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1. Introduction

Recently in [1] the authors have proven the following: let 1 < ¢ < oo and —0co0 < a < b < oo. The best constant C
(independent of a and b) for which the Poincaré inequality

1 b
f - — / F(odt

holds for all Lipschitz continuous functions f is C = 5 (1 + p)T] where p > 1and % + % = 1.In [2] the author has proved
analogous Poincaré like inequalities for natural powers of infinitesimal generators of semigroups and cosine functions.

In 1960, Opial [3] shown the following inequality: let f € C™ ([0, h]) be such that f(0) = f(h) = Oand f(t) > 0in
(0, h). Then the following inequality holds

h h h
/ o1 @l < / (0Pt
0 0

It is known that g is the best constant in the previous inequality. In [4,5], Opial like inequalities for natural powers of
infinitesimal generators of semigroups and cosine functions are given respectively.

In this paper we consider a new point of view in these problems. We work with scalar and vector-valued functions and
we prove Poincaré (in the second section) and Opial inequalities (in the third one) for convolution products. In the third and
fourth sections, we apply our results to fractional powers of infinitesimal generators of Cp-semigroups and cosine functions.
We extend some theorems which appear in [4,5,2].

We are reminded that the Lebesgue space [P ([a, b]) with the norm

,1
<Cb—a)" fllaqab
L1([a,b])

1
b »
If lzptabpy == (/ |f(f)|p) dt, felP(la,b)),
a
for p > 1, is a Banach space and the usual convolution product, %, is given by
t
Fre@ = [ fe-9ges. t20.fgel@,
0
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2. Poincaré like inequalities for convolution products

In the next definition, we fix a notation which we follow in the paper. In fact the function §,, is the «-fractional integral
(in the sense of Riemann-Liouville) of the function §.

Definition 1. Let § : [0, +00) — X (or (6(11))y>0 C X) a continuous function. Then we define

t
8y (t) == ﬁ/{) t —w* 'sdu, t>0,

fora > 0.
tozfl

The operator §, may be written by the usual convolution §, = j, * 8, where j, (t) '= @ for t > 0. The operator §, has

been widely studied for « € Nand @ > 0, see for example [6].
Now consider p, ¢ > 1such that ; + 1 = 1.

Lemma 2. Let (§(u)),>0 C X be a continuous map and o > 0. Then

ta—l+% t %
18 (E)llx =< i (/ II5(S)|If<dS> , =0,
') (pa -1+ 1P o

f0r0<a<land1<p<ﬁ;andforazland1<p<oo.

Proof. Take 0 < t,and 1 < p such that p(« — 1) > —1. By the Holder inequality, we get that

1 t
1820l < Foos /0 (£ — %1 15(5)lxds
o L :
= ey ([ o) ([ onas)
<

totflﬁLllJ t %
< : ( / ||6<s>||§ds) ,
I'a)(pla—1)+1)? 0

and we conclude the proof. O

The next result is the main one of this section. They are Poincaré type inequalities for certain convolution products. We
are reminded that

1
a v
118 (6 x Nl 0.0y = </ ||5a(f)||>”<df> :
0

Theorem 3. Let (6(u))y>0 C X be a continuous map and « > 0. Then
@ty
I 180 () llx Nl o,y = 1 I8 lIx llLao,a)
M@ =1 —a)p)? <v (11, fo-— 1) + 1)”

fora > 0,inthecase0 < o < 1with1 < p < 1 and in the case« > 1with 1 < p < 00; %—i—%: 1,andv > 1.
Proof. Take 0 < t < a,and 1 < p such that p(oe — 1) > —1 with 11) + % = 1. By Lemma 2, we get that

ta_H_llJ a %
186 () llx < 1 (/ ||a(s)||§ds> .
I'(a)(ple —1) + 1) O

For v > 1, we have that

a
I 118a (&) 1l 111 go,a =/ [160 () I dt
0

1
av(a71+ﬁ)+l

IA

u 118 l1x Nlzao.ap
TF'@)'pa—-1D+1Dr@we—1+ %) 1) x llLa(o,a)

and we conclude the proof. O
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In the case v = q in the previous theorem, we obtain the following result.

Corollary 4. Let (§(u))y>0 C X be a continuous map, q > 1and o« > % Then

o

a
118 (8 llx Neaqo.an = = I18CE) Nl Ilzaco.an
e 1
re (257 @

q—1

fora > 0.

The following result is similar to [2, Corollary 7].

