Two algorithms based on modular arithmetic: lattice basis reduction and Hermite normal form computation*

Ralph Bottesch Jose Divasón

René Thiemann
December 14, 2021

Abstract

We verify two algorithms for which modular arithmetic plays an essential role: Storjohann's variant of the LLL lattice basis reduction algorithm and Kopparty's algorithm for computing the Hermite normal form of a matrix. To do this, we also formalize some facts about the modulo operation with symmetric range. Our implementations are based on the original papers, but are otherwise efficient. For basis reduction we formalize two versions: one that includes all of the optimizations/heuristics from Storjohann's paper, and one excluding a heuristic that we observed to often decrease efficiency. We also provide a fast, self-contained certifier for basis reduction, based on the efficient Hermite normal form algorithm.

Contents

1 Missing Matrix Operations 1
2 Signed Modulo Operation 3
3 Storjohann's Lemma 13 5
4 Storjohann's basis reduction algorithm (abstract version) 25
4.1 Definition of algorithm 25
4.2 Towards soundness of Storjohann's algorithm 30
4.3 Soundness of Storjohann's algorithm 75

[^0]5 Storjohann's basis reduction algorithm (concrete implemen- tation) 79
5.1 Implementation 79
5.2 Towards soundness proof of implementation 86
5.3 Soundness of implementation 105
6 Generalization of the statement about the uniqueness of the Hermite normal form 108
7 Uniqueness of Hermite normal form in JNF 114
8 Formalization of an efficient Hermite normal form algorithm 134
8.1 Implementation of the algorithm using generic modulo oper- ation 134
8.1.1 Echelon form algorithm 135
8.1.2 From echelon form to Hermite normal form 141
8.1.3 Some examples of execution 142
8.2 Soundness of the algorithm 142
8.2.1 Results connecting lattices and Hermite normal form 142
8.2.2 Missing results 156
8.2.3 The algorithm is sound 174
8.3 Instantiation of the HNF-algorithm with modulo-operation 407
9 LLL certification via Hermite normal forms 408

1 Missing Matrix Operations

In this theory we provide an operation that can change a single row in a matrix efficiently, and all other rows in the matrix implementation will be reused.
theory Matrix-Change-Row
imports
Jordan-Normal-Form.Matrix-IArray-Impl
Polynomial-Interpolation.Missing-Unsorted

begin

definition change-row :: nat $\Rightarrow\left(n a t \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a$ mat $\Rightarrow{ }^{\prime} a$ mat where change-row $k f A=$ mat (dim-row $A)(d i m-c o l ~ A)(\lambda(i, j)$. if $i=k$ then $f(A \$ \$(k, j))$ else $A \$ \$(i, j))$
lemma change-row-carrier[simp]:
(change-row $k f A \in$ carrier-mat $n r n c)=(A \in$ carrier-mat $n r n c)$
dim-row (change-row $k f A$) $=$ dim-row A
dim-col (change-row $k f A)=$ dim-col A
unfolding change-row-def carrier-mat-def by auto
lemma change-row-index[simp]: $A \in$ carrier-mat $n r n c \Longrightarrow i<n r \Longrightarrow j<n c$ \Longrightarrow change-row $k f A \$ \$(i, j)=($ if $i=k$ then $f(A \$ \$(k, j))$ else $A \$ \$(i, j))$ $i<$ dim-row $A \Longrightarrow j<$ dim-col $A \Longrightarrow$ change-row $k f A \$ \$(i, j)=($ if $i=k$ then $f j(A \$ \$(k, j))$ else $A \$ \$(i, j))$
unfolding change-row-def by auto
lift-definition change-row-impl $::$ nat $\Rightarrow\left(n a t \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a$ mat-impl $\Rightarrow{ }^{\prime} a$ mat-impl is
$\lambda k f(n r, n c, A)$. let $A k=$ IArray.sub $A k ;$ Arows $=$ IArray.list-of $A ;$
$A k^{\prime}=$ IArray.IArray $(\operatorname{map}(\lambda(i, c) . f i c)(z i p[0 . .<n c]($ IArray.list-of $A k))) ;$ $A^{\prime}=$ IArray.IArray (Arows $[k:=A k\rceil$) in ($n r, n c, A^{\prime}$)
proof (auto, goal-cases)
case ($1 k f n c b$ row)
show ?case
proof (cases b)
case (IArray rows)
with 1 have row \in set rows $\vee k<$ length rows
\wedge row $=$ IArray $(\operatorname{map}(\lambda(i, c) . f i c)(z i p[0 \quad . .<n c]$ (IArray.list-of (rows!
k))))
by (cases $k<$ length rows, auto simp: set-list-update dest: in-set-takeD in-set-drop D)
with 1 IArray show ?thesis by (cases, auto)
qed
qed
lemma change-row-code[code]: change-row $k f($ mat-impl $A)=($ if $k<$ dim-row-impl A
then mat-impl (change-row-impl $k f A$)
else Code.abort (STR "index out of bounds in change-row') (λ-. change-row $k f$ (mat-impl A)))
(is ?l $=? r$)
proof (cases $k<$ dim-row-impl A)
case True
hence id: ?r = mat-impl (change-row-impl $k f A$) by simp
show ?thesis unfolding id unfolding change-row-def
proof (rule eq-matI, goal-cases)
case ($1 i j$)
thus ?case using True
by (transfer, auto simp: mk-mat-def)
qed (transfer, auto) +
qed simp
end

2 Signed Modulo Operation

theory Signed-Modulo
imports
Berlekamp-Zassenhaus.Poly-Mod
Sqrt-Babylonian.Sqrt-Babylonian-Auxiliary
begin

The upcoming definition of symmetric modulo is different to the HOL-Library-Signed_Division.smod, since here the modulus will be in range $\{-m / 2, \ldots, m / 2\}$, whereas there -1 symmod $m=m-1$.
The advantage of have range $\{-m / 2, \ldots, m / 2\}$ is that small negative numbers are represented by small numbers.
One limitation is that the symmetric modulo is only working properly, if the modulus is a positive number.
definition sym-mod $::$ int \Rightarrow int \Rightarrow int (infixl symmod 70) where
sym-mod $x y=$ poly-mod.inv-M y $(x \bmod y)$
lemma sym-mod-code[code]: sym-mod $x y=($ let $m=x \bmod y$
in if $m+m \leq y$ then m else $m-y$)
unfolding sym-mod-def poly-mod.inv-M-def Let-def ..
lemma sym-mod-zero[simp]: n symmod $0=n n>0 \Longrightarrow 0$ symmod $n=0$ unfolding sym-mod-def poly-mod.inv-M-def by auto
lemma sym-mod-range: $y>0 \Longrightarrow x$ symmod $y \in\{-((y-1)$ div 2) .. y div 2 $\}$ unfolding sym-mod-def poly-mod.inv-M-def using pos-mod-bound[of y x] by (cases $x \bmod y \geq y$, auto) (smt (verit) Euclidean-Division.pos-mod-bound Euclidean-Division.pos-mod-sign half-nonnegative-int-iff)+

The range is optimal in the sense that exactly y elements can be represented.
lemma card-sym-mod-range: $y>0 \Longrightarrow$ card $\{-((y-1)$ div 2)..$y \operatorname{div} 2\}=y$ by simp
lemma sym-mod-abs: $y>0 \Longrightarrow \mid x$ symmod $y \mid<y$
$y \geq 1 \Longrightarrow \mid x$ symmod $y \mid \leq y \operatorname{div} 2$
using sym-mod-range $[$ of $y x]$ by auto
lemma sym-mod-sym-mod $[\operatorname{simp}]: x$ symmod $y \operatorname{symmod} y=x \operatorname{symmod}(y::$ int $)$
unfolding sym-mod-def using poly-mod.M-def poly-mod.M-inv-M-id by auto
lemma sym-mod-diff-eq: (a symmod $c-b$ symmod $c)$ symmod $c=(a-b)$ symmod c
unfolding sym-mod-def
by (metis mod-diff-cong mod-mod-trivial poly-mod.M-def poly-mod.M-inv-M-id)
lemma sym-mod-sym-mod-cancel: c dvd $b \Longrightarrow a \operatorname{symmod} b$ symmod $c=a \operatorname{symmod}$ c
using mod-mod-cancel[of c b] unfolding sym-mod-def
by (metis poly-mod.M-def poly-mod.M-inv-M-id)
lemma sym-mod-diff-right-eq: $(a-b$ symmod $c)$ symmod $c=(a-b)$ symmod c using sym-mod-diff-eq by (metis sym-mod-sym-mod)
lemma sym-mod-mult-right-eq: $a *(b$ symmod $c)$ symmod $c=a * b$ symmod c unfolding sym-mod-def by (metis poly-mod.M-def poly-mod.M-inv-M-id mod-mult-right-eq)
lemma dvd-imp-sym-mod-0 [simp]: b symmod $a=0$ if $a>0$ a dvd b
unfolding sym-mod-def poly-mod.inv-M-def using that by simp
lemma sym-mod-0-imp-dvd [dest!]:
$b d v d a$ if a symmod $b=0$
using that unfolding sym-mod-def poly-mod.inv-M-def
by (smt (verit) Euclidean-Division.pos-mod-bound dvd-eq-mod-eq-0)
definition sym-div :: int \Rightarrow int \Rightarrow int (infixl symdiv 70) where
sym-div $x y=($ let $d=x \operatorname{div} y ; m=x \bmod y$ in if $m+m \leq y$ then d else $d+1$)
lemma of-int-mod-integer: $($ of-int $(x \bmod y)::$ integer $)=($ of-int $x::$ integer $) \bmod$ (of-int y)
using integer-of-int-eq-of-int modulo-integer.abs-eq by presburger
lemma sym-div-code[code]:
sym-div $x y=($ let $y y=$ integer-of-int y in
(case divmod-integer (integer-of-int x) yy
of $(d, m) \Rightarrow$ if $m+m \leq y y$ then int-of-integer d else (int-of-integer $(d+1)))$)
unfolding sym-div-def Let-def divmod-integer-def split
apply (rule if-cong, subst of-int-le-iff [symmetric], unfold of-int-add)
by (subst (1 2) of-int-mod-integer, auto)
lemma sym-mod-sym-div: assumes $y: y>0$ shows x symmod $y=x-$ sym-div $x y * y$
proof -
let ? $z=x-y *(x \operatorname{div} y)$
let ? $u=y *(x \operatorname{div} y)$
have $x=y *(x$ div $y)+x \bmod y$ using y by simp
hence $i d: x \bmod y=$? z by linarith
have x symmod $y=$ poly-mod.inv-M y ? z unfolding sym-mod-def id by auto also have $\ldots=($ if $? z+? z \leq y$ then $? z$ else $? z-y)$ unfolding poly-mod.inv-M-def
also have $\ldots=x-($ if $(x \bmod y)+(x \bmod y) \leq y$ then x div y else x div $y+$ 1) $* y$ by (simp add: algebra-simps id)

```
    also have (if (x\operatorname{mod}y)+(x\operatorname{mod}y)\leqy then x div y else x div y + 1)= sym-div
x y
    unfolding sym-div-def Let-def ..
    finally show ?thesis.
qed
lemma dvd-sym-div-mult-right [simp]:
    (a symdiv b)*b=a if b>0 b dvd a
    using sym-mod-sym-div[of b a] that by simp
lemma dvd-sym-div-mult-left [simp]:
    b* (a symdiv b) = a if b>0 b dvd a
    using dvd-sym-div-mult-right[OF that] by (simp add: ac-simps)
end
```


3 Storjohann's Lemma 13

This theory contains the result that one can always perform a mod-operation on the entries of the $d \mu$-matrix.

```
theory Storjohann-Mod-Operation
    imports
        LLL-Basis-Reduction.LLL-Certification
        Signed-Modulo
begin
```

lemma map-vec-map-vec: map-vec $f($ map-vec $g v)=\operatorname{map-vec}(f o g) v$
by (intro eq-vecI, auto)
context semiring-hom
begin
lemma mat-hom-add: assumes $A: A \in$ carrier-mat nr nc and $B: B \in$ carrier-mat $n r n c$
shows math $(A+B)=$ mat $_{h} A+$ mat $_{h} B$
by (intro eq-matI, insert $A B$, auto simp: hom-add)
end

We now start to prove lemma 13 of Storjohann's paper.

```
context
    fixes A I :: ' }a\mathrm{ :: field mat and n :: nat
    assumes A:A\incarrier-mat n n
    and det: }\operatorname{det}A\not=
    and I:I = the (mat-inverse A)
begin
lemma inverse-via-det: I*A=1m}nA*I=1m n I carrier-mat n n
```

```
    I=mat n n (\lambda (i,j). det (replace-col A (unit-vec nj) i)/ det A)
proof -
    from det-non-zero-imp-unit[OF A det]
    have Unit: A \in Units(ring-mat TYPE('a) n n).
    from mat-inverse(1)[OF A, of n] Unit I have mat-inverse A = Some I
        by (cases mat-inverse A, auto)
    from mat-inverse(2)[OF A this]
    show left: I*A=1 m n and right: A*I= 1m n and I:I\incarrier-mat n n
    by blast+
    {
        fix ij
        assume i: i<n and j:j<n
        from I ij have cI: col I j $i=I $$ (i,j) by simp
        from j have uv: unit-vec n j\in carrier-vec n by auto
        from j I have col: col I j carrier-vec n by auto
        from col-mult2[OF A I j, unfolded right] j
        have}A*v col I j = unit-vec n j by simp
        from cramer-lemma-mat[OF A col i, unfolded this cI]
        have}I$$(i,j)=\operatorname{det}(\mathrm{ replace-col A(unit-vec nj) i)/ det A using det by simp
    }
    thus I = mat n n (\lambda (i,j). det (replace-col A (unit-vec n j) i) / det A)
        by (intro eq-matI, use I in auto)
qed
lemma matrix-for-singleton-entry: assumes i:i<n and
    j:j<n
    and Rdef: R = mat n n ( }\lambda\mathrm{ ij. if ij = (i,j) then c :: 'a else 0)
shows mat n n
    (\lambda(i', j'). if i' =i then c* det (replace-col A (unit-vec n j') j)/ det A
        else 0)*A=R
proof -
    note I = inverse-via-det(3)
    have R:R\incarrier-mat n n unfolding Rdef by auto
    have (R*I)*A=R*(I*A) using IA R by auto
    also have I*A=1 m n unfolding inverse-via-det(1) ..
    also have }R*\ldots=R using R by sim
    also have R*I= mat n n ( }\lambda(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime}). row R i' col I j'
    using I R unfolding times-mat-def by simp
    also have ... = mat n n ( \lambda( ( i',}\mp@subsup{j}{}{\prime})\mathrm{ . if }\mp@subsup{i}{}{\prime}=i\mathrm{ then c*I $$ (j, j') else 0)
        (is mat nn?f = mat n n?g)
proof -
    {
        fix }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime
        assume }\mp@subsup{i}{}{\prime}:\mp@subsup{i}{}{\prime}<n\mathrm{ and }\mp@subsup{j}{}{\prime}:\mp@subsup{j}{}{\prime}<
        have ?f ( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})=?g(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime}
        proof (cases i'}=i\mathrm{ )
            case False
            hence row R i'= O v n unfolding Rdef using i'
                    by (intro eq-vecI, auto simp: Matrix.row-def)
```

```
                thus ?thesis using False }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}I\mathrm{ by simp
        next
            case True
            hence row R 渞=c 汭 unit-vec n j unfolding Rdef using i' j' i j
                by (intro eq-vecI, auto simp: Matrix.row-def)
            with True show ?thesis using }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}Ij\mathrm{ by simp
        qed
    }
    thus ?thesis by auto
    qed
    finally show ?thesis unfolding inverse-via-det(4) using j
    by (auto intro!: arg-cong[of- - \lambdax.x*A])
qed
end
lemma (in gram-schmidt-fs-Rn) det-M-1: det (Mm)=1
proof -
    have det (M m) = prod-list (diag-mat (M m))
    by (rule det-lower-triangular[of m], auto simp: }\mu\mathrm{ .simps)
    also have ... = 1
    by (rule prod-list-neutral, auto simp: diag-mat-def \mu.simps)
    finally show ?thesis.
qed
context gram-schmidt-fs-int
begin
lemma assumes IM:IM = the (mat-inverse (M m))
    shows inv-mu-lower-triangular: \ ki.k<i\Longrightarrowi<m\LongrightarrowIM $$ (k,i)=0
    and inv-mu-diag: \ k.k<m\LongrightarrowIM $$ (k,k)=1
    and d-inv-mu-integer: }\bigwedgeij.i<m\Longrightarrowj<m\Longrightarrowdi*IM$$(i,j)\in\mathbb{Z
    and inv-mu-inverse: IM*Mm=1mm Mm*IM = 1mm IM \incarrier-mat
mm
proof -
    note * = inverse-via-det[OF M-dim(3) - IM, unfolded det-M-1]
    from * show inv: IM*Mm=1 mmMm*IM=1m
    and IM:IM \in carrier-mat m m by auto
    from * have IM-det:IM = mat m m ( }\lambda(i,j).det (replace-col (M m) ((unit-vec
m) j) i))
    by auto
    from matrix-equality have IM*FF=IM*((M m)*Fs) by simp
    also have \ldots=(IM*Mm)*Fs using M-dim(3)IM Fs-dim(3)
    by (metis assoc-mult-mat)
    also have ... = Fs unfolding inv using Fs-dim(3) by simp
    finally have equality: IM*FF=Fs .
    {
    fix ik
    assume i:k<ii<m
    show IM $$ (k,i) = 0 using i M-dim unfolding IM-det
        by (simp, subst det-lower-triangular[of m], auto simp: replace-col-def \mu.simps
```

diag-mat-def)
\} note $I M$-lower-triag $=$ this
\{
fix k
assume k : $k<m$
show $I M \$ \$(k, k)=1$ using $k M$-dim unfolding $I M$-det
by (simp, subst det-lower-triangular $[$ of m], auto simp: replace-col-def μ.simps diag-mat-def
intro!: prod-list-neutral)
\} note $I M$-diag- $1=$ this
\{
fix k
assume $k: k<m$
let ? $f=\lambda i . I M \$ \$(k, i) \cdot{ }_{v} f_{s}!i$
let ?sum $=$ M.sumlist (map ?f $[0 . .<m])$
let ?sumk $=$ M.sumlist (map ?f $[0 . .<k])$
have set: set (map ?f $[0 . .<m]) \subseteq$ carrier-vec n using $f s$-carrier by auto
hence sum: ?sum \in carrier-vec n by simp
from set k have setk: set (map ?f $[0 . .<k]$) \subseteq carrier-vec n by auto
hence sumk: ?sumk \in carrier-vec n by simp
from sum have dim-sum: dim-vec ? sum $=n$ by simp
have gso $k=$ row Fs k using k by auto
also have $\ldots=$ row $(I M * F F) k$ unfolding equality .
also have $I M * F F=$ mat $m n(\lambda(i, j)$. row $I M i \cdot \operatorname{col} F F j)$
unfolding times-mat-def using IM FF-dim by auto
also have row $\ldots k=$ vec $n(\lambda j$. row IM $k \cdot \operatorname{col} F F j$)
unfolding Matrix.row-def using IM FF-dim k by auto
also have $\ldots=$ vec $n\left(\lambda j\right.$. $\sum i<m$. IM $\left.\$ \$(k, i) * f s!i \$ j\right)$
by (intro eq-vecI, insert IM k, auto simp: scalar-prod-def Matrix.row-def intro!:
sum.cong)
also have $\ldots=$? sum
by (intro eq-vecI, insert IM, unfold dim-sum, subst sumlist-vec-index,
auto simp: o-def sum-list-sum-nth intro!: sum.cong)
also have $[0 . .<m]=[0 . .<k] @[k] @[S u c k . .<m]$ using k by (simp add: list-trisect)
also have M.sumlist (map ?f ...) $=$? sumk + (?f $k+$ M.sumlist (map ?f $[S u c k . .<m])$)
unfolding map-append
by (subst M.sumlist-append; (subst M.sumlist-append)?, insert k fs-carrier, auto)
also have M.sumlist (map ?f $[S u c k . .<m])=O_{v} n$
by (rule sumlist-neutral, insert IM-lower-triag, auto)
also have $I M \$ \$(k, k)=1$ using $I M$-diag- $1[O F k]$.
finally have gso: gso $k=$? sumk $+f s!k$ using k by simp
define b where $b=v e c k(\lambda j . f s!j \cdot f s!k)$
\{
fix j
assume $j k: j<k$
with k have $j: j<m$ by auto

```
    have \(f s!j \cdot g s o k=f s!j \cdot(? s u m k+f s!k)\)
        unfolding gso by simp
    also have \(f s!j \cdot\) gso \(k=0\) using \(j k k\)
        by (simp add: fi-scalar-prod-gso gram-schmidt-fs. \(\mu\).simps)
    also have \(f s!j \cdot\left(\right.\) ?sumk \(\left.+f_{s}!k\right)\)
        \(=f s!j \cdot ? s u m k+f s!j \cdot f s!k\)
        by (rule scalar-prod-add-distrib[OF - sumk], insert \(j k\), auto)
    also have \(f_{s}!j \cdot f_{s}!k=b \$ j\) unfolding \(b\)-def using \(j k\) by simp
    finally have \(b \$ j=-(f s!j \cdot\) ?sumk \()\) by linarith
    \} note \(b\)-index \(=\) this
    let \(? x=\) vec \(k(\lambda i .-\operatorname{IM} \$ \$(k, i))\)
    have \(x:\) ? \(x \in\) carrier-vec \(k\) by auto
    from \(k\) have \(k m\) : \(k \leq m\) by simp
    have \(b G x: b=\) Gramian-matrix \(f s k *_{v}(\operatorname{vec} k(\lambda i .-I M \$ \$(k, i)))\)
    unfolding Gramian-matrix-alt-alt-def[OF km]
    proof (rule eq-vecI; simp)
    fix \(i\)
    assume \(i: i<k\)
    have \(b \$ i=-\left(\sum x \leftarrow[0 . .<k] . f s!i \cdot\left(I M \$ \$(k, x) \cdot v f_{s}!x\right)\right)\)
        unfolding b-index[OF \(i\) ]
        by (subst scalar-prod-right-sum-distrib, insert setk \(i k\), auto simp: o-def)
    also have \(\ldots=\operatorname{vec} k(\lambda j . f s!i \cdot f s!j) \cdot v e c k(\lambda i .-I M \$ \$(k, i))\)
        by (subst (3) scalar-prod-def, insert ik, auto simp: o-def sum-list-sum-nth
simp flip: sum-negf
            intro!: sum.cong)
        finally show \(b \$ i=\operatorname{vec} k(\lambda j . f s!i \cdot f s!j) \cdot \operatorname{vec} k(\lambda i .-I M \$ \$(k, i))\).
    qed (simp add: b-def)
    have G: Gramian-matrix fs \(k \in\) carrier-mat \(k k\)
    unfolding Gramian-matrix-alt-alt-def[OF km] by simp
    from cramer-lemma-mat[OF G x, folded bGx Gramian-determinant-def]
    have \(i<k \Longrightarrow\)
    \(d k * I M \$ \$(k, i)=-\operatorname{det}(\) replace-col \((G r a m i a n-m a t r i x ~ f s ~ k)(v e c k(\lambda j . f s\)
\(\left.\left.\left.!j \cdot f_{s}!k\right)\right) i\right)\)
    for \(i\) unfolding \(b\)-def by simp
\(\}\) note \(I M\)-lower-values \(=\) this
\{
    fix \(i j\)
    assume \(i: i<m\) and \(j: j<m\)
    from \(i\) have \(i m: i \leq m\) by auto
    consider (1) \(j<i \mid\) (2) \(j=i \mid\) (3) \(i<j\) by linarith
    thus \(d i * I M \$ \$(i, j) \in \mathbb{Z}\)
    proof cases
        case 1
    show ?thesis unfolding IM-lower-values[OF i 1] replace-col-def Gramian-matrix-alt-alt-def[OF
im]
            by (intro Ints-minus Ints-det, insert \(i j\), auto intro!: Ints-scalar-prod \([\) of \(-n]\)
\(f s\)-int)
    next
        case 3
```

```
        show ?thesis unfolding IM-lower-triag[OF 3 j] by simp
    next
        case 2
    show ?thesis unfolding IM-diag-1[OF i] 2 using i unfolding Gramian-determinant-def
        Gramian-matrix-alt-alt-def[OF im]
        by (intro Ints-mult Ints-det, insert i j, auto intro!: Ints-scalar-prod[of-n]
fs-int)
    qed
    }
qed
definition inv-mu-ij-mat :: nat => nat => int }=>\mathrm{ int mat where
    inv-mu-ij-mat i j c = (let
        B=mat mm( }\lambda\mathrm{ ij. if ij = (i,j) then c else 0);
        C = mat m m ( }\lambda(i,j). the-inv (of-int :: - = ' 'a) (d i * the (mat-inverse (M
m)) $$ (i,j)))
    in B*C+1 mm)
lemma inv-mu-ij-mat: assumes i:i<m and ji:j<i
    shows
```

```
    map-mat of-int (inv-mu-ij-mat i j c) *Mm=
```

 map-mat of-int (inv-mu-ij-mat i j c) *Mm=
 mat mm(\lambdaij. if ij = (i,j) then of-int c*dj else 0) +Mm
 mat mm(\lambdaij. if ij = (i,j) then of-int c*dj else 0) +Mm
 A\in carrier-mat m n c mod p=0 m map-mat (}\lambda\timesx.x\operatorname{mod}p)(inv-mu-ij-mat
 A\in carrier-mat m n c mod p=0 m map-mat (}\lambda\timesx.x\operatorname{mod}p)(inv-mu-ij-mat
 ijc*A)=
ijc*A)=
(map-mat (\lambda x. x mod p)A)
(map-mat (\lambda x. x mod p)A)
inv-mu-ij-mat i j c carrier-mat m m
inv-mu-ij-mat i j c carrier-mat m m

 i}<<\mp@subsup{j}{}{\prime}\Longrightarrow\mp@subsup{j}{}{\prime}<m\Longrightarrow\mathrm{ inv-mu-ij-mat i jc$$ (i',j})=
 i}<<\mp@subsup{j}{}{\prime}\Longrightarrow\mp@subsup{j}{}{\prime}<m\Longrightarrow\mathrm{ inv-mu-ij-mat i jc$$ (i',j})=
 k<m\Longrightarrowinv-mu-ij-mat ij c $$ (k,k)=1
 k<m\Longrightarrowinv-mu-ij-mat ij c $$ (k,k)=1
 proof -
proof -
obtain IM where IM: IM = the (mat-inverse (M m)) by auto
obtain IM where IM: IM = the (mat-inverse (M m)) by auto
let ?oi = of-int :: - = 'a
let ?oi = of-int :: - = 'a
let ?C = mat mm(\lambda ij. if ij = (i,j) then ?oi c else 0)
let ?C = mat mm(\lambda ij. if ij = (i,j) then ?oi c else 0)

 let ?D = mat m m (}\lambda(i,j).di*IM $$ (i,j)
 let ?D = mat m m (}\lambda(i,j).di*IM $$ (i,j)
 have oi: inj ?oi unfolding inj-on-def by auto
 have oi: inj ?oi unfolding inj-on-def by auto
 have C: ?C C carrier-mat m m by auto
 have C: ?C C carrier-mat m m by auto
 from i ji have j:j<m by auto
 from i ji have j:j<m by auto
 from j have jm: {0..<m} ={0..<j}\cup{j}\cup{Suc j..<m} by auto
 from j have jm: {0..<m} ={0..<j}\cup{j}\cup{Suc j..<m} by auto
 note IM-props = d-inv-mu-integer[OF IM] inv-mu-inverse[OF IM]
 note IM-props = d-inv-mu-integer[OF IM] inv-mu-inverse[OF IM]
 have mat-oi: map-mat ?oi (inv-mu-ij-mat i j c) = ?C C ?D + 1m m (is ?MM
 have mat-oi: map-mat ?oi (inv-mu-ij-mat i j c) = ?C C ?D + 1m m (is ?MM
 = -)
= -)
unfolding inv-mu-ij-mat-def Let-def IM[symmetric]
unfolding inv-mu-ij-mat-def Let-def IM[symmetric]
apply (subst of-int-hom.mat-hom-add, force, force)
apply (subst of-int-hom.mat-hom-add, force, force)
apply (rule arg-cong2[of - - - (+)])
apply (rule arg-cong2[of - - - (+)])
apply (subst of-int-hom.mat-hom-mult, force, force)
apply (subst of-int-hom.mat-hom-mult, force, force)
apply (rule arg-cong2[of - - - (*)])
apply (rule arg-cong2[of - - - (*)])
apply force

```
            apply force
```

```
    apply (rule eq-matI, (auto)[3], goal-cases)
proof -
    case (1 i j)
    from IM-props(1)[OF 1]
    show ?case unfolding Ints-def using the-inv-f-f[OF oi] by auto
qed auto
    have map-mat ?oi (inv-mu-ij-mat ij c)*Mm=(?C * ?D) *Mm+Mm
unfolding mat-oi
    by (subst add-mult-distrib-mat[of - m m], auto)
    also have (?C * ?D) * Mm=?C * (?D * M m)
    by (rule assoc-mult-mat, auto)
also have ? D = mat mm(\lambda(i,j). if i=j then d j else 0)*IM (is - = ?E*-)
proof (rule eq-matI, insert IM-props(4), auto simp: scalar-prod-def, goal-cases)
    case (1 i j)
    hence id:{0..<m}={0..<i}\cup{i}\cup{Suc i ..<m}
        by (auto simp add: list-trisect)
    show ?case unfolding id
        by (auto simp: sum.union-disjoint)
qed
also have ...*Mm=?E* (IM*Mm)
    by (rule assoc-mult-mat[of - m m], insert IM-props, auto)
also have IM*Mm=1m m by fact
also have ?E * 1mm=? E by simp
also have ?C * ?E = mat mm (\lambda ij. if ij = (i,j) then ?oi c * d j else 0)
    by (rule eq-matI, auto simp: scalar-prod-def, auto simp: jm sum.union-disjoint)
finally show map-mat ?oi (inv-mu-ij-mat i j c) *Mm=
    mat mm( }\lambda\mathrm{ ij. if ij = (i,j) then ?oi c*dj else 0) +Mm.
show carr: inv-mu-ij-mat i j c c carrier-mat m m
    unfolding inv-mu-ij-mat-def by auto
{
    assume k: k<m
    have of-int (inv-mu-ij-mat i j c $$ (k,k)) = ?MM $$ (k,k)
        using carr k by auto
    also have }\ldots=(?C*?D)$$(k,k)+1 unfolding mat-oi using k by sim
    also have (?C*?D) $$ (k,k)=0 using k
        by (auto simp: scalar-prod-def, auto simp: jm sum.union-disjoint
            inv-mu-lower-triangular[OF IM ji i])
    finally show inv-mu-ij-mat i j c $$ (k,k)=1 by simp
}
{
    assume ij': i'< j' j'<m
    have of-int (inv-mu-ij-mat i j c $$ (i',}\mp@subsup{j}{}{\prime}))=?\mathrm{ ?MM $$ ( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime}
        using carr ij' by auto
    also have ... = (?C * ?D) $$ ( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\mathrm{ unfolding mat-oi using ij' by simp
    also have (?C * ?D) $$ ( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})=(\mathrm{ if }\mp@subsup{i}{}{\prime}=i\mathrm{ then ?oi c*(dj*IM $$ (j, j')}
else 0)
    using ij' i j by (auto simp: scalar-prod-def, auto simp: jm sum.union-disjoint)
    also have ... = 0 using inv-mu-lower-triangular[OFIM - ij'(2), of j] ij' i ji
by auto
```

```
    finally show inv-mu-ij-mat ij c \(\$ \$\left(i^{\prime}, j^{\prime}\right)=0\) by simp
\}
\{
    assume \(A: A \in\) carrier-mat \(m n\) and \(c: c \bmod p=0\)
    let \(? \bmod =\operatorname{map}-\operatorname{mat}(\lambda x . x \bmod p)\)
    let ? \(C=\) mat \(m m(\lambda\) ij. if \(i j=(i, j)\) then \(c\) else 0\()\)
    let \(? D=\) mat \(m m(\lambda\) ij. if \(i j=(i, j)\) then 1 else \((0::\) int \())\)
    define \(B\) where \(B=\) mat \(m m(\lambda(i, j)\). the-inv ?oi ( \(d i *\) the (mat-inverse ( \(M\)
m)) \(\$ \$(i, j))\) )
    have \(B: B \in\) carrier-mat \(m m\) unfolding \(B\)-def by auto
    define \(B A\) where \(B A=B * A\)
    have \(B A: B A \in\) carrier-mat \(m n\) unfolding \(B A\)-def using \(A B\) by auto
    define \(D B A\) where \(D B A=? D * B A\)
    have \(D B A: D B A \in\) carrier-mat \(m n\) unfolding \(D B A\)-def using \(B A\) by auto
    have ?mod (inv-mu-ij-mat \(i j c * A)=\)
        \(? \bmod \left(\left(? C * B+1_{m} m\right) * A\right)\)
        unfolding inv-mu-ij-mat-def \(B\)-def by simp
    also have \(\left(? C * B+1_{m} m\right) * A=? C * B * A+A\)
        by (subst add-mult-distrib-mat, insert \(A B\), auto)
    also have ? \(C * B * A=? C * B A\)
        unfolding \(B A\)-def
        by (rule assoc-mult-mat, insert \(A B\), auto)
    also have ? \(C=c \cdot m\) ? \(D\)
        by (rule eq-matI, auto)
    also have \(\ldots * B A=c \cdot{ }_{m} D B A\) using \(B A\) unfolding \(D B A\)-def by auto
    also have \(? \bmod (\ldots+A)=? \bmod A\)
        by (rule eq-matI, insert DBA A c, auto simp: mult.assoc)
    finally show ? mod \((\) inv-mu-ij-mat \(i j c * A)=? \bmod A\).
    \}
qed
end
lemma Gramian-determinant-of-int: assumes \(f s\) : set \(f s \subseteq\) carrier-vec \(n\)
    and \(j: j \leq\) length \(f s\)
shows of-int (gram-schmidt.Gramian-determinant \(n\) fs \(j\) )
    \(=\) gram-schmidt.Gramian-determinant \(n(\operatorname{map}(\) map-vec rat-of-int) \(f s) j\)
proof -
    from \(j\) have \(j: k<j \Longrightarrow k<\) length \(f_{s}\) for \(k\) by auto
    show ?thesis
    unfolding gram-schmidt.Gramian-determinant-def
    by (subst of-int-hom.hom-det[symmetric], rule arg-cong[of - det],
    unfold gram-schmidt.Gramian-matrix-def Let-def, subst of-int-hom.mat-hom-mult,
force, force,
    unfold map-mat-transpose[symmetric],
        rule arg-cong2[of \(\left.--\lambda x y . x * y^{T}\right]\), insert \(f s[\) unfolded set-conv-nth]
        \(j\), (fastforce intro!: eq-matI)+)
qed
context \(L L L\)
```

lemma multiply-invertible-mat: assumes lin: lin-indep f_{s}
and len: length $f s=m$
and $A: A \in$ carrier-mat $m m$
and A-invertible: $\exists B . B \in$ carrier-mat $m m \wedge B * A=1_{m} m$
and $f_{s}{ }^{\prime}$-prod: $f s^{\prime}=$ Matrix.rows $(A *$ mat-of-rows $n f s$)
shows lattice-of $\mathrm{fs}^{\prime}=$ lattice-of $f s$
lin-indep $f_{s}{ }^{\prime}$
length $f_{s}{ }^{\prime}=m$
proof -
let ?Mfs = mat-of-rows $n f s$
let $? M f s^{\prime}=$ mat-of-rows $n f s^{\prime}$
from A-invertible obtain B where $B: B \in$ carrier-mat m and inv: $B * A=$
$1_{m} m$ by auto
from lin have $f s$: set $f s \subseteq$ carrier-vec n unfolding gs.lin-indpt-list-def by auto with len have Mfs: ?Mfs \in carrier-mat $m n$ by auto
from $A M f s$ have prod: $A *$? Mfs \in carrier-mat $m n$ by auto
hence $f s^{\prime}$: length $f s^{\prime}=m$ set $f s^{\prime} \subseteq$ carrier-vec n unfolding $f s^{\prime}$-prod
by (auto simp: Matrix.rows-def Matrix.row-def)
have $M f s$-prod': ? $M f s^{\prime}=A *$? $M f s$
unfolding arg-cong[OF fs'-prod, of mat-of-rows n]
by (intro eq-matI, auto simp: mat-of-rows-def)
have $B *$? $\mathrm{Mfs}^{\prime}=B *(A *$? Mfs $)$
unfolding Mfs-prod' by simp
also have $\ldots=(B * A) *$? Mfs
by (subst assoc-mult-mat[OF - A Mfs], insert B, auto)
also have $B * A=1_{m} m$ by fact
also have $\ldots *$? $M f s=$? Mfs using $M f s$ by auto
finally have $M f s$-prod: ? $M f s=B * ? M f s^{\prime} .$.
interpret $L L L$: LLL-with-assms $n m f s 2$
by (unfold-locales, auto simp: len lin)
from LLL.LLL-change-basis[OF $f_{s}{ }^{\prime}(2,1) B A M f s$-prod Mfs-prod' $]$
show latt': lattice-of $f s^{\prime}=$ lattice-of $f s$ and lin' $^{\prime}$: gs.lin-indpt-list (RAT fs s^{\prime})
and len': length $f_{s}{ }^{\prime}=m$
by (auto simp add: LLL-with-assms-def)
qed
This is the key lemma.
lemma change-single-element: assumes lin: lin-indep fs
and len: length $f s=m$
and $i: i<m$ and $j i: j<i$
and A : $A=$ gram-schmidt-fs-int.inv-mu-ij-mat $n(R A T f s) \quad$ the transformation matrix A
and $f s^{\prime}$-prod: $f s^{\prime}=$ Matrix.rows $(A i j c * m a t$-of-rows $n f s)$-fs' is the new basis
and latt: lattice-of $f s=L$
shows lattice-of $f_{s}{ }^{\prime}=L$
$c \bmod p=0 \Longrightarrow \operatorname{map}(\operatorname{map}-v e c(\lambda x \cdot x \bmod p)) f s^{\prime}=\operatorname{map}(\operatorname{map}-v e c(\lambda x \cdot x \bmod$
p)) $f s$
lin-indep $f s^{\prime}$
length $f s^{\prime}=m$
$\bigwedge k . k<m \Longrightarrow$ gso $f^{\prime}{ }^{\prime} k=$ gso fs k
$\wedge k . k \leq m \Longrightarrow d f s^{\prime} k=d f s k$
$i^{\prime}<m \Longrightarrow j^{\prime}<m \Longrightarrow$
$\mu f s^{\prime} i^{\prime} j^{\prime}=\left(\right.$ if $\left(i^{\prime}, j^{\prime}\right)=(i, j)$ then rat-of-int $(c * d f s j)+\mu f s i^{\prime} j^{\prime}$ else $\mu f s i^{\prime}$ j^{\prime})
$i^{\prime}<m \Longrightarrow j^{\prime}<m \Longrightarrow$ $d \mu f s^{\prime} i^{\prime} j^{\prime}=\left(\right.$ if $\left(i^{\prime}, j^{\prime}\right)=(i, j)$ then $c * d f s j * d f s(S u c j)+d \mu f s i^{\prime} j^{\prime}$ else $\left.d \mu f s i^{\prime} j^{\prime}\right)$
proof -
let $? A=A i j c$
let $? M f s=$ mat-of-rows $n f s$
let ${ }^{2} M f s^{\prime}=$ mat-of-rows $n f s^{\prime}$
from lin have $f s$: set $f s \subseteq$ carrier-vec n unfolding gs.lin-indpt-list-def by auto
with len have $M f s:$?Mfs \in carrier-mat $m n$ by auto
interpret gsi: gram-schmidt-fs-int n RAT fs
rewrites gsi.inv-mu-ij-mat $=A$ using lin unfolding A
by (unfold-locales, insert lin[unfolded gs.lin-indpt-list-def], auto simp: set-conv-nth)
note $A=$ gsi.inv-mu-ij-mat[unfolded length-map len, OF $i j i$, where $c=c$]
from $A(3) M f s$ have prod: ? $A * ? M f s \in$ carrier-mat $m n$ by auto
hence $f s^{\prime}:$ length $f s^{\prime}=m$ set $f s^{\prime} \subseteq$ carrier-vec n unfolding $f s^{\prime}$-prod
by (auto simp: Matrix.rows-def Matrix.row-def)
have $M f s$-prod ${ }^{\prime}: ~ ?{ }^{\prime} M f s^{\prime}=? A * ? M f s$
unfolding arg-cong[OF fs'-prod, of mat-of-rows n]
by (intro eq-matI, auto simp: mat-of-rows-def)
have $\operatorname{det} A: \operatorname{det} ? A=1$
by (subst det-lower-triangular[OF A(4) A(3)], insert A, auto intro!: prod-list-neutral
simp: diag-mat-def)
have $\exists B . B \in$ carrier-mat $m m \wedge B * ? A=1_{m} m$
by (intro exI[of - adj-mat ? A], insert adj-mat[OF A(3)], auto simp: detA)
from multiply-invertible-mat[OF lin len $A(3)$ this $f_{s}{ }^{\prime}$-prod] latt
show latt': lattice-of $f s^{\prime}=L$ and lin': gs.lin-indpt-list $\left(R A T f_{s}{ }^{\prime}\right)$
and len': length $f_{s}{ }^{\prime}=m$ by auto
interpret LLL: LLL-with-assms $n m$ fs 2
by (unfold-locales, auto simp: len lin)
interpret $f s$: $f s$-int-indpt $n f s$
by (standard, auto simp: lin)
interpret $f s^{\prime}: f s$-int-indpt $n f_{s}{ }^{\prime}$
by (standard, auto simp: lin')
\{
assume $c: c \bmod p=0$
have $i d$: rows $($ map-mat $f A)=\operatorname{map}($ map-vec $f)($ rows $A)$ for $f A$
unfolding rows-def by auto
have rows-id: set $f s \subseteq$ carrier-vec $n \Longrightarrow$ rows (mat-of-rows $n f s$) $=f s$ for $f s$ unfolding mat-of-rows-def rows-def
by (force simp: Matrix.row-def set-conv-nth intro!: nth-equalityI)

```
    from A(2)[OF Mfsc]
    have rows (map-mat ( }\lambdax.x\operatorname{mod}p)?Mfs')= rows (map-mat ( \lambdax. x mod p
?Mfs) unfolding Mfs-prod}\mp@subsup{}{}{\prime
    by simp
    from this[unfolded id rows-id[OF fs] rows-id[OF fs'(2)]]
    show map (map-vec ( }\lambda\timesx.x\operatorname{mod}p))f\mp@subsup{s}{}{\prime}=\operatorname{map}(\operatorname{map-vec}(\lambdax.x\operatorname{mod}p))fs
}
{
    define B where B=?A
    have gs-eq: k<m\Longrightarrowgso fs'}k=gsofs k for 
    proof(induct rule: nat-less-induct)
    case (1 k)
    then show?case
    proof(cases k=0)
        case True
        then show ?thesis
        proof -
            have row?Mfs' 0 = row ?Mfs 0
            proof -
                have 2: 0\in {0..<m} and 3: {1..<m} ={0..<m} - {0}
                and 4: finite {0..<m} using 1 by auto
            have row ?Mfs' 0 = vec n (\lambdaj. row B 0 c col ?Mfs j)
                using row-mult A(3) Mfs 1 Mfs-prod' unfolding B-def by simp
            also have ... = vec n ( }\lambdaj.(\suml\in{0..<m}.B$$(0,l)*?Mfs $$ (l,j))
                using Mfs A(3) len 1 B-def unfolding scalar-prod-def by auto
                also have ... = vec n ( }\lambdaj.B$$(0,0) * ?Mfs $$ (0,j) 
                (\suml\in{1..<m}.B$$(0,l)*?Mfs $$ (l,j)))
                using Groups-Big.comm-monoid-add-class.sum.remove[OF 4 2] 3
                    by (simp add:<\g. sum g {0..<m} = g 0 + sum g({0..<m}-{0})>)
                    also have .. = row?Mfs 0
                    using A(4-) 1 unfolding B-def[symmetric] by (simp add: row-def)
                    finally show ?thesis by (simp add: B-def Mfs-prod')
            qed
            then show ?thesis using True 1 fs'.f-carrier fs.f-carrier
                fs'.gs.fs0-gso0 len' len gsi.fs0-gso0 by auto
        qed
    next
        case False
        then show ?thesis
        proof -
            have gso0kcarr: gsi.gso ' {0 ..<k}\subseteq carrier-vec n
                using 1(2) gsi.gso-carrier len by auto
            hence gsospancarr:gs.span(gsi.gso ' {0 ..<k})\subseteqcarrier-vec n
                using span-is-subset2 by auto
            have fs'-gs-diff-span:
                (RAT fs')! k - fs'.gs.gso k \in gs.span (gsi.gso '{0 ..<k})
            proof -
                define gs'sum where gs'sum =
```

$$
\text { gs.M.sumlist (map (} \left.\left.\lambda j a . f s^{\prime} . g s . \mu k j a \cdot v f s^{\prime} . g s . g s o ~ j a\right)[0 . .<k]\right)
$$

define gssum where gssum $=$ gs.M.sumlist (map ($\lambda j a . f s^{\prime} . g s . \mu k j a \cdot v$ gsi.gso ja) $\left.[0 . .<k]\right)$
have set (map ($\lambda j a . f s^{\prime} . g s . \mu k j a \cdot v$ gsi.gso ja) $[0 . .<k]$)
\subseteq gs.span(gsi.gso' $\{0 . .<k\}$) using 1 (2) gs.span-mem gso0kcarr by auto
hence gssumspan: gssum \in gs.span(gsi.gso ' $\{0$.. $<k\}$)
using atLeastLessThan-iff gso0kcarr imageE set-map set-upt vec-space.sumlist-in-span
unfolding gssum-def by (smt subsetD)
hence gssumcarr: gssum \in carrier-vec n
using gsospancarr gssum-def by blast
have sumid: gs'sum = gssum
proof -
have map $\left(\lambda j a . f s^{\prime} . g s . \mu k j a \cdot v s^{\prime} . g s . g s o j a\right)[0 . .<k]=$ $\operatorname{map}\left(\lambda j a . f s^{\prime} . g s . \mu k j a \cdot v\right.$ gsi.gso ja) $[0 . .<k]$ using 1 by simp
thus ?thesis unfolding gs'sum-def gssum-def by argo
qed
have (RAT fs')! $k=f s^{\prime}$. gs.gso $k+$ gssum
using $f s^{\prime} . g s . f s$-by-gso-def len' False 1 sumid
unfolding $g s^{\prime} s u m-d e f$ by auto
hence $\left(R A T f s^{\prime}\right)!k-f s^{\prime}$.gs.gso $k=$ gssum
using gssumcarr 1(2) len' by auto
thus ?thesis using gssumspan by simp
qed
define v2 where v2 $=\operatorname{sumlist}\left(\operatorname{map}\left(\lambda j a . B \$ \$(k, j a) \cdot{ }_{v} f s!j a\right)[0 . .<k]\right)$
have v2carr: v2 \in carrier-vec n
proof -
have set $(\operatorname{map}(\lambda j a . B \$ \$(k, j a) \cdot v f s!j a)[0 . .<k]) \subseteq$ carrier-vec n using len 1 (2) fs.f-carrier by auto
thus ?thesis unfolding $v 2$-def by simp
qed
define ratv2 where ratv2 $=($ map-vec rat-of-int v2 $)$
have ratv2carr: ratv2 \in carrier-vec n
unfolding ratv2-def using v2carr by simp
have $f_{s}{ }^{\prime} i d:\left(R A T f s^{\prime}\right)!k=(R A T f s)!k+$ ratv2
proof -
have $z k m:[0 . .<m]=[0 . .<($ Suc $k)] @[($ Suc $k) . .<m]$ using 1 (2) by (metis Suc-lessI append-Nil2 upt-append upt-rec zero-less-Suc)
have prep: set $(\operatorname{map}(\lambda j a . B \$ \$(k, j a) \cdot v f s!j a)[0 . .<m]) \subseteq$ carrier-vec
using len fs.f-carrier by auto
have $f s^{\prime}!k=\operatorname{vec} n(\lambda j$. row $B k \cdot \operatorname{col}$?Mfs $j)$
using 1 (2) Mfs B-def $A(3) f s^{\prime}-$ prod by simp
also have $\ldots=\operatorname{sumlist}(\operatorname{map}(\lambda j a . B \$ \$(k, j a) \cdot v f s!j a)[0 . .<m])$
proof -
fix i
assume $i: i<n$
have (vec $n(\lambda j$. row $B k \cdot$ col ?Mfs $j)) \$ i=$ row $B k \cdot c o l$?Mfs i using i by auto
also have $\ldots=\left(\sum j=0 . .<m . B \$ \$(k, j) *\right.$?Mfs $\left.\$ \$(j, i)\right)$ using $A(3)$ unfolding B-def[symmetric]
by (smt 1(2) Mfs R.finsum-cong' i atLeastLessThan-iff carrier-matD dim-col index-col index-row(1) scalar-prod-def)
also have $\ldots=\left(\sum j=0 . .<m . B \$ \$(k, j) *\left(f_{s}!j \$ i\right)\right)$ by (metis (no-types, lifting) R.finsum-cong' atLeastLessThan-iff i len mat-of-rows-index)
also have $\ldots=$ $\left(\sum j=0 . .<m .(\operatorname{map}(\lambda j a . B \$ \$(k, j a) \cdot v f s!j a)[0 . .<m])!j \$ i\right)$ proof have $\forall j<m . \forall i<n . B \$ \$(k, j) *\left(f_{s}!j \$ i\right)=$ $\left(\operatorname{map}\left(\lambda j a . B \$ \$(k, j a) \cdot v f_{s}!j a\right)[0 . .<m]\right)!j \$ i$ using 1(2) $i A(3)$ len f s.f-carrier unfolding B-def[symmetric] by auto then show ?thesis using i by auto
qed
also have $\ldots=$ sumlist $\left(\right.$ map $\left.\left(\lambda j a . B \$ \$(k, j a) \cdot v f_{s}!j a\right)[0 . .<m]\right)$
finally have (vec $n(\lambda j$. row $B k \cdot$ col ?Mfs $j)) \$ i=$ sumlist (map $\left.\left(\lambda j a . B \$ \$(k, j a) \cdot v f_{s}!j a\right)[0 . .<m]\right) \$ i$ by auto
\}
then show ?thesis using f s.f-carrier len dim-sumlist by auto qed
also have $\ldots=\operatorname{sumlist}($ map $(\lambda j a . B \$ \$(k, j a) \cdot v f s!j a)$
$([0 . .<($ Suc $k)]$ @ $[($ Suc $k) . .<m]))$
using $z k m$ by simp
also have $\ldots=\operatorname{sumlist}(\operatorname{map}(\lambda j a . B \$ \$(k, j a) \cdot v f s!j a)[0 . .<($ Suc $k)])$
sumlist (map $\left(\lambda j a . B \$ \$(k, j a) \cdot v f_{s}!j a\right)[($ Suc $\left.k) . .<m]\right)$
(is $\ldots=? L 2+? L 3)$
using f s.f-carrier len dim-sumlist sumlist-append prep zkm by auto
also have ? $23=0_{v} n$
using A (4) fs.f-carrier len sumlist-nth carrier-vecD sumlist-carrier prep $z k m$ unfolding B-def[symmetric] by auto
also have ${ }^{2} L 2=\operatorname{sumlist}\left(\operatorname{map}\left(\lambda j a . B \$ \$(k, j a) \cdot v f_{s}!j a\right)[0 . .<k]\right)+$
$B \$ \$(k, k) \cdot v f s!k$ using prep zkm sumlist-snoc by simp
also have $\ldots=\operatorname{sumlist}\left(\operatorname{map}\left(\lambda j a . B \$ \$(k, j a) \cdot v f_{s}!j a\right)[0 . .<k]\right)+f_{s}$
using $A(5) 1$ (2) unfolding B-def[symmetric $]$ by simp
finally have $f_{s}!k=f_{s}!k+$
sumlist (map $(\lambda j a . B \$ \$(k, j a) \cdot v f s!j a)[0 . .<k])$
using prep zkm by (simp add: M.add.m-comm)
then have $f s^{\prime}!k=f s!k+v 2$ unfolding $v 2$-def by simp
then show ?thesis using v2carr 1(2) len len' ratv2-def by force

qed

have ratv2span: ratv2 \in gs.span (gsi.gso ' $\{0 . .<k\}$)
proof -
have rat: ratv2 $=$ gs.M.sumlist
$\left(\right.$ map $\left(\lambda j\right.$. of-int $\left.\left.(B \$ \$(k, j)) v_{v}(R A T f s)!j\right)[0 . .<k]\right)$
proof -
have set (map $\left(\lambda j\right.$. of-int $\left.\left.(B \$ \$(k, j)) \cdot_{v}(R A T f s)!j\right)[0 . .<k]\right)$ \subseteq carrier-vec n using fs.f-carrier 1 (2) len by auto
hence carr: gs.M.sumlist
$(\operatorname{map}(\lambda j$. of-int $(B \$ \$(k, j)) \cdot v(R A T f s)!j)[0 . .<k]) \in$ carrier-vec n by auto
have set $\left(\operatorname{map}\left(\lambda j . B \$ \$(k, j) \cdot{ }_{v} f s!j\right)[0 . .<k]\right) \subseteq$ carrier-vec n using fs.f-carrier 1(2) len by auto
hence $\bigwedge i j . i<n \Longrightarrow j<k \Longrightarrow o f-i n t\left(\left(B \$ \$(k, j) \cdot{ }_{v} f s!j\right) \$ i\right)$ $=\left(o f-i n t(B \$ \$(k, j)) \cdot v\left(R A T f_{s}\right)!j\right) \$ i$ using 1(2) len by fastforce
hence $\bigwedge i . i<n \Longrightarrow$ ratv2 $\$ i=$ gs.M.sumlist
$(\operatorname{map}(\lambda j$. (of-int $(B \$ \$(k, j)) \cdot v(R A T f s)!j))[0 . .<k]) \$ i$ using fs.f-carrier 1(2) len v2carr gs.sumlist-nth sumlist-nth ratv2-def v2-def by simp
then show ?thesis using ratv2carr carr by auto
qed
have $\bigwedge i . i<k \Longrightarrow(R A T f s)!i=$ gs.M.sumlist (map (λj. gsi. $\mu i j{ }_{v}$ gsi.gso j) $[0$.. $<$ Suc $\left.i]\right)$
using gsi.fi-is-sum-of-mu-gso len 1(2) by auto
moreover have $\bigwedge i . i<k \Longrightarrow(\lambda j . g s i . \mu i j \cdot v$ gsi.gso j)' $\{0 . .<S u c i\}$ \subseteq gs.span (gsi.gso ' $\{0 . .<k\}$)
using gs.span-mem gso0kcarr by auto
ultimately have $\bigwedge i . i<k \Longrightarrow(R A T f s)!i \in$ gs.span (gsi.gso ' $\{0$
using gsoOkcarr set-map set-upt vec-space.sumlist-in-span subsetD by
then show ?thesis using rat atLeastLessThan-iff set-upt gso0kcarr
image E
set-map gs.smult-in-span vec-space.sumlist-in-span by smt
qed
have $f s$-gs-diff-span:
(RAT fs) ! $k-f s^{\prime}$.gs.gso $k \in$ gs.span (gsi.gso ' $\{0$.. $<k\}$)
proof -
from $f s$ '-gs-diff-span obtain $v 3$ where $s p: v 3 \in$ gs.span (gsi.gso ' $\{0$
and eq: $(R A T f s)!k-f s^{\prime} . g s . g s o k=v 3-r a t v 2$
using $f s^{\prime}$. gs.gso-carrier len'1(2) ratv2carr fs'id by fastforce
have $v 3+(-r a t v 2) \in$ gs.span(gsi.gso ' $\{0 . .<k\})$
by (metis sp gs.span-add1 gso0kcarr gram-schmidt.inv-in-span gso0kcarr ratv2span)
moreover have $v 3+(-$ ratv2 $)=v 3-r a t v 2$ using ratv2carr by auto

```
            ultimately have \(v 3-\) ratv2 \(\in\) gs.span (gsi.gso ' \(\{0\)..<k\}) by simp
            then show ?thesis using eq by auto
        qed
        \{
            fix \(i\)
            assume \(i: i<k\)
            hence \(f_{s}\) '.gs.gso \(k \cdot f s^{\prime}\).gs.gso \(i=0\) using 1(2) fs'.gs.orthogonal len' \({ }^{\prime}\) by
auto
            hence \(f^{\prime}{ }^{\prime}\).gs.gso \(k \cdot\) gsi.gso \(i=0\) using \(1 i\) by \(\operatorname{simp}\)
        \}
            hence \(\bigwedge x . x \in\) gsi.gso ' \(\{0 . .<k\} \Longrightarrow f s^{\prime}\). gs.gso \(k \cdot x=0\) by auto
            then show ?thesis
                using gsi.oc-projection-unique len len' fs-gs-diff-span 1(2) by auto
        qed
        qed
    qed
    have \(\bigwedge i^{\prime} j^{\prime} . i^{\prime}<m \Longrightarrow j^{\prime}<m \Longrightarrow \mu f s^{\prime} i^{\prime} j^{\prime}=\)
        (map-mat of-int \((A i j c) * g s i . M m) \$ \$\left(i^{\prime}, j^{\prime}\right)\) and
        \(\bigwedge k . k<m \Longrightarrow\) gso fs \({ }^{\prime} k=\) gso fs \(k\)
    proof -
        define \(r B\) where \(r B=\) map-mat rat-of-int \(B\)
    have \(r\) Bcarr: \(r B \in\) carrier-mat \(m\) using \(A(3)\) unfolding \(r B\)-def \(B\)-def by
simp
    define rfs where rfs \(=\) mat-of-rows \(n(R A T f s)\)
    have rfscarr: rfs \(\in\) carrier-mat \(m n\) using \(M f s\) unfolding rfs-def by simp
    \{
        fix \(i^{\prime}\)
        fix \(j^{\prime}\)
        assume \(i^{\prime}: i^{\prime}<m\)
        assume \(j^{\prime}: j^{\prime}<m\)
        have prep:
            of-int-hom.vec-hom (row \((B *\) mat-of-rows \(\left.n f s) i^{\prime}\right)=\) row \((r B * r f s) i^{\prime}\)
            using len \(i^{\prime} B-\operatorname{def} A(3) r B-d e f r f s-d e f\) by (auto simp: scalar-prod-def)
        have prep2: row \((r B * r f s) i^{\prime}=\) vec \(n\left(\lambda l\right.\). row \(r B i^{\prime} \cdot\) col rfs \(\left.l\right)\)
            using len fs.f-carrier \(i^{\prime} B\)-def \(A(3)\) scalar-prod-def rB-def
            unfolding rfs-def by auto
        have prep3: (vec \(m\left(\lambda\right.\) j1. row rfs \(j 1 \cdot\) gsi.gso \(j^{\prime} / \|\) gsi.gso \(\left.\left.j^{\prime} \|^{2}\right)\right)=\)
            (vec \(\left.m\left(\lambda j 1 .(g s i . M m) \$ \$\left(j 1, j^{\prime}\right)\right)\right)\)
        proof -
        \{
            fix \(x y\)
            assume \(x: x<m\) and \(y: y<m\)
            have \((\) gsi.M m) \(\$ \$(x, y)=(\) if \(y<x\) then map of-int-hom.vec-hom \(f s!x\)
                \(\cdot f s^{\prime} . g s . g s o\) y \(/ \| f s^{\prime}\).gs.gso \(y \|^{2}\) else if \(x=y\) then 1 else 0 )
                using gsi. \(\mu\).simps \(x\) y \(j^{\prime}\) len gs-eq gsi.M-index by auto
            hence row rfs \(x \cdot\) gsi.gso \(y / \|\) gsi.gso \(y \|^{2}=(\) gsi.M m) \(\$ \$(x, y)\)
```

```
            unfolding rfs-def
            by (metis carrier-matD(1) divide-eq-eq fs'.gs.\beta-zero fs'.gs.gso-norm-beta
                gs-eq gsi.\mu.simps gsi.fi-scalar-prod-gso gsi.fs-carrier len len'
                length-map nth-rows rfs-def rfscarr rows-mat-of-rows x y)
    }
    then show ?thesis using j' by auto
qed
have prep4:(1 / |gsi.gso j'|}\mp@subsup{|}{}{2})\cdotv(vec m (\lambdaj1. row rfs j1 • gsi.gso j'))
(vec m (\lambdaj1. row rfs j1 | gsi.gso j' / |gsi.gso j}\mp@subsup{j}{}{\prime}\mp@subsup{|}{}{2}))\mathrm{ by auto
have map of-int-hom.vec-hom \(f s^{\prime}!i^{\prime} \cdot f s^{\prime}\).gs.gso \(j^{\prime} / \| f s^{\prime}\).gs.gso \(j^{\prime} \|^{2}\) \(=\) map of-int-hom.vec-hom \(f_{s}{ }^{\prime}!i^{\prime} \cdot\) gsi.gso \(j^{\prime} / \|\) gsi.gso \(j^{\prime} \|^{2}\)
using gs-eq \(j^{\prime}\) by simp
also have \(\ldots=\) row \((r B * r f s) i^{\prime} \cdot\) gsi.gso \(j^{\prime} / \|\) gsi.gso \(j^{\prime} \|^{2}\)
using prep \(i^{\prime}\) len' unfolding rB-def \(B\)-def by (simp add: \(f s^{\prime}\)-prod)
also have ... =
(vec \(n\left(\lambda l\right.\). row \(r B i^{\prime} \cdot\) col rfs \(\left.\left.l\right)\right) \cdot\) gsi.gso \(j^{\prime} / \|\) gsi.gso \(j^{\prime} \|^{2}\)
using prep 2 by auto
also have vec \(n\left(\lambda l\right.\). row \(\left.r B i^{\prime} \cdot \operatorname{col} r f s l\right)=\) (vec \(n\left(\lambda l .\left(\sum j 1=0 . .<m .\left(\right.\right.\right.\) row \(\left.r B i^{\prime}\right) \$ j 1 *(\) col rfs \(\left.\left.\left.l) \$ j 1\right)\right)\right)\)
using gsi.gso-carrier
by (metis (no-types) carrier-matD(1) col-def dim-vec rfscarr scalar-prod-def)
also have ... =
(vec \(\left.n\left(\lambda l .\left(\sum j 1=0 . .<m . r B \$ \$\left(i^{\prime}, j 1\right) * r f s \$ \$(j 1, l)\right)\right)\right)\)
using rBcarr rfscarr \(i^{\prime}\) by auto
also have \(\ldots \cdot\) gsi.gso \(j^{\prime}=\)
\[
\begin{aligned}
& \left(\sum_{j 2=0 . .<n .(\text { vec } n}\left(\lambda l .\left(\sum j 1=0 . .<m . r B \$ \$\left(i^{\prime}, j 1\right) * r f s \$ \$(j 1, l)\right)\right)\right) \$ j 2 *\left(\text { gsi.gso } j^{\prime}\right) \$
\end{aligned}
\]
```

using gsi.gso-carrier len j^{\prime} scalar-prod-def
by (smt gs.R.finsum-cong' gsi.gso-dim length-map)
also have $\ldots=\left(\sum j 2=0 . .<n\right.$.
$\left.\left(\sum j 1=0 . .<m . r B \$ \$\left(i^{\prime}, j 1\right) * r f s \$ \$(j 1, j 2)\right) *\left(g s i . g s o j^{\prime}\right) \$ j 2\right)$
using gsi.gso-carrier len j^{\prime} by simp
also have $\ldots=\left(\sum j 2=0 . .<n .\left(\sum j 1=0 . .<m\right.\right.$.
$\left.\left.r B \$ \$\left(i^{\prime}, j 1\right) * r f s \$ \$(j 1, j 2) *\left(g s i . g s o j^{\prime}\right) \$ j 2\right)\right)$
by (smt gs.R.finsum-cong' sum-distrib-right)
also have $\ldots=\left(\sum j 1=0 . .<m .\left(\sum j 2=0 . .<n\right.\right.$.
$\left.\left.r B \$ \$\left(i^{\prime}, j 1\right) * r f s \$ \$(j 1, j 2) *\left(g s i . g s o j^{\prime}\right) \$ j 2\right)\right)$
using sum.swap by auto
also have $\ldots=\left(\sum j 1=0 . .<m . r B \$ \$\left(i^{\prime}, j 1\right) *\left(\sum j 2=0 . .<n\right.\right.$
rfs $\left.\left.\$ \$(j 1, j 2) *\left(g s i . g s o j^{\prime}\right) \$ j 2\right)\right)$
using gs.R.finsum-cong' sum-distrib-left by (smt gs.m-assoc)
also have $\ldots=$ row $r B i^{\prime} \cdot\left(\right.$ vec $m\left(\lambda j 1 .\left(\sum j 2=0 . .<n\right.\right.$.
rfs $\left.\left.\left.\$ \$(j 1, j 2) *\left(g s i . g s o j^{\prime}\right) \$ j 2\right)\right)\right)$
using rBcarr rfscarr i^{\prime} scalar-prod-def
by (smt atLeastLessThan-iff carrier-matD(1) carrier-matD(2) dim-vec gs.R.finsum-cong' index-row(1) index-vec)

```
            also have (vec m ( }\lambda\mathrm{ j1. ( }\sumj2=0..<n.rfs $$ (j1, j2) * (gsi.gso j')$ j2)))
                = (vec m (\lambda j1. row rfs j1 • gsi.gso j'))
    using rfscarr gsi.gso-carrier len j' rfscarr by (auto simp add: scalar-prod-def)
        also have row rB i'. .. / |gsi.gso j'|}\mp@subsup{|}{}{2}
            row rB i' • vec m ( }\lambda\mathrm{ j1. row rfs j1 • gsi.gso j' / |gsi.gso j'|}\mp@subsup{|}{}{2}
            using prep4 scalar-prod-smult-right rBcarr carrier-matD(2) dim-vec row-def
            by (smt gs.l-one times-divide-eq-left)
            also have ... = (rB * (gsi.M m)) $$ (i', j')
            using rBcarr i' j' prep3 gsi.M-def by (simp add: col-def)
            finally have
            map of-int-hom.vec-hom fs'! ! i' .fs'.gs.gso j' / |fs'.gs.gso j'||
            (rB*(gsi.Mm))$$(i',}\mp@subsup{j}{}{\prime})\mathrm{ by auto
    }
    then show }\bigwedge\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}.\mp@subsup{i}{}{\prime}<m\Longrightarrow\mp@subsup{j}{}{\prime}<m\Longrightarrow\muf\mp@subsup{s}{}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}
            (map-mat of-int (A i j c)* gsi.M m) $$ (i',j')
            using B-def fs'.gs.\beta-zero fs'.gs.fi-scalar-prod-gso fs'.gs.gso-norm-beta
            len'rB-def by auto
            show }\bigwedgek.k<m\Longrightarrowgsofs' k= gso fs k using gs-eq by aut
qed
} note mu-gso = this
show }^k.k<m\Longrightarrowgsofs' k=gso fs k by fac
{
    fix }
    have k\leqm\Longrightarrowrat-of-int (d fs''}k)=rat-of-int (d fs k) for k
    proof (induct k)
        case 0
        show ?case by (simp add: d-def)
    next
        case (Suc k)
        hence k: k\leqmk<m by auto
        show ?case
            by (subst (1 2) LLL-d-Suc[OF - k(2)], auto simp: Suc(1)[OF k(1)]
mu-gso(2)[OF k(2)]
            LLL-invariant-weak-def lin lin' len len' latt latt')
    qed
    thus }k\leqm\Longrightarrowdf\mp@subsup{s}{}{\prime}k=d fs k by sim
} note d = this
{
    assume }\mp@subsup{i}{}{\prime}:\mp@subsup{i}{}{\prime}<m\mathrm{ and }\mp@subsup{j}{}{\prime}:\mp@subsup{j}{}{\prime}<
    have }\mu\mp@subsup{fls}{\prime}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=(of-int-hom.mat-hom (A ijc)*gsi.Mm)$$ (i',j') by (rule
mu-gso(1)[OF i' j}]
    also have ... = (if ( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})=(i,j) then of-int c * gsi.d j else 0) + gsi.M m $$
(i',}\mp@subsup{j}{}{\prime}
            unfolding A(1) using }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ by (auto simp: gsi.M-def)
    also have gsi.Mm $$ (i',}\mp@subsup{j}{}{\prime})=\mufs\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime
        unfolding gsi.M-def using }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ by simp
    also have gsi.d j =of-int (d fs j)
```

unfolding d-def by (subst Gramian-determinant-of-int[OF fs], insert ji i len, auto)
finally show mu: $\mu f s^{\prime} i^{\prime} j^{\prime}=\left(\right.$ if $\left(i^{\prime}, j^{\prime}\right)=(i, j)$ then rat-of-int $(c * d f s j)+\mu$ fs $i^{\prime} j^{\prime}$ else μ fs $i^{\prime} j^{\prime}$)
by simp
let ? $d=d f_{s}\left(S u c j^{\prime}\right)$
have d-fs: of-int $\left(d \mu f s i^{\prime} j^{\prime}\right)=$ rat-of-int ? $d * \mu f s i^{\prime} j^{\prime}$
unfolding $d \mu$-def
using $f s$ sfs-int-mu-d-Z-m-m[unfolded len, OF $\left.i^{\prime} j^{\prime}\right]$
by (metis LLL.LLL.d-def assms(2) fs.fs-int-mu-d-Z-m-m fs-int.d-def i^{\prime} int-of-rat(2) j^{\prime})
have rat-of-int $\left(d \mu f s^{\prime} i^{\prime} j^{\prime}\right)=$ rat-of-int $\left(d f s^{\prime}\left(S u c j^{\prime}\right)\right) * \mu f s^{\prime} i^{\prime} j^{\prime}$
unfolding $d \mu$-def
using $f s^{\prime} . f s$-int-mu-d-Z-m-m[unfolded len', OF $\left.i^{\prime} j^{\prime}\right]$
using LLL.LLL.d-def $f s^{\prime}(1) f s^{\prime} . d \mu f s^{\prime} . d \mu$-def $f s$-int.d-def $i^{\prime} j^{\prime}$ by auto
also have $d f s^{\prime}\left(S u c j^{\prime}\right)=? d$ by (rule d, insert j^{\prime}, auto)
also have rat-of-int $\ldots * \mu f s^{\prime} i^{\prime} j^{\prime}=$
$\left(\right.$ if $\left(i^{\prime}, j^{\prime}\right)=(i, j)$ then rat-of-int $(c * d f s j * ? d)$ else 0$)+o f-i n t\left(d \mu f s i^{\prime} j^{\prime}\right)$ unfolding $m u$ d-fs by (simp add: field-simps)
also have $\ldots=$ rat-of-int $\left(\left(\right.\right.$ if $\left(i^{\prime}, j^{\prime}\right)=(i, j)$ then $c * d f s j *$?d else 0$)+d \mu$ fs $i^{\prime} j^{\prime}$)
by simp
also have $\ldots=$ rat-of-int $\left(\left(\right.\right.$ if $\left(i^{\prime}, j^{\prime}\right)=(i, j)$ then $c * d f s j * d f s(S u c j)+d \mu$ fs $i^{\prime} j^{\prime}$ else $\left.d \mu f s i^{\prime} j^{\prime}\right)$)
by simp
finally show $d \mu f s^{\prime} i^{\prime} j^{\prime}=\left(\right.$ if $\left(i^{\prime}, j^{\prime}\right)=(i, j)$ then $c * d f s j * d f s(S u c j)+d \mu$ fs $i^{\prime} j^{\prime}$ else $d \mu$ fs $i^{\prime} j^{\prime}$)
by simp
\}
qed
Eventually: Lemma 13 of Storjohann's paper.
lemma mod-single-element: assumes lin: lin-indep fs
and len: length $f s=m$
and $i: i<m$ and $j i: j<i$
and latt: lattice-of $f s=L$
and pgtz: $p>0$
shows $\exists f s^{\prime}$. lattice-of $f s^{\prime}=L \wedge$
$\operatorname{map}(\operatorname{map-vec}(\lambda x . x \bmod p)) f s^{\prime}=\operatorname{map}(\operatorname{map-vec}(\lambda x . x \bmod p)) f s \wedge$
$\operatorname{map}(\operatorname{map}-v e c(\lambda x . x$ symmod $p)) f_{s^{\prime}}=\operatorname{map}(\operatorname{map}-v e c(\lambda x . x$ symmod $p)) f s \wedge$
lin-indep fs ${ }^{\prime} \wedge$
length $f s^{\prime}=m \wedge$
$\left(\forall k<m\right.$. gso fs $s^{\prime} k=$ gso fs $\left.k\right) \wedge$
$\left(\forall k \leq m . d f s^{\prime} k=d f s k\right) \wedge$
$\left(\forall i^{\prime}<m . \forall j^{\prime}<m . d \mu f s^{\prime} i^{\prime} j^{\prime}=\left(i f\left(i^{\prime}, j^{\prime}\right)=(i, j)\right.\right.$ then $d \mu f s i j^{\prime}$ symmod $(p$
$\left.* d f s j^{\prime} * d f s\left(S u c j^{\prime}\right)\right)$ else $\left.\left.d \mu f s i^{\prime} j^{\prime}\right)\right)$
proof -
have inv: LLL-invariant-weak $f s$ using LLL-invariant-weak-def assms by simp let ? mult $=d f s j * d f s(S u c j)$
define M where $M=$?mult
define $p M$ where $p M=p * M$
then have $p M g t z: p M>0$ using pgtz unfolding $p M$-def M-def using $L L L-d$-pos[OF $i n v] i j i$ by simp
let ? $d=d \mu$ fs $i j$
define c where $c=-($?d symdiv $p M)$
have d-mod: ?d symmod $p M=c * p M+$? d unfolding c-def using $p M g t z$ sym-mod-sym-div by simp
define A where $A=$ gram-schmidt-fs-int.inv-mu-ij-mat n (RAT fs)
define $f_{s}{ }^{\prime}$ where $f_{s}{ }^{\prime}: f_{s}{ }^{\prime}=$ Matrix.rows $(A i j(c * p) *$ mat-of-rows $n f s)$
note main $=$ change-single-element[OF lin len i ji A-def fs' latt]
have map $(\operatorname{map-vec}(\lambda x . x \bmod p)) f s^{\prime}=\operatorname{map}(\operatorname{map}-v e c(\lambda x . x \bmod p)) f_{s}$
by (intro main, auto)
from arg-cong[OF this, of map (map-vec (poly-mod.inv-M p))]
have id: map (map-vec $(\lambda x . x$ symmod $p)) f s^{\prime}=\operatorname{map}(\operatorname{map-vec}(\lambda x . x$ symmod p)) $f s$
unfolding map-map o-def sym-mod-def map-vec-map-vec .
show ?thesis
proof (intro exI[of - fs $]$ conjI main allI impI id)
fix $i^{\prime} j^{\prime}$
assume $i j: i^{\prime}<m j^{\prime}<m$
have $d \mu f s^{\prime} i^{\prime} j^{\prime}=\left(\right.$ if $\left(i^{\prime}, j^{\prime}\right)=(i, j)$ then $(c * p) * M+$?d else d μ fs $\left.i^{\prime} j^{\prime}\right)$
unfolding main(8)[OF ij] M-def by simp
also have $(c * p) * M+$? $d=$? d symmod $p M$
unfolding d-mod by (simp add: $p M$-def)
finally show $d \mu f s^{\prime} i^{\prime} j^{\prime}=\left(\right.$ if $\left(i^{\prime}, j^{\prime}\right)=(i, j)$ then $d \mu f s i j^{\prime} \operatorname{symmod}(p * d f s$ $\left.j^{\prime} * d f s\left(S u c j^{\prime}\right)\right)$ else $d \mu$ fs $\left.i^{\prime} j^{\prime}\right)$
by (auto simp: $p M$-def M-def ac-simps)
qed auto
qed
A slight generalization to perform modulo on arbitrary set of indices I.

```
lemma mod-finite-set: assumes lin: lin-indep fs
    and len: length \(f s=m\)
    and \(I: I \subseteq\{(i, j) . i<m \wedge j<i\}\)
    and latt: lattice-of \(f s=L\)
    and pgtz: \(p>0\)
shows \(\exists f_{s^{\prime}}\). lattice-of \(f s^{\prime}=L \wedge\)
    \(\operatorname{map}(\operatorname{map}-v e c(\lambda x . x \bmod p)) f_{s}{ }^{\prime}=\operatorname{map}(\operatorname{map}-v e c(\lambda x . x \bmod p)) f s \wedge\)
    map (map-vec \((\lambda x . x\) symmod \(p)) f_{s}^{\prime}=\operatorname{map}(\) map-vec \((\lambda x\). x symmod \(p)) f s \wedge\)
    lin-indep \(f s^{\prime} \wedge\)
    length \(f_{s}{ }^{\prime}=m \wedge\)
    \(\left(\forall k<m\right.\). gso fs \({ }^{\prime} k=\) gso fs \(\left.k\right) \wedge\)
    \(\left(\forall k \leq m . d f_{s}{ }^{\prime} k=d f s k\right) \wedge\)
    \(\left(\forall i^{\prime}<m . \forall j^{\prime}<m . d \mu f s^{\prime} i^{\prime} j^{\prime}=\right.\)
        \(\left(\right.\) if \(\left(i^{\prime}, j^{\prime}\right) \in I\) then \(d \mu f s i^{\prime} j^{\prime} \operatorname{symmod}\left(p * d f s j^{\prime} * d f s\left(S u c j^{\prime}\right)\right)\) else \(d \mu f s i^{\prime}\)
\(\left.j^{\prime}\right)\) )
proof -
    let \(? \exp =\lambda f s^{\prime} I i^{\prime} j^{\prime}\).
```

```
    d\mufs' }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=(\mathrm{ if }(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\inI then d\mu fs \mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\operatorname{symmod}(p*dfs\mp@subsup{j}{}{\prime}*dfs(Suc \mp@subsup{j}{}{\prime})
else d\mu fs i' j')
    let ?prop = \ fs fs'. lattice-of fs' }=L
    map (map-vec ( }\lambdax.x\operatorname{mod}p))f\mp@subsup{s}{}{\prime}=\operatorname{map}(\operatorname{map-vec}(\lambdax.x\operatorname{mod}p))fs 
    map (map-vec (\lambdax.x symmod p)) fs' = map (map-vec (\lambdax.x symmod p)) fs }
    lin-indep fs'}^
    length fs' = m ^
    (\forallk<m.gso fs' k = gso fs k)}
    (}\forallk\leqm.df\mp@subsup{s}{}{\prime}k=dfsk
    have finite I
    proof (rule finite-subset[OF I], rule finite-subset)
    show {(i,j).i<m\wedgej<i}\subseteq{0..m}\times{0..m} by auto
qed auto
    from this I have \existsfs'. ?prop fs fs '}^^(\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<m\mathrm{ . ?exp fs'}\mp@subsup{}{}{\prime}I\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}
    proof (induct I)
    case empty
    show ?case
        by (intro exI[of-fs], insert assms, auto)
    next
    case (insert ij I)
    obtain ij where ij: ij=(i,j) by force
    from ij insert(4) have i:i<mj<i by auto
    from insert(3,4) obtain gs where gs:?prop fs gs
            and exp: \bigwedge i i' j}\mp@subsup{j}{}{\prime}.\mp@subsup{i}{}{\prime}<m\Longrightarrow\mp@subsup{j}{}{\prime}<m\Longrightarrow\mathrm{ ?exp gs I }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ by auto
    from gs have lin-indep gs lattice-of gs =L length gs =m by auto
    from mod-single-element[OF this(1,3) i this(2), of p]
    obtain hs where hs: ?prop gs hs
        and exp':\bigwedge i' j'. i'<m\Longrightarrow j'<m\Longrightarrow
        d\muhs i' j
            then d\mu gs i j' symmod (p*dgs j'*d gs (Suc j')) else d\mu gs i' j')
        using pgtz by auto
    from gs i have id: d gs j=d fs jdgs (Suc j)=d fs (Suc j) by auto
    show ?case
    proof (intro exI[of - hs], rule conjI; (intro allI impI)?)
        show ?prop fs hs using gs hs by auto
        fix }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime
        assume *: i'<m j'<m
        show ? exp hs (insert ij I) i' j' unfolding exp'[OF *] ij using exp * i
            by (auto simp: id)
    qed
qed
thus ?thesis by auto
qed
end
end
```


4 Storjohann's basis reduction algorithm (abstract version)

This theory contains the soundness proofs of Storjohann's basis reduction algorithms, both for the normal and the improved-swap-order variant.
The implementation of Storjohann's version of LLL uses modular operations throughout. It is an abstract implementation that is already quite close to what the actual implementation will be. In particular, the swap operation here is derived from the computation lemma for the swap operation in the old, integer-only formalization of LLL.

```
theory Storjohann
    imports
        Storjohann-Mod-Operation
    LLL-Basis-Reduction.LLL-Number-Bounds
    Sqrt-Babylonian.NthRoot-Impl
begin
```


4.1 Definition of algorithm

In the definition of the algorithm, the first-flag determines, whether only the first vector of the reduced basis should be computed, i.e., a short vector. Then the modulus can be slightly decreased in comparison to the required modulus for computing the whole reduced matrix.

```
fun max-list-rats-with-index :: (int * int * nat) list \(\Rightarrow\) (int * int \(*\) nat) where
    max-list-rats-with-index \([x]=x \mid\)
    max-list-rats-with-index ((n1,d1,i1) \# (n2,d2,i2) \# xs)
        \(=\) max-list-rats-with-index \(((\) if \(n 1 * d 2 \leq n 2 * d 1\) then \((n 2, d 2, i 2)\) else
\((n 1, d 1, i 1)) \# x s)\)
context \(L L L\)
begin
definition log-base \(=(10::\) int \()\)
definition bound-number :: bool \(\Rightarrow\) nat where
    bound-number first \(=(\) if first \(\wedge m \neq 0\) then 1 else \(m)\)
definition compute-mod-of-max-gso-norm \(::\) bool \(\Rightarrow\) rat \(\Rightarrow\) int where
    compute-mod-of-max-gso-norm first \(m n=\) log-base ^ (log-ceiling log-base (max 2
(
        root-rat-ceiling 2 \((m n *(\) rat-of-nat \((\) bound-number first \()+3))+1)))\)
definition \(g\)-bnd-mode \(::\) bool \(\Rightarrow\) rat \(\Rightarrow\) int vec list \(\Rightarrow\) bool where
    \(g\)-bnd-mode first \(b f s=(\) if first \(\wedge m \neq 0\) then sq-norm (gso fs 0 ) \(\leq b\) else \(g\)-bnd
\(b f s\) )
```

definition d-of where d-of $d m u \quad i=($ if $i=0$ then $1::$ int else $d m u \$ \$(i-1, i$ -1))
definition compute-max-gso-norm $::$ bool \Rightarrow int mat \Rightarrow rat \times nat where compute-max-gso-norm first $d m u=($ if $m=0$ then $(0,0)$ else case max-list-rats-with-index (map (λ i. (d-of dmu (Suc i), d-of dmu i, i)) [0 $. .<($ if first then 1 else $m)])$ of (num, denom, $i) \Rightarrow$ (of-int num / of-int denom, $i)$)

context

fixes p :: int - the modulus
and first :: bool - only compute first vector of reduced basis
begin
definition basis-reduction-mod-add-row ::
int vec list \Rightarrow int mat \Rightarrow nat \Rightarrow nat \Rightarrow (int vec list \times int mat $)$ where
basis-reduction-mod-add-row mfs dmu $i j=$
(let $c=$ round-num-denom $(d m u \$ \$(i, j))(d$-of dmu (Suc $j))$ in
(if $c=0$ then (mfs , dmu) else $(m f s[i:=($ map-vec $(\lambda x . x \operatorname{symmod} p))(m f s!i-c \cdot v m f s!j)]$,
mat $m m\left(\lambda\left(i^{\prime}, j^{\prime}\right)\right.$. $\left(\right.$ if $\left(i^{\prime}=i \wedge j^{\prime} \leq j\right)$
then (if $j^{\prime}=j$ then $\left(d m u \$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\right)$
else (dmu $\left.\$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\right)$
$\operatorname{symmod}\left(p * d\right.$-of $d m u j^{\prime} * d$-of $\left.\left.d m u\left(S u c j^{\prime}\right)\right)\right)$
else $\left.\left.\left.\left.\left(d m u \$ \$\left(i^{\prime}, j^{\prime}\right)\right)\right)\right)\right)\right)$)
fun basis-reduction-mod-add-rows-loop where
basis-reduction-mod-add-rows-loop mfs dmu i $0=(m f s, d m u)$
| basis-reduction-mod-add-rows-loop mfs dmu $i(S u c j)=($
let $\left(m f s^{\prime}, d m u u^{\prime}\right)=$ basis-reduction-mod-add-row mfs dmu ij
in basis-reduction-mod-add-rows-loop $\left.m f^{\prime}{ }^{\prime} d m u^{\prime} i j\right)$
definition basis-reduction-mod-swap-dmu-mod $::$ int mat \Rightarrow nat \Rightarrow int mat where
basis-reduction-mod-swap-dmu-mod dmu $k=$ mat $m m(\lambda(i, j)$.

```
    if \(j<i \wedge(j=k \vee j=k-1)\) then
            \(d m u \$ \$(i, j)\) symmod \((p * d\)-of \(d m u j * d\)-of dmu (Suc \(j)\) )
    else dmu \(\$ \$(i, j))\) )
```

definition basis-reduction-mod-swap where basis-reduction-mod-swap mfs dmu $k=$ $(m f s[k:=m f s!(k-1), k-1:=m f s!k]$, basis-reduction-mod-swap-dmu-mod (mat m m $(\lambda(i, j)$.
if $j<i$ then if $i=k-1$ then
$d m u \$ \(k, j)
else if $i=k \wedge j \neq k-1$ then dmu $\$ \$(k-1, j)$
else if $i>k \wedge j=k$ then
$\operatorname{div}(d$-of dmu $k)$
else if $i>k \wedge j=k-1$ then
$(d m u \$ \$(k, k-1) * d m u \$ \$(i, j)+d m u \$ \$(i, k) *(d$-of $d m u(k-1)))$
div (d-of dmu k)
else dmu $\$ \(i, j)
else if $i=j$ then
if $i=k-1$ then
$((d$-of $d m u(S u c k)) *(d$-of $d m u(k-1))+d m u \$ \$(k, k-1) * d m u \$ \$$
$(k, k-1))$
$d i v(d$-of $d m u k)$
else (d-of dmu (Suc i))
else dmu $\$ \$(i, j))$
)) k)

fun basis-reduction-adjust-mod where

 basis-reduction-adjust-mod mfs dmu =
 (let \((b, g\)-idx \()=\) compute-max-gso-norm first dmu;
 \(p^{\prime}=\) compute-mod-of-max-gso-norm first \(b\)
 in if \(p^{\prime}<p\) then
 let \(m f_{s}{ }^{\prime}=\operatorname{map}\left(\operatorname{map}-v e c\left(\lambda x . x \operatorname{symmod} p^{\prime}\right)\right) m f s ;\)
 \(d\)-vec \(=v e c(\) Suc m) \((\lambda\) i. d-of dmu i);
 \(d m u^{\prime}=\) mat \(m m(\lambda(i, j)\). if \(j<i\) then dmu \(\$ \$(i, j)\)
 symmod (\(p^{\prime} * d\)-vec \(\$ j * d\)-vec \(\left.\$(S u c j)\right)\) else
 dmu \(\$ \$(i, j))\)
 in \(\left(p^{\prime}, m f s^{\prime}, d m u^{\prime}, g-i d x\right)\)
 else (\(p, m f s, d m u, g-i d x)\))
 definition basis-reduction-adjust-swap-add-step where
basis-reduction-adjust-swap-add-step mfs dmu g-idx $i=($
let $i 1=i-1$;
(mfs1, dmu1) $=$ basis-reduction-mod-add-row mfs dmu i i1;
$(m f s 2, d m u 2)=$ basis-reduction-mod-swap mfs1 dmu1 i
in if i1 $=g$-idx then basis-reduction-adjust-mod mfs2 dmu2
else ($p, m f s 2, d m u 2, g-i d x)$)
definition basis-reduction-mod-step where
basis-reduction-mod-step mfs dmu g-idx $i(j::$ int $)=($ if $i=0$ then $(p, m f s, d m u$, g-idx, Suc i, j)
else let $d i=d$-of $d m u i$;
(num, denom) $=$ quotient-of α
in if $d i * d i * d e n o m \leq n u m * d$-of $d m u(i-1) * d$-of $d m u(S u c i)$ then
($p, m f s, d m u, g-i d x$, Suc i, j)
else let $\left(p^{\prime}, m f s^{\prime}, d m u^{\prime}, g\right.$-idx $)=$ basis-reduction-adjust-swap-add-step $m f s$ dmu g-idx i

$$
\left.i n\left(p^{\prime}, m f s^{\prime}, d m u^{\prime}, g-i d x^{\prime}, i-1, j+1\right)\right)
$$

primrec basis-reduction-mod-add-rows-outer-loop where
basis-reduction-mod-add-rows-outer-loop mfs dmu $0=(m f s, d m u) \mid$
basis-reduction-mod-add-rows-outer-loop mfs dmu (Suc i) =
(let $\left(m f s^{\prime}, d m u u^{\prime}\right)=$ basis-reduction-mod-add-rows-outer-loop mfs dmu i in
basis-reduction-mod-add-rows-loop mfs' dmu' (Suc i) (Suc i))
end
the main loop of the normal Storjohann algorithm

```
partial-function (tailrec) basis-reduction-mod-main where
    basis-reduction-mod-main p first mfs dmu g-idx \(i(j::\) int \()=(\)
        (if \(i<m\)
            then
                case basis-reduction-mod-step p first mfs dmu \(g\)-idx \(i j\)
                of ( \(p^{\prime}, m s^{\prime}, d m u^{\prime}, g\) - \(\left.i d x^{\prime}, i^{\prime}, j^{\prime}\right) \Rightarrow\)
                    basis-reduction-mod-main \(p^{\prime}\) first \(m f s^{\prime} d m u^{\prime} g\) - \(i d x^{\prime} i^{\prime} j^{\prime}\)
            else
                    \((p, m f s, d m u)))\)
```

definition compute-max-gso-quot:: int mat \Rightarrow (int $*$ int $*$ nat $)$ where
compute-max-gso-quot dmu $=$ max-list-rats-with-index
$(\operatorname{map}(\lambda i$. $((d$-of $d m u(i+1)) *(d$-of $d m u(i+1)),(d$-of $d m u(i+2)) *(d$-of $d m u$
i), Suc $i)$) $[0 . .<(m-1)])$
the main loop of Storjohann's algorithm with improved swap order

```
partial-function (tailrec) basis-reduction-iso-main where
    basis-reduction-iso-main p first mfs dmu g-idx ( \(j::\) int \()=(\)
        (if \(m>1\) then
            (let (max-gso-num, max-gso-denum, indx) = compute-max-gso-quot dmu;
            (num, denum) \(=\) quotient-of \(\alpha\) in
            (if (max-gso-num \(*\) denum \(>\) num \(*\) max-gso-denum) then
                case basis-reduction-adjust-swap-add-step p first mfs dmu g-idx indx of
                        \(\left(p^{\prime}, m f s^{\prime}, d m u^{\prime}, g-i d x^{\prime}\right) \Rightarrow\)
                    basis-reduction-iso-main \(p^{\prime}\) first \(m f s^{\prime} d m u^{\prime} g\)-idx \({ }^{\prime}(j+1)\)
                        else
                    \((p, m f s, d m u)))\)
        else ( \(p, m f s, d m u))\) )
definition compute-initial-mfs where
    compute-initial-mfs \(p=\operatorname{map}(\operatorname{map}-v e c(\lambda x . x\) symmod \(p)) f s\)-init
definition compute-initial-dmu where
    compute-initial-dmu \(p d m u=\) mat \(m m\left(\lambda\left(i^{\prime}, j^{\prime}\right)\right.\). if \(j^{\prime}<i^{\prime}\)
        then dmu \(\$ \$\left(i^{\prime}, j^{\prime}\right) \operatorname{symmod}\left(p * d\right.\)-of \(d m u j^{\prime} * d\)-of \(\left.d m u\left(S u c j^{\prime}\right)\right)\)
        else dmu \(\left.\$ \$\left(i^{\prime}, j^{\prime}\right)\right)\)
definition \(d m u\)-initial \(=(\) let \(d m u=d \mu\)-impl fs-init
    in mat \(m m(\lambda(i, j)\).
    if \(j \leq i\) then \(d \mu\)-impl fs-init !! \(i!!j\) else 0\()\) )
```

definition compute-initial-state first $=$
(let $d m u=d m u$-initial;
(b, g-idx) $=$ compute-max-gso-norm first dmu;
$p=$ compute-mod-of-max-gso-norm first b
in (p, compute-initial-mfs p, compute-initial-dmu p dmu, g-idx))

Storjohann's algorithm

```
definition reduce-basis-mod :: int vec list where
    reduce-basis-mod \(=(\)
        let first \(=\) False;
            ( \(p 0, m f s 0, d m u 0, g\)-idx \()=\) compute-initial-state first;
            \(\left(p^{\prime}, m f s^{\prime}, d m u u^{\prime}\right)=\) basis-reduction-mod-main p0 first mfs0 dmu0 g-idx 00 ;
            \(\left(m f s^{\prime \prime}, d m u^{\prime \prime}\right)=\) basis-reduction-mod-add-rows-outer-loop \(p^{\prime} m f s^{\prime} d m u^{\prime}\)
( \(m-1\) )
    in \(m f s^{\prime \prime}\) )
```

Storjohann's algorithm with improved swap order
definition reduce-basis-iso :: int vec list where
reduce-basis-iso $=($
let first $=$ False;
$(p 0, m f s 0, d m u 0, g-i d x)=$ compute-initial-state first;
$\left(p^{\prime}, m f s^{\prime}, d m u^{\prime}\right)=$ basis-reduction-iso-main p0 first mfs0 dmu0 g-idx 0 ;
$\left(m f s^{\prime \prime}, d m u^{\prime \prime}\right)=$ basis-reduction-mod-add-rows-outer-loop $p^{\prime} m f s^{\prime} d m u^{\prime}$
($m-1$)
in $m f s^{\prime \prime}$)

Storjohann's algorithm for computing a short vector

definition

```
short-vector-mod \(=(\)
    let first \(=\) True;
            \((p 0, m f s 0, d m u 0, g-i d x)=\) compute-initial-state first;
            \(\left(p^{\prime}, m f s^{\prime}, d m u^{\prime}\right)=\) basis-reduction-mod-main p0 first mfs0 dmu0 g-idx 00
            in \(h d m f s^{\prime}\) )
```

Storjohann's algorithm (iso-variant) for computing a short vector

definition

 short-vector-iso \(=(\)
 let first \(=\) True;
 \((p 0, m f s 0, d m u 0, g-i d x)=\) compute-initial-state first;
 \(\left(p^{\prime}, m s^{\prime}, d m u^{\prime}\right)=\) basis-reduction-iso-main p0 first mfs0 dmu0 g-idx 0
 in \(h d m f s^{\prime}\))
 end

