0, R̃), where R̃ is the biggest positive root of the equation

β

∫ 1

0

∫ 1

0
ϕ(s(R + t(ξ − R))) ds(R + t(ξ − R)) dt = 1. (17)

Proof. To show the uniqueness of x̄∗, we suppose that z̄∗ is another solution of F(x̄) = 0̄ in B(x̄0, R̃). From the approximation

0 = [F ′(x̄0)]−1
[F(z̄∗)− F(x̄∗)] =

∫ 1

0
[F ′(x̄0)]−1

[I − λAH ′(x̄∗
+ t(z̄∗

− x̄∗)) dt] (z̄∗
− x̄∗),
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Table 1
Order of convergence of methods (7) and the number m of
equations of system (3) when it is quadratic.

p Order of methods (7) m

1 3 3
2 4 3
3 4 5
4 4 7
5 4 10
6 4 13

and the fact that the operator P =
 1
0 [F ′(x̄0)]−1

[I − λAH ′(x̄∗
+ t(z̄∗

− x̄∗)) dt] is invertible, it follows z̄∗
= x̄∗. Observe that

P is invertible by Banach’s lemma, since

‖I − P‖ ≤ β


|λ| ‖A‖

∫ 1

0
‖H ′(x̄∗

+ t(z̄∗
− x̄∗))− H ′(x̄0)‖ dt


≤ β|λ| ‖A‖

∫ 1

0

∫ 1

0
‖H ′′


x̄0 + s


x̄∗

+ t(z̄∗
− x̄∗)


‖

(1 − t)‖x̄∗

− x̄0‖ + t‖z̄∗
− x̄0‖


ds dt

< β

∫ 1

0

∫ 1

0
ϕ(s(R + t(ξ − R)))(R + t(ξ − R)) ds dt = 1.

From (17), it is easy to see that the uniqueness of the solution is then guaranteed in B(x̄0, R) if
 1
0 ϕ(sR) < 1/(Rβ). �

4. An optimization of methods (7)

Notice that methods (7) can be optimized as a function of the parameter p when they are applied to solve system (3).
Due to the computational efficiency, the choice of the parameter p depends on the number m of equations of (3). In
the particular case of (3) is a quadratic system, it is possible to optimize the computational efficiency of (7). Thus, if we
choose α2 = 1/2, methods (7) have R-order of convergence at least 4 (see [11]) and the computational efficiency is
CE = 43/(m3

+3(p+5)m2
+(6p+5)m).

We indicate in Table 1 the number m of equations of system (3) based on methods (7), order of convergence four, has
better computational efficiency than the Newton method. For instance, the Chebyshev method, (7) with p = 1, has better
CE than the Newton method when m ≥ 3, method (7) with p = 2 has order of convergence four and better CE than the
Newton method when m ≥ 3, and so on. Thus, to improve the CE of the Newton method from methods (7), we have to
choose an optimum value of p according to the numberm of equations of (3) when it is quadratic.

Moreover, from a certain numberm of equations of system (3), we can also realize an optimization between themethods
of (7). For instance for m ≥ 2, the Chebyshev-like method given by (7) with p = 2 [12] has better CE than the Chebyshev
method.

We now illustrate the above-mentioned with an example. The aim is to find the optimum value of p, fixed the number
m of equations of system (3), when (7) is applied to solve a quadratic system. We then consider the following quadratic
integral operator:

F(x)(s) = x(s)− 1 −
1
2

∫ 1

0
G(s, t)x(t)2 dt, s ∈ [0, 1],

where x ∈ C[0, 1], s, t ∈ [0, 1], and the kernel G is the Green function

G(s, t) =


(1 − s)t, t ≤ s,
s(1 − t), s ≤ t. (18)

F : C+
[0, 1] ⊆ C[0, 1] → C[0, 1] and C+

[0, 1] = {x ∈ C[0, 1] | x(t) ≥ 0, t ∈ [0, 1]}.
In this case, if we fix the number m of equations, for instance m = 8, the optimum value of p is two, see Fig. 3. Then, we

choose (7) with p = 2,
x̄0 given,
x̄n+1 = x̄n − Ψ (LF (x̄n))[F ′(x̄n)]−1F(x̄n), n ≥ 0,

Ψ (LF (x̄)) = 1̄ +
1
2
LF (x̄)+

1
2
LF (x̄)2,

(19)

which has order of convergence four, for solving the nonlinear system

F(x̄) = x̄ − 1̄ − A
x̄2

2
= 0̄, (20)
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Fig. 3. The computational efficiency of methods (7) whenm = 8.

