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Abstract

Let {zn} be a sequence in the unit disk {z ∈ C : |z| < 1}. It is known that
there exists a unique positive Borel measure on the unit circle such that their
orthogonal polynomials {Φn} satisfy

Φn(zn) = 0

for each n = 1, 2, . . . Characteristics of the orthogonality measure and asymp-
totic properties of the orthogonal polynomials are given in terms of the asymp-
totic behavior of the sequence {zn}. Particular attention is paid to periodic
sequences of zeros {zn} with period two and three.
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1. Introduction

In the last decade several papers on zeros of orthogonal polynomials on the
unit circle (OPUC) have been published. For instance, we have [12], [13], [22],
[23] or [24]. These articles joint to [5], [14], [15], [16], [25] and the seminal books
of Simon, [20] and [21], bring us closer to a better understanding of the properties
of the zeros of OPUC. However, there are several open questions about the zeros
of OPUC, see for example pp. 97–98 of [20]. In [12] and [13] the properties of the
zeros are studied in terms of analytic properties of the orthogonality measure,
whereas in [22], [23] and [24] the information about the zeros is given in terms
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of Verblunsky coefficients. Other interesting problems deal with the description
of properties of the zeros of OPUC in terms of other parameters which also
characterize OPUC. We will study some of these questions in this paper.

We need to introduce some notation to state our results. Let µ be a nontrivial
probability measure on [0, 2π) and let ϕn(z) = ϕn(z, µ) = κnz

n + . . . , n =
0, 1, . . . be their orthonormal polynomials with positive leading coefficient. So,
κn > 0 and

〈ϕn, ϕm〉 =
1

2π

∫
ϕn(eiθ)ϕm(eiθ) dµ(θ) =

{
1, n = m,
0, n 6= m.

We denote by Φn(z) =
ϕn(z)

κn
the corresponding monic orthogonal polyno-

mials. It is well known that they satisfy the Szegő recurrence

Φn+1(z) = zΦn(z) + Φn+1(0)Φ∗n(z), n > 0, Φ0(z) = 1, (1)

Φ∗n+1(z) = Φ∗n(z) + Φn+1(0)zΦn(z), n ≥ 0, (2)

where we use the standard notation Φ∗n(z) = znΦn( 1
z ). The parameters Φn(0)

are called Verblunsky coefficients (also reflection coefficients or Schur parame-
ters).

All the zeros of Φn lie in the unit disk D def
= {z ∈ C : |z| < 1} and, therefore,

Φn+1(0) ∈ D. Moreover, Verblunsky’s theorem (see Theorem 1.7.11, p. 97, of
[20]) states that given a sequence {αn}n≥1 in D there exists a unique probability
measure µ on [0, 2π) such that Φn(0, µ) = αn, n = 1, 2, . . .

If {zn} is a sequence in D with the property that

Φn(zn) = 0, n = 1, 2, . . . , (3)

then (1) yields

Φn+1(0) = −zn+1
Φn(zn+1)

Φ∗n(zn+1)
(4)

and Verblunsky’s theorem states the existence of a unique orthogonality mea-
sure. So, the OPUC are uniquely determined by a sequence of their zeros, i.e.,
by a sequence {zn} such that (3) holds (see [2]).

In this paper we obtain properties of OPUC in terms of properties of a
sequence of their zeros. Our first result is about OPUC determined by a periodic
sequence {zn}.

Theorem 1. Suppose that, for n large enough, there exists a common zero for
Φn and Φn−3. Let ζj (j = 1, 2, 3) be such common zeros, i.e.,

Φn(ζj) = 0, n = j mod 3, n ≥ n0,

and let r
def
= max{|ζj | : j = 1, 2, 3}. We claim:

(i) If r ≤ −1+
√

5
2 , then lim

n
Φn(0) = 0.
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(ii) If, in addition, r < −1+
√

5
2 , then lim sup

n
|Φn(0)|1/n ≤ r2

1− r
< 1.

The numerical experiments show that if the three common zeros have mod-

ulus greater than −1+
√

5
2 , then the zeros are uniformly distributed on three arcs

of the unit circle like those corresponding to a measure supported on three arcs,
see Figures 3 and 4. If the sequence {zn} is periodic with period two, then the
Verblunsky coefficients are an asymptotic periodic sequence as states Lemma 3
below. This case has been studied in [5] and [23].

A completely different situation appears when the sequence {zn} is dense
in D and so the zeros of the OPUC are also dense in D. This last case was
studied by Khrushchev in [11]. He showed that there exist OPUC with zeros
dense in D with orthogonality measure in many classes of measures, including
measures in the Szegő class (log µ′ ∈ L1) or measures such that the series of
their Verblunsky coefficients is absolutely convergent (see also Example 1.7.18,
p. 98, of [20]).

Our next theorem states that the zeros can not “approach the unit circle too
fast” if and only if the orthogonality measure lies in the Nevai class. From now
on {zn,j}nj=1 will denote the zeros of Φn(z).

Theorem 2. The following statements are equivalent:

(a) lim
n

Φn(0) = 0.

(b) lim
n

n∑
j=1

(1− |zn,j |) =∞.

The proof of this theorem is included in Section 5. This section also contains
a study of the rate with which the zeros of OPUC for the Chebyshev weight on
an arc of the unit circle approach to ∂(D). In Section 2 we make some remarks
about properties of OPUC in terms of the sequence of zeros given. In Section 3
we study orthogonal polynomials obtained from a two-periodic sequence {zn}.
The proof of Theorem 1 is contained in Section 4. Finally, we include several
figures displaying the zeros of OPUC for some different sequences {zn}.

2. Some estimates for the radius of the Mhaskar-Saff circle

It was proved in [14] that if limn

∑n
j=1 Φj(0) = 0 and Λ is an infinite subset

of natural numbers such that

lim
n∈Λ
|Φn(0)|1/n = lim sup

n
|Φn(0)|1/n def

= L,

then
lim
n∈Λ

νΦn = mL,

where, as usual, we put νΦn
def
= 1

n

∑n
j=1 δ{zn,j} and mL is the Lebesgue measure

on the circle of radius L (the Mhaskar-Saff circle). Notice that throughout this
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paper the limit of a sequence of measures is always taken in the weak-* topology.
In this section we give some estimates of L in terms of the behavior of a sequence
of zeros of the OPUC.

