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Abstract
Background and Aims: Bunch compactness is a key feature determining grape and wine composition because tight
bunches show a less homogeneous ripening, and are prone to greater fungal disease incidence. The Organisation
Internationale de la Vigne et du Vin descriptor, the most recent method for the assessment of bunch compactness,
requires visual inspection and trained evaluators, and provides subjective and qualitative values. The aim of this work
was to develop a methodology based on image analysis to determine bunch compactness in a non-invasive, objective
and quantitative way.
Methods and Results: Ninety bunches of nine different red cultivars of Vitis vinifera L. were photographed with a
colour camera, and their bunch compactness was determined by visual inspection. A predictive partial least squares
(PLS) model was developed in order to estimate bunch compactness from the morphological features extracted by
automated image analysis, after the supervised segmentation of the images. The PLS model showed a capability of
85.3% for predicting correctly the rating of bunch compactness. The most discriminant variables of the model were
highly correlated with the tightness of the berries in the bunch (proportion of visibility of berries, rachis and holes)
and with the shape of the bunch (roundness, compactness shape factor and aspect ratio).
Conclusions: The non-invasive, image analysis methodology presented here enables the quantitative assessment of
bunch compactness, thereby providing precise objective information for this key parameter.
Significance of the Study: A quantitative, objective and accurate system based on image analysis was developed
as an alternative to current visual methods for the estimation of bunch compactness. This novel method could be
applied to the classification of table grapes and/or at the receival point of wineries for sorting and assessment of wine
grapes before vinification.
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Introduction
Bunch compactness on grapevines is a key feature determining
grape and wine quality (Hed et al. 2009, Molitor et al. 2012,
Tello and Ibáñez 2014). It can be defined by the degree of
aggregation of the berries within the bunch, which denotes the
density of berry distribution, their mobility and deformation, as
well as the visibility of pedicels (Organisation Internationale
de la Vigne et du Vin 2007). Following the Organisation
Internationale de la Vigne et du Vin (OIV) criteria for compact-
ness, grape bunches can be classified from loose to dense. In
compact bunches, berries are packed in such a way that they
touch each other in many areas of the bunch, some of them lose
their spherical shape, and there are several berries hidden in
interior layers, where air circulation is limited and ripening is
frequently compromised because of their lack of exposure to
sunlight (Vail and Marois 1991, Molitor et al. 2012). As a con-
sequence of these morphological features, compact bunches are
more susceptible to fungal diseases (Molitor et al. 2012), espe-

cially Botrytis cinerea (Vail and Marois 1991) and powdery
mildew (Austin and Wilcox 2012). In addition, the heterogene-
ous ripening occurring between the inner and outer berries in
compact bunches can have a detrimental effect on wine quality
(Figueiredo-González et al. 2013). Therefore, winemakers aim
to obtain loose bunches that are considered to be of higher
quality (Vail and Marois 1991).

Many studies (Hed et al. 2009, Palliotti et al. 2011,
Tardaguila et al. 2012) have estimated bunch compactness
according to the visual descriptor scale proposed by the OIV
(Organisation Internationale de la Vigne et du Vin 2007) or
other visual systems specifically developed for the evaluation
of this trait in certain grapevine cultivars (Zabadal and Bukovac
2006, Evers et al. 2010). The subjectivity linked to these
visual methods, however, makes them impracticable for certain
types of studies that require objective and quantitative meas-
urements of the trait (Tello and Ibáñez 2014). As a result,
there is a need to create methods capable of estimating the
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compactness of a grape bunch in an accurate, objective and
quantitative way. The OIV method for bunch compactness
assessment (Organisation Internationale de la Vigne et du Vin
2007) is the method that is most widely used by the grape and
wine industry around the world, but it is a visual and subjec-
tive system that requires a panel with trained experts to be able
to use it. Likewise, different indexes based on the architecture
of the bunch can be found in the literature for the evaluation
of bunch compactness. Recently, Tello and Ibáñez (2014) tested
19 of these indexes in 110 grape bunches with a large degree
of morphological variability, and most of them provided a low
estimation of this trait in a general framework. In this study,
the morphological features of the bunch were evaluated manu-
ally, which hinders its industrial application. Given that bunch
compactness is a key feature for the quality of table and wine
grapes, both industries would benefit from the development of
a quantitative, rapid and objective method to evaluate this viti-
cultural parameter.