Corollary 5. In the case o > % and v > 1 we get that

1.1
a“ 21ty

IA

Il 118 () lx Nl r0.a1) T I18CO) llx 112 0.a1)5
v

F@)Qa—1)2 (@ — 1) +1)
and if v = 2, then

o

1118 () Nlx Nl 2j0.ap)
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TIHI8CE) 1Ix 12 jo,ap)-
I'(@)aQa —1))2

Now, we consider the L!-case. Note that the techniques that we use are different from [2, Theorem 8].

Theorem6. If 1 <v < ﬁfor0<a < 1;and1 <v < o0if a > 1, we have that

a71+%

a
I 118e () llx 1l 0,01 = 1180 Ilx 111 f0.a7)-
') wle—-1)+1v

Proof. By Minkowski's inequality, we have that

a -l t v \1,
1182 ()l 0. = ( /0 i /0 (t — 9% 15(s)ds th>

1 / 18(s)ds]|x (fa(r - s)“<°‘—1>alt>3 ds
F(O[) 0 S

1
aot—1+;
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T IHI8CE) llx 1111 go,ap)»
o) (vl@—-1)+1)v

and we conclude the proof. 0O

In the case of v = 1 in the previous theorem, we obtain the following result.

Corollary 7. For o, a > 0, we have that

o

S (t < —
I 118 () llx it o,y = Fat 1)

1188 11x 11 o.ap)-

3. Opial type inequalities for convolution products
The next result is an Opial type inequality for vector-valued convolution products and is inspired by [4, Theorem 8].

Theorem 8. Let (6(u))y>0 C X be a continuous function and o > 0. Then

t (e 1+3 t 2
/ 18 ($)1Ix18(s)lIxds = — i g <f ||5(S)|I§<d5>
0 20N (a)(p(a — 1) + )P (p(a — 1) 4+ 2)» \JO

fort>0,1<p,p(a—1)>—1and%+%=1.
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Proof. By Lemma 2, we get

a71+%

18 (O)lx < - @)
@) (ple— 1)+ 1)7

where z(t) = fof ||5(s)||§’<ds, for t > 0. Note that (z’(t))% = ||6(t)||x, fort > 0.
Consequently, we have that

1

t 1
: / s (z(s)z/(s))%ds,
(@) (ple —1) + 1)r Jo

for t > 0. Now we apply Minkowski’s inequality to get

[ 1 . . I 7
[t ([ 20 (e
0 0 0

2
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/ 18 () lIx [18(s) lIxds <
0
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and we conclude the result. O

Corollary 9. Take o > 1. Then

/ 18e ()11 118(s) llxds < ‘ 3 (/ ||5(S)||)2<d5>
0 2 (@) (@ Qo — 1))z \Jo

fort > 0.

Now we consider the L*°-case and the norm given by

118 lIx lloo == Sulg 6@)lx.
t>
The next result is similar to [4, Theorem 10].

Theorem 10. Take o > 0. Then
a+1

t
t
/0 18 () lIx 18(s) lIxds < m” 18CE) llx oo

fort > 0.

Proof. It is straightforward to check that

o

t
18 (D) lx < m” 18 llx oo

and then
t ta+1
Sy (s 5(s)||xds < —— || ||6(¢ s
/0 18 () 1Ix13(S) Ixds < F(a+2)|| 18CE) llx oo
fort >0. O

4. Applications to fractional powers of infinitesimal generators of Co-semigroups

Take 0 < o < 1. Functions (f; ¢ )¢~0 are defined by the identity

o +ico N
fra(s) = =—— e dz, s>0,0 >0,
2mi o —ioco
ie. L(ra)@) = e %" for z € C¥, see[7, Section IX,11] (where £ is the usual Laplace transform). These functions are
sometimes called Levy stable density functions. The case « = % is the well-known backwards heat semigroup, f, 1 = ct,
' 2

2

t _
t =
c'(s) = ————e%
© =3 Jmsn

t,s>0
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see more details in [7]. Functions (f; 4 )0 satisfy f; o« (A) > 0, (foa)es0 C L'(RT), Ifielli = 1and

Jra *fs.0 = frosa, t,5>0,

with0 < o < 1[7].
A Cp-semigroup is a family (T (t)),>o of bounded linear operators from a Banach space X into itself satisfying T(0) = I,

T()T(s) =T(t+s), t,s>0,

and the map t + T(t)x is continuous for x € X. The Co-semigroup is exponentially bounded and its infinitesimal generator
(A, D(A)) is the closed operator from X into itself defined as