Let {zn} be a sequence in D and let {Φn} be the unique sequence of monic
orthogonal polynomials defined by (3). Then

Φn+1(0) = −zn+1
Φn(zn+1)

Φ∗n(zn+1)
= −zn+1

zn+1 − zn
1− znzn+1

∏
j:zn,j 6=zn

zn+1 − zn,j
1− zn,jzn+1

.

Lemma 1. (i) If lim
n

zn+1 − zn
1− znzn+1

= 0, then lim
n

Φn(0) = 0. This occurs, in

particular, if lim
n
zn = z0 with |z0| < 1.

(ii) In this last case, putting wn = zn − z0, we have

lim sup
n
|Φn(0)|1/n ≤ lim sup

n
|wn|1/n. (5)

(iii) Let Λ denote any infinite subset of N such that there exists lim
n∈Λ

νΦn
def
= ν.

If lim
n
zn = z0 and ν({z0}) = 0, then

lim sup
n∈Λ

|Φn+1(0)|1/(n+1) ≤ exp

∫
log

∣∣∣∣ z0 − ζ
1− ζz0

∣∣∣∣ dν. (6)

Proof. We only check (6) because the other statements are trivial since
∣∣∣ zn+1−zn,j

1−zn,jzn+1

∣∣∣ <
1. Let δ > 0 and L = lim sup

n∈Λ
|Φn+1(0)|1/(n+1). Then

Φn+1(0) = −zn+1

∏
j:|zn,j−z0|<δ

zn+1 − zn,j
1− zn,jzn+1

∏
j:|zn,j−z0|≥δ

zn+1 − zn,j
1− zn,jzn+1

⇒ 1

n+ 1
log |Φn+1(0)| ≤ 1

n+ 1

∑
j:|zn,j−z0|≥δ

log

∣∣∣∣ zn+1 − zn,j
1− zn,jzn+1

∣∣∣∣
=

n

n+ 1

∫
|ζ−z0|≥δ

log

∣∣∣∣ zn+1 − ζ
1− ζzn+1

∣∣∣∣ dνΦn(ζ).

Since

lim
n

log

∣∣∣∣ zn+1 − ζ
1− ζzn+1

∣∣∣∣ = log

∣∣∣∣ z0 − ζ
1− ζz0

∣∣∣∣
uniformly on supp(ν) ∩ {ζ : |ζ − z0| ≥ δ} and lim

n∈Λ
νΦn = ν, we deduce that

logL ≤
∫
|ζ−z0|≥δ

log

∣∣∣∣ z0 − ζ
1− ζz0

∣∣∣∣ dν(ζ).

Because δ > 0 is arbitrary,
∣∣∣ z0−ζ

1−ζz0

∣∣∣ ≤ 1 for ζ ∈ D and ν({z0}) = 0, from the

above inequality the proof is easily completed.
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Remarks. 1. From (5), lim sup
n
|wn|1/n is an upper bound of the radius L of

the circle where the zeros of the polynomials of degree n ∈ Λ are uniformly
distributed.

2. Simon proved in [22] that if lim sup
n
|Φn(0)|1/n < 1, then the rate of conver-

gence of the zeros to the Nevai-Totik points2 is geometric. So, according
to (5), this geometric rate is smaller than the radius of the Mhaskar-Saff
circle.

3. If L > 0 and |z0| ≤ L, then∫
log

∣∣∣∣ z0 − ζ
1− ζz0

∣∣∣∣ dmL(ζ) = logL. (7)

Thus, (6) and (7) imply that lim sup
n∈Λ

|Φn+1(0)|1/(n+1) is less than or equal

to the infimum of s > 0 such that ms is the limit of any convergent sub-
sequence of {νΦn}n∈Λ and

{z : |z| ≤ s} ∩
{
z : lim

n
dist (z, {ζ : Φn(ζ) = 0}) = 0

}
6= ∅.

Here dist (z, {ζ : Φn(ζ) = 0}) def
= inf

ζ
{|z − ζ| : Φn(ζ) = 0} and ms denotes

the Lebesgue measure on the circle {z : |z| = s}.

Since Φn+1(0) = (−1)n+1
∏
j zn+1,j , (4) implies

Φn+1(0)n =
∏
j

Φn(zn+1,j)

Φ∗n(zn+1,j)

and we get

|Φn+1(0)|1/(n+1) = exp

∫∫
log

∣∣∣∣ z − w1− wz

∣∣∣∣ dνΦn+1
(z)dνΦn(w).

So, in addition to (6), we claim

Lemma 2. Let Λ be any infinite subset of N. If there exist lim
n∈Λ

νΦn
def
= ν1 and

lim
n∈Λ

νΦn+1

def
= ν2, then

lim sup
n∈Λ

|Φn+1(0)|1/(n+1) ≤ exp

∫∫
log

∣∣∣∣ z − w1− wz

∣∣∣∣ dν2(z)dν1(w). (8)

2The Nevai-Totik points are all the solutions of D−1
int(1/z) = 0 in {z : L < |z| < 1},

where Dint is the analytic extension of the interior Szegő function (see (17) below) and
L = lim supn |Φn(0)|1/n.
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Proof. The function f(z, w) = log

∣∣∣∣ z − w1− wz

∣∣∣∣ is non-positive upper semicontin-

uous in D × D. So, there is a monotone decreasing sequence of non-positive
continuous functions {gm} such that f(z, w) = lim

m
gm(z, w) pointwise in D×D

(see Theorem 1.1, p.1, in [17]). Thus,

|Φn+1(0)|1/(n+1) = exp

∫∫
log

∣∣∣∣ z − w1− wz

∣∣∣∣ dνΦn+1
(z)dνΦn(w)

≤ exp

∫∫
gm(z, w)dνΦn+1

(z)dνΦn(w)

and since lim
n

(νΦn+1
× νΦn) = ν2 × ν1, the conclusion of the lemma follows

immediately from the monotone convergence theorem.

