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Abstract

Let {z,} be a sequence in the unit disk {z € C : |2| < 1}. It is known that
there exists a unique positive Borel measure on the unit circle such that their
orthogonal polynomials {®,,} satisfy

D, (2,) =0

for each n = 1,2,... Characteristics of the orthogonality measure and asymp-
totic properties of the orthogonal polynomials are given in terms of the asymp-
totic behavior of the sequence {z,}. Particular attention is paid to periodic
sequences of zeros {z,} with period two and three.
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1. Introduction

In the last decade several papers on zeros of orthogonal polynomials on the
unit circle (OPUC) have been published. For instance, we have [12], [13], [22],
[23] or [24]. These articles joint to [5], [14], [15], [16], [25] and the seminal books
of Simon, [20] and [21], bring us closer to a better understanding of the properties
of the zeros of OPUC. However, there are several open questions about the zeros
of OPUC, see for example pp. 97-98 of [20]. In [12] and [13] the properties of the
zeros are studied in terms of analytic properties of the orthogonality measure,
whereas in [22], [23] and [24] the information about the zeros is given in terms
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of Verblunsky coefficients. Other interesting problems deal with the description
of properties of the zeros of OPUC in terms of other parameters which also
characterize OPUC. We will study some of these questions in this paper.

We need to introduce some notation to state our results. Let p be a nontrivial
probability measure on [0,27) and let p,(2) = vn(z, 1) = kp2™ +...,n =

0,1,... be their orthonormal polynomials with positive leading coefficient. So,
Kn > 0 and
_ 1 I AYRT Y _ 1a n=m,
(onon) = 5 [ enleontemante) = { o+ o
_ ¢n(2) . .
We denote by ®,,(z) = ———= the corresponding monic orthogonal polyno-
K

n
mials. It is well known that they satisfy the Szegd recurrence

Di1(2) = 20, (2) + Ppy1(0)P) (2), n>0, Po(z)=1, (1)
o7 1 (2) = P (2) + ©py1(0)2P,(2), n >0, (2)

where we use the standard notation ®}(2) = 2"®, (). The parameters @, (0)
are called Verblunsky coefficients (also reflection coefficients or Schur parame-
ters).

All the zeros of ®,, lie in the unit disk D %' {z € C: |z| < 1} and, therefore,
®,,11(0) € D. Moreover, Verblunsky’s theorem (see Theorem 1.7.11, p. 97, of
[20]) states that given a sequence {a, },,>1 in D there exists a unique probability
measure p on [0,27) such that ®,,(0,u) = ap, n=1,2,...

If {2,} is a sequence in D with the property that

D,(2,) =0, n=1,2,..., (3)
then (1) yields
(I)n(zn—i-l)
B0 (0) = —2py g 2EnHY) 4
+1( ) Z +1®Z(zn+1) ( )

and Verblunsky’s theorem states the existence of a unique orthogonality mea-
sure. So, the OPUC are uniquely determined by a sequence of their zeros, i.e.,
by a sequence {z,} such that (3) holds (see [2]).

In this paper we obtain properties of OPUC in terms of properties of a
sequence of their zeros. Our first result is about OPUC determined by a periodic
sequence {zy,}.

Theorem 1. Suppose that, for n large enough, there exists a common zero for
®,, and ®,,_3. Let {; (j =1,2,3) be such common zeros, i.e.,

®,(¢) =0, n=j mod3, n>ny,

and let r & max{|(;| : j = 1,2,3}. We claim:
(i) Ifr< =52 then lim @,(0) = 0.
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(i) If, in addition, r < %‘/5, then limsup |®,, (0)|1/™ < lr— <1.
n —r

The numerical experiments show that if the three common zeros have mod-
ulus greater than %\/g, then the zeros are uniformly distributed on three arcs
of the unit circle like those corresponding to a measure supported on three arcs,
see Figures 3 and 4. If the sequence {z,} is periodic with period two, then the
Verblunsky coefficients are an asymptotic periodic sequence as states Lemma 3
below. This case has been studied in [5] and [23].

A completely different situation appears when the sequence {z,} is dense
in D and so the zeros of the OPUC are also dense in ID. This last case was
studied by Khrushchev in [11]. He showed that there exist OPUC with zeros
dense in D with orthogonality measure in many classes of measures, including
measures in the Szegd class (logu’ € L') or measures such that the series of
their Verblunsky coefficients is absolutely convergent (see also Example 1.7.18,
p. 98, of [20]).

Our next theorem states that the zeros can not “approach the unit circle too
fast” if and only if the orthogonality measure lies in the Nevai class. From now
on {z,; }?:1 will denote the zeros of ®,,(z).

Theorem 2. The following statements are equivalent:

() lim &,,(0) = 0.
(b) liTanZ(l = |zn,5]) = o0.
j=1

The proof of this theorem is included in Section 5. This section also contains
a study of the rate with which the zeros of OPUC for the Chebyshev weight on
an arc of the unit circle approach to (D). In Section 2 we make some remarks
about properties of OPUC in terms of the sequence of zeros given. In Section 3
we study orthogonal polynomials obtained from a two-periodic sequence {z,}.
The proof of Theorem 1 is contained in Section 4. Finally, we include several
figures displaying the zeros of OPUC for some different sequences {z,}.