1
Ax = lil'l‘(l) ;(T(t)x —x), xe€D®A).
t—

The set D(A) is dense. Usually we write A = T’(0), see details in [8].
Given a strongly continuous semigroup (T (t)):>o of uniformly bounded operators on a Banach space (X, || |x), one may
define a family of operators (T*(t));>o by T*(0) = Ix and

T*(t)x .= /Oofw ()T(s)xds, x € X.
0

The family (T*(t));>o forms a strongly continuous semigroup of bounded operators, the so-called semigroup subordinated
to (T(t))r>0 wWithrespect to (f.«)¢>0. Let (A, D(A)) be the infinitesimal generator of (T (t)),>o, then the generator of (T* (t));>o
is the fractional power —(—A)® and D(A) C D((—A)%), see more details in [9,7]. Note that this operator can be expressed in
terms of (T (t))>o by

— (A= —— /oo TOX=X 4 xe D).
rl—ow) J, t1te
Forn+1> B > n,and n € N U {0} we define the operator ((—A)?, D((—A)#)) in the usual way, D((—A)#) = {x €
D(A™) | A"x € D((—A)’~™)}, and
(=Ax = (A" (=AHMx, x € D(—A)F).

Definition 11. Let (T(t));>o be a Cp-semigroup generated by (A, D(A)). Then we define

— # ‘ _ a—1 A\« N\
Ay ()x = F(oz—}-l)/(; (t—w* TWw)(—A)**du, x € D((—A)Y),

fora > 0.

The operator A, has been studied in [4] for « € N.

Theorem 12. Let (T(t))¢>0 be a Cy-semigroup generated by (A, D(A)). Then
aa—l+%+%
I 1Aa®x llx e qo.ap < 1 T IHIT @) (=A% [Ix ll9¢o,ap»
r@—1-a)p)? <v (g ta-— 1) + 1) v

t
/IIAa(S)XllxIIT(S)(—A)"‘Xllde
0

to{—1+% t i
< : . ( / ||T(s)<—A>“x||;ds>
28 @) (pla— 1)+ DF (pa — 1) + 28 \Jo

for x € D((=A)*), 1 < p, pla — 1) > —1, % + 5 =1landv > 1.

Proof. We define §(t) := T(t)(—A)*xforx € D((—A)%) and t > 0. We apply Theorems 3 and 8 to obtain the inequalities. O

Examples. (1) We consider X = L'(RT) with 1 < r < oo,

Ifllr = </ lf(t)lrdt>r . fel'®D),
0

and the shift semigroup (T (t));>0 C B(L"(R™)), given by
TOf () =f(s = DXtorr(s), s> 0.
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The infinitesimal generator of the shift semigroup is the usual derivative operator %. Taking @ = 1 in the Theorem 12, we
deduce the usual Poincaré inequality

] a
W—/f@$
aJo

forv > 1and % + % = 1, see Section 1.
(2) We consider X = L"(R") with 1 < r < oo with the usual norm given by

@t
< , 7 If leaqgo.a

Ifllr = (/ lf(y)lrdy>r . fel'(RY).
]RH

We consider the Gaussian semigroup (G%)¢~o C B(L"(R™)) given

W =—— [ ey 0t [l @), e
(4rmt)2 Jre
The infinitesimal generator of (G)-¢ is the Laplacian operator L, = Zf;l % We consider the fractional powers (—L,)*
for « > 0 studied in [6, Section 12.3] and to obtain the inequalities '
@t
1126 OF Il ey qo,an < TG (=L)*F) Ny laao.ap

rmxl—(r—mmﬁo(g+a—w)+1y

t
/ [AaOF IFIG (=L)*F) I -ds
0

ta71+% t %
= 7 i (/ IIGS((—Lr)"f)II?dS>
20 (@) (ple = 1) + DP (pla — 1) +2)7 0

bﬁeDW%mxl<nﬂa—D>—L%+%:Lmﬁsz

5. Applications to fractional powers of infinitesimal generators of cosine functions

A cosine operator function is a family (C(t))¢>o of bounded linear operators from a Banach space X into itself satisfying
C) =1,

C(t+s)+C(t—s)=2C(t)C(s), t>s>0,
and the map t — C(t)x is continuous for x € X. The associated sine operator function S : R™ — B(X) is defined by

t
S(t)x ::/ C(s)xds, xeX,t>D0.
0

The cosine function operator (and the sine operator function) is exponentially bounded. The infinitesimal generator A of
(C(t))¢=0 is the closed operator from X into itself defined as