Remark. Let lim supn∈Λ |Φn+1(0)|1/(n+1) = r > 0 and ν1 = ν2 = mr. Then
(8) becomes an equality as a consequence of (7).

3. Two-periodic case

Lemma 3. Suppose that the sequence {zn} is periodic with period two, i.e.,

zn =

{
α1, n odd,
α2, n even,

(9)

with {α1, α2} ⊂ D. Let {Φn} be the sequence of monic orthogonal polynomials
on the unit circle such that (3) holds. Then the Verblunsky coefficients are

Φ1(0) = −α1, Φ2(0) = −α2 Cα1,α2 (10)

and for all n ≥ 3,

Φn(0) = (−1)n−1Cα1,α2 ×

{
α

(n−1)/2
1 α

(n−1)/2
2 , n odd,

α
−1+n/2
1 α

n/2
2 , n even,

(11)

where Cα1,α2
=

α2 − α1

1− α1α2
.

Proof. Iterating (1) and (2), we can write

Φn+1(z) = z
(
z + Φn(0)Φn+1(0)

)
Φn−1(z)

+ (Φn+1(0) + zΦn(0)) Φ∗n−1(z), n ≥ 2. (12)

Thus, if Φn+1 and Φn−1 have a common zero, ζ, setting z = ζ in (12) we get

Φn+1(0) = −ζΦn(0), n ≥ 2,

which proves the lemma.
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Remark. If α1 = α2 = α, then Φn(z) = zn−1(z − α) for all n ≥ 1 and
Φn(0) = 0 for all n ≥ 2. If α1α2 = 0, then Φn(0) = 0 for all n ≥ 3. Both cases
are trivial, this is why we do not consider them through this section.

Ortogonal polynomials on the unit circle were studied in [5] and [23] under
the conditions

lim
n

Φn(0) = 0; ∃ lim
n

n=jmod k

Φn+1(0)

Φn(0)
j = 1, 2, . . . , k. (13)

More precisely, the Verblunsky coefficients considered in [23] satisfy the property

Φn(0) =

l∑
j=1

Cjb
n
j +O(λb)n, n→∞, (14)

where λ ∈ (0, 1), 0 6∈ {Cj}, {bj} are all distinct and |bj | = |b| < 1, j = 1, . . . , l.
If {zn} satisfies (9), then (14) holds for l = 2 with

C1 = −Cα1,α2

2
(

1

α1
− 1
√
α1α2

), C2 = −Cα1,α2

2
(

1

α1
+

1
√
α1α2

) (15)

and
b1 =

√
α1α2, b2 = −

√
α1α2. (16)

Therefore, all the results proved in [23] also hold for OPUC obtained from a
two-periodic sequence {zn}. Thus, according to Theorem 2.2 there, we state
the following result.

Corollary 3. If {zn} is defined by (9), then

lim
k

Φ2k(z)

αk1α
k
2Cα1,α2

=
D(0)D(z)−1

(α1α2 − z2)
(z − α2),

lim
k

Φ2k+1(z)

αk1α
k
2Cα1,α2

=
α2D(0)D(z)−1

(α1α2 − z2)
(α1 − z)

uniformly on each compact subset of {z : |z| <
√
|α1α2|}, where

D(z) = D(z, µ)
def
= exp

(
1

4π

∫
eiθ + z

eiθ − z
log(µ′(eiθ))dθ

)
(17)

is the Szegő function. Since

κ
def
= lim

n
κn = D(0)−1 =

∞∏
j=1

(1− |Φj(0)|2)−1/2 <∞,

the analogous result also holds for orthonormal polynomials.
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As a consequence of Corollary 3, we have

lim
n

Φn+2(z)

Φn(z)
= α1α2

uniformly on compact subsets of {z : |z| <
√
|α1α2|} \ {α1, α2}. This result

is proved in [5] under the conditions (13). Actually, only the point α1 or α2

with smaller modulus lies in the circle {z : |z| <
√
|α1α2|}. For example, if

|α1| < |α2|, we can be more precise and specify that the uniform convergence
holds on compact subsets of {z : |z| <

√
|α1α2|} \ {α1}.

It is worthwhile studying the asymptotic behavior of OPUC in an annulus
about the critical circle {z : |z| =

√
|α1α2|}. In this case some computations as

those done in Sections 2 and 3 of [23], let us state:

Theorem 4. If {zn} satisfies (9), then the function D−1(z) for z ∈ D admits
a meromorphic extension, D−1

int, to {z : |z| < 1
|α1α2|} which is analytic in {z :

|z| < 1√
|α1α2|

} and has only two poles at ± 1√
α1α2

. Moreover,

(i) We have
lim
n

Φ∗n(z) = D(0)D−1
int(z)

uniformly on compact sets of {z : |z| < 1√
|α1α2|

}. Also,

lim
n

Φn(z)

zn
= D(0)Dint(1/z)

−1

uniformly on compact sets of {z : |z| >
√
|α1α2|}.

(ii) Let

Fn(z)
def
= Φn+1(0)

(
D(0)D−1(z)− Φ∗n(z)

)
and

sn(z)
def
=
∞∑
j=0

z−j−1Fn+j(z). (18)

Then there exists C > 0 such that

max
|z|≤1

|Fn(z)| ≤ C |α1α2|n,

the series (18) converges in

A = {z : |α1α2| < |z| < 1}

and

|sn(z)| ≤ C |α1α2|n

|z| − |α1α2|
, z ∈ A.
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(iii) For z ∈ A, we have

Φ2k(z) = −s2k(z)+
Cα1,α2D(0)D(z)−1αk1α

k
2

(α1α2 − z2)
(z−α1)+z2kD(0)Dint(1/z)

−1,

Φ2k+1(z) = −s2k+1(z) +
βCα1,α2

D(0)D(z)−1αk1α
k
2

(α1α2 − z2)
(α1 − z)

+ z2k+1D(0)Dint(1/z)
−1.