Table 2
Numerical solution x̄∗ of system (20).

x∗

1 1.00545. . .

x∗

2 1.02581. . .

x∗

3 1.05162. . .

x∗

4 1.06936. . .

x∗

5 1.06936. . .

x∗

6 1.05162. . .

x∗

7 1.02581. . .

x∗

8 1.00545. . .

where x̄ = (x1, . . . , x18)t , 1̄ = (1, . . . , 1)t , A = (aij)with

aij =


1
2
(1 − ti)tjβj, j ≤ i,

1
2
ti(1 − tj)βj, i ≤ j,

(21)

and the weights βj and the nodes tj. Therefore,

F ′(x̄)ȳ = [I − AD1(x̄)]ȳ, ∀ȳ ∈ R8,

where D1(x̄) denotes the diagonal matrix with the components of the vector (x1, x2, . . . , xn) in the diagonal, and F ′′ is the
bilinear operator defined by

ȳtF ′′(x̄)z̄ = −A(y1z1, . . . , y8z8)t , ∀ȳ, z̄ ∈ R8.

We denote the n-th iteration of (19) by x̄n = (x(n)1 , x
(n)
2 , . . . , x

(n)
8 )

t . If we choose x̄0 = (2, 2, . . . , 2)t , we obtain β =

1.32822 . . . and η = 1.30185 . . .. Notice that in this case the real function ω is constant, ω(x) = ‖A‖, and Eqs. (11) and (17)
are reduced to the linear equations (1.47064 . . .) − (0.649409 . . .) t = 0 and (0.185826 . . .) + (0.0820573 . . .) ξ = 1,
respectively. Therefore, the radii of the domains of existence and uniqueness are R = 2.26459 . . . and R̃ = 9.92201 . . . , re-
spectively.Moreover, a0 = βηϕ(R) = 0.213653 . . . , so that a0ψ(a0) = 0.241354 . . . < 1, f (a0)2g(a0) = 0.462127 . . . < 1,
and consequently conditions (15) of Theorem 3.7 are satisfied.

After applying two iterations of method (19) and using the stopping criterion ‖x̄n − x̄n−1‖ < 10−180, we obtain the
numerical solution x̄∗

= (x∗

1, x
∗

2, . . . , x
∗

8) of system (20), which is given in Table 2 and shown in Fig. 4 once it is interpolated.
Considering the same stopping criterion in Table 3 as above, we obtain the errors ‖x̄n − x̄∗

‖. In the case, m = 8, when
method (19) is used, the operational cost (products and divisions) is 1992 after three iterations and, when the Newton
method is applied, the operational cost is 2592 after six iterations. Thus, we approximate the solution x̄∗ of (20) by means
of a method of family (7) which is more efficient than the Newton method, the most commonmethod for solving nonlinear
systems.

On the other hand, the study of the optimization of p is open for another type of nonlinear systems.

5. Predictor–corrector methods

It is well-known that the higher the order of convergence of an iterative method, the smaller its region of accessibility
(the region where we can guarantee the convergence of the method). In this section, we analyze how to improve the region
of accessibility of methods (7), so that it is increased to the region of accessibility of the Newton method.
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Fig. 4. Approximated solution of (20) and the domain of existence of the solution (m = 8).