2. Some estimates for the radius of the Mhaskar-Saff circle

It was proved in [14] that if lim,, >7_, ®;(0) = 0 and A is an infinite subset
of natural numbers such that

lim |®,,(0)[/" = limsup |®, (0)|*/" ' L,
neA n

then

lim ve, =myg,
neA

def .
where, as usual, we put v = % Z?zl 0z, i and my, is the Lebesgue measure

on the circle of radius L (the Mhaskar-Saff circle). Notice that throughout this



paper the limit of a sequence of measures is always taken in the weak-* topology.
In this section we give some estimates of L in terms of the behavior of a sequence
of zeros of the OPUC.

Let {z,} be a sequence in D and let {®,,} be the unique sequence of monic
orthogonal polynomials defined by (3). Then

D, (znt1 Zn4l — 2 Znal — Zn.j
D1 (0) =~z nlEnt) _ | il —En [[ Z—ni
®r (2n+1) 1—Zpznt1 . 0 1—=Znjznt1
J*Zn,]#Zn
Zntl — 2
Lemma 1. (i) If lim ——"" — 0, then lim ®,(0) = 0. This occurs, in
n 1 —Zpzni n

particular, if lim z,, = zo with |zo| < 1.
n

(i) In this last case, putting w, = z, — 29, we have

lim sup |®,, (0)|*/™ < lim sup |w, |*/™. (5)

(iii) Let A denote any infinite subset of N such that there exists lin}\ Vg, L
ne

Iflimz, = 29 and v({z0}) = 0, then

ZoiC

1 -2

lim sup |®,,41 (0)[/ "+ < exp/log dv. (6)
neA

Zn+1—"2n,j

Proof. We only check (6) because the other statements are trivial since | {"Z== "y
72 P

1. Let § > 0 and L = limsup |®,,;1(0)|* ™+, Then
neA

<

Zn+1 — Zn,j Zn+1 — Zn,j
o) =—zn ]I P 1 5=

1 —Znj2n+1 1 —Znj%n+1

Jil2zn,j—20] <0 ji|zn,j—20|>6

1 1 Zn41 — Zn.j
= log |[®,,21(0)] < —— log | 2= ")
n+10g| +1()I_n+1. > =
Jilzn,j—20|>0 >
__n / 1Og‘2n+1—C dve, (C).
nt1lJiczzs 11— Canga
Since
nmlog’W ~1og| 22 =6
n 1-— CZn—i-l 1 —CZO

uniformly on supp(v) N {¢ : | — 20| > d} and lirrj{ ve, = v, we deduce that
ne

log L < /
|¢—20]>6

123250‘ < 1for ¢ € Dand v({z}) = 0, from the

above inequality the proof is easily completed. O

log’ 20— (¢

].—ZZO

dv(Q).

Because § > 0 is arbitrary,




Remarks. 1. From (5), limsup |wn|1/" is an upper bound of the radius L of

n
the circle where the zeros of the polynomials of degree n € A are uniformly
distributed.
2. Simon proved in [22] that if lim sup |®,,(0)|*/™ < 1, then the rate of conver-
n

gence of the zeros to the Nevai-Totik points® is geometric. So, according
to (5), this geometric rate is smaller than the radius of the Mhaskar-Saff
circle.

3. If L >0 and |20| < L, then

/ log

Thus, (6) and (7) imply that limsup |®,,41(0)]Y/ Y is less than or equal
neA

20— ¢

1—(2’0

dmp(¢) =log L. (7)

to the infimum of s > 0 such that ms is the limit of any convergent sub-
sequence of {Vs, tnen and

{z:]2] < s1n {z Hlimdist (2, {C : @,(¢) = 0}) = o} £ 0.
def

Here dist (2, {¢ : ,(¢) =0}) = irglf{|z — (| : ®,(¢) = 0} and mg denotes

the Lebesgue measure on the circle {z : |z| = s}.

Since ®,,41(0) = (=1)"*' [, 20415, (4) implies

and we get

|®y01(0)] /D = exp // tog

So, in addition to (6), we claim

Lemma 2. Let A be any infinite subset of N. If there exist lirr}\ Vo, Lef vy and
ne

. def
Tllléljl\ Z = vy, then
: 1/(n+1) Fow
lim sup |®,,41(0)] < exp log — | dva(2)dvy (w). (8)
neA 1 —wz

2The Nevai-Totik points are all the solutions of D;ni(l/f) =0in{z: L < |2] < 1},
where Dj,¢ is the analytic extension of the interior Szegd function (see (17) below) and
L = limsup,, |®,,(0)|*/".