Remark. Using the above result, Simon also proved that if Verblunski co-
efficients satisfy (14), then the zeros of OPUC have “clock behavior” in the
Mhaskar-Saff circle, see Theorem 5.1 in [23], and [22]. In our discussion this
implies that the zeros approach to the circle {z : |z| =

√
|α1α2|} with rate

O( logn
n ), the quotient of magnitudes of consecutive zeros is 1 + O( 1

n logn ) and

they are equally spaced with only larger gaps around ±√α1α2 (see Figures 1 and
2 at the end). If |α2| > |α1|, see Figure 1, α2 is a Nevai-Totik point. Notice
that another Nevai-Totik point appears in this figure. The proof of its analytical
existence will be the subject of a forthcoming paper.

3.1. On the meromorphic extension of the Szegő function

In Theorem 4 we have used the meromorphic extension of the interior Szegő
function to {z : |z| < 1

|α1α2|}. This function has two poles at ± 1√
α1α2

. Using a

convergence result for Fourier-Padé approximants constructed from the expan-
sion of the interior Szegő function in terms of orthogonal polynomials on the
unit circle, we prove in this section that 1

|α1α2| is the larger radius of the circle

with center at the origin where a such meromorphic extension with exactly two
poles can be done. To obtain this result we will use a Lemma stated in [5]
(Lemma 4 below).

Previously let us fix some notation and concepts. Let f ∈ L1(µ). Its Fourier
expansion with respect to the orthonormal system {ϕn} is given by

∞∑
j=0

Ajϕj(z),

where Aj denotes the jth Fourier coefficient of f , i.e.,

Aj
def
= 〈f, ϕj〉.

The Fourier-Padé approximant of type (n,m), n,m ∈ {0, 1, . . .}, of f is the ratio
πn,m(f) = pn,m/qn,m of any two polynomials pn,m and qn,m such that

(i) deg(pn,m) ≤ n; deg(qn,m) ≤ m, qn,m 6≡ 0.

(ii) qn,m(z)f(z)− pn,m(z) ∼ An,1ϕn+m+1(z) +An,2ϕn+m+2(z) + . . .

9



The above condition (ii) means that

〈qn,mf − pn,m, ϕj〉 = 0, j = 0, . . . , n+m.

In the sequel, we take qn,m with leading coefficient equal to 1.
To prove the existence of such polynomials it suffices to solve a homogeneous

linear system of m equations on the m+1 coefficients of qn,m. Thus, a nontrivial
solution is guaranteed. In general, the rational function πn,m is not uniquely
determined but if for every solution (pn,m, qn,m) the polynomial qn,m has degree
m, then πn,m is unique. For m fixed, a sequence of type {πn,m : n ∈ N} is called
an mth row of the Fourier-Padé approximants relative to f .

We write ∆m(f) for the largest disk centered at z = 0 in which f can be
extended to a meromorphic function with at most m poles and let Rm(f) be
the radius of a such circle. If R0(f) > 1 and f has exactly m poles in ∆m(f),
then, for n large enough, πn,m is uniquely determined. This and other results
for row sequences of Fourier-Padé approximants may be found in [18] and [19]
for Fourier expansions with respect to measures supported on an interval of the
real line whose absolutely continuous part with respect to Lebesgue measure is
positive almost everywhere.

The following result is stated in [5].

Lemma 4. Let µ be such that R0(D−1) > 1. The following assertions are
equivalent:

(a) D−1 has exactly m poles in ∆m = ∆m(D−1).

(b) The sequence {πn,m(D−1) : n = 0, 1, . . .}, for all sufficiently large n, has
exactly m finite poles and there exists a polynomial wm(z) = zm+ . . . such
that

lim sup
n
‖qn,m − wm‖1/n = δ < 1,

where ‖ · ‖ denotes any norm in the space of polynomials of degree at most
m.

The poles of D−1 in ∆m coincide with the zeros z1, . . . , zm of wm, and

Rm(D−1) =
1

δ
max

1≤j≤m
|zj |. (19)

Lemma 4 turns out to be definitive to prove the following result.

Theorem 5. If the sequence of zeros {zn} satisfies (9), then

R2(D−1) =
1

|α1α2|
.

To carry out the proof we need some previous results (Lemma 5 and Lemma
6 below). The first of them is easily proved by using recurrence relation (1).

Lemma 5. The orthonornal polynomials associated with {zn} satisfy the fol-
lowing relations:
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(i)

〈zϕj , 1〉 = −ϕj+1(0)

κjκj+1
, j = 0, 1, . . . ,

〈zϕj , ϕm〉 =


0, j < m− 1,
κj
κj+1

, j = m− 1,

−ϕj+1(0)ϕm(0)
κjκj+1

, j > m− 1.

(ii)

〈z2ϕj , ϕm〉 =

{
0, j < m− 2,
κm−2

κm
, j = m− 2

and

〈z2ϕm−1, ϕm〉 = −ϕm(0)

κ2
m

(
κm−1

κm+1
ϕm+1(0) +

ϕm(0)ϕm−1(0)

ϕm(0)

)
.

Moreover, if j ≥ m, then

〈z2ϕj , ϕm〉 = −Φj+1(0)ϕm(0)

κj

×

(
Φm−1(0)

Φm(0)
+

Φj+2(0)

Φj+1(0)
−

j+1∑
l=m−1

Φl(0)Φl+1(0)

)
.

It is known that for measures in the Szegő class we have

D−1(z) =
1

κ

∞∑
j=0

ϕj(0)ϕj(z), z ∈ D

(see [9], p. 19; [15], Theorem 1; [14], Theorem 2.2 or [5], p. 174). When {zn} is
defined by (9) the above expansion converges uniformly on compact subsets of
{z : |z| < 1√

|α1α2|
} and

D−1
int(z) =

1

κ

∞∑
j=0

ϕj(0)ϕj(z), z ∈ {z : |z| < 1√
|α1α2|

}. (20)

The next result is a consequence of (20) and Lemma 5.