4.2 Towards soundness of Storjohann's algorithm

lemma max-list-rats-with-index-in-set:
assumes max: max-list-rats-with-index $x s=(n m, d m, i m)$
and len: length $x s \geq 1$
shows $(n m, d m, i m) \in$ set $x s$
using assms
proof (induct xs rule: max-list-rats-with-index.induct)
case (2 n1 d1 i1 n2 d2 i2 xs)
have $1 \leq$ length $(($ if $n 1 * d 2 \leq n 2 * d 1$ then $(n 2, d 2$, i2) else $(n 1, d 1, i 1)) \#$ xs) by simp
moreover have max-list-rats-with-index $(($ if $n 1 * d 2 \leq n 2 * d 1$ then $(n 2, d 2$, i2) else $(n 1, d 1, i 1)) \# x s)$
$=(n m, d m, i m)$ using 2 by simp
moreover have (if $n 1 * d 2 \leq n 2 * d 1$ then ($n 2$, d2, i2) else $(n 1, d 1, i 1)) \in$ set $((n 1, d 1, i 1) \#(n 2, d 2, i 2) \# x s)$ by simp
moreover then have set (if $n 1 * d 2 \leq n 2 * d 1$ then ($n 2$, d2, i2) else ($n 1$, $d 1, i 1)) \# x s) \subseteq$ set $((n 1, d 1, i 1) \#(n 2, d 2, i 2) \# x s)$ by auto
ultimately show ?case using 2(1) by auto
qed auto
lemma max-list-rats-with-index: assumes $\wedge n d i .(n, d, i) \in$ set $x s \Longrightarrow d>0$
and max: max-list-rats-with-index $x s=(n m, d m, i m)$
and $(n, d, i) \in$ set $x s$
shows rat-of-int $n /$ of-int $d \leq o f$-int $n m /$ of-int $d m$
using assms
proof (induct xs arbitrary: nd i rule: max-list-rats-with-index.induct)
case (2 n1 d1 i1 n2 d2 i2 xs nd i)
let $? r=$ rat-of-int
from 2(2) have $d 1>0 d 2>0$ by auto
hence d : ? $r d 1>0$? $r d 2>0$ by auto
have $(n 1 * d 2 \leq n 2 * d 1)=($?r n1 $*$?r d2 \leq ?r n2 $*$?r d1 $)$
unfolding of-int-mult[symmetric] by presburger
also have $\ldots=($? $r n 1 /$? $r d 1 \leq$? $n 2 /$? $r d 2)$ using d
by (smt divide-strict-right-mono leD le-less-linear mult.commute nonzero-mult-div-cancel-left
not-less-iff-gr-or-eq times-divide-eq-right)
finally have $i d:(n 1 * d 2 \leq n 2 * d 1)=(? r n 1 / ? r d 1 \leq ? r n 2 / ? r d 2)$.
obtain $n^{\prime} d^{\prime} i^{\prime}$ where new: (if $n 1 * d 2 \leq n 2 * d 1$ then $(n 2, d 2$, i2) else ($n 1$, $d 1, i 1))=\left(n^{\prime}, d^{\prime}, i^{\prime}\right)$
by force
have $n d^{\prime}:\left(n^{\prime}, d^{\prime}, i^{\prime}\right) \in\{(n 1, d 1, i 1),(n 2, d 2, i 2)\}$ using new[symmetric] by auto
from 2(3) have res: max-list-rats-with-index $\left(\left(n^{\prime}, d^{\prime}, i^{\prime}\right) \# x s\right)=(n m, d m, i m)$
using new by auto
note $2=2[$ unfolded new]
show? case
proof (cases $(n, d, i) \in$ set $x s)$
case True
show ?thesis by (rule 2(1)[of nd, OF 2(2) res], insert True $n d^{\prime}$, force +)
next
case False
with 2(4) have $n=n 1 \wedge d=d 1 \vee n=n 2 \wedge d=d 2$ by auto
hence ?r $n /$?r $d \leq$? $r n^{\prime} /$?r d^{\prime} using new[unfolded id]

```
    by (metis linear prod.inject)
    also have ?r n' / ?r d'\leq ?r nm / ?r dm
    by (rule 2(1)[of n' d', OF 2(2) res], insert nd', force+)
    finally show ?thesis.
    qed
qed auto
context LLL
begin
lemma log-base: log-base \geq2 unfolding log-base-def by auto
definition LLL-invariant-weak' :: nat }=>\mathrm{ int vec list }=>\mathrm{ bool where
    LLL-invariant-weak' i fs = (
        gs.lin-indpt-list (RAT fs) ^
        lattice-of fs = L ^
        weakly-reduced fs i}
        i\leqm^
        length fs = m
    )
lemma LLL-invD-weak: assumes LLL-invariant-weak' i fs
    shows
    lin-indep fs
    length (RAT fs) =m
    set fs \subseteqcarrier-vec n
    \i.i<m\Longrightarrowfs!i\incarrier-vec n
    \i.i<m\Longrightarrowgso fs i\incarrier-vec n
    length fs =m
    lattice-of fs = L
    weakly-reduced fs i
    i\leqm
proof (atomize (full), goal-cases)
    case 1
    interpret gs': gram-schmidt-fs-lin-indpt n RAT fs
    by (standard) (use assms LLL-invariant-weak'-def gs.lin-indpt-list-def in auto)
    show ?case
    using assms gs'.fs-carrier gs'.f-carrier gs'.gso-carrier
    by (auto simp add: LLL-invariant-weak'-def gram-schmidt-fs.reduced-def)
qed
lemma LLL-invI-weak: assumes
    set fs \subseteqcarrier-vec n
    length fs =m
    lattice-of fs = L
    i\leqm
    lin-indep fs
    weakly-reduced fs i
shows LLL-invariant-weak' i fs
```

unfolding $L L L$-invariant-weak'-def Let-def using assms by auto
lemma LLL-invw'-imp-w: LLL-invariant-weak' $i f s \Longrightarrow L L L$-invariant-weak f_{s} unfolding $L L L$-invariant-weak'-def LLL-invariant-weak-def by auto
lemma basis-reduction-add-row-weak:
assumes Linvw: LLL-invariant-weak' i fs
and $i: i<m$ and $j: j<i$
and $f_{s}{ }^{\prime}: f s^{\prime}=f s\left[i:=f s!i-c \cdot{ }_{v} f_{s}!j\right]$
shows LLL-invariant-weak' ifs'
g-bnd $B f s \Longrightarrow g$-bnd $B f_{s}{ }^{\prime}$
proof (atomize(full), goal-cases)
case 1
note L inv $=L L L-i n v w^{\prime}-i m p-w[O F L i n v w]$
note main $=$ basis-reduction-add-row-main $[$ OF Linv $i j f s]$
have bnd: g-bnd $B f s \Longrightarrow g$-bnd $B f_{s}{ }^{\prime}$ using $\operatorname{main}(6)$ unfolding g-bnd-def by auto
note $n e w=L L L-i n v-w D[$ OF $\operatorname{main}(1)]$
note old $=L L L-i n v D-w e a k[O F$ Linvw $]$
have red: weakly-reduced fs' i using 〈weakly-reduced fs $i\rangle \operatorname{main}(6)\langle i<m\rangle$ unfolding gram-schmidt-fs.weakly-reduced-def by auto
have inv: LLL-invariant-weak' $i f_{s}{ }^{\prime}$ using $L L L$-inv-w $D[$ OF main $(1)]\langle i<m\rangle$ by (intro LLL-invI-weak, auto intro: red)
show ? case using inv red main bnd by auto
qed
lemma LLL-inv-weak-m-impl-i:
assumes inv: LLL-invariant-weak' $m f_{s}$
and $i: i \leq m$
shows LLL-invariant-weak' $i f s$
proof -
have weakly-reduced fs i using LLL-invD-weak(8)[OF inv]
by (meson assms(2) gram-schmidt-fs.weakly-reduced-def le-trans less-imp-le-nat linorder-not-less)
then show? thesis
using $L L L$-invI-weak[of fs i, OF LLL-invD-weak(3, 6,7$)[$ OF inv] - LLL-invD-weak(1)[OF $i n v]]$

LLL-invD-weak(2,4,5,8-)[OF inv] i by simp
qed
definition mod-invariant where
mod-invariant b p first $=\left(b \leq\right.$ rat-of-int $(p-1) \wedge_{2} /$ (rat-of-nat (bound-number first) +3)
$\wedge\left(\exists e . p=\log\right.$-base $\left.\left.{ }^{\wedge} e\right)\right)$
lemma compute-mod-of-max-gso-norm: assumes mn: $m n \geq 0$
and $m: m=0 \Longrightarrow m n=0$
and $p: p=$ compute-mod-of-max-gso-norm first $m n$
shows

```
    p>1
    mod-invariant mn p first
proof -
    let ?m = bound-number first
    define p' where p' = root-rat-ceiling 2 (mn*(rat-of-nat ?m + 3)) + 1
    define p'\prime where p'\prime = max 2 p'
    define q}\mathrm{ where q= real-of-rat (mn*(rat-of-nat?m + 3))
    have *: -1< (0 :: real) by simp
    also have 0 \leqroot 2 (real-of-rat (mn * (rat-of-nat ?m + 3))) using mn by
auto
    finally have }\mp@subsup{p}{}{\prime}\geq0+1\mathrm{ unfolding }\mp@subsup{p}{}{\prime}\mathrm{ -def
        by (intro plus-left-mono, simp)
    hence }\mp@subsup{p}{}{\prime}:\mp@subsup{p}{}{\prime}>0\mathrm{ by auto
    have }\mp@subsup{p}{}{\prime\prime}:\mp@subsup{p}{}{\prime\prime}>1\mathrm{ unfolding }\mp@subsup{p}{}{\prime\prime}-def by aut
    have pp'\prime: p\geq p' unfolding compute-mod-of-max-gso-norm-def p p'-def[symmetric]
p''-def[symmetric]
            using log-base p" log-ceiling-sound by auto
    hence p\mp@subsup{p}{}{\prime}:p\geq\mp@subsup{p}{}{\prime}\mathrm{ unfolding }\mp@subsup{p}{}{\prime\prime}\mathrm{ -def by auto}
    show }p>1\mathrm{ using pp"' p" by auto
    have q0: q\geq0 unfolding q-def using mn m by auto
    have (mn \leq rat-of-int (p' - 1)^2 / (rat-of-nat?m + 3))
        =(real-of-rat mn \leq real-of-rat (rat-of-int ( }\mp@subsup{p}{}{\prime}-1)^2/(rat-of-nat ?m + 3))
using of-rat-less-eq by blast
    also have ... = (real-of-rat mn \leqreal-of-rat (rat-of-int (p'-1)^2) / real-of-rat
(rat-of-nat ?m + 3)) by (simp add: of-rat-divide)
    also have ... = (real-of-rat mn \leq ((real-of-int (p'-1))^2) / real-of-rat (rat-of-nat
?m + 3))
    by (metis of-rat-of-int-eq of-rat-power)
    also have ... = (real-of-rat mn \leq (real-of-int 「sqrt q\rceil)^2 / real-of-rat (rat-of-nat
?m + 3))
    unfolding p}\mp@subsup{p}{}{\prime}\mathrm{ -def sqrt-def q-def by simp
    also have ...
    proof -
            have real-of-rat mn \leqq/ real-of-rat (rat-of-nat?m + 3) unfolding q-def
using m
            by (auto simp: of-rat-mult)
    also have ... \leq (real-of-int \lceilsqrt q\rceil)^2 / real-of-rat (rat-of-nat ?m + 3)
    proof (rule divide-right-mono)
        have q=(sqrt q)^2 using q0 by simp
        also have .. s (real-of-int \lceilsqrt q\rceil)^2
            by (rule power-mono, auto simp: q0)
        finally show q}\leq(\mathrm{ real-of-int 「sqrt q`)^2 . 
    qed auto
    finally show ?thesis .
qed
finally have mn\leqrat-of-int (p' - 1)^2 / (rat-of-nat ?m + 3).
also have ... s rat-of-int (p-1)^2 / (rat-of-nat ?m + 3)
    unfolding power2-eq-square
```

```
    by (intro divide-right-mono mult-mono, insert p' pp', auto)
    finally have mn\leqrat-of-int (p-1)^2 / (rat-of-nat?m + 3).
    moreover have }\exists\mathrm{ e.p=log-base^e unfolding p compute-mod-of-max-gso-norm-def
by auto
    ultimately show mod-invariant mn p first unfolding mod-invariant-def by
auto
qed
lemma g-bnd-mode-cong: assumes }\i.i<m\Longrightarrowgso fs i=gso fs' i
    shows g-bnd-mode first b fs = g-bnd-mode first b fs'
    using assms unfolding g-bnd-mode-def g-bnd-def by auto
definition LLL-invariant-mod :: int vec list }=>\mathrm{ int vec list }=>\mathrm{ int mat }=>\mathrm{ int }
bool }=>\mathrm{ rat }=>\mathrm{ nat }=>\mathrm{ bool where
    LLL-invariant-mod fs mfs dmu p first b i =(
        length fs = m ^
        length mfs = m ^
        i\leqm^
        lattice-of fs =L^
        gs.lin-indpt-list (RAT fs)^
        weakly-reduced fs i}
        (map (map-vec (\lambdax. x symmod p)) fs = mfs) ^
        (\forall\mp@subsup{i}{}{\prime}<m.\forall j'< i'. |d\mu fs i' }\mp@subsup{j}{}{\prime}|<p*dfs\mp@subsup{j}{}{\prime}*dfs(Suc j'))
        (\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<m.d\mufs i' }\mp@subsup{j}{}{\prime}=dmu$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime}))
        p>1^
        g-bnd-mode first b fs }
        mod-invariant b p first
)
lemma \(L L L\)-invD-mod: assumes \(L L L\)-invariant-mod fs mfs dmu \(p\) first \(b i\)
shows
    length mfs = m
    i\leqm
    length fs =m
    lattice-of fs = L
    gs.lin-indpt-list (RAT fs)
    weakly-reduced fs i
    (map (map-vec ( }\lambdax.x\mathrm{ symmod p)) fs = mfs)
    (\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<\mp@subsup{i}{}{\prime}.|d\mufs \mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}|<p*dfs \mp@subsup{j}{}{\prime}*dfs(Suc j'))
    (\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<m.d\mu fs i' }\mp@subsup{j}{}{\prime}=dmu$$(\mp@subsup{i}{}{\prime},j')
    \i.i<m\Longrightarrowfs!i\incarrier-vec n
    set fs\subseteqcarrier-vec n
    \i.i<m\Longrightarrowgso fs i carrier-vec n
    \i.i<m\Longrightarrowmfs!i\incarrier-vec n
    set mfs \subseteqcarrier-vec n
    p>1
    g-bnd-mode first b fs
    mod-invariant b p first
proof (atomize (full), goal-cases)
```

```
    case 1
    interpret gs': gram-schmidt-fs-lin-indpt n RAT fs
        using assms LLL-invariant-mod-def gs.lin-indpt-list-def
    by (meson gram-schmidt-fs-Rn.intro gram-schmidt-fs-lin-indpt.intro gram-schmidt-fs-lin-indpt-axioms.intro)
    have allfs: }\foralli<m.fs!i\incarrier-vec n using assms gs'.f-carrier
    by (simp add: LLL.LLL-invariant-mod-def)
    then have setfs: set fs\subseteqcarrier-vec n by (metis LLL-invariant-mod-def assms
in-set-conv-nth subsetI)
    have allgso: ( }\foralli<m\mathrm{ . gso fs i carrier-vec n) using assms gs'.gso-carrier
    by (simp add: LLL.LLL-invariant-mod-def)
    show ?case
    using assms gs'.fs-carrier gs'.f-carrier gs'.gso-carrier allfs allgso
            LLL-invariant-mod-def gram-schmidt-fs.reduced-def in-set-conv-nth setfs by
fastforce
qed
lemma LLL-invI-mod: assumes
    length mfs =m
    i\leqm
    length fs =m
    lattice-of fs = L
    gs.lin-indpt-list (RAT fs)
    weakly-reduced fs i
    map (map-vec ( }\lambdax.x\mathrm{ symmod p)) fs =mfs
    (\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<\mp@subsup{i}{}{\prime}.|d\mufs \mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}|<p*dfs j}\mp@subsup{j}{}{\prime}*dfs(Suc j')
    (\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<m.d\mufs}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=dmu$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})
    p>1
    g-bnd-mode first b fs
    mod-invariant b p first
shows LLL-invariant-mod fs mfs dmu p first b i
    unfolding LLL-invariant-mod-def using assms by blast
definition LLL-invariant-mod-weak :: int vec list }=>\mathrm{ int vec list }=>\mathrm{ int mat }=>\mathrm{ int
bool }=>\mathrm{ rat }=>\mathrm{ bool where
    LLL-invariant-mod-weak fs mfs dmu p first b = (
    length fs = m^
    length mfs = m ^
    lattice-of fs = L ^
    gs.lin-indpt-list (RAT fs) ^
    (map (map-vec ( }\lambdax.x\mathrm{ symmod p)) fs=mfs) ^
    (\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<\mp@subsup{i}{}{\prime}.|d\mufs i}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}|<p*dfs\mp@subsup{j}{}{\prime}*dfs(Suc j'))
    (\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<m.d\mufs i' j' = dmu $$ (i',j'))^
    p>1^
    g-bnd-mode first b fs }
    mod-invariant b p first
)
```

lemma $L L L$-invD-modw: assumes $L L L$-invariant-mod-weak fs mfs dmu p first b shows

```
    length mfs =m
    length fs =m
    lattice-of fs =L
    gs.lin-indpt-list (RAT fs)
    (map (map-vec ( }\lambdax.x\mathrm{ symmod p)) fs = mfs)
    (\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<\mp@subsup{i}{}{\prime}.|d\mufs \mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}|<p*dfs \mp@subsup{j}{}{\prime}*dfs(Suc j'))
    (\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<m.d\mufs i' j
    \i.i<m\Longrightarrowfs!i\incarrier-vec n
    set fs \subseteqcarrier-vec n
    \i.i<m\Longrightarrowgso fs i carrier-vec n
    \i.i<m\Longrightarrowmfs!i\incarrier-vec n
    set mfs \subseteqcarrier-vec n
    p>1
    g-bnd-mode first b fs
    mod-invariant b p first
proof (atomize (full), goal-cases)
    case 1
    interpret gs': gram-schmidt-fs-lin-indpt n RAT fs
    using assms LLL-invariant-mod-weak-def gs.lin-indpt-list-def
    by (meson gram-schmidt-fs-Rn.intro gram-schmidt-fs-lin-indpt.intro gram-schmidt-fs-lin-indpt-axioms.intro)
    have allfs: }\foralli<m.fs!i\incarrier-vec n using assms gs'.f-carrier
    by (simp add: LLL.LLL-invariant-mod-weak-def)
    then have setfs: set fs \subseteqcarrier-vec n by (metis LLL-invariant-mod-weak-def
assms in-set-conv-nth subsetI)
    have allgso: ( }\foralli<m\mathrm{ . gso fs i carrier-vec n) using assms gs'.gso-carrier
    by (simp add: LLL.LLL-invariant-mod-weak-def)
    show ?case
    using assms gs'.fs-carrier gs'.f-carrier gs'.gso-carrier allfs allgso
        LLL-invariant-mod-weak-def gram-schmidt-fs.reduced-def in-set-conv-nth setfs
by fastforce
qed
lemma LLL-invI-modw: assumes
    length mfs =m
    length fs = m
    lattice-of fs =L
    gs.lin-indpt-list (RAT fs)
    map (map-vec ( }\lambdax.x\mathrm{ symmod p)) fs =mfs
    (\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<\mp@subsup{i}{}{\prime}.|d\mufs \mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}|<p*dfs j}\mp@subsup{j}{}{\prime}*dfs(Suc j')
    (\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<m.d\mufs i}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=dmu$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})
    p>1
    g-bnd-mode first b fs
    mod-invariant b p first
shows LLL-invariant-mod-weak fs mfs dmu p first b
    unfolding LLL-invariant-mod-weak-def using assms by blast
lemma dd\mu:
    assumes i:i<m
    shows d fs (Suc i)=d\mu fs i i
```

```
proof-
    have }\mu\mathrm{ fs i i = 1 using i by (simp add: gram-schmidt-fs. }\mu.simps
    then show ?thesis using d\mu-def by simp
qed
lemma d-of-main: assumes (\forall\mp@subsup{i}{}{\prime}<m.d\mu fs \mp@subsup{i}{}{\prime}}\mp@subsup{i}{}{\prime}=dmu$$(\mp@subsup{i}{}{\prime},\mp@subsup{i}{}{\prime})
    and i\leqm
shows d-of dmu i=d fs i
proof (cases i=0)
    case False
    with assms have i-1<m by auto
    from assms(1)[rule-format, OF this] dd }\mu[OF this, of fs] Fals
    show ?thesis by (simp add: d-of-def)
next
    case True
    thus ?thesis unfolding d-of-def True d-def by simp
qed
lemma d-of: assumes inv:LLL-invariant-mod fs mfs dmu p b first j
    and i\leqm
shows d-of dmu i=d fs i
    by (rule d-of-main[OF - assms(2)], insert LLL-invD-mod(9)[OF inv], auto)
lemma d-of-weak: assumes inv: LLL-invariant-mod-weak fs mfs dmu p first b
    and i\leqm
shows d-of dmu i=d fs i
    by (rule d-of-main[OF - assms(2)], insert LLL-invD-modw(7)[OF inv], auto)
```

```
lemma compute-max-gso-norm: assumes \(d m u:\left(\forall i^{\prime}<m . d \mu f s i^{\prime} i^{\prime}=d m u \$ \$\right.\)
```

lemma compute-max-gso-norm: assumes $d m u:\left(\forall i^{\prime}<m . d \mu f s i^{\prime} i^{\prime}=d m u \$ \$\right.$
$\left.\left(i^{\prime}, i^{\prime}\right)\right)$
$\left.\left(i^{\prime}, i^{\prime}\right)\right)$
and Linv: LLL-invariant-weak fs
and Linv: LLL-invariant-weak fs
shows g-bnd-mode first (fst (compute-max-gso-norm first dmu)) fs
shows g-bnd-mode first (fst (compute-max-gso-norm first dmu)) fs
fst (compute-max-gso-norm first dmu) ≥ 0
fst (compute-max-gso-norm first dmu) ≥ 0
$m=0 \Longrightarrow f s t($ compute-max-gso-norm first dmu) $=0$
$m=0 \Longrightarrow f s t($ compute-max-gso-norm first dmu) $=0$
proof -
proof -
show gbnd: g-bnd-mode first (fst (compute-max-gso-norm first dmu)) $f s$
show gbnd: g-bnd-mode first (fst (compute-max-gso-norm first dmu)) $f s$
proof (cases first $\wedge m \neq 0$)
proof (cases first $\wedge m \neq 0$)
case False
case False
have ?thesis $=(g$-bnd $(f s t($ compute-max-gso-norm first dmu) $) f s)$ unfolding
have ?thesis $=(g$-bnd $(f s t($ compute-max-gso-norm first dmu) $) f s)$ unfolding
g-bnd-mode-def using False by auto
g-bnd-mode-def using False by auto
also have . . . unfolding g - $b n d$-def
also have . . . unfolding g - $b n d$-def
proof (intro allI impI)
proof (intro allI impI)
fix i
fix i
assume $i: i<m$
assume $i: i<m$
have $i d$: (if first then 1 else m) $=m$ using False i by auto
have $i d$: (if first then 1 else m) $=m$ using False i by auto
define list where list $=\operatorname{map}(\lambda i$. (d-of dmu $($ Suc $i), d$-of $d m u i, i))[0 . .<$
define list where list $=\operatorname{map}(\lambda i$. (d-of dmu $($ Suc $i), d$-of $d m u i, i))[0 . .<$
m]
m]
obtain num denom j where ml: max-list-rats-with-index list $=($ num, denom,
obtain num denom j where ml: max-list-rats-with-index list $=($ num, denom,
j)

```
j)
```

by (metis prod-cases3)
have dpos: d fs $i>0$ using LLL-d-pos[OF Linv, of $i] i$ by auto
have pos: $(n, d, i) \in$ set list $\Longrightarrow 0<d$ for $n d i$
using LLL-d-pos[OF Linv] unfolding list-def using d-of-main[OF dmu] by auto
from i have list $!i \in$ set list using i unfolding list-def by auto
also have list $!i=(d$-of $d m u$ (Suc i), d-of $d m u i, i)$ unfolding list-def using i by auto
also have $\ldots=\left(d f_{s}(S u c i), d f s i, i\right)$ using d-of-main[OF $\left.d m u\right] i$ by auto
finally have ($d f s$ (Suc $i), d f s i, i) \in$ set list.
from max-list-rats-with-index[OF pos ml this]
have of-int $(d f s(S u c i)) /$ of-int $(d f s i) \leq f s t$ (compute-max-gso-norm first $d m u)$
unfolding compute-max-gso-norm-def list-def[symmetric] ml id split using i by auto
also have of-int $(d f s(S u c i)) /$ of-int $(d f s i)=s q$-norm (gso fs i)
using LLL-d-Suc[OF Linv $i]$ dpos by auto
finally show $s q$-norm (gso fs i) $\leq f s t$ (compute-max-gso-norm first dmu).
qed
finally show? thesis .
next
case True
thus?thesis unfolding g-bnd-mode-def compute-max-gso-norm-def using d-of-main[OF $d m u$]
$L L L-d-S u c[O F \operatorname{Linv}$, of 0] LLL-d-pos[OF Linv, of 0] LLL-d-pos[OF Linv, of
1] by auto
qed
show fst (compute-max-gso-norm first dmu) ≥ 0
proof (cases $m=0$)
case True
thus ?thesis unfolding compute-max-gso-norm-def by simp
next
case False
hence $0: 0<m$ by simp
have $0 \leq s q$-norm (gso fs 0) by blast
also have $\ldots \leq f s t$ (compute-max-gso-norm first dmu)
using gbnd[unfolded g-bnd-mode-def g-bnd-def] using 0 by metis
finally show?thesis .
qed
qed (auto simp: LLL.compute-max-gso-norm-def)
lemma increase-i-mod:
assumes Linv: LLL-invariant-mod fs mfs dmu p first b i
and $i: i<m$
and red- $i: i \neq 0 \Longrightarrow$ sq-norm (gso fs $(i-1)$) $\leq \alpha *$ sq-norm (gso fs i)
shows LLL-invariant-mod fs mfs dmu p first b (Suc i) LLL-measure ifs $>L L L$-measure
(Suc i) fs
proof -
note $i n v=L L L-i n v D-\bmod [O F L i n v]$
from inv have red: weakly-reduced fs i by (auto)
from red red-i i have red: weakly-reduced fs (Suc i)
unfolding gram-schmidt-fs.weakly-reduced-def
by (intro allI impI, rename-tac ii, case-tac Suc $i i=i$, auto)
show LLL-invariant-mod fs mfs dmu p first b (Suc i)
by (intro LLL-invI-mod, insert inv red i, auto)
show LLL-measure ifs $>L L L$-measure (Suc i) fs unfolding LLL-measure-def
using i by auto
qed
lemma basis-reduction-mod-add-row-main:
assumes Linvmw: LLL-invariant-mod-weak fs mfs dmu p first b
and $i: i<m$ and $j: j<i$
and $c: c=$ round $\left(\mu f_{s} i j\right)$
and $m f^{\prime}: m f s^{\prime}=m f s\left[i:=(\right.$ map-vec $\left.(\lambda x . x \operatorname{symmod} p))\left(m f s!i-c \cdot{ }_{v} m f s!j\right)\right]$
and $d m u^{\prime}: d m u^{\prime}=$ mat $m m\left(\lambda\left(i^{\prime}, j^{\prime}\right) .\left(\right.\right.$ if $\left(i^{\prime}=i \wedge j^{\prime} \leq j\right)$
then (if $j^{\prime}=j$ then $\left(d m u \$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\right)$
else (dmu $\left.\$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\right)$
$\operatorname{symmod}\left(p *\left(d\right.\right.$-of $\left.d m u j^{\prime}\right) *\left(d\right.$-of $d m u\left(\right.$ Suc $\left.\left.\left.\left.j^{\prime}\right)\right)\right)\right)$
else $\left.\left.\left(d m u \$ \$\left(i^{\prime}, j^{\prime}\right)\right)\right)\right)$
shows ($\exists f^{\prime} s^{\prime}$. LLL-invariant-mod-weak $f_{s}{ }^{\prime} m f s^{\prime} d m u^{\prime} p$ first $b \wedge$
LLL-measure $i{f s^{\prime}}^{\prime}=L L L$-measure $i f s$
$\wedge\left(\mu\right.$-small-row ifs $($ Suc $j) \longrightarrow \mu$-small-row ifs $\left.{ }^{\prime} j\right)$
$\wedge\left(\forall k<m\right.$. gso fs ${ }^{\prime} k=$ gso fs $\left.k\right)$
$\wedge\left(\forall i i \leq m . d f s^{\prime} i i=d f s i i\right)$
$\wedge\left|\mu f s^{\prime} i j\right| \leq 1 / 2$
$\wedge\left(\forall i^{\prime} j^{\prime} . i^{\prime}<i \longrightarrow j^{\prime} \leq i^{\prime} \longrightarrow \mu f s^{\prime} i^{\prime} j^{\prime}=\mu f s i^{\prime} j^{\prime}\right)$
\wedge (LLL-invariant-mod fs mfs dmu p first $b i \longrightarrow L L L-$ invariant-mod $f s^{\prime} m f s^{\prime}$
$d m u^{\prime} p$ first $\left.b i\right)$)
proof -
define $f_{s}{ }^{\prime}$ where $f_{s}{ }^{\prime}=f_{s}\left[i:=f_{s}!i-c \cdot v f s!j\right]$
from LLL-invD-modw[OF Linvmw] have gbnd: g-bnd-mode first b fs and $p 1: p$
>1 and pgtz: $p>0$ by auto
have Linvww: LLL-invariant-weak f_{s} using $L L L$-invD-modw [OF Linvmw] LLL-invariant-weak-def
by simp
have
Linvw': LLL-invariant-weak fs ${ }^{\prime}$ and
01: $c=$ round $(\mu f s i j) \Longrightarrow \mu$-small-row ifs $(S u c j) \Longrightarrow \mu$-small-row ifs ${ }^{\prime} j$
and
02: LLL-measure ifs ${ }^{\prime}=L L L$-measure $i f s$ and
03: $\wedge i . i<m \Longrightarrow$ gso $f^{\prime}{ }^{\prime} i=$ gso fs i and
04: $\bigwedge i^{\prime} j^{\prime} . i^{\prime}<m \Longrightarrow j^{\prime}<m \Longrightarrow$
$\mu f s^{\prime} i^{\prime} j^{\prime}=\left(\right.$ if $i^{\prime}=i \wedge j^{\prime} \leq j$ then μ fs $i j^{\prime}-$ of-int $c * \mu f s j j^{\prime}$ else $\mu f s i^{\prime}$
j^{\prime}) and
05: $\bigwedge i i . i i \leq m \Longrightarrow d f s^{\prime} i i=d f s i i$ and
06: $\left|\mu \mathrm{fs}^{\prime}{ }^{i} j\right| \leq 1 / 2$ and
061: $\left(\forall i^{\prime} j^{\prime} . i^{\prime}<i \longrightarrow j^{\prime} \leq i^{\prime} \longrightarrow \mu f s i^{\prime} j^{\prime}=\mu f s^{\prime} i^{\prime} j^{\prime}\right)$
using basis-reduction-add-row-main[OF Linvww ijfs'-def] ciby auto

```
    have 07: lin-indep fs' and
    08: length \(f_{s}{ }^{\prime}=m\) and
    09: lattice-of fs \({ }^{\prime}=L\) using \(L L L-i n v-w D\) Linvw' by auto
    have 091: \(f s\)-int-indpt \(n f_{s}{ }^{\prime}\) using 07 using Gram-Schmidt-2.fs-int-indpt.intro
by \(\operatorname{simp}\)
    define \(I\) where \(I=\left\{\left(i^{\prime}, j^{\prime}\right) . i^{\prime}=i \wedge j^{\prime}<j\right\}\)
    have 10: \(I \subseteq\left\{\left(i^{\prime}, j^{\prime}\right) . i^{\prime}<m \wedge j^{\prime}<i^{\prime}\right\}(i, j) \notin I \forall j^{\prime} \geq j\). \(\left(i, j^{\prime}\right) \notin I\) using \(I\)-def
\(i j\) by auto
    obtain \(f_{s}{ }^{\prime \prime}\) where
    11: lattice-of \(f s^{\prime \prime}=L\) and
    12: map \((\operatorname{map-vec}(\lambda x . x \operatorname{symmod} p)) f s^{\prime \prime}=\operatorname{map}(\operatorname{map-vec}(\lambda x . x \operatorname{symmod} p))\)
\(f s^{\prime}\) and
    13: lin-indep s \(^{\prime \prime}\) and
    14: length \(f_{s}{ }^{\prime \prime}=m\) and
    15: \(\left(\forall k<m\right.\). gso fs" \(k=\) gso fs \(\left.s^{\prime} k\right)\) and
    16: \(\left(\forall k \leq m . d f s^{\prime \prime} k=d f s^{\prime} k\right)\) and
    17: \(\left(\forall i^{\prime}<m . \forall j^{\prime}<m . d \mu f s^{\prime \prime} i^{\prime} j^{\prime}=\right.\)
        (if \(\left(i^{\prime}, j^{\prime}\right) \in I\) then \(d \mu f s^{\prime} i^{\prime} j^{\prime} \operatorname{symmod}\left(p * d f s^{\prime} j^{\prime} * d f s^{\prime}\left(S u c j^{\prime}\right)\right)\) else \(d \mu f s^{\prime}\)
\(\left.i^{\prime} j^{\prime}\right)\) )
    using mod-finite-set[OF 0708 10(1) 09 pgtz] by blast
    have 171: \(\left(\forall i^{\prime} j^{\prime} . i^{\prime}<i \longrightarrow j^{\prime} \leq i^{\prime} \longrightarrow \mu f s^{\prime \prime} i^{\prime} j^{\prime}=\mu f s^{\prime} i^{\prime} j^{\prime}\right)\)
    proof -
    \{
        fix \(i^{\prime} j^{\prime}\)
        assume \(i^{\prime} j^{\prime}: i^{\prime}<i j^{\prime} \leq i^{\prime}\)
        have rat-of-int \(\left(d \mu f s^{\prime \prime} i^{\prime} j^{\prime}\right)=\) rat-of-int \(\left(d \mu f s^{\prime} i^{\prime} j^{\prime}\right)\) using 17 I-def \(i i^{\prime} j^{\prime}\)
by auto
            then have rat-of-int (int-of-rat (rat-of-int \(\left.\left.\left(d f s^{\prime \prime}\left(S u c j^{\prime}\right)\right) * \mu f s^{\prime \prime} i^{\prime} j^{\prime}\right)\right)=\)
        rat-of-int (int-of-rat (rat-of-int \(\left.\left.\left(d f s^{\prime}\left(S u c j^{\prime}\right)\right) * \mu f s^{\prime} i^{\prime} j^{\prime}\right)\right)\)
        using \(d \mu\)-def \(i^{\prime} j^{\prime} j\) by auto
    then have rat-of-int \(\left(d f_{s}{ }^{\prime \prime}\left(S u c j^{\prime}\right)\right) * \mu f s^{\prime \prime} i^{\prime} j^{\prime}=\)
        rat-of-int \(\left(d f s^{\prime}\left(S u c j^{\prime}\right)\right) * \mu f s^{\prime} i^{\prime} j^{\prime}\)
        by (smt 080911314 d-def dual-order.strict-trans fs-int.d-def
            fs-int-indpt.fs-int-mu-d-Z fs-int-indpt.intro \(i i^{\prime} j^{\prime}(1) i^{\prime} j^{\prime}(2)\) int-of-rat(2))
        then have \(\mu f s^{\prime \prime} i^{\prime} j^{\prime}=\mu f s^{\prime} i^{\prime} j^{\prime}\) by (smt 16
                    LLL-d-pos[OF Linvw] Suc-leI int-of-rat(1)
                    dual-order.strict-trans \(f s^{\prime}\)-def \(i i^{\prime} j^{\prime} j\)
                    le-neq-implies-less nonzero-mult-div-cancel-left of-int-hom.hom-zero)
    \}
    then show?thesis by simp
    qed
    then have 172: \(\left(\forall i^{\prime} j^{\prime} . i^{\prime}<i \longrightarrow j^{\prime} \leq i^{\prime} \longrightarrow \mu f s^{\prime \prime} i^{\prime} j^{\prime}=\mu f s i^{\prime} j^{\prime}\right)\) using 061
by \(\operatorname{simp}\)
    have 18: LLL-measure \(i f_{s}{ }^{\prime \prime}=L L L\)-measure \(i f s^{\prime}\) using 16 LLL-measure-def
\(\log D\)-def \(D\)-def by simp
    have 19: \(\left(\forall k<m\right.\). gso \(f s^{\prime \prime} k=\) gso \(\left.f s k\right)\) using 0315 by simp
    have \(\forall j^{\prime} \in\{j . .(m-1)\} . j^{\prime}<m\) using \(j i\) by auto
    then have 20: \(\forall j^{\prime} \in\{j . .(m-1)\} . d \mu f s^{\prime \prime} i j^{\prime}=d \mu f s^{\prime} i j^{\prime}\)
    using 10(3) 17 Suc-lessD less-trans-Suc by (meson atLeastAtMost-iff i)
```

```
have 21: \(\forall j^{\prime} \in\{j . .(m-1)\} . \mu f s^{\prime \prime} i j^{\prime}=\mu f s^{\prime} i j^{\prime}\)
```

proof -
fix j^{\prime}
assume $j^{\prime}: j^{\prime} \in\{j . .(m-1)\}$
define $\mu^{\prime \prime}::$ rat where $\mu^{\prime \prime}=\mu f s^{\prime \prime} i j^{\prime}$
define $\mu^{\prime}::$ rat where $\mu^{\prime}=\mu f s^{\prime} i j^{\prime}$
have rat-of-int $\left(d \mu f s^{\prime \prime} i j^{\prime}\right)=$ rat-of-int $\left(d \mu f s^{\prime} i j^{\prime}\right)$ using $20 j^{\prime}$ by simp
moreover have $j^{\prime}<$ length $f s^{\prime}$ using $i j^{\prime} 08$ by auto
ultimately have rat-of-int $\left(d f s^{\prime}\left(S u c j^{\prime}\right)\right) *$ gram-schmidt-fs. $\mu \mathrm{n}$ (map
of-int-hom.vec-hom fs') $i j^{\prime}$
$=r a t-o f-i n t\left(d f s^{\prime \prime}\left(S u c j^{\prime}\right)\right) *$ gram-schmidt-fs. μn (map of-int-hom.vec-hom
$\left.f s^{\prime \prime}\right) i j^{\prime}$
using 20080911314 fs-int-indpt.d μ-def $f s$-int.d-def fs-int-indpt.d $\mu d \mu$-def
d-def ifs-int-indpt.intro j^{\prime}
by metis
then have rat-of-int $\left(d f s^{\prime}\left(S u c j^{\prime}\right)\right) * \mu^{\prime \prime}=\operatorname{rat-of-int}\left(d f s^{\prime}\left(S u c j^{\prime}\right)\right) * \mu^{\prime}$
using $16 i j^{\prime} \mu^{\prime}$-def $\mu^{\prime \prime}$-def unfolding $d \mu$-def by auto
moreover have $0<d f_{s}{ }^{\prime}\left(S u c j^{\prime}\right)$ using LLL-d-pos[OF Linvw' ${ }^{\prime}$, of Suc $\left.j^{\prime}\right] i$
j^{\prime} by auto
ultimately have $\mu f s^{\prime \prime} i j^{\prime}=\mu f s^{\prime} i j^{\prime}$ using μ^{\prime}-def $\mu^{\prime \prime}$-def by simp
\}
then show? ?thesis by simp
qed
then have 22: $\mu f s^{\prime \prime}{ }^{\prime} i j=\mu f s^{\prime} i j$ using $i j$ by simp
then have 23: $\left|\mu f^{\prime \prime}{ }^{\prime} i j\right| \leq 1 / 2$ using 06 by simp
have 24: LLL-measure $i f_{s}{ }^{\prime \prime}=L L L$-measure $i f s$ using 0218 by simp
have 25: $\left(\forall k \leq m . d f s^{\prime \prime} k=d f s k\right)$ using 1605 by simp
have 26: $\left(\forall k<m\right.$. gso $f s^{\prime \prime} k=$ gso $\left.f s k\right)$ using 1503 by simp
have 27: μ-small-row ifs (Suc $j) \Longrightarrow \mu$-small-row ifs" ${ }^{\prime \prime}$
using 2101μ-small-row-def $i j c$ by auto
have 28: length $f s=m$ length $m f s=m$ using $L L L-i n v D-\bmod w[O F$ Linvmw $]$ by
auto
have 29: map (map-vec $(\lambda x . x$ symmod $p)) f s=m f s$ using assms LLL-invD-modw
by simp
have 30: $\bigwedge i . i<m \Longrightarrow f s!i \in$ carrier-vec $n \bigwedge i . i<m \Longrightarrow m f s!i \in$
carrier-vec n
using $L L L$-invD-modw[OF Linvmw] by auto
have 31: $\bigwedge i . i<m \Longrightarrow f s^{\prime}!i \in$ carrier-vec n using $f s^{\prime}$-def 30(1)
using 08091 fs-int-indpt.f-carrier by blast
have 32: $\bigwedge i . i<m \Longrightarrow m f s^{\prime}!i \in$ carrier-vec n unfolding $m f_{s}{ }^{\prime}$ using 30(2)
28(2)
by (metis (no-types, lifting) Suc-lessD j less-trans-Suc map-carrier-vec mi-
nus-carrier-vec
nth-list-update-eq nth-list-update-neq smult-closed)
have 33: length $m f s^{\prime}=m$ using 28(2) $m f s^{\prime}$ by simp
then have 34: map (map-vec $(\lambda x . x$ symmod $p)) f s^{\prime}=m f s^{\prime}$
proof -
\{
fix $i^{\prime} j^{\prime}$
have $j 2: j<m$ using $j i$ by auto
assume $i^{\prime}: i^{\prime}<m$
assume $j^{\prime}: j^{\prime}<n$
then have $f s i j:\left(f s!i^{\prime} \$ j^{\prime}\right)$ symmod $p=m f s!i^{\prime} \$ j^{\prime}$ using $30 i^{\prime} j^{\prime} 2829$
by fastforce
have $m f s^{\prime}!i \$ j^{\prime}=\left(m f s!i \$ j^{\prime}-(c \cdot v m f s!j) \$ j^{\prime}\right)$ symmod p unfolding mfs^{\prime} using 30(2) $j^{\prime} 28 \mathrm{j} 2$
by (metis (no-types, lifting) carrier-vecD i index-map-vec (1) index-minus-vec(1)
index-minus-vec(2) index-smult-vec(2) nth-list-update-eq)
then have $m f^{\prime} i j$: $m f^{\prime}!i \$ j^{\prime}=\left(m f s!i \$ j^{\prime}-c * m f s!j \$ j^{\prime}\right)$ symmod p
unfolding $m f^{\prime}$ using 30(2) $i^{\prime} j^{\prime} 28 j 2$ by fastforce
have $\left(f s^{\prime}!i^{\prime} \$ j^{\prime}\right)$ symmod $p=m f s^{\prime}!i^{\prime} \$ j^{\prime}$
$\operatorname{proof}\left(\right.$ cases $\left.i^{\prime}=i\right)$
case True
show ?thesis using $f^{\prime}{ }^{\prime}$-def $m f_{s}{ }^{\prime}$ True 28 fsij
proof -
have $f s^{\prime}!i^{\prime} \$ j^{\prime}=\left(f s!i^{\prime}-c \cdot{ }_{v} f s!j\right) \$ j^{\prime}$ using $f s^{\prime}$-def True $i^{\prime} j^{\prime} 28(1)$
by simp
also have $\ldots=f_{s}!i^{\prime} \$ j^{\prime}-\left(c \cdot v f_{s}!j\right) \$ j^{\prime}$ using $i^{\prime} j^{\prime} 30(1)$
by (metis Suc-lessD carrier-vecD i index-minus-vec(1) index-smult-vec(2)
j less-trans-Suc)
finally have $f s^{\prime}!i^{\prime} \$ j^{\prime}=f s!i^{\prime} \$ j^{\prime}-\left(c \cdot v f_{s}!j\right) \$ j^{\prime}$ by auto
then have $\left(f_{s}{ }^{\prime}!i^{\prime} \$ j^{\prime}\right)$ symmod $p=\left(f_{s}!i^{\prime} \$ j^{\prime}-(c \cdot v f s!j) \$ j^{\prime}\right)$ symmod
p by auto
also have $\ldots=\left(\left(f s!i^{\prime} \$ j^{\prime}\right)\right.$ symmod $p-\left(\left(c \cdot{ }_{v} f s!j\right) \$ j^{\prime}\right)$ symmod $\left.p\right)$ symmod p
by (simp add: sym-mod-diff-eq)
also have $\left(c \cdot{ }_{v} f_{s}!j\right) \$ j^{\prime}=c *\left(f_{s}!j \$ j^{\prime}\right)$
using $i^{\prime} j^{\prime}$ True 28 30(1) j
by (metis Suc-lessD carrier-vecD index-smult-vec(1) less-trans-Suc)
also have $\left(\left(f_{s}!i^{\prime} \$ j^{\prime}\right)\right.$ symmod $p-\left(c *\left(f_{s}!j \$ j^{\prime}\right)\right)$ symmod $\left.p\right)$ symmod
$p=$
$\left(\left(f s!i^{\prime} \$ j^{\prime}\right)\right.$ symmod $p-c *\left(\left(f s!j \$ j^{\prime}\right)\right.$ symmod $\left.\left.p\right)\right)$ symmod p
using $i^{\prime} j^{\prime}$ True 28 30(1) j by (metis sym-mod-diff-right-eq sym-mod-mult-right-eq)
also have $\left(\left(f_{s}!j \$ j^{\prime}\right)\right.$ symmod $\left.p\right)=m f s!j \$ j^{\prime}$ using $30 i^{\prime} j^{\prime} 2829 j^{2}$
by fastforce
also have $\left(\left(f s!i^{\prime} \$ j^{\prime}\right)\right.$ symmod $\left.p-c * m f s!j \$ j^{\prime}\right)$ symmod $p=$
($m f s!i^{\prime} \$ j^{\prime}-c * m f s!j \$ j^{\prime}$) symmod p using fsij by simp
finally show ?thesis using $m f^{\prime}$ 'ij by (simp add: True)
qed
next
case False
show ?thesis using f^{\prime}-def $m f s^{\prime}$ False 28 fsij by simp
qed
\}
then have $\forall i^{\prime}<m$. (map-vec $(\lambda x . x$ symmod $\left.p)\right)\left(f s^{\prime}!i^{\prime}\right)=m f s^{\prime}!i^{\prime}$ using 31323308 by fastforce
then show ?thesis using 31323308 by (simp add: map-nth-eq-conv) qed
then have 35: map (map-vec $(\lambda x . x$ symmod $p)) f s^{\prime \prime}=m f s^{\prime}$ using 12 by simp have 36: lin-indep fs" using 13 by simp
have Linvw": LLL-invariant-weak fs" using LLL-invariant-weak-def 111314 by simp
have 39: $\left(\forall i^{\prime}<m . \forall j^{\prime}<i^{\prime} .\left|d \mu f s^{\prime \prime} i^{\prime} j^{\prime}\right|<p * d f s^{\prime \prime} j^{\prime} * d f s^{\prime \prime}\left(S u c j^{\prime}\right)\right)$
proof \{
fix $i^{\prime} j^{\prime}$
assume $i^{\prime}: i^{\prime}<m$
assume $j^{\prime}: j^{\prime}<i^{\prime}$
define $p d d$ where $p d d=\left(p * d f s^{\prime \prime} j^{\prime} * d f s^{\prime \prime}\left(\right.\right.$ Suc $\left.\left.j^{\prime}\right)\right)$
then have pddgtz: $p d d>0$
using pgtz $j^{\prime} L L L-d-p o s\left[O F L i n v w^{\prime}\right.$, of Suc $\left.j^{\prime}\right] L L L-d-p o s\left[O F L i n v w^{\prime}\right.$, of $\left.j^{\prime}\right]$
$j^{\prime} i^{\prime} 16$ by simp
have $\left|d \mu f s^{\prime \prime} i^{\prime} j^{\prime}\right|<p * d f s^{\prime \prime} j^{\prime} * d f s^{\prime \prime}\left(S u c j^{\prime}\right)$
proof $\left(\right.$ cases $\left.i^{\prime}=i\right)$
case $i^{\prime} i$: True
then show ?thesis
proof (cases $j^{\prime}<j$)
case True
then have $e q^{\prime \prime}: d \mu f s^{\prime \prime} i^{\prime} j^{\prime}=d \mu f s^{\prime} i^{\prime} j^{\prime} \operatorname{symmod}\left(p * d f s^{\prime \prime} j^{\prime} * d f s^{\prime \prime}\right.$ (Suc $\left.j^{\prime}\right)$)
using 161710 I-def True $i^{\prime} j^{\prime} i^{\prime} i$ by simp
have $0<p d d$ using $p d d g t z$ by simp
then show ?thesis unfolding eq" unfolding pdd-def[symmetric] using sym-mod-abs by blast

next

case fls: False
then have $\left(i^{\prime}, j^{\prime}\right) \notin I$ using $I-\operatorname{def} i^{\prime} i$ by simp
then have $d m u f s^{\prime \prime} f s^{\prime}: d \mu f s^{\prime \prime} i^{\prime} j^{\prime}=d \mu f s^{\prime} i^{\prime} j^{\prime}$ using $17 i^{\prime} j^{\prime}$ by simp
show ?thesis
proof (cases $j^{\prime}=j$)
case True
define $\mu^{\prime \prime}$ where $\mu^{\prime \prime}=\mu f s^{\prime \prime} i^{\prime} j^{\prime}$
define $d^{\prime \prime}$ where $d^{\prime \prime}=d f s^{\prime \prime}\left(\right.$ Suc $\left.j^{\prime}\right)$
have pge1: $p \geq 1$ using pgtz by simp
have $l h:\left|\mu^{\prime \prime}\right| \leq 1 / 2$ using 23 True $i^{\prime} i \mu^{\prime \prime}$-def by simp
moreover have eq: $d \mu f s^{\prime \prime} i^{\prime} j^{\prime}=\mu^{\prime \prime} * d^{\prime \prime}$ using $d \mu$-def $i^{\prime} j^{\prime} \mu^{\prime \prime}$-def $d^{\prime \prime}$-def
by (smt 1436 LLL.d-def Suc-lessD fs-int.d-def fs-int-indpt.d μ fs-int-indpt.intro int-of-rat(1) less-trans-Suc mult-of-int-commute of-rat-mult of-rat-of-int-eq)
moreover have $S j^{\prime}: S u c j^{\prime} \leq m j^{\prime} \leq m$ using True $j^{\prime} i i^{\prime}$ by auto
moreover then have $g t z: 0<d^{\prime \prime}$ using LLL-d-pos[OF Linvw' $] d^{\prime \prime}$-def
by simp
moreover have rat-of-int $\left|d \mu f s^{\prime \prime} i^{\prime} j^{\prime}\right|=\mid \mu^{\prime \prime} *\left(\right.$ rat-of-int $\left.d^{\prime \prime}\right) \mid$
using eq by (metis of-int-abs of-rat-hom.injectivity of-rat-mult
of-rat-of-int-eq)
moreover then have $\mid \mu^{\prime \prime} *$ rat-of-int $d^{\prime \prime}\left|=\left|\mu^{\prime \prime}\right| *\right.$ rat-of-int $| d^{\prime \prime} \mid$ by (metis (mono-tags, opaque-lifting) abs-mult of-int-abs)
moreover have $\ldots=\left|\mu^{\prime \prime}\right| *$ rat-of-int $d^{\prime \prime}$ using gtz by simp moreover have ... < rat-of-int $d^{\prime \prime}$ using lh gtz by simp ultimately have rat-of-int $\left|d \mu f s^{\prime \prime} i^{\prime} j^{\prime}\right|<$ rat-of-int $d^{\prime \prime}$ by simp then have $\left|d \mu f_{s}{ }^{\prime \prime} i^{\prime} j^{\prime}\right|<d f_{s}{ }^{\prime \prime}\left(\right.$ Suc $\left.j^{\prime}\right)$ using $d^{\prime \prime \prime}$-def by simp then have $\left|d \mu f_{s}{ }^{\prime \prime} i^{\prime} j^{\prime}\right|<p * d f_{s}{ }^{\prime \prime}\left(S u c j^{\prime}\right)$ using pge1 by (smt mult-less-cancel-right2)
then show ?thesis using pge1 LLL-d-pos[OF Linvw" Sj'(2)] gtz unfolding $d^{\prime \prime}$-def
by (smt mult-less-cancel-left2 mult-right-less-imp-less)
next case False
have $j^{\prime}<m$ using $i^{\prime} j^{\prime}$ by simp moreover have $j^{\prime}>j$ using False fls by simp ultimately have $\mu f_{s}{ }^{\prime} i^{\prime} j^{\prime}=\mu f s i^{\prime} j^{\prime}$ using $i^{\prime} 04 i$ by simp then have $d \mu f s^{\prime} i^{\prime} j^{\prime}=d \mu$ fs $i^{\prime} j^{\prime}$ using $d \mu$-def $i^{\prime} j^{\prime} 05$ by simp then have $d \mu f s^{\prime \prime} i^{\prime} j^{\prime}=d \mu f s i^{\prime} j^{\prime}$ using $d m u f s^{\prime \prime}{ }^{\prime \prime}{ }_{s}{ }^{\prime}$ by simp then show ?thesis using LLL-invD-modw[OF Linvmw] $i^{\prime} j^{\prime} 25$ by simp qed
qed
next
case False
then have $\left(i^{\prime}, j^{\prime}\right) \notin I$ using I-def by simp
then have $d m u f s^{\prime \prime} f s^{\prime}: d \mu f s^{\prime \prime} i^{\prime} j^{\prime}=d \mu f s^{\prime} i^{\prime} j^{\prime}$ using $17 i^{\prime} j^{\prime}$ by simp
have $\mu f_{s}{ }^{\prime} i^{\prime} j^{\prime}=\mu f s i^{\prime} j^{\prime}$ using $i^{\prime} 04 j^{\prime}$ False by simp
then have $d \mu f s^{\prime} i^{\prime} j^{\prime}=d \mu f s i^{\prime} j^{\prime}$ using $d \mu$-def $i^{\prime} j^{\prime} 05$ by simp
moreover then have $d \mu f s^{\prime \prime} i^{\prime} j^{\prime}=d \mu f s i^{\prime} j^{\prime}$ using dmufs ${ }^{\prime \prime} f s^{\prime}$ by simp
then show ?thesis using LLL-invD-modw[OF Linvmw] $i^{\prime} j^{\prime} 25$ by simp qed
\}
then show ?thesis by simp
qed
have 40: $\left(\forall i^{\prime}<m . \forall j^{\prime}<m . i^{\prime} \neq i \vee j^{\prime}>j \longrightarrow d \mu f s^{\prime} i^{\prime} j^{\prime}=d m u \$ \$\left(i^{\prime}, j^{\prime}\right)\right)$
proof -
\{
fix $i^{\prime} j^{\prime}$
assume $i^{\prime}: i^{\prime}<m$ and $j^{\prime}: j^{\prime}<m$
assume assm: $i^{\prime} \neq i \vee j^{\prime}>j$
have $d \mu f s^{\prime} i^{\prime} j^{\prime}=d m u \$ \$\left(i^{\prime}, j^{\prime}\right)$
proof (cases $i^{\prime} \neq i$)
case True
then show ?thesis using $f s^{\prime}-d e f L L L-i n v D-m o d w[O F L i n v m w] d \mu-d e f i i^{\prime} j$
j^{\prime}
0428 (1) LLL-invI-weak basis-reduction-add-row-main(8)[OF Linvww] by
auto
next

```
            case False
            then show ?thesis
            using 05 LLL-invD-modw[OF Linvmw] d\mu-def i j j' 04 assm by simp
        qed
    }
    then show ?thesis by simp
qed
have 41:\forall\mp@subsup{j}{}{\prime}\leqj.d\muf\mp@subsup{s}{}{\prime}i\mp@subsup{j}{}{\prime}=dmu$$(i,\mp@subsup{j}{}{\prime})-c*dmu$$(j,\mp@subsup{j}{}{\prime})
proof -
    {
        let ?oi= of-int :: - => rat
        fix }\mp@subsup{j}{}{\prime
        assume j': j'}\leq
        define }d\mp@subsup{j}{}{\prime}\mui\muj\mathrm{ where }d\mp@subsup{j}{}{\prime}=dfs(Suc\mp@subsup{j}{}{\prime})\mathrm{ and }\mui=\mufsi\mp@subsup{j}{}{\prime}\mathrm{ and }\muj=\muf
j j'
    have ?oi (d\mu fs' i j') = ?oi (dfs (Suc j'))*(\mu fs i j' - ?oi c* * fs j j')
        using j' 04 d\mu-def
        by (smt 05 08 091 Suc-leI d-def diff-diff-cancel fs-int.d-def
        fs-int-indpt.fs-int-mu-d-Z i int-of-rat(2) j less-imp-diff-less less-imp-le-nat)
    also have ... =(?oi dj')*(\mui - of-int c * \muj)
        using dj'-def \mui-def }\muj\mathrm{ -def by (simp add: of-rat-mult)
        also have ... =(rat-of-int dj')*\mui - of-int c*(rat-of-int dj')*\muj by
algebra
    also have . . = rat-of-int (d\mu fs i j') - ?oi c*rat-of-int (d\mu fs j j') unfolding
dj'-def \mui-def \muj-def
        using i j j' d\mu-def
    using 28(1) LLL.LLL-invD-modw(4) Linvmw d-deffs-int.d-def fs-int-indpt.fs-int-mu-d-Z
fs-int-indpt.intro by auto
    also have . . . = rat-of-int (dmu $$ (i,j')) - ?oi c * rat-of-int (dmu $$ (j,j'))
            using LLL-invD-modw(7)[OF Linvmw] d\mu-def j' i j by auto
        finally have ?oi (d\mu fs' i j') = rat-of-int (dmu $$ (i,j')) - ?oi c * rat-of-int
(dmu $$ (j,j')) by simp
    then have d\mu fs' i j'=dmu $$ (i,j') - c*dmu $$ (j,j')
        using of-int-eq-iff by fastforce
    }
    then show ?thesis by simp
qed
have 42: (\forall i'<m. \forall\mp@subsup{j}{}{\prime}<m.d\muf\mp@subsup{s}{}{\prime\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=dmu'$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime}))
proof -
    {
        fix }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime
        assume }\mp@subsup{i}{}{\prime}:\mp@subsup{i}{}{\prime}<m\mathrm{ and }\mp@subsup{j}{}{\prime}:\mp@subsup{j}{}{\prime}<
        have }d\muf\mp@subsup{s}{}{\prime\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=dm\mp@subsup{u}{}{\prime}$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime}
        proof (cases i'}=i
            case i'i: True
            then show ?thesis
            proof (cases j'>j)
                case True
                    then have ( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\not\inI\mathrm{ using I-def by simp
```

moreover then have $d \mu f s^{\prime} i^{\prime} j^{\prime}=d \mu f s i^{\prime} j^{\prime}$ using 0405 True Suc-leI $d \mu$-def $i^{\prime} j^{\prime}$ by simp
moreover have $d m u^{\prime} \$ \$\left(i^{\prime}, j^{\prime}\right)=d m u \$ \$\left(i^{\prime}, j^{\prime}\right)$ using $d m u^{\prime}$ True $i^{\prime} j^{\prime}$ by simp
ultimately show ?thesis using 1740 True $i^{\prime} j^{\prime}$ by auto
next
case False
then have $j^{\prime} l e j: j^{\prime} \leq j$ by simp
then have $e q^{\prime}: d \mu f s^{\prime} i j^{\prime}=d m u \$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)$ using 41 by simp
have $i d$: d-of $d m u j^{\prime}=d f s j^{\prime} d$-of $d m u\left(S u c j^{\prime}\right)=d f s\left(S u c j^{\prime}\right)$
using d-of-weak[OF Linvmw] $\left\langle j^{\prime}<m\right\rangle$ by auto
show ?thesis
proof (cases $j^{\prime} \neq j$)
case True
then have $j^{\prime} l t j: j^{\prime}<j$ using True False by simp
then have $\left(i^{\prime}, j^{\prime}\right) \in I$ using I-def True $i^{\prime} i$ by simp then have $d \mu f s^{\prime \prime} i^{\prime} j^{\prime}=$
$\left(d m u \$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\right) \operatorname{symmod}\left(p * d f s^{\prime} j^{\prime} * d f s^{\prime}\left(S u c j^{\prime}\right)\right)$ using $17 i^{\prime} 41 j^{\prime} l e j$ by (simp add: $\left.j^{\prime} i^{\prime} i\right)$
also have $\ldots=\left(d m u \$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\right) \operatorname{symmod}\left(p * d f s j^{\prime}\right.$ * d fs (Suc $\left.\left.j^{\prime}\right)\right)$
using $05 i j^{\prime} l t j j$ by simp
also have $\ldots=d m u^{\prime} \$ \$\left(i, j^{\prime}\right)$
unfolding $d m u^{\prime}$ index-mat(1)[OF $\left.\langle i<m\rangle\left\langle j^{\prime}<m\right\rangle\right]$ split id using $j^{\prime} l e j$ True by auto
finally show ?thesis using $i^{\prime} i$ by simp
next
case False
then have $j^{\prime} j: j^{\prime}=j$ by simp
then have $d \mu f s^{\prime \prime} i j^{\prime}=d \mu f s^{\prime} i j^{\prime}$ using $20 j^{\prime}$ by simp
also have $\ldots=d m u \$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)$ using $e q^{\prime}$ by simp
also have $\ldots=d m u^{\prime} \$ \$\left(i, j^{\prime}\right)$ using $d m u^{\prime} j^{\prime} j i j^{\prime}$ by simp
finally show ?thesis using $i^{\prime} i$ by simp
qed
qed
next
case False
then have $\left(i^{\prime}, j^{\prime}\right) \notin I$ using I-def by simp
moreover then have $d \mu f s^{\prime} i^{\prime} j^{\prime}=d \mu f s i^{\prime} j^{\prime}$ by (simp add: 0405 False Suc-leI d μ-def $i^{\prime} j^{\prime}$)
moreover then have $d m u^{\prime} \$ \$\left(i^{\prime}, j^{\prime}\right)=d m u \$ \$\left(i^{\prime}, j^{\prime}\right)$ using $d m u^{\prime}$ False i^{\prime} j^{\prime} by simp
ultimately show ?thesis using 1740 False $i^{\prime} j^{\prime}$ by auto
qed
\}
then show ?thesis by simp
qed
from gbnd 26 have $g b n d$: g-bnd-mode first $b f_{s}{ }^{\prime \prime}$ using g-bnd-mode-cong[of fs ${ }^{\prime \prime}$

```
fs] by simp
    {
        assume Linv: LLL-invariant-mod fs mfs dmu p first b i
    have Linvw: LLL-invariant-weak' i fs using Linv LLL-invD-mod LLL-invI-weak
by simp
    note Linvww = LLL-invw'-imp-w[OF Linvw]
    have 00:LLL-invariant-weak' ifs' using Linvw basis-reduction-add-row-weak[OF
Linvw i j fs'-def] by auto
    have 37: weakly-reduced fs" i using 15 LLL-invD-weak(8)[OF 00] gram-schmidt-fs.weakly-reduced-def
        by (smt Suc-lessD i less-trans-Suc)
    have 38:LLL-invariant-weak' i fs"
            using 00 111436 37 i 3112 LLL-invariant-weak'-def by blast
    have LLL-invariant-mod fs" mfs' dmu' p first b i
    using LLL-invI-mod[OF 33-141113 37 35 3942 p1 gbnd LLL-invD-mod(17)[OF
Linv]] i by simp
    }
    moreover have LLL-invariant-mod-weak fs'' mfs' dmu' p first b
    using LLL-invI-modw[OF 33141113353942 p1 gbnd LLL-invD-modw(15)[OF
Linvmw]] by simp
    ultimately show ?thesis using 27 23 24 25 26 172 by auto
qed
definition D-mod :: int mat }=>\mathrm{ nat where D-mod dmu = nat (\ i<m.d-of
dmu i)
definition logD-mod :: int mat }=>\mathrm{ nat
    where logD-mod dmu = (if \alpha=4/3 then (D-mod dmu) else nat (floor (log (1
/ of-rat reduction) (D-mod dmu))))
end
locale fs-int'-mod =
    fixes n m fs-init \alpha i fs mfs dmu p first b
    assumes LLL-inv-mod: LLL.LLL-invariant-mod n m fs-init \alpha fs mfs dmu p first
b i
context LLL-with-assms
begin
lemma basis-reduction-swap-weak': assumes Linvw: LLL-invariant-weak' i fs
    and i:i<m
    and i0:i\not=0
    and mu-F1-i: }|\mu\mathrm{ fs }i(i-1)|\leq1/
    and norm-ineq: sq-norm (gso fs (i-1)) >\alpha*sq-norm (gso fs i)
    and fs'-def: fs' = fs[i:= fs! (i-1),i-1 := fs ! i]
shows LLL-invariant-weak'}(i-1)f\mp@subsup{s}{}{\prime
proof -
    note inv=LLL-invD-weak[OF Linvw]
    note invw = LLL-invw'-imp-w[OF Linvw]
```

note main $=$ basis-reduction-swap-main[OF invw disjI2[OF mu-F1-i] i i0 norm-ineq $f s^{\prime}$-def]
note inv $^{\prime}=L L L-$ inv- $w D[O F \operatorname{main}(1)]$
from «weakly-reduced fs $i\rangle$ have weakly-reduced $f s(i-1)$
unfolding gram-schmidt-fs.weakly-reduced-def by auto
also have weakly-reduced $f_{s}(i-1)=$ weakly-reduced $f_{s}{ }^{\prime}(i-1)$
unfolding gram-schmidt-fs.weakly-reduced-def
by (intro all-cong, insert i0 $i \operatorname{main}(5)$, auto)
finally have red: weakly-reduced $f_{s}{ }^{\prime}(i-1)$.
show LLL-invariant-weak' $(i-1) f s^{\prime}$ using i
by (intro LLL-invI-weak red inv', auto)
qed
lemma basis-reduction-add-row-done-weak:
assumes Linv: LLL-invariant-weak' ifs
and $i: i<m$
and mu-small: μ-small-row ifs 0
shows μ-small fs i
proof -
note $i n v=L L L-i n v D-w e a k[$ OF Linv $]$
from mu-small
have mu-small: μ-small fs i unfolding μ-small-row-def μ-small-def by auto
show ?thesis
using i mu-small $L L L$-invI-weak $[$ OF $\operatorname{inv}(3,6,7,9,1)]$ by auto
qed
lemma LLL-invariant-mod-to-weak-m-to-i: assumes
inv: LLL-invariant-mod fs mfs dmu p first $b m$
and $i: i \leq m$
shows $L L L$-invariant-mod fs mfs dmu p first $b i$
LLL-invariant-weak' m fs
LLL-invariant-weak' ifs
proof -
show LLL-invariant-mod fs mfs dmu p first b i
proof -
have LLL-invariant-weak' m fs using LLL-invD-mod[OF inv] LLL-invI-weak by simp
then have $L L L$-invariant-weak' i fs using $L L L$-inv-weak-m-impl-i i by simp
then have weakly-reduced $f s i$ using $i L L L-i n v D-w e a k(8)$ by simp
then show ?thesis using $L L L-i n v D-\bmod [O F$ inv $] L L L-i n v I-\bmod i$ by simp qed
then show fsinvwi: LLL-invariant-weak' ifs using LLL-invD-mod LLL-invI-weak by simp
show LLL-invariant-weak' m fs using $L L L$-invD-mod $[O F$ inv $] L L L$-invI-weak by simp
qed
lemma basis-reduction-mod-swap-main:
assumes Linvmw: LLL-invariant-mod-weak fs mfs dmu p first b

```
    and \(k: k<m\)
    and \(k 0: k \neq 0\)
    and \(m u-F 1-i:|\mu f s k(k-1)| \leq 1 / 2\)
    and norm-ineq: sq-norm (gso fs \((k-1))>\alpha * \operatorname{sq-norm}\) (gso fs \(k\) )
    and \(m f s^{\prime}-d e f: m f s^{\prime}=m f s[k:=m f s!(k-1), k-1:=m f s!k]\)
    and \(d m u^{\prime}-d e f: d m u^{\prime}=(\) mat \(m m(\lambda(i, j)\).
        if \(j<i\) then
        if \(i=k-1\) then
            dmu \(\$ \$(k, j)\)
        else if \(i=k \wedge j \neq k-1\) then
                dmu \$\$ \((k-1, j)\)
        else if \(i>k \wedge j=k\) then
            \(((d\)-of \(d m u(\) Suc \(k)) * d m u \$ \$(i, k-1)-d m u \$ \$(k, k-1) * d m u \$ \$\)
\((i, j))\)
                div (d-of dmu \(k\) )
        else if \(i>k \wedge j=k-1\) then
            \((d m u \$ \$(k, k-1) * d m u \$ \$(i, j)+d m u \$ \$(i, k) *(d\)-of \(d m u(k-1)))\)
                \(\operatorname{div}(d\)-of \(d m u k)\)
        else dmu \(\$ \$(i, j)\)
        else if \(i=j\) then
        if \(i=k-1\) then
            \(((d\)-of \(d m u(\) Suc \(k)) *(d\)-of \(d m u(k-1))+d m u \$ \$(k, k-1) * d m u \$ \$\)
\((k, k-1))\)
                \(\operatorname{div}(d\)-of \(d m u k)\)
            else (d-of dmu (Suc i))
        else dmu \$\$ \((i, j))\)
    ))
    and \(d m u^{\prime}-m o d-d e f: d m u^{\prime}-\) mod \(=\) mat \(m m(\lambda(i, j)\).
        if \(j<i \wedge(j=k \vee j=k-1)\) then
        \(d m u^{\prime} \$ \$(i, j)\) symmod \(\left(p *\left(d\right.\right.\)-of \(\left.d m u^{\prime} j\right) *\left(d\right.\)-of \(\left.\left.d m u^{\prime}(S u c j)\right)\right)\)
        else dmu' \(\$ \$(i, j))\) )
shows \(\left(\exists f s^{\prime}\right.\). LLL-invariant-mod-weak \(f s^{\prime} m f s^{\prime} d m u^{\prime}-m o d p\) first \(b \wedge\)
    LLL-measure \((k-1) f s^{\prime}<L L L\)-measure \(k f s \wedge\)
    (LLL-invariant-mod fs mfs dmu p first \(b k \longrightarrow L L L-i n v a r i a n t-m o d ~ f s^{\prime} ~ m f s ' ~\)
\(d m u^{\prime}-\bmod p\) first \(\left.b(k-1)\right)\) )
proof -
    define \(f_{s}{ }^{\prime}\) where \(f_{s}{ }^{\prime}=f_{s}\left[k:=f_{s}!(k-1), k-1:=f s!k\right]\)
    have \(p g t z: p>0\) and \(p 1: p>1\) using \(L L L-i n v D-m o d w[O F\) Linvmw] by auto
    have invw: LLL-invariant-weak fs using \(L L L\)-invD-modw[OF Linvmw] LLL-invariant-weak-def
by \(\operatorname{simp}\)
    note swap-main \(=\) basis-reduction-swap-main(3-)[OF invw disjI2[OF mu-F1-i]
\(k\) k0 norm-ineq \(f^{\prime}{ }^{\prime}\)-def]
    note \(d d \mu\)-swap \(=d\) - \(d \mu\)-swap[OF invw disjI2[OF mu-F1-i] \(k\) k0 norm-ineq fs \({ }^{\prime}\)-def]
    have invw': LLL-invariant-weak \(f_{s}{ }^{\prime}\) using \(f_{s}{ }^{\prime}\)-def assms invw basis-reduction-swap-main(1)
by \(\operatorname{simp}\)
    have 02: LLL-measure \(k f s>L L L\)-measure \((k-1) f_{s}{ }^{\prime}\) by fact
    have 03: \(\bigwedge i j . i<m \Longrightarrow j<i \Longrightarrow\)
        \(d \mu f s^{\prime} i j=(\)
        if \(i=k-1\) then
```

$$
d \mu f s k j
$$

else if $i=k \wedge j \neq k-1$ then

$$
d \mu f s(k-1) j
$$

else if $i>k \wedge j=k$ then
$(d f s(S u c k) * d \mu f s i(k-1)-d \mu f s k(k-1) * d \mu f s i j) d i v d f s k$ else if $i>k \wedge j=k-1$ then
$(d \mu f s k(k-1) * d \mu f s i j+d \mu f s i k * d f s(k-1)) d i v d f s k$ else $d \mu$ fs $i j$)
using $d d \mu$-swap by auto
have 031: $\bigwedge i . i<k-1 \Longrightarrow$ gso fs' $i=g s o f s i$
using swap-main(2) $k k 0$ by auto
have 032: \bigwedge ii. ii $\leq m \Longrightarrow$ of-int $\left(d f^{\prime}\right.$ ii $)=($ if $i i=k$ then
sq-norm (gso fs' $(k-1)) / \operatorname{sq-norm}(g s o f s(k-1)) *$ of-int $(d f s k)$
else of-int (dfs ii))
by fact
have gbnd: g-bnd-mode first $b f^{\prime}{ }^{\prime}$
proof (cases first $\wedge m \neq 0$)
case True
have $s q$-norm $\left(\right.$ gso $\left.f s^{\prime} 0\right) \leq \operatorname{sq-norm~(gso~fs~} 0$)
proof (cases $k-1=0$)
case False
thus ?thesis using 031 [of 0] by simp
next
case *: True
have $k-1: k-1<m$ using k by auto
from $* k 0$ have $k 1: k=1$ by simp
have $\operatorname{sq-norm}\left(g s o f s^{\prime} 0\right) \leq a b s\left(s q-n o r m\left(g s o f s^{\prime} 0\right)\right)$ by simp
also have $\ldots=$ abs (sq-norm (gsofs 1$)+\mu$ fs $10 * \mu$ fs $10 *$ sq-norm (gso fs 0))
by (subst swap-main(3)[OF k-1, unfolded $*$], auto simp: $k 1$)
also have $\ldots \leq \operatorname{sq-norm}($ gso fs 1$)+a b s(\mu f s 10) * a b s(\mu f s 10) * s q$-norm (gso fs 0)
by (simp add: sq-norm-vec-ge-0)
also have $\ldots \leq$ sq-norm (gso fs 1$)+(1 / 2) *(1 / 2) * \operatorname{sq-norm}($ gso fs 0$)$ using mu-F1-i[unfolded $k 1$]
by (intro plus-right-mono mult-mono, auto)
also have $\ldots<1 / \alpha *$ sq-norm (gso fs 0) $+(1 / 2) *(1 / 2) *$ sq-norm (gso fs 0)
by (intro add-strict-right-mono, insert norm-ineq[unfolded mult.commute[of $\alpha]$,

THEN mult-imp-less-div-pos[OF $\alpha 0$ (1)]] k1, auto)
also have $\ldots=$ reduction $*$ sq-norm (gso fs 0) unfolding reduction-def using $\alpha 0$ by (simp add: ring-distribs add-divide-distrib)
also have $\ldots \leq 1 *$ sq-norm (gso fs 0) using reduction(2) by (intro mult-right-mono, auto)
finally show? ?thesis by simp
qed
thus ?thesis using LLL-invD-modw(14)[OF Linvmw] True

```
    unfolding g-bnd-mode-def by auto
    next
    case False
        from LLL-invD-modw(14)[OF Linvmw] False have g-bnd b fs unfolding
g-bnd-mode-def by auto
    hence g-bnd b fs'' using g-bnd-swap[OF k k0 invw mu-F1-i norm-ineq fs''def]
by simp
    thus ?thesis using False unfolding g-bnd-mode-def by auto
    qed
    note d-of = d-of-weak[OF Linvmw]
    have 033: ^ i. i<m\Longrightarrowd\mu fs'
        if i=k-1 then
        ((d-of dmu (Suc k))*(d-of dmu (k-1)) + dmu $$ (k,k-1)*dmu $$
(k,k-1))
                        div (d-of dmu k)
                else (d-of dmu (Suc i)))
    proof -
    fix }
    assume i:i<m
    have d\mu fs'}\mp@subsup{}{}{\prime}ii=df\mp@subsup{s}{}{\prime}(\mathrm{ Suc i) using dd }\mui\mathrm{ by simp
    also have ... = (if i=k-1 then
                (dfs (Suc k)*d fs (k-1) + d\mu fsk k (k-1)*d\mu fsk (k-1)) div d fs
k
            else d fs (Suc i))
            by (subst dd }\mu\mathrm{ -swap, insert dd }\muk0 i,auto
    also have ... = (if i=k-1 then
            ((d-of dmu (Suc k))*(d-of dmu (k-1)) + dmu $$ (k,k-1)*dmu $$ (k,
k-1))
                    div (d-of dmu k)
            else (d-of dmu (Suc i))) (is - = ?r)
            using d-of i k LLL-invD-modw(7)[OF Linvmw] by auto
    finally show d\mu fs' i i =?r.
qed
    have 04: lin-indep fs' length fs' =m lattice-of fs' = L using LLL-inv-wD[OF
invw'] by auto
    define I where I={(i,j). i<m^j<i\wedge(j=k\veej=k-1)}
    then have Isubs:I\subseteq{(i,j).i<m\wedgej<i} using k k0 by auto
    obtain fs" where
        05: lattice-of fs'" = L and
    06: map (map-vec ( }\lambda\times.x\mathrm{ symmod p)) fs '" = map (map-vec ( }\lambdax.x\mathrm{ symmod p))
fs' and
    07: lin-indep fs" and
    08: length fs''}=m\mathrm{ and
    09:(\forallk<m.gso fs" k= gso fs' k) and
    10:(\forallk\leqm.dfs'\primek=dfs' k) and
    11:(\forall\mp@subsup{i}{}{\prime}<m.\forall j'<m.d\muf\mp@subsup{s}{}{\prime\prime}}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}
                (if ( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\inI then d\muf\mp@subsup{s}{}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\operatorname{symmod}(p*df\mp@subsup{s}{}{\prime}\mp@subsup{j}{}{\prime}*df\mp@subsup{s}{}{\prime}(Suc \mp@subsup{j}{}{\prime})) els
d\muf\mp@subsup{s}{}{\prime}}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime})
    using mod-finite-set[OF 04(1) 04(2) Isubs 04(3) pgtz] by blast
```

```
    have 13: length mfs' = m using mfs'-def LLL-invD-modw(1)[OF Linvmw] by
simp
    have 14:map (map-vec ( }\lambdax.x\mathrm{ symmod p)) fs '' =mfs'
        using 06 fs'-def k k0 04(2) LLL-invD-modw(5)[OF Linvmw]
            by (metis (no-types, lifting) length-list-update less-imp-diff-less map-update
mfs'-def nth-map)
    have LLL-measure (k-1) fs'"=LLL-measure (k-1) fs' using 10 LLL-measure-def
logD-def D-def by simp
    then have 15:LLL-measure (k-1) fs" < LLL-measure k fs using 02 by simp
    {
    fix }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime
    assume i'j':}\mp@subsup{i}{}{\prime}<m\mp@subsup{j}{}{\prime}<\mp@subsup{i}{}{\prime
        and neq: j}\mp@subsup{j}{}{\prime}\not=k\mp@subsup{j}{}{\prime}\not=k-
    hence }\mp@subsup{j}{}{\prime}k:\mp@subsup{j}{}{\prime}\not=k\mathrm{ Suc }\mp@subsup{j}{}{\prime}\not=k\mathrm{ using k0 by auto
    hence dfs\mp@subsup{s}{}{\prime\prime}\mp@subsup{j}{}{\prime}=dfs \mp@subsup{j}{}{\prime}df\mp@subsup{s}{}{\prime\prime}}(Suc\mp@subsup{j}{}{\prime})=d fs (Suc j'
        using <k< m> i'j' k0
                10[rule-format, of j'] 032 [rule-format, of j']
                10[rule-format, of Suc j] 032[rule-format, of Suc j']
    by auto
} note d-id = this
have 16: \foralli'<m..}\forall\mp@subsup{j}{}{\prime}<\mp@subsup{i}{}{\prime}.|d\muf\mp@subsup{s}{}{\prime\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}|<p*df\mp@subsup{s}{}{\prime\prime}\mp@subsup{j}{}{\prime}*df\mp@subsup{s}{}{\prime\prime}(Suc j'
proof -
    {
        fix }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime
    assume i'j': i'<m j'<i'
    have }|d\muf\mp@subsup{s}{}{\prime\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}|<p*df\mp@subsup{s}{}{\prime\prime}\mp@subsup{j}{}{\prime}*df\mp@subsup{s}{}{\prime\prime}(Suc \mp@subsup{j}{}{\prime}
    proof (cases ( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\inI
            case True
            define pdd where pdd =( p*d fs' j'*d fs'(Suc j'))
            have pdd-pos: pdd>0 using pgtz i'j' LLL-d-pos[OF invw'] pdd-def by simp
            have }d\muf\mp@subsup{s}{}{\prime\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=d\muf\mp@subsup{s}{}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ symmod pdd using True 11 i'j}\mp@subsup{j}{}{\prime}pdd-def by
simp
            then have |d\mufs\mp@subsup{s}{}{\prime\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}|<pdd using True 11 i'j' pdd-pos sym-mod-abs by
simp
            then show ?thesis unfolding pdd-def using 10 i'j' by simp
    next
        case False
        from False[unfolded I-def] i'j' have neg: j'}\not=k\mp@subsup{j}{}{\prime}\not=k-1 by aut
        consider (1) i'=k-1\vee 说=k|(2) ᄀ(i'=k-1\vee i'=k)
            using False i'j' unfolding I-def by linarith
        thus ?thesis
        proof cases
            case **: 1
            let ? i'\prime = if i' =k-1 then k else k -1
            from ** neg }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ have }\mp@subsup{i}{}{\prime\prime}:? ?\mp@subsup{i}{}{\prime\prime}<m\mp@subsup{j}{}{\prime}<? ? i' using k0 k by aut
            have d\mufs\mp@subsup{}{}{\prime\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=d\muf\mp@subsup{s}{}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ using 11 False }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ by simp}
```

also have $\ldots=d \mu f s ? i^{\prime \prime} j^{\prime}$ unfolding $03\left[O F\left\langle i^{\prime}<m\right\rangle\left\langle j^{\prime}<i^{\prime}\right\rangle\right]$
using ** neg by auto
finally show ?thesis using $L L L-i n v D-\operatorname{modw}(6)[$ OF Linvmw, rule-format, OF $\left.i^{\prime \prime}\right]$ unfolding d-id[$\left.O F i^{\prime} j^{\prime} n e g\right]$ by auto next
case $* *$: 2
hence neq: $j^{\prime} \neq k j^{\prime} \neq k-1$ using False $k k 0 i^{\prime} j^{\prime}$ unfolding I-def by auto
have $d \mu f s^{\prime \prime} i^{\prime} j^{\prime}=d \mu f s^{\prime} i^{\prime} j^{\prime}$ using 11 False $i^{\prime} j^{\prime}$ by simp
also have $\ldots=d \mu f s i^{\prime} j^{\prime}$ unfolding $03\left[O F\left\langle i^{\prime}<m\right\rangle\left\langle j^{\prime}<i^{\prime}\right\rangle\right]$ using ** neq by auto
finally show ?thesis using $L L L-i n v D-m o d w(6)[$ OF Linvmw, rule-format, $\left.O F i^{\prime} j^{\prime}\right]$ using d-id[OF $\left.i^{\prime} j^{\prime} n e q\right]$ by auto
qed
qed
\}
then show? ?thesis by simp
qed
have 17: $\forall i^{\prime}<m . \forall j^{\prime}<m . d \mu f s^{\prime \prime} i^{\prime} j^{\prime}=d m u^{\prime}-\bmod \$ \$\left(i^{\prime}, j^{\prime}\right)$
proof -
\{
fix $i^{\prime} j^{\prime}$
assume $i^{\prime} j^{\prime}: i^{\prime}<m j^{\prime}<i^{\prime}$
have $d^{\prime} d m u^{\prime}: \forall j^{\prime}<m . d f s^{\prime}\left(S u c j^{\prime}\right)=d m u^{\prime} \$ \$\left(j^{\prime}, j^{\prime}\right)$ using $d d \mu d m u^{\prime}-d e f$
033 by simp
have $e q^{\prime}: d \mu f s^{\prime} i^{\prime} j^{\prime}=d m u^{\prime} \$ \$\left(i^{\prime}, j^{\prime}\right)$
proof -
have t00: $d \mu f s k j^{\prime}=d m u \$ \$\left(k, j^{\prime}\right)$ and
t01: $d \mu f_{s}(k-1) j^{\prime}=d m u \$ \$\left(k-1, j^{\prime}\right)$ and
t04: $d \mu$ fs $k(k-1)=d m u \$ \$(k, k-1)$ and
t05: $d \mu f s i^{\prime} k=d m u \$ \$\left(i^{\prime}, k\right)$
using $L L L-i n v D-\operatorname{modw}(7)[O F \operatorname{Linvmw}] i^{\prime} j^{\prime} k d d \mu k 0$ by auto
have t03: $d f_{s} k=d \mu f s(k-1)(k-1)$ using $k 0 k$ by (metis LLL.dd μ
Suc-diff-1 lessI not-gr-zero)
have t06: d fs $(k-1)=(d$-of $d m u(k-1))$ using d-of k by auto
have t07: d fs $k=(d$-of $d m u k)$ using d-of k by auto
have $j^{\prime}: j^{\prime}<m$ using $i^{\prime} j^{\prime}$ by simp
have $d \mu f s^{\prime} i^{\prime} j^{\prime}=\left(\right.$ if $i^{\prime}=k-1$ then
$d m u \$ \$\left(k, j^{\prime}\right)$
else if $i^{\prime}=k \wedge j^{\prime} \neq k-1$ then
dmu $\$ \$\left(k-1, j^{\prime}\right)$
else if $i^{\prime}>k \wedge j^{\prime}=k$ then
$\left(d m u \$ \$(k, k) * d m u \$ \$\left(i^{\prime}, k-1\right)-d m u \$ \$(k, k-1) * d m u\right.$
\$\$ $\left.\left(i^{\prime}, j^{\prime}\right)\right)$ div (d-of dmu k) else if $i^{\prime}>k \wedge j^{\prime}=k-1$ then
$\left(d m u \$ \$(k, k-1) * d m u \$ \$\left(i^{\prime}, j^{\prime}\right)+d m u \$ \$\left(i^{\prime}, k\right) * d f s(k-\right.$
1)) $\operatorname{div}(d$-of $d m u k)$
else dmu \$\$ $\left.\left(i^{\prime}, j^{\prime}\right)\right)$
using $d d \mu k$ t00 t01 t03 LLL-invD-modw(7)[OF Linvmw] $k i^{\prime} j^{\prime} j^{\prime} 03 t 07$

```
by simp
            then show ?thesis using dmu'-def i'j' j' t06 t07 by (simp add: d-of-def)
    qed
    have d\mufs\mp@subsup{s}{}{\prime\prime}}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=dm\mp@subsup{u}{}{\prime}-\operatorname{mod}$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime}
    proof (cases ( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\inI
            case i'j'I: True
            have }\mp@subsup{j}{}{\prime}:\mp@subsup{j}{}{\prime}<m\mathrm{ using }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ by simp
            show ?thesis
            proof -
                have dmu'-mod $$ (i',}\mp@subsup{j}{}{\prime})=dm\mp@subsup{u}{}{\prime}$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime}
                    symmod (p*(d-of dmu' j})*(d-of dmu' (Suc j')))
            using dmu'-mod-def }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}I I-def by sim
            also have d-of dmu' ' j'=d fs''}\mp@subsup{j}{}{\prime
                    using j' d'dmu' d-def Suc-diff-1 less-imp-diff-less unfolding d-of-def
            by (cases j', auto)
            finally have dmu'-mod $$( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})=dm\mp@subsup{u}{}{\prime}$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\operatorname{symmod}(p*df\mp@subsup{s}{}{\prime}\mp@subsup{j}{}{\prime}
d fs'(Suc j'))
                    using dd\mu[OF j'] d'dmu' j' by (auto simp: d-of-def)
            then show ?thesis using }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}I11\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}eq' by sim
        qed
    next
            case False
            have d\mufs'" }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=d\muf\mp@subsup{s}{}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ using False }11\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ by simp
            also have ... = dmu'}$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\mathrm{ unfolding eq' ..
            finally show ?thesis unfolding dmu'-mod-def using False[unfolded I-def]
i'j' by auto
            qed
    }
    moreover have }\forall\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}.\mp@subsup{i}{}{\prime}<m\longrightarrow\mp@subsup{j}{}{\prime}<m\longrightarrow\mp@subsup{i}{}{\prime}=\mp@subsup{j}{}{\prime}\longrightarrowd\muf\mp@subsup{s}{}{\prime\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}
dmu'-mod $$ ( i',}\mp@subsup{j}{}{\prime}
            using dd\mu dmu'-def 033 10 dmu'-mod-def 11 I-def by simp
    moreover {
            fix }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime
            assume }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime\prime}:\mp@subsup{i}{}{\prime}<m\mp@subsup{j}{}{\prime}<m\mp@subsup{i}{}{\prime}<\mp@subsup{j}{}{\prime
            then have }\muz:\muf\mp@subsup{s}{}{\prime\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=0\mathrm{ by (simp add: gram-schmidt-fs. }\mu.simps
            have dmu'-mod $$ (i',}\mp@subsup{j}{}{\prime})=dm\mp@subsup{u}{}{\prime}$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\mathrm{ using dmu'-mod-def }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime\prime}\mathrm{ by auto
            also have ... = d | fs i' j' using LLL-invD-modw(7)[OF Linvmw] i'j'\prime
dmu'-def by simp
            also have ... = 0 using d\mu-def i'j'\prime by (simp add: gram-schmidt-fs.\mu.simps)
            finally have }d\muf\mp@subsup{s}{}{\prime\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=dm\mp@subsup{u}{}{\prime}-mod $$(i',j') using \muz d-def i'j'\prime d\mu-de
by simp
    }
    ultimately show ?thesis by (meson nat-neq-iff)
    qed
    from gbnd 09 have g-bnd: g-bnd-mode first b fs" using g-bnd-mode-cong[of fs'
fs'\ by auto
    {
        assume Linv: LLL-invariant-mod fs mfs dmu p first b k
        have 00:LLL-invariant-weak'k fs using LLL-invD-mod[OF Linv] LLL-invI-weak
```

by simp
note swap-weak' $=$ basis-reduction-swap-weak'[OF $00 k k 0 m u$-F1-i norm-ineq $f s^{\prime}$-def]
have 01: LLL-invariant-weak' $(k-1) f^{\prime}$ by fact
have 12: weakly-reduced $\mathrm{fs}^{\prime \prime}(k-1)$
using $03109 k$ LLL-invD-weak(8)[OF 00] unfolding gram-schmidt-fs.weakly-reduced-def
by simp
have LLL-invariant-mod $f_{s}{ }^{\prime \prime} m s^{\prime}{ }^{\prime} d m u^{\prime}-\bmod p$ first $b(k-1)$
using LLL-invI-mod[OF 13 - $08050712141617 \mathrm{p1} \mathrm{~g}$-bnd LLL-invD-mod(17)[OF Linv]] k by simp
\}
moreover have LLL-invariant-mod-weak fs ${ }^{\prime \prime} m f s^{\prime} d m u^{\prime}$-mod p first b
using $L L L$-invI-modw[OF 13080507141617 p1 g-bnd LLL-invD-modw(15)[OF
Linvmw]] by simp
ultimately show ?thesis using 15 by auto
qed
lemma dmu-quot-is-round-of- μ :
assumes Linv: LLL-invariant-mod fs mfs dmu pfirst $b i^{\prime}$
and $c: c=$ round-num-denom $(d m u \$ \$(i, j))(d$-of dmu $(S u c j))$
and $i: i<m$
and $j: j<i$
shows $c=\operatorname{round}(\mu f s i j)$
proof -
have Linvw: LLL-invariant-weak' $i^{\prime} f_{s}$ using LLL-invD-mod[OF Linv] LLL-invI-weak by simp
have $j 2: j<m$ using $i j$ by simp
then have $j 3$: Suc $j \leq m$ by simp
have $\mu 1$: $\mu f_{s} j j=1$ using $i j$ by (meson gram-schmidt-fs. μ.elims less-irrefl-nat)
have inZ: rat-of-int $\left(d f_{s}(S u c j)\right) * \mu$ fs $i j \in \mathbb{Z}$ using fs-int-indpt.fs-int-mu-d-Z-m-m $i j$
$L L L-i n v D-\bmod (5)[O F L i n v] L L L-i n v D-w e a k(2) L i n v w d-d e f f s-i n t . d-d e f f s-i n t-i n d p t . i n t r o$ by auto
have $c=\operatorname{round}($ rat-of-int $(d \mu f s i j) / r a t-o f-i n t(d \mu f s j j))$ using $L L L-i n v D-\bmod (9)$
Linv ijc
by (simp add: round-num-denom d-of-def)
then show ?thesis using $L L L$-d-pos[OF LLL-invw'-imp-w[OF Linvw] j3] ji inZ
$d \mu$-def $\mu 1$ by simp
qed
lemma dmu-quot-is-round-of- μ-weak:
assumes Linv: LLL-invariant-mod-weak fs mfs dmu p first b
and $c: c=$ round-num-denom $(d m u \$ \$(i, j))(d$-of dmu $(S u c j))$
and $i: i<m$
and $j: j<i$
shows $c=\operatorname{round}(\mu$ fs $i j)$
proof -
have Linvww: LLL-invariant-weak fs using LLL-invD-modw[OF Linv] LLL-invariant-weak-def by simp

```
    have \(j 2: j<m\) using \(i j\) by simp
    then have \(j\) 3: Suc \(j \leq m\) by simp
    have \(\mu 1\) : \(\mu\) fs \(j j=1\) using \(i j\) by (meson gram-schmidt-fs. \(\mu\).elims less-irrefl-nat)
    have inZ: rat-of-int \(\left(d f_{s}(S u c j)\right) * \mu\) fs \(i j \in \mathbb{Z}\) using fs-int-indpt.fs-int-mu-d-Z-m-m
\(i j\)
    LLL-invD-modw[OF Linv] d-def fs-int.d-def fs-int-indpt.intro by auto
    have \(c=\operatorname{round}(r a t-o f-i n t(d \mu f s i j) / \operatorname{rat-of-int}(d \mu f s j j))\) using LLL-invD-modw(7)
Linv ijc
    by (simp add: round-num-denom d-of-def)
    then show ?thesis using \(L L L\)-d-pos[OF Linvww j3] \(j i\) in \(Z d \mu\)-def \(\mu 1\) by simp
qed
lemma basis-reduction-mod-add-row: assumes
    Linv: LLL-invariant-mod-weak fs mfs dmu \(p\) first \(b\)
    and res: basis-reduction-mod-add-row p mfs dmu \(i j=\left(m f s^{\prime}, d m u^{\prime}\right)\)
    and \(i: i<m\)
    and \(j: j<i\)
    and igtz: \(i \neq 0\)
shows \(\left(\exists f s^{\prime}\right.\). LLL-invariant-mod-weak \(f s^{\prime} m f s^{\prime} d m u^{\prime} p\) first \(b \wedge\)
    LLL-measure ifs \({ }^{\prime}=\) LLL-measure \(i f s \wedge\)
    ( \(\mu\)-small-row ifs \((S u c j) \longrightarrow \mu\)-small-row \(\left.i f s^{\prime} j\right) \wedge\)
    \(\left|\mu f s^{\prime} i j\right| \leq 1 / 2 \wedge\)
    \(\left(\forall i^{\prime} j^{\prime} . i^{\prime}<i \longrightarrow j^{\prime} \leq i^{\prime} \longrightarrow \mu f s^{\prime} i^{\prime} j^{\prime}=\mu f s i^{\prime} j^{\prime}\right) \wedge\)
    (LLL-invariant-mod fs mfs dmu p first \(b i \longrightarrow\) LLL-invariant-mod \(f s^{\prime} m f s^{\prime}\)
\(d m u^{\prime} p\) first \(\left.b i\right) \wedge\)
    \(\left.\left(\forall i i \leq m . d f s^{\prime} i i=d f s i i\right)\right)\)
proof -
    define \(c\) where \(c=\) round-num-denom (dmu \(\$ \$(i, j)\) ) (d-of dmu (Suc j))
    then have \(c: c=\operatorname{round}(\mu f s i j)\) using dmu-quot-is-round-of- \(\mu\)-weak[OF Linv
\(c\)-def \(i j]\) by \(\operatorname{simp}\)
    show ?thesis
    proof (cases \(c=0\) )
        case True
        then have pair-id: \(\left(m f s^{\prime}, d m u u^{\prime}\right)=(m f s, d m u)\)
            using res c-def unfolding basis-reduction-mod-add-row-def Let-def by auto
    moreover have \(|\mu f s i j| \leq\) inverse 2 using \(c\) [symmetric, unfolded True]
                by (simp add: round-def, linarith)
    moreover then have ( \(\mu\)-small-row ifs \((S u c j) \longrightarrow \mu\)-small-row ifs \(j\) )
            unfolding \(\mu\)-small-row-def using Suc-leI le-neq-implies-less by blast
    ultimately show ?thesis using Linv pair-id by auto
    next
    case False
    then have pair-id: \(\left(m s^{\prime}, d m u^{\prime}\right)=(m f s[i:=\operatorname{map-vec}(\lambda x . x\) symmod \(p)(m f s!\)
\(i-c \cdot v m s!j)]\),
                mat \(m m\left(\lambda\left(i^{\prime}, j^{\prime}\right)\right.\). if \(i^{\prime}=i \wedge j^{\prime} \leq j\)
                        then if \(j^{\prime}=j\) then \(d m u \$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\)
                        else (dmu \(\left.\$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\right)\)
                            \(\operatorname{symmod}\left(p *\left(d\right.\right.\)-of \(\left.d m u j^{\prime}\right) *\left(d\right.\)-of \(\left.\left.d m u\left(S u c j^{\prime}\right)\right)\right)\)
                        else dmu \(\left.\left.\$ \$\left(i^{\prime}, j^{\prime}\right)\right)\right)\)
```

using res c-def unfolding basis-reduction-mod-add-row-def Let-def by auto
then have $m f s^{\prime}: m f s^{\prime}=m f s\left[i:=\operatorname{map}-v e c(\lambda x . x \operatorname{symmod} p)\left(m f s!i-c \cdot{ }_{v}\right.\right.$ $m f s!j)$]
and $d m u^{\prime}: d m u^{\prime}=$ mat $m m\left(\lambda\left(i^{\prime}, j^{\prime}\right)\right.$. if $i^{\prime}=i \wedge j^{\prime} \leq j$
then if $j^{\prime}=j$ then dmu $\$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)$
else (dmu $\left.\$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\right)$
$\operatorname{symmod}\left(p *\left(d\right.\right.$-of $\left.d m u j^{\prime}\right) *\left(d\right.$-of $\left.\left.d m u\left(S u c j^{\prime}\right)\right)\right)$
else dmu $\left.\$ \$\left(i^{\prime}, j^{\prime}\right)\right)$ by auto
show ?thesis using basis-reduction-mod-add-row-main[OF Linv i j c mfs' dmu'] by blast
qed
qed
lemma basis-reduction-mod-swap: assumes
Linv: LLL-invariant-mod-weak fs mfs dmu p first b
and $m u: \mid \mu$ fs $k(k-1) \mid \leq 1 / 2$
and res: basis-reduction-mod-swap p mfs dmu $k=\left(m f s^{\prime}, d m u{ }^{\prime}\right.$-mod $)$
and cond: sq-norm (gso fs $(k-1)$) $>\alpha * \operatorname{sq-norm}$ (gso fs k)
and $i: k<m k \neq 0$
shows $\left(\exists f s^{\prime}\right.$. LLL-invariant-mod-weak $f s^{\prime} m f s^{\prime} d m u^{\prime}-\bmod p$ first $b \wedge$ LLL-measure $(k-1) f s^{\prime}<L L L$-measure $k f s \wedge$ (LLL-invariant-mod fs mfs dmu p first $b k \longrightarrow L L L-i n v a r i a n t-m o d ~ f s^{\prime} ~ m f s s^{\prime}$ $d m u^{\prime}-\bmod p$ first $\left.\left.b(k-1)\right)\right)$
using res[unfolded basis-reduction-mod-swap-def basis-reduction-mod-swap-dmu-mod-def]
basis-reduction-mod-swap-main[OF Linv i mu cond] by blast
lemma basis-reduction-adjust-mod: assumes
Linv: LLL-invariant-mod-weak fs mfs dmu p first b
and res: basis-reduction-adjust-mod p first $m f s$ dmu $=\left(p^{\prime}, m f s^{\prime}, d m u^{\prime}, g\right.$-idx $)$
shows $\left(\exists f^{\prime}{ }^{\prime} b^{\prime}\right.$. (LLL-invariant-mod fs mfs dmu p first $b i \longrightarrow L L L$-invariant-mod $f_{s}{ }^{\prime} m f^{\prime} d m u^{\prime} p^{\prime}$ first $\left.b^{\prime} i\right) \wedge$
$L L L$-invariant-mod-weak $f s^{\prime} m s^{\prime} d m u^{\prime} p^{\prime}$ first $b^{\prime} \wedge$
$L L L$-measure ifs ${ }^{\prime}=L L L$-measure $i f s$)
proof (cases $\exists g$-idx. basis-reduction-adjust-mod p first $m f s d m u=(p, m f s, d m u$, $g-i d x)$)
case True
thus ?thesis using res Linv by auto
next
case False
obtain $b^{\prime} g$-idx where norm: compute-max-gso-norm first $d m u=\left(b^{\prime}, g\right.$-idx $)$ by
force
define $p^{\prime \prime}$ where $p^{\prime \prime}=$ compute-mod-of-max-gso-norm first b^{\prime}
define d-vec where d-vec $=$ vec $($ Suc m) $(\lambda i$. d-of $d m u i)$
define $m f s^{\prime \prime}$ where $m f s^{\prime \prime}=\operatorname{map}\left(\operatorname{map-vec}\left(\lambda x\right.\right.$. x symmod $\left.\left.p^{\prime \prime}\right)\right) m f s$
define $d m u^{\prime \prime}$ where $d m u^{\prime \prime}=$ mat $m m(\lambda(i, j)$.
if $j<i$ then dmu $\$ \(i, j) symmod $\left(p^{\prime \prime} * d\right.$-vec $\$ j * d$-vec $\$$ Suc j)
else dmu $\$ \$(i, j))$
note res $=$ res False
note res $=$ res[unfolded basis-reduction-adjust-mod.simps Let-def norm split, folded $p^{\prime \prime}$-def, folded d-vec-def $m f^{\prime \prime}{ }^{\prime \prime}$-def, folded dmu ${ }^{\prime \prime}$-def]
from res have $p p^{\prime}: p^{\prime \prime}<p$ and $i d: d m u^{\prime}=d m u^{\prime \prime} m f s^{\prime}=m f s^{\prime \prime} p^{\prime}=p^{\prime \prime} g$-idx x^{\prime} $=g-i d x$
by (auto split: if-splits)
define I where $I=\left\{\left(i^{\prime}, j^{\prime}\right) . i^{\prime}<m \wedge j^{\prime}<i^{\prime}\right\}$
note inv $=L L L-i n v D-\operatorname{modw}[O F L i n v]$
from $\operatorname{inv}(4)$ have lin: gs.lin-indpt-list ($R A T f s)$.
from $\operatorname{inv}(3)$ have lat: lattice-of $f s=L$.
from inv(2) have len: length $f s=m$.
have weak: LLL-invariant-weak fs using Linv
by (auto simp: LLL-invariant-mod-weak-def LLL-invariant-weak-def)
from compute-max-gso-norm[OF - weak, of dmu first, unfolded norm] inv(7)
have bnd: g-bnd-mode first $b^{\prime} f s$ and $b^{\prime}: b^{\prime} \geq 0 m=0 \Longrightarrow b^{\prime}=0$ by auto
from compute-mod-of-max-gso-norm[OF $b^{\prime} p^{\prime \prime}$-def]
have $p^{\prime \prime}: 0<p^{\prime \prime} 1<p^{\prime \prime}$ mod-invariant $b^{\prime} p^{\prime \prime}$ first by auto
obtain $f_{s}{ }^{\prime}$ where
01: lattice-of $f_{s}{ }^{\prime}=L$ and
02: map (map-vec $\left(\lambda x . x\right.$ symmod $\left.\left.p^{\prime \prime}\right)\right) f s^{\prime}=\operatorname{map}($ map-vec $(\lambda x . x$ symmod $\left.\left.p^{\prime \prime}\right)\right) f s$ and