Proof. The function f(z,w) = log is non-positive upper semicontin-

z—w
1 —-wz
uous in D x D. So, there is a monotone decreasing sequence of non-positive
continuous functions {g,,} such that f(z,w) = liibn gm (2, w) pointwise in D x D

(see Theorem 1.1, p.1, in [17]). Thus,

| 41(0)]/ Y = exp // log

w

5
1= ‘ dve, ., (2)dve, (w)

< exp / / gonlz, ) v, (2)dva, (10)

and since lim(vg,,, X ve,) = v2 x vy, the conclusion of the lemma follows
n

immediately from the monotone convergence theorem. O
Remark. Let limsup,cp |®,51(0)[Y Y =+ > 0 and v1 = vy = m,. Then
(8) becomes an equality as a consequence of (7).

3. Two-periodic case

Lemma 3. Suppose that the sequence {z,} is periodic with period two, i.e.,

- { a1, mnodd, (9)

a9, N even,

with {ay,as} C D. Let {®,} be the sequence of monic orthogonal polynomials
on the unit circle such that (3) holds. Then the Verblunsky coefficients are

(1)1(0) = —Qq, @2(0) = —Q9 Cal,ag (10)

and for all n > 3,

(n=1)/2 _(n—1)/2
" « « , nodd,
®,(0) = (-1) 100‘17042 X { 1—1+n/2 %/2 (11)
oy oy’ n even,
where Cqy, a0, = %.

Proof. Tterating (1) and (2), we can write

Dpi1(2) = 2 (2 + Bu(0)@041(0)) @01 (2)
(@1 (0) + 20, (0)) B, (), n=2. (12)
Thus, if ®,,+1 and ®,,_; have a common zero, ¢, setting z = ( in (12) we get
q)7z+1(0) = 7C®n(0)7 n > 27

which proves the lemma. O



Remark. If a1 = az = «, then ®,(2) = 2" (2 — ) for all n > 1 and
®,(0) =0 for alln > 2. If ayas = 0, then ©,(0) =0 for all n > 3. Both cases
are trivial, this is why we do not consider them through this section.

Ortogonal polynomials on the unit circle were studied in [5] and [23] under
the conditions

®,41(0)

lim®,(0)=0; 3 lim @n(lé) ji=1,2,... k. (13)

n
n=j mod k

More precisely, the Verblunsky coefficients considered in [23] satisfy the property
ZCb"—i—O (AD)™,  n — oo, (14)

where A € (0,1), 0 € {C;}, {b;} are all distinct and |b;| = 10| <1,j=1,...,1L.
If {z,} satisfies (9), then (14) holds for [ = 2 with

Oal ;2 1 1 Oal ;2 i 1

2 (0471_ \/C¥1042>7 02:_ 2 (051 + \/ 12

C) =~ ) (15)

and
by = Varag, by =—y/ajas. (16)

Therefore, all the results proved in [23] also hold for OPUC obtained from a
two-periodic sequence {z,}. Thus, according to Theorem 2.2 there, we state
the following result.

Corollary 3. If {z,} is defined by (9), then

I Por(z)  D(0)D(2)~"
m == = 2
EoafasCa as (a1ag — 22)

(z — as),

-1
hm (EZIZJrl(Z) = aQD(O)D(Zg (al — Z)
B afa5Cly s (a1ag — 22)

uniformly on each compact subset of {z : |z] < v/|aras|}, where
0,

D) = D) e (1 [ G gt e ) an

is the Szegd function. Since
o0
m—llmmn—D H1—|<I> )12 < o0,

the analogous result also holds for orthonormal polynomials.



As a consequence of Corollary 3, we have

: (I)n+2 (Z)
h7an W = qion
uniformly on compact subsets of {z : |z| < /|aqwaza|} \ {a1,a2}. This result
is proved in [5] under the conditions (13). Actually, only the point a; or as
with smaller modulus lies in the circle {z : |z| < y/|a1az|}. For example, if
|ay] < |az|, we can be more precise and specify that the uniform convergence
holds on compact subsets of {z : |z| < v/|a1az|} \ {a1}.

It is worthwhile studying the asymptotic behavior of OPUC in an annulus
about the critical circle {z : |z] = y/|a1as|}. In this case some computations as
those done in Sections 2 and 3 of [23], let us state:

Theorem 4. If {z,} satisfies (9), then the function D™1(2) for z € D admits

a meromorphic extension, Dt to {z : |2| < m} which is analytic in {z :
1

Tares Moreover,

|| < \/‘17'} and has only two poles at +
[e5 e )

(i) We have
lim @7 (2) = D(0)D;,;(2)
: ) 1
uniformly on compact sets of {z : |z| < m} Also,
o _
lim fo) = D(0)Dine(1/7)
uniformly on compact sets of {z : |z| > \/]a1aal}.
(ii) Let
Fo(2) < @141(0) (D(O)D ™ (2) — 93(2))
and -
def i
$n(2) SN 2T Fayj(2). (18)
3=0

Then there exists C > 0 such that

max |Fy,(2)| < C'lajas|”,
[z|<1

the series (18) converges in
A={z:|mas| <|z| <1}

and

n
sn(2)] < €210zl 2 €A,

2] = |araal’