Table 3
Errors ‖x̄n − x̄∗

‖ for the Newton method and method (19).

n The Newton method Method (19)

0 0.994549 . . . 0.994549 . . .
1 6.93651 . . .× 10−2 1.47340 . . .× 10−3

2 2.58022 . . .× 10−4 3.32053 . . .× 10−15

3 3.44598 . . .× 10−9 8.23120 . . .× 10−62

4 6.10030 . . .× 10−19

5 1.90917 . . .× 10−38

6 1.86951 . . .× 10−77

We consider the following nonlinear integral operator of type (1):

F(x)(s) = x(s)− 1 −
1
20

∫ 1

0
G(s, t)(x(t)5/2 + x(t)3/5) dt, s ∈ [0, 1],

where x ∈ C[0, 1], s, t ∈ [0, 1] and the kernel G is function (18).
In this example, to consider a different situation as above, we choosem = 48. In this case, methods (7) with 1 ≤ p ≤ 11,

are more efficient than the Newtonmethod, and (7) with p = 1, the Chebyshevmethod, is themost efficient of themethods
of (7).

Nonlinear system (6) is in this case reduced to

F(x̄) = x̄ − 1̄ − A(x̄5/2/20 + x̄3/100) = 0̄, (22)
where x̄ = (x1, x2, . . . , x48)t , 1̄ = (1, 1, . . . , 1)t and A = (aij)with aij as in (21). Therefore,

F ′(x̄)ȳ =

[
I − A


1
8
D3/2(x̄)+

3
100

D2(x̄)
]

ȳ, ∀ȳ ∈ R48,

where Dk(x̄), k = 3/2 and k = 2, denotes the diagonal matrix with the components of the vector (xk1, x
k
2, . . . , x

k
n) in the

diagonal, and F ′′ is the bilinear operator defined by

ȳtF ′′(x̄)z̄ = −A


3
16

x1/21 +
3
50

x1


z1y1, . . . ,


3
16

x1/248 +
3
50

x48


z48y48

t

, ∀ȳ, z̄ ∈ R48.

So, we haveω(x) = ‖A‖( 3
16x

1/2
+

3
50x).On the other hand, we denote the n-th iteration by x̄n = (x(n)1 , x

(n)
2 , . . . , x

(n)
48 )

t . If x̄0 =

(2.75, 2.75, . . . , 2.75)t , we obtainβ = 1.110593 . . . , η = 1.94325 . . . . If we choose the Chebyshevmethod to approximate
a solution of (22), in a similar way to the previous example, we obtain that the smallest roots of Eqs. (11) and (17) are
R = 3.18615 . . . and R̃ = 12.5072 . . . , respectively.Moreover, a0 = βηϕ(R) = 0.219246 . . . , a0ψ(a0) = 0.243281 . . . < 1,
f (a0)2g(a0) = 0.427153 . . . < 1, so that conditions (15) of Theorem 3.7 are satisfied. Furthermore, the domain of existence
of solutions is {x ∈ Rm

; ‖x̄ − x̄0‖ ≤ 3.18615 . . .} and the domain of uniqueness is {x ∈ Rm
; ‖x̄ − x̄0‖ < 12.5072 . . .}.

After applying three iterations of the Chebyshevmethod and using the stopping criteron ‖x̄n− x̄n−1‖ < 10−180, we obtain
the numerical solution x̄∗

= (x∗

1, x
∗

2, . . . , x
∗

48)
t of (22) given in Table 4. Considering the same stopping criterion in Table 5,

we obtain the errors ‖x̄n − x̄∗
‖.

Notice that after five iterations of the Chebyshev method, the operational cost (products and divisions) is 254,320, and
after nine iterations of the Newton method the operational cost is 415,008. Consequently, the Chebyshev method is more
efficient than the Newton method.