03: lin-indep $f_{s}{ }^{\prime}$ and
04: length $f_{s}{ }^{\prime}=m$ and
05: $\left(\forall k<m\right.$. gso fs ${ }^{\prime} k=$ gso fs $\left.k\right)$ and
06: $\left(\forall k \leq m\right.$. $\left.d f s^{\prime} k=d f s k\right)$ and
07: $\left(\forall i^{\prime}<m . \forall j^{\prime}<m . d \mu f s^{\prime} i^{\prime} j^{\prime}=\right.$
(if $\left(i^{\prime}, j^{\prime}\right) \in I$ then $d \mu f s i^{\prime} j^{\prime} \operatorname{symmod}\left(p^{\prime \prime} * d f s j^{\prime} * d f s\left(S u c j^{\prime}\right)\right)$ else $d \mu f s$ $\left.i^{\prime} j^{\prime}\right)$)
using mod-finite-set[OF lin len - lat, of I] I-def $p^{\prime \prime}$ by blast
from bnd 05 have bnd: g-bnd-mode first $b^{\prime} f s^{\prime}$ using g-bnd-mode-cong[of fs $\left.f s^{\prime}\right]$
by auto
have $D: D f_{s}=D f_{s}{ }^{\prime}$ unfolding D-def using 06 by auto
have Linv': LLL-invariant-mod-weak $f s^{\prime} m f s^{\prime \prime} d m u^{\prime \prime} p^{\prime \prime}$ first b^{\prime}
proof (intro LLL-invI-modw p" 040301 bnd) \{
have $m f s^{\prime \prime}=$ map $\left(\right.$ map-vec $\left(\lambda x . x\right.$ symmod $\left.\left.p^{\prime \prime}\right)\right) m f s$ by fact
also have $\ldots=$ map $\left(\right.$ map-vec $\left(\lambda x\right.$. x symmod $\left.p^{\prime \prime}\right)$) (map (map-vec $(\lambda x . x$ symmod p)) $f s$)
using inv by simp
also have $\ldots=\operatorname{map}\left(\right.$ map-vec $\left(\lambda x\right.$. x symmod p symmod $\left.\left.p^{\prime \prime}\right)\right)$ fs by auto
also have $\left(\lambda x . x\right.$ symmod p symmod $\left.p^{\prime \prime}\right)=\left(\lambda x . x\right.$ symmod $\left.p^{\prime \prime}\right)$
proof (intro ext)
fix x
from 〈mod-invariant b p first〉[unfolded mod-invariant-def] obtain e where
$p: p=$ log-base ^e by auto
from $p^{\prime \prime}\left[\right.$ unfolded mod-invariant-def] obtain e^{\prime} where

```
            p': }\mp@subsup{p}{}{\prime\prime}=log-base^ e' by aut
            from }p\mp@subsup{p}{}{\prime}[unfolded p p'| log-base have \mp@subsup{e}{}{\prime}\leqe by sim
    hence dvd: }\mp@subsup{p}{}{\prime\prime}dvdp\mathrm{ unfolding }p\mp@subsup{p}{}{\prime\prime}\mathrm{ using log-base by (metis le-imp-power-dvd)
            thus x symmod p symmod p'\prime}=x\mathrm{ symmod p"
                by (intro sym-mod-sym-mod-cancel)
    qed
    finally show map (map-vec ( }\lambdax.x\mathrm{ symmod p'')) fs' = mfs'' unfolding 02 ..
    }
    thus length mfs"'=m using 04 by auto
    show }\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<\mp@subsup{i}{}{\prime}.|d\muf\mp@subsup{s}{}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}|<\mp@subsup{p}{}{\prime\prime}*df\mp@subsup{s}{}{\prime}\mp@subsup{j}{}{\prime}*df\mp@subsup{s}{}{\prime}(Suc j'
    proof -
    {
        fix }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime
        assume i'j}\mp@subsup{j}{}{\prime}:\mp@subsup{i}{}{\prime}<m\mp@subsup{j}{}{\prime}<\mp@subsup{i}{}{\prime
        then have d\mufs\mp@subsup{s}{}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=d\mufs\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}\operatorname{symmod}(\mp@subsup{p}{}{\prime\prime}*df\mp@subsup{s}{}{\prime}\mp@subsup{j}{}{\prime}*df\mp@subsup{s}{}{\prime}(Suc j}\mp@subsup{j}{}{\prime})
            using 0706 unfolding I-def by simp
        then have }|d\muf\mp@subsup{s}{}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}|<\mp@subsup{p}{}{\prime\prime}*df\mp@subsup{s}{}{\prime}\mp@subsup{j}{}{\prime}*df\mp@subsup{s}{}{\prime}(Suc \mp@subsup{j}{}{\prime}
            using sym-mod-abs p"'LLL-d-pos[OF weak] mult-pos-pos
            by (smt 06 i'j' less-imp-le-nat less-trans-Suc nat-SN.gt-trans)
        }
        then show ?thesis by simp
    qed
    from inv(7) have dmu: i' < m\Longrightarrow 㐌<m\Longrightarrowdmu $$ (i', j')=d\mu fs i' }\mp@subsup{j}{}{\prime
for i' }\mp@subsup{i}{}{\prime
            by auto
    note d-of = d-of-weak[OF Linv]
    have dvec: i\leqm\Longrightarrowd-vec $i=d fs i for i unfolding d-vec-def using d-of
by auto
    show }\forall\mp@subsup{i}{}{\prime}<m.\forall\mp@subsup{j}{}{\prime}<m.d\muf\mp@subsup{s}{}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}=dm\mp@subsup{u}{}{\prime\prime}$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime}
        using 07 unfolding dmu"'-def I-def
        by (auto simp:dmu dvec)
qed
moreover
{
    assume linv: LLL-invariant-mod fs mfs dmu p first b i
    note inv = LLL-invD-mod[OF linv]
    hence i:i\leqm by auto
    have norm: j<m\Longrightarrow|gso fs j| |}=|gsofs' j| | for j
        using 05 by auto
    have weakly-reduced fs i}=\mathrm{ weakly-reduced fs' }\mp@subsup{}{}{\prime
        unfolding gram-schmidt-fs.weakly-reduced-def using i
        by (intro all-cong arg-cong2[where f=(\leq)] arg-cong[where f=\lambdax.-*x]
norm, auto)
    with inv have weakly-reduced fs'}\mp@subsup{}{}{\prime}i\mathrm{ by auto
    hence LLL-invariant-mod f\mp@subsup{s}{}{\prime}mf\mp@subsup{s}{}{\prime\prime}dmu"\prime p" first b' i using inv
    by (intro LLL-invI-mod LLL-invD-modw[OF Linv`])
}
```

```
    moreover have LLL-measure ifs'}=LLL\mathrm{ -measure i fs
    unfolding LLL-measure-def logD-def D ..
    ultimately show ?thesis unfolding id by blast
qed
lemma alpha-comparison: assumes
    Linv: LLL-invariant-mod-weak fs mfs dmu p first b
    and alph:quotient-of \alpha = (num, denom)
    and i:i<m
    and i0:i\not=0
shows (d-of dmu i*d-of dmu i*denom \leqnum *d-of dmu (i-1)*d-of dmu
(Suc i))
    =(sq-norm (gso fs (i-1))\leq\alpha*sq-norm (gso fs i))
proof -
    note inv = LLL-invD-modw[OF Linv]
    interpret fs-indep: fs-int-indpt n fs
    by (unfold-locales, insert inv, auto)
    from inv(2) i have ifs: i< length fs by auto
    note d-of-fs = d-of-weak[OF Linv]
    show ?thesis
    unfolding fs-indep.d-sq-norm-comparison[OF alph ifs i0, symmetric]
    by (subst (1 2 3 4) d-of-fs, use i d-def fs-indep.d-def in auto)
qed
lemma basis-reduction-adjust-swap-add-step: assumes
    Linv: LLL-invariant-mod-weak fs mfs dmu p first b
    and res: basis-reduction-adjust-swap-add-step p first mfs dmu g-idx i = ( p',mfs',
dmu', g-idx')
    and alph:quotient-of \alpha=(num, denom)
    and ineq: ᄀ(d-of dmu i*d-of dmu i*denom
                            \leqnum*d-of dmu (i-1)*d-of dmu (Suc i))
    and i:i<m
    and i0:i\not=0
shows \existsfs' }\mp@subsup{b}{}{\prime}\mathrm{ . LLL-invariant-mod-weak fs' mfs' dmu' p' first b}\mp@subsup{b}{}{\prime}
        LLL-measure (i-1)fs'<LLL-measure ifs ^
        LLL-measure (m-1) fs '}<<LLL-measure (m-1) fs ^
        (LLL-invariant-mod fs mfs dmu p first b i \longrightarrow
        LLL-invariant-mod fs' mfs' dmu' p' first b' (i-1))
proof -
    obtain mfs0 dmu0 where add: basis-reduction-mod-add-row p mfs dmu i (i-1)
=(mfs0, dmu0) by force
    obtain mfs1 dmu1 where swap: basis-reduction-mod-swap p mfs0 dmu0 i =
(mfs1, dmu1) by force
    note res = res[unfolded basis-reduction-adjust-swap-add-step-def Let-def add split
swap]
    from i0 have ii:i-1<i by auto
    from basis-reduction-mod-add-row[OF Linv add i ii i0]
    obtain fs0 where Linv0: LLL-invariant-mod-weak fs0 mfs0 dmu0 p first b
    and meas0:LLL-measure i fs0 = LLL-measure ifs
```

and small: $\mid \mu$ fs0 $i(i-1) \mid \leq 1 / 2$
and Linv0':LLL-invariant-mod fs mfs dmu p first $b i \Longrightarrow$ LLL-invariant-mod fso mfsO dmu0 pfirst bi
by blast
\{
have $i d$: d-of dmu0 $i=d$-of $d m u i d$-of $d m u 0(i-1)=d$-of $d m u(i-1)$
d-of dmu0 (Suc i) $=d$-of dmu (Suc i)
using i i0 add[unfolded basis-reduction-mod-add-row-def Let-def]
by (auto split: if-splits simp: d-of-def)
from ineq[folded id, unfolded alpha-comparison[OF Linv0 alph i i0]]
have $\|$ gso fs0 $(i-1)\left\|^{2}>\alpha *\right\|$ gso fs0 $i \|^{2}$ by simp
$\}$ note ineq $=$ this
from Linv have LLL-invariant-weak f_{s}
by (auto simp: LLL-invariant-weak-def LLL-invariant-mod-weak-def)
from basis-reduction-mod-swap[OF Linv0 small swap ineq i i0, unfolded meas0] Linv0'
obtain $f_{s} 1$ where Linv1: LLL-invariant-mod-weak fs1 mfs1 dmu1 p first b
and meas1: LLL-measure $(i-1) f_{s} 1<L L L$-measure $i f s$
and Linv1': LLL-invariant-mod fs mfs dmu p first $b i \Longrightarrow$ LLL-invariant-mod fs1 mfs1 dmu1 p first $b(i-1)$
by auto
show ?thesis
proof (cases $i-1=g$-idx)
case False
with res have $i d: p^{\prime}=p m f s^{\prime}=m f s 1 d m u^{\prime}=d m u 1 g-i d x^{\prime}=g$-idx by auto
show ?thesis unfolding id using Linv1' meas1 Linv1 by (intro exI [of - fs1]
exI[of-b], auto simp: LLL-measure-def)
next
case True
with res have adjust: basis-reduction-adjust-mod p first mfs1 dmu1 $=\left(p^{\prime}, m s^{\prime}{ }^{\prime}\right.$, $\left.d m u^{\prime}, g-i d x^{\prime}\right)$ by simp
from basis-reduction-adjust-mod[OF Linv1 adjust, of $i-1]$ Linv1 ${ }^{\prime}$
obtain $f s^{\prime} b^{\prime}$ where Linvw: LLL-invariant-mod-weak $f s^{\prime} m f s^{\prime} d m u^{\prime} p^{\prime}$ first b^{\prime}
and Linv: LLL-invariant-mod fs mfs dmu pirst $b i \Longrightarrow L L L-i n v a r i a n t-m o d$ $f s^{\prime} m f s^{\prime} d m u^{\prime} p^{\prime}$ first $b^{\prime}(i-1)$
and meas: LLL-measure $(i-1) f s^{\prime}=\operatorname{LLL}$-measure $(i-1) f s 1$
by blast
note meas $=$ meas1 [folded meas]
from meas have meas': LLL-measure $(m-1) f s^{\prime}<L L L$-measure $(m-1) f s$
unfolding LLL-measure-def using i by auto
show ?thesis
by (intro exI conjI impI, rule Linvw, rule meas, rule meas', rule Linv)
qed
qed
lemma basis-reduction-mod-step: assumes
Linv: LLL-invariant-mod fs mfs dmu p first bi
and res: basis-reduction-mod-step p first mfs dmu g-idx ij=($p^{\prime}, m f s^{\prime}, d m u^{\prime}$,

```
g-idx', i', j')
    and i:i<m
shows \existsfs' b}\mp@subsup{b}{}{\prime}.LLL-measure \mp@subsup{i}{}{\prime}f\mp@subsup{s}{}{\prime}<LLL-measure i fs ^LLL-invariant-mod fs'
mfs' dmu' p' first b' }\mp@subsup{i}{}{\prime
proof -
    note res = res[unfolded basis-reduction-mod-step-def Let-def]
    from Linv have Linvw: LLL-invariant-mod-weak fs mfs dmu p first b
        by (auto simp: LLL-invariant-mod-weak-def LLL-invariant-mod-def)
    show ?thesis
    proof (cases i=0)
    case True
    then have ids: mfs'=mfs dmu'= dmu i'=Suc i p' = p using res by auto
    have LLL-measure i'fs <LLL-measure ifs}\wedgeLLL-invariant-mod fs mfs'' dmu'
p first b i'
            using increase-i-mod[OF Linv i] True res ids inv by simp
        then show ?thesis using res ids inv by auto
    next
        case False
    hence id: (i=0)= False by auto
    obtain num denom where alph: quotient-of \alpha = (num, denom) by force
    note res = res[unfolded id if-False alph split]
    let ?comp = d-of dmu i * d-of dmu i * denom \leqnum * d-of dmu (i - 1)*
d-of dmu (Suc i)
    show ?thesis
    proof (cases ?comp)
            case False
            hence id:?comp = False by simp
            note res = res[unfolded id if-False]
            let ?step = basis-reduction-adjust-swap-add-step p first mfs dmu g-idx i
            from res have step: ?step = ( }\mp@subsup{p}{}{\prime},mf\mp@subsup{s}{}{\prime},dm\mp@subsup{u}{}{\prime},g-idx'
                    and \mp@subsup{i}{}{\prime}:\mp@subsup{i}{}{\prime}=i-1
                    by (cases ?step, auto)+
            from basis-reduction-adjust-swap-add-step[OF Linvw step alph False i<i\not=
0`] Linv
            show ?thesis unfolding i' by blast
    next
            case True
            hence id: ?comp = True by simp
            note res = res[unfolded id if-True]
            from res have ids: p' = pmfs' =mfs dmu' = dmu i'}=Suci\mathrm{ by auto
            from True alpha-comparison[OF Linvw alph i False]
            have ineq: sq-norm (gso fs (i-1)) \leq\alpha* sq-norm (gso fs i) by simp
            from increase-i-mod[OF Linv i ineq]
            show ?thesis unfolding ids by auto
        qed
    qed
qed
```

lemma basis-reduction-mod-main: assumes LLL-invariant-mod fs mfs dmu p first
and res: basis-reduction-mod-main p first mfs dmu g-idx $i j=\left(p^{\prime}, m f s^{\prime}\right.$, dmu')
shows $\exists f s^{\prime} b^{\prime}$. LLL-invariant-mod $f s^{\prime} m f^{\prime}{ }^{\prime} d m u^{\prime} p^{\prime}$ first $b^{\prime} m$
using assms
proof (induct LLL-measure $i f s$ arbitrary: $i m f s d m u j p b f s g$ - $i d x$ rule: less-induct)
case (less ifs mfs dmu j p b g-idx)
hence fsinv: LLL-invariant-mod fs mfs dmu p first $b i$ by auto
note res $=\operatorname{less}(3)[$ unfolded basis-reduction-mod-main.simps[of p first mfs dmu $g-i d x i j]$]
note inv $=\operatorname{less}(2)$
note $I H=\operatorname{less}(1)$
show ?case
proof (cases $i<m$)
case i : True
obtain $p^{\prime} m f s^{\prime} d m u^{\prime} g$-idx ${ }^{\prime} i^{\prime} j^{\prime}$ where step: basis-reduction-mod-step p first $m f s ~ d m u g$-idx $i j=\left(p^{\prime}, m f s^{\prime}, d m u^{\prime}, g\right.$ - $\left.i d x^{\prime}, i^{\prime}, j^{\prime}\right)$
(is ? step $=-$) by (cases ? step, auto)
then obtain $f s^{\prime} b^{\prime}$ where Linv: LLL-invariant-mod $f s^{\prime} m f s^{\prime} d m u^{\prime} p^{\prime}$ first $b^{\prime} i^{\prime}$
and decr: LLL-measure $i^{\prime} f s^{\prime}<L L L$-measure $i f s$
using basis-reduction-mod-step[OF fsinv step $i] i$ fsinv by blast
note res $=$ res[unfolded step split]
from res i show ?thesis using $I H[O F$ decr Linv $]$ by auto
next
case False
with $L L L-i n v D-\bmod [O F f \operatorname{sinv}]$ res have $i: i=m p^{\prime}=p$ by auto
then obtain $f s^{\prime} b^{\prime}$ where LLL-invariant-mod $f s^{\prime} m f s^{\prime} d m u^{\prime} p$ first $b^{\prime} m$ using False res fsinv by simp
then show ?thesis using i by auto
qed
qed
lemma compute-max-gso-quot-alpha:
assumes inv: LLL-invariant-mod-weak fs mfs dmu p first b
and max: compute-max-gso-quot dmu $=$ (msq-num, msq-denum, $i d x$)
and alph: quotient-of $\alpha=$ (num, denum)
and $c m p:(m s q-n u m *$ denum $>n u m * m s q$-denum $)=c m p$
and $m: m>1$
shows $c m p \Longrightarrow i d x \neq 0 \wedge i d x<m \wedge \neg(d$-of dmu $i d x * d$-of $d m u$ idx $*$ denum
$\leq n u m * d$-of $d m u(i d x-1) * d$-of $d m u(S u c i d x))$
and $\neg c m p \Longrightarrow L L L$-invariant-mod fs mfs dmu p first $b m$
proof -
from inv
have fsinv: LLL-invariant-weak fs
by (simp add: LLL-invariant-mod-weak-def LLL-invariant-weak-def)
define $q t$ where $q t=(\lambda i$. $((d$-of $d m u(i+1)) *(d$-of $d m u(i+1))$,
$(d$-of $d m u(i+2)) *(d$-of $d m u i)$, Suc $i))$
define lst where lst $=(\operatorname{map}(\lambda i$. qt $i)[0 . .<(m-1)])$
have msqlst: ($m s q-n u m$, msq-denum, $i d x$) $=$ max-list-rats-with-index lst using max lst-def qt-def unfolding compute-max-gso-quot-def by simp
have $n z: \bigwedge n d i .(n, d, i) \in$ set lst $\Longrightarrow d>0$
unfolding lst-def qt-def using d-of-weak[OF inv] LLL-d-pos[OF fsinv] by auto
have geq: $\forall(n, d, i) \in$ set lst. rat-of-int msq-num / of-int msq-denum \geq rat-of-int $n /$ of-int d
using max-list-rats-with-index[of lst] nz msqlst by (metis (no-types, lifting) case-prodI2)
have len: length lst ≥ 1 using m unfolding lst-def by simp
have inset: ($m s q$-num, msq-denum, idx) \in set lst
using max-list-rats-with-index-in-set[OF msqlst[symmetric] len] $n z$ by simp
then have $i d x m: i d x \in\{1 . .<m\}$ using lst-def[unfolded $q t-d e f]$ by auto
then have $i d x 0: i d x \neq 0$ and $i d x: i d x<m$ by auto
have 00: (msq-num, msq-denum, $i d x)=q t(i d x-1)$ using lst-def inset qt-def by auto
then have $i d$-qt: $m s q$-num $=d$-of $d m u i d x * d$-of $d m u i d x$ msq-denum $=d$-of $d m u(S u c i d x) * d$-of $d m u(i d x-1)$
unfolding $q t-d e f$ by auto
have $m s q$-denum $=(d$-of $d m u(i d x+1)) *(d$-of $d m u(i d x-1))$
using 00 unfolding qt-def by simp
then have dengt0: msq-denum >0 using d-of-weak $[O F$ inv $] i d x m$ LLL-d-pos $[O F$ fsinv] by auto
have α dengt0: denum >0 using alph by (metis quotient-of-denom-pos)
from cmp [unfolded $i d-q t]$
have $c m p$: cmp $=(\neg(d$-of $d m u i d x * d$-of $d m u i d x * d e n u m \leq n u m * d$-of $d m u$ $(i d x-1) * d$-of $d m u($ Suc $i d x)))$
by (auto simp: ac-simps)
\{
assume $c m p$
from this[unfolded cmp]
show $i d x \neq 0 \wedge i d x<m \wedge \neg(d$-of $d m u i d x * d$-of $d m u$ idx $*$ denum $\leq n u m * d$-of dmu $(i d x-1) * d$-of $d m u(S u c i d x))$ using $i d x 0 i d x$ by auto
\}
\{
assume $\neg c m p$
from this[unfolded $c m p]$ have small: d-of $d m u i d x * d$-of $d m u i d x * d e n u m \leq$ $n u m * d$-of $d m u(i d x-1) * d$-of $d m u(S u c ~ i d x)$ by auto
note d-pos $=L L L$-d-pos[OF fsinv]
have gso: $k<m \Longrightarrow s q$-norm (gso fs k) $=$ of-int $(d f s(S u c k)) /$ of-int (d fs
k) for k using
LLL-d-Suc $[$ OF fsinv, of $k] d$-pos $[$ of $k]$ by simp
have gso-pos: $k<m \Longrightarrow$ sq-norm (gso fs k) >0 for k
using gso[of k] d-pos[of $k] d$-pos[of Suc k] by auto
from small[unfolded alpha-comparison[OF inv alph idx idx0]]
have alph: sq-norm (gso fs $(i d x-1)$) $\leq \alpha *$ sq-norm (gso fs idx).
with gso-pos[OF idx] have alph: sq-norm (gso fs (idx - 1)) / sq-norm (gso fs $i d x) \leq \alpha$
by (metis mult-imp-div-pos-le)
have weak: weakly-reduced fs m unfolding gram-schmidt-fs.weakly-reduced-def
proof (intro allI impI, goal-cases)

```
    case (1 i)
    from idx have idx1: idx - 1<m by auto
    from geq[unfolded lst-def]
    have mem: (d-of dmu (Suc i)*d-of dmu (Suc i),
        d-of dmu (Suc (Suc i))*d-of dmu i,Suc i) \in set lst
        unfolding lst-def qt-def using 1 by auto
    have sq-norm (gso fs i) / sq-norm (gso fs (Suc i)) =
        of-int (d-of dmu (Suc i) * d-of dmu (Suc i)) / of-int (d-of dmu (Suc (Suc
i)) * d-of dmu i)
            using gso idx0 d-of-weak[OF inv] 1 by auto
    also have ... s rat-of-int msq-num / rat-of-int msq-denum
        using geq[rule-format, OF mem, unfolded split] by auto
    also have ... = sq-norm (gso fs (idx - 1)) / sq-norm (gso fs idx)
    unfolding id-qt gso[OF idx] gso[OF idx1] using idx0 d-of-weak[OF inv] idx
by auto
    also have ... \leq\alpha by fact
        finally show sq-norm (gso fs i) \leq\alpha* sq-norm (gso fs (Suc i)) using
gso-pos[OF 1]
            using pos-divide-le-eq by blast
        qed
        with inv show LLL-invariant-mod fs mfs dmu p first b m
        by (auto simp: LLL-invariant-mod-weak-def LLL-invariant-mod-def)
    }
qed
lemma small-m:
    assumes inv: LLL-invariant-mod-weak fs mfs dmu p first b
    and m:m\leq1
shows LLL-invariant-mod fs mfs dmu p first b m
proof -
    have weak: weakly-reduced fs m unfolding gram-schmidt-fs.weakly-reduced-def
using m
        by auto
    with inv show LLL-invariant-mod fs mfs dmu p first b m
        by (auto simp: LLL-invariant-mod-weak-def LLL-invariant-mod-def)
qed
lemma basis-reduction-iso-main: assumes LLL-invariant-mod-weak fs mfs dmu p first \(b\)
and res: basis-reduction-iso-main p first mfs \(d m u g\)-idx \(j=\left(p^{\prime}, m s^{\prime}, d m u^{\prime}\right)\)
shows \(\exists f s^{\prime} b^{\prime}\). LLL-invariant-mod \(f s^{\prime} m f s^{\prime} d m u^{\prime} p^{\prime}\) first \(b^{\prime} m\)
using assms
proof (induct LLL-measure \((m-1)\) fs arbitrary: \(f s ~ m f s ~ d m u ~ j ~ p ~ b ~ g-i d x ~ r u l e: ~\) less-induct)
case (less fs mfs dmu j p b g-idx)
have inv: LLL-invariant-mod-weak fs mfs dmu p first \(b\) using less by auto
hence fsinv: LLL-invariant-weak fs
by (simp add: LLL-invariant-mod-weak-def LLL-invariant-weak-def)
```

note res $=$ less(3)[unfolded basis-reduction-iso-main.simps $[o f$ p first $m f s d m u$ g-idx j]]
note $I H=\operatorname{less}(1)$
obtain msq-num msq-denum idx where max: compute-max-gso-quot $d m u=$ ($m s q$-num, msq-denum, $i d x$)
by (metis prod-cases3)
obtain num denum where alph: quotient-of $\alpha=$ (num, denum) by force
note res $=$ res[unfolded max alph Let-def split]
consider (small) $m \leq 1 \mid$ (final) $m>1 \neg($ num $* m s q$-denum $<m s q-n u m *$ denum) \mid (step) $m>1$ num $* m s q$-denum $<m s q-n u m *$ denum
by linarith
thus? case
proof cases
case $*$: step
obtain $p 1$ mfs1 dmu1 g-idx1 where step: basis-reduction-adjust-swap-add-step p first $m f s$ dmu g-idx $i d x=(p 1, m f s 1, d m u 1, g$-idx1 $)$
by (metis prod-cases4)
from res[unfolded step split] $*$ have res: basis-reduction-iso-main p1 first mfs1 dmu1 g-idx1 $(j+1)=\left(p^{\prime}, m f s^{\prime}, d m u^{\prime}\right)$ by auto
from compute-max-gso-quot-alpha(1)[OF inv max alph refl *]
have $i d x 0: i d x \neq 0$ and $i d x: i d x<m$ and $c m p: \neg d$-of $d m u i d x * d$-of $d m u$ $i d x * d e n u m \leq n u m * d$-of $d m u(i d x-1) * d$-of $d m u(S u c i d x)$ by auto
from basis-reduction-adjust-swap-add-step[OF inv step alph cmp idx idx0] obtain $f_{s} 1$ b1
where inv1: LLL-invariant-mod-weak fs1 mfs1 dmu1 $p 1$ first b1 and meas: LLL-measure $(m-1) f_{s} 1<L L L$-measure $(m-1) f_{s}$
by auto
from $I H$ [OF meas inv1 res] show ?thesis .

next

case small
with res small-m[OF inv] show ?thesis by auto
next
case final
from compute-max-gso-quot-alpha(2)[OF inv max alph refl final] final show ?thesis using res by auto
qed
qed
lemma basis-reduction-mod-add-rows-loop-inv': assumes
fsinv: LLL-invariant-mod fs mfs dmu p first $b m$
and res: basis-reduction-mod-add-rows-loop p mfs dmu i $i=\left(m s^{\prime}, d m u '\right)$
and $i: i<m$
shows $\exists f_{s}{ }^{\prime}$. LLL-invariant-mod $f s^{\prime} m f s^{\prime} d m u^{\prime}$ p first $b m \wedge$

$$
\left(\forall i^{\prime} j^{\prime} . i^{\prime}<i \longrightarrow j^{\prime} \leq i^{\prime} \longrightarrow \mu f s i^{\prime} j^{\prime}=\mu f s^{\prime} i^{\prime} j^{\prime}\right) \wedge
$$

$$
\mu \text {-small fs } s^{\prime} i
$$

proof -
\{
fix j
assume $j: j \leq i$ and mu-small: μ-small-row i fs j
and resj: basis-reduction-mod-add-rows-loop p mfs $d m u i j=\left(m f s^{\prime}, d m u{ }^{\prime}\right)$
have $\exists f s^{\prime}$. LLL-invariant-mod $f s^{\prime} m f_{s}{ }^{\prime} d m u^{\prime} p$ first $b m \wedge$
$\left(\forall i^{\prime} j^{\prime} \cdot i^{\prime}<i \longrightarrow j^{\prime} \leq i^{\prime} \longrightarrow \mu f s i^{\prime} j^{\prime}=\mu f s^{\prime} i^{\prime} j^{\prime}\right) \wedge$ (μ-small fs ${ }^{\prime} i$)
proof (insert fsinv mu-small resj $i j$, induct j arbitrary: $f s m f s d m u m f s^{\prime} d m u{ }^{\prime}$)
case ($0 f s$)
then have $\left(m f s^{\prime}, d m u^{\prime}\right)=(m f s, d m u)$ by simp
then show? case
using LLL-invariant-mod-to-weak-m-to-i(3) basis-reduction-add-row-done-weak
0 by auto
next
case (Suc j)
hence $j: j<i$ by auto
have in0: $i \neq 0$ using $\operatorname{Suc}(6)$ by simp
define c where $c=$ round-num-denom (dmu $\$ \(i, j)) (d-of dmu (Suc j))
have $c 2$: $c=$ round (μ fs $i j$) using dmu-quot-is-round-of- $\mu[O F-i j] c$-def Suc by simp
define $m f s^{\prime \prime}$ where $m f s^{\prime \prime}=($ if $c=0$ then $m f s$ else $m f s[i:=($ map-vec $(\lambda x$. x symmod $p)$) (mfs ! $\left.\left.\left.i-c \cdot{ }_{v} m f s!j\right)\right]\right)$
define $d m u^{\prime \prime}$ where $d m u^{\prime \prime}=\left(\right.$ if $c=0$ then dmu else mat $m m\left(\lambda\left(i^{\prime}, j^{\prime}\right)\right.$. (if $\left(i^{\prime}=i \wedge j^{\prime} \leq j\right)$
then $\left(\right.$ if $j^{\prime}=j$ then $\left(d m u \$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\right)$
else $\left(d m u \$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\right)$ symmod $\left(p *\left(d\right.\right.$-of dmu $\left.j^{\prime}\right) *$ (d-of dmu $\left(\right.$ Suc $\left.\left.\left.j^{\prime}\right)\right)\right)$)
else $\left.\left.\left.\left(d m u \$ \$\left(i^{\prime}, j^{\prime}\right)\right)\right)\right)\right)$
have 00: basis-reduction-mod-add-row p mfs dmu $i j=\left(m f s^{\prime \prime}, d m u^{\prime \prime}\right)$
using $m f^{\prime \prime}$-def $d m u^{\prime \prime}$-def unfolding basis-reduction-mod-add-row-def c-def[symmetric] by simp
then have 01: basis-reduction-mod-add-rows-loop p mfs ${ }^{\prime \prime} d m u^{\prime \prime}{ }^{\prime} i j=\left(m s^{\prime}\right.$, $\left.d m u{ }^{\prime}\right)$
using basis-reduction-mod-add-rows-loop.simps(2)[of pmfs dmu ij]Suc
by simp
have fsinvi: LLL-invariant-mod fs mfs dmu p first biusing LLL-invariant-mod-to-weak-m-to-i[OF Suc(2)] i by simp
then have fsinvmw: LLL-invariant-mod-weak fs $m f s d m u$ first b using LLL-invD-mod LLL-invI-modw by simp
obtain $f s^{\prime \prime}$ where $f s^{\prime \prime}$ invi: LLL-invariant-mod $f s^{\prime \prime} m f s^{\prime \prime} d m u^{\prime \prime} p$ first $b i$
and
μ-small': (μ-small-row ifs (Suc $j) \longrightarrow \mu$-small-row ifs ${ }^{\prime \prime} j$) and
$\mu s:\left(\forall i^{\prime} j^{\prime} . i^{\prime}<i \longrightarrow j^{\prime} \leq i^{\prime} \longrightarrow \mu f_{s}{ }^{\prime \prime} i^{\prime} j^{\prime}=\mu f s i^{\prime} j^{\prime}\right)$
using Suc basis-reduction-mod-add-row[OF fsinvmw $00 i j]$ fsinvi by auto
moreover then have $\mu s m$: μ-small-row $i f^{\prime \prime}{ }^{\prime \prime} j$ using Suc by simp
have $f s^{\prime \prime}{ }^{\prime}$ invwi: LLL-invariant-weak' $i f s^{\prime \prime}$ using LLL-invD-mod[OF fs"invi] LLL-invI-weak by simp
have fsinvwi: LLL-invariant-weak' $i f s$ using $L L L-i n v D-\bmod [O F f s i n v i]$
LLL-invI-weak by simp
note $i n v w=L L L-i n v w^{\prime}-i m p-w[O F$ fsinvwi $]$
note $i n v w^{\prime \prime}=L L L-i n v w^{\prime}-i m p-w\left[O F f s^{\prime \prime}{ }^{\prime \prime}{ }^{n} v w i\right]$
have LLL-invariant-mod $f_{s}{ }^{\prime \prime} m f s^{\prime \prime} d m u^{\prime \prime} p$ first $b m$

proof -

have $\left(\forall l\right.$. Suc $l<m \longrightarrow$ sq-norm (gso fs ${ }^{\prime \prime} l$) $\leq \alpha *$ sq-norm (gso fs ${ }^{\prime \prime}$ (Suc l)))
proof -
\{
fix l
assume l : Suc $l<m$
have sq-norm $\left(\right.$ gso $\left.f s^{\prime \prime} l\right) \leq \alpha * \operatorname{sq-norm}\left(\right.$ gso $f s^{\prime \prime}{ }^{\prime \prime}($ Suc l))
proof (cases $i \leq S u c l$)
case True
have deq: $\wedge k . k<m \Longrightarrow d f s($ Suc $k)=d f s^{\prime \prime}($ Suc $k)$
using $d d \mu L L L-i n v D-\bmod (9)\left[O F f s^{\prime \prime} i n v i\right] L L L-i n v D-\bmod (9)[O F$
Suc(2)] $d m u^{\prime \prime}$-def j by simp
\{
fix k
assume $k: k<m$
then have $d f s($ Suc $k)=d f s^{\prime \prime}($ Suc $k)$
using $d d \mu L L L-i n v D-\bmod (9)\left[O F f s^{\prime \prime} i n v i\right] L L L-i n v D-\bmod (9)[O F$
Suc(2)] $d m u^{\prime \prime}$-def j by simp
have $d f s 0=1 d f s^{\prime \prime} 0=1$ using d-def by auto
moreover have sqid: sq-norm (gso fs" k) =rat-of-int (d fs ${ }^{\prime \prime}$ (Suc
$k)$) / rat-of-int ($\left.d f^{\prime \prime}{ }^{\prime \prime} k\right)$
using LLL-d-Suc[OF invw'л ${ }^{\prime \prime}$ LLL-d-pos[OF invw'] k
by (smt One-nat-def Suc-less-eq Suc-pred le-imp-less-Suc mult-eq-0-iff less-imp-le-nat
nonzero-mult-div-cancel-right of-int-0-less-iff of-int-hom.hom-zero)
moreover have sq-norm (gso fs k) = rat-of-int (d fs (Suc k)) /
rat-of-int (d fsk)
using $L L L-d-S u c[O F$ invw] $L L L-d-p o s[O F$ invw] k
by (smt One-nat-def Suc-less-eq Suc-pred le-imp-less-Suc mult-eq-0-iff less-imp-le-nat
nonzero-mult-div-cancel-right of-int-0-less-iff of-int-hom.hom-zero)
ultimately have $s q$-norm ($g s o f s k$) $=s q$-norm ($g s o f s^{\prime \prime} k$) using
k deq
$L L L-d-p o s\left[O F\right.$ invw] $L L L-d-p o s\left[O F i n v w^{\prime \prime}\right]$
by (metis (no-types, lifting) Nat.lessE Suc-lessD old.nat.inject zero-less-Suc)
\}
then show ?thesis using $L L L-\operatorname{invD}-\bmod (6)[O F \operatorname{Suc}(2)]$ by (simp
add: gram-schmidt-fs.weakly-reduced-def l)

next

case False
then show?thesis using $L L L-i n v D-\bmod (6)\left[O F f s^{\prime \prime}\right.$ invi] gram-schmidt-fs.weakly-reduced-def
by (metis less-or-eq-imp-le nat-neq-iff)

qed

\}
then show? ?thesis by simp
qed
then have weakly-reduced $f^{\prime \prime} m$ using gram-schmidt-fs.weakly-reduced-def
by blast
then show ?thesis using $L L L-i n v D-\bmod \left[O F f s^{\prime \prime} i n v i\right] L L L-i n v I-\bmod$ by simp
qed
then show ?case using 01 Suc.hyps ij less-imp-le-nat $\mu s m \mu s$ by metis qed
\}
then show ?thesis using μ-small-row-refl res by auto
qed
lemma basis-reduction-mod-add-rows-outer-loop-inv:
assumes inv: LLL-invariant-mod fs mfs dmu p first $b m$
and $\left(m s^{\prime}, d m u^{\prime}\right)=$ basis-reduction-mod-add-rows-outer-loop p mfs $d m u i$
and $i: i<m$
shows $\left(\exists f^{\prime}\right.$. LLL-invariant-mod $f s^{\prime} m f s^{\prime} d m u^{\prime} p$ first $b m \wedge$
$\left(\forall j . j \leq i \longrightarrow \mu\right.$-small fs $\left.{ }^{\prime} j\right)$)
proof(insert assms, induct i arbitrary: fs mfs dmu mfs' $d m u{ }^{\prime}$)
case ($0 f_{s}$)
then show ?case using μ-small-def by auto
next
case (Suc i fs mfs dmu mfs' $d m u$ ')
obtain $m f s^{\prime \prime} d m u^{\prime \prime}$ where $m f s^{\prime \prime} d m u^{\prime \prime}:\left(m f s^{\prime \prime}, d m u^{\prime \prime}\right)$
$=$ basis-reduction-mod-add-rows-outer-loop p mfs dmu i by (metis surj-pair)
then obtain $f s^{\prime \prime}$ where $f s^{\prime \prime}$: LLL-invariant-mod $f s^{\prime \prime} m f s^{\prime \prime} d m u^{\prime \prime} p$ first $b \mathrm{~m}$
and 00: $\left(\forall j . j \leq i \longrightarrow \mu\right.$-small fs $\left.{ }^{\prime \prime} j\right)$ using Suc by fastforce
have $\left(m f s^{\prime}, d m u^{\prime}\right)=$ basis-reduction-mod-add-rows-loop p mfs ${ }^{\prime \prime} d m u^{\prime \prime}$ (Suc i)
(Suc i)
using $\operatorname{Suc}(3,4) m s^{\prime \prime} d m u^{\prime \prime}$ by (smt basis-reduction-mod-add-rows-outer-loop.simps(2) case-prod-conv)
then obtain $f s^{\prime}$ where 01: LLL-invariant-mod $f s^{\prime} m f s^{\prime} d m u^{\prime} p$ first $b m$
and 02: $\forall i^{\prime} j^{\prime} . i^{\prime}<($ Suc $i) \longrightarrow j^{\prime} \leq i^{\prime} \longrightarrow \mu f s^{\prime \prime} i^{\prime} j^{\prime}=\mu f s^{\prime} i^{\prime} j^{\prime}$ and 03:
μ-small fs ${ }^{\prime}$ (Suc i)
using fs" basis-reduction-mod-add-rows-loop-inv' Suc by metis
moreover have $\forall j$. $j \leq($ Suc $i) \longrightarrow \mu$-small fs' ${ }^{\prime}$ using 020003μ-small-def
by (simp add: le-Suc-eq)
ultimately show ?case by blast
qed
lemma basis-reduction-mod-fs-bound:
assumes Linv: LLL-invariant-mod fs mfs dmu p first $b k$
and mu-small: μ-small fs i
and $i: i<m$
and nFirst: \neg first
shows $f s!i=m f s!i$
proof -
from $L L L-i n v D-\bmod (16-17)[O F$ Linv $] n F i r s t ~ g-b n d-m o d e-d e f$
have $g b n d: g$-bnd $b f s$ and $b p: b \leq(\text { rat-of-int }(p-1))^{2} /($ rat-of-nat $m+3)$
by (auto simp: mod-invariant-def bound-number-def)
have Linvw: LLL-invariant-weak' $k f s$ using $L L L-i n v D-m o d[O F L i n v] L L L-i n v I-w e a k$

```
by \(\operatorname{simp}\)
    have \(f_{s}\)-int-indpt \(n f_{s}\) using \(L L L-i n v D-\bmod (5)[O F \operatorname{Linv}]\) Gram-Schmidt-2.fs-int-indpt.intro
by \(\operatorname{simp}\)
    then interpret \(f s\) : \(f s\)-int-indpt \(n\) fs
        using \(f\) s-int-indpt.sq-norm-fs-via-sum-mu-gso by simp
    have \(\|\) gso fs \(0 \|^{2} \leq b\) using gbnd \(i\) unfolding \(g\)-bnd-def by blast
    then have \(b 0: 0 \leq b\) using sq-norm-vec-ge-0 dual-order.trans by auto
    have 00: of-int \(\|f s!i\|^{2}=\left(\sum j \leftarrow[0 . .<\right.\) Suc \(i] .(\mu \text { fs } i j)^{2} * \|\) gso fs \(\left.j \|^{2}\right)\)
    using fs.sq-norm-fs-via-sum-mu-gso LLL-invD-mod[OF Linv] Gram-Schmidt-2.fs-int-indpt.intro
\(i\) by \(\operatorname{simp}\)
    have 01: \(\forall j<i .(\mu f s i j)^{2} *\|g s o f s j\|^{2} \leq\left(1 /\right.\) rat-of-int 4) \(*\|g s o f s j\|^{2}\)
    proof -
        \{
            fix \(j\)
            assume \(j: j<i\)
            then have \(|f s . g s . \mu i j| \leq 1 /(\) rat-of-int 2)
                    using mu-small Power.linordered-idom-class.abs-square-le-1 \(j\) unfolding
\(\mu\)-small-def by simp
            moreover have \(\left|\mu f_{s} i j\right| \geq 0\) by simp
            ultimately have \(\left|\mu f_{s} i j\right|^{2} \leq(1 / \text { rat-of-int 2) })^{2}\)
                    using Power.linordered-idom-class.abs-le-square-iff by fastforce
            also have \(\ldots=1 /(\) rat-of-int 4) by (simp add: field-simps)
            finally have \(|\mu f s i j|^{2} \leq 1 /\) rat-of-int 4 by simp
    \}
    then show ?thesis using \(f\) s.gs. \(\mu\).simps by (metis mult-right-mono power2-abs
sq-norm-vec-ge-0)
    qed
    then have 0111: \(\bigwedge j . j \in \operatorname{set}[0 . .<i] \Longrightarrow(\mu f s i j)^{2} *\|g s o f s j\|^{2} \leq(1 /\) rat-of-int
4) * \(\|\) gso \(f s j \|^{2}\)
    by \(\operatorname{simp}\)
    \{
        fix \(j\)
        assume \(j: j<n\)
        have 011: \((\mu f s i i)^{2} *\|g s o f s i\|^{2}=1 *\|g s o f s i\|^{2}\)
            using \(f s . g s . \mu . s i m p s\) by simp
        have 02: \(\forall j<S u c i\). \(\|\) gso fs \(j \|^{2} \leq b\)
            using gbnd \(i\) unfolding \(g\)-bnd-def by simp
            have 03: length \([0 . .<\) Suc \(i]=(\) Suc \(i)\) by simp
            have of-int \(\|f s!i\|^{2}=\left(\sum j \leftarrow[0 . .<i]\right.\). \(\left.(\mu \text { fs } i j)^{2} *\|g s o f s j\|^{2}\right)+\|g s o f s i\|^{2}\)
            unfolding 00 using 011 by simp
            also have \(\left(\sum j \leftarrow[0 . .<i]\right.\). \(\left.\left(\mu f_{s} i j\right)^{2} *\left\|g s o f_{s} j\right\|^{2}\right) \leq\left(\sum j \leftarrow[0 . .<i]\right.\). \(((1 /\)
rat-of-int 4) * \|gso fs \(\left.j \|^{2}\right)\) )
            using Groups-List.sum-list-mono[OF 0111] by fast
    finally have of-int \(\|f s!i\|^{2} \leq\left(\sum j \leftarrow[0 . .<i] .\left((1 /\right.\right.\) rat-of-int 4\(\left.\left.) *\left\|g s o f_{s} j\right\|^{2}\right)\right)\)
\(+\|\) gso fs \(i \|^{2}\)
            by simp
    also have \(\left(\sum j \leftarrow[0 . .<i] .\left((1 /\right.\right.\) rat-of-int 4 \(\left.\left.) *\|g s o f s j\|^{2}\right)\right) \leq\left(\sum j \leftarrow[0 . .<i]\right.\). (1
( rat-of-int 4) * b)
            by (intro sum-list-mono, insert 02, auto)
```

also have $\|$ gso fs $i \|^{2} \leq b$ using 02 by simp
finally have of-int $\left\|f_{s}!i\right\|^{2} \leq\left(\sum j \leftarrow[0 . .<i]\right.$. $(1 /$ rat-of-int 4) $* b)+b$ by simp
also have $\ldots=($ rat-of-nat $i) *((1 /$ rat-of-int 4$) * b)+b$
using 03 sum-list-triv[of (1/rat-of-int 4) $* b[0 . .<i]]$ by simp
also have $\ldots=($ rat-of-nat $i) / 4 * b+b$ by simp
also have $\ldots=(($ rat-of-nat $i) / 4+1) * b$ by algebra
also have $\ldots=($ rat-of-nat $i+4) / 4 * b$ by simp
finally have of-int $\|f s!i\|^{2} \leq($ rat-of-nat $i+4) / 4 * b$ by simp
also have $\ldots \leq($ rat-of-nat $(m+3)) / 4 * b$ using i b0 times-left-mono by fastforce
finally have of-int $\|f s!i\|^{2} \leq$ rat-of-nat $(m+3) / 4 * b$ by simp
moreover have $\left|f_{s}!i \$ j\right|^{2} \leq\left\|f_{s}!i\right\|^{2}$ using vec-le-sq-norm LLL-invD-mod(10)[OF Linv] ij by blast
ultimately have 04: of-int $\left(|f s!i \$ j|^{2}\right) \leq$ rat-of-nat $(m+3) / 4 * b$ using ge-trans i by linarith
then have 05: real-of-int $\left(|f s!i \$ j|^{2}\right) \leq$ real-of-rat (rat-of-nat $(m+3) / 4 *$ b)
proof -
from j have rat-of-int $\left(|f s!i \$ j|^{2}\right) \leq$ rat-of-nat $(m+3) / 4 * b$ using 04 by simp
then have real-of-int $\left(\left|f_{s}!i \$ j\right|^{2}\right) \leq$ real-of-rat (rat-of-nat $\left.(m+3) / 4 * b\right)$
using j of-rat-less-eq by (metis of-rat-of-int-eq)
then show? ?thesis by simp
qed
define rhs where rhs = real-of-rat (rat-of-nat $(m+3) / 4 * b)$
have rhs0: rhs ≥ 0 using b0 i rhs-def by simp
have f sij: real-of-int $|f s!i \$ j| \geq 0$ by simp
have real-of-int $\left(|f s!i \$ j|^{2}\right)=(\text { real-of-int }|f s!i \$ j|)^{2}$ by simp
then have (real-of-int $\left.\left|f_{s}!i \$ j\right|\right)^{2} \leq$ rhs using $05 j$ rhs-def by simp
then have $g 1$: real-of-int $|f s!i \$ j| \leq$ sqrt rhs using NthRoot.real-le-rsqrt by simp
have pbnd: $2 *|f s!i \$ j|<p$
proof -
have rat-of-nat $(m+3) / 4 * b \leq($ rat-of-nat $(m+3) / 4) *($ rat-of-int $(p-$

1) $)^{2} /($ rat-of-nat $m+3)$
using bp b0 i times-left-mono SN-Orders.of-nat-ge-zero gs.m-comm times-divide-eq-right
by (smt gs.l-null le-divide-eq-numeral1 (1))
also have $\ldots=(\text { rat-of-int }(p-1))^{2} / 4 *($ rat-of-nat $(m+3) /$ rat-of-nat $(m+3))$
by (metis (no-types, lifting) gs.m-comm of-nat-add of-nat-numeral times-divide-eq-left)
finally have rat-of-nat $(m+3) / 4 * b \leq(\text { rat-of-int }(p-1))^{2} / 4$ by simp
then have sqrt rhs $\leq \operatorname{sqrt}$ (real-of-rat $\left.\left((\text { rat-of-int }(p-1))^{2} / 4\right)\right)$
unfolding rhs-def using of-rat-less-eq by fastforce
then have two-ineq:
$2 *|f s!i \$ j| \leq 2 * \operatorname{sqrt}\left(\right.$ real-of-rat $\left.\left((r a t-o f-i n t(p-1))^{2} / 4\right)\right)$
using $g 1$ by linarith
have 2 * sqrt (real-of-rat $\left.\left((\text { rat-of-int }(p-1))^{2} / 4\right)\right)=$
sqrt (real-of-rat $\left.\left(4 *\left((\text { rat-of-int }(p-1))^{2} / 4\right)\right)\right)$
by (metis (no-types, opaque-lifting) real-sqrt-mult of-int-numeral of-rat-hom.hom-mult

> of-rat-of-int-eq real-sqrt-four times-divide-eq-right)
also have $\ldots=\operatorname{sqrt}\left(\right.$ real-of-rat $\left.\left((\text { rat-of-int }(p-1))^{2}\right)\right)$ using i by simp
also have (real-of-rat $\left.\left((\text { rat-of-int }(p-1))^{2}\right)\right)=($ real-of-rat $($ rat-of-int $(p-$ 1))) ${ }^{2}$
using Rat.of-rat-power by blast
also have sqrt $\left((\text { real-of-rat }(\text { rat-of-int }(p-1)))^{2}\right)=$ real-of-rat $($ rat-of-int $(p$ - 1))
using $L L L-i n v D-\bmod (15)[O F L i n v]$ by simp
finally have $2 *$ sqrt (real-of-rat $\left.\left((\text { rat-of-int }(p-1))^{2} / 4\right)\right)=$
real-of-rat (rat-of-int $(p-1))$ by simp
then have $2 *|f s!i \$ j| \leq$ real-of-rat (rat-of-int $(p-1)$)
using two-ineq by simp
then show ?thesis by (metis of-int-le-iff of-rat-of-int-eq zle-diff1-eq)
qed
have $p 1: p>1$ using $L L L-i n v D-\bmod [O F \operatorname{Linv}]$ by blast
interpret $p m$: poly-mod-2 p
by (unfold-locales, rule p1)
from LLL-invD-mod[OF Linv] have len: length $f s=m$ and $f s$: set $f s \subseteq$ carrier-vec n by auto
from pm.inv-M-rev[OF pbnd, unfolded pm.M-def] have pm.inv-M (fs!i\$j $\bmod p)=f s!i \$ j$.
also have $p m . i n v-M(f s!i \$ j \bmod p)=m f s!i \$ j$ unfolding $L L L-i n v D-\bmod (7)[O F$ Linv, symmetric] sym-mod-def
using $i j$ len $f s$ by auto
finally have $f s!i \$ j=m f s!i \$ j$..
\}
thus $f s!i=m f s!i$ using $L L L-i n v D-\bmod (10,13)[O F L i n v i]$ by auto
qed
lemma basis-reduction-mod-fs-bound-first:
assumes Linv: LLL-invariant-mod fs mfs dmu p first bk
and $m 0: m>0$
and first: first
shows $f s!0=m f s!0$
proof -
from $L L L$-invD-mod $(16-17)[O F$ Linv] first g-bnd-mode-def m0
have gbnd: sq-norm (gsofs 0$) \leq b$ and $b p: b \leq(\text { rat-of-int }(p-1))^{2} / 4$
by (auto simp: mod-invariant-def bound-number-def)
from $L L L-i n v D-\bmod [O F \operatorname{Linv}]$ have $p 1: p>1$ by blast
 by simp
have $f s$-int-indpt n fs using $L L L-i n v D-\bmod (5)[O F L i n v]$ Gram-Schmidt-2.fs-int-indpt.intro by simp
then interpret $f s$: $f s$-int-indpt $n f s$
using fs-int-indpt.sq-norm-fs-via-sum-mu-gso by simp
from gbnd have $b 0: 0 \leq b$ using sq-norm-vec-ge-0 dual-order.trans by auto


```
    using fs.sq-norm-fs-via-sum-mu-gso LLL-invD-mod[OF Linv] Gram-Schmidt-2.fs-int-indpt.intro
m0 by simp
    also have ... =|gso fs 0| |
    also have .. S (rat-of-int (p-1))}\mp@subsup{)}{}{/ 4 using gbnd bp by auto
    finally have one: of-int (sq-norm (fs!0)) \leq (rat-of-int (p-1))}\mp@subsup{)}{}{2}/4
    {
        fix }
    assume j: j<n
    have leq: |fs! 0 $ j |
Linv] m0 j by blast
    have rat-of-int ((2*|fs!0$j|)^2) = rat-of-int (4*|fs!0 $j\mp@subsup{|}{}{2})\mathrm{ by simp}
    also have \ldots\leq4* of-int |fs! 0| |
    also have \ldots\leq4*(rat-of-int (p-1))}\mp@subsup{)}{}{2}/4\mathrm{ using one by simp
    also have ... =(rat-of-int (p-1)\mp@subsup{)}{}{2}}\mathrm{ by simp
    also have ... = rat-of-int ((p-1)2) by simp
    finally have (2* |fs!0$j|)^2 \leq (p-1) 2 by linarith
    hence 2* |fs! 0 $j| \leqp-1 using p1
        by (smt power-mono-iff zero-less-numeral)
    hence pbnd:2* |fs! 0 $ j|<p by simp
    interpret pm: poly-mod-2 p
        by (unfold-locales, rule p1)
    from LLL-invD-mod[OF Linv] m0 have len: length fs =m length mfs =m
        and fs:fs!0 \in carrier-vec n mfs ! 0 \in carrier-vec n by auto
    from pm.inv-M-rev[OF pbnd, unfolded pm.M-def] have pm.inv-M (fs!0$j
mod p)=fs!0$j.
    also have pm.inv-M (fs! 0 $ j mod p)=mfs! 0 $ j unfolding LLL-invD-mod(7)[OF
Linv, symmetric] sym-mod-def
            using m0j len fs by auto
    finally have mfs! 0 $ j=fs! 0$ j.
    }
    thus fs!0 = mfs!0 using LLL-invD-mod(10,13)[OF Linv m0] by auto
qed
lemma dmu-initial: dmu-initial = mat m m ( }\lambda(i,j).d\mu fs-init i j)
proof -
    interpret fs: fs-int-indpt n fs-init
    by (unfold-locales, intro lin-dep)
    show ?thesis unfolding dmu-initial-def Let-def
    proof (intro cong-mat refl refl, unfold split, goal-cases)
    case (1 i j)
    show ?case
    proof (cases j\leqi)
        case False
        thus ?thesis by (auto simp:d\mu-def gs.\mu.simps)
    next
        case True
        hence id: d\mu-impl fs-init !! i !! j = fs.d\mu i j unfolding fs.d }\mu\mathrm{ -impl
            by (subst of-fun-nth, use 1 len in force, subst of-fun-nth, insert True, auto)
```

```
            also have ... = d f fs-init i j unfolding fs.d\mu-def d }\mu\mathrm{ -def fs.d-def d-def by
simp
            finally show ?thesis using True by auto
            qed
        qed
qed
```

lemma LLL-initial-invariant-mod: assumes res: compute-initial-state first $=(p$, $\left.m f s, d m u^{\prime}, g-i d x\right)$
shows \exists fs b. LLL-invariant-mod fs $m f s d m u^{\prime} p$ first $b 0$
proof -
from dmu-initial have dmu: $\left(\forall i^{\prime}<m . \forall j^{\prime}<m . d \mu f s\right.$-init $i^{\prime} j^{\prime}=d m u$-initial $\left.\$ \$\left(i^{\prime}, j^{\prime}\right)\right)$ by auto
obtain b g-idx where norm: compute-max-gso-norm first dmu-initial $=(b, g$-idx $)$
by force
note res $=$ res[unfolded compute-initial-state-def Let-def norm split]
from res have $p: p=$ compute-mod-of-max-gso-norm first b by auto
then have $p 0: p>0$ unfolding compute-mod-of-max-gso-norm-def using log-base by simp
then have $p 1: p \geq 1$ by simp
note res $=$ res[folded $p]$
from res[unfolded compute-initial-mfs-def]
have $m f s: m f s=\operatorname{map}(\operatorname{map}-v e c(\lambda x . x$ symmod $p)) f s$-init by auto
from res[unfolded compute-initial-dmu-def]
have $d m u^{\prime}: d m u^{\prime}=$ mat $m m\left(\lambda\left(i^{\prime}, j^{\prime}\right)\right.$. if $j^{\prime}<i^{\prime}$
then dmu-initial $\$ \$\left(i^{\prime}, j^{\prime}\right)$ symmod $\left(p * d\right.$-of dmu-initial $j^{\prime} * d$-of
dmu-initial (Suc $\left.j^{\prime}\right)$)
else dmu-initial $\left.\$ \$\left(i^{\prime}, j^{\prime}\right)\right)$ by auto
have lat: lattice-of fs-init $=L$ by (auto simp: L-def)
define I where $I=\left\{\left(i^{\prime}, j^{\prime}\right) . i^{\prime}<m \wedge j^{\prime}<i^{\prime}\right\}$
obtain $f s$ where
01: lattice-of $f s=L$ and
02: map $($ map-vec $(\lambda x . x$ symmod $p)) f s=\operatorname{map}(\operatorname{map}-v e c(\lambda x . x \operatorname{symmod} p))$
fs-init and
03: lin-indep fs and
04: length $f s=m$ and
05: $(\forall k<m$. gso fs $k=$ gso fs-init $k)$ and
06: $(\forall k \leq m . d$ fs $k=d f s$-init $k)$ and
07: $\left(\forall i^{\prime}<m . \forall j^{\prime}<m . d \mu f s i^{\prime} j^{\prime}=\right.$
(if $\left(i^{\prime}, j^{\prime}\right) \in I$ then $d \mu f s$-init $i^{\prime} j^{\prime} \operatorname{symmod}\left(p * d f s\right.$-init $j^{\prime} * d f s$-init $\left.\left(S u c j^{\prime}\right)\right)$ else $d \mu f s$-init $\left.i^{\prime} j^{\prime}\right)$)
using mod-finite-set[OF lin-dep len - lat p0, of I] I-def by blast
have inv: LLL-invariant-weak fs-init
by (intro LLL-inv-wI lat len lin-dep fs-init)
have $\forall i^{\prime}<m$. $d \mu f$ s-init $i^{\prime} i^{\prime}=d m u$-initial $\$ \$\left(i^{\prime}, i^{\prime}\right)$ unfolding $d m u$-initial by auto
from compute-max-gso-norm[OF this inv, of first, unfolded norm] have gbnd: g-bnd-mode first b fs-init
and $b 0: 0 \leq b$ and $m b 0: m=0 \Longrightarrow b=0$ by auto
from gbnd 05 have gbnd: g-bnd-mode first b fs using g-bnd-mode-cong[of fs $f s$-init] by auto
have $d \mu d m u^{\prime}: \forall i^{\prime}<m . \forall j^{\prime}<m . d \mu$ fs $i^{\prime} j^{\prime}=d m u^{\prime} \$ \$\left(i^{\prime}, j^{\prime}\right)$ using $07 d m u$ d-of-main[of fs-init dmu-initial]
unfolding I-def $d m u^{\prime}$ by simp
have wred: weakly-reduced fs 0 by (simp add: gram-schmidt-fs.weakly-reduced-def)
have $f s$-carr: set $f s \subseteq$ carrier-vec n using 03 unfolding gs.lin-indpt-list-def by force
have m0: $m \geq 0$ using len by auto
have Linv: LLL-invariant-weak' 0 fs
by (intro LLL-invI-weak 030401 wred $f s$-carr m0)
note Linvw $=L L L-i n v w^{\prime}-i m p-w[O F L i n v]$
from compute-mod-of-max-gso-norm [OF b0 mb0 p]
have p : mod-invariant b first $p>1$ by auto
from len $m f s$ have len': length $m f s=m$ by auto
have modbnd: $\forall i^{\prime}<m . \forall j^{\prime}<i^{\prime} .\left|d \mu f s i^{\prime} j^{\prime}\right|<p * d f s j^{\prime} * d f s\left(S u c j^{\prime}\right)$
proof -
have $\forall i^{\prime}<m . \forall j^{\prime}<i^{\prime} . d \mu f s i^{\prime} j^{\prime}=d \mu f s i^{\prime} j^{\prime} \operatorname{symmod}\left(p * d f s j^{\prime} * d f s\right.$ (Suc $\left.j^{\prime}\right)$)
using I-def 0706 by simp
moreover have $\forall j^{\prime}<m . p * d f s j^{\prime} * d f s\left(S u c j^{\prime}\right)>0$ using $p(2)$ LLL-d-pos[OF Linvw] by simp
ultimately show ?thesis using sym-mod-abs
by (smt Euclidean-Division.pos-mod-bound Euclidean-Division.pos-mod-sign less-trans)
qed
have $L L L$-invariant-mod fs $m f s d m u^{\prime} p$ first $b 0$
using LLL-invI-mod[OF len' m0 040103 wred - modbnd d $\mu d m u^{\prime} p(2)$ gbnd $p(1)] 02 m f s$ by simp
then show?thesis by auto
qed

4.3 Soundness of Storjohann's algorithm

For all of these abstract algorithms, we actually formulate their soundness proofs by linking to the LLL-invariant (which implies that $f s$ is reduced (LLL-invariant True $m f s$) or that the first vector of $f s$ is short (LLL-invariant-weak fs \wedge gram-schmidt-fs.weakly-reduced n (map of-int-hom.vec-hom fs) αm).

Soundness of Storjohann's algorithm
lemma reduce-basis-mod-inv: assumes res: reduce-basis-mod $=f s$
shows LLL-invariant True mfs
proof (cases $m=0$)
case True
from True have $*$: fs-init $=[]$ using len by simp
moreover have $f s=[]$ using res basis-reduction-mod-add-rows-outer-loop.simps(1)
unfolding reduce-basis-mod-def Let-def basis-reduction-mod-main.simps[of - -
-- 0]

```
        compute-initial-mfs-def compute-initial-state-def compute-initial-dmu-def
    unfolding True * by (auto split: prod.splits)
    ultimately show ?thesis using True LLL-inv-initial-state by blast
next
    case False
    let ?first = False
    obtain p mfs0 dmu0 g-idx0 where init:compute-initial-state ?first = (p,mfs0,
dmu0, g-idx0) by (metis prod-cases4)
    from LLL-initial-invariant-mod[OF init]
    obtain fs0 b where fs0:LLL-invariant-mod fs0 mfs0 dmu0 p ?first b 0 by blast
    note res = res[unfolded reduce-basis-mod-def init Let-def split]
    obtain p1 mfs1 dmu1 where mfs1dmu1:(p1,mfs1,dmu1)= basis-reduction-mod-main
p ?first mfs0 dmu0 g-idx0 0 0
    by (metis prod.exhaust)
    obtain fs1 b1 where Linv1:LLL-invariant-mod fs1 mfs1 dmu1 p1 ?first b1 m
        using basis-reduction-mod-main[OF fs0 mfs1dmu1[symmetric]] by auto
    obtain mfs2 dmu2 where mfs2dmu2:
        (mfs2, dmu2) = basis-reduction-mod-add-rows-outer-loop p1 mfs1 dmu1 (m-1)
by (metis old.prod.exhaust)
    obtain fs2 where fs2:LLL-invariant-mod fs2 mfs2 dmu2 p1 ?first b1 m
        and }\mus:((\forallj.j<m\longrightarrow\mu\mathrm{ -small fs2 j))
        using basis-reduction-mod-add-rows-outer-loop-inv[OF - mfs2dmu2, of fs1 ?first
b1] Linv1 False by auto
    have rbd:LLL-invariant-weak' m fs2 \forallj < m. }\mu\mathrm{ -small fs2 j
        using LLL-invD-mod[OF fs2] LLL-invI-weak \mus by auto
    have redfs2: reduced fs2 m using rbd LLL-invD-weak(8) gram-schmidt-fs.reduced-def
\mu-small-def by blast
    have fs: fs = mfs2
        using res[folded mfs1dmu1, unfolded Let-def split, folded mfs2dmu2, unfolded
split] ..
    have }\foralli<m.fs2!i=fs!
    proof (intro allI impI)
        fix }
        assume i: i<m
        then have fs2i:LLL-invariant-mod fs2 mfs2 dmu2 p1 ?first b1 i
            using fs2 LLL-invariant-mod-to-weak-m-to-i by simp
        have }\mu\mathrm{ si: }\mu\mathrm{ -small fs2 i using }\musi\mathrm{ by simp
        show fs2 ! i= fs ! i
            using basis-reduction-mod-fs-bound(1)[OF fs2i \musi i] fs by simp
    qed
    then have fs2 = fs
        using LLL-invD-mod(1,3,10,13)[OF fs2] fs by (metis nth-equalityI)
    then show ?thesis using redfs2 fs rbd(1) reduce-basis-def res LLL-invD-weak
        LLL-invariant-def by simp
qed
```

Soundness of Storjohann's algorithm for computing a short vector.
lemma short-vector-mod-inv: assumes res: short-vector-mod $=v$
and $m: m>0$
shows \exists fs. LLL-invariant-weak fs \wedge weakly-reduced fs $m \wedge v=h d f s$ proof -
let ?first $=$ True
obtain $p m f s 0 d m u 0 g$-idx0 where init: compute-initial-state ? first $=(p, m f s 0$, $d m u 0, g-i d x 0)$ by (metis prod-cases 4)
from LLL-initial-invariant-mod [OF init]
obtain $f_{s} 0 b$ where $f_{s} 0$: LLL-invariant-mod fs0 mfs 0 dmu0 p ?first $b 0$ by blast
obtain $p 1$ mfs 1 dmu1 where main: basis-reduction-mod-main p ? first mfs 0 dmu 0 g-idx0 $00=(p 1, m f s 1, d m u 1)$
by (metis prod.exhaust)
obtain $f s 1$ b1 where Linv1: LLL-invariant-mod fs1 mfs1 dmu1 p1 ?first b1 m using basis-reduction-mod-main[OF fs0 main] by auto
have $v=h d m f s 1$ using res[unfolded short-vector-mod-def Let-def init split main]
with basis-reduction-mod-fs-bound-first[OF Linv1 m] LLL-invD-mod(1,3)[OF Linv1] m
have $v: v=h d f_{s 1} 1$ by (cases fs1; cases mfs1; auto)
from Linv1 have Linv1: LLL-invariant-weak $f s 1$ and red: weakly-reduced $f s 1 \mathrm{~m}$
unfolding LLL-invariant-mod-def LLL-invariant-weak-def by auto
show ?thesis
by (intro exI[of - fs1] conjI Linv1 red v)
qed
Soundness of Storjohann's algorithm with improved swap order

```
lemma reduce-basis-iso-inv: assumes res: reduce-basis-iso =fs
    shows LLL-invariant True m fs
proof (cases m=0)
    case True
    then have *: fs-init = [] using len by simp
    moreover have fs=[] using res basis-reduction-mod-add-rows-outer-loop.simps(1)
        unfolding reduce-basis-iso-def Let-def basis-reduction-iso-main.simps[of - - -
- 0]
            compute-initial-mfs-def compute-initial-state-def compute-initial-dmu-def
        unfolding True * by (auto split: prod.splits)
    ultimately show ?thesis using True LLL-inv-initial-state by blast
next
    case False
    let ?first = False
    obtain p mfs0 dmu0 g-idx0 where init: compute-initial-state ?.first = ( p,mfs0,
dmu0, g-idx0) by (metis prod-cases4)
    from LLL-initial-invariant-mod[OF init]
    obtain fs0 b where fs0:LLL-invariant-mod fs0 mfs0 dmu0 p ?first b 0 by blast
    have fsOw: LLL-invariant-mod-weak fs0 mfs0 dmu0 p ?first b using LLL-invD-mod[OF
fs0] LLL-invI-modw by simp
    note res = res[unfolded reduce-basis-iso-def init Let-def split]
    obtain p1 mfs1 dmu1 where mfs1dmu1: (p1,mfs1,dmu1)= basis-reduction-iso-main
p ?.first mfs0 dmu0 g-idx0 0
    by (metis prod.exhaust)
```

obtain fs1 b1 where Linv1: LLL-invariant-mod fs1 mfs1 dmu1 p1 ?first b1 m using basis-reduction-iso-main[OF fs0w mfs1dmu1[symmetric]] by auto obtain $m f s 2 d m u 2$ where $m f s 2 d m u 2$:
$(m f s 2, d m u 2)=$ basis-reduction-mod-add-rows-outer-loop p1 mfs1 dmu1 ($m-1$)
by (metis old.prod.exhaust)
obtain $f s 2$ where $f s 2$: LLL-invariant-mod fs2 mfs2 dmu2 p1 ?first b1 m and $\mu s:((\forall j . j<m \longrightarrow \mu$-small $f s 2 j))$
using basis-reduction-mod-add-rows-outer-loop-inv[OF - mfs2dmu2, of fs1 ?first
b1] Linv1 False by auto
have rbd: LLL-invariant-weak' m fs2 $\forall j<m$. μ-small fs $2 j$
using $L L L$-invD-mod $[O F f s 2] L L L-i n v I-w e a k ~ \mu s$ by auto
have redfs2: reduced fs2 m using rbd LLL-invD-weak(8) gram-schmidt-fs.reduced-def μ-small-def by blast
have $f s: f s=m f s 2$
using res[folded mfs1dmu1, unfolded Let-def split, folded mfs2dmu2, unfolded split] ..
have $\forall i<m . f s 2!i=f s!i$
proof (intro allI impI)
fix i
assume $i: i<m$
then have $f s 2 i$: LLL-invariant-mod fs2 mfs2 dmu2 p1 ?first b1 i
using $f_{s 2}$ LLL-invariant-mod-to-weak-m-to-i by simp
have μ si: μ-small fs2 i using $\mu s i$ by simp
show $f_{s} 2!i=f_{s}!i$
using basis-reduction-mod-fs-bound(1)[OF fs2i μ si i] fs by simp
qed
then have $f_{s} 2=f_{s}$
using $L L L-i n v D-\bmod (1,3,10,13)[O F f s 2] f_{s}$ by (metis nth-equalityI)
then show ?thesis using redfs2 fs rbd(1) reduce-basis-def res LLL-invD-weak LLL-invariant-def by simp
qed
Soundness of Storjohann's algorithm to compute short vectors with improved swap order
lemma short-vector-iso-inv: assumes res: short-vector-iso $=v$
and $m: m>0$
shows \exists fs. LLL-invariant-weak fs \wedge weakly-reduced fs $m \wedge v=h d$ fs
proof -
let ?first $=$ True
obtain $p m f s 0 d m u 0 g$-idx0 where init: compute-initial-state ? first $=(p, m f s 0$, $d m u 0, g$-idx0) by (metis prod-cases 4)
from $L L L$-initial-invariant-mod[OF init]
obtain $f_{s} 0 b$ where $f s 0$: LLL-invariant-mod $f_{s 0} m f s 0 d m u 0 p$?first $b 0$ by blast
have fs0w: LLL-invariant-mod-weak fs0 mfs0 dmu0 p ?first busing LLL-invD-mod[OF
$\left.f_{s} 0\right]$ LLL-invI-modw by simp
obtain $p 1$ mfs 1 dmu1 where main: basis-reduction-iso-main p ?first mfs0 dmu0 g-idx0 $0=(p 1, m f s 1, d m u 1)$
by (metis prod.exhaust)
obtain fs1 b1 where Linv1: LLL-invariant-mod fs1 mfs1 dmu1 p1 ?first b1 m
using basis-reduction-iso-main[OF fsOw main] by auto
have $v=h d m f s 1$ using res[unfolded short-vector-iso-def Let-def init split main]
with basis-reduction-mod-fs-bound-first[OF Linv1 m] LLL-invD-mod $(1,3)[O F$ Linv1] m
have $v: v=h d f s 1$ by (cases $f s 1$; cases mfs1; auto)
from Linv1 have Linv1: LLL-invariant-weak fs1 and red: weakly-reduced fs1 m
unfolding LLL-invariant-mod-def LLL-invariant-weak-def by auto
show ?thesis
by (intro exI[of - fs1] conjI Linv1 red v)
qed
end
From the soundness results of these abstract versions of the algorithms, one just needs to derive actual implementations that may integrate low-level optimizations.
end

5 Storjohann's basis reduction algorithm (concrete implementation)

We refine the abstract algorithm into a more efficient executable one.

theory Storjohann-Impl imports Storjohann
 begin

5.1 Implementation

We basically store four components:

- The f-basis (as list, all values taken modulo p)
- The $d \mu$-matrix (as nested arrays, all values taken modulo $d_{i} d_{i+1} p$)
- The d-values (as array)
- The modulo-values $d_{i} d_{i+1} p$ (as array)
type-synonym state-impl $=$ int vec list \times int iarray iarray \times int iarray \times int iarray
fun di-of $::$ state-impl \Rightarrow int iarray where
$d i-o f(m f s i, d m u i, d i, \operatorname{mods})=d i$

context $L L L$

begin

fun state-impl-inv :: $\Rightarrow-\Rightarrow-\Rightarrow$ state-impl \Rightarrow bool where
state-impl-inv p mfs dmu $(m f s i, d m u i, d i, \operatorname{mods})=(m f s i=m f s \wedge d i=I A r-$ ray.of-fun (d-of dmu) (Suc m)
$\wedge d m u i=$ IArray.of-fun $(\lambda i$. IArray.of-fun $(\lambda j . d m u \$ \$(i, j)) i) m$ $\wedge \operatorname{mods}=$ IArray.of-fun $(\lambda j . p * d i!!j * d i!!(S u c j))(m-1))$
definition state-iso-inv :: (int \times int $)$ iarray \Rightarrow int iarray \Rightarrow bool where
state-iso-inv prods di $=($ prods $=$ IArray.of-fun
$(\lambda i .(d i!!(i+1) * d i!!(i+1), d i!!(i+2) * d i!!i))(m-1))$
definition perform-add-row :: int \Rightarrow state-impl \Rightarrow nat \Rightarrow nat \Rightarrow int \Rightarrow int iarray
\Rightarrow int \Rightarrow int \Rightarrow state-impl where
perform-add-row p state $i j$ c rowi muij dij1 $=($ let
$(m f s i, d m u i, d i, \operatorname{mods})=$ state;
$f s j=m f s i!j ;$
rowj $=d m u i!!j$
in
(case split-at $i \operatorname{mfsi}$ of (start, f si $\#$ end $) \Rightarrow$ start @ vec $n(\lambda k .(f s i \$ k-c$

* fsj $\$ k$) symmod $p)$ \# end,

IArray.of-fun (λ ii. if $i=$ ii then
IArray.of-fun $(\lambda j j$. if $j j<j$ then
(rowi !! jj - c* rowj !! jj) symmod (mods !! jj)
else if $j j=j$ then muij $-c *$ dij1
else rowi !! $j j$) i
else dmui !! ii) m, $d i, \bmod s))$
definition $L L L$-add-row :: int \Rightarrow state-impl \Rightarrow nat \Rightarrow nat \Rightarrow state-impl where
LLL-add-row p state $i j=($ let
$(-, d m u i, d i,-)=$ state;
rowi $=d m u i!!i$;
dij1 $=d i!!(S u c j) ;$
muij $=$ rowi !! j;
$c=$ round-num-denom muij dij1
in if $c=0$ then state
else perform-add-row p state ij c rowi muij dij1)
definition $L L L$-swap-row :: int \Rightarrow state-impl \Rightarrow nat \Rightarrow state-impl where LLL-swap-row p state $k=($ case state of $(m f s i, d m u i, d i, \operatorname{mods}) \Rightarrow$ let
$k 1=k-1 ;$
$k S 1=$ Suc k;
$m u k=d m u i!!k$;
$m u k 1=d m u i!!k 1$;
$m u k k 1=m u k!!k 1$;

```
    dk1 = di !! k1;
    dkS1 = di !! kS1;
    dk=di !! k;
    dk' = (dkS1 * dk1 + mukk1 * mukk1) div dk;
    mod1 = p *dk1 *dk';
    modk=p*dk'*dkS1
    in
(case split-at k1 mfsi
    of (start, fsk1 # fsk # end) => start @ fsk # fsk1 # end,
    IArray.of-fun ( }\lambdai\mathrm{ i.
    if i<k1 then dmui !! i
    else if i>k then
        let row-i = dmui !! i; muik = row-i !! k; muik1 = row-i !! k1 in
```

IArray.of-fun
$(\lambda j$. if $j=k 1$ then $(($ mukk1 $*$ muik1 + muik $* d k 1)$ div dk $)$ symmod
mod1
else if $j=k$ then $((d k S 1 *$ muik1 - mukk1 $*$ muik $)$ div $d k)$
symmod modk
else row- i !! j) i
else if $i=k$ then IArray.of-fun $(\lambda j$. if $j=k 1$ then mukk1 symmod mod1
else muk1 !! j) i
else IArray.of-fun ((!!) muk) i
) m,
IArray.of-fun (λi. if $i=k$ then $d k^{\prime}$ else di !! i) (Suc m),
IArray.of-fun $(\lambda j$. if $j=k 1$ then mod1 else if $j=k$ then modk else mods !!
j) $(m-1)))$
definition perform-swap-add where perform-swap-add p state $k k 1$ c row- k mukk1
$d k=$
$($ let $(f s, d m u, d d$, mods $)=$ state;
row- $k 1=d m u!!k 1$;
$k S 1=$ Suc k;
mukk1' $=m u k k 1-c * d k ;$
$d k 1=d d!!k 1$;
$d k S 1=d d!!k S 1 ;$
$d k^{\prime}=\left(d k S 1 * d k 1+m u k k 1^{\prime} * m u k k 1^{\prime}\right) d i v d k ;$
$\bmod 1=p * d k 1 * d k^{\prime} ;$
$\operatorname{modk}=p * d k^{\prime} * d k S 1$
in
(case split-at k1 fs of (start, fsk1 \# fsk \# end) \Rightarrow
start @ vec $n\left(\lambda k .\left(f s k \$ k-c * f_{s k 1} \$ k\right) \operatorname{symmod} p\right) \# f s k 1 \#$ end,
IArray.of-fun
(λ i. if $i<k 1$
then dmu !! i
else if $k<i$
then let row- $i=d m u!!i$;
muik $1=$ row $-i!!k 1$;
muik = row- $i!!k$
in IArray.of-fun
$\left(\lambda j\right.$. if $j=k 1$ then $\left(m u k k 1^{\prime} * m u i k 1+m u i k * d k 1\right) d i v d k$
symmod mod1
dk symmod modk
else if $j=k$ then $\left(d k S 1 *\right.$ muik1 $\left.-m u k k 1^{\prime} * m u i k\right) d i v$ else row-i !! j) i
else if $i=k$ then IArray.of-fun $(\lambda j$. if $j=k 1$ then mukk1' symmod mod1 else row- $k 1$!! j) k
else IArray.of-fun (λj. (row- k !! $j-c *$ row-k1 !! j) symmod mods !! j) i)
m,
IArray.of-fun (λ i. if $i=k$ then $d k^{\prime}$ else dd !! i) (Suc m),
IArray.of-fun (λj. if $j=k 1$ then mod1 else if $j=k$ then modk else mods $!!j$) $(m-1)))$
definition $L L L$-swap-add where
LLL-swap-add p state $i=($ let $i 1=i-1$;
$(-, d m u i, d i,-)=s t a t e ;$
rowi $=d m u i!!i$;
$d i i=d i!!i ;$
muij $=$ rowi $!!i 1$;
$c=$ round-num-denom muij dii
in if $c=0$ then LLL-swap-row p state i
else perform-swap-add p state i i1 c rowi muij dii)
definition $L L L$-max-gso-norm-di $::$ bool \Rightarrow int iarray \Rightarrow rat \times nat where
LLL-max-gso-norm-di first di $=$ (if first then (of-int ($d i!!1$), 0) else case max-list-rats-with-index (map (λ i. (di !! (Suc i), di !! i, i)) [0 ..< m])
of $($ num, denom,$i) \Rightarrow($ of-int num / of-int denom, $i))$
definition LLL-max-gso-quot:: (int *int) iarray \Rightarrow (int $*$ int $*$ nat $)$ where
LLL-max-gso-quot di-prods $=$ max-list-rats-with-index
(map (di. case di-prods !! i of $(l, r) \Rightarrow(l, r$, Suc $i))[0 . .<(m-1)])$
definition $L L L$-max-gso-norm :: bool \Rightarrow state-impl \Rightarrow rat \times nat where
LLL-max-gso-norm first state $=($ case state of $(-,-$, di, mods $) \Rightarrow L L L-m a x-g s o-n o r m-d i$ first di)
definition perform-adjust-mod $::$ int \Rightarrow state-impl \Rightarrow state-impl where
perform-adjust-mod p state $=($ case state of $(m f s i, d m u i, d i,-) \Rightarrow$
let $m f s i^{\prime}=m a p($ map-vec $(\lambda x . x$ symmod $p)) m f s i ;$
mods $=$ IArray.of-fun $(\lambda j . p * d i!!j * d i!!(S u c j))(m-1) ;$ $d m u i^{\prime}=$ IArray.of-fun $(\lambda$ i. let row $=d m u i!!$ i in IArray.of-fun $(\lambda j$.
row !! j symmod (mods !! j)) i) m

```
    in
    ((mfsi', dmui', di, mods)))
definition mod-of-gso-norm :: bool => rat }=>\mathrm{ int where
    mod-of-gso-norm first mn = log-base ^ (log-ceiling log-base (max 2 (
    root-rat-ceiling 2 (mn*(rat-of-nat (if first then 4 else m + 3))) + 1)))
definition LLL-adjust-mod :: int }=>\mathrm{ bool }=>\mathrm{ state-impl }=>\mathrm{ int }\times\mathrm{ state-impl }\times\mathrm{ nat
where
    LLL-adjust-mod p first state = (
    let (b', g-idx) = LLL-max-gso-norm first state;
        p
    in if p'< p then ( }\mp@subsup{p}{}{\prime}\mathrm{ , perform-adjust-mod p' state, g-idx)
        else (p, state, g-idx)
    )
definition LLL-adjust-swap-add where
LLL-adjust-swap-add \(p\) first state \(g\) - idx \(i=(\) let state \(1=L L L\)-swap-add \(p\) state \(i\) in if \(i-1=g\)-idx then LLL-adjust-mod \(p\) first state1 else ( \(p\), state1, \(g\)-idx))
definition \(L L L\)-step \(::\) int \(\Rightarrow\) bool \(\Rightarrow\) state-impl \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) int \(\Rightarrow\) (int \(\times\) state-impl \(\times\) nat) \(\times\) nat \(\times\) int where
LLL-step p first state \(g\)-idx \(i j=(\) if \(i=0\) then \(((p\), state, \(g\)-idx \()\), Suc \(i, j)\) else let
\(i 1=i-1\);
\(i S=\) Suc \(i\);
\((-,-, d i,-)=\) state;
(num, denom) \(=\) quotient-of \(\alpha\);
\(d-i=d i!!i ;\)
\(d-i 1=d i!!i 1\);
\(d-S i=d i!!i S\)
in if \(d-i * d-i *\) denom \(\leq n u m * d-i 1 * d\)-Si then
( \((p\), state, \(g\)-idx \(), i S, j)\)
else (LLL-adjust-swap-add \(p\) first state \(g\) - \(i d x i, i 1, j+1)\) )
partial-function (tailrec) LLL-main \(::\) int \(\Rightarrow\) bool \(\Rightarrow\) state-impl \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) int \(\Rightarrow\) int \(\times\) state-impl
```


where

```
LLL-main \(p\) first state \(g\)-idx \(i(j::\) int \()=(\)
(if \(i<m\)
then case LLL-step \(p\) first state \(g\)-idx \(i j\) of
\(\left(\left(p^{\prime}\right.\right.\), state \({ }^{\prime}, g\)-idx \(\left.), i^{\prime}, j^{\prime}\right) \Rightarrow\)
LLL-main \(p^{\prime}\) first state \(g\)-idx \({ }^{\prime} i^{\prime} j^{\prime}\)
else
( \(p\), state \()\) ))
```

```
partial-function (tailrec) LLL-iso-main-inner where
    LLL-iso-main-inner \(p\) first state di-prods \(g\)-idx \((j::\) int \()=(\)
        case state of \((-,-\), di, -\() \Rightarrow\)
    (
        (let ( max-gso-num, max-gso-denum, indx \()=\) LLL-max-gso-quot di-prods;
        (num, denum) \(=\) quotient-of \(\alpha\) in
        (if max-gso-num * denum > num * max-gso-denum then
                case LLL-adjust-swap-add \(p\) first state \(g\)-idx indx of
                        \(\left(p^{\prime}\right.\), state \(\left.{ }^{\prime}, g-i d x^{\prime}\right) \Rightarrow\) case state \({ }^{\prime}\) of \(\left(-,-, d i^{\prime},-\right) \Rightarrow\)
                        let di-prods' \(=\) IArray.of-fun ( \(\lambda\) i. case di-prods !! i of lr \(\Rightarrow\)
                                    if \(i>\) indx \(\vee i+2<i n d x\) then lr
                                    else case lr of \((l, r)\)
                            \(\Rightarrow\) if \(i+1=\) indx then let \(d\) - \(i d x=d i^{\prime}!!\) indx in \((d-i d x * d-i d x, r)\)
else \(\left.\left(l, d i^{\prime}!!(i+2) * d i^{\prime}!!i\right)\right)(m-1)\)
                in LLL-iso-main-inner \(p^{\prime}\) first state \({ }^{\prime}\) di-prods \({ }^{\prime} g\)-idx \({ }^{\prime}(j+1)\)
            else
                \((p\), state \()))))\)
```

definition $L L L$-iso-main where
LLL-iso-main p first state g-idx $j=($ if $m>1$ then
case state of $(-,-, d i,-) \Rightarrow$
let di-prods $=$ IArray.of-fun $(\lambda i .(d i!!(i+1) * d i!!(i+1), d i!!(i+2) * d i!!$
i)) $(m-1)$
in LLL-iso-main-inner p first state di-prods g-idx j else (p, state))
definition $L L L$-initial :: bool \Rightarrow int \times state-impl \times nat where
$L L L$-initial first $=($ let init $=d \mu$-impl fs-init;
$d i=$ IArray.of-fun $(\lambda i$. if $i=0$ then 1 else let $i 1=i-1$ in init !! i1 !! i1)
(Suc m);
(b,g-idx) $=$ LLL-max-gso-norm-di first di;
$p=$ mod-of-gso-norm first b;
mods $=$ IArray.of-fun ($\lambda j . p * d i!!j * d i!!(S u c j))(m-1)$;
$d m u i=$ IArray.of-fun $(\lambda$ i. let row $=$ init $!!$ i in IArray.of-fun $(\lambda j$. row $!!j$
symmod $(\operatorname{mods}!!$ j)) i) m
in (p, (compute-initial-mfs $p, d m u i, d i$, mods $), g$-idx $)$)
fun $L L L$-add-rows-loop where
LLL-add-rows-loop p state i $0=$ state
| LLL-add-rows-loop p state $i(S u c j)=($
let state $=L L L$-add-row p state $i j$
in LLL-add-rows-loop p state ${ }^{\prime}{ }^{i} j$)
primrec LLL-add-rows-outer-loop where
LLL-add-rows-outer-loop p state $0=$ state \mid
LLL-add-rows-outer-loop p state $($ Suc $i)=$
(let state ${ }^{\prime}=L L L$-add-rows-outer-loop p state i in
LLL-add-rows-loop p state' (Suc i) (Suc i))

definition

LLL-reduce-basis $=$ (if $m=0$ then [] else let first $=$ False;
($p 0$, state $0, g$-idx0) $=$ LLL-initial first;
(p, state $)=L L L$-main p0 first state0 g-idx0 00 ;
($m f s,-,-,-)=L L L-a d d-$ rows-outer-loop p state $(m-1)$ in $m f s$)

definition

LLL-reduce-basis-iso $=($ if $m=0$ then [] else let first $=$ False;
$(p 0$, state $0, g$-idx0 $)=L L L$-initial first;
(p, state $)=L L L$-iso-main p0 first state 0 g-idx0 0 ;
(mfs,-,-,--) $=$ LLL-add-rows-outer-loop p state $(m-1)$ in $m f s$)

definition

LLL-short-vector $=($ let first $=$ True; (p0, state0, g-idx0) $=$ LLL-initial first; ($p,(m f s,-,-,-))=L L L-m a i n ~ p 0$ first state $0 g$-idx0 00 in hd mfs)

definition

LLL-short-vector-iso $=($
let first = True;
$(p 0$, state $0, g$-idx0 $)=$ LLL-initial first;
$(p,(m f s,-,-,-))=L L L-i s o-m a i n ~ p 0$ first state $0 g-i d x 00$ in $h d m f s$)
end
declare LLL.LLL-short-vector-def[code]
declare LLL.LLL-short-vector-iso-def[code]
declare LLL.LLL-reduce-basis-def[code]
declare LLL.LLL-reduce-basis-iso-def[code]
declare LLL.LLL-iso-main-def[code]
declare LLL.LLL-iso-main-inner.simps[code]
declare LLL.LLL-add-rows-outer-loop.simps[code]
declare LLL.LLL-add-rows-loop.simps[code]
declare LLL.LLL-initial-def[code]
declare LLL.LLL-main.simps[code]
declare LLL.LLL-adjust-mod-def[code]
declare LLL.LLL-max-gso-norm-def[code]
declare LLL.perform-adjust-mod-def[code]
declare LLL.LLL-max-gso-norm-di-def[code]
declare LLL.LLL-max-gso-quot-def[code]
declare LLL.LLL-step-def[code]
declare LLL.LLL-add-row-def[code]
declare LLL.perform-add-row-def[code] declare LLL.LLL-swap-row-def[code] declare LLL.LLL-swap-add-def[code] declare LLL.LLL-adjust-swap-add-def[code] declare LLL.perform-swap-add-def[code] declare LLL.mod-of-gso-norm-def[code] declare LLL.compute-initial-mfs-def [code] declare LLL.log-base-def[code]

5.2 Towards soundness proof of implementation

context $L L L$

begin
lemma perform-swap-add: assumes $k: k \neq 0 k<m$ and f : length $f s=m$
shows $L L L$-swap-row p (perform-add-row $p(f s, d m u$, di, mods) $k(k-1) c(d m u$
!! $k)(d m u!!k!!(k-1))(d i!!k)) k$
$=$ perform-swap-add $p(f s, d m u, d i, \operatorname{mods}) k(k-1) c(d m u!!k)(d m u!!k!!$
$(k-1))(d i!!k)$
proof -
from $k[$ folded $f s$]
have drop: $\operatorname{drop} k f_{s}=f s!k \#$ drop $(S u c k) f s$
by (simp add: Cons-nth-drop-Suc)
obtain v where v : vec $n\left(\lambda k a .\left(f s!k \$ k a-c * f_{s}!(k-1) \$ k a\right)\right.$ symmod $\left.p\right)$ $=v$ by auto
from $k[$ folded $f s$ s
have drop1: drop $(k-1)($ take $k f s @ v \# d r o p(S u c k) f s)=f s!(k-1) \# v$ \# drop (Suc k) fs
by (simp add: Cons-nth-drop-Suc)
(smt Cons-nth-drop-Suc Suc-diff-Suc Suc-less-eq Suc-pred diff-Suc-less diff-self-eq-0 drop-take less-SucI take-Suc-Cons take-eq-Nil)
from $k[$ folded $f s$]
have drop2: drop $(k-1) f s=f s!(k-1) \# f s!k \# \operatorname{drop}(S u c k) f s$
by (metis Cons-nth-drop-Suc One-nat-def Suc-less-eq Suc-pred less-SucI neq0-conv)
have take: take $(k-1)$ (take $\left.k f_{s} @ x s\right)=$ take $(k-1) f s$ for $x s$ using $k[$ folded $f s$] by auto
obtain rowk where rowk: IArray.of-fun
($\lambda j j$. if $j j<k-1$ then $(d m u!!k!!j j-c * d m u$!! $(k-$