(iii) For z € A, we have

Cal,azD(O)D(z)ila’falzc
(g — 22)

Do (2) = —sop(2)+ (z—a1)+22*D(0) Dy (1/2) 71,

5Cal,a2D(0)D(z)_1a’fa§
(rg — 22) (a1 —2)

+ 221 D(0) Dy (1/2) 7L

DPopr1(2) = —sak+1(2) +

Remark. Using the above result, Simon also proved that if Verblunski co-
efficients satisfy (14), then the zeros of OPUC have “clock behavior” in the
Mhaskar-Saff circle, see Theorem 5.1 in [23], and [22]. In our discussion this
implies that the zeros approach to the circle {z : |z| = \/|a1az|} with rate
O(lo%), the quotient of magnitudes of consecutive zeros is 1 + O(@) and
they are equally spaced with only larger gaps around £,/ara; (see Figures 1 and
2 at the end). If |aa| > |aa|, see Figure 1, ag is a Nevai-Totik point. Notice
that another Nevai- Totik point appears in this figure. The proof of its analytical
existence will be the subject of a forthcoming paper.

8.1. On the meromorphic extension of the Szegd function

In Theorem 4 we have used the meromorphic extension of the interior Szeg6
function to {z : |z|] < W} This function has two poles at :t\/%. Using a
convergence result for Fourier-Padé approximants constructed from the expan-
sion of the interior Szegé function in terms of orthogonal polynomials on the
unit circle, we prove in this section that ‘m—lazl is the larger radius of the circle
with center at the origin where a such meromorphic extension with exactly two
poles can be done. To obtain this result we will use a Lemma stated in [5]
(Lemma 4 below).

Previously let us fix some notation and concepts. Let f € L'(u). Its Fourier

expansion with respect to the orthonormal system {¢,} is given by

Z Aje; (2),
j=0
where A; denotes the jth Fourier coefficient of f, i.e.,

A (f ).

The Fourier-Padé approximant of type (n,m), n,m € {0,1,...}, of f is the ratio
Tn,m (f) = Pn,m/qn,m of any two polynomials p,, ,, and gy ., such that

(i) deg(pn,m) < n; deg(gn,m) <M, gn,m Z 0.
(11) qn,m(z)f(z) - pn,m(z) ~ An,l@nerJrl(Z) + An,280n+m+2(z) +...



The above condition (ii) means that

<Qn,mf_pn,m7§0j>:03 j=07,n—|—m

In the sequel, we take ¢y, with leading coeflicient equal to 1.

To prove the existence of such polynomials it suffices to solve a homogeneous
linear system of m equations on the m+-1 coeflicients of g, ,,,. Thus, a nontrivial
solution is guaranteed. In general, the rational function =, ,,, is not uniquely
determined but if for every solution (P m, ¢n,m) the polynomial gy, ., has degree
m, then 7, ., is unique. For m fixed, a sequence of type {m, ,, : n € N} is called
an mth row of the Fourier-Padé approximants relative to f.

We write A,,(f) for the largest disk centered at z = 0 in which f can be
extended to a meromorphic function with at most m poles and let R,,(f) be
the radius of a such circle. If Ro(f) > 1 and f has exactly m poles in A,,(f),
then, for n large enough, 7, ., is uniquely determined. This and other results
for row sequences of Fourier-Padé approximants may be found in [18] and [19]
for Fourier expansions with respect to measures supported on an interval of the
real line whose absolutely continuous part with respect to Lebesgue measure is
positive almost everywhere.

The following result is stated in [5].

Lemma 4. Let p be such that Ry(D™') > 1. The following assertions are
equivalent:

(a) D=1 has exactly m poles in A, = A, (D).

(b) The sequence {mym(D™1) :n =0,1,...}, for all sufficiently large n, has
exactly m finite poles and there exists a polynomial w,,(z) = 2™ +... such

that
lim sup || gn.m — we || =6 < 1,
n
where || -|| denotes any norm in the space of polynomials of degree at most
m.
The poles of D™t in A, coincide with the zeros z1, ..., %m Of Wy, and
Ron(D™Y = & max |- (19)
61<i<m !

Lemma 4 turns out to be definitive to prove the following result.

Theorem 5. If the sequence of zeros {z,} satisfies (9), then

Ro(D™Y) = L

 aras]

To carry out the proof we need some previous results (Lemma 5 and Lemma
6 below). The first of them is easily proved by using recurrence relation (1).