Computer vision is widely used to inspect vegetable produc-
tion. This technology allows the creation of systems capable of
estimating or predicting certain features of the inspected objects
in a fast, repeatable and accurate way without the need for
contact (Lorente et al. 2013, Vidal et al. 2013). Most applica-
tions are related to the measurement of external properties,
such as colour, size, shape or detection of defects (Cubero et al.
2011). The morphological features most commonly used to
characterise the shape of an object are the area, the perimeter,
the length of the major and minor axes, and also the aspect ratio
(Costa et al. 2011). The use of ratios has the advantage of
allowing comparisons to be made among fruits of different size.
Accordingly, Venora et al. (2009) used the length/circumference
ratio for beans, and Wang and Nguang (2007) used length/
diameter ratios in order to extract fruit volume of axi-symmetric
agricultural products. Other authors used several ratios to esti-
mate volume in bell peppers (Ngouajio et al. 2003) or for in-line
sorting of mandarins (Blasco et al. 2009a).

Image processing has been used in viticulture to assess key
canopy features, such as yield (Dunn and Martin 2004, Diago
et al. 2012) and leaf area (Tardaguila et al. 2012). Recently,
Herzog et al. (2014) have shown some initial results on the
application of image analysis for high-throughput phenotyping
in vineyards. Several attempts have been made for the determi-
nation of bunch morphology using image analysis. Wycislo et al.
(2008) used different ratios, such as the major/minor axis ratio,
shape factor, and compactness shape value, to estimate the
shape of table grapes. Chen et al. (2010) configured an auto-
mated inspection system for grading grape bunches on the basis
of their colour, size and shape. The shape features were calcu-
lated from the projection area and pixel accumulation curve. In
order to conduct geometric measurements of grape fruits
dynamically, Miao et al. (2012) used a snake-based model after
image segmentation with the aim of discriminating each grape
in the bunch and obtaining some descriptors of the individual
grapes. Image analysis has been applied for the evaluation of
different bunch and berry traits, including the number of berries
per bunch, bunch mass, and berry size (Kicherer et al. 2013,
Cubero et al. 2014, Diago et al. 2014b, Roscher et al. 2014).
Recently, a new method for the assessment of the number of
flowers per inflorescence by means of image analysis has also
been successfully applied (Diago et al. 2014a).

An image represents a bi-dimensional projection of the
imaged sample, and thus volumetric information is lost. Bunch
compactness is a three-dimensional (3D) feature, which makes
the development of automated inspection systems based on
images specifically adapted to this task challenging, and it may

only be achieved from the indirect measures of some morpho-
logical descriptors. For example, Schöler and Steinhase (2012)
included automated 3D reconstruction of bunch architecture
based on the analysis of rachises for the potential evaluation of
bunch compactness.

The examples presented demonstrate that many morpho-
logical features of the bunch can be determined by image analy-
sis. Despite the widespread use of machine vision in viticulture,
the estimation of the compactness of bunches has still not been
explored using this technique. This work is the first attempt to
create an automated method to achieve quantitative, accurate
and objective assessments of bunch compactness on grapevines
using image analysis techniques.

Material and methods

Assessment of plant material and bunch yield components
The experiments were carried out with 90 randomly selected
bunches of grapes from nine red cultivars of Vitis vinifera L.
(10 bunches per cultivar). The cultivars under study were
Aramon, Bobal, Cabernet Franc, Cinsaut, Danugue, Derechero
de Muniesa, Monastrell, Moravia Agria and Ruby Seedless,
which presented bunches of various size, shape, and density in
order to ensure a large degree of variability between bunch
morphology and compactness. The bunches of grapes were
carefully handpicked in October 2011 at the Rioja Regional
Government’s Experimental Vineyard (Agoncillo, La Rioja,
Spain), transported to the Instituto de Ciencias de la Vid y del
Vino (ICVV, Logroño, La Rioja, Spain) and kept under refrigera-
tion (4°C) until image acquisition. For each cultivar, 10 bunches
showing the general features of the cultivar were selected, and
their mass was recorded with a set of scales (Blauscal AC-5000,
Barcelona, Spain).