Lemma 6. The following equalities hold:

〈D−1
int, ϕm〉 =

ϕm(0)

κ
,

〈zD−1
int, ϕm〉 =

ϕm(0)

κ

Φm−1(0)

Φm(0)
−

∞∑
j=m−1

Φj(0)Φj+1(0)

 ,

〈z2D−1
int, ϕm〉 =

ϕm(0)

κ

(
Φm−2(0)

Φm(0)
+O(ϕm−1(0))

)
.
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Proof of Theorem 5. According to Theorem 4, D−1
int is an analytic function on

{z : |z| < 1√
|α1α2|

} which has a meromorphic extension to {z : |z| < 1
|α1α2|}

with only two poles at ±1/
√
α1α2. Thus, from Lemma 4, the denominators

qn,2 of the Fourier-Padé approximants of order (n, 2) are exactly of degree 2

for n large enough and the zeros of qn,2 converge to ±1/
√
|α1α2|. Therefore,

according to (19) it only remains to find lim sup
n
‖qn,2(z)− (z2 − 1

α1α2
)‖1/n.

Let qn,2(z) = (z − βn)(z − τn) = z2 − (βn + τn)z + βnτn. It satisfies

〈qn,2D−1
int, ϕn+1〉 = 〈qn,2D−1

int, ϕn+2〉 = 0.

Thus,

(βn + τn)〈zD−1
int, ϕn+1〉 − βnτn〈D−1

int, ϕn+1〉 = 〈z2D−1
int, ϕn+1〉,

(βn + τn)〈zD−1
int, ϕn+2〉 − βnτn〈D−1

int, ϕn+2〉 = 〈z2D−1
int, ϕn+2〉.

Hence,

βn + τn =

∣∣∣∣ 〈z2D−1
int, ϕn+1〉 −〈D−1

int, ϕn+1〉
〈z2D−1

int, ϕn+2〉 −〈D−1
int, ϕn+2〉

∣∣∣∣∣∣∣∣ 〈zD−1
int, ϕn+1〉 −〈D−1

int, ϕn+1〉
〈zD−1

int, ϕn+2〉 −〈D−1
int, ϕn+2〉

∣∣∣∣ ,

βnτn =

∣∣∣∣ 〈zD−1
int, ϕn+1〉 〈z2D−1

int, ϕn+1〉
〈zD−1

int, ϕn+2〉 〈z2D−1
int, ϕn+2〉

∣∣∣∣∣∣∣∣ 〈zD−1
int, ϕn+1〉 −〈D−1

int, ϕn+1〉
〈zD−1

int, ϕn+2〉 −〈D−1
int, ϕn+2〉

∣∣∣∣ .
We have∣∣∣∣ 〈zD−1

int, ϕn+1〉 −〈D−1
int, ϕn+1〉

〈zD−1
int, ϕn+2〉 −〈D−1

int, ϕn+2〉

∣∣∣∣
=
ϕn+1(0)ϕn+2(0)

κ2

(
Φn+1(0)

Φn+2(0)
− Φn(0)

Φn+1(0)
+ Φn(0)Φn+1(0)

)
. (21)

Then, by Lemma 6, there exists C 6= 0 such that∣∣∣∣ 〈z2D−1
int, ϕn+1〉 −〈D−1

int, ϕn+1〉
〈z2D−1

int, ϕn+2〉 −〈D−1
int, ϕn+2〉

∣∣∣∣ = C
ϕn+1(0)ϕn+2(0)

κ2
ϕn(0). (22)

Thus, from (21) and (22), we can find a constant C ′ 6= 0 such that

βn + τn = C ′ϕn(0).

Doing the same calculations for βnτn, we deduce that

βnτn =

ϕn+1(0)ϕn+2(0)
κ2

(
Φn(0)

Φn+1(0)

Φn(0)

Φn+2(0)
− Φn−1(0)

Φn(0)

Φn−1(0)

Φn+1(0)
+O(ϕn(0))

)
ϕn+1(0)ϕn+2(0)

κ2

(
Φn+1(0)

Φn+2(0)
− Φn(0)

Φn+1(0)
+ Φn(0)Φn+1(0)

)
12



and thus,

lim
n
βnτn = − 1

α1α2
,

where the convergence is geometric with ratio
√
|α1α2|.

Therefore,

lim
n
‖qn,2(z)− (z2 − 1

α1α2
)‖1/n = |α1α2|1/2.

From Lemma 4,

R2(D−1) =
|zj |

|α1α2|1/2
=

1

|α1α2|
, j = 1, 2,

where zj are the roots of z2 − 1

α1α2
(both with modulus

1

|α1α2|1/2
). Hence,

{z : |z| < 1
|α1α2|} is the largest disk centered at z = 0 in which D−1

int(z) can be

extended to a meromorphic function with at most two poles.

Remark. It might seem that an alternative proof of Theorem 5 could be done
using Hadamard-type formula for Rm(D−1) given in [6]. Indeed, this formula

is written in terms of derivatives ϕ
(j)
n (0) which can be obtained from Corollary

3. It is also required to calculate

ck
def
=

∫
e−ikθ logw(eiθ)dθ, k = 0, 1, 2,

but the weight w is unknown. By the way, we can obtain c0 and c1 from the
values Rj(D

−1), j = 0, 1, 2, given in Theorems 4 and 5.

Remark. We can also prove that the Fourier-Padé approximants of type (n, 1)
of D−1 have exactly a pole at α1

−1 or α2
−1, depending on whether n is even or

odd. Thus, they converge to D−1
int in {z : |z| < 1√

|α1α2|
}.

4. Three-periodic case

If the sequence of zeros is periodic with period three, then the Verblunsky
coefficients are not a geometric progression as one might naively expect. This

case is more complex: if the three periodic zeros have modulus at most −1+
√

5
2 ,

then the measure is in the Nevai class, i.e., limn Φn(0) = 0, whereas if the peri-

odic zeros have modulus greater than −1+
√

5
2 , then some numerical experiments

show that, for degree large enough, the zeros of OPUC are close to three arcs
of the unit circle. So the orthogonality measure should be supported on these
arcs (see Figures 3 and 4).