Lemma 5. The orthonornal polynomials associated with {z,} satisfy the fol-
lowing relations:

10



_‘Pj+1(0)

z ‘71 = ) ':0,1,...,
el Kjkjt1 !
0, Jj<m-—1,
<Z§0ja¢m> = NJ;]H’ 7 J]J=m— 17
_Wv j>m—]_.
(i)
07 ]<m—2,
<Z2(pj’(pm>:{ %7 ]:m—Q
and
? om(0) ( Fm— ©m (0)pm—1(0)
2 Pm=1,Pm) == m+1(0) +
(& om—1, &m) K2, (ﬁmﬂ‘p +1(0) o (D)
Moreover, if j > m, then
®..1(0)p,, (0
<Z2<pj,gpm> = _M
Kj
d__(0) j+1
D01 (0) | @542(0) 3
“N T T — 3,(0)3151(0) | .
<<I>m<o> B0 2 D00

It is known that for measures in the Szegé class we have

D7) = =3 5 O)s(z), =€D
§=0

(see [9], p. 19; [15], Theorem 1; [14], Theorem 2.2 or [5], p. 174). When {z,} is
defined by (9) the above expansion converges uniformly on compact subsets of

{z:|2| < \/Ialsz‘} and
b (2) = = 3 i i(z ZE€EZ: |z L .
Di(2) K;:O%(O)%( ), zedz:la < |a1a2|} (20)

The next result is a consequence of (20) and Lemma 5.

Lemma 6. The following equalities hold:

<Dz_n}£7(Pm> = ’

(Didion) = £50 | T2 = S w000 ],

<Z2Di_n1t’(pm> — @m(o) (‘I)m—Q(O) + O(@m—l(o))> )



Proof of Theorem 5. According to Theorem 4, D, t is an analytic function on
{z :]7] < \/m} which has a meromorphic extension to {z :]z] < \alazl}

with only two poles at +1/v/agas. Thus, from Lemma 4, the denominators
gn,2 of the Fourier-Padé approximants of order (n,2) are exactly of degree 2

for n large enough and the zeros of ¢, 2 converge to £1/4/|ajaz|. Therefore,

Let gn2(2) = (2 = Bn)(z — Tn) = 22— (/Bn + Tn)z + BnTn. It satisfies

according to (19) it only remains to find lim Sup lgn.2(z) — (22 = —=)||*/™.
102

(n2Dihs Pnt1) = (n2Dinys onsa) = 0.

Thus,
(Bn + Tn)<ZD;nltv Ont1) — 5n7—n<D;¢L1ta Pnt1) = <32D;nln Ont1)s
(Bn + Tn)<ZD;n1t7 Oni2) — 6”Tn<D;L1t’ Pnt2) = <22D;nltv Pnt2)-
Hence,
’ <zzDi}}’<‘O"+1> _<Dizzit7§0n+1> ‘
B, + 1y = (22Dt pnv2)  —(Dings Pt2)
‘ <2D1~:n1t7 On+1) _<DiELit’ Pnt1) ‘
<ZDint7 410"+2> 7<Dint’ 907?'+2>
‘ <Z mtv@n+1> < 2D;nt790n+1> ‘
ﬁ r <ZDz_nt7 SDTL+2> <Z Dznt7 (Pn+2>
n'n
’ <Z znt’ sﬁn+1> < znlf,’(p7l+1> ’
< 2nt7 (lpn+2> znt’ (p7l+2>
We have

‘ <ZD;L},%+1> —<Dfnit7@n+1> '
<ZDi_nt’ @n+2> 7<D7;1,t7 90n+2>

= ©n+1(0)Pn42(0) <q)n+1(0) _ n (0) +<I>n(0)<1>n+1(0)> - (21)

r? q)n+2 (O) (I)n+1(0)
Then, by Lemma 6, there exists C' # 0 such that

<22D‘_%§ Sﬁn+1> *<D_1t 907L+1> Spn+1(0)§0n+2(0)
ing> ing’ — Pt TPnt20) ). (22
‘ (2Dt onia) —(Dib o) el ()

Thus, from (21) and (22), we can find a constant C’ # 0 such that
Bn + T = C'0n(0).

Doing the same calculations for 8, 7,, we deduce that

©nt1(0)pn+2(0) ( 2,(0)  2,(0) ®,1(0) 2, _1(0) + 00 (0 )))

BTy = K ©n11(0) Pri2(0)  ®n(0) ®nyii(0)
n en1(0)¢n+2(0) ( 010 _ 2.0 4 G- (0)¢n+1(0))
n? Prn42(0)  Pnta(0)

12



and thus,
1

_
19

lim 8,7, = —
n

where the convergence is geometric with ratio 4/|a;as].

Therefore,
tm ,2(2) — (2% — —=)1V/" = Jascs]2.
n ’ Q1002
From Lemma 4,
z;| 1
Ryp Yy =l , i=12
2( ) |O{10[2|1/2 |Oé10(2| J
1
where z; are the roots of 22 — —— (both with modulus T75)- Hence,
a1 s v /

{z:]7] < m} is the largest disk centered at z = 0 in which D;,}(2) can be

extended to a meromorphic function with at most two poles.
O

Remark. It might seem that an alternative proof of Theorem 5 could be done
using Hadamard-type formula for R, (D~1) given in [6]. Indeed, this formula
1s written in terms of derivatives <p53)(0) which can be obtained from Corollary

3. It is also required to calculate
Cr def / e % logw(e?)dh, k=0,1,2,

but the weight w is unknown. By the way, we can obtain cy and ¢y from the
values R;j(D™1), j =0,1,2, given in Theorems 4 and 5.

