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equation in Banach spaces from the same starting points from which Newton’s method
converges.We study the semilocal convergence of the predictor–correctormethodbyusing
themajorant principle.We illustrate themethodwith an application to a discrete problem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of approximating locally a solution x∗ of the equation

F(x) = 0, (1)

where F is a nonlinear operator defined on a non-empty open convex subset Ω of a Banach space X with values in X .
It is well-known that Newton’s method,

x0 ∈ Ω,

xn+1 = xn − [F ′(xn)]−1F(xn), n ≥ 0. (2)

is the one of the most used iterative methods to approximate the solution x∗ of (1). The quadratic convergence and the low
operational cost of (2) ensure that Newton’s method has a good computational efficiency. In particular, if (1) represents an
m-dimensional system of equations such that F(x1, x2, . . . , xm) = 0, where F : Ω ⊆ Rm

→ Rm and F ≡ (F1, F2, . . . , Fm),

then the computational efficiency of Newton’s method is ECN = 2
3

m(m2+m−4) , see [1].
On the other hand, it is known that a bounded linear operator on X , denoted by [u, v; F ], u, v ∈ Ω, u ≠ v, such that

[u, v; F ] : Ω ⊂ X −→ X and [u, v; F ](u − v) = F(u) − F(v),

is called the divided difference of the first order of F in the points u and v, see [2].
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So, if we approximate the operator F ′(x) ∈ L(X, X), where L(X, X) denotes the space of bounded linear operators from
X to X , by a divided difference of first order, we save the evaluation of F ′(x) in each step xn of Newton’smethod. In particular,
if we approximate F ′(xn) by [xn, xn−1; F ] in (2), we obtain the known secant method:

x−1, x0 ∈ Ω,

xn+1 = xn − [xn, xn−1; F ]
−1F(xn), n ≥ 0. (3)

Obviously, method (3) has the same operational cost as method (2), but has lower order of convergence, since method (3)

has only superlinear convergence 1+
√
5

2 [3], so that the computational efficiency of (3) is ECS =


1+

√
5

2

 3
m(m2+m−4) , when it

is used to solvem-dimensional systems of equations. In consequence, the computational efficiency of the secant method is
lower than that of Newton’s method.

Next, if we now approximate F ′(x) by [xn, xn+F(xn); F ] in each step xn of Newton’smethod,we obtain the knownmethod
of Steffensen:x0 ∈ Ω,

yn = xn + F(xn),
xn+1 = xn − [xn, yn; F ]

−1F(xn), n ≥ 0,
(4)

which has quadratic convergence [4] and the same computational efficiency as Newton’s method, when it is used to solve
m-dimensional systems of equations.

Although Steffensen’s method is less used than Newton’s method, its use is interesting, since Steffensen’s method does
not require the evaluation of [F ′(xn)]−1 in each step xn and has the same order of convergence as Newton’s method. Our
main aim in this paper is to improve the applicability of Steffensen’s method, which is its weakest feature, as we will see
later.

An important aspect to consider when studying the applicability of an iterative method is the set of starting points that
we can take into account, so that the iterative method converges to a solution of an equation from any point of the set, what
we call accessibility of the iterative method. We can observe this experimentally by means of the attraction basin of the
iterative method. The attraction basin of an iterative method is the set of all starting points fromwhich the iterative method
converges to a solution of an equation, once we fix some tolerance or a maximum number of iterations.

In Figs. 1 and 2, we show the attraction basins associated with the three solutions, z∗
= 1, z∗∗

= exp 2π i
3 and

z∗∗∗
= exp −2π i

3 , of the complex equation F(z) = z3 −1 = 0, where F : C −→ C, when they are approximated respectively
by Newton’s method and Steffensen’s method. To do this, we take a rectangle D ⊂ C to represent the regions such that
iterations start at every z0 ∈ D. In every case, a grid of 512 × 512 points in D is considered and these points are chosen
as z0. We use the rectangle [−2.5, 2.5] × [−2.5, 2.5] which contains the three solutions. The chosen iterative method,
starting in z0 ∈ D, can converge or diverge to any solution. In all the examples, a tolerance 10−3 and a maximum of 50
iterations are used. We do not continue if the required tolerance is not obtained with 50 iterations and we then decide that
the iterative method does not converge to any solution starting from z0. The pictures of the attraction basins are painted
using the following strategy. A colour is assigned to each attraction basin according to the root at which an iterative method
converges starting from z0. The colour is made lighter or darker according to the number of iterations needed to reach the
root with fixed precision. In particular, cyan, magenta and yellow are assigned respectively for the solutions z∗, z∗∗ and z∗∗∗.
Finally, black is assigned if the method does not converge to any solution with a fixed tolerance and a maximum number of
iterations. The graphics have been generated with Mathematica 5.1. For other strategies, Ref. [5] can be consulted and the
references therein given.

We can see in Figs. 1 and 2 the behaviour of Newton’s method and Steffensen’s method. Note that Steffensen’s method
is muchmore demanding with respect to the initial points than Newton’s method, see the black colour. This clearly justifies
that Steffensen’s method is less used than Newton’s method to approximate solutions of equations.