1) !! jj) symmod mods !! jj
else if $j j=k-1$ then $d m u!!k!!(k-1)-c * d i!!k$ else dmu !! k
!! jj) $k=$ row k
by auto
obtain mukk1' where mukk1': (di !! Suc $k * d i!!(k-1)+r o w k!!(k-1) *$ rowk !! $(k-1))$ div di !! $k=m u k k 1^{\prime}$
by auto
have $k k 1: k-1<k$ using k by auto
have mukk1'! $(d i!!S u c k * d i!!(k-1)+$ $(d m u!!k!!(k-1)-c * d i!!k) *(d m u!!k!!(k-1)-c * d i!!k))$
div $d i!!k=m u k k 1^{\prime}$
```
            unfolding mukk1'[symmetric] rowk[symmetric] IArray.of-fun-nth[OF kk1] by
auto
    have id: (k=k)= True by simp
    have rowk1:dmu !! k!! (k-1) - c* di !! k = rowk !! (k-1)
        unfolding rowk[symmetric] IArray.of-fun-nth[OF kk1] by simp
    show ?thesis
    unfolding perform-swap-add-def split perform-add-row-def Let-def split LLL-swap-row-def
split-at-def
    unfolding drop list.simps v drop1 take prod.inject drop2 rowk IArray.of-fun-nth[OF
<k<m>] id if-True
    unfolding rowk1
    proof (intro conjI refl iarray-cong, unfold rowk1[symmetric], goal-cases)
        case i:(1 i)
    show ?case unfolding IArray.of-fun-nth[OF i] IArray.of-fun-nth[OF <k<m>]
id if-True mukk1' mukk1''
            rowk1[symmetric]
            proof (intro if-cong[OF refl], force, goal-cases)
            case 3
            hence i: i=k-1 by auto
            show ?case unfolding i by (intro iarray-cong[OF refl], unfold rowk[symmetric],
                subst IArray.of-fun-nth, insert k, auto)
            next
            case ki:1
            hence id: (k=i)= False by auto
            show ?case unfolding id if-False rowk
                by (intro iarray-cong if-cong refl)
            next
            case 2
            show ?case unfolding 2
                by (intro iarray-cong if-cong refl, subst IArray.of-fun-nth, insert k, auto)
            qed
    qed
qed
```

lemma LLL-swap-add-eq: assumes $i: i \neq 0 i<m$ and f s: length $f s=m$
shows LLL-swap-add p (fs,dmu,di,mods) $i=(L L L$-swap-row p (LLL-add-row p
$(f s, d m u, d i, \bmod s) i(i-1)) i)$
proof -
define c where $c=$ round-num-denom $(d m u!!i!!(i-1))(d i!!i)$
from i have si1: Suc $(i-1)=i$ by auto
note res1 $=$ LLL-swap-add-def[of $p(f s, d m u, d i, \operatorname{mods}) ~ i$, unfolded split Let-def
c-def[symmetric]]
show ?thesis
proof (cases $c=0$)
case True
thus ?thesis using i unfolding res1 LLL-add-row-def split id c-def Let-def by
auto
next

```
    case False
    hence c:}(c=0)=\mathrm{ False by simp
    have add: LLL-add-row p (fs,dmu, di, mods) i (i-1)=
        perform-add-row p (fs,dmu,di, mods) i (i - 1) c (dmu !! i) (dmu !! i !! (i
- 1))(di !! i)
            unfolding LLL-add-row-def Let-def split si1 c-def[symmetric] c by auto
    show ?thesis unfolding res1 c if-False add
        by (subst perform-swap-add[OF assms]) simp
    qed
qed
end
```

context LLL-with-assms
begin
lemma LLL-mod-inv-to-weak: LLL-invariant-mod fs mfs dmu p first bi \bar{C} LLL-invariant-mod-weak fs mfs dmu p first b
unfolding LLL-invariant-mod-def LLL-invariant-mod-weak-def by auto
declare IArray.of-fun-def[simp del]
lemma LLL-swap-row: assumes impl: state-impl-inv p mfs dmu state
and Linv: LLL-invariant-mod-weak fs mfs dmu p first b
and res: basis-reduction-mod-swap p mfs $d m u k=\left(m s^{\prime}{ }^{\prime}, d m u^{\prime}\right)$
and res': LLL-swap-row p state $k=$ state $^{\prime}$
and $k: k<m k \neq 0$
shows state-impl-inv $p m f^{\prime}{ }^{\prime} d m u^{\prime}$ state ${ }^{\prime}$
proof -
note $i n v=L L L-i n v D-\operatorname{modw}[O F L i n v]$
obtain $f s i d m u i$ di mods where state: state $=(f s i, d m u i$, di, mods) by (cases
state, auto)
obtain $f s i^{\prime} d m u i^{\prime} d i^{\prime}$ mods ${ }^{\prime}$ where state ${ }^{\prime}:$ state $^{\prime}=\left(f s i^{\prime}, d m u i^{\prime}, d i^{\prime}, \operatorname{mods}\right)$ by
(cases state', auto)
from impl[unfolded state, simplified]
have $i d: f s i=m f s$ $d i=$ IArray.of-fun (d-of dmu) (Suc m)
$d m u i=$ IArray.of-fun (λi. IArray.of-fun $(\lambda j . d m u \$ \$(i, j)) i) m$ mods $=$ IArray.of-fun $(\lambda j . p * d i!!j * d i!!S u c j)(m-1)$
by auto
have $k k 1$: dmui !! $k!!(k-1)=d m u \$ \$(k, k-1)$ using k unfolding id IArray.of-fun-nth[OF $k(1)]$
by (subst IArray.of-fun-nth, auto)
have $d i: i \leq m \Longrightarrow d i!!i=d$-of $d m u i$ for i
unfolding id by (subst IArray.of-fun-nth, auto)
have $d S 1$: di !! Suc $k=d$-of dmu (Suc k) using di k by auto
have d1: di !! $(k-1)=d$-of dmu $(k-1)$ using $d i k$ by auto
have $d k: d i!!k=d$-of $d m u k$ using di k by auto
define $d k^{\prime}$ where $d k^{\prime}=(d$-of $d m u(S u c k) * d$-of $d m u(k-1)+d m u \$ \$(k, k$
$-1) * d m u \$ \$(k, k-1)) d i v d$-of $d m u k$
define $\bmod 1$ where $\bmod 1=p * d$-of $d m u(k-1) * d k^{\prime}$
define modk where modk $=p * d k^{\prime} * d$-of $d m u$ (Suc k)
define $d m u^{\prime \prime}$ where $d m u^{\prime \prime}=($ mat $m \mathrm{~m}$
$(\lambda(i, j)$.
if $j<i$
then if $i=k-1$ then dmu $\$ \(k, j)
else if $i=k \wedge j \neq k-1$ then $d m u \$ \$(k-1, j)$
else if $k<i \wedge j=k$ then $(d$-of $d m u(S u c k) * d m u \$ \$(i, k-1)$

- dmu $\$ \$(k, k-1) * d m u \$ \$(i, j))$ div d-of dmu k
else if $k<i \wedge j=k-1$ then $(d m u \$ \$(k, k-1) * d m u \$ \$$
$(i, j)+d m u \$ \$(i, k) * d$-of dmu $(k-1))$ div d-of dmu k else dmu $\$ \(i, j)
else if $i=j$ then if $i=k-1$ then $(d$-of $d m u(S u c k) * d$-of $d m u(k-1)$
$+d m u \$ \$(k, k-1) * d m u \$ \$(k, k-1))$ div d-of dmu k else d-of dmu (Suc i) else dmu \$\$ $(i, j))$)
have drop: drop $(k-1) f s i=m f s!(k-1) \# m f s!k \# d r o p(S u c k) m f s$ unfolding $i d$ using 〈length $m f s=m\rangle k$
by (metis Cons-nth-drop-Suc One-nat-def Suc-less-eq Suc-pred less-SucI linorder-neqE-nat not-less0)
have $d k^{\prime}: d k^{\prime}=d$-of $d m u^{\prime \prime} k$ unfolding $d k^{\prime}$-def d-of-def $d m u^{\prime \prime}$-def using k by auto
have mod1: mod1 $=p * d$-of $d m u^{\prime \prime}(k-1) * d$-of $d m u^{\prime \prime} k$ unfolding mod1-def $d k^{\prime}$ using k
by (auto simp: dmu ${ }^{\prime \prime}$-def d-of-def)
have modk: modk $=p * d$-of $d m u^{\prime \prime} k * d$-of $d m u^{\prime \prime}$ (Suc k) unfolding modk-def $d k^{\prime}$ using k
by (auto simp: dmu ${ }^{\prime \prime}$-def d-of-def)
note res $=$ res[unfolded basis-reduction-mod-swap-def, folded dmu'"-def, symmetric]
note res $^{\prime}=$ res' $[$ unfolded state state' split-at-def drop list.simps split LLL-swap-row-def Let-def kk1 dS1 d1 dk,
folded dk'-def mod1-def modk-def, symmetric]
from res' have $f s i^{\prime}: f_{s i}{ }^{\prime}=$ take $(k-1) m f s @ m f s!k \# m f s!(k-1) \# d r o p$ (Suc k) mfs unfolding id by simp
from $r e s^{\prime}$ have $d i^{\prime}: d i^{\prime}=$ IArray.of-fun (λi ii. if $i i=k$ then $d k^{\prime}$ else di !! ii) (Suc m) by simp
from res' have $d m u i^{\prime}: d m u i^{\prime}=$ IArray.of-fun
(λi. if $i<k-1$ then dmui !! i else if $k<i$ then IArray.of-fun
(λj. if $j=k-1$
then $(d m u \$ \$(k, k-1) * d m u i!!i!!(k-1)+d m u i!!i!!$
$k * d$-of $d m u(k-1))$
div d-of dmu k symmod mod1
else if $j=k$ then $(d$-of dmu $($ Suc $k) * d m u i!!i!!(k-1)-d m u \$ \$$
$(k, k-1) * d m u i!!i!!k)$
div d-of dmu k symmod modk else dmui !! i !! j)
else if $i=k$ then IArray.of-fun $(\lambda j$. if $j=k-1$ then dmu $\$ \$(k, k-$

1) symmod mod1
else dmui !! $(k-1)!!j)$ i else IArray.of-fun $((!!)(d m u i!!k)) i)$ m by auto
from res ${ }^{\prime}$ have mods': mods' $=$ IArray.of-fun $(\lambda j j$. if $j j=k-1$ then $\bmod 1$ else if $j j=k$ then modk else mods $!!j j)(m-1)$
by auto
from res have $d m u^{\prime}: d m u^{\prime}=$ basis-reduction-mod-swap-dmu-mod $p d m u^{\prime \prime} k$ by auto
show ?thesis unfolding state' state-impl-inv.simps
proof (intro conjI)
from res have $m f_{s}{ }^{\prime}: m f s^{\prime}=m f s[k:=m f s!(k-1), k-1:=m f s!k]$ by simp
show $f s i^{\prime}=m f s^{\prime}$ unfolding $f s i^{\prime} m f s^{\prime}$ using «length $\left.m f s=m\right\rangle k$
proof (intro nth-equalityI, force, goal-cases)
case (1 j)
have choice: $j=k-1 \vee j=k \vee j<k-1 \vee j>k$ by linarith
have min (length mfs) $(k-1)=k-1$ using 1 by auto
with 1 choice show ?case by (auto simp: nth-append)
qed
show $d i^{\prime}=$ IArray.of-fun (d-of $d m u^{\prime}$) (Suc m) unfolding $d i^{\prime}$
proof (intro iarray-cong refl, goal-cases)
case i : (1i)
hence d-of $d m u^{\prime} i=d$-of $d m u^{\prime \prime} i$ unfolding $d m u^{\prime}$ basis-reduction-mod-swap-dmu-mod-def d-of-def
by (intro if-cong, auto)
also have $\ldots=\left(\left(\right.\right.$ if $i=k$ then $d k^{\prime}$ else di $\left.\left.!!i\right)\right)$
proof (cases $i=k$)
case False
hence d-of $d m u^{\prime \prime} i=d$-of $d m u i$ unfolding $d m u^{\prime \prime}$-def d-of-def using $i k$
by (intro if-cong refl, auto)
thus ?thesis using False ik unfolding id by (metis iarray-of-fun-sub)
next
case True
thus ?thesis using $d k^{\prime}$ by auto
qed
finally show ? case by simp
qed
have dkS1: d-of dmu (Suc k) $=d$-of $d m u^{\prime \prime}($ Suc $k)$
unfolding $d m u^{\prime \prime}$-def d-of-def using k by auto
have dk1: d-of dmu $(k-1)=d$-of $d m u^{\prime \prime}(k-1)$
unfolding $d m u^{\prime \prime}$-def d-of-def using k by auto
show $d m u i^{\prime}=$ IArray.of-fun (λi. IArray.of-fun $\left(\lambda j\right.$. $\left.d m u^{\prime} \$ \$(i, j)\right)$ i) m unfolding $d m u i^{\prime}$
proof (intro iarray-cong refl, goal-cases)
case i : $(1 i)$
consider (1) $i<k-1 \mid$ (2) $i=k-1 \mid$ (3) $i=k \mid$ (4) $i>k$ by linarith
thus ?case
proof (cases)
case 1
hence $*:(i<k-1)=$ True by simp
show ?thesis unfolding $*$ if-True id IArray.of-fun-nth[OF i] using ik 1
by (intro iarray-cong refl, auto simp: dmu' basis-reduction-mod-swap-dmu-mod-def, auto simp: $d m u^{\prime \prime}$-def)
next
case 2
hence $*:(i<k-1)=$ False $(k<i)=$ False $(i=k)=$ False using k by auto
show ?thesis unfolding * if-False id using $i k 2$ unfolding IArray.of-fun-nth[OF $k(1)$]
by (intro iarray-cong refl, subst IArray.of-fun-nth, auto simp: dmu' basis-reduction-mod-swap-dmu-mod-def dmu "'-def)

next

case 3
hence $*:(i<k-1)=$ False $(k<i)=$ False $(i=k)=$ True using k by
auto
show ?thesis unfolding * if-False if-True id IArray.of-fun-nth[OF $k(1)]$
proof (intro iarray-cong refl, goal-cases)
case j : $(1 j)$
show ? case
proof (cases $j=k-1$)
case False
hence $*:(j=k-1)=$ False by auto
show ?thesis unfolding $*$ if-False using False $j k i 3$
by (subst IArray.of-fun-nth, force, subst IArray.of-fun-nth, force, auto
simp: dmu' basis-reduction-mod-swap-dmu-mod-def dmu ${ }^{\prime \prime}$-def)
next
case True
hence $*:(j=k-1)=$ True by auto
show ?thesis unfolding $*$ if-True unfolding True 3 using k
by (auto simp: basis-reduction-mod-swap-dmu-mod-def dmu' $d k^{\prime}$ mod1
$d m u^{\prime \prime}$-def)
qed
qed
next
case 4
hence $*:(i<k-1)=$ False $(k<i)=$ True using k by auto
show ?thesis unfolding * if-False if-True id IArray.of-fun-nth[OF $k(1)]$
IArray.of-fun-nth[OF $\langle i<m\rangle$]
proof (intro iarray-cong refl, goal-cases)
case j : $(1 j)$
from 4 have $k 1: k-1<i$ by auto
show ?case unfolding IArray.of-fun-nth[OF j] IArray.of-fun-nth[OF 4] IArray.of-fun-nth[OF k1]
unfolding mod1 modk dmu' basis-reduction-mod-swap-dmu-mod-def
using $i j 4 k$
by (auto intro!: arg-cong[of - λ x. x symmod -], auto simp: dmu ${ }^{\prime \prime}$-def) qed
qed

```
    qed
    show mods' = IArray.of-fun ( }\lambdaj.p*d\mp@subsup{i}{}{\prime}!!!j*d\mp@subsup{i}{}{\prime}!! Suc j) (m-1
        unfolding mods' di' dk' mod1 modk
    proof (intro iarray-cong refl, goal-cases)
        case (1 j)
        hence j: j< Suc m Suc j<Suc m by auto
        show ?case unfolding
            IArray.of-fun-nth[OF 1]
            IArray.of-fun-nth[OF j(1)]
            IArray.of-fun-nth[OF j(2)] id(4) using k di dk1 dkS1
            by auto
    qed
    qed
qed
```

lemma LLL-add-row: assumes impl: state-impl-inv p mfs dmu state and Linv: LLL-invariant-mod-weak fs mfs dmu p first b
and res: basis-reduction-mod-add-row p mfs dmu $i j=\left(m f s^{\prime}, d m u^{\prime}\right)$
and res': LLL-add-row p state $i j=$ state $^{\prime}$
and $i: i<m$
and $j: j<i$
shows state-impl-inv p mfs' $d m u^{\prime}$ state ${ }^{\prime}$
proof -
note inv $=L L L-i n v D-\operatorname{modw}[O F L i n v]$
obtain $f s i$ dmui di mods where state: state $=(f s i, d m u i$, di, mods) by (cases
state, auto)
obtain $f s i^{\prime} d m u i^{\prime} d i^{\prime}$ mods ${ }^{\prime}$ where state ${ }^{\prime}: s t a t e^{\prime}=\left(f s i^{\prime}, d m u i^{\prime}, d i^{\prime}, \operatorname{mods}\right)$ by (cases state', auto)
from impl[unfolded state, simplified]
have $i d: f s i=m f s$
$d i=$ IArray.of-fun (d-of dmu) (Suc m)
$d m u i=$ IArray.of-fun $(\lambda i$. IArray.of-fun $(\lambda j . d m u \$ \$(i, j)) i) m$
mods $=$ IArray.of-fun $(\lambda j . p * d i!!j * d i!!$ Suc $j)(m-1)$
by auto
let ?c $=$ round-num-denom $(d m u \$ \$(i, j))(d$-of dmu $(S u c j))$
let $? c^{\prime}=$ round-num-denom (dmui !! i !! j) (di !! Suc j)
obtain c where $c: ? c=c$ by auto
have $c^{\prime}: ? c^{\prime}=c$ unfolding $i d ~ c[$ symmetric $]$ using $i j$
by (subst (1 2) IArray.of-fun-nth, (force+)[2],
subst IArray.of-fun-nth, force+)
have drop: drop $i f s i=m f s!i \# d r o p(S u c i) m f s$ unfolding $i d$ using <length $m f s=m>i$
by (metis Cons-nth-drop-Suc)
note res $=$ res[unfolded basis-reduction-mod-add-row-def Let-def c, symmetric]
note res $^{\prime}=$ res'[unfolded state state' split LLL-add-row-def Let-def c^{\prime}, symmetric]
show ?thesis
proof (cases $c=0$)
case True
from res[unfolded True] res'[unfolded True] show ?thesis unfolding state' using id by auto next
case False
hence False: $(c=0)=$ False by simp
note res $=$ res[unfolded Let-def False if-False]
from res have $m f^{\prime}: m f s^{\prime}=m f s[i:=$ map-vec $(\lambda x$. x symmod $p)(m f s!i-c$
$\cdot v$ mfs ! j)] by auto
from res have $d m u^{\prime}: d m u^{\prime}=$ mat $m m\left(\lambda\left(i^{\prime}, j^{\prime}\right)\right.$. if $i^{\prime}=i \wedge j^{\prime} \leq j$ then if $j^{\prime}=j$ then dmu $\$ \$\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)$ else (dmu \$\$ $\left.\left(i, j^{\prime}\right)-c * d m u \$ \$\left(j, j^{\prime}\right)\right)$ symmod $\left(p * d\right.$-of dmu $j^{\prime} *$ d-of $\left.d m u\left(S u c j^{\prime}\right)\right)$
else dmu $\left.\$ \$\left(i^{\prime}, j^{\prime}\right)\right)$ by auto
note res $^{\prime}=$ res' $[$ unfolded Let-def False if-False perform-add-row-def drop list.simps split-at-def split]
from res^{\prime} have $\mathrm{fsi}^{\prime}: f_{s i}{ }^{\prime}=$ take $i f s i @ \operatorname{vec} n(\lambda k .(m f s!i \$ k-c * m f s!j \$$
k) symmod p) \# drop (Suc i) mfs
by (auto simp: id)
from res ${ }^{\prime}$ have $d i^{\prime}: d i^{\prime}=d i$ and mods ${ }^{\prime}:$ mods ${ }^{\prime}=$ mods by auto
from res ${ }^{\prime}$ have $d m u i^{\prime}: d m u i^{\prime}=$ IArray.of-fun $(\lambda i i$. if $i=i i$ then IArray.of-fun
($\lambda j j$. if $j j<j$ then $(d m u i$!! $i!!j j-c * d m u i!!j!!!j j)$ symmod (mods
!! jj)
else if $j j=j$ then dmui !! $i!!j-c * d i!!(S u c j)$ else dmui $!$! i
!! jj)
i
else dmui !! ii) m by auto
show ?thesis unfolding state' state-impl-inv.simps
proof (intro conjI)
from $\operatorname{inv}(11) i j$ have vec: mfs ! $i \in$ carrier-vec $n m f s!j \in$ carrier-vec n by auto
hence $i d^{\prime}:$ map-vec $(\lambda x . x$ symmod $p)(m f s!i-c \cdot v m f s!j)=v e c n(\lambda k$. (mfs!i\$k-c*mfs!j\$k) symmod p) by (intro eq-vecI, auto)
show mods ${ }^{\prime}=$ IArray.of-fun ($\left.\lambda j . p * d i^{\prime}!!j * d i^{\prime}!!S u c j\right)(m-1)$ using id unfolding mods ${ }^{\prime}$ di i^{\prime} by auto
show $f s i^{\prime}=m f s^{\prime}$ unfolding $f s i^{\prime} m f s^{\prime}$ id unfolding $i d^{\prime}$ using «length $m f s=$ $m>i$
by (simp add: upd-conv-take-nth-drop)
show $d i^{\prime}=$ IArray.of-fun $(d$-of dmu') $($ Suc $m)$
unfolding $d m u^{\prime} d i^{\prime}$ id d-of-def
by (intro iarray-cong if-cong refl, insert $i j$, auto)
show $d m u i^{\prime}=$ IArray.of-fun $\left(\lambda i . \operatorname{IArray} . o f-f u n\left(\lambda j . d m u^{\prime} \$ \$(i, j)\right) i\right) m$ unfolding $d m u i^{\prime}$
proof (intro iarray-cong refl)
fix i
assume $i i: i i<m$
show (if $i=i i$

```
            then IArray.of-fun
            (\lambdajj. if jj < j then (dmui !! i !! jj - c*dmui !! j !! jj) symmod (mods
!! jj)
                                    else if jj = j then dmui !! i !! j - c* di !! (Suc j) else dmui !! i
!! jj)
            i
            else dmui !! ii)=
            IArray.of-fun ( }\lambdaj.dmu'$$(ii,j)) i
            proof (cases i= ii)
                case False
                hence *: (i= ii)= False by auto
                show ?thesis unfolding * if-False id dmu' using False i j ii
                    unfolding IArray.of-fun-nth[OF ii]
                by (intro iarray-cong refl, auto)
            next
                case True
                hence *: (i= ii)= True by auto
                from ij have j<m by simp
                show ?thesis unfolding * if-True dmu' id IArray.of-fun-nth[OF i] IAr-
ray.of-fun-nth[OF<<j<m>]
            unfolding True[symmetric]
                proof (intro iarray-cong refl, goal-cases)
                    case jj:(1 jj)
                    consider (1) jj<j|(2) jj=j| (3) jj>j by linarith
                    thus ?case
                    proof cases
                    case 1
                    thus ?thesis using jj ij unfolding id(4)
                        by (subst (123456) IArray.of-fun-nth, auto)
                    next
                    case 2
                        thus ?thesis using jj i j
                            by (subst (5 6) IArray.of-fun-nth, auto simp: d-of-def)
                    next
                    case 3
                    thus ?thesis using jj i j
                        by (subst (7) IArray.of-fun-nth, auto simp: d-of-def)
                    qed
            qed
            qed
        qed
        qed
    qed
qed
lemma LLL-max-gso-norm-di: assumes \(d i\) : di = IArray.of-fun (d-of dmu) (Suc m)
    and m:m\not=0
```

shows LLL-max-gso-norm-di first di $=$ compute-max-gso-norm first dmu proof -
have $d i: j \leq m \Longrightarrow d i!!j=d$-of $d m u j$ for j unfolding $d i$ by (subst IArray.of-fun-nth, auto)
have $i d:(m=0)=$ False using m by auto
show ?thesis
proof (cases first)
case False
hence $i d^{\prime}:$ first $=$ False by auto
show ?thesis unfolding LLL-max-gso-norm-di-def compute-max-gso-norm-def id id' if-False
by (intro if-cong refl arg-cong[of - λ xs. case max-list-rats-with-index xs of (num, denom, $i) \Rightarrow$ (rat-of-int num / rat-of-int denom, i)],
unfold map-eq-conv, intro ballI, subst (1 2) di, auto)
next
case True
hence $i d$ ': first $=$ True by auto
show ?thesis unfolding LLL-max-gso-norm-di-def compute-max-gso-norm-def id id' if-False if-True
using m di[of 1]
by (simp add: d-of-def)
qed
qed
lemma LLL-max-gso-quot: assumes di: di =IArray.of-fun (d-of dmu) (Suc m)
and prods: state-iso-inv di-prods di
shows LLL-max-gso-quot di-prods $=$ compute-max-gso-quot dmu
proof -
have $d i: j \leq m \Longrightarrow d i!!j=d$-of $d m u j$ for j unfolding $d i$
by (subst IArray.of-fun-nth, auto)
show ?thesis unfolding LLL-max-gso-quot-def compute-max-gso-quot-def prods[unfolded state-iso-inv-def]
by (intro if-cong refl arg-cong[of - max-list-rats-with-index], unfold map-eq-conv Let-def, intro ballI,
subst IArray.of-fun-nth, force, unfold split, subst (123 4) di, auto)
qed
lemma LLL-max-gso-norm: assumes impl: state-impl-inv p mfs dmu state and $m: m \neq 0$
shows LLL-max-gso-norm first state $=$ compute-max-gso-norm first dmu
proof -
obtain mfsi dmui di mods where state: state $=(m f s i, d m u i, d i, \operatorname{mods})$
by (metis prod-cases3)
from impl[unfolded state state-impl-inv.simps]
have di: di = IArray.of-fun (d-of $d m u$) (Suc m) by auto
show?thesis using LLL-max-gso-norm-di[OF di m] unfolding LLL-max-gso-norm-def state split.
qed

```
lemma mod-of-gso-norm: \(m \neq 0 \Longrightarrow\) mod-of-gso-norm first \(m n=\)
    compute-mod-of-max-gso-norm first mn
    unfolding mod-of-gso-norm-def compute-mod-of-max-gso-norm-def bound-number-def
    by auto
lemma LLL-adjust-mod: assumes impl: state-impl-inv p mfs dmu state
    and res: basis-reduction-adjust-mod \(p\) first \(m f s\) dmu \(=\left(p^{\prime}, m s^{\prime}, d m u^{\prime}, g\right.\)-idx \()\)
    and res \(^{\prime}:\) LLL-adjust-mod \(p\) first state \(=\left(p^{\prime \prime}\right.\), state \({ }^{\prime}, g\)-idx \()\)
    and \(m: m \neq 0\)
shows state-impl-inv \(p^{\prime} m f^{\prime} d m u^{\prime}\) state \(^{\prime} \wedge p^{\prime \prime}=p^{\prime} \wedge g\)-idx \({ }^{\prime}=g\)-idx
proof -
    from \(L L L\)-max-gso-norm [OF impl m]
    have id: LLL-max-gso-norm first state \(=\) compute-max-gso-norm first \(d m u\) by
auto
    obtain \(b\) gi where norm: compute-max-gso-norm first \(d m u=(b, g i)\) by force
    obtain \(P\) where \(P\) : compute-mod-of-max-gso-norm first \(b=P\) by auto
    note res \(=\) res[unfolded basis-reduction-adjust-mod.simps Let-def \(P\) norm split]
    note \(r e s^{\prime}=\) res' \([\) unfolded LLL-adjust-mod-def id Let-def P norm split mod-of-gso-norm [OF
\(m]\) ]
    show ?thesis
    proof (cases \(P<p\) )
        case False
        thus ?thesis using res res' impl by (auto split: if-splits)
    next
        case True
        hence id: \((P<p)=\) True by auto
        obtain \(f s i\) dmui di mods where state: state \(=(f s i, d m u i, d i\), mods \()\) by (metis
prod-cases3)
            from impl[unfolded state state-impl-inv.simps]
            have impl: fsi = mfs di=IArray.of-fun (d-of dmu) (Suc m) dmui =IAr-
ray.of-fun ( \(\lambda i\). IArray.of-fun ( \(\lambda j\). dmu \(\$ \$(i, j)\) ) i) m by auto
    note res \(=\) res[unfolded id if-True]
    from res have \(m f^{\prime}: m f s^{\prime}=\operatorname{map}(\operatorname{map-vec}(\lambda x . x \operatorname{symmod} P)) m f s\)
                and \(p^{\prime}: p^{\prime}=P\)
            and \(d m u^{\prime}: d m u^{\prime}=\) mat \(m m(\lambda(i, j)\). if \(j<i\) then \(d m u \$ \$(i, j) \operatorname{symmod}(P\)
* vec (Suc m) (d-of dmu) \$ \(j\) * vec (Suc m) (d-of dmu) \$ Suc \(j\) ) else dmu \$\$ ( \(i\),
j))
            and gidx: \(g-i d x=g i\)
            by auto
    let ?mods = IArray.of-fun \((\lambda j . P * d i!!j * d i!!\) Suc \(j)(m-1)\)
    let ?dmu = IArray.of-fun ( \(\lambda i\). IArray.of-fun ( \(\lambda j\). dmui !! i !! j symmod ?mods
!! j) i) m
    note res \(^{\prime}=\) res'[unfolded id if-True state split impl(1) perform-adjust-mod-def
Let-def]
    from res \({ }^{\prime}\) have \(p^{\prime \prime}: p^{\prime \prime}=P\) and state \(e^{\prime}\) state \({ }^{\prime}=(\operatorname{map}(\operatorname{map}-v e c(\lambda x . x\) symmod
P)) mfs, ? dmu, di, ?mods)
            and gidx': \(g\) - \(i d x^{\prime}=g i\) by auto
            show ?thesis unfolding state' state-impl-inv.simps mfs' \(p^{\prime \prime} p^{\prime}\) gidx gidx'
```

```
    proof (intro conjI refl)
    show di = IArray.of-fun (d-of dmu') (Suc m) unfolding impl
        by (intro iarray-cong refl, auto simp: dmu' d-of-def)
    show ?dmu = IArray.of-fun (\lambdai. IArray.of-fun ( }\lambdaj.dmu'$$ (i,j)) i) 
    proof (intro iarray-cong refl, goal-cases)
        case (1 i j)
        hence j<m Suc j<Suc m j<Suc m j<m-1 by auto
            show ?case unfolding dmu' impl IArray.of-fun-nth[OF <i<m>] IAr-
ray.of-fun-nth[OF<j<i`]
                IArray.of-fun-nth[OF<j < m>] IArray.of-fun-nth[OF〈Suc j < Suc m>]
                IArray.of-fun-nth[OF<j<Suc m>] IArray.of-fun-nth[OF<j<m - 1>]
using 1 by auto
        qed
    qed
    qed
qed
lemma LLL-adjust-swap-add: assumes impl: state-impl-inv p mfs dmu state and Linv: LLL-invariant-mod-weak fs mfs dmu \(p\) first \(b\)
and res: basis-reduction-adjust-swap-add-step p first mfs dmu g-idx \(k=\left(p^{\prime}, m f s^{\prime}\right.\), \(\left.d m u^{\prime}, g-i d x x^{\prime}\right)\)
and res': LLL-adjust-swap-add p first state g-idx \(k=\left(p^{\prime \prime}\right.\), state \({ }^{\prime}, G\)-idx \(\left.{ }^{\prime}\right)\)
and \(k: k<m\) and \(k 0: k \neq 0\)
shows state-impl-inv \(p^{\prime} m f s^{\prime} d m u^{\prime}\) state \(p^{\prime \prime}=p^{\prime} G\)-idx \(=g\)-idx \({ }^{\prime}\)
\(i \leq m \Longrightarrow i \neq k \Longrightarrow\) di-of state \({ }^{\prime}!!i=\) di-of state \(!!i\)
proof (atomize(full), goal-cases)
case 1
from \(k\) have \(m: m \neq 0\) by auto
obtain mfsi dmui di mods where state: state \(=(m f s i, d m u i, d i, \operatorname{mods})\)
by (metis prod-cases3)
obtain state " where add': LLL-add-row p state \(k(k-1)=\) state \(^{\prime \prime}\) by blast
obtain \(m f s^{\prime \prime} d m u^{\prime \prime}\) where add: basis-reduction-mod-add-row p mfs dmu \(k\) ( \(k-\) \(1)=\left(m s^{\prime \prime}, d m u^{\prime \prime}\right)\) by force
obtain mfs3 dmu3 where swap: basis-reduction-mod-swap p mfs" \(d m u^{\prime \prime} k=\) (mfs3, dmu3) by force
obtain state3 where swap': LLL-swap-row p state \({ }^{\prime \prime} k=\) state3 by blast
obtain mfsi2 dmui2 di2 mods2 where state2: state \({ }^{\prime \prime}=(m f s i 2, d m u i 2, ~ d i 2\), mods2) by (cases state \({ }^{\prime \prime}\), auto)
obtain mfsi3 dmui3 di3 mods3 where state3: state3 \(=(m f s i 3, d m u i 3, d i 3\), mods3) by (cases state3, auto)
have length \(m f s i=m\) using \(\operatorname{impl}[\) unfolded state state-impl-inv.simps \(] L L L-i n v D-m o d w[O F\) Linv] by auto
note res' \(=\) res'[unfolded state LLL-adjust-swap-add-def LLL-swap-add-eq[OF k0
\(k\) this], folded state, unfolded add' swap' Let-def]
note res \(=\) res[unfolded basis-reduction-adjust-swap-add-step-def Let-def add split swap]
from \(L L L\)-add-row[OF impl Linv add add' \(k\) ] \(k 0\)
have impl': state-impl-inv \(p\) mfs" \(d m u^{\prime \prime}\) state" by auto
from basis-reduction-mod-add-row[OF Linv add \(k-k 0] k 0\)
```

obtain $f s^{\prime \prime}$ where Linv': LLL-invariant-mod-weak $f s^{\prime \prime} m f s^{\prime \prime} d m u^{\prime \prime} p$ first b by auto
from LLL-swap-row[OF impl' Linv' swap swap' k k0]
have impl3: state-impl-inv p mfs3 dmu3 state3 .
have di2: di2 $=d i$ using $a d d^{\prime}[$ unfolded state LLL-add-row-def Let-def split per-form-add-row-def state2]
by (auto split: if-splits)
have di3: di3 $=$ IArray.of-fun $(\lambda i$. if $i=k$ then $($ di2 !! Suc $k *$ di2 !! $(k-1)+$ dmui2 !! $k!!(k-1) *$ dmui2 $!!k!!(k-1))$ div di2 !! k else di2 !! i) (Suc m)
using swap'[unfolded state2 state3]
unfolding LLL-swap-row-def Let-def by simp
have di3: $i \leq m \Longrightarrow i \neq k \Longrightarrow d i 3!!i=d i!!i$
unfolding di2[symmetric] di3
by (subst IArray.of-fun-nth, auto)
show ?case
proof (cases $k-1=g-i d x)$
case True
hence $i d$: $(k-1=g$-idx $)=$ True by simp
note res $=$ res[unfolded id if-True]
note $r e s^{\prime}=$ res'[unfolded id if-True]
obtain mfsi4 dmui4 di4 mods4 where state ${ }^{\prime}:$ state $^{\prime}=\left(m f_{4} i_{4}, d m u i_{4}, ~ d i i_{4}\right.$, mods4) by (cases state ${ }^{\prime}$, auto)
from res'[unfolded state3 state' LLL-adjust-mod-def Let-def perform-adjust-mod-def] have $d i_{4}: d i i_{4}=d i 3$
by (auto split: if-splits prod.splits)
from LLL-adjust-mod[OF impl3 res res' m] di3 state state ${ }^{\prime}$ di4 res'
show ?thesis by auto
next
case False
hence $i d$: $(k-1=g$-idx $)=$ False by simp
note res $=$ res[unfolded id if-False]
note res $^{\prime}=$ res'[unfolded id if-False]
from impl3 res res' di3 state state3 show ?thesis by auto
qed
qed
lemma LLL-step: assumes impl: state-impl-inv p mfs dmu state
and Linv: LLL-invariant-mod-weak fs mfs dmu p first b
and res: basis-reduction-mod-step p first mfs dmu g-idx $k j=\left(p^{\prime}, m f s^{\prime}, d m u^{\prime}\right.$, g-idx $\left.{ }^{\prime}, k^{\prime}, j^{\prime}\right)$
and res': LLL-step p first state g-idx $k j=\left(\left(p^{\prime \prime}\right.\right.$, state ${ }^{\prime}, g$ - $\left.\left.i d x^{\prime \prime}\right), k^{\prime \prime}, j^{\prime \prime}\right)$
and $k: k<m$
shows state-impl-inv $p^{\prime} m s^{\prime} d m u^{\prime}$ state $^{\prime} \wedge k^{\prime \prime}=k^{\prime} \wedge p^{\prime \prime}=p^{\prime} \wedge j^{\prime \prime}=j^{\prime} \wedge g$-idx ${ }^{\prime \prime}$
$=g$-idx ${ }^{\prime}$
proof (cases $k=0$)
case True
thus ?thesis using res res' impl unfolding LLL-step-def basis-reduction-mod-step-def

```
by auto
next
    case k0: False
    hence id: \((k=0)=\) False by simp
    note res \(=\) res[unfolded basis-reduction-mod-step-def id if-False]
    obtain num denom where alph: quotient-of \(\alpha=\) (num,denom) by force
    obtain mfsi dmui di mods where state: state \(=(m f s i, d m u i, d i, \operatorname{mods})\)
        by (metis prod-cases3)
    note res \(^{\prime}=\) res' \({ }^{\prime}\) unfolded LLL-step-def id if-False Let-def state split alph, folded
state]
    from \(k 0\) have \(k k 1: k-1<k\) by auto
    note res \(=\) res[unfolded Let-def alph split]
    obtain state " where addi: LLL-swap-add \(p\) state \(k=\) state \(^{\prime \prime}\) by auto
    from impl[unfolded state state-impl-inv.simps]
    have \(d i\) : di = IArray.of-fun ( \(d\)-of dmu) (Suc m) by auto
    have \(i d\) : \(d i!!k=d\)-of \(d m u k\)
        \(d i!!(\) Suc \(k)=d\)-of dmu (Suc \(k\) )
        \(d i!!(k-1)=d\)-of \(d m u(k-1)\)
        unfolding \(d i\) using \(k\)
        by (subst IArray.of-fun-nth, force, force)+
    have length \(m f s i=m\) using \(i m p l[\) unfolded state state-impl-inv.simps \(] L L L-i n v D-m o d w[O F\)
Linv] by auto
    note res \(^{\prime}=\) res' \([\) unfolded \(i d]\)
    let ?cond \(=d\)-of \(d m u k * d\)-of \(d m u k * d e n o m \leq n u m * d\)-of \(d m u(k-1) * d\)-of
dmu (Suc k)
    show ?thesis
    proof (cases ?cond)
        case True
        from True res res' state show ?thesis using impl by auto
    next
        case False
        hence cond: ?cond = False by simp
        note res \(=\) res[unfolded cond if-False]
        note res \(^{\prime}=\) res' \([\) unfolded cond if-False]
        let ?step \(=\) basis-reduction-adjust-swap-add-step \(p\) first mfs dmu \(g\)-idx \(k\)
        let ? step \(^{\prime}=L L L\)-adjust-swap-add \(p\) first state \(g\)-idx \(k\)
        from res have step: ?step \(=\left(p^{\prime}, m f s^{\prime}, d m u^{\prime}, g\right.\)-idx \()\) by (cases ?step, auto)
        note res \(=\) res[unfolded step split]
        from res' have step': ?step \({ }^{\prime}=\left(p^{\prime \prime}\right.\), state \(^{\prime}, g\) - \(\left.i d x^{\prime \prime}\right)\) by auto
        note res' \(=\) res'[unfolded step \(\left.{ }^{\prime}\right]\)
        from LLL-adjust-swap-add[OF impl Linv step step' \(k\) k0]
        show ?thesis using res res' by auto
    qed
qed
```

lemma LLL-main: assumes impl: state-impl-inv p mfs dmu state
and Linv: LLL-invariant-mod fs mfs dmu p first $b i$
and res: basis-reduction-mod-main p first mfs dmu g-idx $i k=\left(p^{\prime}, m f s^{\prime}, d m u '\right)$
and res': LLL-main p first state g - $i d x i k=\left(p i^{\prime}\right.$, state $\left.{ }^{\prime}\right)$
shows state-impl-inv $p^{\prime} m f s^{\prime} d m u^{\prime}$ state ${ }^{\prime} \wedge p i^{\prime}=p^{\prime}$
using assms
proof (induct LLL-measure i fs arbitrary: mfs dmu state fs p b $k i g$-idx rule: less-induct)
case (less fs i mfs dmu state p bkg-idx)
note $\mathrm{impl}=\operatorname{less}(2)$
note Linv $=\operatorname{less}(3)$
note res $=\operatorname{less}(4)$
note $r e s^{\prime}=\operatorname{less}(5)$
note $I H=\operatorname{less}(1)$
note res $=$ res[unfolded basis-reduction-mod-main.simps[of $-\cdots-k]]$
note res $^{\prime}=$ res'[unfolded $L L L$-main.simps $[$ of $\left.-\cdots-k]\right]$
note Linvw $=L L L$-mod-inv-to-weak $[$ OF Linv]
show ? case
proof (cases $i<m$)
case False
thus ?thesis using res res ${ }^{\prime}$ impl by auto
next
case i : True
hence $i d:(i<m)=$ True by simp
obtain $P^{\prime \prime}$ state ${ }^{\prime \prime} I^{\prime \prime} K^{\prime \prime} G$-idx" where step ${ }^{\prime \prime}$:LLL-step p first state g-idx ik $=\left(\left(P^{\prime \prime}\right.\right.$, state ${ }^{\prime \prime}, G$-idx $\left.\left.{ }^{\prime \prime}\right), I^{\prime \prime}, K^{\prime \prime}\right)$
by (metis prod-cases3)
obtain $p^{\prime \prime} m f s^{\prime \prime} d m u^{\prime \prime} i^{\prime \prime} k^{\prime \prime} g$-idx" where step: basis-reduction-mod-step p
first mfs dmu g-idx ik=($p^{\prime \prime}, m f s^{\prime \prime}, d m u^{\prime \prime}, g$ - $\left.i d x^{\prime \prime}, i^{\prime \prime}, k^{\prime \prime}\right)$
by (metis prod-cases3)
from $L L L$-step $\left[O F\right.$ impl Linvw step step $\left.{ }^{\prime} i\right]$
have impl": state-impl-inv $p^{\prime \prime} m f s^{\prime \prime} d m u^{\prime \prime}$ state" and $I D: I^{\prime \prime}=i^{\prime \prime} K^{\prime \prime}=k^{\prime \prime}$
$P^{\prime \prime}=p^{\prime \prime} G$-idx ${ }^{\prime \prime}=g$-idx ${ }^{\prime \prime}$ by auto
from basis-reduction-mod-step[OF Linv step i] obtain
$f s^{\prime \prime} b^{\prime \prime}$ where
Linv": LLL-invariant-mod $f^{\prime \prime} m f s^{\prime \prime} d m u^{\prime \prime} p^{\prime \prime}$ first $b^{\prime \prime} i^{\prime \prime}$ and
decr: LLL-measure $i^{\prime \prime} f_{s}{ }^{\prime \prime}<L L L$-measure ifs by auto
note res $=$ res[unfolded id if-True step split]
note res $^{\prime}=$ res'[unfolded id if-True step' split ID]
show ?thesis
by (rule IH[OF decr impl" Linv" res res \rceil)
qed
qed
lemma LLL-iso-main-inner: assumes impl: state-impl-inv p mfs dmu state and di-prods: state-iso-inv di-prods (di-of state)
and Linv: LLL-invariant-mod-weak fs mfs dmu p first b
and res: basis-reduction-iso-main p first mfs dmu g-idx $k=\left(p^{\prime}, m f s^{\prime}, d m u u^{\prime}\right)$
and res': LLL-iso-main-inner p first state di-prods g-idx $k=\left(p i^{\prime}\right.$, state $\left.{ }^{\prime}\right)$
and $m: m>1$
shows state-impl-inv $p^{\prime} m f s^{\prime} d m u^{\prime}$ state ${ }^{\prime} \wedge p i^{\prime}=p^{\prime}$
using assms(1-5)
proof (induct LLL-measure $(m-1) f s$ arbitrary: $m f s d m u$ state $f s p b k d i$-prods g-idx rule: less-induct)
case (less fs mfs dmu state p b k di-prods g-idx)
note $\mathrm{impl}=\operatorname{less}(2)$
note di-prods $=\operatorname{less}(3)$
note $\operatorname{Linv}=\operatorname{less(4)}$
note res $=\operatorname{less}(5)$
note $r e s^{\prime}=\operatorname{less}(6)$
note $I H=\operatorname{less}(1)$
obtain mfsi dmui di mods where state: state $=(m f s i, d m u i, d i, \operatorname{mods})$
by (metis prod-cases4)
from di-prods state have di-prods: state-iso-inv di-prods di by auto
obtain num denom idx where quot': LLL-max-gso-quot di-prods $=($ num, denom, $i d x)$
by (metis prod-cases3)
note $i n v=L L L-i n v D-\bmod w[O F L i n v]$
obtain na da where alph: quotient-of $\alpha=(n a, d a)$ by force
from impl[unfolded state] have di: di =IArray.of-fun (d-of dmu) (Suc m) by auto
from LLL-max-gso-quot[OF di di-prods] have quot: compute-max-gso-quot dmu $=L L L-m a x-g s o-q u o t ~ d i$-prods ..
obtain $c m p$ where $c m p:(n a * \operatorname{denom}<n u m * d a)=c m p$ by force
have $(m>1)=$ True using m by auto
note res $=$ res[unfolded basis-reduction-iso-main.simps $[$ of $-\cdots-k]$ this if-True
Let-def quot quot' split alph cmp]
note res $^{\prime}=$ res $^{\prime}[$ unfolded $L L L$-iso-main-inner.simps $[$ of $-\cdots-k]$ state split Let-def quot' alph cmp, folded state]
note $\mathrm{cmp}=$ compute-max-gso-quot-alpha[OF Linv quot[unfolded quot'] alph cmp m]
show ?case
proof (cases cmp)
case False
thus ?thesis using res res ${ }^{\prime} \mathrm{impl}$ by auto
next
case True
hence $i d$: $c m p=$ True by simp
note $c m p=c m p(1)[O F$ True]
obtain state " $P^{\prime \prime} G$-idx" where step': LLL-adjust-swap-add p first state g-idx $i d x=\left(P^{\prime \prime}\right.$, state $\left.{ }^{\prime \prime}, G-i d x^{\prime \prime}\right)$
by (metis prod.exhaust)
obtain $m f s^{\prime \prime} d m u^{\prime \prime} p^{\prime \prime} g$-idx" where step: basis-reduction-adjust-swap-add-step p first mfs dmu g-idx idx $=\left(p^{\prime \prime}, m f s^{\prime \prime}, d m u^{\prime \prime}, g\right.$ - $\left.i d x^{\prime \prime}\right)$ by (metis prod-cases3)
obtain mfsi2 dmui2 di2 mods2 where state2: state ${ }^{\prime \prime}=(m f s i 2, d m u i 2, d i 2$, mods2) by (cases state ${ }^{\prime \prime}$, auto)
note res $=$ res[unfolded id if-True step split]
note res' $^{\prime}=$ res'[unfolded id if-True step' state2 split, folded state2]
from $c m p$ have $i d x 0: i d x \neq 0$ and $i d x: i d x<m$ and $i n e q: \neg d$-of $d m u i d x *$ d-of $d m u i d x * d a \leq n a * d$-of $d m u(i d x-1) * d$-of $d m u(S u c i d x)$
by auto
from basis-reduction-adjust-swap-add-step[OF Linv step alph ineq idx idx0]
obtain $f s^{\prime \prime} b^{\prime \prime}$ where Linv": LLL-invariant-mod-weak fs ${ }^{\prime \prime} m f s^{\prime \prime} d m u^{\prime \prime} p^{\prime \prime}$ first $b^{\prime \prime}$ and
meas: LLL-measure $(m-1) f s^{\prime \prime}<L L L$-measure $(m-1) f s$ by auto
from LLL-adjust-swap-add[OF impl Linv step step' idx idx0]
have impl": state-impl-inv $p^{\prime \prime} m f s^{\prime \prime} d m u^{\prime \prime}$ state ${ }^{\prime \prime}$ and $P^{\prime \prime}: P^{\prime \prime}=p^{\prime \prime} G$-idx ${ }^{\prime \prime}=$ g-idx"
and di-prod-upd: $\wedge i . i \leq m \Longrightarrow i \neq i d x \Longrightarrow d i 2!!i=d i!!i$
using state state2 by auto
have di-prods: state-iso-inv (IArray.of-fun
(λi. if $i d x<i \vee i+2<i d x$ then di-prods !! i
else case di-prods !! i of $(l, r) \Rightarrow$ if $i+1=i d x$ then (di2 !! idx * di2 !!
$i d x, r)$ else $(l$, di2 $!!(i+2) *$ di2 $!!i))$ ($m-1$)) di2 unfolding state-iso-inv-def
by (intro iarray-cong', insert di-prod-upd, unfold di-prods[unfolded state-iso-inv-def], subst (1 2) IArray.of-fun-nth, auto)
show ?thesis
by (rule IH[OF meas impl ${ }^{\prime \prime}-$ Linv $^{\prime \prime}$ res res ${ }^{\prime}\left[\right.$ unfolded step $\left.\left.{ }^{\prime} P^{\prime \prime}\right]\right]$, insert di-prods state2, auto)
qed
qed
lemma LLL-iso-main: assumes impl: state-impl-inv p mfs dmu state
and Linv: LLL-invariant-mod-weak fs mfs dmu p first b
and res: basis-reduction-iso-main p first mfs dmu g-idx $k=\left(p^{\prime}, m f s^{\prime}, d m u{ }^{\prime}\right)$
and res': LLL-iso-main p first state g - $i d x k=\left(p i^{\prime}\right.$, state $\left.{ }^{\prime}\right)$
shows state-impl-inv $p^{\prime} m f s^{\prime} d m u^{\prime}$ state ${ }^{\prime} \wedge p i^{\prime}=p^{\prime}$
proof (cases $m>1$)
case True
from LLL-iso-main-inner[OF impl-Linv res - True, unfolded state-iso-inv-def, OF refl, of pi' state] res' True
show ?thesis unfolding LLL-iso-main-def by (cases state, auto)
next
case False
thus ?thesis using res res' impl unfolding LLL-iso-main-def
basis-reduction-iso-main.simps $[$ of $-\cdots-k]$ by auto
qed
lemma LLL-initial: assumes res: compute-initial-state first $=(p, m f s, d m u, g$-idx $)$
and res': LLL-initial first $=\left(p^{\prime}\right.$, state, g - idx $)$
and $m: m \neq 0$
shows state-impl-inv p mfs dmu state $\wedge p^{\prime}=p \wedge g$ - $i d x^{\prime}=g$ - $i d x$
proof -
obtain b gi where norm: compute-max-gso-norm first dmu-initial $=(b, g i)$ by
force
obtain P where P : compute-mod-of-max-gso-norm first $b=P$ by auto
define $d i$ where $d i=$ IArray.of-fun (λi. if $i=0$ then 1 else $d \mu$-impl fs-init !! (i
note res $=$ res[unfolded compute-initial-state-def Let-def P norm split]
have di: di =IArray.of-fun (d-of dmu-initial) (Suc m)
unfolding di-def dmu-initial-def Let-def d-of-def
by (intro iarray-cong refl if-cong, auto)
note norm $^{\prime}=L L L$-max-gso-norm-di[OF di m, of first, unfolded norm $]$
note res $^{\prime}=$ res' $[$ unfolded LLL-initial-def Let-def, folded di-def, unfolded norm'
P split mod-of-gso-norm[OF m]]
from res have $p: p=P$ and $m f s: m f s=$ compute-initial-mfs p and $d m u: d m u$
$=$ compute-initial-dmu $P d m u$-initial
and g - $i d x: g$ - $i d x=g i$
by auto
let ?mods = IArray.of-fun $(\lambda j . P * d i!!j * d i!!S u c j)(m-1)$
have $d i^{\prime}: d i=$ IArray.of-fun (d-of (compute-initial-dmu P dmu-initial)) (Suc m)
unfolding $d i$
by (intro iarray-cong refl, auto simp: compute-initial-dmu-def d-of-def)
from res $^{\prime}$ have $p^{\prime}: p^{\prime}=P$ and $g-i d x^{\prime}: g-i d x^{\prime}=g i$ and state:
state $=($ compute-initial-mfs P, IArray.of-fun (λi. IArray.of-fun $(\lambda j$. $d \mu$-impl
fs-init !! i !! j symmod ?mods !! j) i) m, di, ? mods $)$
by auto
show ?thesis unfolding $m f s$ s state $p^{\prime} d m u$ state-impl-inv.simps g-idx' g-idx
proof (intro conjI refl di' iarray-cong, goal-cases)
case ($1 i j$)
hence $j<m$ Suc $j<$ Suc $m j<$ Suc $m j<m-1$ by auto
thus ?case unfolding compute-initial-dmu-def di
IArray.of-fun-nth[OF $\langle j<m\rangle]$
IArray.of-fun-nth[OF〈Suc $j<S u c ~ m>]$
IArray.of-fun-nth $[O F<j<S u c m>]$
IArray.of-fun-nth $[O F<j<m-1\rangle]$
unfolding dmu-initial-def Let-def using 1 by auto
qed
qed
lemma LLL-add-rows-loop: assumes impl: state-impl-inv p mfs dmu state
and Linv: LLL-invariant-mod fs mfs dmu p b first i
and res: basis-reduction-mod-add-rows-loop p mfs dmu $i j=\left(m s^{\prime}, d m u{ }^{\prime}\right)$
and res': LLL-add-rows-loop p state $i j=$ state $^{\prime}$
and $j: j \leq i$
and $i: i<m$
shows state-impl-inv $p m f s^{\prime} d m u^{\prime}$ state ${ }^{\prime}$
using assms (1-5)
proof (induct j arbitrary: fs mfs dmu state)
case (Suc j)
note $i m p l=S u c(2)$
note Linv $=\operatorname{Suc}(3)$
note res $=$ Suc(4)
note $r e s^{\prime}=\operatorname{Suc}(5)$
note $I H=\operatorname{Suc}(1)$
from Suc have $j: j<i$ and $j i: j \leq i$ by auto
obtain mfs1 dmu1 where add: basis-reduction-mod-add-row p mfs dmu ij= (mfs1, dmu1) by force
note res $=$ res[unfolded basis-reduction-mod-add-rows-loop.simps Let-def add split]
obtain state1 where add': LLL-add-row p state $i j=$ state 1 by auto
note res' $=$ res'[unfolded LLL-add-rows-loop.simps Let-def add']
note Linvw $=L L L$-mod-inv-to-weak $[$ OF Linv]
from $L L L$-add-row[OF impl Linvw add add' $i j]$
have impl1: state-impl-inv p mfs1 dmu1 state1.
from basis-reduction-mod-add-row[OF Linvw add $i j$] Linv j
obtain $f_{s 1} 1$ where Linv1: LLL-invariant-mod $f_{s 1} m f s 1 d m u 1 p$ birst i by auto show ?case using $I H[O F$ impl1 Linv1 res res' $j i]$.
qed auto
lemma LLL-add-rows-outer-loop: assumes impl: state-impl-inv p mfs dmu state and Linv: LLL-invariant-mod fs mfs dmu p first $b m$
and res: basis-reduction-mod-add-rows-outer-loop p mfs dmu $i=\left(m s^{\prime}, d m u\right.$ ')
and res': LLL-add-rows-outer-loop p state $i=$ state $^{\prime}$
and $i: i \leq m-1$
shows state-impl-inv p mfs' ${ }^{\prime} d m u^{\prime}$ state ${ }^{\prime}$
using assms
proof (induct i arbitrary: $f s m f s ~ d m u$ state $m f s^{\prime}{ }^{\prime} d m u^{\prime}$ state')
case (Suc i)
note $i m p l=S u c(2)$
note Linv $=\operatorname{Suc}(3)$
note res $=$ Suc(4)
note res $^{\prime}=\operatorname{Suc}(5)$
note $i=\operatorname{Suc}(6)$
note $I H=\operatorname{Suc}(1)$
from i have im: $i<m i \leq m-1$ Suc $i<m$ by auto
obtain mfs1 dmu1 where add: basis-reduction-mod-add-rows-outer-loop p mfs $d m u i=(m f s 1, d m u 1)$ by force
note res $=$ res[unfolded basis-reduction-mod-add-rows-outer-loop.simps Let-def add split]
obtain state1 where add': LLL-add-rows-outer-loop p state $i=$ state 1 by auto
note res ${ }^{\prime}=$ res $^{\prime}[$ unfolded LLL-add-rows-outer-loop.simps Let-def add']
from $I H[$ OF impl Linv add add' $\operatorname{im}(2)]$
have impl1: state-impl-inv p mfs1 dmu1 state1 .
from basis-reduction-mod-add-rows-outer-loop-inv[OF Linv add[symmetric] im(1)]
obtain $f_{s} 1$ where Linv1: LLL-invariant-mod $f_{s} 1 m f s 1 d m u 1 p$ first $b m$ by auto
from basis-reduction-mod-add-rows-loop-inv ${ }^{\prime}\left[O F\right.$ Linv1 res im(3)] obtain $f_{s}{ }^{\prime}$ where

Linv': LLL-invariant-mod $f s^{\prime} m f s^{\prime} d m u^{\prime} p$ first $b m$ by auto
from LLL-add-rows-loop[OF impl1 LLL-invariant-mod-to-weak-m-to-i(1)[OF Linv1] res res' le-refl im(3)] i
show ?case by auto
qed auto

5.3 Soundness of implementation

We just prove that the concrete implementations have the same input-output-behaviour as the abstract versions of Storjohann's algorithms.

```
lemma LLL-reduce-basis: LLL-reduce-basis = reduce-basis-mod
proof (cases m=0)
    case True
    from LLL-invD[OF reduce-basis-mod-inv[OF refl]] True
    have reduce-basis-mod = [] by auto
    thus ?thesis using True unfolding LLL-reduce-basis-def by auto
next
    case False
    hence idm: (m=0)= False by auto
    let ?first = False
    obtain p1 mfs1 dmu1 g-idx1 where init: compute-initial-state ?first = (p1,mfs1,
dmu1,g-idx1)
    by (metis prod-cases3)
    obtain p1'state1 g-idx1' where init':LLL-initial ?first = (p1', state1, g-idx1')
        by (metis prod.exhaust)
    from LLL-initial[OF init init' False]
    have impl1: state-impl-inv p1 mfs1 dmu1 state1 and id: p1'= p1 g-idx1'=
g-idx1 by auto
    from LLL-initial-invariant-mod [OF init] obtain fs1 b1 where
        inv1:LLL-invariant-mod fs1 mfs1 dmu1 p1 ?first b1 0 by auto
    obtain p2 mfs2 dmu2 where main: basis-reduction-mod-main p1 ?first mfs1
dmu1 g-idx1 0 0 = (p2,mfs2, dmu2)
    by (metis prod-cases3)
    from basis-reduction-mod-main[OF inv1 main] obtain fs2 b2 where
            inv2: LLL-invariant-mod fs2 mfs2 dmu2 p2 ?first b2 m by auto
    obtain p2'state2 where main': LLL-main p1 ?first state1 g-idx1 0 0 = (p\mp@subsup{2}{}{\prime}
state2)
            by (metis prod.exhaust)
    from LLL-main[OF impl1 inv1 main, unfolded id, OF main]
    have impl2: state-impl-inv p2 mfs2 dmu2 state2 and p2: p2' = p2 by auto
    obtain mfs3 dmu3 where outer: basis-reduction-mod-add-rows-outer-loop p2
mfs2 dmu2 (m-1) = (mfs3, dmu3) by force
    obtain mfsi3 dmui3 di3 mods3 where outer': LLL-add-rows-outer-loop p2 state2
(m-1) = (mfsi3, dmui3, di3, mods3)
    by (metis prod-cases4)
    from LLL-add-rows-outer-loop[OF impl2 inv2 outer outer' le-refl]
    have state-impl-inv p2 mfs3 dmu3 (mfsi3, dmui3, di3, mods3).
    hence identity: mfs3 = mfsi3 unfolding state-impl-inv.simps by auto
    note res = reduce-basis-mod-def[unfolded init main split Let-def outer]
    note res' = LLL-reduce-basis-def[unfolded init' Let-def main' id split p2 outer'
idm if-False]
    show ?thesis unfolding res res' identity ..
qed
```

```
lemma LLL-reduce-basis-iso:LLL-reduce-basis-iso = reduce-basis-iso
proof (cases m=0)
    case True
    from LLL-invD[OF reduce-basis-iso-inv[OF refl]] True
    have reduce-basis-iso = [] by auto
    thus ?thesis using True unfolding LLL-reduce-basis-iso-def by auto
next
    case False
    hence idm: (m=0) = False by auto
    let ?first = False
    obtain p1 mfs1 dmu1 g-idx1 where init: compute-initial-state ?first = (p1,mfs1,
dmu1, g-idx1)
    by (metis prod-cases3)
    obtain p1'state1 g-idx1' where init':LLL-initial ?first = (p1', state1,g-idx1')
        by (metis prod.exhaust)
    from LLL-initial[OF init init' False]
    have impl1: state-impl-inv p1 mfs1 dmu1 state1 and id: p1'= p1 g-idx1'=
g-idx1 by auto
    from LLL-initial-invariant-mod[OF init] obtain fs1 b1 where
        inv1:LLL-invariant-mod-weak fs1 mfs1 dmu1 p1 ?first b1
        by (auto simp: LLL-invariant-mod-weak-def LLL-invariant-mod-def)
    obtain p2 mfs2 dmu2 where main: basis-reduction-iso-main p1 ?first mfs1 dmu1
g-idx1 0 = (p2,mfs2,dmu2)
        by (metis prod-cases3)
    from basis-reduction-iso-main[OF inv1 main] obtain fs2 b2 where
        inv2: LLL-invariant-mod fs2 mfs2 dmu2 p2 ?first b2 m by auto
    obtain p2'state2 where main': LLL-iso-main p1 ?first state1 g-idx1 0 = (p2',
state2)
        by (metis prod.exhaust)
    from LLL-iso-main[OF impl1 inv1 main, unfolded id, OF main]
    have impl2: state-impl-inv p2 mfs2 dmu2 state2 and p2: p2' = p2 by auto
    obtain mfs3 dmu3 where outer: basis-reduction-mod-add-rows-outer-loop p2
mfs2 dmu2 (m - 1) = (mfs3,dmu3) by force
    obtain mfsi3 dmui3 di3 mods3 where outer': LLL-add-rows-outer-loop p2 state2
(m-1) = (mfsi3, dmui3, di3, mods3)
    by (metis prod-cases4)
    from LLL-add-rows-outer-loop[OF impl2 inv2 outer outer' le-refl]
    have state-impl-inv p2 mfs3 dmu3 (mfsi3, dmui3, di3, mods3).
    hence identity: mfs3 = mfsi3 unfolding state-impl-inv.simps by auto
    note res = reduce-basis-iso-def[unfolded init main split Let-def outer]
    note res' = LLL-reduce-basis-iso-def[unfolded init' Let-def main' id split p2 outer'
idm if-False]
    show ?thesis unfolding res res' identity ..
qed
lemma LLL-short-vector: assumes m: m\not=0
    shows LLL-short-vector = short-vector-mod
proof -
```

```
    let ?first = True
    obtain p1 mfs1 dmu1 g-idx1 where init: compute-initial-state ?first = (p1,mfs1,
dmu1,g-idx1)
    by (metis prod-cases3)
    obtain p1'state1 g-idx1' where init':LLL-initial ?first = (p1', state1,g-idx1')
        by (metis prod.exhaust)
    from LLL-initial[OF init init' m]
    have impl1: state-impl-inv p1 mfs1 dmu1 state1 and id: p1' = p1 g-idx1'=
g-idx1 by auto
    from LLL-initial-invariant-mod[OF init] obtain fs1 b1 where
        inv1:LLL-invariant-mod fs1 mfs1 dmu1 p1 ?first b1 0 by auto
    obtain p2 mfs2 dmu2 where main: basis-reduction-mod-main p1 ?first mfs1
dmu1 g-idx1 0 0 = (p2,mfs2,dmu2)
    by (metis prod-cases3)
    from basis-reduction-mod-main[OF inv1 main] obtain fs2 b2 where
        inv2: LLL-invariant-mod fs2 mfs2 dmu2 p2 ?first b2 m by auto
    obtain p\mp@subsup{2' mfsi2 dmui2 di2 mods2 where main': LLL-main p1 ?first state1}{}{\prime}=\mp@code{m}
g-idx1 0 0 = (p\mp@subsup{2}{}{\prime},(mfsi2, dmui2, di2, mods2))
    by (metis prod.exhaust)
    from LLL-main[OF impl1 inv1 main, unfolded id, OF main']
    have impl2: state-impl-inv p2 mfs2 dmu2 (mfsi2, dmui2, di2, mods2) and p2:
p\mp@subsup{2}{}{\prime}}= p2 by aut
    hence identity:mfs2 = mfsi2 unfolding state-impl-inv.simps by auto
    note res = short-vector-mod-def[unfolded init main split Let-def]
    note res' = LLL-short-vector-def[unfolded init' Let-def main' id split p2]
    show ?thesis unfolding res res' identity ..
qed
lemma LLL-short-vector-iso: assumes m: m\not=0
    shows LLL-short-vector-iso = short-vector-iso
proof -
    let ?first = True
    obtain p1 mfs1 dmu1 g-idx1 where init: compute-initial-state?first = (p1,mfs1,
dmu1,g-idx1)
    by (metis prod-cases3)
    obtain p1'state1 g-idx1' where init': LLL-initial?first = (p1', state1,g-idx1')
        by (metis prod.exhaust)
    from LLL-initial[OF init init' m]
    have impl1: state-impl-inv p1 mfs1 dmu1 state1 and id: p1'= p1 g-idx1'=
g-idx1 by auto
    from LLL-initial-invariant-mod[OF init] obtain fs1 b1 where
        inv1:LLL-invariant-mod-weak fs1 mfs1 dmu1 p1 ?first b1
        by (auto simp: LLL-invariant-mod-weak-def LLL-invariant-mod-def)
    obtain p2 mfs2 dmu2 where main: basis-reduction-iso-main p1?first mfs1 dmu1
g-idx1 0 = (p2,mfs2, dmu2)
            by (metis prod-cases3)
    from basis-reduction-iso-main[OF inv1 main] obtain fs2 b2 where
```

inv2: LLL-invariant-mod fs2 mfs2 dmu2 p2 ?first b2 m by auto obtain $p^{2}{ }^{\prime}$ mfsi2 dmui2 di2 mods2 where main': LLL-iso-main p1?first state1 g-idx1 $0=\left(p 2^{\prime},(m f s i 2, d m u i 2\right.$, di2, mods2 $\left.)\right)$
by (metis prod.exhaust)
from LLL-iso-main[OF impl1 inv1 main, unfolded id, OF main]
have impl2: state-impl-inv p2 mfs2 dmu2 ($m f s i 2$, dmui2, di2, mods2) and p2: $p 2^{\prime}=p \mathcal{Z}$ by auto
hence identity: $m f s 2=m f s i 2$ unfolding state-impl-inv.simps by auto
note res $=$ short-vector-iso-def[unfolded init main split Let-def]
note res $^{\prime}=L L L$-short-vector-iso-def[unfolded init' Let-def main' id split p2]
show ?thesis unfolding res res' identity ..
qed
end
end

6 Generalization of the statement about the uniqueness of the Hermite normal form

theory Uniqueness-Hermite
imports Hermite.Hermite
begin

instance int :: bezout-ring-div
proof qed
lemma map-matrix-rat-of-int-mult:
shows map-matrix rat-of-int $(A * * B)=($ map-matrix rat-of-int $A) * *($ map-matrix rat-of-int B)
unfolding map-matrix-def matrix-matrix-mult-def by auto
lemma det-map-matrix:
fixes A :: int ${ }^{\text {人 }} n::$ mod-type ${ }^{\wedge 1} n::$ mod-type
shows det (map-matrix rat-of-int A) $=$ rat-of-int $(\operatorname{det} A)$
unfolding map-matrix-def unfolding Determinants.det-def by auto
lemma inv-Z-imp-inv- Q :
fixes A :: int ${ }^{\text {^' }} n::$ mod-type ${ }^{\wedge} n::$ mod-type
assumes inv- A : invertible A
shows invertible (map-matrix rat-of-int A)
proof -
have is-unit ($\operatorname{det} A$) using inv-A invertible-iff-is-unit by blast
hence $i s$-unit (det (map-matrix rat-of-int A))
by (simp add: det-map-matrix dvd-if-abs-eq)
thus ?thesis using invertible-iff-is-unit by blast

qed

```
lemma upper-triangular-Z-eq-Q:
    upper-triangular (map-matrix rat-of-int A) = upper-triangular }
    unfolding upper-triangular-def by auto
lemma invertible-and-upper-diagonal-not0:
    fixes }H:::\mp@subsup{\mathrm{ int }}{}{\wedge\prime}n::mod-type^' n::mod-type
    assumes inv-H: invertible (map-matrix rat-of-int H) and up-H: upper-triangular
H
    shows H$ i $ i\not=0
proof -
    let ?RAT-H=(map-matrix rat-of-int H)
    have up-RAT-H: upper-triangular ?RAT-H
        using up-H unfolding upper-triangular-def by auto
    have is-unit (det ?RAT-H) using inv-H using invertible-iff-is-unit by blast
    hence ?RAT-H $ i$ i\not=0 using inv-H up-RAT-H is-unit-diagonal
        by (metis not-is-unit-0)
    thus?thesis by auto
qed
lemma diagonal-least-nonzero:
    fixes H :: int^`n::mod-type^'n::mod-type
    assumes H: Hermite associates residues H
    and inv-H: invertible (map-matrix rat-of-int H) and up-H: upper-triangular H
    shows (LEAST n.H $i$n\not=0) = i
proof (rule Least-equality)
    show H$ i$ i\not=0 by (rule invertible-and-upper-diagonal-not0[OF inv-H up-H])
    fix y
    assume Hiy:H$i$y\not=0
    show i\leqy
        using up-H unfolding upper-triangular-def
        by (metis (poly-guards-query) Hiy not-less)
qed
lemma diagonal-in-associates:
    fixes H :: int ^'n::mod-type``n::mod-type
    assumes H: Hermite associates residues H
    and inv-H: invertible (map-matrix rat-of-int H) and up-H: upper-triangular H
    shows H$i$i\inassociates
proof -
    have H$ i$i\not=0 by (rule invertible-and-upper-diagonal-not0[OF inv-H up-H])
    hence \neg is-zero-row i H unfolding is-zero-row-def is-zero-row-upt-k-def ncols-def
by auto
    thus ?thesis using H unfolding Hermite-def unfolding diagonal-least-nonzero[OF
H inv-H up-H]
    by auto
qed
```

```
lemma above-diagonal-in-residues:
    fixes }H\mathrm{ :: int ^' n::mod-type`'n::mod-type
    assumes H: Hermite associates residues H
    and inv-H: invertible (map-matrix rat-of-int H) and up-H: upper-triangular H
    and j-i: j<i
    shows H$j$(LEAST n.H$ i$n\not=0)\in residues(H$ i$(LEAST n.H$
i$n\not=0))
proof -
    have H$ i$i\not=0 by (rule invertible-and-upper-diagonal-not0[OF inv-H up-H])
    hence \neg is-zero-row i H unfolding is-zero-row-def is-zero-row-upt-k-def ncols-def
by auto
    thus ?thesis using H j-i unfolding Hermite-def unfolding diagonal-least-nonzero[OF
H inv-H up-H]
        by auto
qed
```

lemma Hermite-unique-generalized:
fixes $K::$ int $^{\wedge \prime} n::$ mod-type ${ }^{\wedge} n::$ mod-type
assumes $A-P H: A=P * * H$
and $A-Q K: A=Q * * K$
and inv-A: invertible (map-matrix rat-of-int A)
and inv-P: invertible P
and inv- Q : invertible Q
and H : Hermite associates residues H
and K : Hermite associates residues K
shows $H=K$
proof -
let $? R A T=$ map-matrix rat-of-int
have cs-residues: Complete-set-residues residues using H unfolding Hermite-def
by simp
have inv-H: invertible (?RAT H)
proof -
have ?RAT $A=$?RAT $P * * ? R A T H$ using $A-P H$ map-matrix-rat-of-int-mult
by blast
thus ?thesis
by (metis inv-A invertible-left-inverse matrix-inv(1) matrix-mul-assoc)
qed
have inv-K: invertible (?RAT K)
proof -
have ?RAT $A=$? RAT $Q * *$? RAT K using A-QK map-matrix-rat-of-int-mult
by blast
thus ?thesis
by (metis inv-A invertible-left-inverse matrix-inv(1) matrix-mul-assoc)
qed
define U where $U=($ matrix-inv $P) * * Q$
have inv- U : invertible U
by (metis U-def inv- P inv- Q invertible-def invertible-mult matrix-inv-left ma-
trix-inv-right)
have $H-U K: H=U * * K$ using $A-P H A-Q K$ inv- P
by (metis U-def matrix-inv-left matrix-mul-assoc matrix-mul-lid)
have Determinants.det $K * k U=H * *$ adjugate K
unfolding H-UK matrix-mul-assoc[symmetric] mult-adjugate-det matrix-mul-mat
have upper-triangular- H : upper-triangular H
by (metis H Hermite-def echelon-form-imp-upper-triagular)
have upper-triangular-K: upper-triangular K
by (metis K Hermite-def echelon-form-imp-upper-triagular)
have upper-triangular- U : upper-triangular U
proof -
have $U-H-K$: ?RAT $U=(? R A T H) * *($ matrix-inv $(? R A T K))$
by (metis H-UK inv-K map-matrix-rat-of-int-mult matrix-inv(2) matrix-mul-assoc matrix-mul-rid)
have up-inv-RAT-K: upper-triangular (matrix-inv (?RAT K)) using upper-triangular-inverse
by (simp add: upper-triangular-inverse inv-K upper-triangular-K upper-triangular-Z-eq-Q)
have upper-triangular (?RAT U) unfolding $U-H-K$
by (rule upper-triangular-mult $[O F-u p-i n v-R A T-K]$,
auto simp add: upper-triangular- H upper-triangular-Z-eq- Q)
thus ?thesis using upper-triangular-Z-eq-Q by auto
qed
have unit-det- U : is-unit (det U) by (metis inv- U invertible-iff-is-unit)
have is-unit-diagonal-U: $(\forall$ i. is-unit $(U \$ i \$ i))$
by (rule is-unit-diagonal[OF upper-triangular-U unit-det-U])
have Uii-1: $(\forall i .(U \$ i \$ i)=1)$ and Hii-Kii: $(\forall i .(H \$ i \$ i)=(K \$ i \$ i))$
proof (auto)
fix i
have Hii: H\$i\$íassociates
by (rule diagonal-in-associates $[O F H$ inv- H upper-triangular- H])
have Kii: $K \$ i \$ i \in$ associates
by (rule diagonal-in-associates $[O F K$ inv-K upper-triangular-K])
have ass-Hii-Kii: normalize $(H \$ i \$ i)=$ normalize $(K \$ i \$ i)$
by (metis H-UK is-unit-diagonal-U normalize-mult-unit-left upper-triangular-K upper-triangular-U upper-triangular-mult-diagonal)
show Hii-eq-Kii: $H \$ i \$ i=K \$ i \$ i$
by (metis Hermite-def Hii K Kii ass-Hii-Kii in-Ass-not-associated)
have $H \$ i \$ i=U \$ i \$ i * K \$ i \$ i$
by (metis H-UK upper-triangular-K upper-triangular-U upper-triangular-mult-diagonal)
thus $U \$ i \$ i=1$ unfolding Hii-eq-Kii mult-cancel-right1
using inv-K invertible-and-upper-diagonal-not0 upper-triangular-K by blast
qed
have zero-above: $\forall j$ s. $j \geq 1 \wedge j<$ ncols $A-$ to-nat $s \longrightarrow U \$ s \$(s+$ from-nat
j) $=0$
proof (clarify)
fix $j s$ assume $1 \leq j$ and $j<$ ncols $A-($ to-nat $(s:: ' n))$
thus $U \$ s \$(s+$ from-nat $j)=0$
proof (induct j rule: less-induct)
fix p
assume induct-step: $(\bigwedge y . y<p \Longrightarrow 1 \leq y \Longrightarrow y<$ ncols $A-$ to-nat $s \Longrightarrow$

```
\(U \$ s \$(s+\) from-nat \(y)=0)\)
and \(p 1: 1 \leq p\) and \(p 2: p<n c o l s A-\) to-nat \(s\)
    have \(s\)-less: \(s<s+\) from-nat \(p\) using \(p 1\) p2 unfolding ncols-def
    by (metis One-nat-def add.commute add-diff-cancel-right' add-lessD1 add-to-nat-def
    from-nat-to-nat-id less-diff-conv neq-iff not-le
        to-nat-from-nat-id to-nat-le zero-less-Suc)
    show \(U \$ s \$(s+\) from-nat \(p)=0\)
    proof -
        have \(U N I V-r w: U N I V=\) insert \(s(U N I V-\{s\})\) by auto
        have UNIV-s-rw: UNIV \(-\{s\}=\operatorname{insert}(s+\) from-nat \(p)((U N I V-\{s\})-\)
\(\{s+\) from-nat \(p\})\)
        using p1 p2 s-less unfolding ncols-def by (auto simp: algebra-simps)
        have sum-rw: \(\left(\sum k \in U N I V-\{s\} . U \$ s \$ k * K \$ k \$(s+\right.\) from-nat \(\left.p)\right)\)
        \(=U \$ s \$(s+\) from-nat \(p) * K \$(s+\) from-nat \(p) \$(s+\) from-nat \(p)\)
        \(+\left(\sum k \in(U N I V-\{s\})-\{s+\right.\) from-nat \(p\} . U \$ s \$ k * K \$ k \$(s+\)
from-nat p))
        using UNIV-s-rw sum.insert by (metis (erased, lifting) Diff-iff finite
singletonI)
    have sum-0: \(\left(\sum k \in(U N I V-\{s\})-\{s+\right.\) from-nat \(p\} . U \$ s \$ k * K \$ k \$\)
\((s+\) from-nat \(p))=0\)
    proof (rule sum.neutral, rule)
        fix \(x\) assume \(x: x \in U N I V-\{s\}-\{s+\) from-nat \(p\}\)
        show \(U \$ s \$ x * K \$ x \$(s+\) from-nat \(p)=0\)
        proof (cases \(x<s\) )
            case True
            thus ?thesis using upper-triangular- \(U\) unfolding upper-triangular-def
                by auto
            next
                case False
                hence \(x-g-s: x>s\) using \(x\) by (metis Diff-iff neq-iff singletonI)
        show ?thesis
        proof (cases \(x<s+\) from-nat \(p\) )
            case True
                define \(a\) where \(a=\) to-nat \(x\) - to-nat \(s\)
                from \(x\) - \(g\)-s have to-nat \(s<\) to-nat \(x\) by (rule to-nat-mono)
                hence \(x a\) : \(x=s+(\) from-nat \(a)\) unfolding \(a\)-def add-to-nat-def
                    by (simp add: less-imp-diff-less to-nat-less-card algebra-simps
to-nat-from-nat-id)
                have \(U \$ s \$ x=0\)
                proof (unfold xa, rule induct-step)
                    show \(a-p: a<p\) unfolding \(a\)-def using \(p 2\) unfolding ncols-def
                    proof -
                    have \(x<\) from-nat (to-nat \(s+\) to-nat (from-nat \(\left.p::^{\prime} n\right)\) )
                        by (metis (no-types) True add-to-nat-def)
                    hence to-nat \(x\) - to-nat \(s<\) to-nat (from-nat \(p:: ' n\) )
                    by (simp add: add.commute less-diff-conv2 less-imp-le to-nat-le
\(x-g-s)\)
                    thus to-nat \(x-\) to-nat \(s<p\)
```

 qed
 show \(1 \leq a\)
 by (auto simp add: a-def p1 p2) (metis Suc-leI to-nat-mono \(x-g\)-s
 zero-less-diff)
show $a<n c o l s A-$ to-nat s using $a-p p 2$ by auto
qed
thus ?thesis by simp
next
case False
hence $x>s+$ from-nat p using $x-g$-s x by auto
thus ?thesis using upper-triangular-K unfolding upper-triangular-def
by auto
qed
qed
qed
have $H \$ s \$(s+$ from-nat $p)=\left(\sum k \in U N I V . U \$ s \$ k * K \$ k \$(s+\right.$
from-nat p))
unfolding H-UK matrix-matrix-mult-def by auto
also have $\ldots=\left(\sum k \in\right.$ insert $s(U N I V-\{s\}) . U \$ s \$ k * K \$ k \$(s+$
from-nat p))
using UNIV-rw by simp
also have $\ldots=U \$ s \$ s * K \$ s \$(s+$ from-nat $p)$
$+\left(\sum k \in U N I V-\{s\} . U \$ s \$ k * K \$ k \$(s+\right.$ from-nat $\left.p)\right)$
by (rule sum.insert, simp-all)
also have $\ldots=U \$ s \$ s * K \$ s \$(s+$ from-nat $p)$
$+U \$ s \$(s+$ from-nat $p) * K \$(s+$ from-nat $p) \$(s+$ from-nat $p)$
unfolding sum-rw sum-0 by simp
finally have H-s-sp: $H \$ s \$(s+$ from-nat $p)$
$=U \$ s \$(s+$ from-nat $p) * K \$(s+$ from-nat $p) \$(s+$ from-nat $p)+$
$K \$ s \$(s+$ from-nat $p)$
using Uii-1 by auto
hence cong-HK: cong (H\$s\$(s+from-nat p)) (K\$s\$(s+from-nat
p)) $(K \$(s+$ from-nat $p) \$(s+$ from-nat $p))$
unfolding cong-def by auto
have H-s-sp-residues: $(H \$ s \$(s+$ from-nat $p)) \in$ residues $(K \$(s+$ from-nat
p) $\$(s+$ from-nat $p))$
using above-diagonal-in-residues[OF H inv-H upper-triangular-H s-less]
unfolding diagonal-least-nonzero $[O F H$ inv-H upper-triangular-H]
by (metis Hii-Kii)
have K-s-sp-residues: $(K \$ s \$(s+$ from-nat $p)) \in$ residues $(K \$(s+$ from-nat
p) $\$(s+$ from-nat $p))$
using above-diagonal-in-residues[OF K inv-K upper-triangular-K s-less]
unfolding diagonal-least-nonzero $[O F K$ inv-K upper-triangular-K].
have $H s$-sp-Ks-sp: $(H \$ s \$(s+$ from-nat $p))=(K \$ s \$(s+$ from-nat $p))$
using cong-HK in-Res-not-congruent[OF cs-residues H-s-sp-residues
by fast
have $K \$(s+$ from-nat $p) \$(s+$ from-nat $p) \neq 0$
using inv-K invertible-and-upper-diagonal-not0 upper-triangular-K by blast
thus ?thesis unfolding from-nat-1 using $H-s$-sp unfolding $H s-s p-K s-s p$
by auto
qed
qed
qed
have $U=$ mat 1
proof (unfold mat-def vec-eq-iff, auto)
fix $i a$ show $U \$ i a \$ i a=1$ using Uii-1 by simp
fix i assume $i-i a$: $i \neq i a$
show $U \$ i \$ i a=0$
proof (cases $i a<i$)
case True
thus ?thesis using upper-triangular- U unfolding upper-triangular-def by
auto
next
case False
hence i-less-ia: $i<i a$ using i-ia by auto
define a where $a=$ to-nat $i a-$ to-nat i
have $i a-e q$: $i a=i+$ from-nat a unfolding a-def
by (metis i-less-ia a-def add-to-nat-def dual-order.strict-iff-order from-nat-to-nat-id
le-add-diff-inverse less-imp-diff-less to-nat-from-nat-id to-nat-less-card to-nat-mono)
have $1 \leq a$ unfolding a-def
by (metis diff-is-0-eq i-less-ia less-one not-less to-nat-mono)
moreover have $a<$ ncols $A-$ to-nat i
unfolding a-def ncols-def
by (metis False diff-less-mono not-less to-nat-less-card to-nat-mono')
ultimately show ?thesis using zero-above unfolding ia-eq by blast
qed
qed
thus ?thesis using H-UK matrix-mul-lid by fast
qed
end

7 Uniqueness of Hermite normal form in JNF

This theory contains the proof of the uniqueness theorem of the Hermite normal form in JNF, moved from HOL Analysis.
theory Uniqueness-Hermite-JNF
imports
Hermite.Hermite
Uniqueness-Hermite

begin

hide-const (open) residues
We first define some properties that currently exist in HOL Analysis, but not in JNF, namely a predicate for being in echelon form, another one for being in Hermite normal form, definition of a row of zeros up to a concrete position, and so on.

```
definition is-zero-row-upt-k-JNF :: nat \(=>\) nat \(=>^{\prime} a::\{\) zero \(\}\) mat \(=>\) bool
    where is-zero-row-upt-k-JNF ikA=( \(\forall j, j<k \longrightarrow A \$ \$(i, j)=0)\)
definition is-zero-row-JNF :: nat \(=>^{\prime} a::\{\) zero \(\}\) mat \(=>\) bool
    where is-zero-row-JNF iA=( \(\forall j<\operatorname{dim}\)-col \(A . A \$ \$(i, j)=0)\)
lemma echelon-form-def':
echelon-form \(A=\) (
    \((\forall i\). is-zero-row \(i A \longrightarrow \neg(\exists j . j>i \wedge \neg i s\)-zero-row \(j A))\)
    \(\wedge\)
    \((\forall i j . i<j \wedge \neg(\) is-zero-row \(i A) \wedge \neg(\) is-zero-row \(j A)\)
    \(\longrightarrow((\) LEAST \(n . A \$ i \$ n \neq 0)<(\) LEAST \(n . A \$ j \$ n \neq 0))))\)
    unfolding echelon-form-def echelon-form-upt-k-def unfolding is-zero-row-def
by auto
```

```
definition
    echelon-form-JNF :: ' \(a::\{\) bezout-ring \(\}\) mat \(\Rightarrow\) bool
    where
    echelon-form-JNF \(A=(\)
        \((\forall i<\) dim-row \(A\). is-zero-row-JNF \(i A \longrightarrow \neg(\exists j . j<\) dim-row \(A \wedge j>i \wedge \neg\)
is-zero-row-JNF j A))
    \(\wedge\)
        \((\forall i j . i<j \wedge j<\) dim-row \(A \wedge \neg(\) is-zero-row-JNF \(i A) \wedge \neg(\) is-zero-row-JNF \(j\)
A)
    \(\longrightarrow((\) LEAST \(n . A \$ \$(i, n) \neq 0)<(\) LEAST \(n . A \$ \$(j, n) \neq 0))))\)
```