Remark. We can also prove that the Fourier-Padé approzimants of type (n, 1)
of D™ have ezactly a pole at a7~ ' or oz, depending on whether n is even or
odd. Thus, they converge to D; % in {z: |2 < ———1}.

Vlaas|

4. Three-periodic case

If the sequence of zeros is periodic with period three, then the Verblunsky
coefficients are not a geometric progression as one might naively expect. This
case is more complex: if the three periodic zeros have modulus at most *1%‘/5,
then the measure is in the Nevai class, i.e., lim, ®,(0) = 0, whereas if the peri-
odic zeros have modulus greater than ’13‘/5, then some numerical experiments
show that, for degree large enough, the zeros of OPUC are close to three arcs
of the unit circle. So the orthogonality measure should be supported on these
arcs (see Figures 3 and 4).

To prove Theorem 1, we need the following lemma whose easy proof is omit-
ted.

13



Lemma 7. Let r € (0,1) and let {ay, : k > 2} be the sequence

2r2 TQp—1+ a
= Gm=ri— 1t >3

a2 = as =
1+rap_ia,’

The following statements hold:

(i) an € (0,7) for alln > 2.
(ii) The sequence {ay} is monotone decreasing.
(1) If v € (0, 71+\/5]; then lima,, = 0, whereas r € (71+\/g7 1) implies

2 2
/ 1
lima, =+4/r+1— —.
n r

(iv) When r < %\/5, we have

An

r+

a a n—
n < n+1 —r Ap—1 <T(T+1)<1.
Gn—1 an—1 1+ Tapn—10n
a.
(v) Let H Lf limsup ——. Then
n Qp—1

2

H<r(r+H) s H< 1T <r(r+1)<1.

—-Tr

Proof of Theorem 1. From (1), (2) and (12), it follows that
(I)nJrl (Z)
=2 (2 (5 + 2a(0)®ns1(0)) + (@41(0) + 200(0)) By 1(0) ) Pr-2(2)

+ (2 (2 4+ 2u(002011(0) ) @0-1(0) + D141 (0) + 29,,(0)) 5 ().

If &7 and ®,,_» have a common zero (, then

o, 1(0) = — nl)

+1(0) C1+g<1>n,1(o)<1>n(0)
Hence,
01(0)] = [al, |@o(0)] < 321l < 27 g oy < 2
BT = o |p] — 1+ 020 TPV S 12

¢®,—1(0) + 2,(0)
14 (P,-1(0)2,(0)
Let {a,} be as in Lemma 7. Then

T|(I)n—l(0)‘ + |q)n(0)|

B2 (0)] = I€] T+ 12, 1 (O)[2,0)] 7

<r

@ (0)] < an, n =2,

14



and, therefore, if r € (0, *15‘/5], then lima,, = 0. Hence, lim ®,(0) = 0 holds.
n n
If r € (0, =4Y5) then

1/n an

lim sup |®,,(0)|*/™ < limsup |a,, (0)|*/™ < lim sup

1—1r

ap—1

5. Distance from the zeros to the circle
The proof of Theorem 2 requires some auxiliary results.

Lemma 8. Let A denote an infinite subset of the natural numbers. Let
n
H —Up;):n €A}

be a sequence of monic polynomials with zeros in D such that

. Val(2)
MR V()

=0 (23)

uniformly on compact subsets of D. Suppose that there are zg € D and r > 0
such that V,,(2) #0 for all z : |z — z0| > r andn € A. Then

n
}Liél/l\ — |vn,j]) = oo.
j:l
Proof. There is no loss of generality in assuming that zy = 0. Indeed, by the
change of variables

_ C+=o
C1+7%¢]
we get
Wa(©) _ Va(2%)
Wi V(%)
where W,, is a monic polynomial whose zeros, (, ;, j = 1,...,n, lie in . Be-

sides, there exists § > 0 such that
|<n,j| >0 j=1,...,n

Moreover, we have

n

lim ) =0 < hm Z
neA £ — |vn, = 1Gnjl)
J:

15



because there are k1 = k1(z0) > 0, ko = k2(20) > 0 such that

| S+ 2
1+7¢

k(1 —1[¢]) <1

<k(1-[C]), V(eD.

Thus, we can assume zy = 0. By hypothesis,

. . Vu(0) o
lim J] vn; = lim VZ(O) =0e ilg}\; log |vn, ;| = —oo. (24)

Since |vy, ;| > r and there is @ < —1 such that ax <log(l —z), Vz € (0,1 —r),
we deduce that

(1 — |vp5]) <log(l — (1 — |vn;])) = log |vn ;] (25)
Therefore, the proof of the lemma follows from (24) and (25). O

Remark. Sequences of monic polynomials V,, as those considered in Lemma
8 play an important role in rational approximation. Namely, condition (23) is
equivalent to the set of rational functions

Pn

: pp, polynomial of degree < n,n=1,2,...}

is dense in the space of analytic functions in D with the uniform norm (see
Corollary 2, p. 246, in [206]).