We can also study the accessibility of an iterative method from the convergence conditions required to the iterative
method. In addition, we see that the accessibility of Newton’s method is much better than that of Steffensen’s method.
For this, we consider the semilocal convergence results of both methods. It is well-known that the semilocal convergence
conditions are of two kinds: conditions required to the starting point x0 and conditions required to the operator F involved.

In Section 2, we present the semilocal convergence result given by Kantorovich for Newton’s method and obtain a
semilocal convergence result for Steffensen’s method. After that, from both results, we compare the accessibility of the
two methods. We anticipate that the differences observed experimentally with the attractions basins associated with the
three solutions of the complex equation F(z) = z3 − 1 = 0 are confirmed with the theoretical study.

On the other hand, in Section 3, we consider a modified Newton’s method:
x0 ∈ Ω,

xn+1 = xn − [F ′(x0)]−1F(xn), n ≥ 0. (5)

Observe that method (5) does not evaluate F ′ in a new point in each step, but F ′ is only evaluated in a point x0 ∈ Ω such
that F ′(x0) exists. Like method (3), method (5) has no quadratic convergence. However, we prove that method (5), unlike
method (3), has the same accessibility as Newton’s method.
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Fig. 1. Attraction basins of Newton’s method when it is used to approximate the three solutions of the equation F(z) = z3 − 1 = 0.
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Fig. 2. Attraction basins of Steffensen’s method when it is used to approximate the three solutions of the equation F(z) = z3 − 1 = 0.

From the above-mentioned, in Section 4, we construct a predictor–corrector iterativemethodwith the same efficiency as
Newton’smethod, that evaluates no derivatives in each step and has the same accessibility as Newton’smethod. So, from the
same starting points of the modified Newton’s method, the predictor–corrector iterative method converges with the same
rate of convergence as Steffensen’s method. In consequence, the accessibility of Steffensen’s method is improved by means
of a method with a similar efficiency to that of Newton’s method and without the requirement that the method evaluates
derivatives in each step.

Finally, in Section 5,we consider an applicationwhere a discrete solution of a nonlinear integral equation is approximated
by the predictor–corrector iterative method, but it is not by Steffensen’s method.

Throughout the paper we denote B(x, ϱ) = {y ∈ X; ∥y − x∥ ≤ ϱ} and B(x, ϱ) = {y ∈ X; ∥y − x∥ < ϱ}.

2. Newton’s method versus Steffensen’s method

To do the study set out in the introduction, we standardize the initial convergence conditions required to the starting
point and the operator involved. In this way, we guarantee the convergence of Newton’s and Steffensen’s methods and will
be able to compare their accessibilities.

Then, throughout the paper, we consider that F : Ω ⊆ X → X is a once continuously differentiable operator defined on
a non-empty open convex subset Ω of a Banach space X . Suppose that the operator Γ0 = [F ′(x0)]−1

∈ L(X, X) exists for
some x0 ∈ Ω and the following conditions:

(C1) ∥F(x0)∥ ≤ α0,
(C2) ∥[F ′(x0)]−1

∥ ≤ β0,
(C3) ∥F ′(x) − F ′(y)∥ ≤ k∥x − y∥, x, y ∈ Ω, k ∈ R+.
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Fig. 3. Domain of parameters associated with Newton’s method.

Note that if the operator F is differentiable and F ′ is continuous in the segment [x, y] = {tx + (1 − t)y; t ∈ [0, 1]}, then
the linear operator

[x, y; F ] =

 1

0
F ′(x + t(y − x)) dt

is a divided difference of first order of F in the points x and y. Moreover, if x = y, then [x, x; F ] = F ′(x). See [2] for more
detail.

2.1. Semilocal convergence of Newton’s method

First, we remember the classic result of semilocal convergence given by Kantorovich for Newton’s method under
conditions (C1)–(C3). The proof can be found in [6].

Theorem 1 (The Newton–Kantorovich Theorem). Let F : Ω ⊆ X → X be a once continuously differentiable operator defined on
a non-empty open convex domain Ω of a Banach space X. Suppose that conditions (C1)–(C3), kα0β

2
0 ≤

1
2 and B(x0, t∗) ⊆ Ω ,

where t∗ =
1−


1−2kα0β

2
0

kβ0
, are satisfied. Then Newton’s sequence, given by (2), converges to a solution x∗ of the equation F(x) = 0,

starting at x0, and xn, x∗
∈ B(x0, t∗), for all n = 0, 1, 2, . . .. Moreover, if kα0β

2
0 < 1

2 , x
∗ is the unique solution of F(x) = 0 in

B(x0, t∗∗) ∩ Ω , where t∗∗
=

1+

1−2kα0β

2
0

kβ0
, and if kα0β

2
0 =

1
2 , x

∗ is unique in B(x0, t∗).