In the previous example, if we choose x̄0 = (3.5, 3.5, . . . , 3.5)t as the starting vector, the convergence conditions of
Theorem 3.7 are not satisfied for any iterative method of (7). Thus, starting from the vector x̄0, the convergence of (7) to
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Table 4
Numerical solution x̄∗ of system (22).

x∗

1 1.00001. . . x∗

17 1.00596. . . x∗

33 1.00553. . .

x∗

2 1.00009. . . x∗

18 1.00635. . . x∗

34 1.00508. . .

x∗

3 1.00023. . . x∗

19 1.00669. . . x∗

35 1.00460. . .

x∗

4 1.00044. . . x∗

20 1.00699. . . x∗

36 1.00411. . .

x∗

5 1.00069. . . x∗

21 1.00724. . . x∗

37 1.00362. . .

x∗

6 1.00100. . . x∗

22 1.00743. . . x∗

38 1.00313. . .

x∗

7 1.00136. . . x∗

23 1.00755. . . x∗

39 1.00265. . .

x∗

8 1.00176. . . x∗

24 1.00762. . . x∗

40 1.00219. . .

x∗

9 1.00219. . . x∗

25 1.00762. . . x∗

41 1.00176. . .

x∗

10 1.00265. . . x∗

26 1.00755. . . x∗

42 1.00136. . .

x∗

11 1.00313. . . x∗

27 1.00743. . . x∗

43 1.00100. . .

x∗

12 1.00362. . . x∗

28 1.00724. . . x∗

44 1.00069. . .

x∗

13 1.00411. . . x∗

29 1.00699. . . x∗

45 1.00044. . .

x∗

14 1.00460. . . x∗

30 1.00669. . . x∗

46 1.00023. . .

x∗

15 1.00508. . . x∗

31 1.00635. . . x∗

47 1.00009. . .

x∗

16 1.00553. . . x∗

32 1.00596. . . x∗

48 1.00001. . .

Table 5
Errors ‖x̄n − x̄∗

‖ for the Newton and the Chebyshev
methods.

n Newton Chebyshev

0 1.74998 . . . 1.749998 . . .
1 8.38662 . . .× 10−2 2.27561 . . .× 10−2

2 7.85914 . . .× 10−5 2.79589 . . .× 10−8

3 6.72419 . . .× 10−11 4.76096 . . .× 10−26

4 6.72419 . . .× 10−11 2.30678 . . .× 10−79

5 4.86404 . . .× 10−23

6 2.53980 . . .× 10−47

7 6.92228 . . .× 10−96

a solution x̄∗ of Eq. (22) is not guaranteed. This is a problem that iterative methods of high order usually have, since the
convergence conditions are more demanding. In this section we avoid this problem by using predictor–corrector methods.

The idea is to approximate a solution of (3) by the Newton method for a finite number of steps, N0, and starting from
x̄0 ∈ Ω . After that, we take x̄N0 as a starting point for a method of (7). This is to choose a starting point, x̄0, which is in the
region of accessibility of the Newton method, and iterate a number of steps N0 until x̄N0 is in the region of accessibility of a
method of (7).

Note that the Newton method is convergent from x̄0 to a solution x̄∗ of Eq. (3) under the following conditions (see [13]):
(C1) there exists a point x̄0 ∈ Rm such that the operator [I − λAH ′(x̄0)]−1

∈ L(Rm,Rm) is well-defined and

‖[I − λAH ′(x̄0)]−1
‖ ≤

1
ϑ(x̄0)

= β̃,

(C2) φ(x̄0)
ϑ(x̄0)

= η̃,

(C3) χ(x̄) ≤ ω(‖x̄‖), ∀x ∈ Ω , where ω : R+ ∪ {0} → R+ ∪ {0} is a continuous real function such that ω(0) ≥ 0 and ω is a
monotone function

(C4) the equation

3β̃η̃ϕ(t)t − 2β̃η̃2ϕ(t)− 2t + 2η̃ = 0

has at least one positive root, where

ϕ(t) =


ω(‖x̄0‖ + t) if ω is non-decreasing,
ω(‖x̄0‖ − t) if ω is non-increasing.

We denote the smallest root of the previous equation by R1. Notice that R1 must be less than ‖x̄0‖ ifω is non-increasing.

If a0 = β̃η̃ϕ(R1) < 1/2, (23)

then the Newton method, starting from x̄0, generates a sequence {x̄n} that converges to a solution x̄∗
∈ B(x̄0, R) of Eq. (3).
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Fig. 5. Approximated solution of (22) and the domain of existence of the solution.