Image acquisition
Images of the grape bunches were acquired under laboratory
conditions at 24°C. To acquire the images, the bunches were
placed in front of a camera (EOS 550D, Canon Inc., Tokyo,
Japan) at a focal distance of 55 mm, the rachis hanging from a
clamp so as not to distort the shape of the bunch and using a
uniform background in order to facilitate later image segmen-
tation by increasing the contrast between the berries and the
background. The camera was placed inside an inspection
chamber with the inner walls covered by a tissue diffuser. The
lighting system was composed of four lamps placed on the sides
of the inspection chamber, oriented 45° to the samples, and
separated 30-cm from the bunch to be photographed, each lamp
consisting of two fluorescent tubes (Biolux L18W/965, 6500 K,
Osram AG, Munich, Germany) powered by high-frequency
electronic ballasts to avoid the flicker effect.

The captured images had a resolution of 0.12 mm/pixel and
were stored in Tagged Image File (TIF) format. The four sides of
each bunch were imaged after three consecutive rotations of 90°
in order to capture as much of the shape of the bunch as
possible, thus resulting in a database of 360 images.

Evaluation of bunch compactness by visual inspection
The data on bunch compactness obtained with the developed
image analysis system were compared with the routine visual
ratings achieved following the OIV standard code 204
(Organisation Internationale de la Vigne et du Vin 2007) by 14
trained experts who characterised the compactness of each
bunch following the OIV criteria. The final compactness rating
assigned to each bunch was the average of the 14 scores. The
OIV descriptor classified the bunch compactness using scores
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from 1 to 9, depending on the visibility of the pedicels, the
difficulty involved in moving the berries and the presence of
deformed berries because of the pressure. Of these values, 1 is
assigned to the loosest bunches (Figure 1a), while 9 is assigned
to the most compact ones (Figure 1b).

Bunch morphological assessment by image analysis
The image analysis was designed to estimate the following
bunch variables: area (A), perimeter (P), ratio between area and
perimeter (AP), length (L), maximum width (MW), aspect ratio
(AS), compactness shape factor (CSF) and roundness (RD) of
the bunch, as well as width at 25% (W25), 50% (W50), and
75% (W75) of the length of the main axis, and proportion of the
area corresponding to berries (AB), rachis (AR), and holes (AH)
in the bunch. The influence on the statistical models of other
bunch variables, such as the number of berries per bunch or the
mass of the berries estimated by image processing techniques
(Diago et al. 2014b) was analysed previously, but after prelimi-
nary tests it was concluded that their impact on the estimation
of the compactness was slight, and hence they were not
included for building the model.

The first step in the morphological analysis to extract the
main features of each bunch was to carry out a supervised
segmentation of the images in order to determine whether the
pixels belonged to the class background (orange background),
berry, or rachis. To train the segmentation model, one repre-
sentative set of pixels from each class was manually selected by
an operator using a training set of images composed of one
image of each cultivar. These images were only used to train the
system and were excluded from the validation set used to obtain
the results. After this operation, a labelled dataset consisting of
the colour values of the pixels, red (R), green (G), and blue (B),
and the class they belonged to were obtained. This training
dataset was used as input for a Bayesian discriminant analysis
performed to obtain classification functions for each class in the
problem. These functions had the three colour (R, G, and B)
values of one pixel as input, the output being the probability of
belonging to a given class. Hence, during the process of seg-
menting the images in the validation dataset, all the pixels in the
images were classified using these classification functions in one
of the three classes: background, berry, or rachis, and were
assigned to the class with the highest probability. All this process
was carried out with the software Food-ColorInspector (free
available at http://www.cofilab.com).

Then, filtering was undertaken to reduce the noise because
of errors produced by the pixel classification model, and to
smooth the contour in order to facilitate the later extraction of
certain variables from the perimeter of the bunch. Each pixel
was replaced with the result of applying a mode filter in the
neighbourhood of 3 × 3. The images obtained after this opera-
tion contained four regions of interest, namely, background,
berries, rachis, and holes inside the bunch (Figure 2b). The
area of the bunch was estimated as the sum of the pixels
belonging to berries and rachis. The proportion of pixels in the
bunch corresponding to berries, rachis, and holes was calcu-
lated in order to include these values in the model. This was
carried out under the premise that the number of holes and
the visibility of the rachis could be related with compactness,
since in a compact bunch they would be hardly observable,
while they would be far more visible in a loose one. The back-
ground and the holes, however, had the same orange colour
and both were sorted as background, so further operations
were needed to discriminate between these two classes. To
solve this problem, an algorithm based on the Watershed strat-
egy (Beucher and Lantuéjoul 1979) was developed. The algo-
rithm set four starting points (seeds) as the true background in
the four corners of the image. In the next step, all the neigh-
bouring pixels of these seeds that belonged to the background
class were also labelled as true background. This process con-
tinued iteratively by labelling in each step all the background
pixels that were adjacent to any other pixel already labelled as
true background, thus flooding the outside of the bunch
(Figure 2c). When the algorithm ended, all pixels still labelled
as background were supposed to be inside the bunch and
hence considered and labelled as holes.