Now, we connect the existing definitions in HOL Analysis to the ones just defined in JNF by means of transfer rules.
context includes lifting-syntax
begin

```
lemma HMA-is-zero-row-mod-type[transfer-rule]:
    ((Mod-Type-Connect.HMA-I) \(===>\) (Mod-Type-Connect.HMA-M : - \(\boldsymbol{\beta}^{\prime}\) ' \(a::\)
comm-ring-1 ^' \(n::\) mod-type ^' \(m\) :: mod-type \(\Rightarrow\)-)
        \(===>(=))\) is-zero-row-JNF is-zero-row
proof (intro rel-funI, goal-cases)
    case ( \(1 i i^{\prime} A A^{\prime}\) )
```

note $i i^{\prime}=1(1)[$ transfer-rule $]$
note $A A^{\prime}=1$ (2) [transfer-rule $]$
have $(\forall j<\operatorname{dim}-\operatorname{col} A . A \$ \$(i, j)=0)=\left(\forall j . A^{\prime} \$ h i^{\prime} \$ h j=0\right)$
proof (rule;rule+)
fix $j^{\prime}:: ' n$ assume $A i j-0: \forall j<\operatorname{dim}-\operatorname{col} A . A \$ \$(i, j)=0$
define j where $j=$ mod-type-class.to-nat j^{\prime}
have [transfer-rule]: Mod-Type-Connect.HMA-I jj' unfolding Mod-Type-Connect.HMA-I-def j-def by auto
have A-ij0': A $\$ \$(i, j)=0$ using Aij-0 unfolding j-def
by (metis AA' Mod-Type-Connect.HMA-M-def Mod-Type-Connect.from-hma ${ }_{m}$-def
dim-col-mat(1) mod-type-class.to-nat-less-card)
hence index-hma $A^{\prime} i^{\prime} j^{\prime}=0$ by transfer
thus $A^{\prime} \$ h i^{\prime} \$ h j^{\prime}=0$ unfolding index-hma-def by simp next
fix j assume 1: $\forall j^{\prime} . A^{\prime} \$ h i^{\prime} \$ h j^{\prime}=0$ and $2: j<\operatorname{dim}-c o l ~ A$
define $j^{\prime}::{ }^{\prime} n$ where $j^{\prime}=$ mod-type-class.from-nat j
have [transfer-rule]: Mod-Type-Connect.HMA-I j j' unfolding Mod-Type-Connect.HMA-I-def j^{\prime}-def
using Mod-Type.to-nat-from-nat-id[of j, where $\left.?^{\prime} a=' n\right] 2$
using $A A^{\prime}$ Mod-Type-Connect.dim-col-transfer-rule by force
have $A^{\prime} \$ h i^{\prime} \$ h j^{\prime}=0$ using 1 by auto
hence index-hma $A^{\prime} i^{\prime} j^{\prime}=0$ unfolding index-hma-def by simp
thus $A \$ \$(i, j)=0$ by transfer
qed
thus ?case unfolding is-zero-row-def' is-zero-row-JNF-def by auto
qed
lemma HMA-echelon-form-mod-type[transfer-rule]:
((Mod-Type-Connect.HMA-M ::- \Rightarrow ' a ::bezout-ring ${ }^{\text {- }} n$:: mod-type ${ }^{\text {- }} \mathrm{m}::$ mod-type $\Rightarrow-)===>(=))$
echelon-form-JNF echelon-form
proof (intro rel-funI, goal-cases)
case ($1 A A^{\prime}$)
note $A A^{\prime}=1(1)[$ transfer-rule $]$
have 1: $(\forall i<$ dim-row A. is-zero-row-JNF $i A \longrightarrow \neg(\exists j<$ dim-row $A . j>i \wedge \neg$ is-zero-row-JNF j A))
$=\left(\forall\right.$ i. is-zero-row $i A^{\prime} \longrightarrow \neg\left(\exists j>i\right.$. \neg is-zero-row $\left.\left.j A^{\prime}\right)\right)$
proof (auto)
fix $i^{\prime} j^{\prime}$ assume $1: \forall i<$ dim-row A. is-zero-row-JNF $i A \longrightarrow(\forall j>i . j<$ dim-row $A \longrightarrow$ is-zero-row-JNF j A)
and 2: is-zero-row $i^{\prime} A^{\prime}$ and 3: $i^{\prime}<j^{\prime}$
let ? $i=$ Mod-Type.to-nat i^{\prime}
let $? j=$ Mod-Type.to-nat j^{\prime}
have $i i^{\prime}[$ transfer-rule $]$: Mod-Type-Connect.HMA-I ?i i^{\prime} and $j j^{\prime}[$ transfer-rule $]$: Mod-Type-Connect.HMA-I ? j j ${ }^{\prime}$
unfolding Mod-Type-Connect.HMA-I-def by auto
have is-zero-row-JNF ?i A using 2 by transfer ${ }^{\prime}$
hence is-zero-row-JNF? A using 13 to-nat-mono
by (metis AA' Mod-Type-Connect.HMA-M-def Mod-Type-Connect.from-hma ${ }_{m}$-def dim-row-mat(1) mod-type-class.to-nat-less-card)
thus is-zero-row $j^{\prime} A^{\prime}$ by transfer ${ }^{\prime}$
next
fix $i j$ assume $1: \forall i^{\prime}$. is-zero-row $i^{\prime} A^{\prime} \longrightarrow\left(\forall j^{\prime}>i^{\prime}\right.$. is-zero-row $\left.j^{\prime} A^{\prime}\right)$
and 2: is-zero-row-JNF $i A$ and 3: $i<j$ and 4:j<dim-row A
let $?^{\prime} i^{\prime}=$ Mod-Type.from-nat $i::{ }^{\prime} m$
let $? j^{\prime}=$ Mod-Type.from-nat $j::{ }^{\prime} m$
have $i i^{\prime}\left[\right.$ transfer-rule]: Mod-Type-Connect.HMA-I $i ? i^{\prime}$
unfolding Mod-Type-Connect.HMA-I-def using Mod-Type.to-nat-from-nat-id[of
${ }^{i}$]
using 34 A A' Mod-Type-Connect.dim-row-transfer-rule less-trans by fastforce
have $j j^{\prime}$ [transfer-rule]: Mod-Type-Connect.HMA-I j ? j^{\prime}
unfolding Mod-Type-Connect.HMA-I-def using Mod-Type.to-nat-from-nat-id[of
j]
using 34 A A' Mod-Type-Connect.dim-row-transfer-rule less-trans by fastforce
have is-zero-row ? $i^{\prime} A^{\prime}$ using 2 by transfer
moreover have ? $i^{\prime}<? j^{\prime}$ using 34 A A ${ }^{\prime}$ Mod-Type-Connect.dim-row-transfer-rule
from-nat-mono by fastforce
ultimately have is-zero-row ? $j^{\prime} A^{\prime}$ using 13 by auto
thus is-zero-row-JNF j A by transfer
qed
have 2: $\left(\left(\forall i j . i<j \wedge \neg\left(\right.\right.\right.$ is-zero-row $\left.i A^{\prime}\right) \wedge \neg\left(\right.$ is-zero-row $\left.j A^{\prime}\right)$
$\longrightarrow\left(\left(\right.\right.$ LEAST $\left.n . A^{\prime} \$ h i \$ h n \neq 0\right)<\left(\right.$ LEAST $\left.\left.\left.\left.n . A^{\prime} \$ h j \$ h n \neq 0\right)\right)\right)\right)$
$=(\forall i j . i<j \wedge j<$ dim-row $A \wedge \neg($ is-zero-row-JNF $i A) \wedge \neg($ is-zero-row-JNF
j A)
$\longrightarrow(($ LEAST $n . A \$ \$(i, n) \neq 0)<($ LEAST $n . A \$ \$(j, n) \neq 0)))$
proof (auto)
fix $i j$ assume 1 : $\forall i^{\prime} j^{\prime} . i^{\prime}<j^{\prime} \wedge \neg i$ s-zero-row $i^{\prime} A^{\prime} \wedge \neg i s$-zero-row $j^{\prime} A^{\prime}$
$\longrightarrow\left(\right.$ LEAST $\left.n^{\prime} . A^{\prime} \$ h i^{\prime} \$ h n^{\prime} \neq 0\right)<\left(\right.$ LEAST $\left.n^{\prime} . A^{\prime} \$ h j^{\prime} \$ h n^{\prime} \neq 0\right)$
and $i j: i<j$ and $j: j<$ dim-row A and $i 0$: \neg is-zero-row-JNF $i A$
and $j 0: \neg i s$-zero-row-JNF j A
let $? i^{\prime}=$ Mod-Type.from-nat $i:::^{\prime} m$
let ${ }^{\prime} j^{\prime}=$ Mod-Type.from-nat $j::{ }^{\prime} m$
have $i i^{\prime}[$ transfer-rule $]$: Mod-Type-Connect.HMA-I i ? i^{\prime}
unfolding Mod-Type-Connect.HMA-I-def using Mod-Type.to-nat-from-nat-id[of
i]
using ij j A A' Mod-Type-Connect.dim-row-transfer-rule less-trans by fastforce
have $j j^{\prime}[$ transfer-rule $]$: Mod-Type-Connect.HMA-I j ? j^{\prime}
unfolding Mod-Type-Connect.HMA-I-def using Mod-Type.to-nat-from-nat-id[of
j]
using ij j A A' Mod-Type-Connect.dim-row-transfer-rule less-trans by fastforce
have $i^{\prime} 0$: \neg is-zero-row ? $i^{\prime} A^{\prime}$ using $i 0$ by transfer
have $j^{\prime} 0$: \neg is-zero-row ? $j^{\prime} A^{\prime}$ using $j 0$ by transfer
have $i^{\prime} j^{\prime}: ? i^{\prime}<? j^{\prime}$
using $A A^{\prime}$ Mod-Type-Connect.dim-row-transfer-rule from-nat-mono ij j by
fastforce
have l1l2: $\left(L E A S T n^{\prime} . A^{\prime} \$ h ? i^{\prime} \$ h n^{\prime} \neq 0\right)<\left(\right.$ LEAST $n^{\prime} . A^{\prime} \$ h ? j^{\prime} \$ h n^{\prime} \neq$ 0)
using $1 i^{\prime} 0 j^{\prime} 0 i^{\prime} j^{\prime}$ by auto
define $l 1$ where $l 1=\left(\operatorname{LEAST} n^{\prime} . A^{\prime} \$ h ? i^{\prime} \$ h n^{\prime} \neq 0\right)$
define $l 2$ where $l 2=\left(\right.$ LEAST $\left.n^{\prime} . A^{\prime} \$ h ? j^{\prime} \$ h n^{\prime} \neq 0\right)$
let ?least-n1 $=$ Mod-Type.to-nat l1
let ?least-n2 $=$ Mod-Type.to-nat l2
have l1[transfer-rule]: Mod-Type-Connect.HMA-I ?least-n1 l1 and [transfer-rule]:
Mod-Type-Connect.HMA-I ?least-n2 l2
unfolding Mod-Type-Connect.HMA-I-def by auto
have (LEAST n. A $\$ \$(i, n) \neq 0)=$?least-n1
proof (rule Least-equality)
obtain n^{\prime} where $n^{\prime} 1: A \$ \$\left(i, n^{\prime}\right) \neq 0$ and $n^{\prime} 2: n^{\prime}<\operatorname{dim}-c o l ~ A$
using $i 0$ unfolding is-zero-row-JNF-def by auto
let $? n^{\prime}=$ Mod-Type.from-nat $n^{\prime}::{ }^{\prime} n$
have $n^{\prime} n^{\prime}\left[\right.$ transfer-rule]: Mod-Type-Connect.HMA-I $n^{\prime} ? n^{\prime}$
unfolding Mod-Type-Connect.HMA-I-def using Mod-Type.to-nat-from-nat-id
using $A A^{\prime}$ Mod-Type-Connect.dim-col-transfer-rule by fastforce
have index-hma $A^{\prime} ? i^{\prime} ? n^{\prime} \neq 0$ using $n^{\prime} 1$ by transfer
hence $A^{\prime} i^{\prime} n^{\prime}: A^{\prime} \$ h ? i^{\prime} \$ h ? n^{\prime} \neq 0$ unfolding index-hma-def by simp
have least-le- $n^{\prime}:($ LEAST n. A $\$ \$(i, n) \neq 0) \leq n^{\prime}$ by (simp add: Least-le $\left.n^{\prime} 1\right)$
have $l 1-l e-n^{\prime}: l 1 \leq ? n^{\prime}$ by (simp add: $A^{\prime} i^{\prime} n^{\prime}$ Least-le l1-def)
have $A \$ \$(i$, ?least-n1 $)=$ index-hma $A^{\prime} ? i^{\prime} l 1$ by (transfer, simp)
also have $\ldots=A^{\prime} \$ h$ mod-type-class.from-nat $i \$ h$ l1 unfolding index-hma-def by simp
also have $\ldots \neq 0$ unfolding l1-def by (metis (mono-tags, lifting) LeastI $i^{\prime} 0$ is-zero-row-def ${ }^{\prime}$)
finally show $A \$ \$(i$, mod-type-class.to-nat $l 1) \neq 0$.
fix y assume Aiy: $A \$ \$(i, y) \neq 0$
let $? y^{\prime}=$ Mod-Type.from-nat $y::^{\prime} n$
show Mod-Type.to-nat $l 1 \leq y$
proof (cases $y \leq n^{\prime}$)
case True
hence $y: y<d i m$-col A using $n^{\prime 2}$ by auto
have $y y^{\prime}[$ transfer-rule $]$: Mod-Type-Connect.HMA-I y ? y^{\prime} unfolding Mod-Type-Connect.HMA-I-def
apply (rule Mod-Type.to-nat-from-nat-id[symmetric])
using y Mod-Type-Connect.dim-col-transfer-rule $[O F A A]$ by auto
have Mod-Type.to-nat ll \leq Mod-Type.to-nat ? y^{\prime}
proof (rule to-nat-mono')
have index-hma $A^{\prime} ? i^{\prime} ? y^{\prime} \neq 0$ using Aiy by transfer
hence $A^{\prime} \$ h ? i^{\prime} \$ h ? y^{\prime} \neq 0$ unfolding index-hma-def by simp
thus $l 1 \leq$? y^{\prime} unfolding l1-def by (simp add: Least-le)
qed
then show ?thesis by (metis Mod-Type-Connect.HMA-I-def yy')
next
case False
hence $n^{\prime}<y$ by auto
then show ?thesis
by (metis False Mod-Type-Connect.HMA-I-def dual-order.trans l1-le-n'

```
linear n'n' to-nat-mono')
            qed
    qed
    moreover have (LEAST n. A $$ (j,n)\not=0)=?least-n2
    proof (rule Least-equality)
            obtain }\mp@subsup{n}{}{\prime}\mathrm{ where }\mp@subsup{n}{}{\prime}1:A$$(j,\mp@subsup{n}{}{\prime})\not=0\mathrm{ and }\mp@subsup{n}{}{\prime}2:\mp@subsup{n}{}{\prime}<\operatorname{dim}-col 
            using j0 unfolding is-zero-row-JNF-def by auto
    let ? n' = Mod-Type.from-nat n'::'n
    have n'n'[transfer-rule]: Mod-Type-Connect.HMA-I n' ? n'
    unfolding Mod-Type-Connect.HMA-I-def using Mod-Type.to-nat-from-nat-id
n'2
            using AA' Mod-Type-Connect.dim-col-transfer-rule by fastforce
    have index-hma A' ?j' ? ? n' =0 using n'1 by transfer
    hence }\mp@subsup{A}{}{\prime}\mp@subsup{i}{}{\prime}\mp@subsup{n}{}{\prime}:\mp@subsup{A}{}{\prime}$h?\mp@subsup{j}{}{\prime}$h?\mp@subsup{n}{}{\prime}\not=0\mathrm{ unfolding index-hma-def by simp
    have least-le-n':(LEAST n.A $$ (j,n)\not=0) \leq n' by (simp add: Least-le
n'1)
    have l1-le-n':l2 \leq ?n' by (simp add: A'i'n' Least-le l2-def)
    have A$$(j, ?least-n\mathcal{R})= index-hma A' ? j' l2 by (transfer, simp)
    also have ... = ' '' $h ?j' $h l2 unfolding index-hma-def by simp
    also have ... \not=0 unfolding l2-def by (metis (mono-tags, lifting) LeastI j'0
is-zero-row-def ')
    finally show A $$ (j, mod-type-class.to-nat l2) = 0 .
    fix y assume Aiy: A $$ (j,y) \not=0
    let ? }\mp@subsup{y}{}{\prime}=\mathrm{ Mod-Type.from-nat y::'n
    show Mod-Type.to-nat l2 \leqy
    proof (cases }y\leq\mp@subsup{n}{}{\prime}\mathrm{ )
        case True
        hence y:y<dim-col A using n'2 by auto
    have yy'[transfer-rule]: Mod-Type-Connect.HMA-I y ? y' unfolding Mod-Type-Connect.HMA-I-def
            apply (rule Mod-Type.to-nat-from-nat-id[symmetric])
            using y Mod-Type-Connect.dim-col-transfer-rule[OF AA] by auto
        have Mod-Type.to-nat l2 \leq Mod-Type.to-nat ?y'
        proof (rule to-nat-mono')
            have index-hma A' ?j' ?y'\not=0 using Aiy by transfer
            hence }\mp@subsup{A}{}{\prime}$h?\mp@subsup{j}{}{\prime}$h?\mp@subsup{y}{}{\prime}\not=0\mathrm{ unfolding index-hma-def by simp
            thus l2 \leq? 'y'unfolding l2-def by (simp add: Least-le)
        qed
            then show ?thesis by (metis Mod-Type-Connect.HMA-I-def yy')
        next
            case False
            hence }\mp@subsup{n}{}{\prime}<y\mathrm{ by auto
            then show ?thesis
                by (metis False Mod-Type-Connect.HMA-I-def dual-order.trans l1-le-n'
linear n'n'to-nat-mono')
            qed
    qed
    ultimately show (LEAST n. A $$ (i,n)\not=0)<(LEAST n. A $$ (j,n)\not=
0)
        using l112 unfolding l1-def l2-def by (simp add: to-nat-mono)
```

next
fix $i^{\prime} j^{\prime}$ assume 1 : $\forall i j . i<j \wedge j<\operatorname{dim}$-row $A \wedge \neg i s$-zero-row-JNF $i A \wedge$
$\neg i s$-zero-row-JNF $j A$
$\longrightarrow($ LEAST $n . A \$ \$(i, n) \neq 0)<($ LEAST $n . A \$ \$(j, n) \neq 0)$
and $i^{\prime} j^{\prime}: i^{\prime}<j^{\prime}$ and $i^{\prime}: \neg$ is-zero-row $i^{\prime} A^{\prime}$ and $j^{\prime}: \neg$ is-zero-row $j^{\prime} A^{\prime}$
let $? i=$ Mod-Type.to-nat i^{\prime}
let $? j=$ Mod-Type.to-nat j^{\prime}
have [transfer-rule]: Mod-Type-Connect.HMA-I ?i i^{\prime} and [transfer-rule]: Mod-Type-Connect.HMA-I ? j j ${ }^{\prime}$ unfolding Mod-Type-Connect.HMA-I-def by auto
have i : \neg is-zero-row-JNF ?i A using i^{\prime} by transfer ${ }^{\prime}$
have j : \neg is-zero-row-JNF ? $j A$ using j^{\prime} by transfer ${ }^{\prime}$
have $i j$: ? $i<? j$ using $i^{\prime} j^{\prime}$ to-nat-mono by blast
have j-dim-row: ? $j<$ dim-row A
using $A A^{\prime}$ Mod-Type-Connect.dim-row-transfer-rule mod-type-class.to-nat-less-card
by fastforce
have least-ij: $($ LEAST $n . A \$ \$(? i, n) \neq 0)<(\operatorname{LEAST} n . A \$ \$(? j, n) \neq 0)$
using $i j$ ij j-dim-row 1 by auto
define $l 1$ where $l 1=\left(\operatorname{LEAST} n^{\prime} . A \$ \$\left(?, n^{\prime}\right) \neq 0\right)$
define 12 where $12=\left(\right.$ LEAST $\left.n^{\prime} . A \$ \$\left(? j, n^{\prime}\right) \neq 0\right)$
let ?least-n1 = Mod-Type.from-nat 11 ::'n
let ?least-n2 $=$ Mod-Type.from-nat l2::'n
have l1-dim-col: $l 1<$ dim-col A
by (smt is-zero-row-JNF-def j l1-def leI le-less-trans least-ij less-trans not-less-Least)
have l2-dim-col: l2 $<$ dim-col A
by (metis (mono-tags, lifting) Least-le is-zero-row-JNF-def j l2-def le-less-trans)
have [transfer-rule]: Mod-Type-Connect.HMA-Il1 ?least-n1 unfolding Mod-Type-Connect.HMA-I-def
using AA' Mod-Type-Connect.dim-col-transfer-rule l1-dim-col Mod-Type.to-nat-from-nat-id
by fastforce
have [transfer-rule]: Mod-Type-Connect.HMA-I l2 ?least-n2 unfolding Mod-Type-Connect.HMA-I-def
using $A A^{\prime}$ Mod-Type-Connect.dim-col-transfer-rule l2-dim-col Mod-Type.to-nat-from-nat-id by fastforce
have (LEAST n. $\left.A^{\prime} \$ h i^{\prime} \$ h n \neq 0\right)=$?least-n1
proof (rule Least-equality)
obtain n^{\prime} where $n^{\prime} 1: A^{\prime} \$ h i^{\prime} \$ h n^{\prime} \neq 0$ using i^{\prime} unfolding is-zero-row-def ${ }^{\prime}$ by auto
have $A^{\prime} \$ h i^{\prime} \$ h$?least-n1 = index-hma $A^{\prime} i^{\prime}$?least-n1 unfolding in-
dex-hma-def by simp
also have $\ldots=A \$ \$(? i, l 1)$ by (transfer, simp)
also have $\ldots \neq 0$ by (metis (mono-tags, lifting) LeastI i is-zero-row-JNF-def l1-def)
finally show $A^{\prime} \$ h i^{\prime} \$ h$?least- $n 1 \neq 0$.
next
fix y assume $y: A^{\prime} \$ h i^{\prime} \$ h y \neq 0$
let $? y^{\prime}=$ Mod-Type.to-nat y
have [transfer-rule]: Mod-Type-Connect.HMA-I ? $y^{\prime} y$ unfolding Mod-Type-Connect.HMA-I-def by simp
have ?least-n1 \leq Mod-Type.from-nat ? y^{\prime}
proof (unfold l1-def, rule from-nat-mono')
show Mod-Type.to-nat $y<\operatorname{CARD}\left({ }^{\prime} n\right.$) by (simp add: mod-type-class.to-nat-less-card)
have $*$: A $\$ \$$ (mod-type-class.to-nat i^{\prime}, mod-type-class.to-nat $\left.y\right) \neq 0$
using y [unfolded index-hma-def[symmetric]] by transfer'
show (LEAST n^{\prime}. A $\$ \$\left(\right.$ mod-type-class.to-nat $\left.\left.i^{\prime}, n^{\prime}\right) \neq 0\right) \leq$ mod-type-class.to-nat
by (rule Least-le, simp add: *)
qed
also have $\ldots=y$ by simp
finally show ?least-n1 $\leq y$.
qed
moreover have (LEAST $\left.n . A^{\prime} \$ h j^{\prime} \$ h n \neq 0\right)=$?least-n2
proof (rule Least-equality)
obtain n^{\prime} where $n^{\prime} 1: A^{\prime} \$ h j^{\prime} \$ h n^{\prime} \neq 0$ using j^{\prime} unfolding is-zero-row-def ${ }^{\prime}$ by auto
have $A^{\prime} \$ h j^{\prime} \$ h$?least-n2 $=$ index-hma $A^{\prime} j^{\prime}$?least-n2 unfolding in-
dex-hma-def by simp
also have $\ldots=A \$ \$(? j$, l2 $)$ by (transfer, simp)
also have $\ldots \neq 0$ by (metis (mono-tags, lifting) LeastI j is-zero-row-JNF-def l2-def)
finally show $A^{\prime} \$ h j^{\prime} \$ h$?least- $n 2 \neq 0$.
next
fix y assume $y: A^{\prime} \$ h j^{\prime} \$ h y \neq 0$
let $? y^{\prime}=$ Mod-Type.to-nat y
have [transfer-rule]: Mod-Type-Connect.HMA-I ? $y^{\prime} y$ unfolding Mod-Type-Connect.HMA-I-def by simp
have ?least-n2 \leq Mod-Type.from-nat ? y^{\prime}
proof (unfold l2-def, rule from-nat-mono')
show Mod-Type.to-nat $y<C A R D(' n)$ by (simp add: mod-type-class.to-nat-less-card)
have $*$: A $\$ \$$ (mod-type-class.to-nat j^{\prime}, mod-type-class.to-nat $\left.y\right) \neq 0$
using $y\left[\right.$ unfolded index-hma-def [symmetric]] by transfer ${ }^{\prime}$
show (LEAST n^{\prime}. A $\$ \$\left(\right.$ mod-type-class.to-nat $\left.\left.j^{\prime}, n^{\prime}\right) \neq 0\right) \leq$ mod-type-class.to-nat y
by (rule Least-le, simp add: *)
qed
also have $\ldots=y$ by simp
finally show ?least-n2 $\leq y$.
qed
ultimately show $\left(\right.$ LEAST $\left.n . A^{\prime} \$ h i^{\prime} \$ h n \neq 0\right)<\left(\right.$ LEAST $n . A^{\prime} \$ h j^{\prime} \$ h$ $n \neq 0$) using least-ij
unfolding l1-def l2-def
using $A A^{\prime}$ Mod-Type-Connect.dim-col-transfer-rule from-nat-mono l2-def
12-dim-col
by fastforce
qed
show ?case unfolding echelon-form-JNF-def echelon-form-def' using 12 by auto
qed
definition Hermite-JNF :: 'a::\{bezout-ring-div,normalization-semidom $\}$ set \Rightarrow ('a \Rightarrow 'a set $) \Rightarrow{ }^{\prime}$ a mat \Rightarrow bool
where Hermite-JNF associates residues $A=($
Complete-set-non-associates associates $\wedge($ Complete-set-residues residues $) \wedge$ ech-elon-form-JNF A
$\wedge(\forall i<$ dim-row $A . \neg$ is-zero-row-JNF $i A \longrightarrow A \$ \$(i$, LEAST n. $A \$ \$(i, n) \neq$ $0) \in$ associates $)$
$\wedge(\forall i<$ dim-row $A . \neg i s$-zero-row-JNF $i A \longrightarrow(\forall j . j<i \longrightarrow A \$ \$(j,($ LEAST n. A $\$ \$(i, n) \neq 0))$
\in residues $(A \$ \$(i,($ LEAST $n . A \$ \$(i, n) \neq 0)))$
)))
lemma HMA-LEAST[transfer-rule]:
assumes $A A^{\prime}:\left(\right.$ Mod-Type-Connect.HMA-M :: - $\boldsymbol{\gamma}^{\prime} a::$ comm-ring-1 - ' $n::$ mod-type - 'm :: mod-type $\Rightarrow-) A A^{\prime}$
and i^{\prime} : Mod-Type-Connect.HMA-I $i i^{\prime}$ and zero- i : \neg is-zero-row-JNF i A
shows Mod-Type-Connect.HMA-I (LEAST n. A $\$ \$(i, n) \neq 0)($ LEAST n. in-dex-hma $A^{\prime} i^{\prime} n \neq 0$)
proof -
define l where $l=\left(L E A S T n^{\prime} . A^{\prime} \$ h i^{\prime} \$ h n^{\prime} \neq 0\right)$
let ?least-n2 $=$ Mod-Type.to-nat l
note $A A^{\prime}[$ transfer-rule $] i i^{\prime}[$ transfer-rule $]$
have [transfer-rule]: Mod-Type-Connect.HMA-I ?least-n2 l
by (simp add: Mod-Type-Connect.HMA-I-def)
have zero- i^{\prime} : \neg is-zero-row $i^{\prime} A^{\prime}$ using zero- i by transfer
have $($ LEAST n. A $\$ \$(i, n) \neq 0)=$?least-n2 proof (rule Least-equality)
obtain n^{\prime} where $n^{\prime} 1: A \$\left(i, n^{\prime}\right) \neq 0$ and $n^{\prime} 2: n^{\prime}<\operatorname{dim}-c o l ~ A$
using zero- i unfolding is-zero-row-JNF-def by auto
let $? n^{\prime}=$ Mod-Type.from-nat $n^{\prime}::{ }^{\prime} n$
have $n^{\prime} n^{\prime}[$ transfer-rule $]$: Mod-Type-Connect.HMA-I $n^{\prime} ? n^{\prime}$
unfolding Mod-Type-Connect.HMA-I-def using Mod-Type.to-nat-from-nat-id
using $A A^{\prime}$ Mod-Type-Connect.dim-col-transfer-rule by fastforce
have index-hma $A^{\prime} i^{\prime} ? n^{\prime} \neq 0$ using $n^{\prime} 1$ by transfer
hence $A^{\prime} i^{\prime} n^{\prime}: A^{\prime} \$ h i^{\prime} \$ h ? n^{\prime} \neq 0$ unfolding index-hma-def by simp
have least-le- $n^{\prime}:(L E A S T$ n. A $\$ \$(i, n) \neq 0) \leq n^{\prime}$ by (simp add: Least-le $\left.n^{\prime} 1\right)$
have $l 1-l e-n^{\prime}: l \leq ? n^{\prime}$ by (simp add: $A^{\prime} i^{\prime} n^{\prime}$ Least-le l-def)
have $A \$ \$\left(i\right.$, ?least-n2) $=$ index-hma $A^{\prime} i^{\prime} l$ by (transfer, simp)
also have $\ldots=A^{\prime} \$ h i^{\prime} \$ h l$ unfolding index-hma-def by simp
also have $\ldots \neq 0$ unfolding l-def by (metis (mono-tags) $A^{\prime} i^{\prime} n^{\prime}$ LeastI)
finally show $A \$ \$(i$, mod-type-class.to-nat $l) \neq 0$.
fix y assume Aiy: $A \$ \$(i, y) \neq 0$
let $? y^{\prime}=$ Mod-Type.from-nat $y::^{\prime} n$
show Mod-Type.to-nat $l \leq y$
proof (cases $y \leq n^{\prime}$)

```
        case True
        hence y:y<dim-col A using n'2 by auto
    have yy'[transfer-rule]: Mod-Type-Connect.HMA-I y ?y' unfolding Mod-Type-Connect.HMA-I-def
        apply (rule Mod-Type.to-nat-from-nat-id[symmetric])
        using y Mod-Type-Connect.dim-col-transfer-rule[OF AA] by auto
    have Mod-Type.to-nat l\leqMod-Type.to-nat ?y'
    proof (rule to-nat-mono')
        have index-hma A' }\mp@subsup{i}{}{\prime}?\mp@subsup{y}{}{\prime}\not=0\mathrm{ using Aiy by transfer
        hence }\mp@subsup{A}{}{\prime}$h\mp@subsup{i}{}{\prime}$h?\mp@subsup{y}{}{\prime}\not=0\mathrm{ unfolding index-hma-def by simp
        thus l \leq? ? ' unfolding l-def by (simp add: Least-le)
    qed
        then show ?thesis by (metis Mod-Type-Connect.HMA-I-def yy')
    next
        case False
        hence }\mp@subsup{n}{}{\prime}<y\mathrm{ by auto
        then show ?thesis
            by (metis False Mod-Type-Connect.HMA-I-def dual-order.trans l1-le-n'
linear n' n' to-nat-mono')
    qed
    qed
        thus ?thesis unfolding Mod-Type-Connect.HMA-I-def l-def index-hma-def
by auto
qed
lemma element-least-not-zero-eq-HMA-JNF:
    fixes }\mp@subsup{A}{}{\prime}:: 'a :: comm-ring-1 ^' n :: mod-type ^ 'm :: mod-type
    assumes AA': Mod-Type-Connect.HMA-MA A' and jj': Mod-Type-Connect.HMA-I
j j'
    and ii': Mod-Type-Connect.HMA-I i i' and zero-i': ᄀis-zero-row i' A'
    shows A $$ (j,LEAST n. A $$ (i,n)\not=0) = A' $h j'$h(LEAST n. A' $h i'
$hn\not=0)
proof -
    note AA'[transfer-rule] jj'[transfer-rule] ii'[transfer-rule]
    have [transfer-rule]: Mod-Type-Connect.HMA-I (LEAST n. A $$ (i,n)\not=0)
(LEAST n. index-hma A' }\mp@subsup{i}{}{\prime}n\not=0\mathrm{ ) 
    by (rule HMA-LEAST[OF AA' ii ], insert zero-i', transfer, simp)
    have A' $h j'$h (LEAST n. A' $h i'$hn\not=0) = index-hma A' j}\mp@subsup{j}{}{\prime}(LEAST n.
index-hma A' i' n}=0\mathrm{ )
    unfolding index-hma-def by simp
    also have ... = A $$(j,LEAST n. A $$ (i,n)\not=0) by (transfer', simp)
    finally show ?thesis by simp
qed
lemma HMA-Hermite[transfer-rule]:
    shows ((Mod-Type-Connect.HMA-M :: - >' }a\mathrm{ :: {bezout-ring-div,normalization-semidom}
    ^ 'n :: mod-type ` 'm :: mod-type => -) ===> (=))
    (Hermite-JNF associates residues) (Hermite associates residues)
```

```
proof (intro rel-funI, goal-cases)
    case ( \(1 A A^{\prime}\) )
    note \(A A^{\prime}=1(1)[\) transfer-rule \(]\)
    have 1: echelon-form \(A^{\prime}=\) echelon-form-JNF \(A\) by (transfer, simp)
    have 2: \((\forall i<\) dim-row \(A\). \(\neg\) is-zero-row-JNF \(i A \longrightarrow A \$ \$(i, L E A S T\) n. A \(\$ \$\)
\((i, n) \neq 0) \in\) associates \()=\)
    \(\left(\forall i . \neg i s\right.\)-zero-row \(i A^{\prime} \longrightarrow A^{\prime} \$ h i \$ h\left(L E A S T n . A^{\prime} \$ h i \$ h n \neq 0\right) \in\) associates \()\)
(is ?lhs = ? \(r h s\) )
    proof
        assume lhs: ?lhs
        show ?rhs
    proof (rule allI, rule impI)
            fix \(i^{\prime}\) assume zero- \(i^{\prime}\) : \(\neg\) is-zero-row \(i^{\prime} A^{\prime}\)
            let ? \(i=\) Mod-Type.to-nat \(i^{\prime}\)
            have \(i i^{\prime}[\) transfer-rule \(]\) : Mod-Type-Connect.HMA-I ? \({ }^{2} i^{\prime}\) unfolding Mod-Type-Connect.HMA-I-def
by \(\operatorname{simp}\)
            have \([\) simp \(]\) : ? \(i<\) dim-row \(A\) using Mod-Type.to-nat-less-card[of \(i]\)
                using \(A A^{\prime}\) Mod-Type-Connect.dim-row-transfer-rule by fastforce
            have zero- \(i\) : \(\neg\) is-zero-row-JNF ?i A using zero- \(i^{\prime}\) by transfer
            have [transfer-rule]: Mod-Type-Connect.HMA-I (LEAST n. A \(\$ \$(? i, n) \neq\)
0) (LEAST n. index-hma \(\left.A^{\prime} i^{\prime} n \neq 0\right)\)
            by (rule HMA-LEAST[OF AA' ii \(]\), insert zero- \(i^{\prime}\), transfer, simp)
                            have \(A^{\prime} \$ h i^{\prime} \$ h\left(L E A S T n . A^{\prime} \$ h i^{\prime} \$ h n \neq 0\right)=A \$ \$(? i, L E A S T n . A \$ \$\)
\((? i, n) \neq 0)\)
            by (rule element-least-not-zero-eq-HMA-JNF[OF AA' \(i^{\prime}{ }^{\prime}{ }^{\prime} i^{\prime}\) zero- \(i^{\prime}\), symmet-
ric])
            also have \(\ldots \in\) associates using lhs zero-i by simp
            finally show \(A^{\prime} \$ h i^{\prime} \$ h\left(L E A S T n . A^{\prime} \$ h i^{\prime} \$ h n \neq 0\right) \in\) associates.
        qed
    next
        assume rhs: ?rhs
        show ?lhs
        proof (rule allI, rule impI, rule impI)
            fix \(i\) assume zero- \(i\) : \(\neg\) is-zero-row-JNF \(i A\) and \(i: i<d i m-r o w ~ A\)
            let \(? i^{\prime}=\) Mod-Type.from-nat \(i::{ }^{\prime} m\)
            have \(i^{\prime}{ }^{\prime}\left[\right.\) transfer-rule]: Mod-Type-Connect.HMA-I \(i\) ? \(i^{\prime}\) unfolding Mod-Type-Connect.HMA-I-def
            using Mod-Type.to-nat-from-nat-id A A' Mod-Type-Connect.dim-row-transfer-rule
\(i\) by fastforce
    have zero- \(i^{\prime}\) : \(\neg\) is-zero-row ? \(i^{\prime} A^{\prime}\) using zero- \(i\) by transfer
    have \(A \$ \$(i, L E A S T\) n. \(A \$ \$(i, n) \neq 0)=A^{\prime} \$ h ? i^{\prime} \$ h\left(\right.\) LEAST \(n . A^{\prime} \$ h\)
? \(i^{\prime} \$ h n \neq 0\) )
            by (rule element-least-not-zero-eq-HMA-JNF[OF AA' ii \(^{\prime}{ }^{\prime} i^{\prime}\) zero- \(\left.i\right\rceil\) )
            also have \(\ldots \in\) associates using rhs zero- \(i^{\prime} i\) by simp
            finally show \(A \$ \$(i, L E A S T n . A \$ \$(i, n) \neq 0) \in\) associates.
        qed
    qed
    have 3: \((\forall i<\) dim-row \(A\). \(\neg\) is-zero-row-JNF \(i A \longrightarrow(\forall j<i . A \$ \$(j\), LEAST \(n\).
\(A \$ \$(i, n) \neq 0)\)
                    \(\in\) residues \((A \$ \$(i\), LEAST n. A \(\$ \$(i, n) \neq 0))))=\)
```

```
        (\foralli.\neg is-zero-row i A'\longrightarrow(\forallj<i. A' $hj $h(LEAST n. A' $h i$hn
# 0)
        \epsilonresidues (A'$hi$h(LEAST n. A' $h i$h n\not=0)))) (is ?lhs=?rhs)
    proof
    assume lhs:?lhs
    show ?rhs
    proof (rule allI, rule impI, rule allI, rule impI)
        fix }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}:: '
        assume zero-i': \neg is-zero-row i' }\mp@subsup{i}{}{\prime}\mathrm{ 'and }\mp@subsup{j}{}{\prime}\mp@subsup{i}{}{\prime}:\mp@subsup{j}{}{\prime}<\mp@subsup{i}{}{\prime
        let ?i = Mod-Type.to-nat i'
    have ii'[transfer-rule]: Mod-Type-Connect.HMA-I ?i i' unfolding Mod-Type-Connect.HMA-I-def
by simp
    have i: ? i < dim-row A
    using AA' Mod-Type-Connect.dim-row-transfer-rule mod-type-class.to-nat-less-card
        by fastforce
    have zero-i: \neg is-zero-row-JNF ?i A using zero-i' by transfer'
    let ?j = Mod-Type.to-nat j'
    have jj'[transfer-rule]: Mod-Type-Connect.HMA-I ?j j' unfolding Mod-Type-Connect.HMA-I-def
by simp
    have ji: ?j<?i using j'i' to-nat-mono by blast
    have eq1:A $$ (?j, LEAST n. A $$ (? i, n)\not=0) = A' $h j'$h(LEAST n.
A' $h i' $h n}=0\mathrm{ 0)
            by (rule element-least-not-zero-eq-HMA-JNF[OF AA' jj' ii' zero-i}\]
        have eq2: A $$ (?i,LEAST n. A $$ (?i,n)\not=0) = A' $h i'$h(LEAST n.
A'$h i' $h n}=0\mathrm{ )
            by (rule element-least-not-zero-eq-HMA-JNF[OF AA' ii' ii' zero-i}\]
            show }\mp@subsup{A}{}{\prime}$h\mp@subsup{j}{}{\prime}$h(LEAST n. A' $h i'$h n = 0) \in residues ( A' $h i'$
(LEAST n. A' $h i' $h n\not=0))
            using lhs eq1 eq2 ji i zero-i by fastforce
        qed
    next
    assume rhs:?rhs
    show ?lhs
    proof (safe)
        fix ij assume i:i<dim-row A and zero-i:\neg is-zero-row-JNF i A and ji:j
< i
            let ? }\mp@subsup{i}{}{\prime}=\mathrm{ Mod-Type.from-nat i :: 'm
    have ii'[transfer-rule]: Mod-Type-Connect.HMA-I i ? i' unfolding Mod-Type-Connect.HMA-I-def
            using Mod-Type.to-nat-from-nat-id AA' Mod-Type-Connect.dim-row-transfer-rule
i by fastforce
            have zero-i': \neg is-zero-row ? ' }\mp@subsup{}{}{\prime}\mp@subsup{A}{}{\prime
            let ? j' = Mod-Type.from-nat j :: 'm
                have j'i':? ?' < ? i' using AA' Mod-Type-Connect.dim-row-transfer-rule
from-nat-mono i ji
            by fastforce
    have jj'[transfer-rule]: Mod-Type-Connect.HMA-I j ?j' unfolding Mod-Type-Connect.HMA-I-def
                using Mod-Type.to-nat-from-nat-id[of j, where ?' a='m] AA'
                    Mod-Type-Connect.dim-row-transfer-rule[OF AA'] j'i'i i ji by auto
    have zero-i': \neg is-zero-row ? i' A' using zero-i by transfer
```

```
    have eq1: A \(\$ \$(j\), LEAST n. \(A \$ \$(i, n) \neq 0)=A^{\prime} \$ h ? j^{\prime} \$ h(L E A S T n\).
\(\left.A^{\prime} \$ h ? i^{\prime} \$ h n \neq 0\right)\)
            by (rule element-least-not-zero-eq-HMA-JNF[OF AA' \(\mathrm{jj}^{\prime}\) ii \({ }^{\prime}\) zero- \(\left.i\right]\) )
                            have eq2: \(A \$ \$(i, L E A S T\) n. \(A \$ \$(i, n) \neq 0)=A^{\prime} \$ h ? i^{\prime} \$ h(L E A S T n\).
\(\left.A^{\prime} \$ h ? i^{\prime} \$ h n \neq 0\right)\)
            by (rule element-least-not-zero-eq-HMA-JNF[OF AA' ii' \(^{\prime}\) ii' zero- \(\left.i\right\rceil\) )
            show \(A \$ \$(j, L E A S T\) n. \(A \$ \$(i, n) \neq 0) \in\) residues \((A \$ \$(i, L E A S T n . A\)
\(\$ \$(i, n) \neq 0))\)
            using rhs eq1 eq2 \(j^{\prime} i^{\prime} i\) zero- \(i^{\prime}\) by fastforce
    qed
    qed
    show Hermite-JNF associates residues \(A=\) Hermite associates residues \(A^{\prime}\)
        unfolding Hermite-def Hermite-JNF-def
        using 123 by auto
qed
```

corollary HMA-Hermite2[transfer-rule]:
shows $((=)===>(=)===>$ (Mod-Type-Connect.HMA-M ::-
$\Rightarrow^{\prime} a::\{$ bezout-ring-div,normalization-semidom $\}{ }^{\wedge} n$:: mod-type ${ }^{\wedge} ' m$:: mod-type
$\Rightarrow-)===>(=))$
(Hermite-JNF) (Hermite)
by (simp add: HMA-Hermite rel-funI)

Once the definitions of both libraries are connected, we start to move the theorem about the uniqueness of the Hermite normal form (stated in HOL Analysis, named Hermite-unique) to JNF.

Using the previous transfer rules, we get an statement in JNF. However, the matrices have $C A R D$ (' n :: mod-type) rows and columns. We want to get rid of that type variable and just state that they are of dimension $n \times n$ (expressed via the predicate carrier-mat
lemma Hermite-unique-JNF':
fixes $A::{ }^{\prime} a::\{$ bezout-ring-div,normalization-euclidean-semiring,unique-euclidean-ring\} mat
assumes $A \in$ carrier-mat $C A R D$ ('n::mod-type) CARD('n::mod-type)
$P \in$ carrier-mat $C A R D$ (' $n::$ mod-type) $C A R D$ (' $n::$ mod-type $)$
$H \in$ carrier-mat $C A R D$ (' $n::$ mod-type) $C A R D$ (' $n::$ mod-type $)$
$Q \in$ carrier-mat CARD (' $n::$ mod-type) $C A R D(' n:: m o d-t y p e)$
$K \in$ carrier-mat CARD (' $n:: m o d-t y p e) ~ C A R D(' n:: m o d-t y p e)$
assumes $A=P * H$
and $A=Q * K$ and invertible-mat A and invertible-mat P
and invertible-mat Q and Hermite-JNF associates res H and Hermite-JNF
associates res K
shows $H=K$
proof -
define A^{\prime} where $A^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma $a_{m} A::{ }^{\prime} a^{\wedge \prime} n::$ mod-type ${ }^{\wedge} n$
:: mod-type)
define P^{\prime} where $P^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma $a_{m} P::{ }^{\prime} a{ }^{\wedge} n::$ mod-type ${ }^{\text {}}$ ' n
:: mod-type)
define H^{\prime} where $H^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma $a_{m} H::{ }^{\prime} a{ }^{\wedge} n::$ mod-type ${ }^{\wedge} n$
:: mod-type)
define Q^{\prime} where $Q^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma $a_{m} Q::{ }^{\prime} a^{\wedge \prime} n::$ mod-type ${ }^{\wedge} n$
:: mod-type)
define K^{\prime} where $K^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma ${ }_{m} K::{ }^{\prime} a{ }^{\text {^' }} n::$ mod-type ${ }^{\text {‘' }} n$
:: mod-type)
have $A A^{\prime}\left[\right.$ transfer-rule]: Mod-Type-Connect.HMA-M A A^{\prime} unfolding Mod-Type-Connect.HMA-M-def using assms A^{\prime}-def by auto
have $P P^{\prime}[$ transfer-rule $]:$ Mod-Type-Connect.HMA-M P P^{\prime} unfolding Mod-Type-Connect.HMA-M-def using assms P^{\prime}-def by auto have $H H^{\prime}[$ transfer-rule $]$: Mod-Type-Connect.HMA-M H H' unfolding Mod-Type-Connect.HMA-M-def using assms H^{\prime}-def by auto
have $Q Q^{\prime}[$ transfer-rule $]:$ Mod-Type-Connect.HMA-M $Q Q^{\prime}$ unfolding Mod-Type-Connect.HMA-M-def
using assms Q^{\prime}-def by auto
have $K K^{\prime}[$ transfer-rule $]:$ Mod-Type-Connect.HMA-M K K' unfolding Mod-Type-Connect.HMA-M-def
using assms K^{\prime}-def by auto
have $A-P H: A^{\prime}=P^{\prime} * * H^{\prime}$ using assms by transfer
moreover have $A-Q K: A^{\prime}=Q^{\prime} * * K^{\prime}$ using assms by transfer
moreover have inv-A: invertible A^{\prime} using assms by transfer
moreover have inv-P: invertible P^{\prime} using assms by transfer
moreover have inv- Q : invertible Q^{\prime} using assms by transfer
moreover have H : Hermite associates res H^{\prime} using assms by transfer
moreover have K : Hermite associates res K^{\prime} using assms by transfer
ultimately have $H^{\prime}=K^{\prime}$ using Hermite-unique by blast
thus $H=K$ by transfer
qed
Since the mod-type restriction relies on many things, the shortcut is to use the mod-ring typedef developed in the Berlekamp-Zassenhaus development. This type definition allows us to apply local type definitions easily. Since mod-ring is just an instance of mod-type, it is straightforward to obtain the following lemma, where $C A R D$ (' $n::$ mod-type) has now been substituted by $C A R D(' n::$ nontriv mod-ring $)$
corollary Hermite-unique-JNF-with-nontriv-mod-ring:
fixes $A::^{\prime} a::\{$ bezout-ring-div,normalization-euclidean-semiring,unique-euclidean-ring\}
mat

$P \in$ carrier-mat $C A R D\left({ }^{\prime} n\right) C A R D(' n)$
$H \in$ carrier-mat $C A R D(' n) C A R D(' n)$
$Q \in$ carrier-mat $\operatorname{CARD}\left({ }^{\prime} n\right) \operatorname{CARD}(' n)$
$K \in$ carrier-mat $C A R D(' n) C A R D(' n)$
assumes $A=P * H$
and $A=Q * K$ and invertible-mat A and invertible-mat P
and invertible-mat Q and Hermite-JNF associates res H and Hermite-JNF
associates res K
shows $H=K$ using Hermite-unique-JNF' assms by (smt CARD-mod-ring)
Now, we assume in a context that there exists a type text 'b of cardinality
n and we prove inside this context the lemma.

```
context
    fixes n::nat
    assumes local-typedef: \exists(Rep :: ('b = int)) Abs. type-definition Rep Abs {0..<n
:: int}
    and p:n>1
begin
private lemma type-to-set:
    shows class.nontriv TYPE('b) (is ?a) and n=CARD('b) (is ?b)
proof -
    from local-typedef obtain Rep::(' }b=>\mathrm{ int) and Abs
            where t: type-definition Rep Abs {0..<n :: int} by auto
            have card (UNIV :: 'b set) = card {0..<n} using t type-definition.card by
fastforce
    also have }\ldots=n\mathrm{ by auto
    finally show ?b ..
    then show ?a unfolding class.nontriv-def using p by auto
qed
lemma Hermite-unique-JNF-aux:
    fixes A::'a::{bezout-ring-div,normalization-euclidean-semiring,unique-euclidean-ring}
mat
    assumes A\incarrier-mat n n
        P\incarrier-mat n n
        H\incarrier-mat n n
        Q\incarrier-mat n n
        K\incarrier-mat n n
    assumes A=P*H
        and A=Q*K and invertible-mat A and invertible-mat P
            and invertible-mat Q and Hermite-JNF associates res H and Hermite-JNF
associates res K
shows }H=
    using Hermite-unique-JNF-with-nontriv-mod-ring[unfolded CARD-mod-ring,
            internalize-sort ' n::nontriv, where ?'a='b]
    unfolding type-to-set(2)[symmetric] using type-to-set(1) assms by blast
end
Now, we cancel the local type definition of the previous context. Since the mod-type restriction imposes the type to have cardinality greater than 1 , the cases \(n=0\) and \(n=1\) must be proved separately (they are trivial)
lemma Hermite-unique-JNF:
fixes \(A:: ' a::\{\) bezout-ring-div,normalization-euclidean-semiring,unique-euclidean-ring \(\}\) mat
assumes \(A: A \in\) carrier-mat \(n n\) and \(P: P \in\) carrier-mat \(n n\) and \(H: H \in\) carrier-mat \(n n\)
and \(Q: Q \in\) carrier-mat \(n n\) and \(K: K \in\) carrier-mat \(n n\)
assumes \(A-P H: A=P * H\) and \(A-Q K: A=Q * K\)
```

and inv-A: invertible-mat A and inv- P : invertible-mat P and inv- Q : invert-ible-mat Q
and HNF-H: Hermite-JNF associates res H and HNF-K: Hermite-JNF associates res K
shows $H=K$
proof (cases $n=0 \vee n=1$)
case True note zero-or-one $=$ True
show ?thesis
proof (cases $n=0$)
case True
then show ?thesis using assms by auto

next

case False
have CS-A: Complete-set-non-associates associates using HNF-H unfolding Hermite-JNF-def by simp
have $H: H \in$ carrier-mat 11 and $K: K \in$ carrier-mat 11 using False zero-or-one assms by auto
have det-P-dvd-1: Determinant.det P dvd 1 using invertible-iff-is-unit-JNF inv-P P by blast
have det-Q-dvd-1: Determinant.det Q dvd 1 using invertible-iff-is-unit-JNF inv- $Q Q$ by blast
have PH-QK: Determinant.det $P *$ Determinant.det $H=$ Determinant.det Q

* Determinant.det K
using Determinant.det-mult assms by metis
hence Determinant.det $P * H \$ \$(0,0)=$ Determinant.det $Q * K \$ \$(0,0)$
by (metis $H K$ determinant-one-element)
obtain u where $u H-K: u * H \$ \$(0,0)=K \$ \$(0,0)$ and unit-u: is-unit u
by (metis (no-types, opaque-lifting) H K PH-QK algebraic-semidom-class.dvd-mult-unit-iff det-P-dvd-1
det-Q-dvd-1 det-singleton dvdE dvd-mult-cancel-left mult.commute mult.right-neutral one-dvd)
have H00-not- $0: H \$ \$(0,0) \neq 0$
by (metis A A-PH Determinant.det-mult False H P determinant-one-element inv- A
invertible-iff-is-unit-JNF mult-not-zero not-is-unit-0 zero-or-one)
hence LEAST-H: (LEAST n. H $\$ \$(0, n) \neq 0)=0$ by simp
have H00:H $\$ \$(0,0) \in$ associates using HNF-H LEAST-H H H00-not-0 unfolding Hermite-JNF-def is-zero-row-JNF-def by auto
have K00-not- $0: K \$ \$(0,0) \neq 0$
by (metis A A-QK Determinant.det-mult False K determinant-one-element inv- A
invertible-iff-is-unit-JNF mult-not-zero not-is-unit-0 zero-or-one)
hence LEAST-K: (LEAST n. K $\$ \$(0, n) \neq 0)=0$ by simp
have K00: K $\$ \$(0,0) \in$ associates using HNF-K LEAST-K K K00-not-0
unfolding Hermite-JNF-def is-zero-row-JNF-def by auto
have ass-H00-K00: normalize $(H \$ \$(0,0))=$ normalize $(K \$ \$(0,0))$
by (metis normalize-mult-unit-left uH-K unit-u)
have H00-eq-K00: $H \$ \$(0,0)=K \$ \$(0,0)$
using in-Ass-not-associated[OF CS-A H00 K00] ass-H00-K00 by auto

```
    show ?thesis by (rule eq-matI, insert H K H00-eq-K00, auto)
    qed
next
    case False
    hence {0..<int n}\not={} by auto
    moreover have n>1 using False by simp
    ultimately show ?thesis using Hermite-unique-JNF-aux[cancel-type-definition]
assms by metis
qed
end
```

From here on, we apply the same approach to move the new generalized statement about the uniqueness Hermite normal form, i.e., the version restricted to integer matrices, but imposing invertibility over the rationals.
lemma HMA-map-matrix [transfer-rule]:
$((=)===>$ Mod-Type-Connect.HMA-M ===> Mod-Type-Connect.HMA-M)
map-mat map-matrix
unfolding map-vector-def map-matrix-def[abs-def] map-mat-def[abs-def]
Mod-Type-Connect.HMA-M-def Mod-Type-Connect.from-hma a_{m}-def
by auto
lemma Hermite-unique-generalized-JNF':
fixes A :: int mat
assumes $A \in$ carrier-mat CARD ('n::mod-type) CARD(' $n:: m o d-t y p e) ~$
$P \in$ carrier-mat CARD('n::mod-type) CARD ('n::mod-type)
$H \in$ carrier-mat CARD ('n::mod-type) CARD (' $n::$ mod-type $)$
$Q \in$ carrier-mat CARD (' $n::$ mod-type) $C A R D$ (' $n::$ mod-type $)$
$K \in$ carrier-mat $C A R D$ (' $n::$ mod-type) $C A R D(' n::$ mod-type $)$
assumes $A=P * H$
and $A=Q * K$ and invertible-mat (map-mat rat-of-int A) and invertible-mat P
and invertible-mat Q and Hermite-JNF associates res H and Hermite-JNF
associates res K
shows $H=K$
proof -
define A^{\prime} where $A^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma $A::$ int ${ }^{\wedge \prime} n::$ mod-type ${ }^{\wedge} n$
:: mod-type)
define P^{\prime} where $P^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma $a_{m} P::$ int ${ }^{\wedge} n$:: mod-type ${ }^{\text {^' }} n$
:: mod-type)
define H^{\prime} where $H^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma ${ }_{m} H$:: int ${ }^{\text {^' }} n$:: mod-type ${ }^{\wedge} n$:: mod-type)
define Q^{\prime} where $Q^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma $a_{m} Q::$ int ${ }^{\wedge} n::$ mod-type ${ }^{\wedge} n$
:: mod-type)
define K^{\prime} where $K^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma ${ }_{m} K::$ int ${ }^{\wedge} n$:: mod-type ${ }^{\prime} n$:: mod-type)
have $A A^{\prime}[$ transfer-rule $]$: Mod-Type-Connect.HMA-M A A^{\prime} unfolding Mod-Type-Connect.HMA-M-def
using assms A^{\prime}-def by auto
have $P P^{\prime}[$ transfer-rule $]$: Mod-Type-Connect.HMA-M P P^{\prime} unfolding Mod-Type-Connect.HMA-M-def using assms P^{\prime}-def by auto
have $H H^{\prime}[$ transfer-rule]: Mod-Type-Connect.HMA-M H H' unfolding Mod-Type-Connect.HMA-M-def using assms H^{\prime}-def by auto have $Q Q^{\prime}[$ transfer-rule $]$: Mod-Type-Connect.HMA-M $Q Q^{\prime}$ unfolding Mod-Type-Connect.HMA-M-def using assms Q^{\prime}-def by auto
have $K K^{\prime}[$ transfer-rule $]:$ Mod-Type-Connect.HMA-M K K' unfolding Mod-Type-Connect.HMA-M-def
using assms K^{\prime}-def by auto
have $A-P H: A^{\prime}=P^{\prime} * * H^{\prime}$ using assms by transfer
moreover have $A-Q K: A^{\prime}=Q^{\prime} * * K^{\prime}$ using assms by transfer
moreover have inv-A: invertible (map-matrix rat-of-int A^{\prime}) using assms by transfer
moreover have invertible (Finite-Cartesian-Product.map-matrix rat-of-int A^{\prime})
using inv-A unfolding Finite-Cartesian-Product.map-matrix-def map-matrix-def map-vector-def
by simp
moreover have inv-P: invertible P^{\prime} using assms by transfer
moreover have inv- Q : invertible Q^{\prime} using assms by transfer
moreover have H : Hermite associates res H^{\prime} using assms by transfer
moreover have K : Hermite associates res K^{\prime} using assms by transfer
ultimately have $H^{\prime}=K^{\prime}$ using Hermite-unique-generalized by blast
thus $H=K$ by transfer
qed
corollary Hermite-unique-generalized-JNF-with-nontriv-mod-ring:
fixes A :: int mat

$P \in$ carrier-mat $C A R D(' n) C A R D(' n)$
$H \in$ carrier-mat $C A R D(' n) C A R D(' n)$
$Q \in$ carrier-mat $\operatorname{CARD}\left({ }^{\prime} n\right) \operatorname{CARD}\left(^{\prime} n\right)$
$K \in$ carrier-mat $\operatorname{CARD}\left({ }^{\prime} n\right) \operatorname{CARD}\left({ }^{\prime} n\right)$
assumes $A=P * H$
and $A=Q * K$ and invertible-mat (map-mat rat-of-int A) and invertible-mat P
and invertible-mat Q and Hermite-JNF associates res H and Hermite-JNF associates res K
shows $H=K$ using Hermite-unique-generalized-JNF' assms by (smt CARD-mod-ring)
context
fixes $p:: n a t$
assumes local-typedef: $\exists\left(\right.$ Rep $::\left({ }^{\prime} b \Rightarrow\right.$ int $\left.)\right)$ Abs. type-definition Rep Abs $\{0 . .<p$
:: int $\}$
and $p: p>1$
begin
private lemma type-to-set2:
shows class.nontriv $\operatorname{TYPE}\left({ }^{\prime} b\right)($ is ? $a)$ and $p=C A R D\left({ }^{\prime} b\right)($ is ? $b)$
proof -
from local-typedef obtain Rep::(' $b \Rightarrow$ int) and $A b s$
where t : type-definition Rep Abs $\{0 . .<p::$ int $\}$ by auto
have card (UNIV :: 'b set) $=$ card $\{0 . .<p\}$ using type-definition.card by fastforce
also have $\ldots=p$ by auto
finally show ?b ..
then show ?a unfolding class.nontriv-def using p by auto
qed
lemma Hermite-unique-generalized-JNF-aux:
fixes A ::int mat
assumes $A \in$ carrier-mat $p p$
$P \in$ carrier-mat $p p$
$H \in$ carrier-mat $p p$
$Q \in$ carrier-mat $p p$
$K \in$ carrier-mat $p p$
assumes $A=P * H$
and $A=Q * K$ and invertible-mat (map-mat rat-of-int A) and invertible-mat P
and invertible-mat Q and Hermite-JNF associates res H and Hermite-JNF associates res K
shows $H=K$
using Hermite-unique-generalized-JNF-with-nontriv-mod-ring[unfolded CARD-mod-ring, internalize-sort ' $n::$ nontriv, where ?' $a=$ ' b]
unfolding type-to-set2(2)[symmetric] using type-to-set2(1) assms by blast end
lemma HNF-unique-generalized-JNF:
fixes A :: int mat
assumes $A: A \in$ carrier-mat $n n$ and $P: P \in$ carrier-mat $n n$ and $H: H \in$ carrier-mat n n
and $Q: Q \in$ carrier-mat $n n$ and $K: K \in$ carrier-mat $n n$
assumes $A-P H: A=P * H$ and $A-Q K: A=Q * K$
and inv-A: invertible-mat (map-mat rat-of-int A) and inv- P : invertible-mat P and inv-Q: invertible-mat Q
and HNF-H: Hermite-JNF associates res H and HNF-K: Hermite-JNF asso-
ciates res K
shows $H=K$
proof (cases $n=0 \vee n=1$)
case True note zero-or-one $=$ True
show ?thesis
proof (cases $n=0$)
case True
then show ?thesis using assms by auto

next

let ? RAT $=$ map-mat rat-of-int
case False
hence n : $n=1$ using zero-or-one by auto
have CS-A: Complete-set-non-associates associates using HNF-H unfolding Hermite-JNF-def by simp
have $H: H \in$ carrier-mat 11 and $K: K \in$ carrier-mat 11 using False zero-or-one assms by auto
have det-P-dvd-1: Determinant.det P dvd 1 using invertible-iff-is-unit-JNF inv-P P by blast
have det-Q-dvd-1: Determinant.det Q dvd 1 using invertible-iff-is-unit-JNF inv- Q Q by blast
have PH-QK: Determinant.det $P *$ Determinant.det $H=$ Determinant.det Q * Determinant.det K using Determinant.det-mult assms by metis
hence Determinant.det $P * H \$ \$(0,0)=$ Determinant.det $Q * K \$ \$(0,0)$
by (metis $H K$ determinant-one-element)
obtain u where $u H-K: u * H \$ \$(0,0)=K \$ \$(0,0)$ and unit-u: is-unit u
by (metis (no-types, opaque-lifting) H K PH-QK algebraic-semidom-class.dvd-mult-unit-iff det-P-dvd-1
det-Q-dvd-1 det-singleton dvdE dvd-mult-cancel-left mult.commute mult.right-neutral one-dvd)
have H00-not- 0 : $H \$ \$(0,0) \neq 0$
proof -
have ?RAT $A=$? RAT $P *$? RAT H using $A-P H$
using P H n of-int-hom.mat-hom-mult by blast
hence $\operatorname{det}(? R A T H) \neq 0$
by (metis A Determinant.det-mult False H P inv-A invertible-iff-is-unit-JNF
map-carrier-mat mult-eq-0-iff not-is-unit-0 zero-or-one)
thus ?thesis
using H determinant-one-element by force
qed
hence LEAST-H: (LEAST n. H $\$ \$(0, n) \neq 0)=0$ by simp
have H00: H $\$ \$(0,0) \in$ associates using HNF-H LEAST-H H HOO-not-0
unfolding Hermite-JNF-def is-zero-row-JNF-def by auto
have K00-not-0: $K \$ \$(0,0) \neq 0$
proof -
have ?RAT $A=$? RAT $Q * ? R A T K$ using $A-Q K$
using $Q K$ n of-int-hom.mat-hom-mult by blast
hence $\operatorname{det}(? R A T K) \neq 0$
by (metis A Determinant.det-mult False Q K inv-A invertible-iff-is-unit-JNF
map-carrier-mat mult-eq-0-iff not-is-unit-0 zero-or-one)
thus ?thesis
using K determinant-one-element by force
qed
hence LEAST-K: $($ LEAST $n . K \$ \$(0, n) \neq 0)=0$ by simp

```
    have K00:K $$ (0,0) \in associates using HNF-K LEAST-K K K00-not-0
            unfolding Hermite-JNF-def is-zero-row-JNF-def by auto
        have ass-H00-K00: normalize (H $$ (0,0)) = normalize ( }K$$(0,0)
            by (metis normalize-mult-unit-left uH-K unit-u)
    have H00-eq-K00:H $$ (0,0) =K $$ (0,0)
            using in-Ass-not-associated[OF CS-A H00 K00] ass-H00-K00 by auto
        show ?thesis by (rule eq-matI, insert H K H00-eq-K00, auto)
    qed
next
    case False
    hence {0..< int n} }={}\mathrm{ by auto
    moreover have n>1 using False by simp
    ultimately show ?thesis
        using Hermite-unique-generalized-JNF-aux[cancel-type-definition] assms by
metis
qed
end
```


8 Formalization of an efficient Hermite normal form algorithm

We formalize a version of the Hermite normal form algorithm based on reductions modulo the determinant. This avoids the growth of the intermediate coefficients.

8.1 Implementation of the algorithm using generic modulo operation

Exception on generic modulo: currently in Hermite-reduce-above, ordinary div $/ \bmod$ is used, since that is our choice for the complete set of residues.

```
theory HNF-Mod-Det-Algorithm
    imports
        Jordan-Normal-Form.Gauss-Jordan-IArray-Impl
        Show.Show-Instances
        Jordan-Normal-Form.Determinant-Impl
        Jordan-Normal-Form.Show-Matrix
        LLL-Basis-Reduction.LLL-Certification
        Smith-Normal-Form.SNF-Algorithm-Euclidean-Domain
        Smith-Normal-Form.SNF-Missing-Lemmas
        Uniqueness-Hermite-JNF
        Matrix-Change-Row
begin
```


8.1.1 Echelon form algorithm

fun make-first-column-positive :: int mat \Rightarrow int mat where
make-first-column-positive $A=($
 $(\lambda(i, j)$. if $A \$ \$(i, 0)<0$ then $-A \$ \(i, j) else $A \$ \(i, j))
)
locale mod-operation $=$
fixes generic-mod $::$ int \Rightarrow int \Rightarrow int (infixl gmod 70)
and generic-div $::$ int \Rightarrow int \Rightarrow int (infixl gdiv 70)
begin
Version for reducing all elements
fun reduce $::$ nat \Rightarrow nat \Rightarrow int \Rightarrow int mat \Rightarrow int mat where
reduce a b D $A=($ let $A a j=A \$ \$(a, 0) ; A b j=A \$ \$(b, 0)$
in
if Aaj $=0$ then A else
case euclid-ext2 Aaj Abj of $(p, q, u, v, d) \Rightarrow-\mathrm{p}^{*} \operatorname{Aaj}+\mathrm{q}^{*} \mathrm{Abj}=\mathrm{d}, \mathrm{u}=-\mathrm{Abj} / \mathrm{d}$, $\mathrm{v}=\mathrm{Aaj} / \mathrm{d}$

Matrix.mat (dim-row A) (dim-col A) - Create a matrix of the same dimensions $(\lambda(i, k)$. if $i=a$ then let $r=(p * A \$ \$(a, k)+q * A \$ \$(b, k))$ in if $k=0$ then if D dvd r then D else r else $r \operatorname{gmod} D-$ Row a is multiplied by p and added row b multiplied by q, modulo D

> else if $i=b$ then let $r=u * A \$ \$(a, k)+v * A \$ \(b, k) in
> if $k=0$ then r else r gmod $D-$ Row b is multiplied by v
and added row a multiplied by u , modulo D
else $A \$ \(i, k) - All the other rows remain unchanged
)
)
Version for reducing, with abs-checking

```
fun reduce-abs :: nat \(\Rightarrow\) nat \(\Rightarrow\) int \(\Rightarrow\) int mat \(\Rightarrow\) int mat where
    reduce-abs a b D \(A=(\) let \(A a j=A \$ \$(a, 0) ; A b j=A \$ \$(b, 0)\)
    in
    if \(A a j=0\) then \(A\) else
    case euclid-ext2 Aaj Abj of \((p, q, u, v, d) \Rightarrow-\mathrm{p}^{*} \mathrm{Aaj}+\mathrm{q}^{*} \mathrm{Abj}=\mathrm{d}, \mathrm{u}=-\mathrm{Abj} / \mathrm{d}\),
\(\mathrm{v}=\mathrm{Aaj} / \mathrm{d}\)
        Matrix.mat (dim-row A) (dim-col A) - Create a matrix of the same dimensions
            \((\lambda(i, k)\). if \(i=a\) then let \(r=(p * A \$ \$(a, k)+q * A \$ \$(b, k))\) in
                    if abs \(r>D\) then if \(k=0 \wedge D\) dvd \(r\) then \(D\) else \(r \operatorname{gmod} D\)
```

else r
else if $i=b$ then let $r=u * A \$ \$(a, k)+v * A \$ \(b, k) in
if abs $r>D$ then r gmod D else r
else $A \$ \(i, k) - All the other rows remain unchanged
)
)
definition reduce-impl $::$ nat \Rightarrow nat \Rightarrow int \Rightarrow int mat \Rightarrow int mat where reduce-impl a b D $A=$ (let

```
    row-a = Matrix.row A a;
    Aaj = row-a $v 0
in
if Aaj = 0 then A else let
    row-b = Matrix.row A b;
    Abj = row-b $v 0 in
case euclid-ext2 Aaj Abj of ( }p,q,u,v,d)
    let row-a' = (\lambdakak. let r=( p*ak+q* row-b $v k) in
                    if }k=0\mathrm{ then if D dvd r then D else r else r gmod D);
        row-b'}=(\lambdakbk.let r=u* row-a $v k+v*bk in
                    if k=0 then r else r gmod D)
        in change-row a row-a' (change-row b row-b' A)
)
```

definition reduce-abs-impl :: nat \Rightarrow nat \Rightarrow int \Rightarrow int mat \Rightarrow int mat where
reduce-abs-impl a b D $A=$ (let
row- $a=$ Matrix.row A a;
Aaj $=$ row- $a \$ v 0$
in
if $A a j=0$ then A else let
row-b $=$ Matrix.row $A b$;
$A b j=$ row- $b \$ v 0$ in
case euclid-ext2 Aaj Abj of $(p, q, u, v, d) \Rightarrow$
let row- $a^{\prime}=(\lambda k a k$. let $r=(p * a k+q *$ row- $b \$ v k)$ in
if abs $r>D$ then if $k=0 \wedge D$ dvd r then D else $r \operatorname{gmod} D$ else $r)$;
row- $b^{\prime}=(\lambda k b k$. let $r=u *$ row- $a \$ v k+v * b k$ in
if abs $r>D$ then $r \operatorname{gmod} D$ else r)
in change-row a row- a^{\prime} (change-row b row- $b^{\prime} A$)
)
lemma reduce-impl: $a<n r \Longrightarrow b<n r \Longrightarrow 0<n c \Longrightarrow a \neq b \Longrightarrow A \in$ carrier-mat $n r n c$
\Longrightarrow reduce-impl a b $D A=$ reduce a b $D A$
unfolding reduce-impl-def reduce.simps Let-def
apply (intro if-cong $[O F-r e f l]$, force)
apply (intro prod.case-cong refl, force)
apply (intro eq-matI, auto)
done
lemma reduce-abs-impl: $a<n r \Longrightarrow b<n r \Longrightarrow 0<n c \Longrightarrow a \neq b \Longrightarrow A \in$ carrier-mat nr nc
\Longrightarrow reduce-abs-impl a b D $A=$ reduce-abs a b $D A$
unfolding reduce-abs-impl-def reduce-abs.simps Let-def
apply (intro if-cong $[O F-r e f l]$, force)
apply (intro prod.case-cong refl, force)
apply (intro eq-matI, auto)
done
fun reduce-below :: nat \Rightarrow nat list \Rightarrow int \Rightarrow int mat \Rightarrow int mat
where reduce-below a [] $D A=A$
| reduce-below a (x \# xs) D A reduce-below a xs $D($ reduce a x $D A$)
fun reduce-below-impl $::$ nat \Rightarrow nat list \Rightarrow int \Rightarrow int mat \Rightarrow int mat where reduce-below-impl a [] $D A=A$
| reduce-below-impl a (x \# xs) D A reduce-below-impl a xs D (reduce-impl a x D A)
lemma reduce-impl-carrier[simp,intro]: $A \in$ carrier-mat $m n \Longrightarrow$ reduce-impl a b $D A \in$ carrier-mat $m n$
unfolding reduce-impl-def Let-def by (auto split: prod.splits)
lemma reduce-below-impl: $a<n r \Longrightarrow 0<n c \Longrightarrow(\bigwedge b . b \in$ set $b s \Longrightarrow b<n r)$ $\Longrightarrow a \notin$ set $b s$
$\Longrightarrow A \in$ carrier-mat $n r n c \Longrightarrow$ reduce-below-impl a bs $D A=$ reduce-below a bs D A
proof (induct bs arbitrary: A)
case (Cons b bs A)
show ?case by (simp del: reduce.simps,
subst reduce-impl[of - nr - nc],
(insert Cons, auto simp del: reduce.simps)[5],
rule Cons(1), insert Cons(2-), auto simp: Let-def split: prod.splits)
qed simp
fun reduce-below-abs :: nat \Rightarrow nat list \Rightarrow int \Rightarrow int mat \Rightarrow int mat where reduce-below-abs a [] D A = A
reduce-below-abs a (x \# xs) D $A=$ reduce-below-abs a xs D (reduce-abs a $x D$ A)
fun reduce-below-abs-impl :: nat \Rightarrow nat list \Rightarrow int \Rightarrow int mat \Rightarrow int mat where reduce-below-abs-impl $a[] D A=A$
| reduce-below-abs-impl a (x\# xs) D A = reduce-below-abs-impl a xs D (reduce-abs-impl a $x D$ A)
lemma reduce-abs-impl-carrier [simp,intro]: $A \in$ carrier-mat $m n \Longrightarrow$ reduce-abs-impl ab $D A \in$ carrier-mat $m n$
unfolding reduce-abs-impl-def Let-def by (auto split: prod.splits)
lemma reduce-abs-below-impl: $a<n r \Longrightarrow 0<n c \Longrightarrow(\bigwedge b . b \in$ set $b s \Longrightarrow b<$ $n r) \Longrightarrow a \notin$ set $b s$
$\Longrightarrow A \in$ carrier-mat $n r n c \Longrightarrow$ reduce-below-abs-impl abs $D A=$ reduce-below-abs a bs $D A$
proof (induct bs arbitrary: A)
case (Cons b bs A)

```
show ?case by (simp del: reduce-abs.simps,
    subst reduce-abs-impl[of - nr - nc],
    (insert Cons, auto simp del: reduce-abs.simps)[5],
    rule Cons(1), insert Cons(2-), auto simp:Let-def split: prod.splits)
qed simp
```

This function outputs a matrix in echelon form via reductions modulo the determinant
function FindPreHNF :: bool \Rightarrow int \Rightarrow int mat \Rightarrow int mat
where FindPreHNF abs-flag $D A=$
(let $m=$ dim-row $A ; n=\operatorname{dim}$-col A in
if $m<2 \vee n=0$ then A else - No operations are carried out if $m=1$
let non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<$ dim-row $A]$;

$$
A^{\prime}=(\text { if } A \$ \$(0,0) \neq 0 \text { then } A
$$

else let $i=$ non-zero-positions $!0$ - Select the first non-zero position below the first element
in swaprows 0 i A);

Reduce $=($ if abs-flag then reduce-below-abs else reduce-below $)$
in
if $n<2$ then Reduce 0 non-zero-positions $D A^{\prime}$ - If $\mathrm{n}=1$, then we have to reduce the column
else
let
$(A-U L, A-U R, A-D L, A-D R)=$ split-block (Reduce 0 non-zero-positions D
(make-first-column-positive A^{\prime})) 1 1;
sub-PreHNF $=$ FindPreHNF abs-flag $D A-D R$ in
four-block-mat A-UL A-UR A-DL sub-PreHNF)
by pat-completeness auto

termination

proof (relation Wellfounded.measure ($\lambda($ abs-flag, $D, A)$. dim-col $A)$)
show $w f$ (Wellfounded.measure ($\lambda($ abs-flag $, D, A)$. dim-col $A)$) by auto
fix abs-flag $D A m n n z A^{\prime} R$ xd $A^{\prime}-U L$ y $A^{\prime}-U R$ ya $A^{\prime}-D L A^{\prime}-D R$
assume m : $m=\operatorname{dim}$-row A and $n: n=\operatorname{dim}-\operatorname{col} A$
and m2: $\neg(m<2 \vee n=0)$ and $n z-d e f: n z=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)$ $[1 . .<$ dim-row $A]$
and A^{\prime}-def: $A^{\prime}=($ if $A \$ \$(0,0) \neq 0$ then A else let $i=n z!0$ in swaprows 0 i A)
and R-def: $R=$ (if abs-flag then reduce-below-abs else reduce-below)
and n2: $\neg n<2$ and $x d=$ split-block ($R 0$ nz D (make-first-column-positive $\left.\left.A^{\prime}\right)\right) 11$
and $\left(A^{\prime}-U L, y\right)=x d$ and $\left(A^{\prime}-U R, y a\right)=y$ and $\left(A^{\prime}-D L, A^{\prime}-D R\right)=y a$
hence A^{\prime}-split: $\left(A^{\prime}-U L, A^{\prime}-U R, A^{\prime}-D L, A^{\prime}-D R\right)$
$=\operatorname{split-block}\left(R 0 n z D\right.$ (make-first-column-positive $\left.\left.A^{\prime}\right)\right) 11$ by force
have dr-mk1: dim-row (make-first-column-positive A) $=\operatorname{dim-row} A$ for A by auto
have $d r$-mk2: dim-col (make-first-column-positive A) $=\operatorname{dim}-c o l A$ for A by auto
have r1: reduce-below a xs $D A \in$ carrier-mat $m n$ if $A \in$ carrier-mat $m n$ for A a $x s$
using that by (induct a xs D A rule: reduce-below.induct, auto simp add: Let-def euclid-ext2-def)
hence R : (reduce-below 0 nz D (make-first-column-positive $\left.\left.A^{\prime}\right)\right) \in$ carrier-mat m n
using A^{\prime}-def $m n$
by (metis carrier-matI index-mat-swaprows(2,3) $d r-m k 1 d r-m k 2$)
have reduce-below-abs a xs $D A \in$ carrier-mat $m n$ if $A \in$ carrier-mat $m n$ for A a xs
using that by (induct a xs D A rule: reduce-below-abs.induct, auto simp add: Let-def euclid-ext2-def)
hence R2: (reduce-below-abs 0 nz D (make-first-column-positive $\left.\left.A^{\prime}\right)\right) \in$ car-rier-mat $m n$
using A^{\prime}-def $m n$
by (metis carrier-matI index-mat-swaprows(2,3) dr-mk1 dr-mk2)
have $A^{\prime}-D R \in$ carrier-mat $(m-1)(n-1)$
by (cases abs-flag; rule split-block(4)[OF A'-split[symmetric]],insert m2 n2 m n R-def R R2, auto)
thus ((abs-flag, D, A^{\prime} - DR), abs-flag, $\left.D, A\right) \in$ Wellfounded.measure $(\lambda(a b s$-flag, D, A). $\operatorname{dim}-\operatorname{col} A$) using n2 m2 $n \mathrm{~m}$ by auto
qed
lemma FindPreHNF-code: FindPreHNF abs-flag D $A=$
(let $m=$ dim-row $A ; n=\operatorname{dim}$-col A in
if $m<2 \vee n=0$ then A else
let non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<$ dim-row $A]$;
$A^{\prime}=($ if $A \$ \$(0,0) \neq 0$ then A
else let $i=$ non-zero-positions ! 0 in swaprows 0 i A);

Reduce-impl $=($ if abs-flag then reduce-below-abs-impl else reduce-below-impl $)$ in
if $n<2$ then Reduce-impl 0 non-zero-positions $D A^{\prime}$
else
let
$(A-U L, A-U R, A-D L, A-D R)=$ split-block (Reduce-impl 0 non-zero-positions D (make-first-column-positive $\left.\left.A^{\prime}\right)\right) 11$;
sub-PreHNF $=$ FindPreHNF abs-flag $D A-D R$ in four-block-mat $A-U L A-U R A-D L$ sub-PreHNF) (is ?lhs $=?$ rhs $)$
proof -
let ?f $=\lambda R$. (if dim-row $A<2 \vee \operatorname{dim}-\operatorname{col} A=0$ then A else if $\operatorname{dim}-c o l A<2$ then $R 0($ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<$ dim-row $A]) D$
(if A $\$ \$(0,0) \neq 0$ then A else swaprows $0($ filter $(\lambda i . A \$ \$(i, 0) \neq 0)$ $[1 . .<$ dim-row $A]!0) A$)
else case split-block $(R 0($ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<$ dim-row $A]) D$
(make-first-column-positive (if $A \$ \$(0,0) \neq 0$ then A else swaprows $0($ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<\operatorname{dim}-r o w A]!0) A))) 11$ of ($A-U L, A-U R, A-D L, A-D R) \Rightarrow$ four-block-mat $A-U L A-U R A-D L$ (FindPreHNF

```
abs-flag D A-DR))
    have M-carrier: make-first-column-positive (if A $$ (0,0)\not=0 then A
            else swaprows 0(filter (\lambdai. A $$ (i,0) =0) [1..<dim-row A]!0) A)
            carrier-mat (dim-row A) (dim-col A)
    by (smt (z3) index-mat-swaprows(2) index-mat-swaprows(3) make-first-column-positive.simps
mat-carrier)
    have *: 0 & set (filter (\lambdai. A $$ (i,0) # 0) [1..<dim-row A]) by simp
    have ?lhs =?f (if abs-flag then reduce-below-abs else reduce-below)
    unfolding FindPreHNF.simps[of abs-flag D A] Let-def by presburger
    also have ... = ?rhs
    proof (cases abs-flag)
    case True
    have ?f (if abs-flag then reduce-below-abs else reduce-below)=?f reduce-below-abs
        using True by presburger
    also have ... = ?f reduce-below-abs-impl
        by ((intro if-cong refl prod.case-cong arg-cong[of --\lambda x. split-block x 1 1];
            (subst reduce-abs-below-impl[where nr = dim-row }A\mathrm{ and nc=dim-col A])),
(auto)[9])
            (insert M-carrier *, blast+)
    also have ... = ?f (if abs-flag then reduce-below-abs-impl else reduce-below-impl)
        using True by presburger
    finally show ?thesis using True unfolding FindPreHNF.simps[of abs-flag D
A] Let-def by blast
    next
    case False
    have ?f (if abs-flag then reduce-below-abs else reduce-below) = ?f reduce-below
        using False by presburger
    also have ... = ?f reduce-below-impl
        by ((intro if-cong refl prod.case-cong arg-cong[of - - \lambda x. split-block x 1 1];
            (subst reduce-below-impl[where nr = dim-row A and nc = dim-col A])),
(auto)[9])
        (insert M-carrier *, blast+)
    also have ... = ?f (if abs-flag then reduce-below-abs-impl else reduce-below-impl)
        using False by presburger
    finally show ?thesis using False unfolding FindPreHNF.simps[of abs-flag D
A] Let-def by blast
    qed
    finally show ?thesis by blast
qed
end
declare mod-operation.FindPreHNF-code[code]
declare mod-operation.reduce-below-impl.simps[code]
declare mod-operation.reduce-impl-def[code]
declare mod-operation.reduce-below-abs-impl.simps[code]
declare mod-operation.reduce-abs-impl-def[code]
```


8.1.2 From echelon form to Hermite normal form

From here on, we define functions to transform a matrix in echelon form into its Hermite normal form. Essentially, we are defining the functions that are available in the AFP entry Hermite (which uses HOL Analysis + mod-type) in the JNF matrix representation.

```
definition find-fst-non0-in-row :: nat \(\Rightarrow\) int mat \(\Rightarrow\) nat option where
    find-fst-non0-in-row \(l A=(\) let is \(=[l . .<\) dim-col \(A]\);
    Ais \(=\) filter \((\lambda j . A \$ \$(l, j) \neq 0)\) is
    in case Ais of []\(\Rightarrow\) None \(\mid-\Rightarrow\) Some (Ais!0))
primrec Hermite-reduce-above
where Hermite-reduce-above (A::int mat) \(0 i j=A\)
    | Hermite-reduce-above \(A\) (Suc n) \(i j=\) (let
    \(A i j=A \$ \$(i, j)\);
    \(A n j=A \$ \$(n, j)\)
    in
    Hermite-reduce-above (addrow (- (Anj div Aij)) niA)nij)
definition Hermite-of-row- \(i::\) int mat \(\Rightarrow\) nat \(\Rightarrow\) int mat
    where Hermite-of-row- \(i\) A \(i=(\)
    case find-fst-non0-in-row \(i\) A of None \(\Rightarrow A \mid\) Some \(j \Rightarrow\)
    let \(A i j=A \$ \$(i, j)\) in
    if Aij \(<0\) then Hermite-reduce-above (multrow \(i(-1)\) A) i ij
    else Hermite-reduce-above A i ij)
primrec Hermite-of-list-of-rows
    where
Hermite-of-list-of-rows \(A[]=A \mid\)
Hermite-of-list-of-rows \(A(a \# x s)=\) Hermite-of-list-of-rows (Hermite-of-row-i \(A\)
a) \(x s\)
```

We combine the previous functions to assemble the algorithm

```
definition (in mod-operation) Hermite-mod-det abs-flag A =
```

 (let \(m=\) dim-row \(A ; n=\) dim-col \(A\);
 \(D=a b s(\operatorname{det}-i n t A) ;\)
 \(A^{\prime}=A @_{r} D \cdot{ }_{m} 1_{m} n\);
 \(E=\) FindPreHNF abs-flag \(D A^{\prime} ;\)
 \(H=\) Hermite-of-list-of-rows \(E[0 . .<m+n]\)
 in mat-of-rows \(n(\) map \((\) Matrix.row \(H)[0 . .<m]))\)

8.1.3 Some examples of execution

declare mod-operation.Hermite-mod-det-def[code]
value let $B=$ mat-of-rows-list $4([[0,3,1,4],[7,1,0,0],[8,0,19,16],[2,0,0,3::$ int $]])$ in
show (mod-operation.Hermite-mod-det (mod) True B)
value let $B=$ mat-of-rows-list 7 ([

```
1, 17, \(-41,-1,1,0,0]\),
\(0,-1, \quad 2, \quad 0,-6,2,1]\),
\(9,2,1,1,-2,2,-5]\),
\([-1,-3,-1,0,-9,0,0]\),
[ \(9,-1,-9,0,0,0,1]\),
1, -1, 1, 0, 1, \(-8,0]\),
\([1,-1,0,-2,-1,-1,0:: i n t]])\) in
show (mod-operation.Hermite-mod-det (mod) True B)
```

end

8.2 Soundness of the algorithm

```
theory HNF-Mod-Det-Soundness
    imports
        HNF-Mod-Det-Algorithm
        Signed-Modulo
begin
hide-const(open) Determinants.det Determinants2.upper-triangular
    Finite-Cartesian-Product.row Finite-Cartesian-Product.rows
    Finite-Cartesian-Product.vec
```


8.2.1 Results connecting lattices and Hermite normal form

The following results will also be useful for proving the soundness of the certification approach.

```
lemma of-int-mat-hom-int-id[simp]:
    fixes \(A\) ::int mat
    shows of-int-hom.mat-hom \(A=A\) unfolding map-mat-def by auto
definition is-sound-HNF algorithm associates res
    \(=(\forall A\). let \((P, H)=\) algorithm \(A ; m=\operatorname{dim-row} A ; n=\operatorname{dim}\)-col \(A\) in
        \(P \in\) carrier-mat \(m m \wedge H \in\) carrier-mat \(m n \wedge\) invertible-mat \(P \wedge A=P\)
* H
        \(\wedge\) Hermite-JNF associates res \(H\) )
lemma \(H N F-A\)-eq-HNF-PA:
    fixes \(A:\) :'a:: \{bezout-ring-div,normalization-euclidean-semiring,unique-euclidean-ring\}
mat
    assumes \(A: A \in\) carrier-mat \(n n\) and inv-A: invertible-mat \(A\)
```

and inv- P : invertible-mat P and $P: P \in$ carrier-mat $n n$
and sound-HNF: is-sound-HNF HNF associates res
and P1-H1: $(P 1, H 1)=\operatorname{HNF}(P * A)$
and P2-H2: $(P 2, H 2)=H N F A$
shows $H 1=H 2$
proof -
obtain inv- P where P-inv- P : inverts-mat P inv- P and inv- P - P : inverts-mat inv-P P
and inv-P: inv- $P \in$ carrier-mat $n n$
using P inv- P obtain-inverse-matrix by blast
have P1: P1 \in carrier-mat $n n$
using P1-H1 sound-HNF unfolding is-sound-HNF-def Let-def
by (metis (no-types, lifting) P carrier-matD(1) index-mult-mat(2) old.prod.case)
have H1: H1 \in carrier-mat n n using P1-H1 sound-HNF unfolding is-sound-HNF-def Let-def
by (metis (no-types, lifting) A P carrier-matD(1) carrier-matD(2) case-prodD index-mult-mat(2,3))
have invertible-inv- P : invertible-mat inv- P
using P-inv- P inv- P inv- $P-P$ invertible-mat-def square-mat.simps by blast
have $P-A-P 1-H 1: P * A=P 1 * H 1$ using $P 1-H 1$ sound-HNF unfolding is-sound-HNF-def Let-def
by (metis (mono-tags, lifting) case-prod-conv)
hence $A=$ inv- $P *(P 1 * H 1)$
by (smt A P inv- P - P inv- P assoc-mult-mat carrier-matD(1) inverts-mat-def left-mult-one-mat)
hence A-inv-P-P1-H1: $A=($ inv- $P * P 1) * H 1$
by (smt P P1-H1 assoc-mult-mat carrier-matD(1) fst-conv index-mult-mat(2) inv-P
is-sound-HNF-def prod.sel(2) sound-HNF split-beta)
have $A-P 2-H 2$: $A=P 2$ * H2 using P2-H2 sound-HNF unfolding is-sound-HNF-def Let-def
by (metis (mono-tags, lifting) case-prod-conv)
have invertible-inv-P-P1: invertible-mat (inv-P * P1)
proof (rule invertible-mult-JNF[OF inv-P P1 invertible-inv-P])
show invertible-mat P1
by (smt P1-H1 is-sound-HNF-def prod.sel(1) sound-HNF split-beta)
qed
show ?thesis
proof (rule Hermite-unique-JNF[OF A-H1--A-inv-P-P1-H1 A-P2-H2 inv-A invertible-inv-P-P1])
show inv- $P * P 1 \in$ carrier-mat $n n$
by (metis carrier-matD(1) carrier-matI index-mult-mat(2) inv-P
invertible-inv-P-P1 invertible-mat-def square-mat.simps)
show P2 \in carrier-mat $n n$
by (smt A P2-H2 carrier-matD(1) is-sound-HNF-def prod.sel(1) sound-HNF split-beta)
show H2 \in carrier-mat $n n$
by (smt A P2-H2 carrier-matD(1) carrier-matD(2) is-sound-HNF-def prod.sel(2)
sound-HNF split-beta)

```
    show invertible-mat P2
    by (smt P2-H2 is-sound-HNF-def prod.sel(1) sound-HNF split-beta)
    show Hermite-JNF associates res H1
    by (smt P1-H1 is-sound-HNF-def prod.sel(2) sound-HNF split-beta)
    show Hermite-JNF associates res H2
    by (smt P2-H2 is-sound-HNF-def prod.sel(2) sound-HNF split-beta)
    qed
qed
context vec-module
begin
lemma mat-mult-invertible-lattice-eq:
    assumes fs: set fs}\subseteq\mathrm{ carrier-vec n
    and gs: set gs \subseteqcarrier-vec n
    and P:P\incarrier-mat m m and invertible-P: invertible-mat P
    and length-fs: length fs =m and length-gs: length gs =m
    and prod: mat-of-rows nfs}=(\mathrm{ map-mat of-int P) * mat-of-rows n gs
    shows lattice-of fs = lattice-of gs
proof thm mat-mult-sub-lattice
    show lattice-of fs \subseteqlattice-of gs
        by (rule mat-mult-sub-lattice[OF fs gs - prod],simp add: length-fs length-gs P)
next
    obtain inv-P where P-inv-P: inverts-mat P inv-P and inv-P-P: inverts-mat
inv-P P
    and inv-P: inv-P\incarrier-mat m m
    using P invertible-P obtain-inverse-matrix by blast
    have of-int-hom.mat-hom (inv-P) * mat-of-rows n fs
            =of-int-hom.mat-hom (inv-P)*((map-mat of-int P)* mat-of-rows n gs)
        using prod by auto
    also have ... =of-int-hom.mat-hom (inv-P)*(map-mat of-int P)* mat-of-rows
ngs
    by (smt P assoc-mult-mat inv-P length-gs map-carrier-mat mat-of-rows-carrier(1))
    also have ... =of-int-hom.mat-hom (inv-P * P)* mat-of-rows n gs
        by (metis P inv-P of-int-hom.mat-hom-mult)
    also have ... = mat-of-rows n gs
        by (metis carrier-matD(1) inv-P inv-P-P inverts-mat-def left-mult-one-mat'
            length-gs mat-of-rows-carrier(2) of-int-hom.mat-hom-one)
    finally have prod: mat-of-rows n gs =of-int-hom.mat-hom (inv-P)* mat-of-rows
n fs ..
    show lattice-of gs \subseteqlattice-of fs
        by (rule mat-mult-sub-lattice[OF gs fs - prod], simp add: length-fs length-gs
inv-P)
qed
end
```

```
context
    fixes n :: nat
begin
interpretation vec-module TYPE(int).
lemma lattice-of-HNF:
    assumes sound-HNF: is-sound-HNF HNF associates res
        and P1-H1: (P,H)=HNF (mat-of-rows n fs)
        and fs: set fs\subseteqcarrier-vec n and len: length fs =m
    shows lattice-of fs = lattice-of (rows H)
proof (rule mat-mult-invertible-lattice-eq[OF fs])
    have H:H\incarrier-mat m n using sound-HNF P1-H1 unfolding is-sound-HNF-def
Let-def
    by (metis (mono-tags, lifting) assms(4) mat-of-rows-carrier(2) mat-of-rows-carrier(3)
prod.sel(2) split-beta)
    have H-rw: mat-of-rows n (Matrix.rows H) = H using mat-of-rows-rows H by
fast
    have PH-fs-init: mat-of-rows n fs = P*H using sound-HNF P1-H1 unfolding
is-sound-HNF-def Let-def
        by (metis (mono-tags, lifting) case-prodD)
    show mat-of-rows n fs = of-int-hom.mat-hom P * mat-of-rows n (Matrix.rows
H)
            unfolding H-rw of-int-mat-hom-int-id using PH-fs-init by simp
        show set (Matrix.rows H)\subseteqcarrier-vec n using H rows-carrier by blast
        show P carrier-mat m m using sound-HNF P1-H1 unfolding is-sound-HNF-def
Let-def
    by (metis (no-types, lifting) len case-prodD mat-of-rows-carrier(2))
    show invertible-mat P using sound-HNF P1-H1 unfolding is-sound-HNF-def
Let-def
    by (metis (no-types, lifting) case-prodD)
    show length fs =m using len by simp
    show length (Matrix.rows H)=m using H by auto
qed
end
context LLL-with-assms
begin
lemma certification-via-eq-HNF:
    assumes sound-HNF: is-sound-HNF HNF associates res
    and P1-H1:(P1,H1) = HNF (mat-of-rows n fs-init)
    and P2-H2:(P2,H2) = HNF (mat-of-rows n gs)
    and H1-H2:H1 = H2
    and gs: set gs\subseteqcarrier-vec n and len-gs: length gs =m
    shows lattice-of gs = lattice-of fs-init LLL-with-assms n m gs \alpha
proof -
```

```
have lattice-of fs-init = lattice-of (rows H1)
    by (rule lattice-of-HNF[OF sound-HNF P1-H1 fs-init], simp add:len)
also have ... = lattice-of (rows H2) using H1-H2 by auto
also have ... = lattice-of gs
    by (rule lattice-of-HNF[symmetric, OF sound-HNF P2-H2 gs len-gs])
finally show lattice-of gs = lattice-of fs-init ..
    have invertible-P1: invertible-mat P1
        using sound-HNF P1-H1 unfolding is-sound-HNF-def
        by (metis (mono-tags, lifting) case-prodD)
have invertible-P2: invertible-mat P2
        using sound-HNF P2-H2 unfolding is-sound-HNF-def
        by (metis (mono-tags, lifting) case-prodD)
    have P2: P2 }\in\mathrm{ carrier-mat m m
        using sound-HNF P2-H2 unfolding is-sound-HNF-def
        by (metis (no-types, lifting) len-gs case-prodD mat-of-rows-carrier(2))
        obtain inv-P2 where P2-inv-P2: inverts-mat P2 inv-P2 and inv-P2-P2:
inverts-mat inv-P2 P2
    and inv-P2: inv-P2 \in carrier-mat m m
        using P2 invertible-P2 obtain-inverse-matrix by blast
    have P1: P1 G carrier-mat m m
        using sound-HNF P1-H1 unfolding is-sound-HNF-def
        by (metis (no-types, lifting) len case-prodD mat-of-rows-carrier(2))
    have H1:H1 G carrier-mat m n
        using sound-HNF P1-H1 unfolding is-sound-HNF-def
    by (metis (no-types, lifting) case-prodD len mat-of-rows-carrier(2) mat-of-rows-carrier(3))
    have H2: H2 \in carrier-mat m n
        using sound-HNF P2-H2 unfolding is-sound-HNF-def
    by (metis (no-types, lifting) len-gs case-prodD mat-of-rows-carrier(2) mat-of-rows-carrier(3))
    have P2-H2: P2 * H2 = mat-of-rows n gs
        by (smt P2-H2 sound-HNF case-prodD is-sound-HNF-def)
    have P1-H1-fs: P1 * H1 = mat-of-rows n fs-init
        by (smt P1-H1 sound-HNF case-prodD is-sound-HNF-def)
        obtain inv-P1 where P1-inv-P1: inverts-mat P1 inv-P1 and inv-P1-P1:
inverts-mat inv-P1 P1
    and inv-P1: inv-P1 \in carrier-mat m m
        using P1 invertible-P1 obtain-inverse-matrix by blast
    show LLL-with-assms n m gs \alpha
    proof (rule LLL-change-basis(2)[OF gs len-gs])
    show P1 * inv-P2 \in carrier-mat m m using P1 inv-P2 by auto
    have mat-of-rows n fs-init = P1 * H1 using sound-HNF P2-H2 unfolding
is-sound-HNF-def
            by (metis (mono-tags, lifting) P1-H1 case-prodD)
    also have ... = P1 * inv-P2 * P2 * H1
    by (smt P1 P2 assoc-mult-mat carrier-matD(1) inv-P2 inv-P2-P2 inverts-mat-def
right-mult-one-mat)
    also have ... =P1*inv-P2 *P2 * H2 using H1-H2 by blast
    also have ... =P1 * inv-P2 * (P2 * H2)
        using H2 P2 <P1 * inv-P2 \in carrier-mat m m> assoc-mult-mat by blast
    also have ... =P1 * (inv-P2 * P2 * H2)
```

```
            by (metis H2 <P1 * H1 = P1 * inv-P2 * P2 * H1\rangle\langleP1 * inv-P2 * P2 *
H2 = P1 * inv-P2 * (P2 * H2)>
            H1-H2 carrier-matD(1) inv-P2 inv-P2-P2 inverts-mat-def left-mult-one-mat)
    also have ... = P1 * (inv-P2 * (P2 * H2)) using H2 P2 inv-P2 by auto
    also have ... = P1 * inv-P2 * mat-of-rows n gs
            using P2-H2 <P1 * (inv-P2 * P2 * H2 ) = P1 * (inv-P2 * (P2 * H2 ))>
            <P1 * inv-P2 * (P2 * H2) = P1 *(inv-P2 * P2 * H2) > by auto
    finally show mat-of-rows n fs-init = P1 *inv-P2 * mat-of-rows n gs .
    show P2 * inv-P1 \in carrier-mat m m
            using P2 inv-P1 by auto
            have mat-of-rows n gs = P2 * H2 using sound-HNF P2-H2 unfolding
is-sound-HNF-def by metis
    also have ... = P2 * inv-P1 * P1 * H2
    by (smt P1 P2 assoc-mult-mat carrier-matD(1) inv-P1 inv-P1-P1 inverts-mat-def
right-mult-one-mat)
    also have ... = P2 * inv-P1 * P1 * H1 using H1-H2 by blast
    also have ... = P2 * inv-P1 * (P1 * H1)
        using H1 P1 <P2 * inv-P1 \in carrier-mat m m> assoc-mult-mat by blast
    also have ... =P2 * (inv-P1*P1*H1)
            by (metis H2 <P2 * H2 = P2 * inv-P1 * P1 * H2`<P2 *inv-P1 * P1 *
H1 = P2 *inv-P1 * (P1 * H1)>
            H1-H2 carrier-matD(1) inv-P1 inv-P1-P1 inverts-mat-def left-mult-one-mat)
    also have ... =P2 * (inv-P1 * (P1 * H1)) using H1 P1 inv-P1 by auto
    also have ... = P2 * inv-P1 * mat-of-rows n fs-init
            using P1-H1-fs <P2 * (inv-P1 * P1 * H1) = P2 * (inv-P1 * (P1 * H1))>
            <P2 * inv-P1 * (P1 * H1) = P2 * (inv-P1 * P1 * H1)> by auto
    finally show mat-of-rows n gs =P2 * inv-P1 * mat-of-rows n fs-init .
    qed
qed
end
```