If we want to study the accessibility of Newton’s method from the last theorem, we consider the pair of parameters
(α0, β0) given in conditions (C1) and (C2), the condition kα0β

2
0 ≤

1
2 and take into account what we call the domain of

parameters associated with Newton’s method:

(α0, β0) ∈ R2

; kα0β
2
0 ≤

1
2


. Observe that the parameter k is always a fixed

value, so that kwill not affect the domain of parameters.
In Fig. 3, we show the domain of parameters associated with Newton’s method. Note the values of β0 are represented on

the horizontal axis and the values of kα0 on the vertical axis.
Next, we establish a semilocal convergence result for Steffensen’s method, take into account the domain of parameters

associated with this method and do a comparative study of the domains of parameters associated with Newton’s and
Steffensen’s methods.

2.2. Semilocal convergence of Steffensen’s method

We establish the semilocal convergence of Steffensen’s method from a point of view similar to that given by Kantorovich
for Newton’s method. For this, we use the majorant principle (see [6]).

Suppose the following initial conditions:

(C1) ∥F(x0)∥ ≤ α̃,
(C2) ∥Γ0∥ = ∥[F ′(x0)]−1

∥ ≤ β̃ ,
(C3) ∥F ′(x) − F ′(y)∥ ≤ k∥x − y∥, x, y ∈ Ω, k ∈ R+.
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The first thing that we are going to do is to prove that the operator [x0, y0; F ]
−1

∈ L(X, X) exists for any x0, y0 ∈ Ω .
From,

∥I − Γ0[x0, y0; F ]∥ ≤ ∥Γ0∥

 1

0
∥F ′(x0 + τ(y0 − x0)) − F ′(x0)∥ dτ ≤

1
2
kα̃β̃,

if kα̃β̃ < 2, then the operator [x0, y0; F ]
−1

∈ L(X, X) exists by the Banach lemma on invertible operators and

∥[x0, y0; F ]
−1

∥ ≤
2β̃

2 − kα̃β̃
= b.

Now, we define the polynomial

q(s) =
M
2
s2 −

s
b

+ α̃, M = k

1 +

1
b


, s ∈ [0, s′], (6)

and denote the smallest positive zero of (6) by s∗ =
1−

√
1−2Mα̃b2

Mb and the largest positive zero by s∗∗
=

1+
√

1−2Mα̃b2

Mb . Next,
we define the scalar sequence {sn} bys0 = 0,

sn+1 = sn −
q(sn)
q′(sn)

, n ≥ 0. (7)

Note that (7) is an increasing sequence that converges to s∗.

Theorem 2. Let F : Ω ⊆ X → X be a once continuously differentiable operator defined on a non-empty open convex domain
Ω of a Banach space X. Suppose that conditions (C1)–(C3)

kα̃β̃ ≤ 2, Mα̃b2 ≤
1
2

(8)

and B(x0, s∗+α̃) ⊆ Ω are satisfied. Then Steffensen’s sequence, defined by (4), converges to a solution x∗ of the equation F(x) = 0,
starting at x0, and xn, yn, x∗

∈ B(x0, t∗), for all n = 0, 1, 2, . . .. Moreover, the solution x∗ is unique in B(x0, x∗∗
+ α̃)∩Ω , where

s∗∗
=

1+
√

1−2Mα̃b2

Mb .

Proof. As

∥x1 − x0∥ ≤ bα̃ = s1 − s0 < s∗ + α̃,

then x1 ∈ B(x0, s∗ + α̃) ⊆ Ω . Now observe that

F(x1) =

 1

0
(F ′(x0 + τ(x1 − x0)) − F ′(x0)) dτ(x1 − x0) +


F ′(x0) − [x0, y0; F ]


(x1 − x0),

∥F(x1)∥ ≤
k
2
∥x1 − x0∥2

+
k
2
∥F(x0)∥ ∥x1 − x0∥ ≤

k
2
(s1 − s0)2 +

k
2
q(s0)(s1 − s0) = q(s1)

and taking into account that sequence (7) is increasing and polynomial (6) is decreasing in [0, s∗], it follows that

∥y1 − x0∥ ≤ ∥x1 − x0∥ + ∥F(x1)∥ < s∗ + α̃,

so that y1 ∈ B(x0, s∗ + α̃) ⊆ Ω .
We now suppose that xj, yj−1 ∈ B(x0, s∗ + α̃) ⊆ Ω , for j = 2, 3, . . . , n.
Next, from

F(xn) =

 1

0
(F ′(xn−1 + τ(xn − xn−1)) − F ′(xn−1)) τ (xn − xn−1)

+

 1

0


F ′(xn−1) − F ′(xn−1 + τ(yn−1 − xn−1))


dτ(xn − xn−1)

and

q(sn) =

 1

0
(q′(sn−1 + τ(sn − sn−1)) − q′(sn−1)) dτ(sn − sn−1)

= M
 1

0
τ(sn − sn−1)

2 dτ =
M
2

(sn − sn−1)
2,
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it follows that ∥F(xn)∥ ≤ q(sn), for all n ∈ N, since

∥F(xn)∥ ≤

 1

0
kτ∥xn − xn−1∥

2 dτ +

 1

0
kτ∥F(xn−1)∥ ∥xn − xn−1∥ dτ

≤
k
2
(sn − sn−1)

2
+

k
2
q(sn−1)(sn − sn−1)

≤
M
2

(sn − sn−1)
2

= q(sn).