The segmented image was converted into a binary image
containing two regions of interest – background and bunch –
that was used to extract the contour of the bunch using a
chain code (Freeman 1961). The main morphological features
were then obtained by analysing the perimeter of the bunch.
The mass centre and the main axis of inertia were extracted
from the contour coordinates. From the main axis of inertia,
the width was calculated at 25, 50 and 75% of the length of
the axis with the aim of studying whether the distribution of
the berries along the length of the bunch was related with the
compactness (Figure 3). To make the algorithm more robust
against sharp variations in shape, these values were calculated
as the average width at the selected lengths (25, 50 and 75%
of the main axis) ± 5%. Finally, the A/P ratio and the addi-
tional features related to bunch morphology shown below
were calculated as follows (Davies 2000, Burger and Burge
2009):

Figure 1. Examples of (a) loose bunch and (b) compact bunch.

Figure 2. Process followed to segment the bunch image in the four
classes: background, berries, rachis and holes: (a) original image,
(b) segmented image, (c) watershed algorithm and detection of
internal holes.
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AS MW L= (1)

CSF P A= ( )2 (2)

RD A P= ∗ ∗( )4 0 2. π (3)

where L, MW, P and A refer to the bunch under consideration.
The variable AS is the ratio between the maximum width and
the length, the objects with lower ratios being more elongated.
The CSF is a relation between the area and the perimeter that
considers that, given objects with the same perimeter, those
with a lower perimeter will be more compact, regardless of the
size of the object. Finally, RD measures how the shape of any
object is related to the shape of a circle.

As four images were acquired of the four sides of each
bunch, the morphological features included in the statistical
analysis were the average of the ones obtained for each bunch.

Statistical analysis
A predictive multivariate statistical projection model was devel-
oped in order to estimate the compactness of grape bunches
objectively and accurately from the morphological features
extracted by the automated image analysis, as well as to find out
whenever differences in compactness among cultivars occurred,
and to select those morphological features with a statistically
relevant predictive capability. Three out of the 10 bunches per
cultivar were extracted to build a validation set. The remaining
samples were used to calibrate a partial least squares (PLS)
model (Geladi and Kowalski 1986). Partial least squares is a
projection to latent structure (or latent based) multivariate sta-
tistical model used when a variable (such as OIV compactness)
has to be predicted from a set of variables (morphological fea-
tures extracted from images). Therefore, it is a suitable model
when prediction of a qualitative variable is the final goal, as is
the case here. Hence, by using PLS it becomes possible to deal
with hidden or internal relationships between the different mor-

phological features and the grape cultivar that show higher
covariance with the compactness in a better way than by using
principal components analysis plus any regression technique.
Principal components analysis focuses on maximising the vari-
ance in the set of the extracted variables, which might not
necessarily be related to the desired predicted variable, that is,
compactness, in this study.

Since these models are usually built from a large number of
X variables, in order to extract some of the variability in the
predictions introduced by those features that do not correlate to
the Y variable, one recommended approach (Martens and Naes
1989) is to build these models in the following sequential
fashion:

1. Fit the PLS model to the dataset.
2. Search for outliers both in the latent space by inspecting

Hotelling’s T2 and in the residuals by inspecting the square
prediction error (SPE) or the distance to the model. These
two statistics differ in their conceptual meaning. Hotelling’s
T2 represents the projection of each bunch onto the reduced
subspace defined by the PLS model. Thus, values over the
confidence limits indicate that the corresponding bunches
present extreme values of the features extracted by the vision
system, even though the internal correlation structure is
maintained in the model. In contrast, the distance to the
model represents a measure of the squared Euclidean dis-
tance of each bunch to this subspace (Prats-Montalbán and
Ferrer 2007), and those values over the confidence limits are
related to bunches that do not behave in the same way as the
ones used to create the model. Therefore, the prediction
provided by the model should not be taken into account. In
our case, all bunches fit the model quite well.

3. Look for those variables whose coefficients’ confidence inter-
vals pass through zero (i.e. they are not statistically signifi-
cant). This means that they may possibly have little influence
on the predicting model.