Now, we need to generalize some lemmas.
context vec-module
begin
lemma finsum-index:
assumes $i: i<n$
and $f: f \in A \rightarrow$ carrier-vec n
and $A: A \subseteq$ carrier-vec n
shows finsum $V f A \$ i=\operatorname{sum}(\lambda x . f x \$ i) A$
using $A f$
proof (induct A rule: infinite-finite-induct)
case empty
then show ?case using i by simp next
case (insert $x X$)
then have $X f$: finite X
and $x X: x \notin X$

```
    and x: x\in carrier-vec n
    and X:X\subseteqcarrier-vec n
    and fx:fx\incarrier-vec n
    and f:f\inX 利rier-vec n by auto
    have i2: i< dim-vec (finsum VfX)
    using i finsum-closed[OF f] by auto
    have ix: i< dim-vec x using x i by auto
    show ?case
    unfolding finsum-insert[OF Xf xX f fx]
    unfolding sum.insert[OF Xf xX]
    unfolding index-add-vec(1)[OF i2]
    using insert lincomb-def
    by auto
qed (insert i, auto)
lemma mat-of-rows-mult-as-finsum:
    assumes v\incarrier-vec (length lst) \bigwedgei.i<length lst \Longrightarrowlst!i\incarrier-vec
n
```



```
    shows mat-of-cols-mult-as-finsum:mat-of-cols n lst *vv = lincomb f (set lst)
proof -
    from assms have }\foralli<length lst. lst ! i \in carrier-vec n by blas
    note an = all-nth-imp-all-set[OF this] hence slc:set lst }\subseteq\mathrm{ carrier-vec n by auto
    hence dn [simp]:\ x. x set lst \Longrightarrowdim-vec }x=n\mathrm{ by auto
    have dl [simp]:dim-vec (lincomb f(set lst))}=n\mathrm{ using an
        by (simp add: slc)
    show ?thesis proof
        show dim-vec (mat-of-cols n lst *v v) = dim-vec (lincomb f (set lst)) using
assms(1,2) by auto
    fix i assume i:i<dim-vec (lincomb f (set lst)) hence }\mp@subsup{i}{}{\prime}:i<n\mathrm{ by auto
    with an have fcarr:(\lambdav.fv vvv)\in set lst }->\mathrm{ carrier-vec n by auto
    from i' have (mat-of-cols n lst *vv)$ i = row (mat-of-cols n lst) i | v by auto
    also have ... = (\sumia=0..<dim-vec v.lst!ia $i*v$ ia)
        unfolding mat-of-cols-def row-def scalar-prod-def
            apply(rule sum.cong[OF refl]) using i an assms(1) by auto
    also have ... = (\sumia=0..<length lst.lst!ia $i*v$ia) using assms(1)
by auto
    also have ... = (\sumx\inset lst. f x*x$ i)
        unfolding f-def sum-distrib-right apply (subst sum.swap)
        apply(rule sum.cong[OF refl])
        unfolding if-distrib if-distribR mult-zero-left sum.delta[OF finite-set] by auto
    also have ... = (\sumx\inset lst. (fx\cdotv x)$ i)
        apply(rule sum.cong[OF refl],subst index-smult-vec) using i slc by auto
```



```
        unfolding finsum-index[OF i' fcarr slc] by auto
    finally show (mat-of-cols n lst *vv) $i=lincomb f(set lst) $ i
    by (auto simp:lincomb-def)
qed
```


qed

```
lemma lattice-of-altdef-lincomb:
    assumes set fs \subseteqcarrier-vec n
    shows lattice-of fs ={y.\existsf. lincomb (of-int \circf) (set fs)=y}
    unfolding lincomb-def lattice-of-altdef[OF assms] image-def by auto
```

end
context vec-module
begin
lemma lincomb-as-lincomb-list:
fixes ws f
assumes s : set ws \subseteq carrier-vec n
shows lincomb $f($ set ws $)=$ lincomb-list $(\lambda i$. if $\exists j<i$. ws! $i=w s!j$ then 0 else f
(ws!i)) ws
using assms
proof (induct ws rule: rev-induct)
case (snoc a ws)
let ?f $=\lambda i$. if $\exists j<i$. ws ! $i=w s!j$ then 0 else $f(w s!i)$
let $? g=\lambda i$. (if $\exists j<i$. (ws @ $[a])!i=(w s @[a])!j$ then 0 else $f((w s @[a])!$
i)) $\cdot_{v}(w s @[a])!i$
let ? $g 2=(\lambda i$. (if $\exists j<i . w s!i=w s!j$ then 0 else $f(w s!i)) \cdot v$ ws!i)
have $[$ simp $]: \bigwedge v . v \in$ set $w s \Longrightarrow v \in$ carrier-vec n using snoc.prems(1) by auto
then have ws: set ws \subseteq carrier-vec n by auto
have hyp: lincomb $f($ set ws $)=$ lincomb-list ?f ws
by (intro snoc.hyps ws)
show ? case
proof (cases $a \in$ set ws)
case True
have g-length: ? g (length ws) $=0_{v} n$ using True
by (auto, metis in-set-conv-nth nth-append)
have $(\operatorname{map} ? g[0 . .<$ length $(w s @[a])])=(\operatorname{map} ? g[0 . .<$ length ws $]) @[? g($ length
$w s)$]
by auto
also have $\ldots=($ map ? $g[0 . .<$ length ws $]) @\left[O_{v} n\right]$ using g-length by simp
finally have map-rw: (map?g $[0 . .<$ length $($ ws @ $[a])])=($ map $? g[0 . .<$ length
$w s]) @\left[\begin{array}{ll}O_{v} & n\end{array}\right]$.
have M.sumlist (map ?g2 $[0 . .<$ length ws $])=$ M.sumlist $($ map $? g[0 . .<$ length
$w s])$
by (rule arg-cong[of - - M.sumlist], intro nth-equalityI, auto simp add:
nth-append)
also have $\ldots=$ M.sumlist $($ map $? g[0 . .<$ length ws $])+O_{v} n$
by (metis M.r-zero calculation hyp lincomb-closed lincomb-list-def ws)
also have $\ldots=$ M.sumlist (map ? $g[0 . .<$ length ws $] @\left[\begin{array}{ll}O_{v} & n\end{array}\right]$)
by (rule M.sumlist-snoc[symmetric], auto simp add: nth-append)
finally have summlist-rw: M.sumlist (map ?g2 [0..<length ws])
$=$ M.sumlist (map?g $[0 . .<$ length ws $\left.] @\left[0_{v} n\right]\right)$.
have lincomb $f($ set $(w s @[a]))=\operatorname{lincomb} f($ set ws) using True unfolding lincomb-def
by (simp add: insert-absorb)
thus ?thesis
unfolding hyp lincomb-list-def map-rw summlist-rw
by auto
next
case False
have g-length: ?g (length ws) $=f a \cdot_{v} a$ using False by (auto simp add: nth-append)
have $($ map ? $g[0 . .<$ length $(w s @[a])])=($ map ?g $[0 . .<$ length ws $]) @[? g($ length $w s)]$
by auto
also have $\ldots=(\operatorname{map} ? g[0 . .<$ length ws $]) @\left[\left(f a \cdot_{v} a\right)\right]$ using g-length by simp
finally have map-rw: $($ map ?g $[0 . .<$ length $(w s @[a])])=($ map ? $g[0 . .<$ length $w s]) @\left[\left(f a \cdot_{v} a\right)\right]$.
have summlist-rw: M.sumlist (map ?g2 $[0 . .<$ length ws $])=$ M.sumlist (map ?g [0..<length ws])
by (rule arg-cong[of - - M.sumlist], intro nth-equalityI, auto simp add: nth-append)
have lincomb $f($ set $(w s$ @ $[a]))=\operatorname{lincomb} f(\operatorname{set}(a \# w s))$ by auto
also have $\ldots=\left(\bigoplus_{V} v \in s e t(a \# w s) . f v \cdot_{v} v\right)$ unfolding lincomb-def ..
also have $\ldots=\left(\bigoplus_{V^{v}} \in\right.$ insert $a\left(\right.$ set ws). $\left.f v \cdot{ }_{v} v\right)$ by simp
also have $\ldots=\left(f a \cdot{ }_{v} a\right)+\left(\bigoplus_{V} v \in(\right.$ set ws $\left.) . f v \cdot v v\right)$
proof (rule finsum-insert)
show finite (set ws) by auto
show $a \notin$ set ws using False by auto
show $\left(\lambda v . f v \cdot{ }_{v} v\right) \in$ set ws \rightarrow carrier-vec n
using snoc.prems(1) by auto
show $f a \cdot_{v} a \in$ carrier-vec n using snoc.prems by auto
qed
also have $\ldots=(f a \cdot v a)+\operatorname{lincomb} f(s e t w s)$ unfolding lincomb-def ..
also have $\ldots=(f a \cdot v a)+$ lincomb-list ?f ws using hyp by auto
also have $\ldots=$ lincomb-list ?f ws $+(f a \cdot v a)$
using M.add.m-comm lincomb-list-carrier snoc.prems by auto
also have $\ldots=$ lincomb-list $(\lambda i$. if $\exists j<i$. (ws @ $[a])!i$
$=(w s @[a])!j$ then 0 else $f((w s @[a])!i))(w s @[a])$
proof (unfold lincomb-list-def map-rw summlist-rw, rule M.sumlist-snoc[symmetric])
show set $($ map ? $g[0 . .<$ length ws $]) \subseteq$ carrier-vec n using snoc.prems
by (auto simp add: nth-append)
show $f a \cdot v a \in$ carrier-vec n
using snoc.prems by auto
qed
finally show ?thesis.
qed
qed auto
end

```
context
begin
interpretation vec-module TYPE(int) .
lemma lattice-of-cols-as-mat-mult:
    assumes A:A\incarrier-mat n nc
    shows lattice-of (cols A)={y\incarrier-vec (dim-row A). \existsx\incarrier-vec (dim-col
A). A*v}x=y
proof -
    let ?ws = cols A
    have set-cols-in: set (cols A)\subseteqcarrier-vec n using A unfolding cols-def by
auto
    have lincomb (of-int \circf)(set ?ws)\in carrier-vec (dim-row A) for f
        using lincomb-closed A
        by (metis (full-types) carrier-matD(1) cols-dim lincomb-closed)
    moreover have \existsx\incarrier-vec (dim-col A). A*v x lincomb (of-int \circf) (set
(cols A)) for f
    proof -
        let ?g = (\lambdav. of-int (fv))
        let ? g' = (\lambdai. if \existsj<i. ?ws ! i= ?ws ! j then 0 else ?g (?ws!i))
        have lincomb (of-int \circf) (set (cols A)) = lincomb ?g (set ?ws) unfolding o-def
by auto
        also have ... = lincomb-list ?g' ?ws
            by (rule lincomb-as-lincomb-list[OF set-cols-in])
        also have ... = mat-of-cols n ?ws *v vec (length ?ws) ?g'
                by (rule lincomb-list-as-mat-mult, insert set-cols-in A, auto)
        also have ... = A *v (vec (length ?ws) ? g') using mat-of-cols-cols A by auto
        finally show ?thesis by auto
    qed
    moreover have \existsf.A *v}x=lincomb (of-int \circf) (set (cols A))
        if Ax:A*v x carrier-vec (dim-row A) and x: x\incarrier-vec (dim-col A) for
x
    proof -
        let ?c = \lambdai. x $ i
        have x-vec: vec (length ?ws) ?c = x using x by auto
        have A *v x = mat-of-cols n ?ws *v vec (length ?ws) ?c using mat-of-cols-cols
A x-vec by auto
    also have ... = lincomb-list ?c ?ws
                by (rule lincomb-list-as-mat-mult[symmetric], insert set-cols-in A, auto)
            also have ... = lincomb (mk-coeff ?ws ?c) (set ?ws)
                by (rule lincomb-list-as-lincomb, insert set-cols-in A, auto)
            finally show ?thesis by auto
    qed
    ultimately show ?thesis unfolding lattice-of-altdef-lincomb[OF set-cols-in]
        by (metis (mono-tags, opaque-lifting))
qed
```

```
corollary lattice-of-as-mat-mult:
    assumes fs: set fs}\subseteq\mathrm{ carrier-vec n
    shows lattice-of fs = {y\incarrier-vec n. \existsx\incarrier-vec (length fs). (mat-of-cols
nfs) *v x = y}
proof -
    have cols-eq: cols (mat-of-cols n fs) = fs using cols-mat-of-cols[OF fs] by simp
    have m: (mat-of-cols nfs)\in carrier-mat n (length fs) using mat-of-cols-carrier(1)
by auto
    show ?thesis using lattice-of-cols-as-mat-mult[OF m] unfolding cols-eq using
m}\mathrm{ by auto
qed
end
context vec-space
begin
lemma lin-indpt-cols-imp-det-not-0:
    fixes A::'a mat
    assumes A:A\incarrier-mat n n and li: lin-indpt (set (cols A)) and d:distinct
(cols A)
    shows }\operatorname{det}A\not=
    using A li d det-rank-iff lin-indpt-full-rank by blast
corollary lin-indpt-rows-imp-det-not-0:
    fixes A::'a mat
    assumes A:A\incarrier-mat n n and li:lin-indpt (set (rows A)) and d:distinct
(rows A)
    shows det A\not=0
    using A li d det-rank-iff lin-indpt-full-rank
    by (metis (full-types) Determinant.det-transpose cols-transpose transpose-carrier-mat)
end
context LLL
begin
lemma eq-lattice-imp-mat-mult-invertible-cols:
    assumes fs: set fs \subseteqcarrier-vec n
    and gs: set gs\subseteq carrier-vec n and ind-fs: lin-indep fs
    and length-fs:length fs = n and length-gs: length gs = n
    and l: lattice-of fs = lattice-of gs
shows \exists}Q\in\mathrm{ carrier-mat n n. invertible-mat Q \ mat-of-cols n fs=mat-of-cols n
gs * Q
proof (cases n=0)
    case True
    show ?thesis
        by (rule bexI[of - 1m 0], insert True assms,auto)
next
    case False
```

hence $n: 0<n$ by simp
have ind-RAT-fs: gs.lin-indpt (set (RAT fs)) using ind-fs
by (simp add: cof-vec-space.lin-indpt-list-def)
have fs-carrier: mat-of-cols $n f s \in$ carrier-mat $n n$ by (simp add: length-fs car-rier-matI)
let ?f $=\left(\lambda i . S O M E x . x \in\right.$ carrier-vec $($ length $g s) \wedge($ mat-of-cols $n g s) *_{v} x=f s$! i)
let ?cols $-Q=$ map ?f $[0 . .<$ length $f s]$
let ? $Q=$ mat-of-cols n ?cols- Q
show ?thesis
proof (rule bexI[of - ?Q], rule conjI)
show Q : ? $Q \in$ carrier-mat $n n$ using length-fs by auto
show $f s$-gs- Q : mat-of-cols $n f s=$ mat-of-cols n gs $*$? Q
proof (rule mat-col-eqI)
fix j assume $j: j<d i m$-col (mat-of-cols $n g s * ? Q$)
have $j 2: j<n$ using $j Q$ length-gs by auto
have $f s$ - j-in-gs: $f s!j \in$ lattice-of gs using $f s l$ basis-in-latticeI j by auto
have $f s$ - j-carrier-vec: $f s!j \in$ carrier-vec n using $f s$ - j-in-gs gs lattice-of-as-mat-mult by blast
let $? x=S O M E x . x \in$ carrier-vec (length gs) $\wedge\left(\right.$ mat-of-cols n gs) $*_{v} x=f s!j$
have ? $x \in$ carrier-vec (length gs) \wedge (mat-of-cols n gs) $*_{v} ? x=f s!j$ by (rule someI-ex, insert fs-j-in-gs lattice-of-as-mat-mult[OF gs], auto)
hence $x: ? x \in$ carrier-vec (length gs)
and gs-x: $($ mat-of-cols $n g s) *_{v}$? $x=f s!j$ by blast +
have col ? $Q j=$? cols- Q ! j
proof (rule col-mat-of-cols)
show $j<$ length (map ?f $[0 . .<$ length $f s]$) using length-fs $j 2$ by auto
have map ?f $[0 . .<$ length $f s]!j=$?f $([0 . .<$ length $f s]!j)$
by (rule nth-map, insert $j 2$ length-fs, auto)
also have $\ldots=$? j by (simp add: length-fs j 2)
also have $\ldots \in$ carrier-vec n using x length-gs by auto
finally show map ?f $[0 . .<$ length $f s]!j \in$ carrier-vec n.
qed
also have $\ldots=? f([0 . .<$ length $f s]!j)$
by (rule nth-map, insert $j 2$ length-fs, auto)
also have $\ldots=$? x by (simp add: length-fs j2)
finally have col- $Q j-x$: col ? $Q j=$? x.
have col (mat-of-cols $n f s) j=f s!j$
by (metis (no-types, lifting) $j Q$ fs length-fs carrier-matD(2) cols-mat-of-cols cols-nth
index-mult-mat(3) mat-of-cols-carrier (3))
also have $\ldots=($ mat-of-cols $n g s) *_{v}$? x using gs-x by auto
also have $\ldots=($ mat-of-cols n gs $) *_{v}(\operatorname{col} ? Q j)$ unfolding col- $Q j$-x by simp
also have $\ldots=\operatorname{col}($ mat-of-cols $n g s * ? Q) j$
by (rule col-mult2[symmetric, OF - Q j2], insert length-gs mat-of-cols-def,
auto)
finally show col (mat-of-cols nfs) $j=\operatorname{col}($ mat-of-cols $n g s * ? Q) j$.
qed (insert length-gs gs, auto)
show invertible-mat ?Q

```
    proof -
    let \(? f^{\prime}=\left(\lambda i . S O M E x . x \in\right.\) carrier-vec \((\) length \(f s) \wedge(\) mat-of-cols \(n f s) *_{v} x=\)
\(g s!i)\)
    let ?cols- \(Q^{\prime}=\) map ?f \(f^{\prime}[0 . .<\) length \(g s]\)
    let ? \(Q^{\prime}=\) mat-of-cols \(n\) ?cols- \(Q^{\prime}\)
    have \(Q^{\prime}: ? Q^{\prime} \in\) carrier-mat \(n n\) using length-gs by auto
    have \(g s\)-fs- \(Q^{\prime}:\) mat-of-cols \(n\) gs \(=\) mat-of-cols \(n f s * ? Q^{\prime}\)
    proof (rule mat-col-eqI)
        fix \(j\) assume \(j: j<\) dim-col (mat-of-cols \(n\) fs \(* ? Q^{\prime}\) )
        have \(j 2: j<n\) using \(j Q\) length-gs by auto
        have \(g s-j\)-in- \(f s: g s!j \in\) lattice-of \(f s\) using gs l basis-in-latticeI \(j\) by auto
        have gs-j-carrier-vec: gs \(!j \in\) carrier-vec \(n\)
        using gs-j-in-fs fs lattice-of-as-mat-mult by blast
        let \(? x=\) SOME \(x . x \in\) carrier-vec (length \(f s) \wedge(\) mat-of-cols \(n f s) *_{v} x=g s\)
    also have \(\ldots=(\) mat-of-cols \(n f s) *_{v}\) ? \(x\) using \(f s-x\) by auto
    also have \(\ldots=(\) mat-of-cols \(n f s) *_{v}\left(\operatorname{col} ? Q^{\prime} j\right)\) unfolding col-Qj-x by simp
        also have \(\ldots=\operatorname{col}\left(\right.\) mat-of-cols \(\left.n f s * ? Q^{\prime}\right) j\)
        by (rule col-mult2[symmetric, OF - \(Q^{\prime}\) j2], insert length-fs mat-of-cols-def,
auto)
    finally show col (mat-of-cols \(n\) gs) \(j=\operatorname{col}\left(\right.\) mat-of-cols \(\left.n f s * ? Q^{\prime}\right) j\).
    qed (insert length-fs fs, auto)
    have det-fs-not-zero: rat-of-int (det (mat-of-cols \(n f s)) \neq 0\)
    proof -
        let \(? A=(\) of-int-hom.mat-hom (mat-of-cols \(n\) fs \()\) ): rat mat
        have rat-of-int ( \(\operatorname{det}(\) mat-of-cols \(n f s))=\operatorname{det} ? A\)
        by simp
    moreover have \(\operatorname{det} ? A \neq 0\)
```

```
    proof (rule gs.lin-indpt-cols-imp-det-not-0[of ?A])
    have c-eq: (set (cols?A)) = set (RAT fs)
            by (metis assms(3) cof-vec-space.lin-indpt-list-def cols-mat-of-cols fs
mat-of-cols-map)
    show ?A \in carrier-mat n n by (simp add: fs-carrier)
    show gs.lin-indpt (set (cols ?A)) using ind-RAT-fs c-eq by auto
    show distinct (cols ?A)
            by (metis ind-fs cof-vec-space.lin-indpt-list-def cols-mat-of-cols fs
mat-of-cols-map)
            qed
            ultimately show ?thesis by auto
            qed
            have }\mp@subsup{Q}{}{\prime}Q:?\mp@subsup{Q}{}{\prime}*?QQ\in\mathrm{ carrier-mat n n using Q Q' mult-carrier-mat by blast
            have fs-fs-Q'Q: mat-of-cols n fs = mat-of-cols nfs *? Q'*?Q using gs-fs-Q'
fs-gs-Q by presburger
    hence }\mp@subsup{O}{m}{}nn=mat-of-cols nfs*??''*?Q - mat-of-cols n fs using length-fs
by auto
            also have ... = mat-of-cols nfs *? Q' *?Q - mat-of-cols n fs * 1m}
            using fs-carrier by auto
            also have ... = mat-of-cols n fs * (?Q'*?Q) - mat-of-cols n fs * 1m n
            using Q Q' fs-carrier by auto
            also have ... = mat-of-cols n fs * (?Q'*?Q - 1m n)
            by (rule mult-minus-distrib-mat[symmetric, OF fs-carrier Q'Q], auto)
            finally have mat-of-cols nfs*(? Q''*?Q - 1m n)= 0m n n ..
            have det (?\mp@subsup{Q}{}{\prime}*?Q)=1
            by (smt Determinant.det-mult Q Q ' Q'Q fs-fs-Q'Q assoc-mult-mat det-fs-not-zero
                fs-carrier mult-cancel-left2 of-int-code(2))
            hence det-Q'-Q-1: det ?Q * det ?Q' = 1
            by (metis (no-types, lifting) Determinant.det-mult Groups.mult-ac(2) Q Q')
            hence det ?Q = 1 \vee det ?Q = -1 by (rule pos-zmult-eq-1-iff-lemma)
            thus ?thesis using invertible-iff-is-unit-JNF[OF Q] by fastforce
    qed
    qed
qed
corollary eq-lattice-imp-mat-mult-invertible-rows:
    assumes fs: set fs}\subseteq\mathrm{ carrier-vec n
    and gs: set gs \subseteqcarrier-vec n and ind-fs: lin-indep fs
    and length-fs: length fs = n and length-gs: length gs = n
    and l: lattice-of fs = lattice-of gs
shows \exists}P\in\mathrm{ carrier-mat n n. invertible-mat P ^ mat-of-rows n fs =P* mat-of-rows
n gs
proof -
    obtain Q where Q:Q\incarrier-mat n n and inv-Q: invertible-mat Q
        and fs-gs-Q: mat-of-cols n fs = mat-of-cols n gs * Q
        using eq-lattice-imp-mat-mult-invertible-cols[OF assms] by auto
```


moreover have mat-of-rows $n f s=Q^{T} *$ mat-of-rows n gs using $f s$-gs- Q
by (metis Matrix.transpose-mult Q length-gs mat-of-cols-carrier (1) transpose-mat-of-cols)
moreover have $Q^{T} \in$ carrier-mat $n n$ using Q by auto
ultimately show ?thesis by blast
qed
end

8.2.2 Missing results

This is a new definition for upper triangular matrix, valid for rectangular matrices. This definition will allow us to prove that echelon form implies upper triangular for any matrix.
definition upper-triangular ${ }^{\prime} A=(\forall i<$ dim-row $A . \forall j<\operatorname{dim}$-col $A . j<i \longrightarrow A$ $\$ \$(i, j)=0)$
lemma upper-triangular ${ }^{\prime} D[$ elim $]$:
upper-triangular ${ }^{\prime} A \Longrightarrow j<$ dim-col $A \Longrightarrow j<i \Longrightarrow i<$ dim-row $A \Longrightarrow A \$ \$$
$(i, j)=0$
unfolding upper-triangular'-def by auto
lemma upper-triangular'I[intro]:
$(\bigwedge i j$. $j<$ dim-col $A \Longrightarrow j<i \Longrightarrow i<$ dim-row $A \Longrightarrow A \$ \$(i, j)=0) \Longrightarrow$ upper-triangular ${ }^{\prime} A$
unfolding upper-triangular'-def by auto
lemma prod-list-abs:
fixes $x s$:: int list
shows prod-list (map abs xs) $=$ abs (prod-list xs)
by (induct xs, auto simp add: abs-mult)
lemma euclid-ext2-works: assumes euclid-ext2 a $b=(p, q, u, v, d)$
shows $p * a+q * b=d$ and $d=g c d a b$ and $g c d a b * u=-b$ and $g c d a b * v=$
a
and $u=-b$ div gcd $a b$ and $v=a$ div gcd $a b$
using assms unfolding euclid-ext2-def
by (auto simp add: bezout-coefficients-fst-snd)
lemma res-function-euclidean2:
res-function (λb n::'a::\{unique-euclidean-ring\}. $n \bmod b$)
proof-
have $n \bmod b=n$ if $b=0$ for $n b::^{\prime} a::$ unique-euclidean-ring using that by auto
hence res-function-euclidean $=\left(\lambda b n::{ }^{\prime} a . n \bmod b\right)$
by (unfold fun-eq-iff res-function-euclidean-def, auto)
thus ?thesis using res-function-euclidean by auto
qed
lemma mult-row-1-id:
fixes $A::$ ' $a::$ semiring- $1{ }^{\wedge} n^{\wedge \prime} m$
shows mult-row A b $1=A$ unfolding mult-row-def by vector
Results about appending rows

```
lemma row-append-rows1:
    assumes \(A: A \in\) carrier-mat \(m n\)
    and \(B: B \in\) carrier-mat \(p n\)
    assumes \(i: i<\) dim-row \(A\)
    shows Matrix.row \(\left(A @_{r} B\right) i=\) Matrix.row \(A i\)
proof (rule eq-vecI)
    have \(A B\)-carrier \([\) simp \(]:\left(A @_{r} B\right) \in\) carrier-mat \((m+p) n\) by (rule carrier-append-rows \([O F\)
A \(B]\) )
    thus dim-vec (Matrix.row \(\left.\left(A @_{r} B\right) i\right)=\) dim-vec \((\) Matrix.row \(A i)\)
        using \(A B\) by (auto, insert carrier-matD(2), blast)
    fix \(j\) assume \(j: j<\) dim-vec (Matrix.row \(A i\) )
    have Matrix.row \(\left(A @_{r} B\right) i \$ v j=\left(A @_{r} B\right) \$ \$(i, j)\)
            by (metis \(A B\)-carrier Matrix.row-def \(j A\) carrier-matD(2) index-row(2) in-
dex-vec)
    also have \(\ldots=(\) if \(i<\) dim-row \(A\) then \(A \$ \$(i, j)\) else \(B \$ \$(i-m, j))\)
    by (rule append-rows-nth, insert assms \(j\), auto)
    also have \(\ldots=A \$ \$(i, j)\) using \(i\) by simp
    finally show Matrix.row \(\left(A @_{r} B\right) i \$ v j=\) Matrix.row \(A i \$ v j\) using \(i j\) by
simp
qed
lemma row-append-rows2:
    assumes \(A: A \in\) carrier-mat \(m n\)
    and \(B: B \in\) carrier-mat \(p n\)
    assumes \(i: i \in\{m . .<m+p\}\)
    shows Matrix.row \(\left(A @_{r} B\right) i=\) Matrix.row \(B(i-m)\)
proof (rule eq-vecI)
    have \(A B\)-carrier \([\) simp \(]:\left(A @_{r} B\right) \in\) carrier-mat \((m+p) n\) by (rule carrier-append-rows \([O F\)
A \(B]\) )
    thus dim-vec (Matrix.row \(\left.\left(A @_{r} B\right) i\right)=\) dim-vec (Matrix.row \(\left.B(i-m)\right)\)
    using \(A B\) by (auto, insert carrier-matD(2), blast)
    fix \(j\) assume \(j: j<\) dim-vec (Matrix.row \(B(i-m)\) )
    have Matrix.row \(\left(A @_{r} B\right) i \$ v j=\left(A @_{r} B\right) \$ \$(i, j)\)
        by (metis AB-carrier Matrix.row-def j B carrier-matD(2) index-row(2) in-
dex-vec)
    also have \(\ldots=(\) if \(i<\) dim-row \(A\) then \(A \$ \$(i, j)\) else \(B \$ \$(i-m, j))\)
        by (rule append-rows-nth, insert assms \(j\), auto)
    also have \(\ldots=B \$ \$(i-m, j)\) using \(i A\) by simp
    finally show Matrix.row \(\left(A @_{r} B\right) i \$ v j=\) Matrix.row \(B(i-m) \$ v j\) using \(i j\)
\(A B\) by auto
qed
```

lemma rows-append-rows:
assumes $A: A \in$ carrier-mat $m n$
and $B: B \in$ carrier-mat $p n$

```
shows Matrix.rows ( }A\mp@subsup{@}{r}{}B)=\mathrm{ Matrix.rows A @ Matrix.rows B
proof -
    have AB-carrier: (A @ }\mp@subsup{r}{}{\prime}B)\in\mathrm{ carrier-mat (m+p)n
        by (rule carrier-append-rows, insert A B, auto)
    hence 1: dim-row ( }A\mp@subsup{@}{r}{}B)=\mathrm{ dim-row }A+\mathrm{ dim-row B using A B by blast
    moreover have Matrix.row (A @ }\mp@subsup{|}{r}{}B)i=(\mathrm{ Matrix.rows A @ Matrix.rows B)!i
        if i:i<dim-row (A @ }\mp@subsup{r}{r}{}B)\mathrm{ for i
    proof (cases i<dim-row A)
        case True
    have Matrix.row (A @ }\mp@subsup{r}{}{B
by blast
    also have ... = Matrix.rows A!i unfolding Matrix.rows-def using True by
auto
    also have ... = (Matrix.rows A @ Matrix.rows B)!i using True by (simp
add: nth-append)
    finally show ?thesis.
    next
        case False
    have i-mp: i<m+p using AB-carrier A B i by fastforce
            have Matrix.row (A @ }\mp@subsup{r}{}{\prime}B)i=\mathrm{ Matrix.row B (i-m) using A False B i
row-append-rows2 i-mp
            by (smt AB-carrier atLeastLessThan-iff carrier-matD(1) le-add1
                linordered-semidom-class.add-diff-inverse row-append-rows2)
    also have ... = Matrix.rows B! (i-m) unfolding Matrix.rows-def using False
i A 1 by auto
    also have ... = (Matrix.rows A @ Matrix.rows B)! (i-m+m)
            by (metis add-diff-cancel-right' A carrier-matD(1) length-rows not-add-less2
nth-append)
            also have ... = (Matrix.rows A @ Matrix.rows B)!i using False A by auto
            finally show ?thesis .
    qed
    ultimately show ?thesis unfolding list-eq-iff-nth-eq by auto
qed
lemma append-rows-nth2:
    assumes A': A' }\in\mathrm{ carrier-mat m n
    and B:B\incarrier-mat p n
    and A-def:}A=(\mp@subsup{A}{}{\prime}\mp@subsup{@}{r}{}B
    and a:a<m and ap:a<p and j:j<n
    shows }A$$(a+m,j)=B$$(a,j
proof -
    have }A$$(a+m,j)=(\mathrm{ if }a+m<dim-row A' then A' $$ (a+m,j) else 
$$(a+m-m,j))
            unfolding A-def by (rule append-rows-nth[OF A' B-j], insert ap a, auto)
    also have ... = B$$(a,j) using ap a A' by auto
    finally show ?thesis .
qed
```

```
lemma append-rows-nth3:
    assumes }\mp@subsup{A}{}{\prime}:\mp@subsup{A}{}{\prime}\in\mathrm{ carrier-mat m n
    and B:B\in carrier-mat p n
    and A-def: }A=(\mp@subsup{A}{}{\prime}\mp@subsup{@}{r}{}B
    and a:a\geqm and ap:a<m+p and j:j<n
    shows }A$$(a,j)=B$$(a-m,j
proof -
    have }A$$(a,j)=(\mathrm{ if }a<\mathrm{ dim-row A' then }\mp@subsup{A}{}{\prime}$$(a,j) else B $$ (a-m,j)
        unfolding A-def by (rule append-rows-nth[OF A' B-j], insert ap a, auto)
    also have \ldots=B$$(a-m,j) using ap a A' by auto
    finally show ?thesis .
qed
Results about submatrices
```

```
lemma pick-first-id: assumes \(i\) : \(i<n\) shows pick \(\{0 . .<n\} i=i\)
```

lemma pick-first-id: assumes i : $i<n$ shows pick $\{0 . .<n\} i=i$
proof -
have i= (card {a\in{0..<n}.a<i}) using i
by (auto, smt Collect-cong card-Collect-less-nat nat-SN.gt-trans)
thus ?thesis using pick-card-in-set i
by (metis atLeastLessThan-iff zero-order(1))
qed
lemma submatrix-index-id:
assumes H:H\incarrier-mat m n and i:i<k1 and j:j<k2
and k1:k1\leqm and k2: k2\leqn

 shows (submatrix H {0..<k1} {0..<k2}) $$ (i,j)=H $$ (i,j)
 proof -
let ?I = {0..<k1}
let ?J = {0..<k2}
let ?H = submatrix H ?I ?J
have km: k1\leqm and kn: k2\leqn using k1 k2 by simp+
have card-mk:card {i.i<m^i<k1}=k1 using km
by (smt Collect-cong card-Collect-less-nat le-eq-less-or-eq nat-less-induct nat-neq-iff)
have card-nk: card {i. i<n\wedgei<k2} = k2 using kn
by (smt Collect-cong card-Collect-less-nat le-eq-less-or-eq nat-less-induct nat-neq-iff)
show ?thesis
proof -
have pick-j: pick ?J j = j by (rule pick-first-id[OF j])
have pick-i: pick ?I i = i by (rule pick-first-id[OF i])

 have submatrix H ?I ?J $$ (i,j) = H $$ (pick ?I i, pick ?J j)
 by (rule submatrix-index, insert H i j card-mk card-nk, auto)
 also have ... =H $$ (i,j) using pick-i pick-j by simp
 finally show ?thesis.
 qed
 qed

```
lemma submatrix-carrier-first:
```

 assumes H:H carrier-mat m n
    ```
    and \(k 1: k 1 \leq m\) and \(k 2: k 2 \leq n\)
    showssubmatrix \(H\{0 . .<k 1\}\{0 . .<k 2\} \in\) carrier-mat \(k 1 k 2\)
proof -
    have \(k m: k 1 \leq m\) and \(k n: k 2 \leq n\) using \(k 1 k 2\) by simp+
    have card-mk: card \(\{i . i<m \wedge i<k 1\}=k 1\) using \(k m\)
    by (smt Collect-cong card-Collect-less-nat le-eq-less-or-eq nat-less-induct nat-neq-iff)
    have card-nk: card \(\{i . i<n \wedge i<k 2\}=k 2\) using \(k n\)
    by (smt Collect-cong card-Collect-less-nat le-eq-less-or-eq nat-less-induct nat-neq-iff)
    show ?thesis
        by (smt Collect-cong H atLeastLessThan-iff card-mk card-nk carrier-matD
            carrier-matI dim-submatrix zero-order(1))
qed
```

lemma Units-eq-invertible-mat:
assumes $A \in$ carrier-mat $n n$
shows $A \in$ Group.Units (ring-mat TYPE ('a::comm-ring-1) $n b$) $=$ invertible-mat
$A($ is ? $l h s=$? $r h s)$
proof -
interpret m : ring ring-mat $T Y P E\left({ }^{\prime} a\right) n b$ by (rule ring-mat)
show ?thesis
proof
assume ?lhs thus ?rhs
unfolding Group.Units-def
by (insert assms, auto simp add: ring-mat-def invertible-mat-def inverts-mat-def)
next
assume ?rhs
from this obtain B where $A B: A * B=1_{m} n$ and $B A: B * A=1_{m} n$ and
$B: B \in$ carrier-mat $n n$
by (metis assms carrier-matD (1) inverts-mat-def obtain-inverse-matrix)
hence $\exists x \in$ carrier (ring-mat TYPE('a) n b). $x \otimes_{\text {ring-mat }} \operatorname{TYPE}\left({ }^{\prime} a\right) n b A=$
$\mathbf{1}_{\text {ring-mat }} \operatorname{TYPE}\left({ }^{\prime} a\right) n b$
$\wedge A \otimes_{\text {ring-mat } T Y P E(' a) ~ n b ~}{ }^{x}=\mathbf{1}_{\text {ring-mat }} \operatorname{TYPE}\left({ }^{\prime} a\right) n b$
unfolding ring-mat-def by auto
thus ?lhs unfolding Group.Units-def using assms unfolding ring-mat-def
by auto
qed
qed
lemma map-first-rows-index:
assumes $A \in$ carrier-mat $M n$ and $m \leq M$ and $i<m$ and $j a<n$
shows map (Matrix.row $A)[0 . .<m]!i \$ v j a=A \$ \$(i, j a)$
using assms by auto
lemma matrix-append-rows-eq-if-preserves:
assumes $A: A \in$ carrier-mat $(m+p) n$ and $B: B \in$ carrier-mat $p n$
and $e q: \forall i \in\{m . .<m+p\} . \forall j<n . A \$ \$(i, j)=B \$ \$(i-m, j)$

```

```

-)
proof (rule eq-matI)
have A': ?A' \in carrier-mat m n by (simp add: mat-of-rows-def)
hence A'B: ? A' @ }\mp@subsup{}{r}{}B\in\mathrm{ carrier-mat (}m+p\mathrm{) n using B by blast
show dim-row }A=\mathrm{ dim-row (?A' @ }\mp@subsup{r}{}{\prime}B)\mathrm{ and dim-col }A=\operatorname{dim-col (? 'A' @ }\mp@subsup{}{r}{}B
using }\mp@subsup{A}{}{\prime}BA\mathrm{ by auto
fix ij assume i:i<dim-row (?A' @ }\mp@subsup{}{r}{}B
and j:j<dim-col (?A' @ }\mp@subsup{r}{}{\prime}B
have jn: j<n using A
by (metis append-rows-def dim-col-mat(1) index-mat-four-block(3) index-zero-mat(3)
j mat-of-rows-def nat-arith.rule0)
let ?xs = (map (Matrix.row A) [0..<m])

 show A $$ (i,j) = (?A' @ }\mp@subsup{\mp@code{r}}{r}{}B)$$(i,j
 proof (cases i<m)
 case True
 have (? 'A' @
 by (metis (no-types, lifting) Nat.add-0-right True append-rows-def diff-zero i
 index-mat-four-block index-zero-mat(3) j length-map length-upt mat-of-rows-carrier(2))
 also have ... = ?xs ! i $v j
 by (rule mat-of-rows-index, insert i True j, auto simp add: append-rows-def)
 also have ... = A $$ (i,j)
 by (rule map-first-rows-index, insert assms A True i jn, auto)
 finally show ?thesis ..
 next
 case False
 have (?A' @ }\mp@subsup{r}{r}{}B)$$(i,j)=B$$(i-m,j
 by (smt (z3) A' carrier-matD(1) False append-rows-def i index-mat-four-block
 j jn length-map
length-upt mat-of-rows-carrier(2,3))

 also have ... = A $$ (i,j)
 by (metis False append-rows-def B eq atLeastLessThan-iff carrier-matD(1)
 diff-zero i
index-mat-four-block(2) index-zero-mat(2) jn le-add1 length-map length-upt
linordered-semidom-class.add-diff-inverse mat-of-rows-carrier(2))
finally show ?thesis ..
qed
qed
lemma invertible-mat-first-column-not0:
fixes }A::'a :: comm-ring-1 mat
assumes A:A\incarrier-mat n n and inv-A: invertible-mat A and n0:0<n
shows col A 0}=(0, (0, n
proof (rule ccontr)
assume \neg col A O}=\mp@subsup{O}{v}{}n\mathrm{ hence col-A0: col A O= Ov n by simp
have (}\operatorname{det}A\mathrm{ dvd 1) using inv-A invertible-iff-is-unit-JNF[OF A] by auto
hence 1: det A\not=0 by auto

```
```

 have det A=(\sumi<n.A $$(i,0)* Determinant.cofactor A i 0)
 by (rule laplace-expansion-column[OF A n0])
 also have ... = 0
 by (rule sum.neutral, insert col-A0 n0 A, auto simp add: col-def,
 metis Matrix.zero-vec-def index-vec mult-zero-left)
 finally show False using 1 by contradiction
 qed
lemma invertible-mat-mult-int:
assumes A=P*B
and P\incarrier-mat n n
and B\incarrier-mat n n
and invertible-mat P
and invertible-mat (map-mat rat-of-int B)
shows invertible-mat (map-mat rat-of-int A)
by (metis (no-types, opaque-lifting) assms dvd-field-iff
invertible-iff-is-unit-JNF invertible-mult-JNF map-carrier-mat not-is-unit-0
of-int-hom.hom-0 of-int-hom.hom-det of-int-hom.mat-hom-mult)
lemma echelon-form-JNF-intro:
assumes (\foralli<dim-row A. is-zero-row-JNF i A \longrightarrow\neg(\existsj.j<dim-row A ^j>i
\wedge ᄀ is-zero-row-JNF j A))
and (\forallij.i<j^j<dim-row A ^\neg(is-zero-row-JNF iA)^\neg(is-zero-row-JNF
j A)
\longrightarrow ((L E A S T ~ n . A ~ \$ \$ ~ (i , n) \neq 0) < (L E A S T ~ n . A ~ \$ \$ ~ (j , n) \neq 0))) ~
shows echelon-form-JNF A using assms unfolding echelon-form-JNF-def by
simp
lemma echelon-form-submatrix:
assumes ef-H: echelon-form-JNF H and H:H\incarrier-mat m n
and k: k\leqmin m n
shows echelon-form-JNF (submatrix H {0..<k} {0..<k})
proof -
let ?I = {0..<k}
let ?H = submatrix H ?I ?I
have km: k\leqm and kn: k\leqn using k by simp+
have card-mk: card {i. i<m\wedgei<k} =k using km
by (smt Collect-cong card-Collect-less-nat le-eq-less-or-eq nat-less-induct nat-neq-iff)
have card-nk: card {i.i<n\wedgei<k}=k using kn
by (smt Collect-cong card-Collect-less-nat le-eq-less-or-eq nat-less-induct nat-neq-iff)

have H-ij:H$$
(i,j)=(submatrix H ?I ?I)
$$ (i,j) if i:i<k and j:j<k for ij
proof-
have pick-j: pick ?I j = j by (rule pick-first-id[OF j])
have pick-i: pick ?I i =i by (rule pick-first-id[OF i])
have submatrix H ?I ?I $$
(i,j)=H
$$ (pick ?I i, pick ?I j)

 by (rule submatrix-index, insert H i j card-mk card-nk, auto)
 also have ... =H$$(i,j) using pick-i pick-j by simp
    ```
```

 finally show ?thesis ..
 qed
 have H'[simp]: ?H G carrier-mat k k
 using H dim-submatrix[of H {0..<k} {0..<k}] card-mk card-nk by auto
 show ?thesis
 proof (rule echelon-form-JNF-intro, auto)
 fix ij assume iH'-0: is-zero-row-JNF i ?H and ij:i<j and j:j<dim-row
 ?H
have jm: j<m
by (metis H' carrier-matD(1) j km le-eq-less-or-eq nat-SN.gt-trans)
show is-zero-row-JNF j ?H
proof (rule ccontr)
assume j-not0-H': ᄀ is-zero-row-JNF j ?H

 define a where a=(LEAST n. ?H $$ (j,n)\not=0)
 have }\mp@subsup{H}{}{\prime}-ja: ?H $$ (j,a)\not=
 by (metis (mono-tags) LeastI j-not0-H' a-def is-zero-row-JNF-def)
 have a: a < dim-col ?H
 by (smt j-notO-H' a-def is-zero-row-JNF-def linorder-neqE-nat not-less-Least
 order-trans-rules(19))
have j-not0-H: ᄀ is-zero-row-JNF j H
by (metis H' H'-ja H-ij a assms(2) basic-trans-rules(19) carrier-matD
is-zero-row-JNF-def j kn le-eq-less-or-eq)
hence i-notO-H: ᄀ is-zero-row-JNF i H using ef-H j ij unfolding eche-
lon-form-JNF-def
by (metis H' «\neg is-zero-row-JNF j H` assms(2) carrier-matD(1) ij j km
not-less-iff-gr-or-eq order.strict-trans order-trans-rules(21))

 hence least-ab: (LEAST n.H $$ (i,n)\not=0)<(LEAST n.H$$ (j,n)\not=0)
 using jm
using j-not0-H assms(2) echelon-form-JNF-def ef-H ij by blast

 define b}\mathrm{ where b=(LEAST n.H $$ (i,n)}=0
 have H-ib:H $$ (i,b)\not=0
 by (metis (mono-tags, lifting) LeastI b-def i-not0-H is-zero-row-JNF-def)
 have b: b < dim-col ?H using least-ab a unfolding a-def b-def
 by (metis (mono-tags, lifting) H' H'-ja H-ij a-def carrier-matD dual-order.strict-trans
 j nat-neq-iff not-less-Least)

 have H'-ib: ?H $$ (i,b)\not=0 using H-ib b H-ij H' ij j
 by (metis H' carrier-matD dual-order.strict-trans ij j)
 hence }\neg\mathrm{ is-zero-row-JNF i ?H using b is-zero-row-JNF-def by blast
 thus False using iH'-0 by contradiction
 qed
 next
fix ij assume ij:i<j and j:j< dim-row ?H
have jm: j<m
by (metis H' carrier-matD(1) j km le-eq-less-or-eq nat-SN.gt-trans)
assume not0-iH': \neg is-zero-row-JNF i ?H
and not0-jH': ᄀ is-zero-row-JNF j ?H

 define a where }a=(LEAST n. ?H $$ (i,n)\not=0
 define b where b = (LEAST n. ?H $$ (j,n)\not=0)
 have }\mp@subsup{H}{}{\prime}-ia:?H$$(i,a)\not=
    ```
```

 by (metis (mono-tags) LeastI-ex a-def is-zero-row-JNF-def not0-iH')
 have }\mp@subsup{H}{}{\prime}-jb: ?H $$ (j,b)\not=
 by (metis (mono-tags) LeastI-ex b-def is-zero-row-JNF-def not0-jH')
 have a: a < dim-row ?H
 by (smt H' a-def carrier-matD is-zero-row-JNF-def less-trans linorder-neqE-nat
 not0-iH' not-less-Least)
have b:b<dim-row?H
by (smt H' b-def carrier-matD is-zero-row-JNF-def less-trans linorder-neqE-nat
not0-jH' not-less-Least)

 have a-eq: a = (LEAST n.H $$ (i,n)\not=0)
 by (smt H' H'-ia H-ij LeastI-ex a a-def carrier-matD(1) ij j linorder-neqE-nat
 not-less-Least order-trans-rules(19))

 have b-eq: b=(LEAST n.H $$ (j,n)\not=0)
 by (smt H' H'-jb H-ij LeastI-ex b b-def carrier-matD(1) ij j linorder-neqE-nat
 not-less-Least order-trans-rules(19))
have not0-iH: ᄀ is-zero-row-JNF i H
by (metis H' H'-ia H-ij a H carrier-matD ij is-zero-row-JNF-def j kn
le-eq-less-or-eq order.strict-trans)
have not0-jH: ᄀ is-zero-row-JNF j H
by (metis H' H'-jb H-ij b H carrier-matD is-zero-row-JNF-defj kn le-eq-less-or-eq
order.strict-trans)

 show (LEAST n. ?H $$ (i,n) = 0)< (LEAST n. ?H $$ (j,n)\not=0)
 unfolding a-def[symmetric] b-def[symmetric] a-eq b-eq using not0-iH not0-jH
 ef-H ij jm H
unfolding echelon-form-JNF-def by auto
qed
qed
lemma HNF-submatrix:
assumes HNF-H: Hermite-JNF associates res H and $H: H \in$ carrier-mat m n and $k: k \leq \min m n$
shows Hermite-JNF associates res (submatrix $H\{0 . .<k\}\{0 . .<k\})$
proof -
let $? I=\{0 . .<k\}$
let ? $H=$ submatrix H ?I ?I
have $k m$: $k \leq m$ and $k n$: $k \leq n$ using k by $\operatorname{simp}+$
have card-mk: card $\{i . i<m \wedge i<k\}=k$ using $k m$
by (smt Collect-cong card-Collect-less-nat le-eq-less-or-eq nat-less-induct nat-neq-iff)
have card-nk: card $\{i . i<n \wedge i<k\}=k$ using $k n$
by (smt Collect-cong card-Collect-less-nat le-eq-less-or-eq nat-less-induct nat-neq-iff)
have H-ij: $H \$(i, j)=($ submatrix H ?I ?I) $\$ \(i, j) if $i: i<k$ and $j: j<k$ for $i j$
proof -
have pick-j: pick ?I $j=j$ by (rule pick-first-id $[O F j]$)
have pick-i: pick ?I $i=i$ by (rule pick-first-id $[O F i]$)
have submatrix H ?I ?I $\$ \$(i, j)=H \$ \$$ (pick ?I i, pick ?I j)
by (rule submatrix-index, insert Hij card-mk card-nk, auto)
also have $\ldots=H \$ \(i, j) using pick-i pick-j by simp
finally show ?thesis ..

```
qed
have \(H^{\prime}[\) simp \(]: ? H \in\) carrier-mat \(k k\)
using \(H\) dim-submatrix \([\) of \(H\{0 . .<k\}\{0 . .<k\}]\) card-mk card-nk by auto
have CS-ass: Complete-set-non-associates associates using HNF-H unfolding Hermite-JNF-def by simp
moreover have CS-res: Complete-set-residues res using HNF-H unfolding Hermite-JNF-def by simp
have ef-H: echelon-form-JNF H using HNF-H unfolding Hermite-JNF-def by auto
have ef- \(H^{\prime}\) : echelon-form-JNF ?H
by (rule echelon-form-submatrix[OF ef-H H k])
have HNF1: ?H \$\$ ( \(i, L E A S T\) n. ?H \(\$ \$(i, n) \neq 0) \in\) associates
and HNF2: \((\forall j<i\).? \(H \$(j, L E A S T n\). ? \(H \$ \$(i, n) \neq 0)\)
\(\in \operatorname{res}(? H \$ \$(i, L E A S T n\). ?H \(\$ \$(i, n) \neq 0)))\)
if \(i\) : \(i<\) dim-row ? \(H\) and not0-iH': \(\neg\) is-zero-row-JNF \(i\) ? \(H\) for \(i\)
proof -
define \(a\) where \(a=(\) LEAST \(n\). ? \(H \$ \$(i, n) \neq 0)\)
have \(i m: i<m\)
by (metis \(H^{\prime}\) carrier-matD(1) km order.strict-trans2 that(1))
have \(H^{\prime}\) - \(i a\) : ? \(H \$ \$(i, a) \neq 0\)
by (metis (mono-tags) LeastI-ex a-def is-zero-row-JNF-def not0-iH')
have \(a\) : a < dim-row ?H
by (smt \(H^{\prime}\) a-def carrier-matD is-zero-row-JNF-def less-trans linorder-neqE-nat not0-iH' not-less-Least)
have \(a\)-eq: \(a=(\) LEAST n. \(H \$ \$(i, n) \neq 0)\)
by (smt \(H^{\prime} H^{\prime}\)-ia H-ij LeastI-ex a a-def carrier-matD(1) i linorder-neqE-nat not-less-Least order-trans-rules(19))
have \(H^{\prime}-i a-H-i a\) : ? \(H \$(i, a)=H \$ \$(i, a)\) by (metis \(H^{\prime} H\)-ij a car-rier-matD (1) i)
have not'-iH: \(\neg\) is-zero-row-JNF i \(H\)
by (metis \(H^{\prime} H^{\prime}\)-ia \(H^{\prime}\)-ia-H-ia a assms(2) carrier-matD(1) carrier-matD(2) is-zero-row-JNF-def kn order.strict-trans2)
thus ?H \(\$ \$(i, L E A S T\) n. ? \(H \$ \$(i, n) \neq 0) \in\) associates using im
by (metis \(H^{\prime}\)-ia-H-ia Hermite-JNF-def \(a\)-def \(a\)-eq HNF-H H carrier-matD(1))
show \((\forall j<i\). ? \(H \$ \$(j, L E A S T\) n. ?H \(\$ \$(i, n) \neq 0)\)
\(\in \operatorname{res}(? H \$ \$(i, L E A S T \quad n\). ?H \(\$ \$(i, n) \neq 0)))\)
proof -
\{ fix nn :: nat
have ff1: \(\forall n\). ? \(H \$ \$(n, a)=H \$ \$(n, a) \vee \neg n<k\)
by (metis (no-types) \(H^{\prime} H\)-ij a carrier-matD (1))
have ff2: \(i<k\)
by (metis \(H^{\prime}\) carrier-matD(1) that(1))
then have \(H \$ \$(n n, a) \in \operatorname{res}(H \$ \$(i, a)) \longrightarrow H \$ \$(n n, a) \in \operatorname{res}(? H \$ \$\) (i, a) )
using ff1 by (metis (no-types))
moreover
\{ assume \(H \$ \$(n n, a) \in\) res \((? H \$ \$(i, a))\)
then have ? \(H \$ \$(n n, a)=H \$ \$(n n, a) \longrightarrow ? H \$ \$(n n, a) \in\) res \((? H \$ \$\) (i, a) )
```

 by presburger
 then have ᄀ nn<i\vee?H $$(nn,LEAST n. ?H $$ (i,n)\not=0)\in res
 (?H $$
(i,LEAST n. ?H
$$ (i,n)\not=0))
using ff2 ff1 a-def order.strict-trans by blast }
ultimately have }\negnn<i\vee?H$$
(nn,LEAST n.?H
$$ (i,n)\not=0)

res (?H $$
(i,LEAST n.?H
$$ (i,n)\not=0))
using Hermite-JNF-def a-eq assms(1) assms(2) im not'-iH by blast }
then show ?thesis
by meson
qed
qed
show ?thesis using HNF1 HNF2 ef-H' CS-res CS-ass unfolding Hermite-JNF-def
by blast
qed
lemma HNF-of-HNF-id:
fixes H :: int mat
assumes HNF-H: Hermite-JNF associates res H
and H:H\incarrier-mat n n
and H-P1-H1: H=P1*H1
and inv-P1: invertible-mat P1
and H1:H1 \in carrier-mat n n
and P1: P1 \in carrier-mat n n
and HNF-H1:Hermite-JNF associates res H1
and inv-H: invertible-mat (map-mat rat-of-int H)
shows H1 = H
proof (rule HNF-unique-generalized-JNF[OF H P1 H1 - H H-P1-H1])
show }H=(1mn)*H\mathrm{ using }H\mathrm{ by auto
qed (insert assms, auto)
```

## context

```
fixes \(n::\) nat
begin
interpretation vec-module TYPE(int) .
```

```
lemma lattice-is-monotone:
```

lemma lattice-is-monotone:
fixes ST
fixes ST
assumes S: set S\subseteqcarrier-vec n
assumes S: set S\subseteqcarrier-vec n
assumes T: set T\subseteqcarrier-vec n
assumes T: set T\subseteqcarrier-vec n
assumes subs: set S\subseteq set T
assumes subs: set S\subseteq set T
shows lattice-of S\subseteq lattice-of T
shows lattice-of S\subseteq lattice-of T
proof -
proof -
have \existsfa.lincomb fa(set T)= lincomb f(set S) for f
have \existsfa.lincomb fa(set T)= lincomb f(set S) for f
proof -
proof -
let ?f = \lambdai. if i

```
 let ?f = \lambdai. if i
```

```
 have set-T-eq: set T = set S (set T - set S) using subs by blast
 have l0: lincomb ?f (set T - set S) = 价 n by (rule lincomb-zero, insert T,
auto)
 have lincomb ?f (set T) = lincomb ?f (set S U (set T - set S)) using set-T-eq
by simp
 also have ... = lincomb ?f (set S) + lincomb ?f (set T - set S)
 by (rule lincomb-union, insert S T subs, auto)
 also have ... = lincomb ?f (set S) using l0 by (auto simp add: S)
 also have ... = lincomb f (set S) using S by fastforce
 finally show ?thesis by blast
 qed
 thus ?thesis unfolding lattice-of-altdef-lincomb[OF S] lattice-of-altdef-lincomb[OF
T]
 by auto
qed
lemma lattice-of-append:
 assumes fs: set fs \subseteqcarrier-vec n
 assumes gs: set gs \subseteqcarrier-vec n
 shows lattice-of (fs @ gs)=lattice-of (gs @ fs)
proof -
 have fsgs: set (fs @ gs)\subseteq carrier-vec n using fs gs by auto
 have gsfs: set (gs @ fs)\subseteq carrier-vec n using fs gs by auto
 show ?thesis
 unfolding lattice-of-altdef-lincomb[OF fsgs] lattice-of-altdef-lincomb[OF gsfs]
 by auto (metis Un-commute)+
qed
lemma lattice-of-append-cons:
 assumes fs: set fs \subseteqcarrier-vec n and v:v\incarrier-vec n
 shows lattice-of (v # fs)=lattice-of (fs @ [v])
proof -
 have v-ff: set (v # fs)\subseteq carrier-vec n using fs v by auto
 hence fs-v: set (fs @ [v])\subseteq carrier-vec n by simp
 show ?thesis
 unfolding lattice-of-altdef-lincomb[OF v-fs] lattice-of-altdef-lincomb[OF fs-v]
by auto
qed
lemma already-in-lattice-subset:
 assumes fs: set fs \subseteqcarrier-vec n and inlattice: v\in lattice-of fs
 and v:v\incarrier-vec n
 shows lattice-of (v # fs)\subseteq lattice-of fs
proof (cases v\inset fs)
 case True
 then show ?thesis
 by (metis fs lattice-is-monotone set-ConsD subset-code(1))
next
 case False note v-notin-fs = False
```

```
 obtain g}\mathrm{ where v-g: lincomb g (set fs)=v
 using lattice-of-altdef-lincomb[OF fs] inlattice by auto
 have v-fs: set (v# fs)\subseteqcarrier-vec n using v fs by auto
 have \existsfa.lincomb fa (set fs) = lincomb f(insert v (set fs)) for f
 proof -
 have smult-rw: fv v
 by (rule lincomb-smult[symmetric, OF fs])
 have lincomb f(insert v (set fs))=fv v}vv+lincomb f(set fs
 by (rule lincomb-insert2[OF-fs-v-notin-fs v],auto)
 also have ... =fv v (lincomb g(set fs)) + lincomb f(set fs) using v-g by
simp
 also have ... = lincomb (\lambdaw.fv*gw)(set fs) + lincombf(set fs)
 unfolding smult-rw by auto
 also have ... = lincomb (}\lambdaw.(\lambdaw.fv*gw)w+fw)(set fs
 by (rule lincomb-sum[symmetric, OF - fs], simp)
 finally show ?thesis by auto
 qed
 thus ?thesis unfolding lattice-of-altdef-lincomb[OF v-fs] lattice-of-altdef-lincomb[OF
fs] by auto
qed
lemma already-in-lattice:
 assumes fs: set fs\subseteqcarrier-vec n and inlattice: v \inlattice-of fs
 and v:v\incarrier-vec n
 shows lattice-of fs = lattice-of (v# fs)
proof -
 have dir1: lattice-of fs \subseteqlattice-of (v # fs)
 by (intro lattice-is-monotone, insert fs v, auto)
 moreover have dir2: lattice-of (v# fs)\subseteqlattice-of fs
 by (rule already-in-lattice-subset[OF assms])
 ultimately show ?thesis by auto
qed
lemma already-in-lattice-append:
 assumes fs: set fs \subseteqcarrier-vec n and inlattice:lattice-of gs \subseteqlattice-of fs
 and gs: set gs \subseteqcarrier-vec n
shows lattice-of fs = lattice-of (fs @ gs)
 using assms
proof (induct gs arbitrary: fs)
 case Nil
 then show ?case by auto
next
 case (Cons a gs)
 note fs = Cons.prems(1)
 note inlattice = Cons.prems(2)
 note gs = Cons.prems(3)
 have gs-in-fs:lattice-of gs\subseteqlattice-of fs
```

by (meson basic-trans-rules(23) gs lattice-is-monotone local.Cons(3) set-subset-Cons) have $a: a \in$ lattice-of ( $f s$ @ gs)
using basis-in-latticeI fs gs gs-in-fs local.Cons(1) local.Cons(3) by auto
have lattice-of $(f s$ @ $a \# g s)=$ lattice-of $((a \# g s) @ f s)$
by (rule lattice-of-append, insert fs gs, auto)
also have $\ldots=$ lattice-of ( $a \#(g s @ f s)$ ) by auto
also have $\ldots=$ lattice-of $(a \#(f s @ g s))$
by (rule lattice-of-eq-set, insert gs $f s$, auto)
also have $\ldots=$ lattice-of ( $f s$ @ gs)
by (rule already-in-lattice [symmetric, OF - a], insert fs gs, auto)
also have $\ldots=$ lattice-of $f s$ by (rule Cons.hyps[symmetric, OF fs gs-in-fs], insert $g s$, auto)
finally show ?case ..
qed
lemma zero-in-lattice:
assumes $f s$-carrier: set $f s \subseteq$ carrier-vec $n$
shows $0_{v} n \in$ lattice-of fs
proof -
have $\forall f$. lincomb $(\lambda v .0 * f v)($ set $f s)=0_{v} n$
using $f$ s-carrier lincomb-closed lincomb-smult lmult-0 by presburger
hence lincomb ( $\lambda i .0$ ) $($ set $f s)=0_{v} n$ by fastforce
thus ?thesis unfolding lattice-of-altdef-lincomb[OF fs-carrier $]$ by auto qed
lemma lattice-zero-rows-subset:
assumes $H$ : $H \in$ carrier-mat a $n$
shows lattice-of (Matrix.rows $\left.\left(O_{m} m n\right)\right) \subseteq$ lattice-of (Matrix.rows $H$ )
proof
let ?fs $=$ Matrix.rows $\left(0_{m} m n\right)$
let $?$ gs $=$ Matrix.rows $H$
have fs-carrier: set ?fs $\subseteq$ carrier-vec $n$ unfolding Matrix.rows-def by auto
have gs-carrier: set ? gs $\subseteq$ carrier-vec $n$ using $H$ unfolding Matrix.rows-def by auto
fix $x$ assume $x: x \in$ lattice-of (Matrix.rows $\left(O_{m} m n\right)$ )
obtain $f$ where $f x$ : lincomb $($ of-int $\circ f)\left(\right.$ set (Matrix.rows $\left.\left.\left(0_{m} m n\right)\right)\right)=x$ using x lattice-of-altdef-lincomb[OF fs-carrier] by blast
have lincomb (of-int $\circ f)\left(\right.$ set (Matrix.rows $\left.\left.\left(0_{m} m n\right)\right)\right)=0_{v} n$
unfolding lincomb-def by (rule M.finsum-all0, unfold Matrix.rows-def, auto)
hence $x=O_{v} n$ using $f x$ by auto
thus $x \in$ lattice-of (Matrix.rows $H$ ) using zero-in-lattice[OF gs-carrier] by auto

## qed

lemma lattice-of-append-zero-rows:
assumes $H^{\prime}: H^{\prime} \in$ carrier-mat $m n$
and $H: H=H^{\prime} @_{r}\left(0_{m} m n\right)$

```
shows lattice-of (Matrix.rows H)= lattice-of (Matrix.rows H')
proof -
 have Matrix.rows H=Matrix.rows H' @ Matrix.rows (}\mp@subsup{0}{m}{m
 by (unfold H, rule rows-append-rows[OF H'], auto)
 also have lattice-of ... = lattice-of (Matrix.rows H')
 proof (rule already-in-lattice-append[symmetric])
 show lattice-of (Matrix.rows (}\mp@subsup{0}{m}{m}mn))\subseteq\mathrm{ lattice-of (Matrix.rows H')
 by (rule lattice-zero-rows-subset[OF H}\
 qed (insert H', auto simp add: Matrix.rows-def)
 finally show ?thesis.
qed
end
Lemmas about echelon form
lemma echelon-form-JNF-1xn:
assumes \(A \in\) carrier-mat \(m n\) and \(m<2\)
shows echelon-form-JNF A
using assms unfolding echelon-form-JNF-def is-zero-row-JNF-def by fastforce
lemma echelon-form-JNF-mx1:
assumes \(A \in\) carrier-mat \(m n\) and \(n<2\)
and \(\forall i \in\{1 . .<m\} . A \$ \$(i, 0)=0\)
shows echelon-form-JNF \(A\)
using assms unfolding echelon-form-JNF-def is-zero-row-JNF-def
using atLeastLessThan-iff less-2-cases by fastforce
lemma echelon-form-mx0:
assumes \(A \in\) carrier-mat m 0
shows echelon-form-JNF A using assms unfolding echelon-form-JNF-def is-zero-row-JNF-def
by auto
lemma echelon-form-JNF-first-column-0:
assumes \(e A\) : echelon-form-JNF \(A\) and \(A: A \in\) carrier-mat m \(n\) and \(i 0: 0<i\) and \(i m: i<m\) and \(n 0: 0<n\)
shows \(A \$ \$(i, 0)=0\)
proof (rule ccontr)
assume Ai0: \(A \$ \$(i, 0) \neq 0\)
hence \(n z-i A\) : \(\neg\) is-zero-row-JNF \(i A\) using \(n 0 A\) unfolding is-zero-row-JNF-def
by auto
hence \(n z\) - \(0 A\) : \(\neg i s\)-zero-row-JNF \(0 A\) using eA \(A\) unfolding echelon-form-JNF-def
using \(i 0 \mathrm{im}\) by auto
have \((\) LEAST \(n . A \$ \$(0, n) \neq 0)<(\) LEAST \(n . A \$ \$(i, n) \neq 0)\) using \(n z-i A n z-0 A\) eA \(A\) unfolding echelon-form-JNF-def using \(i 0 \mathrm{im}\) by blast
moreover have \((L E A S T\) n. A \(\$ \$(i, n) \neq 0)=0\) using Ai0 by simp
ultimately show False by auto
qed
```

```
lemma is-zero-row-JNF-multrow [simp]:
 fixes \(A:: ' a:: c o m m-r i n g-1 ~ m a t ~\)
 assumes \(i<d i m\)-row \(A\)
 shows is-zero-row-JNF \(i\) (multrow \(j(-1) A)=i s\)-zero-row-JNF \(i A\)
 using assms unfolding is-zero-row-JNF-def by auto
lemma echelon-form-JNF-multrow:
 assumes \(A\) : carrier-mat \(m n\) and \(i<m\) and \(e A\) : echelon-form-JNF \(A\)
 shows echelon-form-JNF (multrow \(i(-1) A\))
proof (rule echelon-form-JNF-intro)
 have \(A \$ \$(j, j a)=0\) if \(\forall j^{\prime}<\operatorname{dim}-c o l A . A \$ \$\left(i a, j^{\prime}\right)=0\)
 and \(i a j: i a<j\) and \(j: j<\operatorname{dim}\)-row \(A\) and \(j a\) : \(j a<\operatorname{dim-col} A\) for \(i a j j a\)
 using assms that unfolding echelon-form-JNF-def is-zero-row-JNF-def
 by (meson order.strict-trans)
 thus \(\forall\) ia<dim-row (multrow \(i(-1)\) A). is-zero-row-JNF ia (multrow \(i(-1)\)
A)
 \(\longrightarrow \neg(\exists j<\) dim-row (multrow \(i(-1) A) . i a<j \wedge \neg i s\)-zero-row-JNF \(j\)
(multrow \(i(-1) A)\))
 unfolding is-zero-row-JNF-def by simp
 have Least-eq: (LEAST n. multrow \(i(-1) A \$ \$(i a, n) \neq 0)=(\) LEAST n. A
\$\$ \((i a, n) \neq 0)\)
 if \(i a:\) ia \(<\) dim-row \(A\) and \(n z\)-ia-mr \(A\) : \(\neg\) is-zero-row-JNF ia (multrow \(i(-1)\)
A) for \(i a\)
 proof (rule Least-equality)
 have \(n z\)-ia-A: \(\neg\) is-zero-row-JNF ia A using \(n z\)-ia-mr \(A\) ia by auto
 have Least-Aian-n: \((\) LEAST n. A \(\$ \$(i a, n) \neq 0)<d i m-c o l ~ A\)
 by (smt dual-order.strict-trans is-zero-row-JNF-def not-less-Least not-less-iff-gr-or-eq
\(n z-i a-A\))
 show multrow \(i(-1)\) A \(\$ \$(i a, L E A S T n . A \$ \$(i a, n) \neq 0) \neq 0\)
 by (smt LeastI Least-Aian-n class-cring.cring-simprules(22) equation-minus-iff
ia
 index-mat-multrow(1) is-zero-row-JNF-def mult-minus1 nz-ia-A)
 show \(\bigwedge y\). multrow \(i(-1) A \$ \$(i a, y) \neq 0 \Longrightarrow(\) LEAST \(n . A \$ \$(i a, n) \neq\)
0) \(\leq y\)
 by (metis (mono-tags, lifting) Least-Aian-n class-cring.cring-simprules(22) ia
 index-mat-multrow(1) leI mult-minus1 order.strict-trans wellorder-Least-lemma(2))
qed
have \((\) LEAST \(n\). multrow \(i(-1) A \$ \$(i a, n) \neq 0)<(\) LEAST \(n\). multrow \(i(-\)
1) \(A \$ \$(j, n) \neq 0)\)
 if \(i a-j: i a<j\) and
 \(j: j<\) dim-row \(A\)
 and \(n z-i a-A\) : \(\neg\) is-zero-row-JNF ia \(A\)
 and \(n z-j\) - \(A\) : \(\neg i s\)-zero-row-JNF \(j A\)
 for \(i a j\)
proof -
 have \(i a\) : \(i a<\) dim-row \(A\) using \(i a-j j\) by auto
```

```
 show ?thesis using Least-eq[OF ia] Least-eq[OF j] nz-ia-A nz-j-A
 is-zero-row-JNF-multrow[OF ia] is-zero-row-JNF-multrow[OF j] eA ia-j j
 unfolding echelon-form-JNF-def by simp
 qed
 thus }\foralliaj\mathrm{ .
 ia<j\wedgej< dim-row (multrow i (- 1) A) ^\neg is-zero-row-JNF ia (multrow
i(-1)A)
 \wedge is-zero-row-JNF j (multrow i (- 1)A)\longrightarrow
 (LEAST n. multrow }i(-1)A$$(ia,n)\not=0)<(LEAST n. multrow i(-
1) A $$ (j,n)\not=0)
 by auto
qed
```

thm echelon-form-imp-upper-triagular
lemma echelon-form-JNF-least-position-ge-diagonal:
assumes eA: echelon-form-JNF A
and $A$ : A: carrier-mat $m n$
and $n z-i A$ : $\neg$ is-zero-row-JNF $i A$
and $i m: i<m$
shows $i \leq($ LEAST $n . A \$ \$(i, n) \neq 0)$
using $n z-i A$ im
proof (induct i rule: less-induct)
case (less i)
note $n z-i A=$ less.prems(1)
note $i m=$ less.prems(2)
show? case
proof (cases $i=0$ )
case True show ?thesis using True by blast
next
case False
show ?thesis
proof (rule ccontr)
assume $\neg i \leq($ LEAST $n . A \$ \$(i, n) \neq 0)$
hence $i$-least: $i>($ LEAST n. $A \$ \$(i, n) \neq 0)$ by auto
have nz-i1A: $\neg$ is-zero-row-JNF $(i-1) A$
using $n z$-iA im False $A$ eA unfolding echelon-form-JNF-def
by (metis Num.numeral-nat(7) Suc-pred carrier-matD(1) gr-implies-not0 lessI linorder-neqE-nat order.strict-trans)
have $i-1 \leq(L E A S T n$. A $\$ \$(i-1, n) \neq 0)$ by (rule less.hyps, insert im $n z-i 1 A$ False, auto)
moreover have $($ LEAST n. A $\$ \$(i, n) \neq 0)>($ LEAST n. A $\$ \$(i-1, n) \neq$ 0)
using $n z-i 1 A n z-i A$ im False $A$ eA unfolding echelon-form-JNF-def by auto
ultimately show False using i-least by auto

```
 qed
 qed
qed
```

lemma echelon-form-JNF-imp-upper-triangular:
assumes $e A$ : echelon-form-JNF $A$
shows upper-triangular $A$
proof
fix $i j$ assume $j i: j<i$ and $i: i<d i m-r o w ~ A$
have $A: A \in$ carrier-mat (dim-row $A$ ) (dim-col $A$ ) by auto
show $A \$ \$(i, j)=0$
proof (cases is-zero-row-JNF iA)
case False
have $i \leq(L E A S T$ n. A $\$ \$(i, n) \neq 0)$
by (rule echelon-form-JNF-least-position-ge-diagonal[OF eA A False i])
then show ?thesis
using ji not-less-Least order.strict-trans2 by blast
next
case True
then show?thesis unfolding is-zero-row-JNF-def oops
lemma echelon-form-JNF-imp-upper-triangular:
assumes $e A$ : echelon-form-JNF $A$
shows upper-triangular ${ }^{\prime} A$
proof
fix $i j$ assume $j i: j<i$ and $i: i<\operatorname{dim}$-row $A$ and $j: j<\operatorname{dim}-\operatorname{col} A$
have $A: A \in$ carrier-mat (dim-row $A)(d i m-c o l A)$ by auto
show $A \$ \$(i, j)=0$
proof (cases is-zero-row-JNF i A)
case False
have $i \leq($ LEAST n. A $\$ \$(i, n) \neq 0)$
by (rule echelon-form-JNF-least-position-ge-diagonal[OF eA A False i])
then show ?thesis
using ji not-less-Least order.strict-trans2 by blast
next
case True
then show ?thesis unfolding is-zero-row-JNF-def using $j$ by auto
qed
qed
lemma upper-triangular-append-zero:
assumes $u H$ : upper-triangular ${ }^{\prime} H$
and $H: H \in$ carrier-mat $(m+m) n$ and $m n: n \leq m$
shows $H=$ mat-of-rows $n(\operatorname{map}(M a t r i x . r o w ~ H)[0 . .<m]) @_{r} 0_{m} m n($ is $-=$

```
?H' @ }\mp@subsup{r}{}{\prime}\mp@subsup{0}{m}{m}n
proof
 have }\mp@subsup{H}{}{\prime}:?\mp@subsup{H}{}{\prime}\in\mathrm{ carrier-mat m n using HuH by auto
 have H'0:(?H' @ }\mp@subsup{r}{}{\prime}\mp@subsup{0}{m}{}mn)\incarrier-mat (m+m) n by (simp add: H'
 thus dr: dim-row H = dim-row (? }\mp@subsup{H}{}{\prime}\mp@subsup{@}{r}{}\mp@subsup{0}{m}{}mn)\mathrm{ using H H' by (simp add:
append-rows-def)
 show dc: dim-col H = dim-col (? 'H' @ }\mp@subsup{r}{}{\prime}\mp@subsup{O}{m}{}mn)\mathrm{ using H H' by (simp add:
append-rows-def)
 fix ij assume i:i<dim-row (?H' @ @ O m m n) and j:j<dim-col (?H' @ @
0mmn)
 show H$$ (i,j)=(?H' @ }\mp@subsup{|}{r}{}\mp@subsup{0}{m}{m}n)$$(i,j
 proof (cases i<m)
 case True
 have H$$(i,j)=? ? }\mp@subsup{H}{}{\prime}$$(i,j
 by (metis True H' append-rows-def H carrier-matD index-mat-four-block(3)
index-zero-mat(3) j
 le-add1 map-first-rows-index mat-of-rows-carrier(2) mat-of-rows-index
nat-arith.rule0)
 then show ?thesis
 by (metis (mono-tags, lifting) H' True add.comm-neutral append-rows-def
 carrier-matD(1) i index-mat-four-block index-zero-mat(3) j)
 next
 case False
 have imn: i<m+m using idr H by auto
 have jn: j<n using jdc H by auto
 have ji: j<i using j i False mn jn by linarith
 hence H$$(i,j)=0 using uH unfolding upper-triangular'-def dr imn using
i jn
 by (simp add: dc j)
 also have ... = (? 'H' @ }\mp@subsup{r}{m}{}\mp@subsup{0}{m}{m}n)$$(i,j
 by (smt False H' append-rows-def assms(2) carrier-matD(1) carrier-matD(2)
dc imn
 index-mat-four-block(1,3) index-zero-mat j less-diff-conv2 linorder-not-less)
 finally show ?thesis.
 qed
qed
```


### 8.2.3 The algorithm is sound

lemma find-fst-non0-in-row:
assumes $A: A \in$ carrier-mat $m n$
and res: find-fst-non0-in-row $l A=$ Some $j$
shows $A \$ \$(l, j) \neq 0 l \leq j j<\operatorname{dim}-c o l A$
proof -
let ? $x s=$ filter $(\lambda j . A \$ \$(l, j) \neq 0)[l . .<\operatorname{dim}-\operatorname{col} A]$
from res[unfolded find-fst-non0-in-row-def Let-def]
have $x s: ? x s \neq[]$ by (cases ? $x s$, auto)
have $j$-in-xs: $j \in$ set ?xs using res unfolding find-fst-non0-in-row-def Let-def
by (metis (no-types, lifting) length-greater-0-conv list.case(2) list.exhaust nth-mem
option.simps(1) xs)
show $A \$ \$(l, j) \neq 0 l \leq j j<\operatorname{dim}$-col $A$ using $j$-in-xs by auto+ qed
lemma find-fst-non0-in-row-zero-before:
assumes $A: A \in$ carrier-mat $m n$
and res: find-fst-non0-in-row $l A=$ Some $j$
shows $\forall j^{\prime} \in\{l . .<j\} . A \$ \$\left(l, j^{\prime}\right)=0$
proof -
let ?xs $=$ filter $(\lambda j$. $A \$ \$(l, j) \neq 0)[l . .<\operatorname{dim}-\operatorname{col} A]$
from res[unfolded find-fst-non0-in-row-def Let-def]
have $x s:$ ? $x s \neq[]$ by (cases ? $x s$, auto)
have $j$-in-xs: $j \in$ set ?xs using res unfolding find-fst-non0-in-row-def Let-def
by (metis (no-types, lifting) length-greater-0-conv list.case(2) list.exhaust nth-mem option.simps(1) xs)
have $j$-xs0: $j=$ ? $x s$ ! 0
by (smt res[unfolded find-fst-non0-in-row-def Let-def] list.case(2) list.exhaust option.inject xs)
show $\forall j^{\prime} \in\{l . .<j\}$. $A \$ \$\left(l, j^{\prime}\right)=0$
proof (rule+, rule ccontr)
fix $j^{\prime}$ assume $j^{\prime}: j^{\prime}:\{l . .<j\}$ and $A l j^{\prime}: A \$ \$\left(l, j^{\prime}\right) \neq 0$
have $j^{\prime} j: j^{\prime}<j$ using $j^{\prime}$ by auto
have $j^{\prime}-i n-x s: j^{\prime} \in$ set ? $x s$
by (metis (mono-tags, lifting) A Set.member-filter $j^{\prime}$ Alj' res atLeastLessThan-iff filter-set
find-fst-non0-in-row(3) nat-SN.gt-trans set-upt)
have l-rw: $[l . .<\operatorname{dim}-c o l A]=[l . .<j] @[j . .<\operatorname{dim}-c o l A]$
using assms(1) assms(2) find-fst-non0-in-row (3) $j^{\prime}$ upt-append by auto
have $x s$-rw: ? $x s=$ filter $(\lambda j . A \$ \$(l, j) \neq 0)([l . .<j] @[j . .<\operatorname{dim}-c o l A])$
using $l$-rw by auto
hence filter $(\lambda j$. $A \$ \$(l, j) \neq 0)[l . .<j]=[]$ using $j$-xs0
by (metis (no-types, lifting) Set.member-filter atLeastLessThan-iff filter-append filter-set
length-greater-0-conv nth-append nth-mem order-less-irrefl set-upt)
thus False using $j$-xs0 $j^{\prime} j$-xs0
by (metis Set.member-filter filter-empty-conv filter-set $j^{\prime}$-in-xs set-upt) qed
qed
corollary find-fst-non0-in-row-zero-before':
assumes $A: A \in$ carrier-mat $m n$
and res: find-fst-non0-in-row l $A=$ Some $j$
and $j^{\prime} \in\{l . .<j\}$
shows $A \$ \$\left(l, j^{\prime}\right)=0$ using find-fst-non0-in-row-zero-before assms by auto
lemma find-fst-non0-in-row-LEAST:
assumes $A: A \in$ carrier-mat $m n$
and $u t-A$ : upper-triangular ${ }^{\prime} A$
and res: find-fst-non0-in-row l $A=$ Some $j$
and $l m: l<m$
shows $j=($ LEAST $n . A \$ \$(l, n) \neq 0)$
proof (rule Least-equality[symmetric])
show $A \$ \$(l, j) \neq 0$ using res find-fst-non0-in-row(1) by blast
show $\wedge y . A \$ \$(l, y) \neq 0 \Longrightarrow j \leq y$
proof (rule ccontr)
fix $y$ assume Aly: $A \$ \$(l, y) \neq 0$ and $j y: \neg j \leq y$
have $y n: y<n$
by (metis A jy carrier-matD(2) find-fst-non0-in-row(3) leI less-imp-le-nat nat-SN.compat res)
have $A \$ \$(l, y)=0$
proof (cases $y \in\{l . .<j\}$ )
case True
show ?thesis by (rule find-fst-non0-in-row-zero-before'[OF A res True])
next
case False hence $y<l$ using $j y$ by auto
thus ?thesis using ut-A A lm unfolding upper-triangular'-def using yn by blast
qed
thus False using Aly by contradiction
qed
qed
lemma find-fst-non0-in-row-None':
assumes $A: A \in$ carrier-mat $m n$
and $l m: l<m$
shows $($ find-fst-non0-in-row $l A=$ None $)=(\forall j \in\{l . .<\operatorname{dim}$-col $A\} . A \$ \$(l, j)=0)$
(is ?lhs $=$ ? $r h s$ )
proof
assume res: ?lhs
let ? $x s=$ filter $(\lambda j . A \$ \$(l, j) \neq 0)[l . .<\operatorname{dim}-\operatorname{col} A]$
from res[unfolded find-fst-non0-in-row-def Let-def]
have $x s: ~ ? x s=[]$ by (cases ? $x s$, auto)
have $A \$ \$(l, j)=0$ if $j: j \in\{l . .<\operatorname{dim}-\operatorname{col} A\}$ for $j$
using $x s$ by (metis (mono-tags, lifting) empty-filter-conv $j$ set-upt)
thus? ?rhs by blast
next
assume rhs: ?rhs
show ?lhs
proof (rule ccontr)
assume find-fst-non0-in-row $l A \neq$ None
from this obtain $j$ where $r$ : find-fst-non0-in-row $l A=$ Some $j$ by blast
hence $A \$ \$(l, j) \neq 0$ and $l \leq j$ and $j<\operatorname{dim}$-col $A$ using find-fst-non0-in-row[OF
A r] by blast+
thus False using rhs by auto
qed
qed
lemma find-fst-non0-in-row-None:
assumes $A: A \in$ carrier-mat $m n$
and ut-A: upper-triangular ${ }^{\prime} A$
and $l m: l<m$
shows (find-fst-non0-in-row l $A=$ None $)=($ is-zero-row-JNF $l A)($ is ?lhs $=$ ? rhs $)$
proof
assume res: ?lhs
let ? $x s=$ filter $(\lambda j . A \$ \$(l, j) \neq 0)[l . .<\operatorname{dim}-\operatorname{col} A]$
from res[unfolded find-fst-non0-in-row-def Let-def]
have $x s$ : ? $x s=[]$ by (cases ? $x s$, auto)
have $A \$ \$(l, j)=0$ if $j: j<\operatorname{dim}-c o l ~ A$ for $j$
proof (cases $j<l$ )
case True
then show ?thesis using ut-A A lm $j$ unfolding upper-triangular'-def by blast
next case False hence $j$-ln: $j \in\{l . .<\operatorname{dim}$-col $A\}$ using $A \operatorname{lm} j$ by simp
then show ?thesis using xs by (metis (mono-tags, lifting) empty-filter-conv set-upt)
qed
thus ?rhs unfolding is-zero-row-JNF-def by blast
next
assume rhs: ?rhs
show ?lhs
proof (rule ccontr)
assume find-fst-non0-in-row $l A \neq$ None
from this obtain $j$ where $r$ : find-fst-non0-in-row $l$ A $=$ Some $j$ by blast
hence $A \$ \$(l, j) \neq 0$ and $j<d i m$-col $A$ using find-fst-non0-in-row $[O F A$ r] by
blast+
hence $\neg$ is-zero-row-JNF $l$ A unfolding is-zero-row-JNF-def using $l m A$ by auto
thus False using rhs by contradiction
qed
qed
lemma make-first-column-positive-preserves-dimensions:
shows [simp]: dim-row (make-first-column-positive $A$ ) $=$ dim-row $A$ and [simp]: dim-col (make-first-column-positive $A$ ) $=\operatorname{dim}$-col $A$
by (auto)
lemma make-first-column-positive-works: assumes $A \in$ carrier-mat $m n$ and $i: i<m$ and $0<n$
shows make-first-column-positive $A \$ \$(i, 0) \geq 0$
and $j<n \Longrightarrow A \$ \$(i, 0)<0 \Longrightarrow($ make-first-column-positive $A) \$ \$(i, j)=-A$ $\$ \$(i, j)$
and $j<n \Longrightarrow A \$ \$(i, 0) \geq 0 \Longrightarrow($ make-first-column-positive $A) \$ \$(i, j)=A \$ \$$ $(i, j)$ using assms by auto
lemma make-first-column-positive-invertible:
shows $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat (dim-row $A$ ) (dim-row $A$ )
$\wedge$ make-first-column-positive $A=P * A$
proof -
let $? P=$ Matrix.mat $($ dim-row $A)($ dim-row $A)$
$(\lambda(i, j)$. if $i=j$ then if $A \$ \$(i, 0)<0$ then -1 else 1 else $0::$ int $)$
have invertible-mat ?P
proof -
have $($ map abs $($ diag-mat ?P) $)=$ replicate $($ length $(($ map abs $($ diag-mat ?P $))))$
1
by (rule replicate-length-same[symmetric], auto simp add: diag-mat-def)
hence $m$-rw: (map abs (diag-mat ?P)) = replicate (dim-row A) 1 by (auto simp add: diag-mat-def)
have Determinant.det $? P=$ prod-list (diag-mat $? P$ ) by (rule det-upper-triangular, auto)
also have $a b s \ldots=$ prod-list (map abs (diag-mat ?P)) unfolding prod-list-abs by blast
also have $\ldots=$ prod-list (replicate (dim-row A) 1) using $m$-rw by simp
also have $\ldots=1$ by auto
finally have $\mid$ Determinant. det ? $P \mid=1$ by blast
hence Determinant.det ?P dvd 1 by fastforce
thus ?thesis using invertible-iff-is-unit-JNF mat-carrier by blast
qed
moreover have make-first-column-positive $A=? P * A$ (is ? $M=-$ )
proof (rule eq-matI)
show dim-row ? $M=\operatorname{dim}$-row $(? P * A)$ and dim-col $? M=\operatorname{dim}-c o l(? P * A)$ by auto
fix $i j$ assume $i: i<\operatorname{dim}-r o w(? P * A)$ and $j: j<\operatorname{dim}-\operatorname{col}(? P * A)$
have set-rw: $\{0 . .<$ dim-row $A\}=$ insert $i(\{0 . .<$ dim-row $A\}-\{i\})$ using $i$ by auto
have $r w 0:\left(\sum i a \in\{0 . .<\operatorname{dim}-r o w A\}-\{i\}\right.$. Matrix.row $? P$ i $\$ v i a * \operatorname{col} A j$ $\$ v i a)=0$
by (rule sum.neutral, insert $i$, auto)
have $(? P * A) \$ \$(i, j)=$ Matrix.row ?P $i \cdot \operatorname{col} A j$ using $i j$ by auto
also have $\ldots=\left(\sum i a=0 . .<\right.$ dim-row $A$. Matrix.row? ? $\left.i \$ v i a * \operatorname{col} A j \$ v i a\right)$ unfolding scalar-prod-def by auto
also have $\ldots=\left(\sum i a \in\right.$ insert $i(\{0 . .<$ dim-row $A\}-\{i\})$. Matrix.row ?P $i$ $\$ v i a * \operatorname{col} A j \$ v i a)$
using set-rw by argo
also have $\ldots=$ Matrix.row ? P $i \$ v i * \operatorname{col} A j \$ v i$ $+\left(\sum i a \in\{0 . .<\right.$ dim-row $A\}-\{i\}$. Matrix.row ?P $\left.i \$ v i a * \operatorname{col} A j \$ v i a\right)$ by (rule sum.insert, auto)

```
 also have ... = Matrix.row ?P i$vi* col A j $vi unfolding rw0 by simp
 finally have *: (?P * A)$$ (i,j) = Matrix.row ?P i $v i* col A j$vi .
 also have ... =?M $$ (i,j)
 by (cases A $$(i,0)<0, insert i j, auto simp add: col-def)
 finally show ?M $$ (i,j) = (?P*A)$$ (i,j) ..
qed
moreover have ?P \in carrier-mat (dim-row A) (dim-row A) by auto
ultimately show ?thesis by blast
qed
locale proper-mod-operation = mod-operation +
 assumes dvd-gdiv-mult-right[simp]: b>0\Longrightarrowb dvd a\Longrightarrow(a gdiv b)*b=a
 and gmod-gdiv: y>0\Longrightarrowx gmod y = x - x gdiv y * y
 and dvd-imp-gmod-0: 0<a\Longrightarrowa dvd b\Longrightarrowbgmod a=0
 and gmod-0-imp-dvd: a gmod b=0\Longrightarrowb dvd a
 and gmod-0[simp]: n gmod 0 = n n>0\Longrightarrow0 gmod n=0
begin
lemma reduce-alt-def-not0:
 assumes A $$ (a,0)\not=0 and pquvd: (p,q,u,v,d)=euclid-ext2 (A$$(a,0)) (A $$
(b,0))
 shows reduce a b D A =
 Matrix.mat (dim-row A) (dim-col A)
 (\lambda(i,k). if i = a then let r = (}p*A$$(a,k)+q*A$$(b,k)) in
 if k=0 then if D dvd r then D else r else r gmod D
 else if i=b then let r=u*A$$(a,k)+v*A$$(b,k) in
 if k=0 then r else r gmod D
 else A$$(i,k)) (is - = ?rhs)
 and
 reduce-abs a b D A=
 Matrix.mat (dim-row A) (dim-col A)
 (\lambda(i,k). if i=a then let r = (}p*A$$(a,k)+q*A$$(b,k)) in
 if abs r>D then if k=0^D dvd r then D else r gmod
D else r
 else if i=b then let r=u*A$$(a,k)+v*A$$(b,k) in
 if abs r>D then r gmod D else r
 else A$$(i,k)) (is - = ?rhs-abs)
proof -
 have reduce a b D A =
 (case euclid-ext2 (A$$(a,0)) (A $$ (b,0)) of (}p,q,u,v,d)
 Matrix.mat (dim-row A) (dim-col A)
 (\lambda(i,k). if i=a then let r = (}~*A$$(a,k)+q*A$$(b,k)) in
 if k=0 then if D dvd r then D else r else r gmod D
 else if }i=b\mathrm{ then let r=u*A$$(a,k)+v*A$$(b,k) in
 if k=0 then r else r gmod D
 else A$$(i,k)
)) using assms by auto
 also have ... = ?rhs unfolding reduce.simps Let-def
 by (rule eq-matI, insert pquvd) (metis (no-types, lifting) split-conv)+
 finally show reduce a b D A =?rhs .
```

have reduce-abs a b $D A=$
(case euclid-ext2 $(A \$ \$(a, 0))(A \$ \$(b, 0))$ of $(p, q, u, v, d) \Rightarrow$
Matrix.mat (dim-row $A$ ) (dim-col $A$ )
$(\lambda(i, k)$. if $i=a$ then let $r=(p * A \$ \$(a, k)+q * A \$ \$(b, k))$ in if abs $r>D$ then if $k=0 \wedge D$ dvd $r$ then $D$ else $r$ gmod
$D$ else r

$$
\begin{aligned}
& \text { else if } i=b \text { then let } r=u * A \$ \$(a, k)+v * A \$ \$(b, k) \text { in } \\
& \quad \text { if abs } r>D \text { then } r \text { gmod } D \text { else } r \\
& \text { else } A \$ \$(i, k)
\end{aligned}
$$

)) using assms by auto
also have ... $=$ ?rhs-abs unfolding reduce.simps Let-def
by (rule eq-matI, insert pquvd) (metis (no-types, lifting) split-conv)+
finally show reduce-abs a b $D A=$ ? rhs-abs.
qed
lemma reduce-preserves-dimensions:
shows $[$ simp $]$ : dim-row (reduce a b $D A$ ) $=$ dim-row $A$
and [simp]: dim-col (reduce a b D A) =dim-col $A$
and [simp]: dim-row (reduce-abs a b $D A$ ) $=$ dim-row $A$
and [simp]: dim-col (reduce-abs a b D A) $=$ dim-col $A$
by (auto simp add: Let-def split-beta)
lemma reduce-carrier:
assumes $A \in$ carrier-mat $m n$
shows (reduce abDA) $\operatorname{carrier-mat} m n$
and (reduce-abs a b D A) $\in$ carrier-mat $m n$
by (insert assms, auto simp add: Let-def split-beta)
lemma reduce-gcd:
assumes $A: A \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$
and $A a j: A \$ \$(a, 0) \neq 0$
shows (reduce a bDA)\$\$(a,0)=(letr=gcd(A\$\$(a,0))(A\$\$(b,0)) in if Ddvd doll $r$ then $D$ else $r$ ) (is?lhs = ?rhs)
and (reduce-abs a b D A) $\$ \$(a, 0)=($ let $r=\operatorname{gcd}(A \$ \$(a, 0))(A \$ \$(b, 0))$ in if $D$ $<r$ then
if $D$ dvd $r$ then $D$ else $r$ gmod $D$ else $r)($ is ?lhs-abs $=$ ? $r h s$-abs $)$
proof -
obtain $p$ quvd where pquvd: euclid-ext2 $(A \$ \$(a, 0))(A \$ \$(b, 0))=(p, q, u, v, d)$
using prod-cases5 by blast
have $p * A \$ \$(a, 0)+q * A \$ \$(b, 0)=d$
using Aaj pquvd is-bezout-ext-euclid-ext2 unfolding is-bezout-ext-def
by (smt Pair-inject bezout-coefficients-fst-snd euclid-ext2-def)
also have $\ldots=\operatorname{gcd}(A \$ \$(a, 0))(A \$ \$(b, 0))$ by (metis euclid-ext2-def pquvd prod.sel(2))
finally have $p A a j-q A b j-g c d: p * A \$ \$(a, 0)+q * A \$ \$(b, 0)=\operatorname{gcd}(A \$ \$(a, 0))$ $(A \$ \$(b, 0))$.
let ?f $=(\lambda(i, k)$. if $i=a$ then let $r=p * A \$ \$(a, k)+q * A \$ \$(b, k)$ in if $k$ $=0$ then if $D$ dvd $r$ then $D$ else $r$ else $r$ gmod $D$

$$
\text { else if } i=b \text { then let } r=u * A \$ \$(a, k)+v * A \$ \$(b, k) \text { in if } k=0
$$

```
then r else r gmod D else A $$ (i,k))
 have (reduce a b D A) $$ (a,0) = Matrix.mat (dim-row A) (dim-col A) ?f $$
(a,0)
 using Aaj pquvd by auto
 also have ... = (let r=p*A$$(a,0) + q*A$$(b,0) in if (0::nat) = 0
then if D dvd r then D else r else r gmod D)
 using A a j by auto
 also have ... = (if D dvd gcd (A$$(a,0)) (A$$(b,0)) then D else
 gcd (A$$(a,0)) (A$$(b,0)))
 by (simp add: pAaj-qAbj-gcd)
 finally show ?lhs = ?rhs by auto
 let ?g=(\lambda(i,k). if i=a then let r=p*A$$(a,k)+q*A$$(b,k) in
 if D< |r| then if k=0^D dvd r then D else r gmod D else r
 else if i=b then let r=u*A$$(a,k)+v*A$$(b,k) in
 if D< |r| then r gmod D else r else A $$ (i,k))
 have (reduce-abs a b D A) $$ (a,0) = Matrix.mat (dim-row A) (dim-col A)?g
$$(a,0)
 using Aaj pquvd by auto
 also have ... = (let r=p*A$$(a,0)+q*A$$(b,0) in if D<|r| then
 if (0::nat) = 0^D dvd r then D else r gmod D else r)
 using A a j by auto
 also have ... = (if D<|gcd (A$$(a,0)) (A$$(b,0))| then if D dvd gcd (A$$(a,0))
(A$$(b,0)) then D else
 gcd (A$$(a,0)) (A$$(b,0)) gmod D else gcd (A$$(a,0)) (A$$(b,0)))
 by (simp add: pAaj-qAbj-gcd)
 finally show ?lhs-abs = ?rhs-abs by auto
qed
```

lemma reduce-preserves:
assumes $A: A \in$ carrier-mat $m n$ and $j: j<n$
and $A a j: A \$ \$(a, 0) \neq 0$ and $i b: i \neq b$ and $i a: i \neq a$ and $i m: i<m$
shows (reduce a b D A) \$\$ $(i, j)=A \$ \$(i, j) \quad$ (is ?thesis1)
and (reduce-abs a b D A) $\$ \$(i, j)=A \$ \$(i, j)$ (is ?thesis2)
proof -
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid-ext2}(A \$ \$(a, 0))(A \$ \$(b, 0))$
using prod-cases 5 by metis
show ?thesis1 unfolding reduce-alt-def-not0[OF Aaj pquvd] using ia im j A ib by auto
show ?thesis2 unfolding reduce-alt-def-not0[OF Aaj pquvd] using ia im j A ib by auto
qed
lemma reduce-0:
assumes $A: A \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$ and $b: b<m$ and $a b: a \neq b$
and $A a j: A \$ \$(a, 0) \neq 0$
and $D: D \geq 0$
shows (reduce a b D A) $\$ \$(b, 0)=0$ (is ?thesis1)
and (reduce-abs a b D A) $\$ \$(b, 0)=0$ (is ?thesis2)
proof -
obtain $p q u v d$ where pquvd: euclid-ext2 $(A \$ \$(a, 0))(A \$ \$(b, 0))=(p, q, u, v, d)$
using prod-cases5 by blast
hence $u$ : $u=-(A \$ \$(b, 0))$ div gcd $(A \$ \$(a, 0))(A \$ \$(b, 0))$
using euclid-ext2-works[OF pquvd] by auto
have $v$ : $v=A \$ \$(a, 0)$ div gcd ( $A \$ \$(a, 0))(A \$ \$(b, 0))$ using euclid-ext2-works[OF pquvd] by auto
have $u v 0: u * A \$ \$(a, 0)+v * A \$ \$(b, 0)=0$ using $u v$
proof -
have $\forall i$ ia. gcd (ia::int) $i *($ ia div gcd ia $i)=i a$
by (meson dvd-mult-div-cancel gcd-dvd1)
then have $v *-A \$ \$(b, 0)=u * A \$ \$(a, 0)$
by (metis (no-types) dvd-minus-iff dvd-mult-div-cancel gcd-dvd2 minus-minus mult.assoc mult.commute $u$ v)
then show ?thesis
by $\operatorname{simp}$
qed
let ?f $=(\lambda(i, k)$. if $i=a$ then let $r=p * A \$ \$(a, k)+q * A \$ \$(b, k)$ in if $k=0$ then if $D$ dvd $r$ then $D$ else $r$ else $r \operatorname{gmod} D$ else if $i=b$ then let $r=u * A \$ \$(a, k)+v * A \$ \$(b, k)$ in if $k=0$ then $r$ else $r$ gmod $D$ else $A \$ \$(i, k))$
have (reduce a b D A) \$\$(b,0)=Matrix.mat (dim-row A) (dim-col A) ?f \$\$(b, 0)
using Aaj pquvd by auto
also have $\ldots=($ let $r=u * A \$ \$(a, 0)+v * A \$ \$(b, 0)$ in $r)$
using $A a j a b b$ by auto
also have $\ldots=0$ using uvo $D$
by (smt (z3) gmod-0(1) gmod-0(2))
finally show ?thesis1 .
let $? g=(\lambda(i, k)$. if $i=a$ then let $r=p * A \$ \$(a, k)+q * A \$ \$(b, k)$ in if $D<|r|$ then if $k=0 \wedge D$ dvd $r$ then $D$ else $r \operatorname{gmod} D$ else $r$ else if $i=b$ then let $r=u * A \$ \$(a, k)+v * A \$ \$(b, k)$ in if $D<|r|$ then $r$ gmod $D$ else $r$ else $A \$ \$(i, k))$
have (reduce-abs a blll) $\$ \$(b, 0)=$ Matrix.mat (dim-row $A)(d i m-c o l A) ? g$ \$ $(b, 0)$
using Aaj pquvd by auto
also have $\ldots=($ let $r=u * A \$ \$(a, 0)+v * A \$ \$(b, 0)$ in if $D<|r|$ then $r$ gmod $D$ else $r$ )
using $A a j a b b$ by auto
also have $\ldots=0$ using $u v 0 D$ by simp
finally show ?thesis2 .
qed
end
Let us show the key lemma: operations modulo determinant don't modify
the (integer) row span.
context LLL-with-assms
begin
lemma lattice-of-kId-subset-fs-init:
assumes $k$-det: $k=$ Determinant.det (mat-of-rows $n f s$-init)
and $m n$ : $m=n$
shows lattice-of $\left(\right.$ Matrix.rows $\left(k \cdot m\left(1_{m} m\right)\right) \subseteq$ lattice-of $f s$-init
proof -
let $? Z=($ mat-of-rows $n f s$-init $)$
let ? RAT $=$ of-int-hom.mat-hom :: int mat $\Rightarrow$ rat mat
have RAT-fs-init: ?RAT (mat-of-rows $n f s$-init) $\in$ carrier-mat $n n$ using len map-carrier-mat mat-of-rows-carrier(1) mn by blast
have det-RAT-fs-init: Determinant. $\operatorname{det}(? R A T ? Z) \neq 0$
proof (rule gs.lin-indpt-rows-imp-det-not- 0 [OF RAT-fs-init $]$ )
have rw: Matrix.rows (?RAT (mat-of-rows $n$ fs-init)) $=R A T$ fs-init
by (metis cof-vec-space.lin-indpt-list-deffs-init lin-dep mat-of-rows-map rows-mat-of-rows)
thus gs.lin-indpt (set (Matrix.rows (?RAT (mat-of-rows $n f s$-init) $)$ ))
by (insert lin-dep, simp add: cof-vec-space.lin-indpt-list-def)
show distinct (Matrix.rows (?RAT (mat-of-rows $n$ fs-init)))
using rw cof-vec-space.lin-indpt-list-def lin-dep by auto
qed
obtain inv- $Z$ where inverts- $Z$ : inverts-mat (?RAT ?Z) inv- $Z$ and inv-Z: inv-Z $\in$ carrier-mat $m m$
by (metis mn det-RAT-fs-init dvd-field-iff invertible-iff-is-unit-JNF len map-carrier-mat mat-of-rows-carrier(1) obtain-inverse-matrix)
have det-rat-Z-k: Determinant.det (?RAT ?Z) $=$ rat-of-int $k$
using $k$-det of-int-hom.hom-det by blast
have ?RAT?Z * adj-mat $(? R A T ? Z)=$ Determinant.det $(? R A T ? Z) \cdot m 1_{m} n$
by (rule adj-mat $[O F R A T$-fs-init $]$ )
hence inv- $Z *(? R A T$ ? $Z *$ adj-mat $(? R A T ? Z))=$ inv- $Z *$ (Determinant.det (?RAT ? Z ) ${ }_{m} 1_{m} n$ ) by $\operatorname{simp}$
hence $k$-inv-Z-eq-adj: (rat-of-int $k) \cdot m$ inv- $Z=$ adj-mat (?RAT ?Z)
by (smt Determinant.mat-mult-left-right-inverse RAT-fs-init adj-mat $(1,3) m n$ carrier-matD det-RAT-fs-init det-rat-Z-k gs.det-nonzero-congruence inv-Z
inverts-Z
inverts-mat-def mult-smult-assoc-mat smult-carrier-mat)
have adj-mat-Z: adj-mat $(? R A T ? Z) \$ \$(i, j) \in \mathbb{Z}$ if $i: i<m$ and $j: j<n$ for $i j$ proof -
have det-mat-delete- $Z$ : Determinant. $\operatorname{det}$ (mat-delete (?RAT ?Z) $j i) \in \mathbb{Z}$
proof (rule Ints-det)
fix $i a j a$
assume $i a: i a<$ dim-row (mat-delete (?RAT ?Z) ji)
and ja: ja<dim-col (mat-delete (?RAT ?Z) ji)
have (mat-delete (?RAT ? Z) ji) $\$ \$(i a, j a)=(? R A T ? Z) \$ \$$ (insert-index j ia, insert-index i ja)
by (rule mat-delete-index[symmetric], insert ij mn len ia ja RAT-fs-init, auto)
also have $\ldots=$ rat-of-int $(? Z \$ \$($ insert-index $j$ ia, insert-index $i j a))$
by (rule index-map-mat, insert ij ia ja, auto simp add: insert-index-def)
also have $\ldots \in \mathbb{Z}$ using Ints-of-int by blast
finally show (mat-delete (?RAT ?Z) $j i) \$ \$(i a, j a) \in \mathbb{Z}$.
qed
have adj-mat (?RAT ?Z) $\$ \$(i, j)=$ Determinant.cofactor $(? R A T$ ?Z $) j i$
unfolding adj-mat-def
by (simp add: len $i j$ )
also have $\ldots=(-1) \wedge(j+i) *$ Determinant.det (mat-delete (?RAT ?Z) $j$
i)
unfolding Determinant.cofactor-def by auto
also have $\ldots \in \mathbb{Z}$ using det-mat-delete- $Z$ by auto
finally show? ?thesis.
qed
have kinvZ-in-Z: ((rat-of-int $k) \cdot{ }_{m}$ inv-Z) $\$ \$(i, j) \in \mathbb{Z}$ if $i: i<m$ and $j: j<n$ for $i j$
using $k$-inv-Z-eq-adj by (simp add: adj-mat-Z i j)
have ?RAT $\left(k \cdot m\left(1_{m} m\right)\right)=$ Determinant.det $(? R A T ? Z) \cdot m($ inv- $Z * ? R A T$
?Z) (is ?lhs = ?rhs)
proof -
have $(i n v-Z * ? R A T$ ? $Z)=\left(1_{m} m\right)$
by (metis Determinant.mat-mult-left-right-inverse RAT-fs-init mn carrier-matD(1)
inv- $Z$ inverts- $Z$ inverts-mat-def)
from this have ?rhs = rat-of-int $k \cdot m\left(1_{m} m\right)$ using det-rat-Z- $k$ by auto
also have $\ldots=$ ? lhs by auto
finally show ?thesis ..
qed
also have $\ldots=($ Determinant. $\operatorname{det}(? R A T ? Z) \cdot m$ inv-Z $) * ? R A T ? Z$
by (metis RAT-fs-init mn inv-Z mult-smult-assoc-mat)
also have $\ldots=(($ rat-of-int $k) \cdot m$ inv-Z $) *$ ? RAT ? $Z$ by (simp add: $k$-det)
finally have $r^{\prime}: ? R A T\left(k \cdot m\left(1_{m} m\right)\right)=(($ rat-of-int $k) \cdot m$ inv-Z $) * ? R A T$ ? Z .
have $r:\left(k \cdot_{m}\left(1_{m} m\right)\right)=\left(\left(\right.\right.$ map-mat int-of-rat $\left((\right.$ rat-of-int $k) \cdot{ }_{m}$ inv-Z $\left.\left.)\right)\right) * ? Z$
proof -
have ?RAT $(($ map-mat int-of-rat $(($ rat-of-int $k) \cdot m$ inv-Z $)))=(($ rat-of-int $k)$
${ }_{m}$ inv-Z)
proof (rule eq-matI, auto)
fix $i j$ assume $i: i<d i m$-row inv- $Z$ and $j: j<$ dim-col inv-Z
have $(($ rat-of-int $k) \cdot m$ inv-Z) $\$ \$(i, j)=($ rat-of-int $k * i n v-Z \$ \$(i, j))$
using index-smult-mat $i j$ by auto
hence kinvZ-in- $Z^{\prime}: \ldots \in \mathbb{Z}$ using kinvZ-in-Z $i j$ inv- $Z$ mn by simp
show rat-of-int (int-of-rat (rat-of-int $k * i n v-Z \$ \$(i, j))$ ) rat-of-int $k *$
inv-Z $\$ \$(i, j)$
by (rule int-of-rat, insert kinvZ-in- $Z^{\prime}$, auto)
qed
hence ?RAT $\left(k \cdot m\left(1_{m} m\right)\right)=? R A T(($ map-mat int-of-rat $(($ rat-of-int $k) \cdot m$ inv-Z))) * ?RAT ?Z
using $r^{\prime}$ by simp
also have $\ldots=$ ? RAT $(($ map-mat int-of-rat $(($ rat-of-int $k) \cdot m$ inv-Z $)) * ? Z)$
by (metis RAT-fs-init adj-mat(1) k-inv-Z-eq-adj map-carrier-mat of-int-hom.mat-hom-mult)
finally show ?thesis by (rule of-int-hom.mat-hom-inj)

```
qed
show ?thesis
proof (rule mat-mult-sub-lattice[OF - fs-init])
 have rw: of-int-hom.mat-hom (map-mat int-of-rat ((rat-of-int k) 'm inv-Z))
 = map-mat int-of-rat ((rat-of-int k) 'm inv-Z) by auto
 have mat-of-rows n (Matrix.rows (k \cdotm 1m m)) = (k m}\mp@subsup{m}{m}{}(\mp@subsup{1}{m}{m}m)
 by (metis mn index-one-mat(3) index-smult-mat(3) mat-of-rows-rows)
 also have ... = of-int-hom.mat-hom (map-mat int-of-rat ((rat-of-int k) }\mp@subsup{}{m}{
inv-Z)) * mat-of-rows n fs-init
 using r rw by auto
 finally show mat-of-rows n (Matrix.rows (}k\cdotm\mp@subsup{|}{m}{}\mp@subsup{|}{m}{m})\mathrm{)
 =of-int-hom.mat-hom (map-mat int-of-rat ((rat-of-int k) *minv-Z))* mat-of-rows
nfs-init.
 show set (Matrix.rows (k m 1m m))\subseteq carrier-vec nusing mn unfolding
Matrix.rows-def by auto
 show map-mat int-of-rat (rat-of-int k }\cdot\mp@subsup{}{m}{}\mathrm{ inv-Z) & carrier-mat (length (Matrix.rows
(k\cdotm 1mm))) (length fs-init)
 using len fs-init by (simp add: inv-Z)
 qed
qed
end
context LLL-with-assms
begin
lemma lattice-of-append-det-preserves:
 assumes k-det:k=abs (Determinant.det (mat-of-rows nfs-init))
 and mn: m=n
 and A:A = (mat-of-rows n fs-init) @ }\mp@subsup{r}{r}{}(k\cdotm(1m m)
shows lattice-of (Matrix.rows A) = lattice-of fs-init
proof -
 have Matrix.rows (mat-of-rows n fs-init @ }\mp@subsup{r}{r}{}k\cdotm\mp@subsup{\mp@code{m}}{m}{}m\mathrm{) = (Matrix.rows (mat-of-rows
nfs-init)@ Matrix.rows (k m
 by (rule rows-append-rows, insert fs-init len mn, auto)
 also have ... = (fs-init @ Matrix.rows (}k\cdotm=(1mm))) by (simp add: fs-init
 finally have rw: Matrix.rows (mat-of-rows n fs-init @ }\mp@subsup{r}{r}{}k\cdotm 1mm
 =(fs-init @ Matrix.rows (k\cdotm}(1mm)))
 have lattice-of (Matrix.rows A) = lattice-of (fs-init @ Matrix.rows (}k\cdot
m)))
 by (rule arg-cong[of - - lattice-of], auto simp add: A rw)
 also have ... = lattice-of fs-init
 proof (cases k = Determinant.det (mat-of-rows n fs-init))
 case True
 then show ?thesis
 by (rule already-in-lattice-append[symmetric, OF fs-init
 lattice-of-kId-subset-fs-init[OF - mn]], insert mn, auto simp add:
Matrix.rows-def)
```

```
 next
 case False
 hence k2: k= -Determinant.det (mat-of-rows n fs-init) using k-det by auto
 have l: lattice-of (Matrix.rows (}-k\cdotk\mp@subsup{|}{m}{}\mp@subsup{1}{m}{}m))\subseteq\mathrm{ lattice-of fs-init
 by (rule lattice-of-kId-subset-fs-init[OF - mn], insert k2, auto)
 have l2: lattice-of (Matrix.rows (-k m 1m m)) = lattice-of (Matrix.rows (k
cm 1mm))
 proof (rule mat-mult-invertible-lattice-eq)
 let ?P = (- 1::int) 'm 1mm
 show P: ?P G carrier-mat m m by simp
 have det ?P = 1 \vee det ?P = -1 unfolding det-smult by (auto simp add:
minus-1-power-even)
 hence det ?P dvd 1 by (smt minus-dvd-iff one-dvd)
 thus invertible-mat ?P unfolding invertible-iff-is-unit-JNF[OF P].
 have (-k\cdotm 1mm)=?P*(k\cdotm 1m m)
 unfolding mat-diag-smult[symmetric] unfolding mat-diag-diag by auto
 thus mat-of-rows n (Matrix.rows (-k\cdotm 1m m)) =of-int-hom.mat-hom ?P
* mat-of-rows n (Matrix.rows (k\cdotm 1m m))
 by (metis mn index-one-mat(3) index-smult-mat(3) mat-of-rows-rows
of-int-mat-hom-int-id)
 show set (Matrix.rows (-k\cdotm 1m m))\subseteqcarrier-vec n
 and set (Matrix.rows (k\cdotm 1m m))\subseteq carrier-vec n
 using assms(2) one-carrier-mat set-rows-carrier smult-carrier-mat by blast+
 qed (insert mn, auto)
 hence l2: lattice-of (Matrix.rows (k\cdotm 1 m m))\subseteqlattice-of fs-init using l by
auto
 show ?thesis by (rule already-in-lattice-append[symmetric, OF fs-init l2],
 insert mn one-carrier-mat set-rows-carrier smult-carrier-mat, blast)
 qed
 finally show ?thesis.
qed
```