Then, as polynomial (6) is decreasing in [0, s∗], we have

∥yn − x0∥ ≤ ∥xn − x0∥ + ∥F(xn)∥ < s∗ + α̃,

so that yn ∈ B(x0, s∗ + α̃) ⊆ Ω .
After that, as

∥I − Γ0[xn, yn; F ]∥ ≤ ∥Γ0∥


k∥xn − x0∥ +

 1

0
∥F ′(xn + τ(yn − xn)) − F ′(xn)∥ dτ


≤ β̃


q′(sn) +

1
b


< 1,

then the operator [xn, yn; F ]
−1 exists and

∥[xn, yn; F ]
−1

∥ ≤
β̃

1 − ∥I − Γ0[xn, yn; F ]∥
≤ −

1
q′(sn)

.

In consequence,

∥xn+1 − xn∥ ≤ ∥[xn, yn; F ]
−1

∥ ∥F(xn)∥ ≤ −
q(sn)
q′(sn)

= sn+1 − sn,

∥xn+1 − x0∥ ≤ ∥xn+1 − xn∥ + ∥xn − x0∥ ≤ sn+1 − s0 < s∗ < s∗ + α̃,

and xn+1 ∈ B(x0, s∗ + α̃) ⊆ Ω .
Since {sn} is a Cauchy sequence, so is the sequence {xn} and then {xn} converges to a point x∗

∈ B(x0, s∗ + α̃). The fact
that x∗ is a solution of F(x) = 0 follows from the inequality ∥F(xn)∥ ≤ q(sn) and the continuity of the operator F .

Finally, we prove the uniqueness of the solution x∗ in B(x0, s∗∗
+ α̃) ∩ Ω . Suppose that z∗ is another solution of F(x) = 0

in B(x0, s∗∗
+ α̃) ∩ Ω . Let

F(z∗) − F(x∗) =

 z∗

x∗
F ′(x) dx =

 1

0
F ′(x∗

+ t(z∗
− x∗))(z∗

− x∗) dt = 0,

and the operator N =
 1
0 F ′(x∗

+ t(z∗
− x∗)) dt . From

∥Γ0N − I∥ ≤ ∥Γ0∥

 1

0
∥F ′(x∗

+ t(z∗
− x∗)) − F ′(x0)∥ dt

≤ kβ
 1

0


(1 − t)∥x∗

− x0∥ + t(∥z∗
− x0∥)


dt

<
kβ
2


2
Mb

+ α̃


< 1,

since kα̃β̃ ≤ 2, and the Banach lemma on invertible operators, it follows that the operator N is invertible, and therefore
z∗

= x∗. �

In Fig. 4, we show the domain of parameters associated with Steffensen’s method. Observe that this domain is obtained
from the convergence conditions given in (8). Note the values of β̃ are represented on the horizontal axis and the values of
kα̃ on the vertical axis.

In Fig. 5, we show the domains of parameters associated with Newton’s and Steffensen’s methods. As we can see, the
accessibility of Steffensen’s method is much less than that of Newton’s method.
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Fig. 4. Domain of parameters associated with Steffensen’s method.

Fig. 5. Comparison between the domain of parameters associated with Newton’s method (red) and Steffensen’s method (green). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

2.3. Accessibility of solution by means of Steffensen’s method

Looking for someparallelismwith the attraction basins,we can also consider the following experimental formof studying
the accessibility of an iterativemethod.We know that a given point x ∈ Ω has associated certain parameters of convergence.
If the parameters of convergence satisfy the convergence conditions, we colour the point x; otherwise, we do not. So, the
region that is finally coloured is what we call a region of accessibility of the iterative method.

In consequence, the region of accessibility of an iterative method provides the domain of starting points from which we
have guaranteed the convergence of the iterative method. In other words, the region of accessibility represents the domain
of starting points that satisfy the convergence conditions required by the iterative method that we want to apply.

In Figs. 6 and 7, we show the regions of accessibility of Newton’s and Steffensen’s methods when they are applied to
solve the complex equation F(z) = z3 − 1 = 0 once the value k = 6|1.6 + 0.2i| is fixed.

Observe the big difference that exists between the two regions of accessibility, as was the case with the attraction basins
associated with the solutions of the equation F(z) = z3 − 1 = 0. This shows once again that the accessibility of Steffensen’s
method is reduced.

3. An alternative to Steffensen’s method: a modified Newton’s method

We have seen in the introduction that Steffensen’s method has the same computational efficiency as Newton’s method
when it is used to solve m-dimensional systems of equations, but its accessibility is more reduced. In the following, we see
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Fig. 6. Region of accessibility of Newton’s method when it is applied to solve F(z) = z3 − 1 = 0 (and k = 6|1.6 + 0.2i|).

Fig. 7. Region of accessibility of Steffensen’s method when it is applied to solve F(z) = z3 − 1 = 0 (and k = 6|1.6 + 0.2i|).

that amodified Newton’s method has the same region of accessibility as Newton’s method, although it has the disadvantage
of having less efficiency than Newton’s method. This leads us to think of combining the modified Newton’s method and
Steffensen’s method in order to obtain an iterative method with a good region of accessibility and a good efficiency. So, we
construct an hybrid iterative method where the modified Newton’s method works as a predictor method and Steffensen’s
method does as a corrector method.