To prove Theorem 1, we need the following lemma whose easy proof is omit-
ted.

13



Lemma 7. Let r ∈ (0, 1) and let {ak : k ≥ 2} be the sequence

a2 = a3 =
2r2

1 + r2
, an+1 = r

ran−1 + an
1 + ran−1an

, n ≥ 3.

The following statements hold:

(i) an ∈ (0, r) for all n ≥ 2.

(ii) The sequence {an} is monotone decreasing.

(iii) If r ∈ (0, −1+
√

5
2 ], then lim

n
an = 0, whereas r ∈ (−1+

√
5

2 , 1) implies

lim
n
an =

√
r + 1− 1

r
.

(iv) When r < −1+
√

5
2 , we have

an
an−1

<
an+1

an−1
= r

r + an
an−1

1 + ran−1an
< r(r + 1) < 1.

(v) Let H
def
= lim sup

n

an
an−1

. Then

H ≤ r(r +H)⇔ H ≤ r2

1− r
< r(r + 1) < 1.

Proof of Theorem 1. From (1), (2) and (12), it follows that

Φn+1(z)

= z
(
z
(
z + Φn(0)Φn+1(0)

)
+ (Φn+1(0) + zΦn(0)) Φn−1(0)

)
Φn−2(z)

+
(
z
(
z + Φn(0)Φn+1(0)

)
Φn−1(0) + Φn+1(0) + zΦn(0)

)
Φ∗n−2(z).

If Φn+1 and Φn−2 have a common zero ζ, then

Φn+1(0) = −ζ ζΦn−1(0) + Φn(0)

1 + ζΦn−1(0)Φn(0)
.

Hence,

|Φ1(0)| = |α|, |Φ2(0)| ≤ |β| |β|+ |α|
1 + |α||β|

≤ 2r2

1 + r2
, |Φ3(0)| ≤ 2r2

1 + r2
,

|Φn+1(0)| = |ζ|

∣∣∣∣∣ ζΦn−1(0) + Φn(0)

1 + ζΦn−1(0)Φn(0)

∣∣∣∣∣ ≤ r r|Φn−1(0)|+ |Φn(0)|
1 + r|Φn−1(0)||Φn(0)|

, n ≥ 3.

Let {an} be as in Lemma 7. Then

|Φn(0)| ≤ an, n ≥ 2,
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and, therefore, if r ∈ (0, −1+
√

5
2 ], then lim

n
an = 0. Hence, lim

n
Φn(0) = 0 holds.

If r ∈ (0, −1+
√

5
2 ), then

lim sup
n
|Φn(0)|1/n ≤ lim sup

n
|an(0)|1/n ≤ lim sup

n

∣∣∣∣ anan−1

∣∣∣∣ < r2

1− r
< 1.

5. Distance from the zeros to the circle

The proof of Theorem 2 requires some auxiliary results.

Lemma 8. Let Λ denote an infinite subset of the natural numbers. Let

{Vn(z) =

n∏
j=1

(z − vn,j) : n ∈ Λ}

be a sequence of monic polynomials with zeros in D such that

lim
n∈Λ

Vn(z)

V ∗n (z)
= 0 (23)

uniformly on compact subsets of D. Suppose that there are z0 ∈ D and r > 0
such that Vn(z) 6= 0 for all z : |z − z0| > r and n ∈ Λ. Then

lim
n∈Λ

n∑
j=1

(1− |vn,j |) =∞.

Proof. There is no loss of generality in assuming that z0 = 0. Indeed, by the
change of variables

z =
ζ + z0

1 + z0ζ
,

we get

Wn(ζ)

W ∗n(ζ)
=
Vn( ζ+z01+z0ζ

)

V ∗n ( ζ+z01+z0ζ
)
,

where Wn is a monic polynomial whose zeros, ζn,j , j = 1, . . . , n, lie in D. Be-
sides, there exists δ > 0 such that

|ζn,j | > δ j = 1, . . . , n.

Moreover, we have

lim
n∈Λ

n∑
j=1

(1− |vn,j |) =∞ ⇔ lim
n∈Λ

n∑
j=1

(1− |ζn,j |) =∞

15



because there are k1 = k1(z0) > 0, k2 = k2(z0) > 0 such that

k1(1− |ζ|) ≤ 1−
∣∣∣∣ ζ + z0

1 + z0ζ

∣∣∣∣ ≤ k2(1− |ζ|), ∀ζ ∈ D.

Thus, we can assume z0 = 0. By hypothesis,

lim
n∈Λ

n∏
j=1

vn,j = lim
n∈Λ

Vn(0)

V ∗n (0)
= 0⇔ lim

n∈Λ

n∑
j=1

log |vn,j | = −∞. (24)

Since |vn,j | ≥ r and there is α < −1 such that αx < log(1− x), ∀x ∈ (0, 1− r),
we deduce that

α(1− |vn,j |) < log(1− (1− |vn,j |)) = log |vn,j |. (25)

Therefore, the proof of the lemma follows from (24) and (25).

Remark. Sequences of monic polynomials Vn as those considered in Lemma
8 play an important role in rational approximation. Namely, condition (23) is
equivalent to the set of rational functions

{ pn
V ∗n

: pn polynomial of degree ≤ n, n = 1, 2, . . .}

is dense in the space of analytic functions in D with the uniform norm (see
Corollary 2, p. 246, in [26]).

The next result is a generalization of Theorem 9, Chapter 9, in [26].

Lemma 9. Let Λ denote an infinite subset of the natural numbers and let

{Vn(z) =

n∏
j=1

(z − vn,j) : n ∈ Λ}

be a sequence of monic polynomials whose zeros lie in D. The following state-
ments are equivalent:

(a) lim
n∈Λ

Vn(z)

V ∗n (z)
= 0 uniformly on compact subsets of D.