This is another key lemma. Here, $A$ is the initial matrix (mat-of-rows $n$ $f s$-init) augmented with $m$ rows $(k, 0, \ldots, 0),(0, k, 0, \ldots, 0), \ldots,(0, \ldots, 0, k)$ where $k$ is the determinant of (mat-of-rows $n f s$-init). With the algorithm of the article, we obtain $H=H^{\prime} @_{r}\left(0_{m} m n\right)$ by means of an invertible matrix $P$ (which is computable). Then, $H$ is the HNF of $A$. The lemma shows that $H^{\prime}$ is the HNF of (mat-of-rows $n f s$-init) and that there exists an invertible matrix to carry out the transformation.

```
lemma Hermite-append-det-id:
 assumes \(k\)-det: \(k=a b s\) (Determinant.det (mat-of-rows \(n f s\)-init))
 and \(m n: m=n\)
 and \(A: A=(\) mat-of-rows \(n f s\)-init \() @_{r}\left(k \cdot_{m}\left(1_{m} m\right)\right)\)
 and \(H^{\prime}: H^{\prime} \in\) carrier-mat \(m n\)
 and \(H\)-append: \(H=H^{\prime} @_{r}\left(0_{m} m n\right)\)
 and \(P: P \in\) carrier-mat \((m+m)(m+m)\)
 and inv-P: invertible-mat \(P\)
 and \(A-P H: A=P * H\)
```

and HNF-H: Hermite-JNF associates res $H$
shows Hermite-JNF associates res $H^{\prime}$
and $\left(\exists P^{\prime}\right.$. invertible-mat $P^{\prime} \wedge P^{\prime} \in$ carrier-mat $m m \wedge$ (mat-of-rows $n$ fs-init)
$\left.=P^{\prime} * H^{\prime}\right)$
proof -
have $A$-carrier: $A \in$ carrier-mat $(m+m) n$ using $A$ mn len by auto
let $? A^{\prime}=($ mat-of-rows $n$ fs-init $)$
let ${ }^{2} H^{\prime}=$ submatrix $H\{0 . .<m\}\{0 . .<n\}$
have $n m: n \leq m$ by (simp add: $m n$ )
have $H: H \in$ carrier-mat $(m+m) n$ using $H$-append $H^{\prime}$ by auto
have submatrix-carrier: submatrix $H\{0 . .<m\}\{0 . .<n\} \in$ carrier-mat $m n$
by (rule submatrix-carrier-first[OF H], auto)
have $H^{\prime}-e q: H^{\prime}=? H^{\prime}$
proof (rule eq-matI)
fix $i j$ assume $i: i<$ dim-row ? $H^{\prime}$ and $j: j<$ dim-col ? $H^{\prime}$
have $i m$ : $i<m$ and $j n$ : $j<n$ using $i j$ submatrix-carrier by auto
have ? $H^{\prime} \$ \$(i, j)=H \$ \$(i, j)$
by (rule submatrix-index-id[OF H], insert $i j$ submatrix-carrier, auto)
also have $\ldots=\left(\right.$ if $i<$ dim-row $H^{\prime}$ then $H^{\prime} \$ \$(i, j)$ else $\left(0_{m} m n\right) \$ \$(i-$
$m, j)$ )
unfolding $H$-append by (rule append-rows-nth[OF H ${ }^{\dagger}$, insert im jn, auto)
also have $\ldots=H^{\prime} \$ \$(i, j)$ using $H^{\prime}$ im $j n$ by simp
finally show $H^{\prime} \$ \$(i, j)=? H^{\prime} \$ \$(i, j) .$.
qed (insert $H^{\prime}$ submatrix-carrier, auto)
show HNF- $H^{\prime}$ : Hermite-JNF associates res $H^{\prime}$
unfolding $H^{\prime}$-eq mn by (rule HNF-submatrix[OF HNF-H H], insert nm, simp)
have L-fs-init-A: lattice-of $(f s$-init $)=$ lattice-of (Matrix.rows $A)$
by (rule lattice-of-append-det-preserves[symmetric, OF $k$-det mn A])
have $L-H^{\prime}$ - $H$ : lattice-of (Matrix.rows $\left.H^{\prime}\right)=$ lattice-of (Matrix.rows $H$ )
using $H$-append $H^{\prime}$ lattice-of-append-zero-rows by blast
have $L-A-H$ : lattice-of (Matrix.rows $A)=$ lattice-of (Matrix.rows $H$ )
proof (rule mat-mult-invertible-lattice-eq $[O F-P$ inv- $P]$ )
show set (Matrix.rows $A$ ) $\subseteq$ carrier-vec $n$ using $A$-carrier set-rows-carrier by blast
show set (Matrix.rows $H) \subseteq$ carrier-vec $n$ using $H$ set-rows-carrier by blast
show length (Matrix.rows $A$ ) $=m+m$ using $A$-carrier by auto
show length (Matrix.rows $H$ ) $=m+m$ using $H$ by auto
show mat-of-rows $n$ (Matrix.rows $A$ ) $=$ of-int-hom.mat-hom $P *$ mat-of-rows
$n$ (Matrix.rows $H$ )
by (metis A-carrier H A-PH carrier-matD(2) mat-of-rows-rows of-int-mat-hom-int-id)
qed
have $L$-fs-init- $H^{\prime}$ : lattice-of fs-init $=$ lattice-of $\left(\right.$ Matrix.rows $\left.H^{\prime}\right)$ using $L-f s-i n i t-A L-A-H L-H^{\prime}-H$ by auto
have exists-P2:
$\exists$ P2. P2 $\in$ carrier-mat $n ~ n \wedge$ invertible-mat P2 $\wedge$ mat-of-rows $n$ (Matrix.rows $\left.H^{\prime}\right)=P 2 * H^{\prime}$
by (rule exI[of-1mn], insert $H^{\prime} m n$, auto)
have exist- $P^{\prime}: \exists P^{\prime} \in$ carrier-mat $n$. invertible-mat $P^{\prime}$
$\wedge$ mat-of-rows $n$ fs-init $=P^{\prime} *$ mat-of-rows $n$ (Matrix.rows $H^{\prime}$ )
by (rule eq-lattice-imp-mat-mult-invertible-rows[OF fs-init - lin-dep len[unfolded $m n]$ - L-fs-init- $H$ ],
insert $H^{\prime}$ mn set-rows-carrier, auto)
thus $\exists P^{\prime}$. invertible-mat $P^{\prime} \wedge P^{\prime} \in$ carrier-mat $m m \wedge$ (mat-of-rows $n$ fs-init) $=P^{\prime} * H^{\prime}$
by (metis mn $H^{\prime}$ carrier-matD(2) mat-of-rows-rows)
qed
end
context proper-mod-operation
begin
definition reduce-element-mod- $D$ ( $A:$ :int mat) a j $D m=$
(if $j=0$ then if $D$ dvd $A \$ \$(a, j)$ then addrow $(-((A \$ \$(a, j)$ gdiv $D))+1) a(j+$ m) $A$ else $A$
else addrow $(-((A \$ \$(a, j)$ gdiv $D))) a(j+m) A)$
definition reduce-element-mod-D-abs (A::int mat) ajDm=
(if $j=0 \wedge D \operatorname{dvd} A \$ \$(a, j)$ then addrow $(-((A \$ \$(a, j)$ gdiv $D))+1) a(j+m)$ A
else addrow $(-((A \$ \$(a, j)$ gdiv $D))) a(j+m) A)$
lemma reduce-element-mod-D-preserves-dimensions:
shows [simp]: dim-row (reduce-element-mod-D A a j D m) = dim-row $A$
and [simp]: dim-col (reduce-element-mod-D A ajD m) $=\operatorname{dim-col} A$
and [simp]: dim-row (reduce-element-mod-D-abs A ajDm)=dim-row $A$
and [simp]: dim-col (reduce-element-mod-D-abs A ajDm)=dim-col $A$
by (auto simp add: reduce-element-mod-D-def reduce-element-mod-D-abs-def Let-def split-beta)
lemma reduce-element-mod-D-carrier:
shows reduce-element-mod-D A ajDm carrier-mat (dim-row $A$ ) (dim-col $A$ )
and reduce-element-mod-D-abs $A$ a $j D m \in$ carrier-mat (dim-row $A$ ) (dim-col A) by auto
lemma reduce-element-mod-D-invertible-mat:
assumes $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: j<n$ and $m n: m \geq n$
shows $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-element-mod-D A a j D m=P*A (is ?thesis1)
and $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ reduce-element-mod-D-abs $A$ a $j D m=P * A$ (is ?thesis2)
unfolding atomize-conj
proof (rule conjI; cases $j=0 \wedge D \operatorname{dvd} A \$ \$(a, j))$
case True
let ?P $=$ addrow-mat $(m+n)(-(A \$ \$(a, j)$ gdiv $D)+1) a(j+m)$
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime} m n$ by auto
have reduce-element-mod-D $A$ a $j D m=$ addrow $(-(A \$ \$(a, j)$ gdiv $D)+1)$
$a(j+m) A$
unfolding reduce-element-mod-D-def using True by auto
also have $\ldots=? P * A$ by (rule addrow-mat $[$ OF A], insert $j$ mn, auto)
finally have reduce-element-mod-D A ajD $m=? P * A$.
moreover have $P: ? P \in$ carrier-mat $(m+n)(m+n)$ by simp
moreover have inv-P: invertible-mat ? P
by (metis addrow-mat-carrier a det-addrow-mat dvd-mult-right invertible-iff-is-unit-JNF mult.right-neutral not-add-less2 semiring-gcd-class.gcd-dvd1)
ultimately show ?thesis1 by blast
have reduce-element-mod-D-abs $A$ a $j D m=$ addrow $(-(A \$ \$(a, j)$ gdiv $D)+$

1) $a(j+m) A$
unfolding reduce-element-mod-D-abs-def using True by auto
also have $\ldots=? P * A$ by (rule addrow-mat $[O F A]$, insert $j$ mn, auto)
finally have reduce-element-mod-D-abs $A$ aj $D m=? P * A$.
thus ?thesis2 using $P$ inv- $P$ by blast
next
case False note $n c 1=$ False
let $? P=$ addrow-mat $(m+n)(-(A \$ \$(a, j)$ gdiv $D)) a(j+m)$
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime} m n$ by auto
have $P: ? P \in$ carrier-mat $(m+n)(m+n)$ by simp
have inv-P: invertible-mat?P
by (metis addrow-mat-carrier a det-addrow-mat dvd-mult-right
invertible-iff-is-unit-JNF mult.right-neutral not-add-less2 semiring-gcd-class.gcd-dvd1)
show ?thesis1
proof (cases $j=0$ )
case True
have reduce-element-mod-D A a j D m=A
unfolding reduce-element-mod-D-def using True nc1 by auto
thus ?thesis1
by (metis $A$-def $A^{\prime}$ carrier-append-rows invertible-mat-one
left-mult-one-mat one-carrier-mat smult-carrier-mat)
next
case False
have reduce-element-mod-D $A$ a $j D m=$ addrow $(-(A \$ \$(a, j)$ gdiv $D)) a$
$(j+m) A$
unfolding reduce-element-mod-D-def using False by auto
also have $\ldots=? P * A$ by (rule addrow-mat $[O F A]$, insert $j$ mn, auto)
finally have reduce-element-mod-D A ajDm=?P*A.
thus ?thesis using $P$ inv- $P$ by blast
qed
have reduce-element-mod-D-abs $A$ a $j D m=\operatorname{addrow}(-(A \$ \$(a, j)$ gdiv $D))$
$a(j+m) A$
unfolding reduce-element-mod-D-abs-def using False by auto
also have $\ldots=? P * A$ by (rule addrow-mat $[O F A]$, insert $j$ mn, auto)
finally have reduce-element-mod-D-abs A a j $D m=? P * A$.

## thus ?thesis2 using $P$ inv- $P$ by blast qed

lemma reduce-element-mod-D-append:
assumes $A$-def: $A=A^{\prime} @_{r}\left(D \cdot m\left(1_{m} n\right)\right)$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: j<n$ and $m n: m \geq n$
shows reduce-element-mod-D A a j D m
$=$ mat-of-rows $n[$ Matrix.row (reduce-element-mod-D A ajD m) i. $i \leftarrow[0 . .<m]]$ $@_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)\left(\right.$ is ?lhs $\left.=? A^{\prime} @_{r} ? D\right)$
and reduce-element-mod-D-abs A a j D m
$=$ mat-of-rows $n$ [Matrix.row (reduce-element-mod-D-abs A a j D m) i. $i \leftarrow$ $[0 . .<m]] @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)\left(\right.$ is ? lhs-abs =? $\left.A^{\prime}-a b s @_{r} ? D\right)$
unfolding atomize-conj
proof (rule conjI; rule eq-matI)
let ? $x s=($ map (Matrix.row (reduce-element-mod-D A ajD m) $)[0 . .<m])$
let ?xs-abs $=($ map (Matrix.row (reduce-element-mod-D-abs A aj D m) ) $[0 . .<m])$
have lhs-carrier: ? $\mathrm{lh} s \in$ carrier-mat $(m+n) n$
and lhs-carrier-abs: ?lhs-abs $\in$ carrier-mat $(m+n) n$
by (metis (no-types, lifting) add.comm-neutral append-rows-def $A$-def $A^{\prime}$ car-rier-matD
carrier-mat-triv index-mat-four-block(2,3) index-one-mat(2) index-smult-mat(2)
index-zero-mat(2,3)
reduce-element-mod-D-preserves-dimensions)+
have map-A-carrier $[\operatorname{simp}]: ? A^{\prime} \in$ carrier-mat $m n$
and map-A-carrier-abs[simp]: ? $A^{\prime}$-abs $\in$ carrier-mat $m n$
by (simp add: mat-of-rows-def)+
have $A D$-carrier $[$ simp $]$ : ? $A^{\prime} @_{r} ? D \in$ carrier-mat $(m+n) n$
and $A D$-carrier-abs $[$ simp $]: ? A^{\prime}-a b s @_{r} ? D \in \operatorname{carrier-mat}(m+n) n$
by (rule carrier-append-rows, insert lhs-carrier mn, auto)
show dim-row (?lhs) $=$ dim-row $\left(? A^{\prime} @_{r} ? D\right)$ and dim-col $(? l h s)=$ dim-col (? $A^{\prime} @_{r}$ ?D)
dim-row (?lhs-abs) $=$ dim-row $\left(? A^{\prime}-a b s @_{r} ? D\right)$ and dim-col $(? l h s-a b s)=$ dim-col (?A'-abs $\left.@_{r} ? D\right)$
using lhs-carrier lhs-carrier-abs $A D$-carrier $A D$-carrier-abs unfolding car-rier-mat-def by simp+
show ?lhs $\$ \$(i, j a)=\left(?^{\prime} @_{r} ? D\right) \$ \$(i, j a)$ if $i: i<\operatorname{dim}-r o w\left(? A^{\prime} @_{r} ? D\right)$
and $j a: j a<d i m-c o l\left(? A^{\prime} @_{r} ? D\right)$ for $i j a$
proof (cases $i<m$ )
case True
have $j a-n: j a<n$
by (metis Nat.add-0-right append-rows-def index-mat-four-block(3) index-zero-mat(3) ja mat-of-rows-carrier(3))
have $\left(? A^{\prime} @_{r} ? D\right) \$ \$(i, j a)=? A^{\prime} \$ \$(i, j a)$
by (metis (no-types, lifting) Nat.add-0-right True append-rows-def diff-zero i index-mat-four-block index-zero-mat(3) ja length-map length-upt mat-of-rows-carrier (2))
also have $\ldots=$ ? $x s!i \$ v j a$
by (rule mat-of-rows-index, insert $i \operatorname{True} j a$, auto simp add: append-rows-def)
also have $\ldots=$ ? lhs $\$ \$(i, j a)$

```
 by (rule map-first-rows-index, insert assms lhs-carrier True i ja-n, auto)
 finally show ?thesis ..
 next
 case False
 have ja-n: ja<n
 by (metis Nat.add-0-right append-rows-def index-mat-four-block(3) index-zero-mat(3)
ja mat-of-rows-carrier(3))
 have (?A' @ r ?D) $$ (i,ja)=?D $$ (i-m,ja)
 by (smt False Nat.add-0-right map-A-carrier append-rows-def carrier-matD i
 index-mat-four-block index-zero-mat(3) ja-n)
 also have ... = ?lhs $$ (i,ja)
 by (metis (no-types, lifting) False Nat.add-0-right map-A-carrier append-rows-def
A-def A' a
 carrier-matD i index-mat-addrow(1) index-mat-four-block(1,2) index-zero-mat(3)
ja-n
 lhs-carrier reduce-element-mod-D-def reduce-element-mod-D-preserves-dimensions)
 finally show ?thesis ..
 qed
 fix i ja assume i:i<dim-row (?A'-abs @ r ?D) and ja: ja<dim-col (?A'-abs
@ }\mp@subsup{r}{\mathrm{ ? D)}}{
 have ja-n: ja<n
 by (metis Nat.add-0-right append-rows-def index-mat-four-block(3) index-zero-mat(3)
ja mat-of-rows-carrier(3))
 show ?lhs-abs $$ (i,ja)=(?A'-abs @ @ ?D) $$ (i,ja)
 proof (cases i<m)
 case True
 have (?A'-abs @ }\mp@subsup{}{r}{}?D)$$(i,ja)=?\mp@subsup{A}{}{\prime}-abs $$ (i,ja
 by (metis (no-types, lifting) Nat.add-0-right True append-rows-def diff-zero i
 index-mat-four-block index-zero-mat(3) ja length-map length-upt mat-of-rows-carrier(2))
 also have ... = ?xs-abs!i $v ja
 by (rule mat-of-rows-index, insert i True ja, auto simp add: append-rows-def)
 also have ... = ?lhs-abs $$ (i,ja)
 by (rule map-first-rows-index, insert assms lhs-carrier-abs True i ja-n, auto)
 finally show ?thesis ..
 next
 case False
 have (?A'-abs @ ? ?D) $$ (i,ja) = ?D $$ (i-m,ja)
 by (smt False Nat.add-0-right map-A-carrier-abs append-rows-def carrier-matD
i
 index-mat-four-block index-zero-mat(3) ja-n)
 also have ... = ?lhs-abs $$ (i,ja)
 by (metis (no-types, lifting) False Nat.add-0-right map-A-carrier-abs ap-
pend-rows-def A-def A' a
 carrier-matD i index-mat-addrow(1) index-mat-four-block(1,2) index-zero-mat(3)
ja-n
 lhs-carrier-abs reduce-element-mod-D-abs-def reduce-element-mod-D-preserves-dimensions)
 finally show ?thesis ..
 qed
qed
```

lemma reduce-append-rows-eq:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$ and $a: a<m$ and $x m: x<m$ and $0<n$ and $A a j: A \$ \$(a, 0) \neq 0$
shows reduce a x $D A$
$=$ mat-of-rows $n[$ Matrix.row $(($ reduce a $x D A)) i . i \leftarrow[0 . .<m]] @_{r} D \cdot_{m} 1_{m} n$ (is ?thesis1)
and reduce-abs a x $D$ A
$=$ mat-of-rows $n[$ Matrix.row $(($ reduce-abs a $x D A)) i . i \leftarrow[0 . .<m]] @_{r} D \cdot_{m}$ $1_{m} n$ (is?thesis2)
unfolding atomize-conj
proof (rule conjI; rule matrix-append-rows-eq-if-preserves)
let ?reduce-ax $=$ reduce a $x D A$
let ?reduce-abs $=$ reduce-abs a $x D A$
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid-ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))$
by (metis prod-cases5)
have $A$ : $A$ : carrier-mat $(m+n) n$ by (simp add: $A$-def $A^{\prime}$ )
show D1: $D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ and $D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ by simp+
show ?reduce-ax $\in$ carrier-mat $(m+n) n$ ?reduce-abs $\in$ carrier-mat $(m+n)$ $n$
by (metis Nat.add-0-right append-rows-def $A^{\prime} A$-def carrier-matD carrier-mat-triv index-mat-four-block (2,3)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2) index-zero-mat(3) reduce-preserves-dimensions)+
show $\forall i \in\{m . .<m+n\} . \forall j a<n$. ?reduce-ax $\$ \$(i, j a)=\left(D \cdot m 1_{m} n\right) \$ \$(i-$ $m, j a$ )
and $\forall i \in\{m . .<m+n\} . \forall j a<n$. ?reduce-abs $\$ \$(i, j a)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i-$ $m, j a)$
unfolding atomize-conj
proof (rule conjI; rule+)
fix $i j a$ assume $i: i \in\{m . .<m+n\}$ and $j a: j a<n$
have $j a-d c: j a<d i m-c o l ~ A$ and $i$-dr: $i<d i m$-row $A$ using $i j a A$ by auto
have $i$-not- $a$ : $i \neq a$ using $i a$ by auto
have $i$-not-x: $i \neq x$ using $i x m$ by auto
have ? reduce-ax $\$ \$(i, j a)=A \$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd] using ja-dc i-dr i-not-a i-not-x
by auto
also have $\ldots=\left(\right.$ if $i<$ dim-row $A^{\prime}$ then $A^{\prime} \$ \$(i, j a)$ else $\left.\left(D \cdot{ }_{m}\left(1_{m} n\right)\right) \$ \$(i-m, j a)\right)$
by (unfold $A$-def, rule append-rows-nth $\left[O F A^{\prime} D 1-j a\right]$, insert $A i-d r$, simp)
also have $\ldots=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i-m, j a)$ using $i A^{\prime}$ by auto
finally show ?reduce-ax $\$ \$(i, j a)=\left(D \cdot m 1_{m} n\right) \$ \$(i-m, j a)$.
have ?reduce-abs $\$ \$(i, j a)=A \$ \$(i, j a)$
unfolding reduce-alt-def-notO[OF Aaj pquvd] using ja-dc i-dr i-not-a i-not-x by auto
also have $\ldots=\left(\right.$ if $i<$ dim-row $A^{\prime}$ then $A^{\prime} \$ \$(i, j a)$ else $\left.\left(D \cdot m\left(1_{m} n\right)\right) \$ \$(i-m, j a)\right)$
by (unfold $A$-def, rule append-rows-nth $\left[O F A^{\prime} D 1\right.$ - ja], insert A $i$-dr, simp)

```
 also have \(\ldots=\left(D \cdot m 1_{m} n\right) \$(i-m, j a)\) using \(i A^{\prime}\) by auto
 finally show? reduce-abs \(\$ \$(i, j a)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i-m, j a)\).
 qed
qed
fun reduce-row-mod- \(D\)
 where reduce-row-mod-D \(A\) a [] \(D m=A \mid\)
 reduce-row-mod-D \(A\) a \((x \# x s) D m=\) reduce-row-mod- \(D\) (reduce-element-mod- \(D\)
A a x \(D \mathrm{~m}\)) a xs \(D \mathrm{~m}\)
fun reduce-row-mod-D-abs
 where reduce-row-mod-D-abs \(A\) a \(] D m=A \mid\)
 reduce-row-mod-D-abs \(A\) a \((x \#\) xs) \(D m=\) reduce-row-mod-D-abs (reduce-element-mod- \(D\)-abs
A a x \(D m\)) a xs \(D m\)
```

lemma reduce-row-mod-D-preserves-dimensions:
shows [simp]: dim-row (reduce-row-mod-D A a xs $D m$ ) $=\operatorname{dim-row} A$
and [simp]: dim-col (reduce-row-mod-D A a xs $D m$ ) $=\operatorname{dim}-\operatorname{col} A$
by (induct $A$ a xs $D$ m rule: reduce-row-mod-D.induct, auto)
lemma reduce-row-mod-D-preserves-dimensions-abs:
shows [simp]: dim-row (reduce-row-mod-D-abs A a xs $D m$ ) $=$ dim-row $A$
and [simp]: dim-col (reduce-row-mod-D-abs A a xs $D m$ ) $=\operatorname{dim}$-col $A$
by (induct $A$ a xs $D$ m rule: reduce-row-mod-D-abs.induct, auto)
lemma reduce-row-mod-D-invertible-mat:
assumes $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m$ and $a: a<m$ and $j: \forall j \in$ set $x s . j<n$ and $m n$ :
$m \geq n$
shows $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ reduce-row-mod-D A a xs $D m=P * A$
using assms
proof (induct $A$ a xs $D$ marbitrary: $A^{\prime}$ rule: reduce-row-mod-D.induct)
case ( 1 A a $\quad D$ m)
show ?case by (rule exI[of - $1 m(m+n)]$, insert 1.prems, auto simp add: ap-
pend-rows-def)
next
case (2 A a x xs D m)
let ? reduce-xs $=($ reduce-element-mod-D A a x $D$ m)
have 1: reduce-row-mod-D $A$ a $(x \# x s) D m$
$=$ reduce-row-mod- $D$ ?reduce-xs a xs $D m$ by simp
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-element-mod-D A a x D m=P*A
by (rule reduce-element-mod-D-invertible-mat, insert 2.prems, auto)
from this obtain $P$ where $P: P \in$ carrier-mat $(m+n)(m+n)$ and inv- $P$ :
invertible-mat $P$
and $R$ - $P$ : reduce-element-mod- $D A$ a $x D=P * A$ by auto
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ reduce-row-mod- $D$

```
?reduce-xs a xs D m=P * ?reduce-xs
 proof (rule 2.hyps)
 let ? A' = mat-of-rows n [Matrix.row (reduce-element-mod-D A a x D m) i.i
\leftarrow[0..<m]]
 show reduce-element-mod-D A a x D m = ? A' @ }rr (D 'm (1m n))
 by (rule reduce-element-mod-D-append, insert 2.prems, auto)
 qed (insert 2.prems, auto)
 from this obtain P2 where P2: P2 \in carrier-mat (m+n) (m+n) and
inv-P2: invertible-mat P2
 and R-P2: reduce-row-mod-D ?reduce-xs a xs D m= P2 * ?reduce-xs
 by auto
 have invertible-mat (P2 * P) using P P2 inv-P inv-P2 invertible-mult-JNF by
blast
 moreover have (P2 * P) \in carrier-mat (m+n) (m+n) using P2 P by auto
 moreover have reduce-row-mod-D A a (x # xs) D m=(P2 * P)*A
 by (smt P P2 R-P R-P2 1 assoc-mult-mat carrier-matD carrier-mat-triv
 index-mult-mat reduce-row-mod-D-preserves-dimensions)
 ultimately show ?case by blast
qed
```

lemma reduce-row-mod-D-abs-invertible-mat:
assumes $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m$ and $a: a<m$ and $j: \forall j \in$ set $x s . j<n$ and $m n$ :
$m \geq n$
shows $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-row-mod-D-abs $A$ a xs $D m=P * A$
using assms
proof (induct $A$ a xs $D$ marbitrary: $A^{\prime}$ rule: reduce-row-mod-D-abs.induct)
case ( 1 A a $D$ m)
show ?case by (rule exI[of - $\left.1_{m}(m+n)\right]$, insert 1.prems, auto simp add: ap-
pend-rows-def)
next
case (2 $A$ a $x$ xs $D$ m)
let ?reduce-xs $=($ reduce-element-mod- $D$-abs $A$ a $x D m)$
have 1: reduce-row-mod-D-abs $A$ a $(x \# x s) D m$ $=$ reduce-row-mod-D-abs ?reduce-xs a xs $D \mathrm{~m}$ by simp
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-element-mod-D-abs $A$ a $x D m=P * A$
by (rule reduce-element-mod-D-invertible-mat, insert 2.prems, auto)
from this obtain $P$ where $P: P \in$ carrier-mat $(m+n)(m+n)$ and inv- $P$ : invertible-mat $P$
and $R$ - $P$ : reduce-element-mod- $D$-abs $A$ a $x D m=P * A$ by auto
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ reduce-row-mod- $D$-abs
?reduce-xs a xs $D m=P$ * ?reduce-xs
proof (rule 2.hyps)

$i . i \leftarrow[0 . .<m]]$
show reduce-element-mod-D-abs $A$ a $x D m=? A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
by (rule reduce-element-mod-D-append, insert 2.prems, auto)
qed (insert 2.prems, auto)
from this obtain P2 where P2: P2 $\in \operatorname{carrier-mat}(m+n)(m+n)$ and inv-P2: invertible-mat P2
and R-P2: reduce-row-mod-D-abs ?reduce-xs a xs $D m=P 2$ * ?reduce-xs
by auto
have invertible-mat (P2 * P) using P P2 inv-P inv-P2 invertible-mult-JNF by blast
moreover have $(P 2 * P) \in$ carrier-mat $(m+n)(m+n)$ using $P 2 P$ by auto
moreover have reduce-row-mod-D-abs $A a(x \# x s) D m=(P 2 * P) * A$
by (smt P P2 R-P R-P2 1 assoc-mult-mat carrier-matD carrier-mat-triv index-mult-mat reduce-row-mod-D-preserves-dimensions-abs)
ultimately show ?case by blast
qed
end
context proper-mod-operation
begin
lemma dvd-gdiv-mult-left[simp]: assumes $b>0 b$ dvd $a$ shows $b *(a$ gdiv $b)=$ $a$
using dvd-gdiv-mult-right[OF assms] by (auto simp: ac-simps)
lemma reduce-element-mod- $D$ :
assumes $A$-def: $A=A^{\prime} @_{r}\left(D \cdot m\left(1_{m} n\right)\right)$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a \leq m$ and $j: j<n$ and $m n: m \geq n$
and $D: D>0$
shows reduce-element-mod-D A a j D m = Matrix.mat (dim-row $A$ ) (dim-col $A$ )
$(\lambda(i, k)$. if $i=a \wedge k=j$ then if $j=0$ then if $D \operatorname{dvd} A \$ \$(i, k)$
then $D$ else $A \$ \$(i, k)$ else $A \$ \$(i, k) \operatorname{gmod} D$ else $A \$ \$(i, k))($ is $-=? A)$
and reduce-element-mod-D-abs $A$ a $j D m=$ Matrix.mat (dim-row $A$ ) (dim-col A)
( $\lambda(i, k)$. if $i=a \wedge k=j$ then if $j=0 \wedge D$ dvd $A \$ \$(i, k)$ then $D$ else $A \$ \$(i, k)$
gmod $D$ else $A \$ \$(i, k))($ is $-=? A-a b s)$
unfolding atomize-conj
proof (rule conjI; rule eq-matI)
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime}$ by $\operatorname{simp}$
have dr: dim-row ?A = dim-row ?A-abs and dc: dim-col ?A = dim-col ?A-abs
by auto
have 1: reduce-element-mod-D A a jDm $\$ \$(i, j a)=? A \$ \$(i, j a)$ (is ?thesis1)
and 2: reduce-element-mod-D-abs $A$ a $j D m \$ \$(i, j a)=? A-a b s \$ \$(i, j a)$ (is ?thesis2)
if $i: i<d i m-r o w ? A$ and $j a: j a<d i m-c o l$ ?A for $i j a$
unfolding atomize-conj
proof (rule conjI; cases $i=a$ )
case False
have reduce-element-mod-D A a j $D m=($ if $j=0$ then if $D$ dvd $A \$ \$(a, j)$ then addrow $(-((A \$ \$(a, j)$ gdiv $D))+1) a(j+m) A$
else $A$

```
 else addrow \((-((A \$ \$(a, j)\) gdiv \(D))) a(j+m) A)\)
 unfolding reduce-element-mod- \(D\)-def by simp
 also have \(\ldots \$ \$(i, j a)=A \$ \$(i, j a)\) unfolding mat-addrow-def using False
\(j a i\) by auto
 also have \(\ldots=\) ? \(A \$ \$(i, j a)\) using False using \(i j a\) by auto
 finally show ?thesis1.
 have reduce-element-mod-D-abs A ajDm \(\$ \$(i, j a)=A \$ \$(i, j a)\)
 unfolding reduce-element-mod-D-abs-def mat-addrow-def using False ja \(i\) by
auto
 also have \(\ldots=\) ? \(A\)-abs \(\$ \$(i, j a)\) using False using \(i j a\) by auto
 finally show ?thesis2 .
 next
 case True note \(i a=\) True
 have reduce-element-mod-D A a \(j D m\)
 \(=(\) if \(j=0\) then if \(D\) dvd \(A \$ \$(a, j)\) then addrow \((-((A \$ \$(a, j)\) gdiv \(D))+1)\)
\(a(j+m) A\) else \(A\)
 else addrow \((-((A \$ \$(a, j)\) gdiv \(D)))\) a \((j+m) A)\)
 unfolding reduce-element-mod-D-def by simp
 also have \(\ldots \$(i, j a)=\) ? \(A \$ \$(i, j a)\)
 proof (cases \(j a=j\))
 case True note \(j a-j=\) True
 have \(A \$ \$(j+m, j a)=\left(D \cdot m\left(1_{m} n\right)\right) \$ \$(j, j a)\)
 by (rule append-rows-nth2[OF \(A^{\prime}-A\)-def], insert j ja \(A\) mn, auto)
 also have \(\ldots=D *\left(1_{m} n\right) \$ \$(j, j a)\) by (rule index-smult-mat, insert ja \(j A\)
\(m n\), auto)
 also have \(\ldots=D\) by (simp add: True \(j m n\))
 finally have \(A-j a-j a D: A \$ \$(j+m, j a)=D\).
 show ?thesis
 proof (cases \(j=0 \wedge D \operatorname{dvd} A \$ \$(a, j))\)
 case True
 have 1: reduce-element-mod-D A a j \(D m=\) addrow \((-((A \$ \$(a, j)\) gdiv \(D))\)
+ 1) \(a(j+m) A\)
 using True ia ja-j unfolding reduce-element-mod-D-def by auto
 also have \(\ldots \$ \$(i, j a)=(-(A \$ \$(a, j)\) gdiv \(D)+1) * A \$ \$(j+m, j a)+\)
A \(\$ \$(i, j a)\)
 unfolding mat-addrow-def using True ja-j ia
 using \(A i j\) by auto
 also have ... \(=D\)
 proof -
 have \(A \$ \$(i, j a)+D *-(A \$ \$(i, j a) g d i v D)=0\)
 using True ia ja-j \(D\) by force
 then show?thesis
 by (metis \(A\)-ja-jaD ab-semigroup-add-class.add-ac(1) add.commute
add-right-imp-eq ia int-distrib(2)
 ja-j more-arith-simps(3) mult.commute mult-cancel-right1)
 qed
 also have \(\ldots=\) ? A \(\$ \$(i, j a)\) using True ia \(A\) ij ja-j by auto
 finally show ?thesis
 using True 1 by auto
```

```
 next
 case False
 show ?thesis
 proof (cases ja=0)
 case True
 then show ?thesis
 using False i ja ja-j by force
 next
 case False
 have ?A $$ (i,ja)=A$$(i,ja) gmod D using True ia A i j False by auto
 also have ... = A $$ (i,ja) - ((A$$ (i,ja) gdiv D)*D)
 by (subst gmod-gdiv[OF D], auto)
 also have \ldots. = - (A$$ (a,j) gdiv D)*A$$ (j+m,ja)+A$$ (i,ja)
 unfolding A-ja-jaD by (simp add: True ia)
 finally show ?thesis
 using A False True i ia j by auto
 qed
 qed
 next
 case False
 have A$$(j+m,ja)=(D m
 by (rule append-rows-nth2[OF A' - A-def], insert j mn ja A, auto)
 also have ... = D* (1m n)$$(j,ja) by (rule index-smult-mat, insert ja j A
mn, auto)
 also have ... = 0 using False using A a mn ja j by force
 finally have A-am-ja0: A $$ (j+m,ja)=0.
 then show ?thesis using False i ja by fastforce
 qed
 finally show ?thesis1.
 have reduce-element-mod-D-abs A a j D m
 =(if j=0^D dvd A$$(a,j) then addrow (-((A$$(a,j) gdiv D)) + 1) a (j
+ m) A
 else addrow (-((A$$(a,j) gdiv D))) a (j+m) A)
 unfolding reduce-element-mod-D-abs-def by simp
 also have ... $$ (i,ja)=?A-abs $$ (i,ja)
 proof (cases ja=j)
 case True note ja-j = True
 have A$$ (j+m,ja)=(D\cdotm}(1mn))$$(j,ja
 by (rule append-rows-nth2[OF A' - A-def], insert j ja A mn, auto)
 also have ... = D* (1m n)$$(j,ja) by (rule index-smult-mat, insert ja j A
mn, auto)
 also have ... = D by (simp add: True j mn)
 finally have }A-ja-jaD:A$$(j+m,ja)=D
 show ?thesis
 proof (cases j=0 ^D dvd A$$(a,j))
 case True
 have 1: reduce-element-mod-D-abs A a j D m= addrow (-((A$$(a,j) gdiv
D)) + 1) a (j +m)A
 using True ia ja-j unfolding reduce-element-mod-D-abs-def by auto
```

also have $\ldots \$ \$(i, j a)=(-(A \$ \$(a, j)$ gdiv $D)+1) * A \$ \$(j+m, j a)+$ A \$ $(i, j a)$
unfolding mat-addrow-def using True ja-j ia
using $A i j$ by auto
also have $\ldots=D$
proof -
have $A \$ \$(i, j a)+D *-(A \$ \$(i, j a)$ gdiv $D)=0$
using True ia ja-j $D$ by force
then show ?thesis by (metis $A$-ja-jaD ab-semigroup-add-class.add-ac(1) add.commute add-right-imp-eq ia int-distrib(2)
ja-j more-arith-simps(3) mult.commute mult-cancel-right1)
qed
also have $\ldots=$ ? A-abs $\$ \$(i, j a)$ using True ia A ij ja-j by auto
finally show ?thesis
using True 1 by auto
next
case False
have $i$ : $i<d i m$-row ? $A$-abs and $j a$ : ja<dim-col ?A-abs using $i j a$ by auto have ? A-abs $\$ \$(i, j a)=A \$ \$(i, j a) \operatorname{gmod} D$ using True ia $A$ i $j$ False by auto
also have $\ldots=A \$ \$(i, j a)-((A \$ \$(i, j a)$ gdiv $D) * D)$
by (subst gmod-gdiv[OF D], auto)
also have $\ldots=-(A \$ \$(a, j)$ gdiv $D) * A \$ \$(j+m, j a)+A \$ \$(i, j a)$
unfolding $A-j a-j a D$ by (simp add: True ia)
finally show ?thesis
using A False True $i$ ia $j$ by auto
qed
next
case False
have $A \$ \$(j+m, j a)=\left(D \cdot m\left(1_{m} n\right)\right) \$ \$(j, j a)$
by (rule append-rows-nth2[OF $A^{\prime}-A$-def $]$, insert $j$ mn ja $A$, auto)
also have $\ldots=D *\left(1_{m} n\right) \$ \$(j, j a)$ by (rule index-smult-mat, insert ja j $A$ $m n$, auto)
also have $\ldots=0$ using False using $A$ a mn ja $j$ by force
finally have $A$-am-ja0: $A \$ \$(j+m, j a)=0$.
then show ?thesis using False i ja by fastforce
qed
finally show ?thesis2 .
qed
from this
show $\backslash i j a . i<$ dim-row ? $A \Longrightarrow j a<\operatorname{dim}$-col ? $A \Longrightarrow$ reduce-element-mod-D A a $j D m \$ \$(i, j a)=? A \$ \$(i, j a)$
and $\bigwedge i j a . i<d i m$-row? $A$-abs $\Longrightarrow j a<$ dim-col ? A-abs $\Longrightarrow$ reduce-element-mod-D-abs A a jD m \$ $(i, j a)=$ ? A-abs $\$ \$(i, j a)$
using $d r d c$ by auto
next
show dim-row (reduce-element-mod-D A aj D m) =dim-row ? $A$
and dim-col (reduce-element-mod-D A ajDm) =dim-col ?A

```
 dim-row (reduce-element-mod-D-abs A a j D m) = dim-row ?A-abs
 and dim-col (reduce-element-mod-D-abs A a j Dm)=dim-col?A-abs
 by auto
qed
```

lemma reduce-row-mod- $D$ :
assumes $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: \forall j \in$ set $x s . j<n$
and $d:$ distinct $x s$ and $m \geq n$
and $D>0$
shows reduce-row-mod-D A a xs $D m=$ Matrix.mat (dim-row $A$ ) (dim-col $A$ )
$(\lambda(i, k)$. if $i=a \wedge k \in$ set xs then if $k=0$ then if $D \operatorname{dvd} A \$ \$(i, k)$ then $D$ else $A \$ \$(i, k)$ else $A \$ \$(i, k)$ gmod $D$ else $A \$ \$(i, k))$
using assms
proof (induct A a xs D m arbitrary: $A^{\prime}$ rule: reduce-row-mod-D.induct)
case ( 1 A a D m)
then show? case by force
next
case (2 A a x xs D m)
let ?reduce-xs $=($ reduce-element-mod-D A a x $D$ m)
have 1: reduce-row-mod-D A a (x \# xs) D m
= reduce-row-mod- $D$ ? reduce-xs a xs $D m$ by simp
have 2: reduce-element-mod-D A a j D m= Matrix.mat (dim-row A) (dim-col A)
( $\lambda(i, k)$. if $i=a \wedge k=j$ then if $j=0$ then if $D \operatorname{dvd} A \$ \$(i, k)$
then $D$ else $A \$ \$(i, k)$ else $A \$ \$(i, k) \operatorname{gmod} D$ else $A \$ \$(i, k))$ if $j<n$ for $j$
by (rule reduce-element-mod-D, insert 2.prems that, auto)
have reduce-row-mod- $D$ ? reduce-xs a xs $D m=$
Matrix.mat (dim-row ?reduce-xs) (dim-col ?reduce-xs) $(\lambda(i, k)$. if $i=a \wedge k \in$ set xs then
if $k=0$ then if $D$ dvd ? reduce-xs $\$ \$(i, k)$ then $D$ else ?reduce-xs $\$ \$(i, k)$
else ?reduce-xs \$\$ $(i, k)$ gmod $D$ else ?reduce-xs $\$ \$(i, k))$
proof (rule 2.hyps)
let ? $A^{\prime}=$ mat-of-rows $n[$ Matrix.row (reduce-element-mod-D A a x D m) i. i
$\leftarrow[0 . .<m]]$
show reduce-element-mod-D A a x $D m=? A^{\prime} @_{r}\left(D \cdot m\left(1_{m} n\right)\right)$
by (rule reduce-element-mod-D-append, insert 2.prems, auto)
qed (insert 2.prems, auto)
also have $\ldots=$ Matrix.mat $($ dim-row $A)(\operatorname{dim}-\operatorname{col} A)$
$(\lambda(i, k)$. if $i=a \wedge k \in \operatorname{set}(x \# x s)$ then if $k=0$ then if $D \operatorname{dvd} A \$ \$(i, k)$
then $D$ else $A \$ \$(i, k)$ else $A \$ \$(i, k)$ gmod $D$ else $A \$ \$(i, k))($ is ?lhs $=$ ?rhs $)$
proof (rule eq-matI)
show dim-row ?lhs = dim-row ?rhs and dim-col ?lhs = dim-col ?rhs by auto
fix $i j$ assume $i$ : $i<$ dim-row? rhs and $j: j<$ dim-col ?rhs
have $j n$ : $j<n$ using $j$ 2.prems by (simp add: append-rows-def)
have $x n: x<n$ by (simp add: 2.prems(4))
show ?lhs $\$ \$(i, j)=$ ?rhs $\$ \$(i, j)$
proof (cases $i=a \wedge j \in$ set $x s$ )

```
 case True note ia-jxs = True
 have j-not-x: j\not=x
 using 2.prems(5) True by auto
 show ?thesis
 proof (cases j=0 ^ D dvd ?reduce-xs $$(i,j))
 case True
 have ?lhs $$ (i,j)=D
 using True ij ia-jxs by auto
 also have }\ldots=\mathrm{ ?rhs $$ (i,j) using i j j-not-x
 by (smt 2 calculation dim-col-mat(1) dim-row-mat(1) index-mat(1)
insert-iff list.set(2) prod.simps(2) xn)
 finally show ?thesis .
 next
 case False note nc1 = False
 show ?thesis
 proof (cases j=0)
 case True
 then show ?thesis
 by (smt (z3) 2 False case-prod-conv dim-col-mat(1) dim-row-mat(1) i
index-mat(1) j j-not-x xn)
 next
 case False
 have ?lhs $$ (i,j)=?reduce-xs $$ (i,j) gmod D
 using True False i j by auto
 also have \ldots.. = A $$ (i,j) gmod D using 2[OF xn] j-not-x i j by auto
 also have ... = ?rhs $$ (i,j) using ij j-not-x \langleD>0\rangle
 using False True dim-col-mat(1) dim-row-mat(1) index-mat(1) list.set-intros(2)
old.prod.case
 by auto
 finally show ?thesis .
 qed
 qed
 next
 case False
 show ?thesis using 2 i j xn
 by (smt False dim-col-mat(1) dim-row-mat(1) index-mat(1) insert-iff
list.set(2) prod.simps(2))
 qed
 qed
 finally show ?case using 1 by simp
qed
lemma reduce-row-mod-D-abs:
assumes \(A\)-def: \(A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)\)
and \(A^{\prime}: A^{\prime} \in\) carrier-mat \(m n\) and \(a: a<m\) and \(j: \forall j \in\) set \(x s . j<n\)
and \(d:\) distinct \(x s\) and \(m \geq n\)
```

and $D>0$
shows reduce-row-mod-D-abs $A$ a xs $D m=$ Matrix.mat (dim-row $A$ ) (dim-col A)
$(\lambda(i, k)$. if $i=a \wedge k \in$ set xs then if $k=0 \wedge D \operatorname{dvd} A \$ \$(i, k)$
then $D$ else $A \$ \$(i, k)$ gmod $D$ else $A \$ \$(i, k))$
using assms
proof (induct $A$ a xs $D$ marbitrary: $A^{\prime}$ rule: reduce-row-mod-D-abs.induct) case ( $1 A$ a $D$ )
then show? case by force
next
case (2 A a x xs D m)
let ?reduce-xs $=($ reduce-element-mod-D-abs $A$ a x $D m)$
have 1: reduce-row-mod-D-abs $A$ a $(x \#$ xs $) D m$
$=$ reduce-row-mod- $D$-abs ? reduce-xs a xs $D \mathrm{~m}$ by simp
have 2: reduce-element-mod-D-abs A ajDm=Matrix.mat (dim-row A) (dim-col A)
$(\lambda(i, k)$. if $i=a \wedge k=j$ then if $j=0 \wedge D$ dvd $A \$ \$(i, k)$ then $D$
else $A \$ \$(i, k) \operatorname{gmod} D$ else $A \$ \$(i, k))$ if $j<n$ for $j$
by (rule reduce-element-mod-D, insert 2.prems that, auto)
have reduce-row-mod-D-abs ?reduce-xs a xs $D m=$
Matrix.mat (dim-row ? reduce-xs) (dim-col ?reduce-xs) $(\lambda(i, k)$. if $i=a \wedge k \in$
set xs then
if $k=0 \wedge D$ dvd ?reduce-xs $\$ \$(i, k)$ then $D$
else ?reduce-xs $\$ \$(i, k)$ gmod $D$ else ?reduce-xs $\$ \$(i, k))$
proof (rule 2.hyps)

$i . i \leftarrow[0 . .<m]]$
show reduce-element-mod-D-abs $A$ a $x D m=? A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
by (rule reduce-element-mod-D-append, insert 2.prems, auto)
qed (insert 2.prems, auto)
also have $\ldots=$ Matrix.mat (dim-row $A)$ (dim-col $A$ )
$(\lambda(i, k)$. if $i=a \wedge k \in \operatorname{set}(x \# x s)$ then if $k=0 \wedge D \operatorname{dvd} A \$ \$(i, k)$
then $D$ else $A \$ \$(i, k)$ gmod $D$ else $A \$ \$(i, k))$ (is ?lhs $=$ ? $r h s)$
proof (rule eq-matI)
show dim-row ?lhs = dim-row ?rhs and dim-col?lhs = dim-col ?rhs by auto
fix $i j$ assume $i: i<d i m$-row? ?rhs and $j: j<$ dim-col ? rhs
have $j n$ : $j<n$ using $j$ 2.prems by (simp add: append-rows-def)
have $x n: x<n$ by (simp add: 2.prems(4))
show ?lhs $\$ \$(i, j)=$ ?rhs $\$ \$(i, j)$
proof (cases $i=a \wedge j \in$ set xs)
case True note $i a-j x s=$ True
have $j$-not- $x$ : $j \neq x$
using 2.prems(5) True by auto
show ?thesis
proof (cases $j=0 \wedge D$ dvd ?reduce-xs $\$ \$(i, j)$ )
case True
have ?lhs $\$ \$(i, j)=D$
using True $i j i a-j x s$ by auto
also have $\ldots=$ ? rhs $\$ \$(i, j)$ using $i j j$-not-x
by (smt 2 calculation dim-col-mat(1) dim-row-mat(1) index-mat(1)
insert-iff list.set(2) prod.simps(2) xn)
finally show? ?hesis.
next
case False
have ?lhs $\$ \$(i, j)=$ ? reduce-xs $\$ \$(i, j)$ gmod $D$
using True False $i j$ by auto
also have $\ldots=A \$ \$(i, j)$ gmod $D$ using $2[O F x n] j$-not-x $i j$ by auto
also have $\ldots=$ ? rhs $\$ \$(i, j)$ using $i j j$-not- $x\langle D>0$ 〉
using 2 False True dim-col-mat(1) dim-row-mat(1) index-mat(1) list.set-intros(2)
old.prod.case xn by auto
finally show ?thesis .
qed
next
case False
show ?thesis using $2 i j x n$
by (smt False dim-col-mat(1) dim-row-mat(1) index-mat(1) insert-iff
list.set(2) prod.simps(2))
qed
qed
finally show ?case using 1 by simp
qed
end
Now, we prove some transfer rules to connect Bézout matrices in HOL Analysis and JNF
lemma HMA-bezout-matrix[transfer-rule]:
shows ((Mod-Type-Connect.HMA-M :: - $\boldsymbol{\prime}^{\prime}$ 'a :: \{bezout-ring\} - ' $n$ :: mod-type

- 'm :: mod-type $\Rightarrow$-)
$===>$ (Mod-Type-Connect.HMA-I $\left.::-\Rightarrow^{\prime} m \Rightarrow-\right)===>$ (Mod-Type-Connect.HMA-I
$::-\Rightarrow$ ' $m \Rightarrow$-)
$===>\left(\right.$ Mod-Type-Connect.HMA-I :: - $\left.\Rightarrow^{\prime} n \Rightarrow-\right)===>(=)===>($ Mod-Type-Connect.HMA-M))
(bezout-matrix-JNF) (bezout-matrix)
proof (intro rel-funI, goal-cases)
case ( 1 A $A^{\prime}$ a $a^{\prime} b b^{\prime} j j^{\prime}$ bezout bezout')
note $H M A-A A^{\prime}[$ transfer-rule $]=1(1)$
note $H M I$-aa ${ }^{\prime}[$ transfer-rule $]=1$ (2)
note $H M I-b b^{\prime}[$ transfer-rule $]=1$ (3)
note $H M I-j j^{\prime}[$ transfer-rule $]=1$ (4)
note eq-bezout' $[$ transfer-rule $]=1(5)$
show ?case unfolding Mod-Type-Connect.HMA-M-def Mod-Type-Connect.from-hma $m_{m}$-def
proof (rule eq-matI)
let ? $A=$ Matrix.mat $\operatorname{CARD}\left({ }^{\prime} m\right) \operatorname{CARD}\left({ }^{\prime} m\right)\left(\lambda(i, j)\right.$. bezout-matrix $A^{\prime} a^{\prime} b^{\prime} j^{\prime}$
bezout'
\$h mod-type-class.from-nat $i \$ h$ mod-type-class.from-nat $j)$
show dim-row (bezout-matrix-JNF A a bjbezout) = dim-row ?A
and dim-col (bezout-matrix-JNF A a bjbezout) $=$ dim-col ?A using Mod-Type-Connect.dim-row-transfer-rule[OF HMA-AA] unfolding bezout-matrix-JNF-def by auto
fix $i j a$ assume $i: i<d i m-r o w ? A$ and $j a: j a<d i m-c o l$ ?A
let $? i=$ mod-type-class.from-nat $i::$ 'm
let ? $j a=$ mod-type-class.from-nat $j a::$ ' $m$
have $i$ - $A$ : $i<$ dim-row $A$
using HMA-AA' Mod-Type-Connect.dim-row-transfer-rule $i$ by fastforce
have $j a-A: j a<d i m$-row $A$
using Mod-Type-Connect.dim-row-transfer-rule[OF HMA-AA] ja by fastforce
have HMA-I-ii' ${ }^{[t r a n s f e r-r u l e]: ~ M o d-T y p e-C o n n e c t . H M A-I ~ i ~ ? ~ i ~}$
unfolding Mod-Type-Connect.HMA-I-def using from-nat-not-eq $i$ by auto
have HMA-I-ja' [transfer-rule]: Mod-Type-Connect.HMA-I ja ?ja
unfolding Mod-Type-Connect.HMA-I-def using from-nat-not-eq ja by auto
have Aaj: $A^{\prime} \$ h a^{\prime} \$ h j^{\prime}=A \$ \$(a, j)$ unfolding index-hma-def[symmetric] by (transfer, simp)
have $A b j$ : $A^{\prime} \$ h b^{\prime} \$ h j^{\prime}=A \$ \$(b, j)$ unfolding index-hma-def[symmetric] by (transfer, simp)
have ?A $\$ \$(i, j a)=$ bezout-matrix $A^{\prime} a^{\prime} b^{\prime} j^{\prime}$ bezout' $\$ h$ ? $i$ \$h ?ja using $i j a$ by auto
also have $\ldots=\left(\right.$ let $(p, q, u, v, d)=$ bezout $\left(A^{\prime} \$ h a^{\prime} \$ h j^{\prime}\right)\left(A^{\prime} \$ h b^{\prime} \$ h j^{\prime}\right)$
in if ? $i=a^{\prime} \wedge ? j a=a^{\prime}$ then $p$ else if ? i $=a^{\prime} \wedge ? j a=b^{\prime}$ then $q$ else if ? $i$
$=b^{\prime} \wedge ? j a=a^{\prime}$
then $u$ else if ? $i=b^{\prime} \wedge ? j a=b^{\prime}$ then $v$ else if $? i=? j$ a then 1 else 0$)$
unfolding bezout-matrix-def by auto
also have $\ldots=$ (let
$(p, q, u, v, d)=$ bezout $(A \$ \$(a, j))(A \$ \$(b, j))$
in
if $i=a \wedge j a=a$ then $p$ else
if $i=a \wedge j a=b$ then $q$ else
if $i=b \wedge j a=a$ then $u$ else
if $i=b \wedge j a=b$ then $v$ else
if $i=j a$ then 1 else 0) unfolding eq-bezout' Aaj Abj by (transfer, simp)
also have $\ldots=$ bezout-matrix-JNF A a b j bezout $\$ \$(i, j a)$
unfolding bezout-matrix-JNF-def using $i-A j a-A$ by auto
finally show bezout-matrix-JNF A a bjbezout $\$ \$(i, j a)=? A \$ \$(i, j a) .$. qed
qed


## context

begin
private lemma invertible-bezout-matrix-JNF-mod-type:
fixes $A$ ::'a::\{bezout-ring-div\} mat
assumes $A \in$ carrier-mat $C A R D$ ('m::mod-type) $C A R D$ ('n::mod-type)
assumes ib: is-bezout-ext bezout
and $a$-less- $b: a<b$ and $b: b<C A R D(' m)$ and $j: j<C A R D(' n)$

```
 and aj: A $$ (a,j)\not=0
shows invertible-mat (bezout-matrix-JNF A a b j bezout)
proof -
 define }\mp@subsup{A}{}{\prime}\mathrm{ where }\mp@subsup{A}{}{\prime}=(Mod-Type-Connect.to-hmam A :: 'a ^' n :: mod-type ^'m
:: mod-type)
 define a' where a'=(Mod-Type.from-nat a :: 'm)
 define }\mp@subsup{b}{}{\prime}\mathrm{ where }\mp@subsup{b}{}{\prime}=(\mathrm{ Mod-Type.from-nat b::'m)
 define j' where j'=(Mod-Type.from-nat j :: 'n)
 have AA'[transfer-rule]: Mod-Type-Connect.HMA-M A A'
 unfolding Mod-Type-Connect.HMA-M-def using assms A'-def by auto
 have aa'[transfer-rule]: Mod-Type-Connect.HMA-I a a'
 unfolding Mod-Type-Connect.HMA-I-def a'-def using assms
 using from-nat-not-eq order.strict-trans by blast
 have }b\mp@subsup{b}{}{\prime}[\mathrm{ transfer-rule]: Mod-Type-Connect.HMA-I b b
 unfolding Mod-Type-Connect.HMA-I-def b'-def using assms
 using from-nat-not-eq order.strict-trans by blast
 have jj'[transfer-rule]: Mod-Type-Connect.HMA-I j j'
 unfolding Mod-Type-Connect.HMA-I-def j'-def using assms
 using from-nat-not-eq order.strict-trans by blast
 have [transfer-rule]: bezout = bezout ..
 have [transfer-rule]: Mod-Type-Connect.HMA-M (bezout-matrix-JNF A a b j
bezout)
 (bezout-matrix A' a' b}\mp@subsup{}{\prime}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ bezout)
 by transfer-prover
 have invertible (bezout-matrix A' a' b}\mp@subsup{|}{}{\prime}\mp@subsup{j}{}{\prime}\mathrm{ bezout)
 proof (rule invertible-bezout-matrix[OF ib])
 show }\mp@subsup{a}{}{\prime}<\mp@subsup{b}{}{\prime}\mathrm{ using a-less-b by (simp add: a'-def b b'-def from-nat-mono)
 show }\mp@subsup{A}{}{\prime}$h\mp@subsup{a}{}{\prime}$h\mp@subsup{j}{}{\prime}\not=0\mathrm{ unfolding index-hma-def[symmetric] using aj by
(transfer, simp)
 qed
 thus ?thesis by (transfer, simp)
qed
private lemma invertible-bezout-matrix-JNF-nontriv-mod-ring:
 fixes A::'a::{bezout-ring-div} mat
 assumes A carrier-mat CARD('m::nontriv mod-ring) CARD('n::nontriv mod-ring)
 assumes ib: is-bezout-ext bezout
 and a-less-b: a<b and b:b<CARD('m) and j: j<CARD('n)
 and aj:A $$ (a,j)\not=0
shows invertible-mat (bezout-matrix-JNF A a b j bezout)
 using assms invertible-bezout-matrix-JNF-mod-type by (smt CARD-mod-ring)
```

lemmas invertible-bezout-matrix-JNF-internalized $=$
invertible-bezout-matrix-JNF-nontriv-mod-ring[unfolded CARD-mod-ring,
internalize-sort ' $m$ ::nontriv, internalize-sort ' $c::$ nontriv]
context
fixes $m:: n a t$ and $n:: n a t$
assumes local-typedef1: $\exists($ Rep $::(' b \Rightarrow$ int $))$ Abs. type-definition Rep Abs $\{0 . .<m$ :: int $\}$
assumes local-typedef2: $\exists\left(\right.$ Rep $::\left({ }^{\prime} c \Rightarrow\right.$ int $)$ ) Abs. type-definition Rep Abs $\{0 . .<n$
:: int $\}$
and $m: m>1$
and $n: n>1$
begin
lemma type-to-set1:
shows class.nontriv TYPE ('b) (is ?a) and $m=C A R D(' b)($ is ?b)
proof -
from local-typedef1 obtain Rep::(' $b \Rightarrow$ int) and $A b s$
where $t$ : type-definition Rep Abs $\{0 . .<m::$ int $\}$ by auto
have card (UNIV :: 'b set) $=$ card $\{0 . .<m\}$ using $t$ type-definition.card by fastforce
also have $\ldots=m$ by auto
finally show ?b ..
then show ?a unfolding class.nontriv-def using $m$ by auto
qed
lemma type-to-set2:
shows class.nontriv $\operatorname{TYPE}\left({ }^{\prime} c\right)\left(\right.$ is ?a) and $n=C A R D\left({ }^{\prime} c\right)($ is ?b)
proof -
from local-typedef2 obtain Rep::('c $\Rightarrow$ int) and Abs
where $t$ : type-definition Rep Abs $\{0 . .<n::$ int $\}$ by blast
have card (UNIV :: 'c set) = card $\{0 . .<n\}$ using $t$ type-definition.card by force
also have $\ldots=n$ by auto
finally show ?b ..
then show ?a unfolding class.nontriv-def using $n$ by auto
qed
lemma invertible-bezout-matrix-JNF-nontriv-mod-ring-aux:
fixes $A$ ::'a::\{bezout-ring-div\} mat
assumes $A \in$ carrier-mat $m n$
assumes ib: is-bezout-ext bezout
and $a$-less- $b: a<b$ and $b: b<m$ and $j: j<n$
and $a j: A \$ \$(a, j) \neq 0$
shows invertible-mat (bezout-matrix-JNF A a b j bezout)
using invertible-bezout-matrix-JNF-internalized[OF type-to-set2(1) type-to-set(1),
where ?' $a a=' b$ ]
using assms
using type-to-set1(2) type-to-set2(2) local-typedef1 $m$ by blast
end

## context

## begin

private lemma invertible-bezout-matrix-JNF-cancelled-first:
$\exists$ Rep Abs. type-definition Rep Abs $\{0 . .<$ int $n\} \Longrightarrow\{0 . .<$ int $m\} \neq\{ \} \Longrightarrow$ $1<m \Longrightarrow 1<n \Longrightarrow$
( $A::$ ' $a::$ bezout-ring-div mat $) \in$ carrier-mat $m n \Longrightarrow$ is-bezout-ext bezout
$\Longrightarrow a<b \Longrightarrow b<m \Longrightarrow j<n \Longrightarrow A \$ \$(a, j) \neq 0 \Longrightarrow$ invertible-mat (bezout-matrix-JNF A a bjbezout)
using invertible-bezout-matrix-JNF-nontriv-mod-ring-aux[cancel-type-definition] by blast
private lemma invertible-bezout-matrix-JNF-cancelled-both:
$\{0 . .<$ int $n\} \neq\{ \} \Longrightarrow\{0 . .<$ int $m\} \neq\{ \} \Longrightarrow 1<m \Longrightarrow 1<n \Longrightarrow$ $1<m \Longrightarrow 1<n \Longrightarrow$
(A::'a::bezout-ring-div mat) $\in$ carrier-mat $m n \Longrightarrow$ is-bezout-ext bezout
$\Longrightarrow a<b \Longrightarrow b<m \Longrightarrow j<n \Longrightarrow A \$ \$(a, j) \neq 0 \Longrightarrow$ invertible-mat (bezout-matrix-JNF A a bjbezout)
using invertible-bezout-matrix-JNF-cancelled-first[cancel-type-definition] by blast
lemma invertible-bezout-matrix-JNF':
fixes $A::{ }^{\prime} a::\{$ bezout-ring-div\} mat
assumes $A \in$ carrier-mat $m n$
assumes ib: is-bezout-ext bezout
and $a$-less- $b: a<b$ and $b: b<m$ and $j: j<n$
and $n>1$
and $a j: A \$ \$(a, j) \neq 0$
shows invertible-mat (bezout-matrix-JNF A a bjbezout)
using invertible-bezout-matrix-JNF-cancelled-both assms by auto
lemma invertible-bezout-matrix-JNF-n1:
fixes $A::^{\prime} a::\{$ bezout-ring-div\} mat
assumes $A: A \in$ carrier-mat $m n$
assumes ib: is-bezout-ext bezout
and $a$-less- $b: a<b$ and $b: b<m$ and $j: j<n$
and $n 1$ : $n=1$
and $a j: A \$ \$(a, j) \neq 0$
shows invertible-mat (bezout-matrix-JNF A a b j bezout)
proof -
let ? $A=A @_{c}\left(0_{m} m n\right)$
have $\left(A @_{c} 0_{m} m n\right) \$ \$(a, j)=$ (if $j<$ dim-col $A$ then $A \$ \$(a, j)$ else $\left(0_{m} m\right.$
n) $\$ \$(a, j-n))$
by (rule append-cols-nth $[O F A]$, insert assms, auto)
also have $\ldots=A \$ \$(a, j)$ using assms by auto
finally have $A a j:\left(A @_{c} 0_{m} m n\right) \$ \$(a, j)=A \$ \$(a, j)$.
have $\left(A @_{c} 0_{m} m n\right) \$ \$(b, j)=$ (if $j<$ dim-col $A$ then $A \$ \$(b, j)$ else $\left(0_{m} m\right.$
n) $\$ \$(b, j-n))$
by (rule append-cols-nth $[O F A]$, insert assms, auto)
also have $\ldots=A \$ \$(b, j)$ using assms by auto
finally have $A b j:\left(A @_{c} O_{m} m n\right) \$ \$(b, j)=A \$ \$(b, j)$.
have dr: dim-row $A=$ dim-row ? $A$ by (simp add: append-cols-def)
have dc: dim-col ? $A=2$
by (metis Suc-1 append-cols-def A n1 carrier-matD(2) index-mat-four-block(3)
index-zero-mat(3) plus-1-eq-Suc)
have bz-eq: bezout-matrix-JNF A a b j bezout = bezout-matrix-JNF ?A a b j bezout
unfolding bezout-matrix-JNF-def Aaj Abj dr by auto
have invertible-mat (bezout-matrix-JNF ?A a b $j$ bezout)
by (rule invertible-bezout-matrix-JNF', insert assms Aaj Abj dr dc, auto)
thus ?thesis using $b z$-eq by simp
qed
corollary invertible-bezout-matrix-JNF:
fixes $A::^{\prime} a::\{$ bezout-ring-div\} mat
assumes $A \in$ carrier-mat $m n$
assumes ib: is-bezout-ext bezout
and $a$-less- $b: a<b$ and $b: b<m$ and $j: j<n$
and $a j: A \$ \$(a, j) \neq 0$
shows invertible-mat (bezout-matrix-JNF A a bjbezout)
using invertible-bezout-matrix-JNF-n1 invertible-bezout-matrix-JNF' assms
by (metis One-nat-def gr-implies-not0 less-Suc0 not-less-iff-gr-or-eq)
end
end
We continue with the soundness of the algorithm

```
lemma bezout-matrix-JNF-mult-eq:
 assumes \(A^{\prime}: A^{\prime} \in\) carrier-mat \(m n\) and \(a: a \leq m\) and \(b: b \leq m\) and \(a b: a \neq b\)
 and \(A\)-def: \(A=A^{\prime} @_{r} B\) and \(B: B \in\) carrier-mat \(n n\)
 assumes pquvd: \((p, q, u, v, d)=\) euclid-ext2 \((A \$ \$(a, j))(A \$ \$(b, j))\)
 shows Matrix.mat (dim-row \(A)\) (dim-col A)
 \((\lambda(i, k)\). if \(i=a\) then \((p * A \$ \$(a, k)+q * A \$ \$(b, k))\)
 else if \(i=b\) then \(u * A \$ \$(a, k)+v * A \$ \$(b, k)\)
 else \(A \$ \$(i, k)\)
 \()=(\) bezout-matrix-JNF A a b jeuclid-ext2) \(* A(\) is ? \(A=? B M * A)\)
proof (rule eq-matI)
 have \(A: A \in\) carrier-mat \((m+n) n\) using \(A\)-def \(A^{\prime} B\) by simp
 hence \(A\)-carrier: \(? A \in\) carrier-mat \((m+n) n\) by auto
 show dr: dim-row ? \(A=\) dim-row \((? B M * A)\) and dc:dim-col ?A \(=\) dim-col
(?BM*A)
 unfolding bezout-matrix-JNF-def by auto
 fix \(i\) ja assume \(i: i<\operatorname{dim}\)-row \((? B M * A)\) and \(j a: j a<\operatorname{dim}-\operatorname{col}(? B M * A)\)
 let ?f \(=\lambda\) ia. (bezout-matrix-JNF A a b j euclid-ext2) \(\$ \$(i, i a) * A \$ \$(i a, j a)\)
```

```
 have dv: dim-vec \((\operatorname{col} A j a)=m+n\) using \(A\) by auto
 have \(i\)-dr: \(i<\) dim-row \(A\) using \(i A\) unfolding bezout-matrix-JNF-def by auto
 have \(a\)-dr: \(a<d i m\)-row \(A\) using \(A a j a\) by auto
 have \(b\) - \(d r\) : \(b<\) dim-row \(A\) using \(A b j a\) by auto
 show ? \(A \$ \$(i, j a)=(? B M * A) \$ \$(i, j a)\)
 proof -
 have \((? B M * A) \$ \$(i, j a)=\) Matrix.row ?BM \(i \cdot \operatorname{col} A j a\)
 by (rule index-mult-mat, insert \(i j a\), auto)
 also have \(\ldots=\left(\sum i a=0 . .<\operatorname{dim}-v e c(\operatorname{col} A j a)\right.\).
 Matrix.row (bezout-matrix-JNF A a b j euclid-ext2) i \$v ia * col A ja \$v
ia)
 by (simp add: scalar-prod-def)
 also have \(\ldots=\left(\sum i a=0 . .<m+n\right.\). ?f \(\left.i a\right)\)
 by (rule sum.cong, insert \(A i d r d c\), auto) (smt bezout-matrix-JNF-def car-
rier-matD (1)
 dim-col-mat(1) index-col index-mult-mat(3) index-row(1) ja)
 also have \(\ldots=\left(\sum i a \in(\{a, b\} \cup(\{0 . .<m+n\}-\{a, b\}))\right.\). ?f \(\left.i a\right)\)
 by (rule sum.cong, insert a a-dr b A ja, auto)
 also have \(\ldots=\) sum ?f \(\{a, b\}+\) sum ?f \((\{0 . .<m+n\}-\{a, b\})\)
 by (rule sum.union-disjoint, auto)
 finally have \(B M\)-A-ija-eq: \((? B M * A) \$ \$(i, j a)=s u m\) ?f \(\{a, b\}+s u m\) ?f
\((\{0 . .<m+n\}-\{a, b\})\) by auto
 show ?thesis
 proof (cases \(i=a\))
 case True
 have sum0: sum ?f \((\{0 . .<m+n\}-\{a, b\})=0\)
 proof (rule sum.neutral, rule)
 fix \(x\) assume \(x: x \in\{0 . .<m+n\}-\{a, b\}\)
 hence \(x m: x<m+n\) by auto
 have \(x\)-not- \(i: x \neq i\) using True \(x\) by blast
 have \(x\)-dr: \(x<\) dim-row \(A\) using \(x A\) by auto
 have bezout-matrix-JNF A a b j euclid-ext2 \(\$ \$(i, x)=0\)
 unfolding bezout-matrix-JNF-def
 unfolding index-mat(1)[OF i-dr \(x\)-dr] using \(x\)-not- \(i x\) by auto
 thus bezout-matrix-JNF A a bjeuclid-ext2 \(\$ \$(i, x) * A \$ \$(x, j a)=0\) by
auto
 qed
 have fa: bezout-matrix-JNF A a b j euclid-ext2 \(\$ \$(i, a)=p\)
 unfolding bezout-matrix-JNF-def index-mat(1)[OF \(i\)-dr \(a\)-dr] using True
pquvd
 by (auto, metis split-conv)
 have fb: bezout-matrix-JNF A a b j euclid-ext2 \(\$ \$(i, b)=q\)
 unfolding bezout-matrix-JNF-def index-mat(1)[OF \(i\)-dr \(\quad b-d r]\) using True
pquvd ab
 by (auto, metis split-conv)
 have sum ?f \(\{a, b\}+\) sum ?f \((\{0 . .<m+n\}-\{a, b\})=\) ?f \(a+\) ?f \(b\) using
sum0 by (simp add: ab)
 also have \(\ldots=p * A \$ \$(a, j a)+q * A \$ \$(b, j a)\) unfolding fa fb by simp
 also have \(\ldots=\) ? \(A \$ \$(i, j a)\) using \(A\) True \(d r i j a\) by auto
```

```
 finally show ?thesis using BM-A-ija-eq by simp
 next
 case False note i-not-a = False
 show ?thesis
 proof (cases i=b)
 case True
 have sum0: sum ?f ({0..<m+n} - {a,b})=0
 proof (rule sum.neutral, rule)
 fix }x\mathrm{ assume x:x }\in{0..<m+n}-{a,b
 hence xm: }x<m+n\mathrm{ by auto
 have x-not-i: x\not=i using True x by blast
 have }x\mathrm{ -dr: }x<\mathrm{ dim-row A using }xA\mathrm{ by auto
 have bezout-matrix-JNF A a b j euclid-ext2 $$ (i,x)=0
 unfolding bezout-matrix-JNF-def
 unfolding index-mat(1)[OF i-dr x-dr] using x-not-i x by auto
 thus bezout-matrix-JNF A a b j euclid-ext2 $$ (i, x)*A $$ (x,ja)=0
by auto
 qed
 have fa: bezout-matrix-JNF A a b j euclid-ext2 $$ (i, a)=u
 unfolding bezout-matrix-JNF-def index-mat(1)[OF i-dr a-dr] using True
i-not-a pquvd
 by (auto, metis split-conv)
 have fb: bezout-matrix-JNF A a b j euclid-ext2 $$ (i,b)=v
 unfolding bezout-matrix-JNF-def index-mat(1)[OF i-dr b-dr] using True
i-not-a pquvd ab
 by (auto, metis split-conv)
 have sum ?f {a,b} + sum ?f ({0..<m+n} - {a,b}) = ?f a + ?f b using
sum0 by (simp add: ab)
 also have ... =u*A$$(a,ja)+v*A$$(b,ja) unfolding fa fb by simp
 also have ... =?A $$ (i,ja) using A True i-not-a dr i ja by auto
 finally show ?thesis using BM-A-ija-eq by simp
 next
 case False note i-not-b = False
 have sum0: sum ?f ({0..<m+n}-{a,b}-{i})=0
 proof (rule sum.neutral, rule)
 fix x assume x: x }\in{0..<m+n}-{a,b}-{i
 hence xm: }x<m+n\mathrm{ by auto
 have x-not-i: }x\not=i\mathrm{ using }x\mathrm{ by blast
 have }x\mathrm{ -dr: x< dim-row A using }xA\mathrm{ by auto
 have bezout-matrix-JNF A a b j euclid-ext2 $$ (i,x)=0
 unfolding bezout-matrix-JNF-def
 unfolding index-mat(1)[OF i-dr x-dr] using x-not-i x by auto
 thus bezout-matrix-JNF A a b j euclid-ext2 $$ (i,x)*A $$ (x,ja)=0
by auto
 qed
 have fa: bezout-matrix-JNF A a b j euclid-ext2 $$ (i,a)=0
 unfolding bezout-matrix-JNF-def index-mat(1)[OF i-dr a-dr] using False
i-not-a pquvd
 by auto
```

```
 have fb: bezout-matrix-JNF A a b j euclid-ext2 $$ (i,b) = 0
 unfolding bezout-matrix-JNF-def index-mat(1)[OF i-dr b-dr] using False
i-not-a pquvd
 by auto
 have sum?f ({0..<m+n} - {a,b})= sum?f (insert i ({0..<m+n} -
{a,b} - {i}))
 by (rule sum.cong, insert i-dr A i-not-a i-not-b, auto)
 also have ... = ?f i + sum ?f ({0..<m+n}-{a,b} - {i}) by (rule
sum.insert, auto)
 also have ... = ?f i using sum0 by simp
 also have ... = ?A $$ (i,ja)
 unfolding bezout-matrix-JNF-def using i-not-a i-not-b A dr i ja by
fastforce
 finally show ?thesis unfolding BM-A-ija-eq by (simp add: ab fa fb)
 qed
 qed
 qed
qed
context proper-mod-operation
begin
lemma reduce-invertible-mat:
 assumes }\mp@subsup{A}{}{\prime}:\mp@subsup{A}{}{\prime}\incarrier-mat m n and a:a<m and j:0<n and b:b<m and
ab:a\not=b
 and A-def:A= A' @ }r\mathrm{ (D 足 (1m n))
 and Aaj: A $$ (a,0) \not=0
 and a-less-b: a<b
 and mn: m\geqn
 and D-ge0: D > 0
shows \existsP. invertible-mat P}\wedge \P\incarrier-mat (m+n) (m+n)\wedge (reduce a b D
A) = P*A (is ?thesis1)
proof -
 obtain p qu v d where pquvd: (p,q,u,v,d) = euclid-ext2 (A$$(a,0)) (A$$(b,0))
 by (metis prod-cases5)
 let ?A = Matrix.mat (dim-row A) (dim-col A)
 (\lambda(i,k). if i=a then (}p*A$$(a,k)+q*A$$(b,k)
 else if i=b then u*A$$(a,k)+v*A$$(b,k)
 else A$$(i,k)
)
 have D:D 品 1m n carrier-mat n n by auto
 have A:A\incarrier-mat (m+n) n using A-def A' by simp
 hence A-carrier: ?A \in carrier-mat (}m+n)n\mathrm{ by auto
 let ?BM = bezout-matrix-JNF A a b 0 euclid-ext2
 have }\mp@subsup{A}{}{\prime}-BZ-A:?A=? BM*
```

by (rule bezout-matrix-JNF-mult-eq[OF $A^{\prime}-\operatorname{ab} A$-def $D$ pquvd], insert a $b$, auto)
have invertible-bezout: invertible-mat ?BM
by (rule invertible-bezout-matrix-JNF[OF A is-bezout-ext-euclid-ext2 a-less-b j Aaj],
insert $a$-less- $b$ b, auto)
have BM: ? $B M \in$ carrier-mat $(m+n)(m+n)$ unfolding bezout-matrix-JNF-def using $A$ by auto
define $x s$ where $x s=[0 . .<n]$
let ?reduce- $a=$ reduce-row-mod- $D$ ? A a xs $D \mathrm{~m}$
let ? $A^{\prime}=$ mat-of-rows $n[$ Matrix.row ? A i. $i \leftarrow[0 . .<m]]$
have $A-A^{\prime}-D: ? A=? A^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$
proof (rule matrix-append-rows-eq-if-preserves $[O F A$-carrier $D]$, rule + )
fix $i j$ assume $i: i \in\{m . .<m+n\}$ and $j: j<n$
have ? $A \$ \$(i, j)=A \$ \$(i, j)$ using $i$ a $b A j$ by auto
also have $\ldots=\left(\right.$ if $i<$ dim-row $A^{\prime}$ then $A^{\prime} \$ \$(i, j)$ else $\left.\left(D \cdot_{m}\left(1_{m} n\right)\right) \$ \$(i-m, j)\right)$
by (unfold $A$-def, rule append-rows-nth $\left[O F A^{\prime} D-j\right]$, insert $i$, auto)
also have $\ldots=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i-m, j)$ using $i A^{\prime}$ by auto
finally show ? $A \$ \$(i, j)=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i-m, j)$.
qed
have reduce-a-eq: ?reduce- $a=$ Matrix.mat (dim-row ?A) (dim-col ?A)
$(\lambda(i, k)$. if $i=a \wedge k \in$ set xs then if $k=0$ then if $D$ dvd? $A \$ \$(i, k)$ then $D$ else ? $A \$ \$(i, k)$ else ? $A \$ \$(i, k)$ gmod $D$ else? $\$ \$ \$(i, k))$
by (rule reduce-row-mod- $D\left[O F A-A^{\prime}-D-a-\right]$, insert xs-def mn $D$-ge0, auto)
have reduce- $a$ : ?reduce- $a \in$ carrier-mat $(m+n) n$ using reduce- $a-e q A$ by auto
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ ?reduce- $a=$ $P *$ ? $A$
by (rule reduce-row-mod-D-invertible-mat $\left[\right.$ OF $\left.A-A^{\prime}-D-a\right]$, insert xs-def mn, auto)
from this obtain $P$ where $P: P \in \operatorname{carrier-mat}(m+n)(m+n)$ and inv- $P$ : invertible-mat $P$
and reduce- $a-P A$ : ? reduce- $a=P *$ ? A by blast
define $y s$ where $y s=[1 . .<n]$
let ?reduce- $b=$ reduce-row-mod- $D$ ? reduce-a b ys $D m$
let ? $B^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-a i. $i \leftarrow[0 . .<m]]$
have reduce- $a-B^{\prime}-D$ : ? reduce- $a=$ ? $B^{\prime} @_{r} D \cdot m 1_{m} n$
proof (rule matrix-append-rows-eq-if-preserves[OF reduce-a D], rule+)
fix $i j a$ assume $i: i \in\{m . .<m+n\}$ and $j a: j a<n$
have $i$-not-a: $i \neq a$ and $i$-not-b: $i \neq b$ using $i a b$ by auto
have ? reduce-a $\$ \$(i, j a)=? A \$ \$(i, j a)$
unfolding reduce-a-eq using $i$ i-not- $a$ i-not-b $j a A$ by auto
also have $\ldots=A \$ \$(i, j a)$ using $i$ i-not-a i-not-b ja $A$ by auto
also have $\ldots=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i-m, j a)$
by (smt $D$ append-rows-nth $A^{\prime} A$-def atLeastLessThan-iff carrier-matD (1) i ja less-irrefl-nat nat-SN.compat)
finally show ?reduce-a $\$ \$(i, j a)=\left(D \cdot m 1_{m} n\right) \$ \$(i-m, j a)$.
qed
have reduce-b-eq: ?reduce-b = Matrix.mat (dim-row? ?reduce-a) (dim-col ?reduce-a)
$(\lambda(i, k)$. if $i=b \wedge k \in$ set ys then if $k=0$ then if $D$ dvd ?reduce-a $\$ \$(i, k)$ then $D$ else ?reduce-a $\$ \$(i, k)$
else ?reduce-a $\$ \$(i, k)$ gmod $D$ else ?reduce-a $\$ \$(i, k))$
by (rule reduce-row-mod-D[OF reduce-a-B'-D-b-mn], unfold ys-def, insert D-ge0, auto)
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ ? reduce- $b=$ $P$ * ? reduce-a
by (rule reduce-row-mod-D-invertible-mat $\left[O F\right.$ reduce- $\left.a-B^{\prime}-D-b-m n\right]$, insert ys-def, auto)
from this obtain $Q$ where $Q: Q \in$ carrier-mat $(m+n)(m+n)$ and inv- $Q$ : invertible-mat $Q$
and reduce-b-Q-reduce: ? reduce- $b=Q *$ ? reduce-a by blast
have reduce-b-eq-reduce: ? reduce-b $=($ reduce a b D A)
proof (rule eq-matI)
show dr-eq: dim-row ?reduce-b $=$ dim-row (reduce a $b D A$ )
and dc-eq: dim-col ? reduce-b $=$ dim-col (reduce a b $D A$ )
using reduce-preserves-dimensions by auto
fix $i$ ja assume $i$ : $i<d i m$-row (reduce a b $D$ ) and ja: ja<dim-col (reduce a $b D A$ )
have $i m: i<m+n$ using $A$ i reduce-preserves-dimensions(1) by auto
have ja-n: ja<n using $A$ ja reduce-preserves-dimensions(2) by auto
show ?reduce-b $\$ \$(i, j a)=($ reduce a b D A) $\$ \$(i, j a)$
proof (cases ( $i \neq a \wedge i \neq b)$ )
case True
have ?reduce-b $\$ \$(i, j a)=$ ?reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by (smt True dr-eq dc-eq i index-mat(1) ja prod.simps(2) reduce-row-mod-D-preserves-dimensions)
also have $\ldots=$ ? $A \$ \$(i, j a)$
by (smt A True carrier-matD(2) dim-col-mat(1) dim-row-mat(1) $i$ in-dex-mat(1) ja-n
reduce-a-eq reduce-preserves-dimensions(1) split-conv)
also have $\ldots=A \$ \$(i, j a)$ using $A$ True im ja-n by auto
also have $\ldots=($ reduce a b D A) $\$ \$(i, j a)$ unfolding reduce-alt-def-not0[OF
Aaj pquvd]
using im ja-n A True by auto
finally show ?thesis .
next
case False note $a$-or-b $=$ False
show ?thesis
proof (cases $i=a$ )
case True note $i a=$ True
hence $i$-not- $b$ : $i \neq b$ using $a b$ by auto
show ?thesis
proof -
have $j a-i n-x s: j a \in$ set $x s$
unfolding xs-def using True ja-n im a A unfolding set-filter by auto
have 1: ? reduce-b $\$ \$(i, j a)=$ ? reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by (smt ab dc-eq dim-row-mat(1) dr-eq i ia index-mat(1) ja prod.simps(2)
reduce-b-eq reduce-row-mod-D-preserves-dimensions(2))
show ?thesis
proof (cases $j a=0 \wedge D d v d p * A \$ \$(a, j a)+q * A \$ \$(b, j a))$
case True
have ?reduce-a $\$ \$(i, j a)=D$
unfolding reduce-a-eq using True ab a-or-b i-not-b ja-n im a A ja-in-xs
False by auto
also have $\ldots=($ reduce a b D A) $\$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd]
using True a-or-b i-not-b ja-n im A False
by auto
finally show? thesis using 1 by simp
next
case False note nc1 = False
show ?thesis
proof (cases $j a=0$ )
case True
then show ?thesis
by $(s m t(z 3) 1 A \operatorname{assms}(3) \operatorname{assms}(7)$ dim-col-mat(1) dim-row-mat(1) euclid-ext2-works $i$ ia im index-mat(1)
ja ja-in-xs old.prod.case pquvd reduce-gcd reduce-preserves-dimensions
reduce-a-eq)
next
case False
have ?reduce-a $\$ \$(i, j a)=? A \$ \$(i, j a) \operatorname{gmod} D$
unfolding reduce-a-eq using True ab a-or-b i-not-b ja-n im a A
ja-in-xs False by auto
also have $\ldots=($ reduce a b D A) $\$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd] using True a-or-b i-not-b
ja-n im A False by auto
finally show ?thesis using 1 by simp
qed
qed
qed
next
case False note $i$-not- $a=$ False
have $i$-drb: $i<$ dim-row ?reduce- $b$
and $i$-dra: $i<d i m-r o w$ ?reduce- $a$
and ja-drb: ja<dim-col ?reduce-b
and ja-dra: ja<dim-col ?reduce-a using reduce-carrier[OF A] i ja A dr-eq $d c-e q$ by auto
have $i b$ : $i=b$ using False $a$-or- $b$ by auto
show ?thesis
proof (cases ja set ys)
case True note ja-in-ys = True
hence $j a$-not0: $j a \neq 0$ unfolding ys-def by auto
have ? reduce-b $\$ \$(i, j a)=($ if $j a=0$ then if $D$ dvd ?reduce-a $\$ \$(i, j a)$ then
D
else? reduce-a $\$ \$(i, j a)$ else ?reduce-a $\$ \$(i, j a)$ gmod $D)$
unfolding reduce-b-eq using $i$-not-a True ja ja-in-ys
by (smt i-dra ja-dra a-or-b index-mat(1) prod.simps(2))
also have $\ldots=($ if $j a=0$ then if $D$ dvd ? reduce-a $\$ \$(i, j a)$ then $D$ else ? A \$\$ $(i, j a)$ else ? A \$\$ $(i, j a)$ gmod D)
unfolding reduce-a-eq using True ab a-or-b ib False ja-n im a A ja-in-ys by auto
also have $\ldots=($ reduce a b D A) $\$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd] using True ja-not0 False a-or-b ib ja-n im $A$
using $i$-not-a by auto
finally show ?thesis.
next
case False
hence $j a 0: j a=0$ using $j a-n$ unfolding $y s-d e f$ by auto
have $r w 0: u * A \$ \$(a, j a)+v * A \$ \$(b, j a)=0$
unfolding euclid-ext2-works[OF pquvd[symmetric]] ja0
by (smt euclid-ext2-works[OF pquvd[symmetric]] more-arith-simps(11) mult.commute mult-minus-left)
have ? reduce-b $\$ \$(i, j a)=$ ? reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by (smt False $a$-or-b dc-eq dim-row-mat(1) dr-eq i index-mat(1) ja
prod.simps(2) reduce-b-eq reduce-row-mod-D-preserves-dimensions(2))
also have $\ldots=$ ? $A \$ \$(i, j a)$
unfolding reduce-a-eq using False ab a-or-b i-not-a ja-n im a A by auto
also have $\ldots=u * A \$ \$(a, j a)+v * A \$ \$(b, j a)$
by $(s m t$ (verit, ccfv-SIG) $A<j a=0\rangle \operatorname{assms}(3) \operatorname{assms}(5)$ carrier-matD(2) i ib index-mat(1)
old.prod.case reduce-preserves-dimensions(1))
also have $\ldots=($ reduce a b D A) $\$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd]
using False a-or-b i-not-a ja-n im A ja0 by auto
finally show ?thesis.
qed
qed
qed
qed
have inv-QPBM: invertible-mat $(Q * P *$ ? BM $)$
by (meson BM P Q inv-P inv-Q invertible-bezout invertible-mult-JNF mult-carrier-mat)
moreover have $(Q * P * ? B M) \in$ carrier-mat $(m+n)(m+n)$ using $B M P Q$
by auto
moreover have (reduce a b DA) $=(Q * P * ? B M) * A$
proof -
have ? $B M * A=$ ? A using $A^{\prime}-B Z-A$ by auto
hence $P *(? B M * A)=$ ? reduce-a using reduce-a-PA by auto
hence $Q *(P *(? B M * A))=$ ?reduce-b using reduce-b- $Q$-reduce by auto
thus ?thesis using reduce-b-eq-reduce
by (smt $A A^{\prime}$-BZ-A $A$-carrier BM P $Q$ assoc-mult-mat mn mult-carrier-mat reduce-a-PA)

```
 qed
 ultimately show ?thesis by blast
qed
```

lemma reduce-abs-invertible-mat:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$ and $b: b<m$ and $a b: a \neq b$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and $A a j: A \$ \$(a, 0) \neq 0$
and $a$-less- $b: a<b$
and $m n: m \geq n$
and $D-g e 0: D>0$
shows $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n) \wedge$ (reduce-abs a $b$ $D A)=P * A($ is ?thesis 1$)$
proof -
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid-ext2}(A \$ \$(a, 0))(A \$ \$(b, 0))$
by (metis prod-cases5)
let ? $A=$ Matrix.mat $($ dim-row $A)($ dim-col $A)$
$(\lambda(i, k)$. if $i=a$ then $(p * A \$ \$(a, k)+q * A \$ \$(b, k))$ else if $i=b$ then $u * A \$ \$(a, k)+v * A \$ \$(b, k)$
else $A \$ \$(i, k)$
)
have $D: D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ by auto
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime}$ by simp
hence $A$-carrier: ? $A \in$ carrier-mat $(m+n) n$ by auto
let ? $B M=$ bezout-matrix-JNF A a b 0 euclid-ext2
have $A^{\prime}-B Z-A: ? A=? B M * A$
by (rule bezout-matrix-JNF-mult-eq[OF $A^{\prime}-a b A-\operatorname{def} D$ pquvd $]$, insert $a b$, auto)
have invertible-bezout: invertible-mat ?BM
by (rule invertible-bezout-matrix-JNF[OF A is-bezout-ext-euclid-ext2 a-less-b j Aaj],
insert a-less-b b, auto)
have $B M: ? B M \in$ carrier-mat $(m+n)(m+n)$ unfolding bezout-matrix-JNF-def using $A$ by auto
define $x s$ where $x s=$ filter $(\lambda i$. abs $(? A \$ \$(a, i))>D)[0 . .<n]$
let ?reduce-a $=$ reduce-row-mod- $D$-abs ? A a xs $D$ m
let ? $A^{\prime}=$ mat-of-rows $n[$ Matrix.row ?A $i . i \leftarrow[0 . .<m]]$
have $A-A^{\prime}-D: ? A=? A^{\prime} @_{r} D \cdot m 1_{m} n$
proof (rule matrix-append-rows-eq-if-preserves $[$ OF $A$-carrier $D]$, rule+)
fix $i j$ assume $i: i \in\{m . .<m+n\}$ and $j: j<n$
have ? $A \$ \$(i, j)=A \$ \$(i, j)$ using $i$ a $b A j$ by auto
also have $\ldots=\left(\right.$ if $i<$ dim-row $A^{\prime}$ then $A^{\prime} \$ \$(i, j)$ else $\left.\left(D \cdot{ }_{m}\left(1_{m} n\right)\right) \$ \$(i-m, j)\right)$
by (unfold $A$-def, rule append-rows-nth $\left[O F A^{\prime} D-j\right]$, insert $i$, auto)
also have $\ldots=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i-m, j)$ using $i A^{\prime}$ by auto
finally show ? $A \$ \$(i, j)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i-m, j)$.