3.1. Semilocal convergence of the modified Newton’s method

We start seeing that the modified Newton’s method has the same region of accessibility as Newton’s method. Then, we
establish the conditions for the operator F and the starting point x0 under which the modified Newton’s method converges
to a solution of the equation F(x) = 0.

We define the polynomial

p(t) =
k
2
t2 −

t
β0

+ α0, t ∈ [t0, t ′], (9)

and denote the smallest and the largest positive zeros of (9) by t∗ and t∗∗ respectively. We also define the scalar function

h(t) = t + β0p(t) (10)
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Fig. 8. Domain of parameters associated with the modified Newton’s method.

and the scalar sequence
t0 = 0,
tn+1 = h(tn) = tn + β0p(tn), n ≥ 0. (11)

Note that (11) is an increasing sequence that converges to t∗.

Theorem 3. Let F : Ω ⊆ X → X be a once continuously differentiable operator defined on a non-empty open convex domain
Ω of a Banach space X. Suppose that conditions (C1)–(C3),

kα0β
2
0 ≤ 1/2 (12)

and B(x0, t∗) ⊆ Ω , where t∗ =
1−


1−2kα0β

2
0

kβ0
, are satisfied. Then the modified Newton’s sequence, given by (5), converges to a

solution x∗ of the equation F(x) = 0, starting at x0, and xn, x∗
∈ B(x0, t∗), for all n = 0, 1, 2, . . .. Moreover, if kα0β

2
0 < 1

2 , x
∗ is

the unique solution of F(x) = 0 in B(x0, t∗∗) ∩ Ω , where t∗∗
=

1+

1−2kα0β

2
0

kβ0
, and if kα0β

2
0 =

1
2 , x

∗ is unique in B(x0, t∗).

The proof of the last theorem is similar to that of Theorem 1, the Newton–Kantorovich theorem. We then omit it and
suggest to the reader to see [6].

In Fig. 8, we show the domain of parameters associated with the modified Newton’s method, which is obtained from the
convergence condition given in (12). Note the values of β0 are represented on the horizontal axis and the values of kα0 on
the vertical axis. Observe that the domain of parameters associated with the modified Newton’s method is the same as that
of Newton’s method.

In the next theorem, we give some a priori error estimates for the modified Newton’s method, that are obtained by
Ostrowski’s technique, see [7]. This technique allows bounding the error made by (5) based on the zeros of polynomial (9).
Moreover, this result allows us to study the semilocal convergence of the iterative predictor–corrector method.

Theorem 4. Under the conditions of Theorem 3, we consider polynomial (9) and the two positive zeros t∗ and t∗∗ of (9) such
that t∗ ≤ t∗∗. Then, we obtain the following error estimates for method (5):

(i) If t∗ < t∗∗, then

((t∗∗
− t∗)t∗)n+1

(t∗∗)n+1 − (t∗)n+1
< t∗ − tn <

t∗(t∗∗
− t∗)(t∗kβ0)

n

t∗∗ − t∗(t∗kβ0)n
.

(ii) If t∗ = t∗∗, then
1
2

n

t∗ ≤ t∗ − tn ≤ t∗.

Proof. First, we prove item (i). Since t∗ < t∗∗, then we can write

p(t) =
k
2
(t∗ − t)(t∗∗

− t).
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If we denote an = t∗ − tn and bn = t∗∗
− tn for all n ≥ 0, then p(tn) =

k
2anbn. As p

′(t0) = −
1
β0

, then

an+1 = t∗ − tn+1 = an −
k
2
β0anbn

bn+1 = t∗∗
− tn+1 = bn −

k
2
β0anbn.

Moreover,

an+1

bn+1
=

an
bn

2 − kβ0(t∗∗
− tn)

2 − kβ0(t∗ − tn)
,

and, since the function

Q (t) =
2 − kβ0(t∗∗

− t)
2 − kβ0(t∗ − t)

is strictly increasing, it follows

t∗

t∗∗
= Q (t0) ≤ Q (t) ≤ Q (t∗) = kβ0t∗.

In consequence,

an+1

bn+1
=

an
bn

Q (tn) ≤
a0
b0

Q (t∗)n+1
=

t∗

t∗∗
(kβ0t∗)n+1,

an+1

bn+1
=

an
bn

Q (tn) ≥
a0
b0

Q (t0)n+1
=


t∗

t∗∗

n+2

.

Finally, from bn+1 = (t∗∗
− t∗) + an+1, we have

(t∗∗
− t∗)(t∗)n+2

(t∗∗)n+2 − (t∗)n+2
< t∗ − tn+1 <

t∗(t∗∗
− t∗)(t∗kβ0)

n+1

t∗∗ − t∗(t∗kβ0)n+1
.

Second, we prove (ii). Since t∗ = t∗∗, then an = bn, p(tn) =
k
2a

2
n and

an+1

an
= 1 −

k
2
β0an.

Taking now into account that the function

R(t) = 1 −
k
2
β0(t∗ − t)

is strictly increasing, it follows that

1
2

= R(t0) ≤ R(t) ≤ R(t∗) = 1.