4. Eliminate those variables with clearly non-statistical signifi-
cance from the model, and go to 1 until all variables show
statistically significant coefficients.

From the morphological features extracted using image
analysis and the continuous compactness rated by the judges, a
PLS model was built following the procedure described above.
Therefore, only the final results of the PLS model are shown. All
calculations were performed using SIMCA P+12 (Umetrics Inc.,
Umeå, Sweden).

Results and discussion
Table 1 summarises the average ± standard error confidence
intervals for the set of variables directly measured in bunches
and for the set of variables estimated using image analysis, in the
nine grape cultivars under study. Analyses of variance of each
variable with respect to the cultivar (results not shown) have
yielded a statistically significant difference among cultivars
(P < 0.001) in all cases. Since these differences depended on the
variable analysed, and no clear clustering could be performed
because of the number of cultivars studied, no class labelling is
reported. Nevertheless, it was not the objective of this work to
analyse differences between cultivars for any of the variables
computed, but to build some inferential model capable of pre-
dicting compactness from the image analysis variables. In order
to deal with these issues, a PLS model capable of taking advan-
tage of the potential internal correlation structure between the
whole set of image analysis variables as well as the cultivars was
built in order to create an inferential model with respect to
bunch compactness.

Figure 3. Main axis of inertia and width at 25, 50 and 75% of the
main axis length in a grapevine bunch.
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Features were auto-scaled (mean centred, afterwards
divided by their corresponding standard deviations) to give
them all the same opportunity to contribute to the model.
Figure 4 shows the coefficients plot with 95% confidence inter-
vals for the initial set of variables. It can be observed that some
variables, such as W50, MW, A, L or P, did not show a significant
effect on the OIV compactness, since the 95% confidence inter-
vals included the value zero. Furthermore, cultivars Cabernet
Franc, Monastrell, Cinsaut and Danugue did not show any extra
influence on the compactness either. As a result, the final PLS
model included all the cultivars (depending on the cultivar,
there was a higher, equal or lower compactness value with
respect to the other cultivars in the study) and the seven vari-
ables AB, AR, AH, RD, CSF, AS and W75. It must be stressed that
this procedure is conducted from a conservative point of view,
that is, leaving those variables that are close to significance (and
close to non-significance) in the model at each iterative step,
hence looking for a reliable final model.

The PLS model, built using the selected features, showed a
predictive capability of 85.3% for bunch compactness (OIV
compactness rating). No outliers within the model or with
respect to the model (high distance to the model) were detected.
The nine cultivars and the seven features with statistically sig-
nificant coefficients are shown in Figure 5. Thus, the PLS model
reveals the higher role played by the variables AS, W75, AB, RD
CSF, AR and AH in the compactness of the bunch.

Figure 6 depicts the Score Plot of all the individual bunches
for the two components of the PLS model. The first component
of the model is mainly related to the extracted morphological
features shown in Figure 5, and explained 82.0% of bunch
compactness (in predictive capability terms); whereas there was
an additional 3.3% that was mainly related to the cultivar.
Although some overlapping exists, cultivars are arranged on
the two-dimensional score plot following a clear trend, with
the looser cultivars, for example Ruby Seedless, Aramon and
Derechero de Muniesa, in the negative part of component 1 and
the more compact, for example Bobal and Monastrell, on the
positive side. The clustering of the observations regarding the
cultivars is in accordance with the position of their correspond-
ing weights in the plot for the two components of the model
(Figure 7), thereby revealing the capacity of the PLS model to

discriminate between the distinct values of compactness of the
different cultivars under study.

The goodness of the PLS model was tested with the
validation set of samples. Figure 8 shows the prediction of the
validation and the training sets with respect to their observed

Figure 4. Plot of the coefficients with 95% confidence intervals. The
Y axis corresponds to the value of the coefficient of each feature, and
the X axis is related to the cultivar and image analysis variables (A,
bunch area; P, bunch perimeter; L, bunch length, MW, maximum
bunch width; AP, ratio between bunch area and bunch perimeter;
W25, W50, W75: bunch width at 25, 50 and 75%, respectively, of the
length of the main axis of the bunch; AS, aspect ratio; CSF, com-
pactness shape factor; RD, bunch roundness; AB, AH, AR, propor-
tion of the bunch area corresponding to berries, holes and rachis,
respectively).