(b) lim
n∈Λ

n∑
j=1

(1− |vn,j |) =∞.

Proof. Assume that (b) holds. Let T ∈ (0, 1) be fixed. We have the inequalities

1− T
T + 1

(1− |vn,j |) ≤
(1− T )(1− |vn,j |)

1 + T |vn,j |
≤ 1− T

T
(1− |vn,j |).

Thus, (b) is equivalent to

lim
n∈Λ

n∑
j=1

(1− T )(1− |vn,j |)
1 + T |vn,j |

=∞
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for each T ∈ (0, 1). As
(1− T )(1− |vn,j |)

1 + T |vn,j |
< 1 − T < 1, there exists λ < −1

such that

λ

(
(1− T )(1− |vn,j |)

1 + T |vn,j |

)
≤ log

(
1− (1− T )(1− |vn,j |)

1 + T |vn,j |

)
≤ −

(
(1− T )(1− |vn,j |)

1 + T |vn,j |

)

⇔ λ

(
(1− T )(1− |vn,j |)

1 + T |vn,j |

)
≤ log

(
T + |vn,j |
1 + T |vn,j |

)
≤ −

(
(1− T )(1− |vn,j |)

1 + T |vn,j |

)
.

Hence, (b) is equivalent to

lim
n∈Λ

n∑
j=1

log

(
T + |vn,j |
1 + T |vn,j |

)
= −∞.

If |z| ≤ T , using an inequality in [26], p. 229, we have∣∣∣∣ Vn(z)

V ∗n (z)

∣∣∣∣ ≤ n∏
j=1

T + |vn,j |
1 + T |vn,j |

.

Therefore, (b) implies (a).
By Lemma 8, proving the other implication requires only to verify the fol-

lowing statement: Assume that (a) holds and that for any infinite set Λ1 ⊂ Λ,
any z0 ∈ D and any ε > 0 there exists an infinite set Λ2 ⊂ Λ1 such that for any
n ∈ Λ2 there is j ∈ {1, . . . , n} such that |vn,j − z0| < ε, i.e., Vn has a zero in
{z : |z − z0| < ε}. Then

lim
n∈Λ

n∑
j=1

(1− |vn,j |) =∞.

To get a contradiction, we assume that there exist M > 0 and an infinite set
Γ ⊂ Λ such that

n∑
j=1

(1− |vn,j |) ≤M, ∀n ∈ Γ. (26)

We can choose w1, . . . , wk on the circle {z : |z| = 1/2} and r > 0 small enough,
such that the disks {z : |z − wj | < r}, j = 1, . . . , k, are all disjoint and

k(1/2− r) > M.

By hypothesis, we can choose an infinite set Γ1 ⊂ Γ such that

Vn(z) has a zero in {z : |z − w1| < r} for all n ∈ Γ1.

Given Γ1, we can choose Γ2 ⊂ Γ1 ⊂ Γ such that

Vn(z) has a zero in {z : |z − w2| < r} for all n ∈ Γ2
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and so, Vn, n ∈ Γ2, has a zero in {z : |z−w2| < r} and a zero in {z : |z−w1| < r}.
In this way, there exists an infinite set of natural numbers Γk ⊂ Γ such that

Vn(z) has a zero in each {z : |z − wj | < r} for all n ∈ Γk and j = 1, . . . , k.

According to the choice of w1, · · · , wk, r and Γk, for n ∈ Γk, we get the contra-
diction

M ≥
n∑
j=1

(1− |vn,j |) ≥
∑

j : |vn,j − wl| < r
l = 1, . . . , k

(1− |vn,j |) > k(1/2− r) > M.

Proof of Theorem 2. It is very well known that limn Φn(0) = 0 is equivalent to

lim
n

Φn(z)

Φ∗n(z)
= 0

uniformly on compact subsets of D (see, for example, Theorem 1.7.4, p. 91 in
[20]). Therefore, Theorem 2 follows immediately from Lemma 9.

5.1. Distance from the zeros to an arc of the circle

Polynomials orthogonal with respect to a weight in the form

W (z) = w(z)

m∏
k=1

|z − ak|2βk , |z| < 1,

where |ak| = 1, βk > −1/2, k = 1, . . . ,m, and w(z) > 0 for |z| = 1 are been
studied in [13]. It is proved there that if w(z) can be extended as a holomorfic
and nonvanishing function to an annulus around the unit circle, then

|zn,j | = 1− log n

n
+O(

1

n
).

In the case of polynomials orthogonal with respect to any weight on an arc
∆ of the unit circle which is positive almost everywhere on ∆, the behavior of
the zeros is known (see [4] and [7]): They approach to ∆ as the degree of the
polynomials increases. Moreover, (see [8]) for n large enough, there exist O(n)
zeros of Φn on every neighborhood of each arc ∆′ ⊂ ∆.

Next, we obtain the rate of approach to ∆ for the zeros of OPUC of Cheby-
shev weight on an arc of the unit circle3. The property just above-mentioned
justifies the existence of sequences of zeros as the one used in Theorem 6.

3These polynomials were already studied by Akhiezer in [1].
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Let consider the weight

w(θ)
def
=


sin(α/2)

2 sin(θ/2)
√

cos2 α/2− cos2 θ/2
, θ ∈ [α, 2π − α],

0, θ 6∈ [α, 2π − α].

Theorem 6. Let zn,jn be any zero of the polynomial Φn(z). Provided that

lim
n
zn,jn = eiθ0 , θ0 ∈ [α, 2π − α],

it follows that

|zn,jn | = 1− f(θ0)

n
+O(1/n2),

where f is a positive continuous function in [α, 2π − α] which is nonzero in
(α, 2π − α).