In consequence, from an+1 = R(tn)an, we have

an+1 ≤ a0 ≤ t∗ − t0 = t∗,

an+1 ≥


1
2

n+1

a0 =


1
2

n+1

t∗

and 
1
2

n+1

t∗ ≤ t∗ − tn+1 ≤ t∗.

This completes the proof. �

From the last theorem, we notice that the modified Newton’s method has order of convergence at least one, since
t∗ − tn ≤ t∗(kβ0t∗)n if t∗ < t∗∗,
t∗ − tn ≤ t∗ if t∗ = t∗∗.
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Fig. 9. Comparison between the domain of parameters associated with the modified Newton’s method (red) and Steffensen’s method (green). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Comparison between the regions of accessibility of the modified Newton’s method (red) and Steffensen’s method (green) when they are applied
to solve F(z) = z3 − 1 = 0 (and k = 6|1.6 + 0.2i|). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

3.2. Accessibility of solution by means of the modified Newton’s method

Wecan see in Fig. 9 the same fact that happenswith the domains of parameters associatedwithNewton’s and Steffensen’s
methods, the big difference that exists between the domains of parameters associates with the modified Newton’s method
and Steffensen’s method.

In Fig. 10, we fixed the value k = 6|1.6+0.2i|, andwe show the regions of accessibility of themodified Newton’smethod
and Steffensen’s method when they are applied to solve the complex equation F(z) = z3 − 1 = 0. Observe again the big
difference between both regions, that indicates that the domain of starting points for themodifiedNewton’smethod ismuch
bigger than that of Steffensen’s method.

4. An efficient iterative predictor–corrector method

Themain aim of this paper is to construct a modification of Steffensen’s method with a better region of accessibility than
that of Steffensen’s method. For this, we rely on a predictor method.

As we can observe in Fig. 9, the domain of parameters associated with Steffensen’s method is included in that of the
modified Newton’s method. Therefore, the convergence conditions required to Steffensen’s method, that guarantees its
semilocal convergence, are more restrictive than those required to the modified Newton’s method.
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Our immediate aim is, for a initial pair (α0, β0) that satisfies condition (12), namely, this pair is within the domain of
parameters associated with the modified Newton’s method, to obtain a pair (α̃, β̃) that satisfies the two conditions given
in (8), after making a certain number N0 of iterations with the modified Newton’s method, so that we can guarantee the
semilocal convergence of Steffensen’s method when it starts in the iteration N0 of the modified Newton’s method. So, we
can consider the pair (αN0 , βN0), obtained from the modified Newton’s method, as the initial pair (α̃, β̃) for Steffensen’s
method.

In other words, we construct a simple modification of Steffensen’s method, so that this method is convergent from the
same starting points from which the modified Newton’s method is. We then consider the following predictor–corrector
iterative method:


x0 ∈ Ω,

xj+1 = xj − [F(x0)]−1F(xj), j = 0, 1, . . . ,N0,z0 = xN0 ,
yn = zn + F(zn),
zn+1 = zn − [zn, yn; F ]

−1F(zn), n ≥ 0,

(13)

where x0 satisfies condition (12), while z0 = xN0 satisfies the two conditions given in (8). For method (13) is convergent, we
must do the following:

1. Find x0, so that predictor method (5) is convergent.
2. From the convergence of predictor method (5), calculate the value N0 such that xN0 is a good starting point from which

the convergence of corrector method (4) is guaranteed.

In short, we use the modified Newton’s method (5) for a finite number of steps N0, provided that the starting point x0
satisfies condition (12), until zN0 = x0 satisfy the two conditions given in (8), and we then use Steffensen’s method (4)
instead of the modified Newton’s method (5). The key to the problem is therefore to guarantee the existence of N0.

Now,we study the semilocal convergence ofmethod (13). Frompredictormethod (5)we consider the following situation.
Given the initial approximation x0, we consider the initial pair (α0, β0) which is defined from conditions (C1) and (C2):

∥F(x0)∥ ≤ α0, ∥[F ′(x0)]−1
∥ ≤ β0.

According to (12) and Theorem 3, the sequence {xn}, defined by method (5), is convergent if

kα0β
2
0 ≤

1
2
.

From the next approximations xn obtained with method (5), we define the pairs (αn, βn) from the corresponding conditions
(C1) and (C2), so that

∥F(xn)∥ ≤ p(tn) = αn,
k
2
anbn = αn,

k2

2
anbn = kαn,

where an = t∗ − tn and bn = t∗∗
− tn. From Theorem 4 we have

kαn = kp(tn) <
kt∗t∗∗(t∗kβ0)

n

β0(t∗∗ − t∗(t∗kβ0)n)
(1 − t∗kβ0), (14)

where t∗ and t∗∗ (t∗ ≤ t∗∗) are the two real positive zeros of polynomial (9).
Now, we write βn based on β0, consider

∥I − Γ0F ′(xn)∥ ≤ ∥Γ0∥ ∥F ′(x0) − F ′(xn)∥ ≤ kβ0t∗

and obtain

∥Γn∥ ≤ β̃, where β̃ = βn =
β0

1 − kβ0t∗
.