Figure 5. Plot of the coefficients for the final partial least squares
model with 95% confidence intervals. The Y axis corresponds to the
value of the coefficient of each feature and the X axis is related to the
cultivar and image analysis variables (W75, bunch width at 75% of
the length of the main axis of the bunch; AS, aspect ratio; CSF,
compactness shape factor; RD, bunch roundness; AB, AH, AR, pro-
portion of the bunch area corresponding to berries, holes and rachis,
respectively).

Figure 6. Score plot of the individual bunches of nine cultivars
(seven bunches per cultivar) for the two components of the partial
least squares model.

Figure 7. Plot of weights for components 1 and 2 of the partial least
squares model for the cultivars Bobal ( ), Cabernet Franc ( ),
Cinsaut ( ), Derechero de Muniesa ( ), Monastrell ( ), Aramon
( ), Danugue ( ), Ruby Seedless ( ) and Moravia Agria ( ).
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values. It can be seen how well the model performed with the
test set over the training set with a root mean square prediction
error (RMSEP) of 1.03. This RMSEP indicates the accuracy of
the model. From the bulk data in the validation set, that is, the
compactness values assessed for each bunch by a total of 14
inspectors, the global standard deviation equivalent to RMSEP
(Bro et al. 2005) was 1.13. The similarity in the results obtained
from the two methodologies allows greater confidence about
the creation of an objective automated methodology for assess-
ing the compactness of bunches of grapes. This can also be
derived from the fact that the residual variance of the validation
data was null. This was calculated from the difference between
the variance components leading the model residuals (RMSEP2)
and the variance obtained from the analytical evaluation of the
bunches by the evaluation panel, assuming that both were
independent (Mortensen and Bro 2006).

As stated above, the PLS model revealed a close relationship
between bunch compactness and seven variables (AS, W75, AB,
RD CSF, AR and AH), which exhibited the larger absolute coef-
ficients in the first component, accounting for 82.0% of the
dependent variable (Figure 7). These shape features have the
particularity that they are invariant with the size, while other
variables whose measurement depends strongly on the size of
the bunch, such as the area, the perimeter, the length or the
width, have been discarded, since they have little influence on
the prediction capability of the model. Of these, the variables
AS, W75, RD and AB showed higher values in bunches with
greater compactness. Thus, compact bunches are likely to have
a larger proportion of area covered by berries (AB), and had a
more rounded shape (RD), caused by a bigger area-to-perimeter
ratio. This shape probably also gave rise to a higher width-to-
length ratio (AS). Accordingly, Molitor et al. (2012) showed that
the elongation of the bunch (i.e. a lower AS ratio) caused by the
application of gibberellic acid led to a significant reduction in the
bunch compactness. It is interesting to note that compact
bunches also showed a higher width at 75% of the main axis
(W75).

In contrast, the variables CSF, AR and AH showed a negative
coefficient in the first component, being linked to the grapevine
cultivars with a looser shape (Figure 7). Variables AR and
AH are related to the proportion of the total area of the bunch
image not covered by berries, and bunches in which parts
of the rachis and holes are visible are expected to be looser. In
fact, this is similar to one of the criteria used in the OIV descrip-
tor for bunch compactness, that is, the visibility of pedicels

(Organisation Internationale de la Vigne et du Vin 2007). Com-
pactness shape factor has an inverse relationship with RD, and
rises with perimeter. A higher perimeter is a consequence of the
irregular arrangement of the berries in looser bunches, in which
they are sparsely distributed all along the stem (Hed et al. 2009).
The bunch perimeter also rises with the length of the first
ramifications, which have been proven to correlate significantly
and negatively with bunch compactness (Tello and Ibáñez
2014).

Most of the variables selected by the PLS model are difficult
to measure directly in the bunch, but they can easily be
extracted by automated image analysis. The exceptions are AS
(which involves the length and the maximum width of the
bunch) and W75, variables that can easily be measured by
traditional systems. Nevertheless, the remaining important vari-
ables extracted by the model cannot be evaluated directly, and
they require the quantitative measurement of more complex
characteristics of the bunch, such as their total area and perim-
eter (needed for the calculation of RD and CSF), as well as the
area of the bunch covered by the berries, holes and rachis (AB,
AH and AR, respectively), which can be determined accurately
only by image analysis. Therefore, the development of image
processing approaches allows the measurement of new features
that can be used for the construction of models for the objective
and precise evaluation of bunch compactness.