Proof. For the nth-orthonormal polynomial, ϕn(z), the following expression ap-
pears in [10]:

ϕn(z) = Kn

{
wn(v)

1− βv
+
v wn(1/v)

v − β

}
, z = h(v), (27)

where β = i tan π−α
4 ,

w(v) = i
1− βv
v + β

, w(1/v) = i
v − β
1 + βv

, z = h(v) =
(v − β)(βv − 1)

(v + β)(βv + 1)

and Kn is a nonzero complex number.
The function w = w(v) is an invertible analytic homeomorphism from D

to D and z = h(v) is analytic in C \ {−β,− 1
β } and a homeomorphism from

D \ {−β} to C \∆α, where ∆α = {eiθ : θ ∈ [α, 2π − α}.
For simplicity, from now on, we will write zn,j instead of zn.jn . Also we will

use the standard notation xn ∼ yn in place of limn
xn
yn

= 1 and xn →
n
x in place

of limn xn = x.
To every zn,j there corresponds a unique vn,j such that h(vn,j) = zn,j and

|vn,j | < 1. Since zn,j approach to ∆α as n→∞, we have |vn,j | →
n

1. Moreover,

we know that

wn(vn,j)

1− βvn,j
+
vn,j w

n(1/vn,j)

vj,n − β
= 0⇔ wn(1/vn,j)

wn(vn,j)
= − vn,j − β

vn,j(1− βvn,j)
. (28)

Thus,
lim
n
vn,j = eiω0 , eiθ0 = h(eiω0), ω0 ∈ (0, π),

lim
n
=(vn,j) = sinω0,

and

lim
n

1

|vn,j |2
|vn,j |2 − 2<(vn,jβ) + |β|2

1− 2<(vn,jβ) + |vn,jβ|2
=

1− 2 tan η sinω0 + |β|2

1 + 2 tan η sinω0 + |β|2
∈ (0, 1),
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where η = π−α
4 .

On the other hand,∣∣∣∣ vn,j − β
vn,j(1− βvn,j)

∣∣∣∣2 =
1

|vn,j |2
(vn,j − β)(vn,j − β)

(1− βvn,j)(1− βvn,j)

=
1

|vn,j |2
|vn,j |2 − 2<(vn,jβ) + |β|2

1− 2<(vn,jβ) + |vn,jβ|2

and <(vn,jβ) = −=(vn,j) tan η, <(vn,jβ) = =(vn,j) tan η. Moreover,

|w(1/vn,j)|2 =

∣∣∣∣1− βvn,jvn,j + β

∣∣∣∣2 =
1− 2<(vn,jβ) + |vn,jβ|2

|vn,j |2 + 2<(vn,jβ) + |β|2
→
n

1,

|w(1/vn,j)|2 − 1

=
(1− |vn,j |2)(1− |β|2)

1 + 2<(vn,jβ) + |β|2
∼ 2(1− |vn,j |)

(1− |β|2)

1 + 2 tan η sinω0 + tan2 η
.

Also,

|w(vn,j)|2 =

∣∣∣∣ vn,j − β1 + βvn,j

∣∣∣∣2 =
|vn,j |2 − 2<(vn,jβ) + |β|2

1 + 2<(vn,jβ) + |vn,jβ|2
→
n

1,

|w(vn,j)|2−1 =
(|vn,j |2 − 1)(1− |β|2)

1 + 2<(vn,jβ) + |vn,jβ|2
∼ −2(1−|vn,j |)

(1− |β|2)

1− 2 tan η sinω0 + |β|2
.

Hence,∣∣∣∣w(1/vn,j)

w(vn,j)

∣∣∣∣2 − 1 =
|w(1/vn,j)|2 − |w(vn,j)|2

|w(vn,j)|2
=
−2(1− |β|2)(1− |vn,j |)

|w(vn,j)|2

→
n

4 tan η sinω0

(1 + 2 tan η sinω0 + |β|2)(1− 2 tan η sinω0 + |β|2)

=
−8(1− |β|2)(1− |vn,j |) tan η sinω0

(1− 2 tan η sinω0 + |β|2)(1 + 2 tan η sinω0 + |β|2)
.

From (28), we deduce that∣∣∣∣w(1/vn,j)

w(vn,j)

∣∣∣∣n →n 1− 2 tan η sinω0 + |β|2

1 + 2 tan η sinω0 + |β|2

and so,

n

(∣∣∣∣w(1/vn,j)

w(vn,j)

∣∣∣∣− 1

)
→
n

log

(
1− 2 tan η sinω0 + |β|2

1 + 2 tan η sinω0 + |β|2

)
.

Thus,
lim
n
n (1− |vn,j |) = f(ω0),
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Figure 1: Zeros of Φ100 for two period zeros: 0.2 and 0.7i.

where

f(ω0) =
(1− 2 tan η sinω0 + |β|2)(1 + 2 tan η sinω0 + |β|2)

8(1− |β|2) tan η sinω0

× log

(
1 + 2 tan η sinω0 + |β|2

1− 2 tan η sinω0 + |β|2

)
.

Therefore,

|zn,j | = |h(vn,j)| = |w(vn,j)||w(
1

vn,j
)|

= (1 + |w(vn,j)| − 1)(1 + |w(
1

vn,j
)| − 1)

∼
(

1 +
2(1− |vn,j |)(1− |β|2)

1 + 2 tan η sinω0 + |β|2

)(
1 +

2(|vn,j | − 1)(1− |β|2)

1− 2 tan η sinω0 + tan2 η

)
∼ 1− 1

n
f̃(ω0),

where

f̃(ω0) = log

(
1 + 2 tan η sinω0 + tan2 η

1− 2 tan η sinω0 + tan2 η

)
.

Remark. The Figures 1–4 were generated in Mathematica 6.
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Figure 2: Zeros of Φ100 for two period zeros: 0.7e−iπ
4 and 0.7ei

π
4 .
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Figure 3: Zeros of Φ100 for three period zeros: 0.62, 0.62ei
2π
3 and 0.62e−i 2π

3 . Observe
−1+

√
5

2
= 0.618034 . . . < 0.62
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Figure 4: Zeros of Φ50 for three period zeros: 0.8, 0.8ei
2π
3 and 0.8e−i 2π

3 . When the degree of
the OPUC is larger than 50 calculating the zeros appear numerical instability in Mathematica
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