So, we obtain the pair (αn, β̃) with β̃ = βn for some n ∈ N.
After that, the pair (αn, β̃) must satisfy the two corresponding convergence conditions of Steffensen’s method given in

(8), namely kα̃β̃ ≤ 2 and Mα̃b2 ≤
1
2 , where α̃ = αn, b =

2β̃
2−kα̃β̃

and M = k

1 +

1
b


. Thus, the pair (αn, β̃), obtained

previously from predictor method (5), must satisfy the following:

kαnβ̃ ≤ 2 and Mαnb2 ≤
1
2
.

Moreover, the second inequality is equivalent to

5β̃2(kαn)
2
− 4β̃(3 + 2β̃)(kαn) + 4 ≥ 0,
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which is satisfied if

kαn ≤ P, where P =
2(3 + 2β̃)β̃ − 4


β̃2 + 3β̃ + 1

5β̃2
.

Taking into account the two inequalities, we infer that

kαn ≤ min

2

β̃
, P


=

P si β̃ ≤ 2.5303 . . .
2

β̃
si β̃ ≥ 2.5303 . . . .

(15)

The following is then to find N0, so that this value indicates when hybrid method (13) jumps from the predictor method
to the corrector method.

Notice that the sequence {αn} is decreasing. Then, we look for the first value of n in (14) that satisfied (15).
First, if β̃ ≤ 2.5303 . . . , then

kαn <
kt∗t∗∗(kβ0)

nt∗

β0(t∗∗ − t∗(t∗kβ0)n)
(1 − kβ0t∗) < P.

Now taking logarithms, we find a value N0 ∈ N such that the pair (αN0 , βN0) satisfies the two convergence conditions of the
corrector method and given in (8). So,

N0 ≥

log


Pβ0t∗∗

t∗(Pβ0+kt∗∗(1−t∗kβ0))


log(t∗kβ0)

,

so that

N0 = 1 +

 log


Pβ0t∗∗

t∗(Pβ0+kt∗∗(1−kβ0t∗))


log(kβ0t∗)

 ,

where [t] denotes the integer part of any real number t .
Second, if β̃ ≥ 2.5303 . . . , then

kαn <
kt∗t∗∗(t∗kβ0)

n

β0(t∗∗ − t∗(t∗kβ0)n)
(1 − t∗kβ0) <

2

β̃

and, following the same procedure as in the previous case, we have

N0 = 1 +

 log


2β0t∗∗

t∗(2β0+kβ̃t∗∗(1−kβ0t∗))


log(kβ0t∗)

 .

Finally, once the value of N0 is a priori estimated, we summarize all the above in the following result, which guarantees
the semilocal convergence of hybrid method (13).

Theorem 5. Let X be a Banach spaces, F : Ω ⊆ X → X be a once continuously differentiable operator defined on a non-empty
open convex domain Ω and x0 ∈ Ω . We suppose that the operator Γ0 = [F ′(x0)]−1

∈ L(X, X) exists, conditions (C1)–(C3) are
satisfied and B(x0, t∗) ⊆ Ω , where t∗ is the smallest positive zero of polynomial (9). If kα0β

2
0 ≤

1
2 , then the sequence {xn}, given

by method (13), is well defined and converges to a solution x∗ of the equation F(x) = 0 with

N0 =


1 +

 log


Pβ0t∗∗

t∗(Pβ0+kt∗∗(1−kβ0t∗))


log(kβ0t∗)

 if β̃ ≤ 2.5303 . . . ,

1 +

 log


2β0t∗∗

t∗(2β0+kβ̃t∗∗(1−kβ0t∗))


log(kβ0t∗)

 if β̃ ≥ 2.5303 . . . ,

(16)

and β̃ =
β0

1−kβ0t∗
.
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Table 1
Numerical solution x∗ of (18).

i x∗

i i x∗

i i x∗

i i x∗

i

1 1.012239 . . . 3 1.118079 . . . 5 1.159804 . . . 7 1.058428 . . .

2 1.058428 . . . 4 1.159804 . . . 6 1.118079 . . . 8 1.012239 . . .

5. Application

With this application we show that we cannot apply Steffensen’s method in principle to approximate a solution of the
discrete problem corresponding to a nonlinear integral equation of Hammerstein type, since the convergence conditions
of Theorem 2 are not satisfied. However, we can approximate such a solution by Steffensen’s method from a certain
approximation N0 which is estimated by Theorem 5 and obtained before by the modified Newton’s method.

It seems that the application of Steffensen’s method is more restrictive than the modified Newton’s method. Let us look
through the following example that this is true.

Consider the following nonlinear integral equation of mixed Hammerstein type

x(s) = 1 +

 1

0
G(s, t) x(t)2 dt, s ∈ [0, 1], (17)

where x ∈ C[0, 1], t ∈ [0, 1] and the kernel G is G(s, t) =


(1 − s)t, t ≤ s,
s(1 − t), s ≤ t.