Table 6
Errors ‖x̄n − x̄∗

‖ for the Newton method and method (24)
with p = 1.

n The Newton method Method (24) with p = 1

0 2.49998 . . . 2.49998 . . .
1 2.05774 . . .× 10−1 2.05774 . . .× 10−1

2 4.48357 . . .× 10−4 4.48357 . . .× 10−4

3 2.18982 . . .× 10−9 2.01938 . . .× 10−13

4 5.15933 . . .× 10−20 1.77070 . . .× 10−41

5 2.85760 . . .× 10−41 1.18362 . . .× 10−125

6 8.76309 . . .× 10−84

7 8.24023 . . .×10−169

Then, we consider the following algorithm:

x̄0 ∈ Ω,
F ′(x̄n) c̄n = −F(x̄n), n ≥ 0,
x̄n+1 = x̄n + c̄n, n = 1, 2, . . . ,N0 − 1,

z̄0 = x̄N0 ,
F ′(z̄n) c̄n = −F(z̄n),
F ′(z̄n) d̄(1)n = −(c̄n)t F ′′(z̄n) c̄n,
F ′(z̄n) d̄(2)n = −(c̄n)t F ′′(z̄n) d̄(1)n ,
...

F ′(z̄n) d̄(p)n = −(c̄n)t F ′′(z̄n) d̄(p−1)
n ,

z̄n+1 = z̄n + c̄n +

p−
i=1

αi d̄(i)n , α1 =
1
2
, αi ∈ R+,

(24)

where x̄0 must satisfy condition (23) and z̄0 = x̄N0 must satisfy conditions (15). Then, if a0 < 1/2, we can use the Newton
method for N0 number of steps, so that x̄N0 = z̄0 satisfies (15), and then we apply (7). The key of the problem is to guarantee
the existence of N0 that we estimate in the following result and whose proof is similar to that which is written in [5].

Theorem 5.1. Let F : Ω ⊆ Rm
→ Rm be the operator given in (3), whereΩ is a non-empty open convex domain. We suppose

that [F ′(x̄0)]−1 exists for some x̄0 ∈ Ω and conditions (C1) –(C4) hold. If a0 does not satisfy any condition of (15) and a0 < 1/2,
then we take in (24) z̄0 = x̄N0 with N0 = max{N1,N2}, where N1 = 1 + [

log a0+logψ(a0)
log(2(1−a0)2)−log a0 ], N2 = 1 + [

log s−log a0
log a0−log(2(1−a0)2) ],

when these values are positive and null in another case, s is the smallest positive root of equation f (t)2g(t) = 1 with f , g
given in (14) and [t] is the integer part of the real number t, so that z̄0 satisfies the corresponding conditions given in (15).
If B(x0, R1 + R) ⊆ Ω , then the sequence {z̄n} defined in (24), which starts at x̄0, converges to a solution x̄∗ of Eq. (3) and
x̄n, z̄n, x̄∗

∈ B(x0, R1 + R).

Taking into account the last result for the initial vector considered in the previous example x̄0 = 3.5, we obtain N0 = 2.
We then apply method (24) with p = 1 and z̄0 = x̄2. Then, from z̄0, we can guarantee the convergence of the Chebyshev
method to the solution of system (3) (see Table 4), which is obtained after two iterations. In Table 6 we show the errors
‖x̄n − x̄∗

‖ when the stopping criterion ‖x̄n − x̄∗
‖ < 10−180 is used.

Finally, we show in Fig. 5 the interpolated approximation which is obtained when method (24) with p = 1 is applied to
solve Eq. (22) along with the starting vector x̄0 = 3.5.
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Remark 5.2. Notice that we can extend the previous results to the following more general integral equations of type (1):

x(s) = l(s)+

n−
j=1

λj

∫ b

a
Kj(s, t)Hj(x(t)) dt, s ∈ [a, b], λj ∈ R,

since the generalization of the results obtained for (1) is immediate.
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