2
Ax .= lim — (C(t)x —x), x € D(A).
t—0 t2
The set D(A) is dense. Usually we write A = C”(0).

Let (A, D(A)) be the infinitesimal generator of a uniformly bounded cosine function (C(t));~o C B(X). Then (A, D(A)) is
the infinitesimal generator of uniformly bounded Cy-semigroup (T(t));~¢ C B(X) given by

o0 752
T(t)x = / ed C(s)xds, xeX,t>0,

(4mt) 2 Jo
[8]. In fact, ((—A)%, D((—A)%*))is the infinitesimal generator of a uniformly bounded Cy-semigroup (T*(t));~0 C B(X) for
0 < a < 1, and we may define the closed operator ((—A)*, D((—A)%))for & > 0.

The following operators have been studied in [4,5] for @ € N.
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Definition 13. Let (C(t));>o be a uniformly bounded cosine function generated by (A, D(A)) and o > 0. Then we define

et — 1 ‘ 20—1 o o
To(t)x = 71_'(20[) /0 (t —u) C(u)(—A)*xdu, x € D((—A)%),

— 1 ' _ a2« _ A\ A\
My (t)x = F(2a+1)/0(t wW““C(u)(—=A)*xdu, x e D((—A)"),

fort > 0.

The next result was proved in [2, Theorem 10,12] for o € N.

Theorem 14. Let (C(t));>0 be a cosine function generated by (A, D(A)) and let o« > 0. Then

a2a71+%+%
11T ©x lIx e qo,ap < 1 T IHIC@ (=A% lIx laqo,ap
rea)(d— (1 —2a)p)? (v (% 20— 1) + 1)“

for x € D((-A)*),1 < p,pRa — 1) > —1, % + % =1,andv > 1; and

R
Il Mo (DX [x Nl2vq0,an = 1 T IHIC@O (=A% lIx laqo,an-
r'Qa + 1)(1 + 2ap)? (v (}, + Za) + 1) '

for x € D((=A)%), 1 < p, 117 + % =1landv > 1.

Proof. We take o’ = 2a, §(t) := T(t)(—A)*x for x € D((—A)¥) and t > 0 and consider 8, given in Definition 1. We apply
Theorem 3 to obtain the first inequality. Similarly we show the second inequality. O

Now we may prove similar Opial inequalities for operators 7, and M, which were proved in [5, Theorem 2] for « € N.
To show we apply Theorem 8. The proof is left to the reader.

Theorem 15. Let (C(t));>o be a cosine function generated by (A, D(A)). Then

t (o143 t z
/ 1 7e (9)xlx IC () (—A)*x|xds < — 7 3 (f IIC(s)(—A)“xII§d5>
0 20 M Qa)(pRa — 1) + 1)7 (pQRa — 1) +2)7 \Jo

for x € D((—A)¥),1 < p,pRa — 1) > —1, % + g =1,andv > 1; and

t t2(a+%) t %
/ M )X 11C(5) (—A) X s < - - ( / ||c<s>(—A)“x||§ds)
0 2I' 2a + D(pQ2a) + P (pa + 1)7 A0

for x € D((=A)%), 1 < p, % + % =1andv > 1.

Example. Let X be the Banach space of odd, 27 -periodic real functions in the space of bounded uniformly continuous
functions from R into itself: (BUC(R), || ||oo). LetA = % with D(A) given by
DA ={f X |f® eX)}.
The operator A generates a cosine function (C(t)),>o given by
1
COf(s) = 5(f($+t)+f(s—t)), SER,t >0,

see more details in [8, p. 121]. Then we may apply Theorems 14 and 15 to obtain the following inequality

t (2143 ¢ 2
/ 725Xl 0o IC(S)f *P [l oods < — : : (/ IC(s)f IIfi,odS)
0 202n— D!(p2n—1)+ )P (p2n—1) +2)r \Jo

forf € D(A"),p > 1, % + % = 1,and v > 1, see [5, Proposition 7].
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6. Concluding remarks

In this paper we have proven several Poincaré and Opial inequalities for vector-valued convolution products. We have
applied our results to orbits of Cy-semigroups and cosine functions. Differential operators in Lebesgue spaces are generators
of these families of operators. These results recover, extend and generalize previous results in the scalar and vector-valued
setting.

Possible extensions of our results may be done taking into account the function § * « (with x € LllOC (R1)) instead of the
function §,, (which we have studied in Sections 2 and 3). These future results may be applied to other families of operators,
i.e., convoluted semigroups and convoluted cosine functions (which include «-times integrated semigroups and «-times
integrated cosine functions).
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