The next result is a generalization of Theorem 9, Chapter 9, in [26].

Lemma 9. Let A denote an infinite subset of the natural numbers and let

n

{Val(z) = H(z —Upj):n €A}

j=1

be a sequence of monic polynomials whose zeros lie in D. The following state-
ments are equivalent:

. Val(2)
@ Ve

@%;mmj
J:

Proof. Assume that (b) holds. Let T' € (0,1) be fixed. We have the inequalities

1-T | U=D ) 1T

— (1 — v, < 1— |on]).
a1 lenal) £ S < S (1 )

= 0 uniformly on compact subsets of D.

) = 0.

Thus, (b) is equivalent to

i 3 (1= 00 o)

neA 1+ Tlvn,j|

= o0

16



1—T)(1 = v, ,
for each T € (0,1). As ( I [vn.5) < 1-—T < 1, there exists A < —1
1 +T"Un7j|
such that

() <o (- )

()

o (WD =D ¢ (Totlensly ¢ (=Dl
1+ T\vn7j| 1+ T|Un,j‘ 14+ T|’Un,j|

Hence, (b) is equivalent to
T + vy 4]
1 1 2 —00.
nlénZOg<1+T|vn] >
If |z] < T, using an inequality in [26], p. 229, we have

Va(2) < ﬁ T + |vn,,
— 114 T|Unj| ’
Jj=1 ’

Vi (2)

Therefore, (b) implies (a).

By Lemma 8, proving the other implication requires only to verify the fol-
lowing statement: Assume that (a) holds and that for any infinite set Ay C A,
any zg € D and any € > 0 there exists an infinite set Ao C Ay such that for any
n € Ay there is j € {1,...,n} such that v, ; — 20| < €, i.e., V,, has a zero in
{z 1]z — 20| < €}. Then

n
lim » (11—, |) =

eA
n =

To get a contradiction, we assume that there exist M > 0 and an infinite set
I' C A such that

> (A —|on) <M, Vnel. (26)
j=1
We can choose wy, ..., w, on the circle {z : |z| = 1/2} and r > 0 small enough,

such that the disks {z : |z —w,;| <}, j =1,...,k, are all disjoint and
k(1/2—7)> M.
By hypothesis, we can choose an infinite set I'y C I such that
Vi(2) has a zero in {z : |z —wq| < r} for all n € T'y.
Given I'y, we can choose I's C I'y C I' such that

Vi(2) has a zero in {z : |z — wa| < r} for all n € Ty

17



and so, V,,, n € 'y, hasazeroin {z : |z—ws| < r} and azeroin {z : |z—w1| < r}.
In this way, there exists an infinite set of natural numbers I'y, C I" such that

Vio(2z) has a zero in each {z: [z —wj| <r}foralln ey and j =1,... k.
According to the choice of wy, - ,wg, r and Ty, for n € Ty, we get the contra-
diction

> (1= |onyl) > (1= |onjl) > k(1/2 —7) > M.
J=l1 j:|vn’j—wl\<r
I1=1,....k

O

Proof of Theorem 2. Tt is very well known that lim,, ®,,(0) = 0 is equivalent to

B )

A

=0

uniformly on compact subsets of D (see, for example, Theorem 1.7.4, p. 91 in
[20]). Therefore, Theorem 2 follows immediately from Lemma 9.

O
5.1. Distance from the zeros to an arc of the circle
Polynomials orthogonal with respect to a weight in the form
m
2) [ Iz —al®, |2l <1,
where |ag| =1, B > —1/2,k = 1,...,m, and w(z) > 0 for |z| = 1 are been

studied in [13]. It is proved there that if w(z) can be extended as a holomorfic
and nonvanishing function to an annulus around the unit circle, then

_1_ 1ogn

e + 0( )-

In the case of polynomials orthogonal with respect to any weight on an arc
A of the unit circle which is positive almost everywhere on A, the behavior of
the zeros is known (see [4] and [7]): They approach to A as the degree of the
polynomials increases. Moreover, (see [8]) for n large enough, there exist O(n)
zeros of ®,, on every neighborhood of each arc A’ C A.

Next, we obtain the rate of approach to A for the zeros of OPUC of Cheby-
shev weight on an arc of the unit circle®. The property just above-mentioned
justifies the existence of sequences of zeros as the one used in Theorem 6.

3These polynomials were already studied by Akhiezer in [1].
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Let consider the weight

ot . sin(a/2) 7
w(0) = ¢ 2sin(0/2)/cos? a/2 — cos? /2
0, 0 ¢ la,2m — al.

0 € o, 27 — a],

Theorem 6. Let z, ;, be any zero of the polynomial ®,(z). Provided that

liTIln Zn,jn = e Gy e la,2m — o,

it follows that
f(6o)

= +0(1/n?),

where f is a positive continuous function in [o, 27 — «] which is nonzero in
(o, 21 — ).