To solve (17), we transform it into a finite dimensional problem by using a process of discretization. For this, we
approximate the integral that appears in (17) by the Gauss–Legendre formula 1

0
h(t) dt ≃

8
i=1

wih(ti),

where the nodes ti and the weights wi are known.
If we denote the approximation of x(ti) by xi (i = 1, 2, . . . , 8), then (17) is equivalent to the following nonlinear system

of equations

xi = 1 +

8
j=1

aij x2j , j = 1, 2, . . . , 8, (18)

where

aij =


wjtj(1 − ti) if j ≤ i,
wjti(1 − tj) if j > i.

System (18) is now written as

F(x) ≡ x − 1 − Avx = 0, F : R8
−→ R8,

where

x = (x1, x2, . . . , x8)T , 1 = (1, 1, . . . , 1)T , A = (aij)8i,j=1, vx = (x21, x
2
2, . . . , x

2
8)

T .

Moreover, F ′(x) = I − 2AD(x), where D(x) = diag{x1, x2, . . . , x8}.
Choosing as starting point x0 = (1.7, 1.7, . . . , 1.7)T and the max-norm, we obtain α0 = 0.6713 . . . , β0 = 1.6549 . . . ,

k = 0.2471 . . . , kα0β
2
0 = 0.4543 . . . < 1

2 . In consequence, we can apply the modified Newton’s method to solve system
(18), since condition (12) is satisfied, but we cannot apply Steffensen’s method, since the second condition of (8) is not
satisfied:

Mα̃b2 = 0.9286 . . . >
1
2
,

where α̃ = α0 = 0.6713 . . . , b = 1.9182 . . . andM = 0.3759 . . . .
As the modified Newton’s method is convergent by Theorem 3, then we use it to approximate the numerical solution

x∗
= (x∗

1, x
∗

2, . . . , x
∗

8)
T of (18), which is shown in Table 1, after 23 iterations and using the stopping criterion ∥xn − xn−1∥ <

10−32. In Table 2 we show the errors ∥xn − x∗
∥ obtained with the same stopping criterion.

On the other hand, we apply predictor–corrector iterative method (13) to approximate the solution of (18) given in
Table 1. For this, we only need to calculate the valueN0 which is fixed by Theorem5 taking into account that β̃ = 5.4777 . . . .
According to formula (16), we obtain N0 = 1, so that after one iteration by the modified Newton’s method, we apply
Steffensen’s method and approximate the solution given in Table 1 after four iterations more. In Table 3 we show the errors
∥xn − x∗

∥ when the stopping criterion ∥xn − xn−1∥ < 10−32 is used.
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Table 2
Absolute errors for method (5).

i ∥xn − x∗
∥ i ∥xn − x∗

∥ i ∥xn − x∗
∥

0 0.687760 . . . 8 3.814614 . . . × 10−7 16 3.956494 . . . × 10−13

1 0.061560 . . . 9 6.814479 . . . × 10−8 17 7.067778 . . . × 10−14

2 0.011811 . . . 10 1.217348 . . . × 10−8 18 1.262849 . . . × 10−14

3 0.002093 . . . 11 2.174688 . . . × 10−9 19 2.253264 . . . × 10−15

4 0.000374 . . . 12 3.884895 . . . × 10−10 20 4.052338 . . . × 10−16

5 0.000066 . . . 13 6.940031 . . . × 10−11 21 6.968408 . . . × 10−17

6 0.000011 . . . 14 1.239777 . . . × 10−11 22 1.515594 . . . × 10−17

7 2.135342 . . .×10−6 15 2.214753 . . . × 10−12

Table 3
Absolute errors formethod (13).

n ∥xn − x∗
∥

0 0.687760 . . .

1 0.061560 . . .

2 0.000827 . . .

3 1.458275 . . . × 10−7

4 4.498237 . . . × 10−15

Acknowledgement

This work was supported in part by the project MTM2011-28636-C02-01 of the Spanish Ministry of Science and
Innovation.

References

[1] J.A. Ezquerro, M.A. Hernández, N. Romero, Solving nonlinear integral equations of Fredholm type with high order iterative methods, J. Comput. Appl.
Math. 236 (6) (2011) 1449–1463.

[2] F.A. Potra, V. Pták, Nondiscrete Induction and Iterative Processes, Pitman, New York, 1984.
[3] M.A. Hernández,M.J. Rubio, J.A. Ezquerro, Secant-likemethods for solving nonlinear integral equations of the Hammerstein type, J. Comput. Appl. Math.

115 (2000) 245–254.
[4] I.K. Argyros, A new convergence theorem for Steffensen’s method on Banach spaces and applications, Southwest J. Pure Appl. Math. 1 (1997) 23–29.
[5] J.L. Varona, Graphic and numerical comparison between iterative methods, Math. Intelligencer 24 (2002) 37–46.
[6] L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
[7] A.M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, 1966.


	On Steffensen's method on Banach spaces
	Introduction
	Newton's method versus Steffensen's method
	Semilocal convergence of Newton's method
	Semilocal convergence of Steffensen's method
	Accessibility of solution by means of Steffensen's method

	An alternative to Steffensen's method: a modified Newton's method
	Semilocal convergence of the modified Newton's method
	Accessibility of solution by means of the modified Newton's method

	An efficient iterative predictor--corrector method
	Application
	Acknowledgement
	References