The PLS model proposed here explains up to 85.3% of the
variability of the trait (in predictive capability terms), which is
an important figure considering the complexity of the trait. In a
recent study conducted to test 19 compactness indexes, the best
one was calculated on the basis of six characteristics of the
architecture of the bunch (bunch mass, number of berries per
bunch, number of seeds per berry, bunch length, first ramifica-
tion length and number of ramifications per bunch) measured
in 11 grapevine cultivars that included the nine red cultivars
used in this work; a direct correlation value of τb = 0.556 was
obtained (Tello and Ibáñez 2014). Thus, the application of
image-based technologies combined with multivariate analysis
allows the quantitative, objective and rapid measurement of
different bunch features that cannot be obtained by traditional
direct systems.

In this work, the average values of all features from the four
images of each bunch have been used to obtain a more robust
model. Tentative attempts, however, at building PLS models
have also been made using only one random image of each
bunch. The results obtained (data not shown) were similar to
those achieved using four images from the predictive capability
point of view, as well as from the statistical significance of the
selected features. Hence, from a practical approach, the analysis
of only one image of the bunch could be enough to estimate
compactness accurately.

Bunch compactness has never been estimated before using
image analysis. The results obtained in this work indicate that
bunch compactness may be assessed using image analysis-based
methodologies, which is a sensible, objective and reproducible
alternative to human-based inspection.

Moreover, the development of this image-based technol-
ogy may allow phenotyping of this trait to be performed in a
large number of samples in a short period of time, thus
making it a potential tool for high-throughput studies in terms
of accuracy and effectiveness. This is essential for breeding,
where many individuals have to be phenotyped in a short
time, and also for genetic studies. Currently, the availability of
high-throughput genome sequencing platforms allows geno-
typic data to be produced quickly, while obtaining high-quality
phenotypic data has become the bottleneck hindering the

Figure 8. Observed (Organisation Internationale de la Vigne et du
Vin compactness rating) versus predicted values of partial least
squares model for bunch compactness, for the training set (▲) and
test set (△). The predictive capability is 85%, and the accuracy of the
model (root mean square prediction error in training set) is 1.03.
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progress of many genetic surveys (Martínez-Zapater et al.
2010, Herzog et al. 2014). Consequently, the application of the
image-based technology proposed in this work will accelerate
the acquisition of high-quality phenotypic data, allowing a
more suitable application of such genetic approaches for the
study of this complex trait.

Most of the relevant bunch characteristics selected by the
model can be measured accurately using only automated image
analysis, which led to the development of a new tool that avoids
the subjectivity introduced by different human judges, and pro-
viding quantitative data (instead of qualitative ordinal data),
characteristics which are essential for the high throughput and
accurate phenotyping of grape bunches.

At the commercial level, this new tool could potentially be
applied to evaluate bunch compactness as a new indicator of
winegrape quality in the assessment of vineyards conducted
under field conditions, but a stronger segmentation algorithm
robust against the changing conditions of the natural lighting
and the presence of a complex background would be necessary.
In contrast, the proposed method could be implemented on
mobile devices to offer winegrowers a new practical and objec-
tive tool to evaluate the compactness in the field. Moreover, the
novel method could be applied to the automatic classification of
tablegrapes prior to commercialisation and at the reception
point in wineries for sorting and quality assessment of
winegrapes before crushing and vinification. This could be
achieved by using a conveyor belt to transport the bunches
under the camera and a backlighting illumination system to
capture images in which the contrast between the bunches and
the background is high, thus making easier the segmentation
process and the extraction of the shape features. In addition, it
would be convenient to individualise the bunches in a prior step
to prevent the confusion of the shape analysis algorithms.
Otherwise, additional image-processing steps should be devel-
oped instead to detect and separate the individual bunches in
the images. To allow the physical classification and separation of
the bunches depending on the compactness, a synchronisation
mechanism should be included (Blasco et al. 2009a,b). In the
case of working with other cultivars different from the ones in
this study, particular models have to be created following the
proposed methodology.

Conclusions
In this work, we present a practical step forward in the search
for a method with which to automate the assessment of com-
pactness from images of bunches using image processing and
multivariate analyses. The PLS model built from different bunch
features showed a predictive capability of 85.3%, which can be
considered a good result taking into account the complexity of
the trait. The most discriminant variables of the model were
highly correlated with the tightness of the berries in the bunch
(proportion of visibility of berries, rachis and holes) and with
the shape of the bunch (roundness, compactness shape factor
and aspect ratio).
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