Proof. For the nth-orthonormal polynomial, ¢,,(2), the following expression ap-
pears in [10]:

w™(v) n vw"(1/v)

en(z) = Kn , z2=h(v), (27)
{ |

1—pov v—0
where 3 = itan 75<,
1B Cw=B o (=B)Bu-1)
’LU(’U)—Zm, w(l/v)_zl+ﬁﬂ’ Z—h(?))— (’U—‘rﬁ)(ﬁ’l}—‘rl)

and K, is a nonzero complex number.

The function w = w(v) is an invertible analytic homeomorphism from D
to D and z = h(v) is analytic in C\ {-8, —%} and a homeomorphism from
D\ {-8} to C\ A,, where A, = {¢' : 0 € [a, 27 — a}.

For simplicity, from now on, we will write z, ; instead of z,_;,. Also we will
use the standard notation z,, ~ y, in place of lim,, z—" =1and z, —a in place
of lim,, z,, = =.

To every z, ; there corresponds a unique v, ; such that h(v, ;) = z,; and
|vn, ;| < 1. Since z,_ ; approach to A, as n — oo, we have |v,, ;| - 1. Moreover,

we know that

W' (Wng) | Vg WA/ Vng) g W Vng) Va8 (28)
1= Pon,; Vjn =B w"(vn,5) Un,i(1 = Bvn,j)
Thus, A _ ‘
limuv, ;j = ™0, e = p(e™0),  w € (0,7),
lim $(vy,,5) = sinwy,
and
lim 1 |onl? —2R(,;8) + 8] 1 —2tannsinwy + |3]? € (0,1),

n ‘Un,j|2 1- 2%(1}71,1'/6) + ‘Un,j/@P 1+ 2tannsinwy + |5|2
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where n = 3%,

On the other hand,

2

1 (- AP
[0n,5% (1 = Bonj)(1 = Bun,;)
1 o P = 2R(@a;8) + |8
C|on2 1= 2R(vnB8) + |vn B2

Un,j - ﬁ
Un,ji (1 = Boy,j)

and R(vy ;8) = —S(vn,;) tann, (T, ;8) = (v,,;) tann. Moreover,

1— Buny|?

1= RngB) e BP
Un,j+5

o2+ 2R 8) + (B2 0

w(1/vn,)[* =

w(1/vn)* =1

(= A= B8 DT —
T 14 2R, 8) + B2 2L o)

1-181%)
14 2tannsinwy + tan?n’

Also,
2

Un,j - ﬂ
14 Bog,;

(lvn” = 1)@ = |8%)

_ lons? = 2R@58) + 18, |
1+ 2R(vn;B) + |vn B2 »

(1 —18%)

Jw(vn ;)I* =

w(on) -1 =

~ =2(1=|vn )

14 2R(vn ;8) + |vn ;5|2 1 —2tannsinwg + |82

Hence,
2
w(@ /o) |7 Jw(l/eng)? = Jw(veg)? =201 = |B*) (1 — [vn )
1= 2 - 2
w(vn,) w(on,) [w(vn.,)
4 tann sin wg

)

(1+2tannsinwg + |5)?)(1 — 2tann sinwy + |B?)
—8(1 = [B)(1 — [ony]) tanpsinwo
(1 — 2tanysinwg + |B]2)(1 + 2 tannsinwg + |8|2)

From (28), we deduce that

‘w(l/vn’j) " 1-—2tannsinwy + |B)?
w(vn ;) n 1+ 2tannsinwg + |52
and so,
. (‘w(l/vn,j) B 1) L log (1 — 2tannsinwg + |ﬁ2> .
w(vp ;) n 1+ 2tannsinwy + |32
Thus,

li7rlnn(l — |vn,5]) = f(wo),
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Figure 1: Zeros of ®1g¢ for two period zeros: 0.2 and 0.73.

where
F(wo) (1 —2tannsinwg + |B])(1 + 2 tannsinwy + |3]?)
w =
0 8(1 —|5]?) tann sin wy
1 1+ 2tannsinwg + |B)?
1 —2tannsinwy + |B]2 )
Therefore,
1
[2n.5] = [h(vn )| = |w(vn,;)][w(—)
Unj
1
= 1+ w(vn )l = DA+ w(—)[ - 1)
n,j
(e 20D 18P (2l = 10 - [5P)
1+ 2tannsinwy + |82 1 — 2tannsinwg + tan?n
1~
~ ]_ —_ -
nf(w())v
where )
~ 1+ 2tannsinwg + tan
f(wo) = log N . 0 277 .
1 —2tannsinwy + tan“n

Remark. The Figures 1—4 were generated in Mathematica 6.
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Figure 2: Zeros of ®19¢ for two period zeros: 0.7¢ %% and 0.7¢'7.

27 2m

Figure 3: Zeros of ®199 for three period zeros: 0.62, 0.62¢'3 and 0.62e %3 . Observe
=145 — 0.618034... < 0.62
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2m 2m
Figure 4: Zeros of ®5¢ for three period zeros: 0.8, 0.8¢* 3 and 0.8e~ "3 . When the degree of
the OPUC is larger than 50 calculating the zeros appear numerical instability in Mathematica
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