## qed

have reduce-a-eq: ?reduce-a $=$ Matrix.mat (dim-row ?A) $($ dim-col ?A)
$(\lambda(i, k)$. if $i=a \wedge k \in$ set $x s$ then
if $k=0 \wedge D$ dvd ?A\$\$( $i, k$ ) then $D$ else ?A $\$ \$(i, k)$ gmod $D$ else ?A $\$ \$(i$, k))
by (rule reduce-row-mod-D-abs[OF $\left.A-A^{\prime}-D-a-\right]$, insert xs-def mn $D$-ge0, auto)
have reduce-a: ?reduce-a $\in$ carrier-mat $(m+n) n$ using reduce-a-eq $A$ by auto have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ ?reduce- $a=$ $P * ? A$
by (rule reduce-row-mod-D-abs-invertible-mat $\left[O F A-A^{\prime}-D-a\right]$, insert xs-def mn, auto)
from this obtain $P$ where $P: P \in$ carrier-mat $(m+n)(m+n)$ and inv- $P$ : invertible-mat $P$
and reduce- $a-P A$ : ? reduce- $a=P *$ ? A by blast
define $y s$ where $y s=$ filter $(\lambda i$ abs $(? A \$ \$(b, i))>D)[0 . .<n]$
let ?reduce- $b=$ reduce-row-mod- $D$-abs ?reduce-a $b$ ys $D m$
let ? $B^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-a i. $i \leftarrow[0 . .<m]]$
have reduce- $a-B^{\prime}-D$ : ?reduce- $a=$ ? $B^{\prime} @_{r} D \cdot_{m} 1_{m} n$
proof (rule matrix-append-rows-eq-if-preserves[OF reduce-a $D]$, rule+)
fix $i j a$ assume $i: i \in\{m . .<m+n\}$ and $j a: j a<n$
have $i$-not- $a: i \neq a$ and $i$-not- $b$ : $i \neq b$ using $i a b$ by auto
have ?reduce-a $\$ \$(i, j a)=$ ? $A \$ \$(i, j a)$
unfolding reduce-a-eq using $i$ i-not-a i-not-b ja $A$ by auto
also have $\ldots=A \$ \$(i, j a)$ using $i i$-not- $a$ i-not-b $j a A$ by auto
also have $\ldots=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i-m, j a)$
by (smt $D$ append-rows-nth $A^{\prime} A$-def atLeastLessThan-iff carrier-matD (1) i ja less-irrefl-nat nat-SN.compat)
finally show ?reduce-a $\$ \$(i, j a)=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i-m, j a)$.
qed
have reduce-b-eq: ?reduce- $b=$ Matrix.mat (dim-row ?reduce-a) (dim-col ?reduce-a)
( $\lambda(i, k)$. if $i=b \wedge k \in$ set ys then if $k=0 \wedge D$ dvd ?reduce-a $\$ \$(i, k)$ then $D$ else ?reduce-a $\$ \$(i, k)$ gmod $D$ else ?reduce-a $\$ \$(i, k))$
by (rule reduce-row-mod-D-abs[OF reduce-a-B'-D-b-mn], unfold ys-def, insert D-ge0, auto)
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ ? reduce- $b=$ $P$ *? reduce- $a$
by (rule reduce-row-mod-D-abs-invertible-mat [OF reduce-a-B'-D-b-mn], insert ys-def, auto)
from this obtain $Q$ where $Q: Q \in$ carrier-mat $(m+n)(m+n)$ and inv- $Q$ : invertible-mat $Q$
and reduce-b- $Q$-reduce: ?reduce- $b=Q *$ ?reduce- $a$ by blast
have reduce-b-eq-reduce: ?reduce-b $=($ reduce-abs a b $D A)$
proof (rule eq-matI)
show dr-eq: dim-row ?reduce- $b=$ dim-row $($ reduce-abs a $b \quad D A)$
and dc-eq: dim-col ?reduce-b $=$ dim-col (reduce-abs a b D A)
using reduce-preserves-dimensions by auto
fix $i$ ja assume $i$ : $i<d i m$-row (reduce-abs a b $D$ A) and $j a: j a<d i m-c o l$
(reduce-abs a b D A)
have im: $i<m+n$ using $A$ reduce-preserves-dimensions(3) by auto
have $j a-n: j a<n$ using $A$ ja reduce-preserves-dimensions(4) by auto
show ?reduce-b \$\$ $(i, j a)=($ reduce-abs a b D A) \$\$ $(i, j a)$
proof (cases ( $i \neq a \wedge i \neq b)$ )
case True
have ?reduce-b $\$ \$(i, j a)=$ ?reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by (smt True dr-eq dc-eq i index-mat(1) ja prod.simps(2) reduce-row-mod-D-preserves-dimensions-abs)
also have $\ldots=? A \$ \$(i, j a)$
by (smt A True carrier-matD(2) dim-col-mat(1) dim-row-mat(1) $i$ in-dex-mat(1) ja-n
reduce-a-eq reduce-preserves-dimensions(3) split-conv)
also have $\ldots=A \$ \$(i, j a)$ using $A$ True im ja-n by auto
also have $\ldots=($ reduce-abs a b D A) $\$ \$(i, j a)$ unfolding reduce-alt-def-not0[OF
Aaj pquvd]
using im ja-n A True by auto
finally show ?thesis .
next
case False note $a$-or- $b=$ False
show ?thesis
proof (cases $i=a$ )
case True note $i a=$ True
hence $i$-not- $b: i \neq b$ using $a b$ by auto
show ?thesis
proof $($ cases abs $((p * A \$ \$(a, j a)+q * A \$ \$(b, j a)))>D)$
case True note ge-D = True
have $j a-i n-x s: j a \in$ set $x s$
unfolding $x s$-def using True ja-n im a $A$ unfolding set-filter by auto have 1: ?reduce-b $\$ \$(i, j a)=$ ? reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by (smt ab dc-eq dim-row-mat(1) dr-eq i ia index-mat(1) ja prod.simps(2) reduce-b-eq reduce-row-mod-D-preserves-dimensions-abs(2))
show ?thesis
proof (cases $j a=0 \wedge D d v d p * A \$ \$(a, j a)+q * A \$ \$(b, j a))$
case True
have ?reduce-a $\$ \$(i, j a)=D$
unfolding reduce-a-eq using True ab a-or-b i-not-b ja-n im a A ja-in-xs
False by auto
also have $\ldots=($ reduce-abs a b D A) \$ $\$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd]
using True $a$-or-b i-not-b ja-n im A False ge-D
by auto
finally show ?thesis using 1 by simp
next
case False
have ?reduce-a $\$ \$(i, j a)=? A \$ \$(i, j a) \operatorname{gmod} D$
unfolding reduce-a-eq using True ab a-or-b i-not-b ja-n im a A ja-in-xs
False by auto
also have $\ldots=($ reduce-abs a b D A) $\$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd] using True a-or-b i-not-b $j a-n$ im A False by auto
finally show ?thesis using 1 by simp
qed
next
case False
have $j a$-in-xs: $j a \notin$ set $x s$
unfolding xs-def using False ja-n im a $A$ unfolding set-filter by auto have ?reduce-b $\$ \$(i, j a)=$ ?reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by (smt ab dc-eq dim-row-mat(1) dr-eq i ia index-mat(1) ja prod.simps(2) reduce-b-eq reduce-row-mod-D-preserves-dimensions-abs(2))
also have $\ldots=? A \$ \$(i, j a)$
unfolding reduce-a-eq using False ab a-or-b i-not-b ja-n im a A ja-in-xs by auto
also have $\ldots=($ reduce-abs a b D A) $\$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd] using False a-or-b i-not-b ja-n im $A$ by auto
finally show ?thesis.
qed
next
case False note $i$-not- $a=$ False
have $i$-drb: $i<d i m$-row ?reduce- $b$
and $i$-dra: $i<$ dim-row ?reduce- $a$
and ja-drb: ja <dim-col ?reduce-b
and ja-dra: ja <dim-col ?reduce-a using reduce-carrier[OF A] i ja A dr-eq $d c-e q$ by auto
have $i b$ : $i=b$ using False $a-o r-b$ by auto
show ?thesis
proof $($ cases abs $((u * A \$ \$(a, j a)+v * A \$ \$(b, j a)))>D)$
case True note $g e-D=$ True
have ja-in-ys: ja set ys
unfolding ys-def using True False ib ja-n im a b A unfolding set-filter
by auto
have ?reduce-b $\$ \$(i, j a)=($ if $j a=0 \wedge D$ dvd ? reduce-a $\$ \$(i, j a)$ then $D$ else ?reduce-a $\$ \$(i, j a)$ gmod $D)$
unfolding reduce-b-eq using $i$-not-a True ja ja-in-ys
by (smt i-dra ja-dra a-or-b index-mat(1) prod.simps(2))
also have $\ldots=($ if $j a=0 \wedge D$ dvd ?reduce-a $\$ \$(i, j a)$ then $D$ else ? $A \$ \$(i$, ja) $\operatorname{gmod} D)$
unfolding reduce-a-eq using True ab a-or-b ib False ja-n im a A ja-in-ys by auto
also have $\ldots=($ reduce-abs a b $D A) \$ \$(i, j a)$
proof (cases $j a=0 \wedge D$ dvd ?reduce-a $\$ \$(i, j a)$ )
case True
have ja0: ja=0 using True by auto
have $u * A \$ \$(a, j a)+v * A \$ \$(b, j a)=0$
unfolding euclid-ext2-works[OF pquvd[symmetric]] ja0
by (smt euclid-ext2-works[OF pquvd[symmetric]] more-arith-simps(11)

```
mult.commute mult-minus-left)
 hence abs-0: abs((u*A$$(a,ja)+v*A$$(b,ja)))=0 by auto
 show ?thesis using abs-0 D-ge0 ge-D by linarith
 next
 case False
 then show ?thesis
 unfolding reduce-alt-def-not0[OF Aaj pquvd] using True ge-D False
a-or-b ib ja-n im A
 using i-not-a by auto
 qed
 finally show ?thesis.
 next
 case False
 have ja-in-ys: ja \not\in set ys
 unfolding ys-def using i-not-a False ib ja-n im a b A unfolding set-filter
by auto
 have ?reduce-b $$ (i,ja) = ?reduce-a $$ (i,ja) unfolding reduce-b-eq
 using i-dra ja-dra ja-in-ys by auto
 also have ... =?A $$ (i,ja)
 unfolding reduce-a-eq using False ab a-or-b i-not-a ja-n im a A by
auto
 also have ... =u*A$$(a,ja)+v*A$$(b,ja)
 unfolding reduce-a-eq using False ab a-or-b i-not-a ja-n im a A ja-in-ys
by auto
 also have ... = (reduce-abs a b D A) $$ (i,ja)
 unfolding reduce-alt-def-not0[OF Aaj pquvd]
 using False a-or-b i-not-a ja-n im A by auto
 finally show ?thesis.
 qed
 qed
 qed
 qed
 have inv-QPBM: invertible-mat (}Q*P*\mathrm{ ?BM)
 by (meson BM P Q inv-P inv-Q invertible-bezout invertible-mult-JNF mult-carrier-mat)
 moreover have (Q*P*?BM) \in carrier-mat (m+n) (m+n) using BM P Q
by auto
 moreover have (reduce-abs a b D A) =(Q*P*?BM)*A
 proof -
 have ? BM * A =?A using }\mp@subsup{A}{}{\prime}-BZ-A by auto
 hence }P*(?BM*A)=\mathrm{ ? reduce-a using reduce-a-PA by auto
 hence }Q*(P*(?BM*A))=\mathrm{ ?reduce-b using reduce-b-Q-reduce by auto
 thus ?thesis using reduce-b-eq-reduce
 by (smt A A'-BZ-A A-carrier BM P Q assoc-mult-mat mn mult-carrier-mat
reduce-a-PA)
 qed
 ultimately show ?thesis by blast
qed
```

lemma reduce-element-mod-D-case-m':
assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B: B \in$ carrier-mat $n n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a \leq m$ and $j: j<n$
and $m n: m>=n$ and $B 1: B \$ \$(j, j)=D$ and $B 2:\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$(j\right.$, $\left.j^{\prime}\right)=0$ )
and $D 0: D>0$
shows reduce-element-mod-D A a j D m = Matrix.mat (dim-row A) (dim-col A)
$(\lambda(i, k)$. if $i=a \wedge k=j$ then if $j=0$ then if $D \operatorname{dvd} A \$ \$(i, k)$ then $D$ else $A \$ \$(i, k)$ else $A \$ \$(i, k) \operatorname{gmod} D$ else $A \$ \$(i, k))($ is $-=? A)$
proof (rule eq-matI)
have $j m$ : $j<m$ using $m n j$ by auto
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime} B m n$ by simp
fix $i j a$ assume $i: i<d i m-r o w$ ? $A$ and $j a: j a<d i m-c o l$ ? $A$
show reduce-element-mod-D A a j D m $\$ \$(i, j a)=? A \$ \$(i, j a)$
proof (cases $i=a$ )
case False
have reduce-element-mod-D A a j D $m=($ if $j=0$ then if $D$ dvd $A \$ \$(a, j)$ then addrow $(-((A \$ \$(a, j)$ gdiv $D))+1) a(j+m) A$ else $A$ else addrow $(-((A \$ \$(a, j)$ gdiv $D))) a(j+m) A)$
unfolding reduce-element-mod-D-def by simp
also have $\ldots \$ \$(i, j a)=A \$ \$(i, j a)$ unfolding mat-addrow-def using False $j a i$ by auto
also have $\ldots=$ ? $A \$ \$(i, j a)$ using False using $i j a$ by auto
finally show ?thesis.

## next

case True note $i a=$ True
have reduce-element-mod-D A a j D m $=($ if $j=0$ then if $D$ dvd $A \$ \$(a, j)$ then addrow $(-((A \$ \$(a, j)$ gdiv $D))+1)$ $a(j+m) A$ else $A$ else addrow $(-((A \$ \$(a, j)$ gdiv $D))) a(j+m) A)$
unfolding reduce-element-mod-D-def by simp
also have $\ldots \$(i, j a)=? A \$ \$(i, j a)$
proof (cases $j a=j$ )
case True note $j a-j=$ True
have $A \$ \$(j+m, j a)=B \$ \$(j, j a)$
by (rule append-rows-nth2[OF $A^{\prime}-A$-def $]$, insert j ja $A B$ mn, auto)
also have $\ldots=D$ using True $j m n B 1 B 2 B$ by auto
finally have $A-j a-j a D: A \$ \$(j+m, j a)=D$.
show ?thesis
proof (cases $j=0 \wedge D \operatorname{dvd} A \$ \$(a, j))$
case True
have 1: reduce-element-mod-D A ajD $m=$ addrow $(-((A \$ \$(a, j)$ gdiv $D))$ $+1) a(j+m) A$
using True ia ja-j unfolding reduce-element-mod-D-def by auto also have $\ldots \$ \$(i, j a)=(-(A \$ \$(a, j)$ gdiv $D)+1) * A \$ \$(j+m, j a)+$

```
A $$ (i,ja)
 unfolding mat-addrow-def using True ja-j ia
 using A ij by auto
 also have ... = D
 proof -
 have A$$(i,ja)+D*-(A$$ (i,ja) gdiv D)=0
 using True ia ja-j using D0 by force
 then show ?thesis
 by (metis A-ja-jaD ab-semigroup-add-class.add-ac(1) add.commute
add-right-imp-eq ia int-distrib(2)
 ja-j more-arith-simps(3) mult.commute mult-cancel-right1)
 qed
 also have ... = ?A $$ (i,ja) using True ia A i j ja-j by auto
 finally show ?thesis
 using True 1 by auto
 next
 case False
 show ?thesis
 proof (cases j=0)
 case True
 then show ?thesis
 using False i ja by auto
 next
 case False
 have ?A $$ (i,ja)=A$$(i,ja) gmod D using True ia A ij False by
auto
 also have ... = A $$ (i,ja) - ((A $$ (i,ja) gdiv D) * D)
 by (subst gmod-gdiv[OF D0], auto)
 also have ... = - (A$$ (a,j) gdiv D)*A$$ (j+m,ja)+A$$ (i,ja)
 unfolding A-ja-jaD by (simp add: True ia)
 finally show ?thesis
 using A False True i ia j by auto
 qed
 qed
 next
 case False
 have A$$(j+m,ja)=B$$ (j,ja)
 by (rule append-rows-nth2[OF A' - A-def], insert j mn ja A B, auto)
 also have ... = 0 using False using A a mn ja j B2 by force
 finally have A-am-ja0:A $$(j+m,ja)=0.
 then show ?thesis using False i ja by fastforce
 qed
 finally show ?thesis .
 qed
next
 show dim-row (reduce-element-mod-D A a j D m) = dim-row ?A
 and dim-col (reduce-element-mod-D A a j D m) = dim-col ?A
 using reduce-element-mod-D-def by auto
qed
```

lemma reduce-element-mod-D-abs-case-m':
assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B: B \in$ carrier-mat $n n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a \leq m$ and $j: j<n$
and $m n: m>=n$ and $B 1: B \$ \$(j, j)=D$ and $B 2:\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$(j\right.$, $\left.j^{\prime}\right)=0$ )
and $D 0: D>0$
shows reduce-element-mod-D-abs A ajD m=Matrix.mat (dim-row A) (dim-col A)
$(\lambda(i, k)$. if $i=a \wedge k=j$ then if $j=0 \wedge D$ dvd $A \$ \$(i, k)$ then $D$ else $A \$ \$(i, k) \operatorname{gmod} D$ else $A \$ \$(i, k))($ is $-=? A)$
proof (rule eq-matI)
have $j m$ : $j<m$ using $m n j$ by auto
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime} B m n$ by simp
fix $i j a$ assume $i: i<d i m-r o w ? A$ and $j a: j a<d i m-c o l$ ? $A$
show reduce-element-mod-D-abs A a j D m $\$ \$(i, j a)=? A \$ \$(i, j a)$
proof (cases $i=a$ )
case False
have reduce-element-mod- D-abs $A$ a $j D m=($ if $j=0 \wedge D \operatorname{dvd} A \$ \$(a, j)$
then addrow $(-((A \$ \$(a, j)$ gdiv $D))+1) a(j+m) A$
else addrow $(-((A \$ \$(a, j)$ gdiv $D))) a(j+m) A)$
unfolding reduce-element-mod-D-abs-def by simp
also have $\ldots \$ \$(i, j a)=A \$ \$(i, j a)$ unfolding mat-addrow-def using False $j a i$ by auto
also have $\ldots=$ ? $A \$ \$(i, j a)$ using False using $i j a$ by auto
finally show ?thesis .
next
case True note $i a=$ True
have reduce-element-mod-D-abs $A$ a $j D m$
$=($ if $j=0 \wedge D$ dvd $A \$ \$(a, j)$ then addrow $(-((A \$ \$(a, j)$ gdiv $D))+1)$ a $(j$ $+m) A$
else addrow $(-((A \$ \$(a, j)$ gdiv $D))) a(j+m) A)$
unfolding reduce-element-mod-D-abs-def by simp
also have $\ldots \$ \$(i, j a)=$ ? $A \$ \$(i, j a)$
proof (cases ja $=j$ )
case True note $j a-j=$ True
have $A \$ \$(j+m, j a)=B \$ \$(j, j a)$
by (rule append-rows-nth2 $\left[O F A^{\prime}-A\right.$-def $]$, insert j ja $A B$ mn, auto)
also have $\ldots=D$ using True $j m n B 1$ B2 B by auto
finally have $A-j a-j a D: A \$ \$(j+m, j a)=D$.
show ?thesis
proof (cases $j=0 \wedge D \operatorname{dvd} A \$ \$(a, j))$
case True
have 1: reduce-element-mod-D-abs A a j D m =addrow (-((A\$\$(a,j) gdiv $D))+1) a(j+m) A$
using True ia ja-j unfolding reduce-element-mod-D-abs-def by auto
also have $\ldots \$ \$(i, j a)=(-(A \$ \$(a, j)$ gdiv $D)+1) * A \$ \$(j+m, j a)+$ A $\$ \$(i, j a)$
unfolding mat-addrow-def using True ja-j ia
using $A i j$ by auto
also have $\ldots=D$
proof -
have $A \$ \$(i, j a)+D *-(A \$ \$(i, j a)$ gdiv $D)=0$
using True ia ja-j using D0 by force
then show ?thesis
by (metis A-ja-jaD ab-semigroup-add-class.add-ac(1) add.commute add-right-imp-eq ia int-distrib(2)
ja-j more-arith-simps(3) mult.commute mult-cancel-right1)
qed
also have $\ldots=$ ? A $\$ \$(i, j a)$ using True ia $A i j j a-j$ by auto
finally show ?thesis
using True 1 by auto
next
case False have ? $A \$ \$(i, j a)=A \$ \$(i, j a)$ gmod $D$ using True ia $A$ i $j$ False by auto

$$
\text { also have } \ldots=A \$ \$(i, j a)-((A \$ \$(i, j a) \text { gdiv } D) * D)
$$

by (subst gmod-gdiv[OF D0], auto)
also have $\ldots=-(A \$ \$(a, j)$ gdiv $D) * A \$ \$(j+m, j a)+A \$ \$(i, j a)$
unfolding $A-j a-j a D$ by (simp add: True ia)
finally show ?thesis using A False True $i$ ia $j$ by auto

## qed

next
case False
have $A \$ \$(j+m, j a)=B \$ \$(j, j a)$
by (rule append-rows-nth2[OF $A^{\prime}-A$-def $]$, insert $j$ mn ja $A B$, auto)
also have $\ldots=0$ using False using $A$ a mn ja $j$ B2 by force
finally have $A$-am-ja0: $A \$ \$(j+m, j a)=0$.
then show ?thesis using False i ja by fastforce
qed
finally show ?thesis.
qed
next
show dim-row (reduce-element-mod-D-abs A ajDm)=dim-row ?A
and dim-col (reduce-element-mod-D-abs A ajD m) =dim-col ?A
using reduce-element-mod-D-abs-def by auto
qed
lemma reduce-row-mod-D-case-m':
assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B \in$ carrier-mat $n n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m$ and $a<m$
and $j: \forall j \in$ set $x s . j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$\left(j, j^{\prime}\right)\right.$

$$
=0)
$$

and d: distinct $x s$ and $m \geq n$
and $D: D>0$
shows reduce-row-mod-D A a xs $D m=$ Matrix.mat (dim-row A) (dim-col A)
$(\lambda(i, k)$. if $i=a \wedge k \in$ set xs then if $k=0$ then if $D \operatorname{dvd} A \$ \$(i, k)$ then $D$ else $A \$ \$(i, k)$ else $A \$ \$(i, k) \operatorname{gmod} D$ else $A \$ \$(i, k))$
using assms
proof (induct $A$ a xs $D$ marbitrary: $A^{\prime} B$ rule: reduce-row-mod-D.induct)
case ( 1 A a D m)
then show? case by force
next
case (2 $A$ a x xs $D$ m)
note $A-A^{\prime} B=2 . p r e m s(1)$
note $B=2 . \operatorname{prems}(2)$
note $A^{\prime}=2 . \operatorname{prems}(3)$
note $a=2 . \operatorname{prems}(4)$
note $j=2 . \operatorname{prems}(5)$
note $m n=2 \cdot \operatorname{prems}(7)$
note $d=2 . \operatorname{prems}(6)$
let ?reduce-xs $=($ reduce-element-mod-D A a x $D$ m)
have reduce-xs-carrier: ?reduce-xs $\in$ carrier-mat $(m+n) n$
by (metis 2.prems(1) 2.prems(2) 2.prems(3) add.right-neutral append-rows-def
carrier-matD carrier-mat-triv index-mat-four-block(2,3) index-zero-mat(2,3) reduce-element-mod-D-preserves-dimensions)
have 1: reduce-row-mod-D A a (x \# xs) D m
= reduce-row-mod-D ?reduce-xs a xs $D m$ by simp
have 2: reduce-element-mod-D A a j D m = Matrix.mat (dim-row A) (dim-col A)
$(\lambda(i, k)$. if $i=a \wedge k=j$ then if $j=0$ then if $D \operatorname{dvd} A \$ \$(i, k)$
then $D$ else $A \$ \$(i, k)$ else $A \$ \$(i, k)$ gmod $D$ else $A \$ \$(i, k))$ if $j \in$ set $(x \# x s)$
for $j$
by (rule reduce-element-mod-D-case-m' $\left[O F A-A^{\prime} B B A{ }^{\prime}\right]$, insert 2.prems that, auto)
have reduce-row-mod- $D$ ? reduce-xs a xs $D m=$
Matrix.mat (dim-row ?reduce-xs) (dim-col ?reduce-xs) $(\lambda(i, k)$. if $i=a \wedge k \in$ set xs
then if $k=0$ then if $D$ dvd ?reduce-xs $\$ \$(i, k)$ then $D$ else ?reduce-xs $\$ \$(i, k)$ else
?reduce-xs \$ $(i, k)$ gmod $D$ else ?reduce-xs $\$ \$(i, k))$
proof (rule 2.hyps $[O F-B-a-m n]$ )
let ? $A^{\prime}=$ mat-of-rows $n$ [Matrix.row (reduce-element-mod-D A ax $D$ m) i. i $\leftarrow[0 . .<m]]$
show reduce-element-mod-D A a x $D m=? A^{\prime} @_{r} B$
proof (rule matrix-append-rows-eq-if-preserves[OF reduce-xs-carrier B])
show $\forall i \in\{m . .<m+n\} . \forall j<n$. reduce-element-mod-D A a x $D$ m $\$ \$(i, j)$
$=B \$ \$(i-m, j)$
by (smt $A-A^{\prime} B A^{\prime} B$ a Metric-Arith.nnf-simps(7) add-diff-cancel-left' atLeast-LessThan-iff

```
 carrier-matD index-mat-addrow(1) index-row(1) le-add-diff-inverse2
less-diff-conv
 reduce-element-mod-D-def reduce-element-mod-D-preserves-dimensions
reduce-xs-carrier
 row-append-rows2)
 qed
qed (insert 2.prems, auto simp add: mat-of-rows-def)
also have ... = Matrix.mat (dim-row A) (dim-col A)
 (\lambda(i,k). if i=a\wedgek\in set (x#xs) then if k=0 then if D dvd A$$(i,k)
 then D else A$$(i,k) else A$$(i,k) gmod D else A$$(i,k)) (is ?lhs = ?rhs)
proof (rule eq-matI)
 show dim-row?!hs = dim-row ?rhs and dim-col ?lhs = dim-col ?rhs by auto
 fix ij assume i:i<dim-row?rhs and j:j< dim-col ?rhs
 have jn: j<n using j 2.prems by (simp add:append-rows-def)
 have xn: }x<
 by (simp add: 2.prems(5))
 show ?lhs $$ (i,j) = ?rhs $$ (i,j)
 proof (cases i=a\wedgej\in set xs)
 case True note ia-jxs=True
 have j-not-x: j\not=x using d True by auto
 show ?thesis
 proof (cases j=0 ^D dvd ?reduce-xs $$(i,j))
 case True
 have ?lhs $$ (i,j)=D
 using True i j ia-jxs by auto
 also have ... = ?rhs $$(i,j) using i j j-not-x
 by (smt 2 calculation dim-col-mat(1) dim-row-mat(1) index-mat(1)
insert-iff list.set(2) prod.simps(2) xn)
 finally show ?thesis.
 next
 case False
 show ?thesis
 proof (cases j=0)
 case True
 then show ?thesis
 by (smt (z3) 2 dim-col-mat(1) dim-row-mat(1) i index-mat(1) insert-iff
j list.set(2) old.prod.case)
 next
 case False
 have ?lhs $$ (i,j) = ? reduce-xs $$ (i,j) gmod D
 using True False i j by auto
 also have ... = A $$ (i,j) gmod D using 2[OF] j-not-x i j by auto
 also have ... = ?rhs $$ (i,j) using i j j-not-x
 using False True dim-col-mat(1) dim-row-mat(1) index-mat(1)
 list.set-intros(2) old.prod.case by auto
 finally show ?thesis.
 qed
 qed
next
```

case False
show ?thesis using $2 i j x n$
by (smt False dim-col-mat(1) dim-row-mat(1) index-mat(1) insert-iff list.set(2) prod.simps(2))
qed
qed
finally show? case using 1 by simp qed
lemma reduce-row-mod-D-abs-case-m':
assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B \in$ carrier-mat $n n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a<m$
and $j: \forall j \in$ set $x s . j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$\left(j, j^{\prime}\right)\right.$
$=0$ )
and d: distinct $x s$ and $m \geq n$
and $D: D>0$
shows reduce-row-mod-D-abs $A$ a xs $D m=$ Matrix.mat (dim-row $A$ ) (dim-col A)
( $\lambda(i, k)$. if $i=a \wedge k \in$ set xs then if $k=0 \wedge D \operatorname{dvd} A \$ \$(i, k)$ then $D$ else $A \$ \$(i, k)$ gmod $D$ else $A \$ \$(i, k))$
using assms
proof (induct $A$ a xs $D$ marbitrary: $A^{\prime} B$ rule: reduce-row-mod- $D$-abs.induct)
case ( 1 A a D m)
then show? case by force
next
case (2 $A$ a x xs $D m$ )
note $A-A^{\prime} B=2 . \operatorname{prems}(1)$
note $B=2 . \operatorname{prems}(2)$
note $A^{\prime}=2 . \operatorname{prems}(3)$
note $a=2 . \operatorname{prems}(4)$
note $j=2 . \operatorname{prems}(5)$
note $m n=2 \cdot \operatorname{prems}(7)$
note $d=2 \cdot \operatorname{prems}(6)$
let ?reduce-xs $=($ reduce-element-mod-D-abs A a x D m)
have reduce-xs-carrier: ?reduce-xs $\in$ carrier-mat $(m+n) n$
by (metis 2.prems(1) 2.prems(2) 2.prems(3) add.right-neutral append-rows-def
carrier-matD carrier-mat-triv index-mat-four-block(2,3) index-zero-mat (2,3) reduce-element-mod-D-preserves-dimensions)
have 1: reduce-row-mod-D-abs $A$ a ( $x$ \# xs) $D m$
$=$ reduce-row-mod-D-abs ?reduce-xs a xs $D m$ by simp
have 2: reduce-element-mod-D-abs $A$ a j $D m=$ Matrix.mat (dim-row $A$ ) (dim-col A)
( $\lambda(i, k)$. if $i=a \wedge k=j$ then if $j=0 \wedge D$ dvd $A \$ \$(i, k)$
then $D$ else $A \$ \$(i, k)$ gmod $D$ else $A \$ \$(i, k))$ if $j \in \operatorname{set}(x \# x s)$ for $j$
by (rule reduce-element-mod-D-abs-case-m'[OF $\left.A-A^{\prime} B B A\right]$, insert 2.prems
have reduce-row-mod-D-abs ?reduce-xs a xs $D m=$
Matrix.mat (dim-row ?reduce-xs) (dim-col ?reduce-xs) $(\lambda(i, k)$. if $i=a \wedge k \in$
set $x s$
then if $k=0 \wedge D$ dvd ? reduce-xs $\$ \$(i, k)$ then $D$ else
?reduce-xs $\$ \$(i, k)$ gmod $D$ else ?reduce-xs $\$ \$(i, k))$
proof (rule 2.hyps $[O F-B-a-m n]$ )
let ? $A^{\prime}=$ mat-of-rows $n$ [Matrix.row (reduce-element-mod-D-abs $A$ a $x$ D m)
$i . i \leftarrow[0 . .<m]]$
show reduce-element-mod-D-abs $A$ a x $D m=? A^{\prime} @_{r} B$
proof (rule matrix-append-rows-eq-if-preserves[OF reduce-xs-carrier B])
show $\forall i \in\{m . .<m+n\} . \forall j<n$. reduce-element-mod-D-abs $A$ a x $D m \$ \$(i$,
$j)=B \$ \$(i-m, j)$
by (smt $A-A^{\prime} B A^{\prime} B$ a Metric-Arith.nnf-simps(7) add-diff-cancel-left' atLeast-
LessThan-iff
carrier-matD index-mat-addrow(1) index-row(1) le-add-diff-inverse2
less-diff-conv
reduce-element-mod-D-abs-def reduce-element-mod-D-preserves-dimensions
reduce-xs-carrier
row-append-rows2)
qed
qed (insert 2.prems, auto simp add: mat-of-rows-def)
also have $\ldots=$ Matrix.mat $($ dim-row $A)(\operatorname{dim}-\operatorname{col} A)$
$(\lambda(i, k)$. if $i=a \wedge k \in \operatorname{set}(x \# x s)$ then if $k=0 \wedge D \operatorname{dvd} A \$ \$(i, k)$
then $D$ else $A \$ \$(i, k)$ gmod $D$ else $A \$ \$(i, k))($ is ?lhs $=$ ? $r h s)$
proof (rule eq-matI)
show dim-row ?lhs = dim-row ?rhs and dim-col ?lhs = dim-col ?rhs by auto
fix $i j$ assume $i$ : $i<$ dim-row ?rhs and $j: j<$ dim-col ?rhs
have $j n$ : $j<n$ using $j$ 2.prems by (simp add: append-rows-def)
have $x n: x<n$
by (simp add: 2.prems(5))
show ?lhs $\$ \$(i, j)=$ ?rhs $\$ \$(i, j)$
proof (cases $i=a \wedge j \in$ set xs)
case True note $i a-j x s=$ True
have $j$-not- $x$ : $j \neq x$ using $d$ True by auto
show ?thesis
proof (cases $j=0 \wedge D$ dvd ?reduce-xs $\$ \$(i, j)$ )
case True
have ?lhs $\$ \$(i, j)=D$
using True ij ia-jxs by auto
also have $\ldots=$ ? rhs $\$ \$(i, j)$ using $i j j$-not-x
by (smt 2 calculation dim-col-mat(1) dim-row-mat(1) index-mat(1)
insert-iff list.set(2) prod.simps(2) xn)
finally show? ?thesis.
next
case False
have ?lhs $\$ \$(i, j)=$ ? reduce-xs $\$ \$(i, j)$ gmod $D$
using True False $i j$ by auto
also have $\ldots=A \$ \$(i, j)$ gmod $D$ using $2[O F] j$-not-x $i j$ by auto

```
 also have ... = ?rhs $$ (i,j) using i j j-not-x
 by (smt False True <Matrix.mat (dim-row ?reduce-xs)
 (dim-col ?reduce-xs) (\lambda(i,k). if i=a^k\in set xs
 then if k=0^D dvd ?reduce-xs $$ (i,k)
 then D else ?reduce-xs $$ (i,k) gmod D
 else ?reduce-xs $$ (i,k)) $$ (i,j) = ?reduce-xs $$ (i,j) gmod D>
 calculation dim-col-mat(1) dim-row-mat(1) dvd-imp-gmod-0[OF〈D>
0>] index-mat(1)
 insert-iff list.set(2) gmod-0-imp-dvd prod.simps(2))
 finally show ?thesis.
 qed
 next
 case False
 show ?thesis using 2 i j xn
 by (smt False dim-col-mat(1) dim-row-mat(1) index-mat(1) insert-iff
list.set(2) prod.simps(2))
 qed
 qed
 finally show ?case using 1 by simp
qed
```


## lemma

assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B: B \in$ carrier-mat $n n$ and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: j<n$ and $m n: m \geq n$
shows reduce-element-mod-D-invertible-mat-case-m:
$\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ reduce-element-mod- $D$ A ajDm=P*A (is ?thesis1)
and reduce-element-mod-D-abs-invertible-mat-case-m:
$\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-element-mod-D-abs A a j $D m=P * A$ (is ?thesis2)
unfolding atomize-conj
proof (rule conjI; cases $j=0 \wedge D$ dvd $A \$ \$(a, j))$
case True
let $? P=$ addrow-mat $(m+n)(-(A \$ \$(a, j)$ gdiv $D)+1) a(j+m)$
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime} B m n$ by auto
have reduce-element-mod-D-abs $A$ a $j D m=$ addrow $(-(A \$ \$(a, j)$ gdiv $D)$

+ 1) $a(j+m) A$
unfolding reduce-element-mod-D-abs-def using True by auto
also have $\ldots=? P * A$ by (rule addrow-mat $[O F A]$, insert $j$ mn, auto)
finally have $r w$ : reduce-element-mod- $D$-abs $A$ a $j D m=? P * A$.
have reduce-element-mod-D $A$ a $j D m=$ addrow $(-(A \$ \$(a, j)$ gdiv $D)+1)$
$a(j+m) A$
unfolding reduce-element-mod-D-def using True by auto
also have $\ldots=? P * A$ by (rule addrow-mat $[O F A]$, insert $j$ mn, auto)
finally have reduce-element-mod-D $A$ a $j D m=? P * A$.
moreover have $? P \in$ carrier-mat $(m+n)(m+n)$ by simp
moreover have invertible-mat ?P
by (metis addrow-mat-carrier a det-addrow-mat dvd-mult-right
invertible-iff-is-unit-JNF mult.right-neutral not-add-less2 semiring-gcd-class.gcd-dvd1)
ultimately show ?thesis1 and ?thesis2 using rw by blast+


## next

case False
show ?thesis1
proof (cases $j=0$ )
case True
have reduce-element-mod-D A aj $D m=A$ unfolding reduce-element-mod- $D$-def
using False True by auto
then show? thesis
by (metis $A$-def assms(2) assms(3) carrier-append-rows invertible-mat-one
left-mult-one-mat one-carrier-mat)
next
case False
let ? $P=$ addrow-mat $(m+n)(-(A \$ \$(a, j)$ gdiv $D)) a(j+m)$
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $B A^{\prime} m n$ by auto
have reduce-element-mod-D A a j D $m=$ addrow $(-(A \$ \$(a, j)$ gdiv $D)) a$
$(j+m) A$
unfolding reduce-element-mod-D-def using False by auto
also have $\ldots=? P * A$ by (rule addrow-mat $[O F A]$, insert $j$ mn, auto)
finally have reduce-element-mod- $D$ A aj $D m=? P * A$.
moreover have ? $P \in$ carrier-mat $(m+n)(m+n)$ by simp
moreover have invertible-mat ?P
by (metis addrow-mat-carrier a det-addrow-mat dvd-mult-right
invertible-iff-is-unit-JNF mult.right-neutral not-add-less2 semiring-gcd-class.gcd-dvd1)
ultimately show ?thesis by blast
qed
show ?thesis2
proof -
let ?P $=$ addrow-mat $(m+n)(-(A \$ \$(a, j)$ gdiv $D)) a(j+m)$
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $B A^{\prime} m n$ by auto
have reduce-element-mod-D-abs $A$ a $j D m=\operatorname{addrow}(-(A \$ \$(a, j)$ gdiv $D))$
$a(j+m) A$
unfolding reduce-element-mod-D-abs-def using False by auto
also have $\ldots=? P * A$ by (rule addrow-mat $[O F A]$, insert $j$ mn, auto)
finally have reduce-element-mod-D-abs $A$ a $j D m=? P * A$.
moreover have ? $P \in$ carrier-mat $(m+n)(m+n)$ by simp
moreover have invertible-mat ?P
by (metis addrow-mat-carrier a det-addrow-mat dvd-mult-right
invertible-iff-is-unit-JNF mult.right-neutral not-add-less2 semiring-gcd-class.gcd-dvd1)
ultimately show?thesis by blast
qed
qed
lemma reduce-row-mod-D-invertible-mat-case-m:
assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B \in$ carrier-mat $n n$ and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$
and $j: \forall j \in$ set $x s . j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$\left(j, j^{\prime}\right)\right.$ $=0$ )
and $m n: m \geq n$
shows $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ reduce-row-mod-D A a xs $D m=P * A$
using assms
proof (induct $A$ a xs $D$ marbitrary: $A^{\prime} B$ rule: reduce-row-mod-D.induct)
case ( 1 A a D m)
show ?case by (rule exI[of - $\left.1_{m}(m+n)\right]$, insert 1.prems, auto simp add: ap-
pend-rows-def)
next
case (2 A a x xs D m)
note $A$-def $=2 . \operatorname{prems}(1)$
note $B=2 . \operatorname{prems}(2)$
note $A^{\prime}=2 . \operatorname{prems}(3)$
note $a=2 . \operatorname{prems}(4)$
note $j=2 . \operatorname{prems}(5)$
note $m n=2 \cdot \operatorname{prems}(6)$
let ? reduce-xs $=($ reduce-element-mod- $D A$ a $x D m)$
have 1: reduce-row-mod-D A a (x \# xs) D m
= reduce-row-mod-D ?reduce-xs a xs $D m$ by simp
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-element-mod-D A a x $D m=P * A$
by (rule reduce-element-mod-D-invertible-mat-case-m, insert 2.prems, auto)
from this obtain $P$ where $P: P \in$ carrier-mat $(m+n)(m+n)$ and inv- $P$ : invertible-mat $P$
and $R$ - $P$ : reduce-element-mod- $D A$ a $x D m=P * A$ by auto
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P$
$\wedge$ reduce-row-mod- $D$ ?reduce-xs a xs $D m=P *$ ?reduce-xs
proof (rule 2.hyps)
let ? $A^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-xs $i . i \leftarrow[0 . .<m]]$
let ? $B^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-xs $i . i \leftarrow[m . .<m+n]]$
show reduce-xs- $A^{\prime} B^{\prime}$ : ? reduce-xs =? $A^{\prime} @_{r}$ ? $B^{\prime}$
by (smt 2(2) 2(4) P R-P add.comm-neutral append-rows-def append-rows-split carrier-matD
index-mat-four-block(3) index-mult-mat(2) index-zero-mat(3) le-add1 reduce-element-mod-D-preserves-dimensions(2))
show $\forall j \in$ set $x s . j<n \wedge ? B^{\prime} \$ \$(j, j)=D \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . ? B^{\prime} \$ \$(j\right.$, $\left.j^{\prime}\right)=0$ )
proof
fix $j$ assume $j$-in-xs: $j \in$ set $x s$
have $j n$ : $j<n$ using $j$-in-xs $j$ by auto
have ? $B^{\prime} \$ \$(j, j)=$ ?reduce-xs $\$ \$(m+j, j)$
by (smt 2(7) Groups.add-ac(2) jn reduce-xs- $A^{\prime} B^{\prime}$ add-diff-cancel-left' ap-pend-rows-nth2
diff-zero length-map length-upt mat-of-rows-carrier (1) nat-SN.compat)
also have $\ldots=B \$ \$(j, j)$
by (smt 2(2) 2(5) A' P R-P add-diff-cancel-left' append-rows-def car-
rier-matD group-cancel.rule0 index-mat-addrow(1) index-mat-four-block(1) in-dex-mat-four-block $(2,3)$ index-mult-mat(2) index-zero-mat(3) jn le-add1 linorder-not-less nat-SN.plus-gt-right-mono reduce-element-mod-D-def reduce-element-mod-D-preserves-dimensions(1))
also have $\ldots=D$ using $j j$-in-xs by auto
finally have $B^{\prime}-j j$ : ? $B^{\prime} \$ \$(j, j)=D$ by auto
moreover have $\forall j^{\prime} \in\{0 . .<n\}-\{j\}$. ? $B^{\prime} \$ \$\left(j, j^{\prime}\right)=0$
proof
fix $j^{\prime}$ assume $j^{\prime}: j^{\prime} \in\{0 . .<n\}-\{j\}$
have ? $B^{\prime} \$ \$\left(j, j^{\prime}\right)=$ ? reduce-xs $\$ \$\left(m+j, j^{\prime}\right)$
by (smt mn Diff-iff j' add.commute add-diff-cancel-left'
append-rows-nth2 atLeastLessThan-iff diff-zero jn length-map length-upt
mat-of-rows-carrier(1) nat-SN.compat reduce-xs- $\left.A^{\prime} B^{\prime}\right)$
also have $\ldots=B \$ \$\left(j, j^{\prime}\right)$
by (smt 2(2) 2(5) $A^{\prime}$ Diff-iff P $R-P j^{\prime}$ add.commute add-diff-cancel-left' append-rows-def atLeastLessThan-iff carrier-matD group-cancel.rule0 index-mat-addrow(1)
index-mat-four-block index-mult-mat(2) index-zero-mat(3) jn nat-SN.plus-gt-right-mono
not-add-less2 reduce-element-mod-D-def reduce-element-mod-D-preserves-dimensions(1))
also have $\ldots=0$ using $j j$-in-xs $j^{\prime}$ by auto
finally show ? $B^{\prime} \$ \$\left(j, j^{\prime}\right)=0$.
qed
ultimately show $j<n \wedge ? B^{\prime} \$ \$(j, j)=D \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\}\right.$. ? $B^{\prime} \$ \$$
$\left.\left(j, j^{\prime}\right)=0\right)$
using $j n$ by blast
qed
show ? $A^{\prime}$ : carrier-mat $m n$ by auto
show ? $B^{\prime}$ : carrier-mat $n n$ by auto
show $a<m$ using 2.prems by auto
show $n \leq m$ using 2.prems by auto
qed
from this obtain P2 where P2: P2 $\in$ carrier-mat $(m+n)(m+n)$ and inv-P2: invertible-mat P2
and $R$-P2: reduce-row-mod- $D$ ?reduce-xs a xs $D m=P 2$ * ?reduce-xs
by auto
have invertible-mat $(P 2 * P)$ using P P2 inv-P inv-P2 invertible-mult-JNF by blast
moreover have $(P 2 * P) \in$ carrier-mat $(m+n)(m+n)$ using $P 2 P$ by auto
moreover have reduce-row-mod-D $A$ a $(x \# x s) D m=(P 2 * P) * A$
by (smt P P2 R-P R-P2 1 assoc-mult-mat carrier-matD carrier-mat-triv index-mult-mat reduce-row-mod-D-preserves-dimensions)
ultimately show? case by blast
qed
lemma reduce-row-mod-D-abs-invertible-mat-case-m:
assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B \in$ carrier-mat $n n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$
and $j: \forall j \in$ set $x s . j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$\left(j, j^{\prime}\right)\right.$ $=0$ )
and $m n: m \geq n$
shows $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-row-mod-D-abs $A$ a xs $D m=P * A$
using assms
proof (induct $A$ a xs $D$ marbitrary: $A^{\prime} B$ rule: reduce-row-mod-D-abs.induct)
case ( 1 A a $\quad D$ )
show ?case by (rule exI[of - $\left.1_{m}(m+n)\right]$, insert 1.prems, auto simp add: ap-pend-rows-def)
next
case (2 A a x xs D m)
note $A$-def $=2 . \operatorname{prems}(1)$
note $B=2 . \operatorname{prems}(2)$
note $A^{\prime}=2 . \operatorname{prems}(3)$
note $a=2 . \operatorname{prems}(4)$
note $j=2 . \operatorname{prems}(5)$
note $m n=2 . \operatorname{prems}(6)$
let ?reduce-xs $=($ reduce-element-mod-D-abs $A$ a x $D$ m)
have 1: reduce-row-mod-D-abs $A$ a $(x \# x s) D m$
$=$ reduce-row-mod-D-abs ?reduce-xs a xs $D \mathrm{~m}$ by simp
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-element-mod-D-abs $A$ a $x D m=P * A$
by (rule reduce-element-mod-D-abs-invertible-mat-case-m, insert 2.prems, auto)
from this obtain $P$ where $P: P \in$ carrier-mat $(m+n)(m+n)$ and inv- $P$ : invertible-mat $P$
and $R$ - $P$ : reduce-element-mod-D-abs $A$ a $x D m=P * A$ by auto
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P$
$\wedge$ reduce-row-mod- $D$-abs ? reduce-xs a xs $D m=P *$ ?reduce-xs
proof (rule 2.hyps)
let ? $A^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-xs i. $i \leftarrow[0 . .<m]]$
let ? $B^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-xs $i . i \leftarrow[m . .<m+n]]$
show reduce-xs- $A^{\prime} B^{\prime}$ : ? reduce-xs $=$ ? $A^{\prime} @_{r}$ ? $B^{\prime}$
by (smt 2(2) 2(4) P R-P add.comm-neutral append-rows-def append-rows-split carrier-matD
index-mat-four-block(3) index-mult-mat(2) index-zero-mat(3) le-add1 reduce-element-mod-D-preserves-dimensions(4))
show $\forall j \in$ set $x s . j<n \wedge ? B^{\prime} \$ \$(j, j)=D \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . ? B^{\prime} \$ \$(j\right.$, $\left.j^{\prime}\right)=0$ )
proof
fix $j$ assume $j$-in-xs: $j \in$ set $x s$
have $j n$ : $j<n$ using $j$-in-xs $j$ by auto
have ? $B^{\prime} \$ \$(j, j)=$ ? reduce-xs $\$ \$(m+j, j)$
by (smt 2(7) Groups.add-ac(2) jn reduce-xs- $A^{\prime} B^{\prime}$ add-diff-cancel-left' ap-pend-rows-nth2
diff-zero length-map length-upt mat-of-rows-carrier (1) nat-SN.compat)
also have $\ldots=B \$ \$(j, j)$
by (smt 2(2) 2(5) A' P R-P add-diff-cancel-left' append-rows-def car-rier-matD
group-cancel.rule0 index-mat-addrow(1) index-mat-four-block(1) in-dex-mat-four-block $(2,3)$
index-mult-mat(2) index-zero-mat(3) jn le-add1 linorder-not-less nat-SN.plus-gt-right-mono
reduce-element-mod-D-abs-def reduce-element-mod-D-preserves-dimensions(3))
also have $\ldots=D$ using $j j$-in-xs by auto
finally have $B^{\prime}-j j$ : ? $B^{\prime} \$ \$(j, j)=D$ by auto
moreover have $\forall j^{\prime} \in\{0 . .<n\}-\{j\}$. ? $B^{\prime} \$ \$\left(j, j^{\prime}\right)=0$
proof
fix $j^{\prime}$ assume $j^{\prime}: j^{\prime} \in\{0 . .<n\}-\{j\}$
have ? $B^{\prime} \$ \$\left(j, j^{\prime}\right)=$ ?reduce-xs $\$ \$\left(m+j, j^{\prime}\right)$
by (smt mn Diff-iff j' add.commute add-diff-cancel-left'
append-rows-nth2 atLeastLessThan-iff diff-zero jn length-map length-upt
mat-of-rows-carrier(1) nat-SN.compat reduce-xs- $\left.A^{\prime} B^{\prime}\right)$
also have $\ldots=B \$ \$\left(j, j^{\prime}\right)$
by (smt 2(2) 2(5) $A^{\prime}$ Diff-iff P $R$-P $j^{\prime}$ add.commute add-diff-cancel-left' append-rows-def atLeastLessThan-iff carrier-matD group-cancel.rule0 index-mat-addrow(1) index-mat-four-block index-mult-mat(2) index-zero-mat(3) jn nat-SN.plus-gt-right-mono not-add-less2 reduce-element-mod-D-abs-def reduce-element-mod-D-preserves-dimensions(3)) also have $\ldots=0$ using $j j$-in-xs $j^{\prime}$ by auto
finally show ? $B^{\prime} \$ \$\left(j, j^{\prime}\right)=0$.
qed
ultimately show $j<n \wedge ? B^{\prime} \$ \$(j, j)=D \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\}\right.$. ? $B^{\prime} \$ \$$
$\left.\left(j, j^{\prime}\right)=0\right)$
using $j n$ by blast
qed
show ? $A^{\prime}$ : carrier-mat $m n$ by auto
show ? $B^{\prime}$ : carrier-mat $n n$ by auto
show $a<m$ using 2.prems by auto
show $n \leq m$ using 2.prems by auto
qed
from this obtain P2 where P2: P2 $\in$ carrier-mat $(m+n)(m+n)$ and inv-P2: invertible-mat P2
and $R$-P2: reduce-row-mod-D-abs ?reduce-xs a xs $D m=P 2 *$ ?reduce-xs
by auto
have invertible-mat $(P 2 * P)$ using $P$ P2 inv- $P$ inv-P2 invertible-mult-JNF by blast
moreover have $(P 2 * P) \in$ carrier-mat $(m+n)(m+n)$ using $P 2 P$ by auto
moreover have reduce-row-mod-D-abs $A$ a $(x \# x s) D m=(P 2 * P) * A$
by (smt P P2 R-P R-P2 1 assoc-mult-mat carrier-matD carrier-mat-triv
index-mult-mat reduce-row-mod-D-preserves-dimensions-abs)
ultimately show ?case by blast qed
lemma reduce-row-mod-D-case-m':
assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B \in$ carrier-mat $n n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a \leq m$
and $j: \forall j \in$ set $x s . j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$\left(j, j^{\prime}\right)\right.$ $=0$ )
and $d$ : distinct $x s$ and $m \geq n$ and $0 \notin$ set $x s$ and $D>0$
shows reduce-row-mod-D A a xs $D m=$ Matrix.mat (dim-row A) (dim-col A)
$(\lambda(i, k)$. if $i=a \wedge k \in$ set xs then if $k=0$ then if $D d v d A \$ \$(i, k)$ then $D$ else $A \$ \$(i, k)$ else $A \$ \$(i, k)$ gmod $D$ else $A \$ \$(i, k))$
using assms
proof (induct $A$ a xs $D$ marbitrary: $A^{\prime} B$ rule: reduce-row-mod-D.induct)
case ( 1 A a D m)
then show ?case by force
next
case (2 $A$ a $x$ xs $D$ m)
note $A-A^{\prime} B=2 . p r e m s(1)$
note $B=2 . \operatorname{prems}(2)$
note $A^{\prime}=2 . \operatorname{prems}(3)$
note $a=2 . \operatorname{prems}(4)$
note $j=$ 2.prems(5)
note $m n=2 . \operatorname{prems}(7)$
note $d=2 . \operatorname{prems}(6)$
note zero-not-xs $=$ 2.prems(8)
let ?reduce-xs $=($ reduce-element-mod-D A a $x$ D m)
have reduce-xs-carrier: ?reduce-xs $\in$ carrier-mat $(m+n) n$ by (metis 2.prems(1) 2.prems(2) 2.prems(3) add.right-neutral append-rows-def
carrier-matD carrier-mat-triv index-mat-four-block(2,3) index-zero-mat(2,3) reduce-element-mod-D-preserves-dimensions)
have $A$ : A:carrier-mat $(m+n) n$ using $A^{\prime} B A-A^{\prime} B$ by blast
have 1: reduce-row-mod-D $A$ a $(x \# x s) D m$
= reduce-row-mod- $D$ ? reduce-xs a xs $D m$ by simp
have 2: reduce-element-mod-D $A$ a j $D m=$ Matrix.mat (dim-row A) (dim-col A)
( $\lambda(i, k)$. if $i=a \wedge k=j$ then if $j=0$ then if $D \operatorname{dvd} A \$ \$(i, k)$
then $D$ else $A \$ \$(i, k)$ else $A \$ \$(i, k)$ gmod $D$ else $A \$ \$(i, k))$ if $j \in$ set $(x \# x s)$

## for $j$

by (rule reduce-element-mod-D-case-m'[OF $\left.A-A^{\prime} B B A\right]$, insert 2.prems that, auto)
have reduce-row-mod-D ?reduce-xs a xs $D m=$

```
 Matrix.mat (dim-row ?reduce-xs) (dim-col ?reduce-xs) (\lambda(i,k). if i=a\wedgek\in
set xs
 then if k=0 then if D dvd ?reduce-xs $$ (i,k) then D else ?reduce-xs $$ (i,k)
 else ?reduce-xs $$ (i,k) gmod D else ?reduce-xs $$ (i,k))
 proof (rule 2.hyps[OF - - a - mn])
 let ? 'A' = mat-of-rows n [Matrix.row (reduce-element-mod-D A a x D m) i. i
\leftarrow [0 . . < m]]
 define 列'where B'= mat-of-rows n [Matrix.row ?reduce-xs i. i\leftarrow[m..<dim-row
A]]
 show A'\prime: ?A' : carrier-mat m n by auto
 show }\mp@subsup{B}{}{\prime}:\mp@subsup{B}{}{\prime}:\mathrm{ carrier-mat n n unfolding }\mp@subsup{B}{}{\prime}-def using mn A by aut
 show reduce-split:?reduce-xs = ? A' @ }\mp@subsup{r}{}{\prime}\mp@subsup{B}{}{\prime
 by (metis B'-def append-rows-split carrier-matD
 reduce-element-mod-D-preserves-dimensions(1) reduce-xs-carrier le-add1)
 show }\forallj\in\mathrm{ set xs. }j<n\wedge(\mp@subsup{B}{}{\prime}$$(j,j)=D)\wedge(\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}.\mp@subsup{B}{}{\prime}$$(j,\mp@subsup{j}{}{\prime}
=0)
 proof
 fix j assume j-xs: j\inset xs
 have B $$(j,j')= 列$$(j,j) if j': j}\mp@subsup{j}{}{\prime}<n\mathrm{ for }\mp@subsup{j}{}{\prime
 proof -
 have B$$(j,\mp@subsup{j}{}{\prime})=A$$(m+j,\mp@subsup{j}{}{\prime})
 by (smt A-A'B A A' Groups.add-ac(2) j-xs add-diff-cancel-left' ap-
pend-rows-def carrier-matD j'
 index-mat-four-block(1) index-mat-four-block(2,3) insert-iffj less-diff-conv
list.set(2) not-add-less1)
 also have ... = ?reduce-xs $$ (m+j,j')
 by (smt (verit, ccfv-threshold) A'" diff-add-zero index-mat-addrow(3)
neq0-conv
 a j zero-not-xs A add.commute add-diff-cancel-left' reduce-element-mod-D-def
 cancel-comm-monoid-add-class.diff-cancel carrier-matD index-mat-addrow(1)
j'
j-xs le-eq-less-or-eq less-diff-conv less-not-reft2 list.set-intros(2)
nat-SN.compat)
 also have ... = 列$$(j,\mp@subsup{j}{}{\prime})
 by (smt B A A' A-A'B B' A'' reduce-split add.commute add-diff-cancel-left'
j' not-add-less1
 append-rows-def carrier-matD index-mat-four-block j j-xs less-diff-conv
list.set-intros(2))
 finally show ?thesis.
 qed
 thus j<n\wedge B'$$(j,j)=D\wedge(\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}. B'$$(j,\mp@subsup{j}{}{\prime})=0)
using j
 by (metis Diff-iff atLeastLessThan-iff insert-iff j-xs list.simps(15))
 qed
qed (insert 2.prems, auto simp add: mat-of-rows-def)
also have ... = Matrix.mat (dim-row A) (dim-col A)
 (\lambda(i,k). if i=a\wedgek\in set (x#xs) then if k=0 then if D dvd A$$(i,k)
 then D else A$$(i,k) else A$$(i,k) gmod D else A$$(i,k)) (is ?lhs = ?rhs)
proof (rule eq-matI)
```

```
 show dim-row ?lhs = dim-row ?rhs and dim-col ?lhs = dim-col ?rhs by auto
 fix ij assume i: i<dim-row?rhs and j:j<dim-col ?rhs
 have jn: j<n using j 2.prems by (simp add: append-rows-def)
 have xn: x<n
 by (simp add: 2.prems(5))
 show ?lhs $$ (i,j) = ?rhs $$ (i,j)
 proof (cases i=a\wedgej\in set xs)
 case True note ia-jxs=True
 have j-not-x: j\not=x using d True by auto
 show ?thesis
 proof (cases j=0 ^D dvd ?reduce-xs $$(i,j))
 case True
 have ?lhs $$ (i,j)=D
 using True i j ia-jxs by auto
 also have ... = ?rhs $$ (i,j) using i j j-not-x
 by (metis 2.prems(8) True ia-jxs list.set-intros(2))
 finally show ?thesis.
 next
 case False
 show ?thesis
 by (smt (z3) 2 2.prems(8) dim-col-mat(1) dim-row-mat(1) i index-mat(1)
insert-iff j j-not-x list.set(2) old.prod.case)
 qed
 next
 case False
 show ?thesis using 2 i j xn
 by (smt (z3) 2.prems(8) False carrier-matD(2) dim-row-mat(1) index-mat(1)
 insert-iff jn list.set(2) old.prod.case reduce-element-mod-D-preserves-dimensions(2)
reduce-xs-carrier)
 qed
 qed
 finally show ?case using 1 by simp
qed
```

lemma reduce-row-mod-D-abs-case-m ${ }^{\prime \prime}$ :
assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B \in$ carrier-mat $n n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a \leq m$
and $j: \forall j \in$ set $x s . j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$\left(j, j^{\prime}\right)\right.$
$=0$ )
and d: distinct $x s$ and $m \geq n$ and $0 \notin$ set $x s$
and $D>0$
shows reduce-row-mod-D-abs $A$ a xs $D m=$ Matrix.mat (dim-row A) (dim-col
A)
$(\lambda(i, k)$. if $i=a \wedge k \in$ set $x s$ then if $k=0 \wedge D \operatorname{dvd} A \$ \$(i, k)$ then $D$
using assms
proof (induct $A$ a xs $D$ marbitrary: $A^{\prime} B$ rule: reduce-row-mod- $D$-abs.induct)
case ( 1 A a D m)
then show? case by force
next
case (2 $A$ a $x$ xs $D m$ )
note $A-A^{\prime} B=2 . \operatorname{prems}(1)$
note $B=2 . \operatorname{prems}(2)$
note $A^{\prime}=2 . \operatorname{prems}(3)$
note $a=2 . \operatorname{prems}(4)$
note $j=2 . \operatorname{prems}(5)$
note $m n=2 . \operatorname{prems}(7)$
note $d=2 \cdot \operatorname{prems}(6)$
note zero-not-xs $=$ 2.prems $(8)$
let ?reduce-xs $=($ reduce-element-mod-D-abs A a x D m)
have reduce-xs-carrier: ?reduce-xs $\in$ carrier-mat $(m+n) n$
by (metis 2.prems(1) 2.prems(2) 2.prems(3) add.right-neutral append-rows-def
carrier-matD carrier-mat-triv index-mat-four-block(2,3) index-zero-mat(2,3) reduce-element-mod-D-preserves-dimensions)
have $A$ : A:carrier-mat $(m+n) n$ using $A^{\prime} B A-A^{\prime} B$ by blast
have 1: reduce-row-mod-D-abs $A$ a $(x \# x s) D m$
$=$ reduce-row-mod- $D$-abs ?reduce-xs a xs $D \mathrm{~m}$ by simp
have 2: reduce-element-mod-D-abs A ajD m=Matrix.mat (dim-row A) (dim-col A)
$(\lambda(i, k)$. if $i=a \wedge k=j$ then if $j=0 \wedge D$ dvd $A \$ \$(i, k)$
then $D$ else $A \$ \$(i, k) \operatorname{gmod} D$ else $A \$ \$(i, k))$ if $j \in \operatorname{set}(x \# x s)$ for $j$
by (rule reduce-element-mod-D-abs-case-m' $\left[O F A-A^{\prime} B \quad B A\right]$, insert 2.prems that, auto)
have reduce-row-mod-D-abs ?reduce-xs a xs $D m=$
Matrix.mat (dim-row ?reduce-xs) (dim-col ?reduce-xs) $(\lambda(i, k)$. if $i=a \wedge k \in$ set xs
then if $k=0 \wedge D$ dvd ?reduce-xs $\$ \$(i, k)$ then $D$
else? reduce-xs $\$ \$(i, k)$ gmod $D$ else ?reduce-xs $\$ \$(i, k))$
proof (rule 2.hyps $[O F--a-m n]$ )
let ? $A^{\prime}=$ mat-of-rows $n$ [Matrix.row (reduce-element-mod-D-abs A a x D m)
$i . i \leftarrow[0 . .<m]]$
define $B^{\prime}$ where $B^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-xs $i . i \leftarrow[m . .<$ dim-row $A]$ ]
show $A^{\prime \prime}$ : ? $A^{\prime}$ : carrier-mat $m$ by auto
show $B^{\prime}: B^{\prime}$ : carrier-mat $n n$ unfolding $B^{\prime}$-def using $m n A$ by auto
show reduce-split: ?reduce-xs $=$ ? $A^{\prime} @_{r} B^{\prime}$
by (metis $B^{\prime}$-def append-rows-split carrier-matD
reduce-element-mod-D-preserves-dimensions(3) reduce-xs-carrier le-add1)
show $\forall j \in$ set $x s . j<n \wedge\left(B^{\prime} \$ \$(j, j)=D\right) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B^{\prime} \$ \$\left(j, j^{\prime}\right)\right.$ $=0$ )
proof
fix $j$ assume $j$-xs: $j \in$ set $x s$

```
 have \(B \$ \$\left(j, j^{\prime}\right)=B^{\prime} \$ \$\left(j, j^{\prime}\right)\) if \(j^{\prime}: j^{\prime}<n\) for \(j^{\prime}\)
 proof -
 have \(B \$\left(j, j^{\prime}\right)=A \$ \$\left(m+j, j^{\prime}\right)\)
 by (smt \(A\) - \(A^{\prime} B \quad A \quad A^{\prime}\) Groups.add-ac(2) \(j\)-xs add-diff-cancel-left' ap-
pend-rows-def carrier-matD \(j^{\prime}\)
 index-mat-four-block(1) index-mat-four-block (2,3) insert-iffj less-diff-conv
list.set(2) not-add-less1)
 also have \(\ldots=\) ? reduce-xs \(\$ \$\left(m+j, j^{\prime}\right)\)
 by (smt (verit, ccfv-threshold) \(A^{\prime \prime}\) diff-add-zero index-mat-addrow(3)
neq0-conv
 a j zero-not-xs A add.commute add-diff-cancel-left' reduce-element-mod-D-abs-def
 cancel-comm-monoid-add-class.diff-cancel carrier-matD index-mat-addrow(1)
\(j^{\prime}\)
 \(j\)-xs le-eq-less-or-eq less-diff-conv less-not-reft2 list.set-intros(2)
nat-SN.compat)
 also have \(\ldots=B^{\prime} \$ \$\left(j, j^{\prime}\right)\)
 by (smt \(B A A^{\prime} A-A^{\prime} B B^{\prime} A^{\prime \prime}\) reduce-split add.commute add-diff-cancel-left \({ }^{\prime}\)
\(j^{\prime}\) not-add-less 1
 append-rows-def carrier-matD index-mat-four-block j j-xs less-diff-conv
list.set-intros(2))
 finally show ?thesis .
 qed
 thus \(j<n \wedge B^{\prime} \$ \$(j, j)=D \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B^{\prime} \$ \$\left(j, j^{\prime}\right)=0\right)\)
using \(j\)
 by (metis Diff-iff atLeastLessThan-iff insert-iff j-xs list.simps(15))
 qed
qed (insert 2.prems, auto simp add: mat-of-rows-def)
also have \(\ldots=\) Matrix.mat (dim-row A) (dim-col A)
\((\lambda(i, k)\). if \(i=a \wedge k \in \operatorname{set}(x \# x s)\) then if \(k=0\) then if \(D \operatorname{dvd} A \$ \$(i, k)\)
then \(D\) else \(A \$ \$(i, k)\) else \(A \$ \$(i, k)\) gmod \(D\) else \(A \$ \$(i, k))\) (is ?lhs \(=\) ? rhs \()\)
proof (rule eq-matI)
 show dim-row ?lhs \(=\) dim-row ?rhs and dim-col ?lhs \(=\) dim-col ?rhs by auto
 fix \(i j\) assume \(i\) : \(i<\) dim-row ?rhs and \(j: j<\) dim-col ?rhs
 have \(j n\) : \(j<n\) using \(j\) 2.prems by (simp add: append-rows-def)
 have \(x n: x<n\)
 by (simp add: 2.prems(5))
 show ?lhs \(\$ \$(i, j)=\) ?rhs \(\$ \$(i, j)\)
 proof (cases \(i=a \wedge j \in\) set xs)
 case True note \(i a-j x s=\) True
 have \(j\)-not- \(x\) : \(j \neq x\) using \(d\) True by auto
 show ?thesis
 proof (cases \(j=0 \wedge D\) dvd ?reduce-xs \(\$ \$(i, j)\))
 case True
 have ?lhs \(\$ \$(i, j)=D\)
 using True ij ia-jxs by auto
 also have \(\ldots=\) ? rhs \(\$ \$(i, j)\) using \(i j j\)-not-x
 by (metis 2.prems(8) True ia-jxs list.set-intros(2))
 finally show ?thesis .
 next
```

case False
show ?thesis
by (smt (z3) 2 2.prems(8) dim-col-mat(1) dim-row-mat(1) $i \operatorname{index}-m a t(1)$ insert-iff j j-not-x list.set(2) old.prod.case)
qed
next
case False
show ?thesis using $2 i j x n$
by (smt (z3) 2.prems(8) False carrier-matD(2) dim-row-mat(1) index-mat(1)
insert-iff jn list.set(2) old.prod.case reduce-element-mod-D-preserves-dimensions(4)
reduce-xs-carrier)
qed
qed
finally show ?case using 1
by (smt (verit, ccfv-SIG) 2.prems(8) cong-mat split-conv)
qed

## lemma

assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B: B \in$ carrier-mat $n n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a \leq m$ and $j: j<n$ and $m n: m \geq n$ and $j 0$ :
$j \neq 0$
shows reduce-element-mod-D-invertible-mat-case-m':
$\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ reduce-element-mod- $D$
$A$ aj $D m=P * A$ (is?thesis1)
and reduce-element-mod-D-abs-invertible-mat-case-m':
$\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ reduce-element-mod- $D$-abs
A ajDm=P*A (is?thesis2)
proof -
let $? P=$ addrow-mat $(m+n)(-(A \$ \$(a, j) g d i v D)) a(j+m)$
have $j m$ : $j+m \neq a$ using $j 0 a$ by auto
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime} B m n$ by auto
have rw: reduce-element-mod-D A ajDm=reduce-element-mod-D-abs A ajD
m
unfolding reduce-element-mod-D-def reduce-element-mod-D-abs-def using $j 0$
by auto
have reduce-element-mod-D A a j D m=addrow $(-(A \$ \$(a, j)$ gdiv $D)) a(j$ $+m) A$
unfolding reduce-element-mod-D-def using $j 0$ by auto
also have $\ldots=? P * A$ by (rule addrow-mat $[O F A]$, insert $j$ mn, auto)
finally have reduce-element-mod-D A ajDm=?P*A.
moreover have ? $P \in$ carrier-mat $(m+n)(m+n)$ by simp
moreover have invertible-mat ? P
by (metis addrow-mat-carrier det-addrow-mat dvd-mult-right jm
invertible-iff-is-unit-JNF mult.right-neutral semiring-gcd-class.gcd-dvd1)
ultimately show ?thesis1 and ?thesis2 using rw by metis+ qed
lemma reduce-row-mod-D-invertible-mat-case-m':
assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B \in$ carrier-mat $n n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a \leq m$
and $j: \forall j \in$ set $x s . j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$\left(j, j^{\prime}\right)\right.$ $=0$ )
and $d$ : distinct $x s$ and $m n: m \geq n$ and $0 \notin$ set $x s$
shows $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-row-mod-D $A$ a xs $D m=P * A$
using assms
proof (induct $A$ a xs $D$ marbitrary: $A^{\prime} B$ rule: reduce-row-mod-D.induct)
case ( 1 A a $\quad D$ )
show ?case by (rule exI[of - $\left.1_{m}(m+n)\right]$, insert 1.prems, auto simp add: ap-
pend-rows-def)
next
case (2 $A$ a $x$ xs $D$ m)
note $A-A^{\prime} B=2 . p r e m s(1)$
note $B=2 . \operatorname{prems}(2)$
note $A^{\prime}=2 . \operatorname{prems}(3)$
note $a=2 . \operatorname{prems}(4)$
note $j=2 . \operatorname{prems}(5)$
note $m n=2 \cdot \operatorname{prems}(7)$
note $d=2 . \operatorname{prems}(6)$
note zero-not-xs $=2 . \operatorname{prems}(8)$
let ?reduce-xs $=($ reduce-element-mod-D A a x D m)
have reduce-xs-carrier: ?reduce-xs $\in$ carrier-mat $(m+n) n$
by (metis 2.prems(1) 2.prems(2) 2.prems(3) add.right-neutral append-rows-def
carrier-matD carrier-mat-triv index-mat-four-block(2,3) index-zero-mat(2,3) reduce-element-mod-D-preserves-dimensions)
have $A$ : A:carrier-mat $(m+n) n$ using $A^{\prime} B A-A^{\prime} B$ by blast
let ?reduce-xs $=($ reduce-element-mod- $D$ A a $x$ D m)
have 1: reduce-row-mod-D A a (x \# xs) D m
= reduce-row-mod-D ?reduce-xs a xs $D m$ by simp
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-element-mod-D A a x D m=P*A
by (rule reduce-element-mod-D-invertible-mat-case-m ${ }^{\prime}\left[O F A-A^{\prime} B B A A^{\prime} a-m n\right]$, insert zero-not-xs j, auto)
from this obtain $P$ where $P: P \in$ carrier-mat $(m+n)(m+n)$ and inv- $P$ : invertible-mat $P$
and $R$ - $P$ : reduce-element-mod- $D A$ a $x D=P * A$ by auto
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P$
$\wedge$ reduce-row-mod- $D$ ?reduce-xs a xs $D m=P *$ ?reduce-xs
proof (rule 2.hyps)
let ? $A^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-xs $i . i \leftarrow[0 . .<m]]$
let ? $B^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-xs $i . i \leftarrow[m . .<m+n]]$
show $B^{\prime}: ? B^{\prime} \in$ carrier-mat $n n$ by auto
show $A^{\prime \prime}$ : ? $A^{\prime}$ : carrier-mat $m$ by auto

```
 show reduce-split: ?reduce-xs = ? A' @ }\mp@subsup{}{r}{}\mathrm{ ? 'B'
 by (smt 2(2) 2(4) P R-P add.comm-neutral append-rows-def append-rows-split
carrier-matD
 index-mat-four-block(3) index-mult-mat(2) index-zero-mat(3) le-add1
reduce-element-mod-D-preserves-dimensions(2))
 show }\forallj\in\mathrm{ set xs. }j<n\wedge?\mp@subsup{B}{}{\prime}$$(j,j)=D\wedge(\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}.?\mp@subsup{B}{}{\prime}$$(j
j')}=0\mathrm{)
 proof
 fix j assume j-xs: j\in set xs
 have B$$(j,\mp@subsup{j}{}{\prime})=?\mp@subsup{B}{}{\prime}$$(j,\mp@subsup{j}{}{\prime})\mathrm{ if }\mp@subsup{j}{}{\prime}:\mp@subsup{j}{}{\prime}<n\mathrm{ for }\mp@subsup{j}{}{\prime}
 proof -
 have B$$(j,\mp@subsup{j}{}{\prime})=A$$(m+j,\mp@subsup{j}{}{\prime})
 by (smt A-A'B A A' Groups.add-ac(2) j-xs add-diff-cancel-left' ap-
pend-rows-def carrier-matD j'
 index-mat-four-block(1) index-mat-four-block(2,3) insert-iff j less-diff-conv
list.set(2) not-add-less1)
 also have ... = ?reduce-xs $$ (m+j,j)
 by (smt (verit, ccfv-SIG) not-add-less1
 a j zero-not-xs A add.commute add-diff-cancel-left' reduce-element-mod-D-def
 cancel-comm-monoid-add-class.diff-cancel carrier-matD index-mat-addrow(1)
j'
 j-xs le-eq-less-or-eq less-diff-conv less-not-refl2 list.set-intros(2)
nat-SN.compat)
 also have \ldots.=? 故$$ (j,\mp@subsup{j}{}{\prime})
 by (smt B A A' A-A'B B' A'\prime reduce-split add.commute add-diff-cancel-left'
j' not-add-less1
 append-rows-def carrier-matD index-mat-four-block j j-xs less-diff-conv
list.set-intros(2))
 finally show ?thesis .
 qed
 thus j<n\wedge? ? ''$$(j,j)=D\wedge(\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}.?\mp@subsup{B}{}{\prime}$$(j,\mp@subsup{j}{}{\prime})=0)
using j
 by (metis Diff-iff atLeastLessThan-iff insert-iff j-xs list.simps(15))
 qed
 qed (insert d zero-not-xs a mn, auto)
 from this obtain P2 where P2: P2 \in carrier-mat (m+n) (m+n) and
inv-P2: invertible-mat P2
 and R-P2: reduce-row-mod-D ?reduce-xs a xs D m= P2 * ?reduce-xs
 by auto
 have invertible-mat (P2 * P) using P P2 inv-P inv-P2 invertible-mult-JNF by
blast
 moreover have (P2 * P) \in carrier-mat (m+n) (m+n) using P2 P by auto
 moreover have reduce-row-mod-D A a (x # xs) Dm=(P2 * P)*A
 by (smt P P2 R-P R-P2 1 assoc-mult-mat carrier-matD carrier-mat-triv
 index-mult-mat reduce-row-mod-D-preserves-dimensions)
 ultimately show ?case by blast
qed
```

lemma reduce-row-mod-D-abs-invertible-mat-case-m':
assumes $A$-def: $A=A^{\prime} @_{r} B$ and $B \in$ carrier-mat $n n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a \leq m$
and $j: \forall j \in$ set $x s . j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$\left(j, j^{\prime}\right)\right.$
$=0$ )
and $d$ : distinct $x s$ and $m n: m \geq n$ and $0 \notin$ set $x s$
shows $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-row-mod-D-abs $A$ a xs $D m=P * A$
using assms
proof (induct $A$ a xs $D$ m arbitrary: $A^{\prime} B$ rule: reduce-row-mod- $D$-abs.induct)
case ( 1 A a D m)
show ?case by (rule exI [of - $1 m(m+n)]$, insert 1.prems, auto simp add: ap-
pend-rows-def)
next
case (2 $A$ a $x$ xs $D m$ )
note $A-A^{\prime} B=2 . p r e m s(1)$
note $B=2 . p r e m s(2)$
note $A^{\prime}=2 . \operatorname{prems}(3)$
note $a=2 . \operatorname{prems}(4)$
note $j=2 . \operatorname{prems}(5)$
note $m n=2 . \operatorname{prems}(7)$
note $d=2 . \operatorname{prems}(6)$
note zero-not-xs $=2 . \operatorname{prems}(8)$
let ${ }^{\text {reduce-xs }}=($ reduce-element-mod-D-abs $A$ a x $D \mathrm{~m})$
have reduce-xs-carrier: ?reduce-xs $\in$ carrier-mat $(m+n) n$
by (metis 2.prems(1) 2.prems(2) 2.prems(3) add.right-neutral append-rows-def
carrier-matD carrier-mat-triv index-mat-four-block(2,3) index-zero-mat (2,3) reduce-element-mod-D-preserves-dimensions)
have $A$ : A:carrier-mat $(m+n) n$ using $A^{\prime} B A-A^{\prime} B$ by blast
let ?reduce-xs $=($ reduce-element-mod-D-abs A a $x D m)$
have 1: reduce-row-mod-D-abs A a (x \# xs) D m
= reduce-row-mod-D-abs ?reduce-xs a xs $D \mathrm{~m}$ by simp
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$
reduce-element-mod-D-abs $A$ a $x D m=P * A$
by (rule reduce-element-mod-D-abs-invertible-mat-case-m' ${ }^{\prime}$ OF $A-A^{\prime} B B A^{\prime} a$ $m n]$,
insert zero-not-xs $j$, auto)
from this obtain $P$ where $P: P \in$ carrier-mat $(m+n)(m+n)$ and inv- $P$ : invertible-mat $P$
and $R$ - $P$ : reduce-element-mod- $D$-abs $A$ a $x D m=P * A$ by auto
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P$
$\wedge$ reduce-row-mod- $D$-abs ?reduce-xs a xs $D m=P *$ ?reduce-xs
proof (rule 2.hyps)
let ? $A^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-xs $i . i \leftarrow[0 . .<m]]$
let ? $B^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-xs $i . i \leftarrow[m . .<m+n]]$
show $B^{\prime}: ? B^{\prime} \in$ carrier-mat $n n$ by auto
show $A^{\prime \prime}: ? A^{\prime}$ : carrier-mat $m n$ by auto

```
 show reduce-split: ?reduce-xs = ? A' @ }\mp@subsup{}{r}{}\mathrm{ ? 'B'
 by (smt 2(2) 2(4)P R-P add.comm-neutral append-rows-def append-rows-split
carrier-matD
 index-mat-four-block(3) index-mult-mat(2) index-zero-mat(3) le-add1
reduce-element-mod-D-preserves-dimensions(4))
 show }\forallj\in\mathrm{ set xs. }j<n\wedge?\mp@subsup{B}{}{\prime}$$(j,j)=D\wedge(\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}.?\mp@subsup{B}{}{\prime}$$(j
j')}=0\mathrm{)
 proof
 fix j assume j-xs: j\in set xs
 have B$$(j,\mp@subsup{j}{}{\prime})=?\mp@subsup{B}{}{\prime}$$(j,\mp@subsup{j}{}{\prime})\mathrm{ if }\mp@subsup{j}{}{\prime}:\mp@subsup{j}{}{\prime}<n\mathrm{ for }\mp@subsup{j}{}{\prime}
 proof -
 have B$$(j,\mp@subsup{j}{}{\prime})=A$$(m+j,\mp@subsup{j}{}{\prime})
 by (smt A-A'B A A' Groups.add-ac(2) j-xs add-diff-cancel-left' ap-
pend-rows-def carrier-matD j'
 index-mat-four-block(1) index-mat-four-block(2,3) insert-iff j less-diff-conv
list.set(2) not-add-less1)
 also have ... = ?reduce-xs $$ (m+j,j)
 by (smt (verit, ccfv-SIG) not-add-less1
 a j zero-not-xs A add.commute add-diff-cancel-left' reduce-element-mod-D-abs-def
 cancel-comm-monoid-add-class.diff-cancel carrier-matD index-mat-addrow(1)
j'
 j-xs le-eq-less-or-eq less-diff-conv less-not-ref12 list.set-intros(2)
nat-SN.compat)
 also have ... = ? B'$$(j,\mp@subsup{j}{}{\prime})
 by (smt B A A' A-A'B B' A'\prime reduce-split add.commute add-diff-cancel-left'
j' not-add-less1
 append-rows-def carrier-matD index-mat-four-block j j-xs less-diff-conv
list.set-intros(2))
 finally show ?thesis .
 qed
 thus j<n\wedge? ?B'$$(j,j)=D\wedge(\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}.?\mp@subsup{B}{}{\prime}$$(j,\mp@subsup{j}{}{\prime})=0)
using j
 by (metis Diff-iff atLeastLessThan-iff insert-iff j-xs list.simps(15))
 qed
 qed (insert d zero-not-xs a mn, auto)
 from this obtain P2 where P2: P2 \in carrier-mat (m+n) (m+n) and
inv-P2: invertible-mat P2
 and R-P2: reduce-row-mod-D-abs ?reduce-xs a xs D m = P2 * ?reduce-xs
 by auto
 have invertible-mat (P2 * P) using P P2 inv-P inv-P2 invertible-mult-JNF by
blast
 moreover have (P2 * P) \in carrier-mat (m+n) (m+n) using P2 P by auto
 moreover have reduce-row-mod-D-abs A a (x # xs) D m=(P2 * P)*A
 by (smt P P2 R-P R-P2 1 assoc-mult-mat carrier-matD carrier-mat-triv
 index-mult-mat reduce-row-mod-D-preserves-dimensions-abs)
 ultimately show ?case by blast
qed
```

lemma reduce-invertible-mat-case-m:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $B: B \in$ carrier-mat $n n$ and $a: a<m$ and $a b: a \neq m$
and $A$-def: $A=A^{\prime} @_{r} B$
and $j: \forall j \in$ set $x s . j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$\left(j, j^{\prime}\right)\right.$ $=0$ )
and $A a j: A \$(a, 0) \neq 0$
and $m n: m \geq n$
and $n 0: 0<n$
and pquvd: $(p, q, u, v, d)=$ euclid-ext2 $(A \$ \$(a, 0))(A \$ \$(m, 0))$
and A2-def: A2 $=$ Matrix.mat $($ dim-row $A)(\operatorname{dim}-c o l A)$
$(\lambda(i, k)$. if $i=a$ then $(p * A \$ \$(a, k)+q * A \$ \$(m, k))$
else if $i=m$ then $u * A \$ \$(a, k)+v * A \$ \$(m, k)$
else $A \$ \$(i, k)$
)
and $x s$-def: $x s=[1 . .<n]$
and ys-def: ys $=[1 . .<n]$
and $j$-ys: $\forall j \in$ set $y s . j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$(j\right.$, $\left.j^{\prime}\right)=0$ )
and $D 0: D>0$
and $A m 0-D: A \$ \$(m, 0) \in\{0, D\}$
and $A m 0-D 2: A \$ \$(m, 0)=0 \longrightarrow A \$ \$(a, 0)=D$
shows $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n) \wedge$ (reduce a m $D$
A) $=P * A$
proof -
let $? A=$ Matrix.mat $($ dim-row $A)($ dim-col $A)$
$(\lambda(i, k)$. if $i=a$ then $(p * A \$ \$(a, k)+q * A \$ \$(m, k))$
else if $i=m$ then $u * A \$ \$(a, k)+v * A \$ \$(m, k)$ else $A \$ \$(i, k)$
)
have $D: D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ using $m n$ by auto
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime} B$ mn by simp
hence $A$-carrier: ? $A \in$ carrier-mat $(m+n) n$ by auto
let $? B M=$ bezout-matrix-JNF A a m 0 euclid-ext2
have $A^{\prime}-B Z-A: ? A=? B M * A$
by (rule bezout-matrix-JNF-mult-eq[OF $A^{\prime}-$ - ab $A$-def $B$ pquvd], insert a, auto)
have invertible-bezout: invertible-mat ?BM
by (rule invertible-bezout-matrix-JNF[OF A is-bezout-ext-euclid-ext2 a - Aaj], insert a n0, auto)
have BM: ?BM $\in$ carrier-mat $(m+n)(m+n)$ unfolding bezout-matrix-JNF-def
using $A$ by auto
let ?reduce- $a=$ reduce-row-mod-D ?A a xs $D \mathrm{~m}$
define $A^{\prime} 1$ where $A^{\prime} 1=$ mat-of-rows $n[$ Matrix.row ?A $i . i \leftarrow[0 . .<m]]$
define $A^{\prime 2}$ where $A^{\prime 2}=$ mat-of-rows $n[$ Matrix.row ? A $i . i \leftarrow[m . .<$ dim-row A]]
have $A-A^{\prime}-D: ? A=A^{\prime} 1 @_{r} A^{\prime} 2$ using append-rows-split $A$

```
 by (metis (no-types, lifting) A'1-def A'D-def A-carrier carrier-matD le-add1)
 have j-\mp@subsup{A}{}{\prime}1-\mp@subsup{A}{}{\prime}2:}:\forallj\in\mathrm{ set xs. }j<n\wedge A'2 $$ (j,j) = D\wedge (\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}
A'2 $$ (j, j') = 0)
 proof (rule ballI)
 fix ja assume ja: ja\inset xs
 have ja-n: ja<n using ja unfolding xs-def by auto
 have ja2: ja<dim-row A -m using A mn ja-n by auto
 have ja-m: ja<m using ja-n mn by auto
 have ja-not-0: ja\not=0 using ja unfolding xs-def by auto
 show ja<n\wedge A'2 $$ (ja,ja)=D\wedge(\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{ja}. A'2 $$ (ja, j')
=0)
 proof -
 have A'2 $$ (ja, ja)=[Matrix.row ?A i. i\leftarrow[m..<dim-row A]]!ja $v ja
 by (metis (no-types, lifting) A A'D-def add-diff-cancel-left' carrier-matD(1)
 ja-n length-map length-upt mat-of-rows-index)
 also have ... = ?A $$ (m+ja,ja) using A mn ja-n by auto
 also have \ldots.. = A $$ (m+ja, ja) using A a mn ja-n ja-not-0 by auto
 also have ... = (A' @ }\mp@subsup{|}{r}{}B)$$(m+ja,ja) unfolding A-def ..
 also have ... = B$$(ja,ja)
 by (metis B Groups.add-ac(2) append-rows-nth2 assms(1) ja-n mn
nat-SN.compat)
 also have ... = D using j ja by blast
 finally have A2-D: A'2 $$ (ja,ja)=D.
 moreover have (}\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{ja}. A'2 $$ (ja, j')=0
 proof (rule ballI)
 fix }\mp@subsup{j}{}{\prime}\mathrm{ assume j': j':{0..<n} - {ja}
 have A'2 $$ (ja, j')=[Matrix.row ?A i. i\leftarrow[m..<dim-row A]]!ja$v j'
 unfolding A'2-def by (rule mat-of-rows-index, insert j' ja-n ja2, auto)
 also have ... =?A $$(m+ja, j') using A mn ja-n j' by auto
 also have \ldots. = A $$ (m+ja, j') using A a mn ja-n ja-not-0 j' by auto
 also have ... = (}\mp@subsup{A}{}{\prime}\mp@subsup{@}{r}{}B)$$(ja+m,\mp@subsup{j}{}{\prime})\mathrm{ unfolding A-def
 by (simp add: add.commute)
 also have ... = B$$(ja, j')
 by (rule append-rows-nth2[OF A' B - ja-m ja-n], insert j', auto)
 also have ... = 0 using mn j' ja-n j ja by auto
 finally show A'2 $$ (ja, j')=0.
 qed
 ultimately show ?thesis using ja-n by simp
 qed
 qed
have reduce-a-eq: ?reduce-a = Matrix.mat (dim-row ?A) (dim-col ?A)
 (\lambda(i,k). if i=a\wedgek\in set xs then if k=0 then if D dvd ?A $$ (i,k) then D
 else ?A $$ (i,k) else ?A $$ (i,k) gmod D else ?A $$ (i,k))
proof (rule reduce-row-mod-D-case-m'[OF A-A'-D - a j-A'1-A'2 - mn D0])
 show A'2 \in carrier-mat n n using A A'2-def by auto
 show A'1 \in carrier-mat m n by (simp add: A'1-def mat-of-rows-def)
 show distinct xs using distinct-filter distinct-upt xs-def by blast
```


## qed

have reduce-a: ?reduce-a $\in$ carrier-mat $(m+n) n$ using reduce-a-eq $A$ by auto
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ ? reduce- $a=$ $P *$ ? $A$ by (rule reduce-row-mod-D-invertible-mat-case-m[OF $A-A^{\prime}-D-j^{\prime} 1-A^{\prime} 2$ $m n]$,
insert a $A A^{\prime}$ '2-def $A^{\prime} 1-d e f$, auto)
from this obtain $P$ where $P: P \in$ carrier-mat $(m+n)(m+n)$ and inv- $P$ : invertible-mat $P$
and reduce-a-PA: ?reduce- $a=P *$ ?A by blast
let ?reduce- $b=$ reduce-row-mod- $D$ ? reduce- $a$ ms $D m$
let ? $B^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-a $i . i \leftarrow[0 . .<m]]$
define reduce-a1 where reduce-a1 $=$ mat-of-rows (dim-col ?reduce-a) $[$ Matrix.row ?reduce-a $i . i \leftarrow[0 . .<m]]$
define reduce-a2 where reduce-a2 $=$ mat-of-rows (dim-col ?reduce-a) $[$ Matrix.row ?reduce-a $i . i \leftarrow[m . .<$ dim-row ?reduce-a]]
have reduce-a-split: ?reduce- $a=$ reduce-a1 $@_{r}$ reduce-a2
by (unfold reduce-a1-def reduce-a2-def, rule append-rows-split, insert mn A, auto)
have zero-notin-ys: $0 \notin$ set ys
proof -
have $m$ : $m<d i m$-row $A$ using $A n 0$ by auto
have ? $A \$ \$(m, 0)=u * A \$ \$(a, 0)+v * A \$ \$(m, 0)$ using $m n 0 a A$ by auto
also have $\ldots=0$ using pquvd
by (smt dvd-mult-div-cancel euclid-ext2-def euclid-ext2-works(3) more-arith-simps(11)
mult.commute mult-minus-left prod.sel(1) prod.sel(2) semiring-gcd-class.gcd-dvd1)
finally show ?thesis using DO unfolding ys-def by auto

## qed

have reduce-a2: reduce-a2 $\in$ carrier-mat $n$ unfolding reduce-a2-def using $A$ by auto
have reduce-a1: reduce-a1 $\in$ carrier-mat $m$ unfolding reduce-a1-def using $A$ by auto
have $j 2: \forall j \in$ set ys. $j<n \wedge$ reduce-a2 $\$ \$(j, j)=D \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\}\right.$. reduce-a2 $\left.\$ \$\left(j, j^{\prime}\right)=0\right)$
proof
fix $j$ assume $j$-in-ys: $j \in$ set ys
have $a-j m: a \neq j+m$ using $a$ by auto
have $m$-not-jm: $m \neq j+m$ using zero-notin-ys $j$-in-ys by fastforce
have $j m$ : $j+m<$ dim-row ? A using $A$-carrier $j$-in-ys unfolding ys-def by auto
have $j n$ : $j<$ dim-col ?A using $A$-carrier $j$-in-ys unfolding ys-def by auto
have $j m^{\prime}: j+m<$ dim-row $A$ using $A$-carrier $j$-in-ys unfolding ys-def by auto have $j n^{\prime}: j<\operatorname{dim}$-col $A$ using $A$-carrier $j$-in-ys unfolding ys-def by auto have reduce-a2 $\$ \$\left(j, j^{\prime}\right)=B \$ \$\left(j, j^{\prime}\right)$ if $j^{\prime}: j^{\prime}<n$ for $j^{\prime}$ proof -
have reduce-a2 $\$ \$\left(j, j^{\prime}\right)=$ ? reduce-a $\$ \$\left(j+m, j^{\prime}\right)$
by (rule append-rows-nth2[symmetric, OF reduce-a1 reduce-a2 reduce-a-split], insert $j$-in-ys mn $j^{\prime}$, auto simp add: ys-def)
also have $\ldots=? A \$ \$\left(j+m, j^{\prime}\right)$ using reduce-a-eq $j m$ jn $a$-jm $j^{\prime} A$-carrier by auto
also have $\ldots=A \$ \$\left(j+m, j^{\prime}\right)$ using $a$-jm m-not-jm $j m^{\prime} j n^{\prime} j^{\prime} A$-carrier by auto
also have $\ldots=B \$ \$\left(j, j^{\prime}\right)$
by (smt A append-rows-nth2 $A^{\prime} B A$-def mn carrier-matD(2) jn' le-Suc-ex that trans-less-add1)
finally show ?thesis .
qed
thus $j<n \wedge$ reduce-a2 $\$ \$(j, j)=D \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\}\right.$. reduce-a2 $\$ \$(j$, $\left.j^{\prime}\right)=0$ )
using $j$-ys $j$-in-ys by auto
qed
have reduce-b-eq: ? reduce-b $=$ Matrix.mat (dim-row? reduce-a) (dim-col ?reduce-a)
$(\lambda(i, k)$. if $i=m \wedge k \in$ set ys then if $k=0$ then if $D$ dvd ?reduce-a $\$ \$(i, k)$ then $D$
else ?reduce-a $\$ \$(i, k)$ else ?reduce-a $\$ \$(i, k)$ gmod $D$ else ?reduce-a $\$ \$(i$, k))
by (rule reduce-row-mod-D-case-m'[OF reduce-a-split reduce-a2 reduce-a1-j2 - mn zero-notin-ys],
insert D0, auto simp add: ys-def)
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ ? reduce- $b=$ $P *$ ?reduce- $a$
by (rule reduce-row-mod-D-invertible-mat-case-m'[OF reduce-a-split reduce-a2 reduce-a1-j2-mn zero-notin-ys],
auto simp add: ys-def)
from this obtain $Q$ where $Q: Q \in$ carrier-mat $(m+n)(m+n)$ and inv- $Q$ : invertible-mat $Q$
and reduce-b- $Q$-reduce: ? reduce- $b=Q *$ ? reduce- $a$ by blast
have reduce-b-eq-reduce: ?reduce-b $=($ reduce a m D A)
proof (rule eq-matI)
show dr-eq: dim-row ?reduce-b $=$ dim-row (reduce a m $D A$ )
and dc-eq: dim-col ? reduce-b $=$ dim-col (reduce a m D A)
using reduce-preserves-dimensions by auto
fix $i j a$ assume $i$ : $i<$ dim-row (reduce a $m D A$ ) and $j a$ : ja<dim-col (reduce a $m D A$ )
have $i m: i<m+n$ using $A$ i reduce-preserves-dimensions(1) by auto
have ja-n: ja<n using $A$ ja reduce-preserves-dimensions(2) by auto
show ?reduce-b $\$ \$(i, j a)=($ reduce a m D A) $\$ \$(i, j a)$
proof (cases $(i \neq a \wedge i \neq m)$ )
case True
have ?reduce-b $\$ \$(i, j a)=$ ?reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by (smt True dr-eq dc-eq i index-mat(1) ja prod.simps(2) reduce-row-mod-D-preserves-dimensions)
also have $\ldots=? A \$ \$(i, j a)$
by (smt A True carrier-matD(2) dim-col-mat(1) dim-row-mat(1) $i$ in-dex-mat(1) ja-n
reduce-a-eq reduce-preserves-dimensions(1) split-conv)
also have $\ldots=A \$ \$(i, j a)$ using $A$ True im ja-n by auto
also have $\ldots=($ reduce a $m D A) \$ \$(i, j a)$ unfolding reduce-alt-def-not0[OF Aaj pquvd]
using im ja-n A True by auto
finally show ?thesis.
next
case False note $a-o r-b=$ False
have $g c d$-pq: $p * A \$ \$(a, 0)+q * A \$ \$(m, 0)=\operatorname{gcd}(A \$ \$(a, 0))(A \$ \$$ $(m, 0))$
by (metis assms(10) euclid-ext2-works(1) euclid-ext2-works(2))
have $g c d-l e-D: \operatorname{gcd}(A \$ \$(a, 0))(A \$ \$(m, 0)) \leq D$
by (metis Am0-D D0 assms(17) empty-iff gcd-le1-int gcd-le2-int insert-iff)
show ?thesis
proof (cases $i=a$ )
case True note $i a=$ True
hence $i$-not- $b$ : $i \neq m$ using $a b$ by auto
have 1: ?reduce-b $\$ \$(i, j a)=$ ?reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by (smt ab dc-eq dim-row-mat(1) dr-eq i ia index-mat(1) ja prod.simps(2) reduce-b-eq reduce-row-mod-D-preserves-dimensions(2))
show ?thesis
proof (cases $j a=0$ )
case True note ja0 $=$ True
hence ja-notin-xs: $j a \notin$ set xs unfolding $x s$-def by auto
have ? reduce-a $\$ \$(i, j a)=p * A \$ \$(a, 0)+q * A \$ \$(m, 0)$
unfolding reduce-a-eq using True ja0 ab a-or-b i-not-b ja-n im a A False ja-notin-xs
by auto
also have $\ldots=($ reduce a m D A) $\$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd]
using True $a-o r-b$ i-not-b ja-n im A False
using gcd-le-D gcd-pq Am0-D Am0-D2 by auto
finally show ?thesis using 1 by auto
next
case False
hence $j a-i n-x s: j a \in$ set $x s$
unfolding xs-def using True ja-n im a $A$ unfolding set-filter by auto
have ?reduce-a $\$ \$(i, j a)=$ ? $A \$ \$(i, j a) \operatorname{gmod} D$
unfolding reduce-a-eq using True ab a-or-b i-not-b ja-n im a A ja-in-xs
False by auto
also have $\ldots=($ reduce a $m D A) \$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd] using True a-or-b i-not-b
ja-n im A False by auto
finally show ?thesis using 1 by simp
qed
next
case False note $i$-not- $a=$ False
have $i$-drb: $i<d i m$-row? ?reduce- $b$
and $i$-dra: $i<$ dim-row ? reduce- $a$
and ja-drb: ja<dim-col ?reduce-b
and ja-dra: ja<dim-col ? reduce-a using $i$ ja reduce-carrier $[O F A] A$ ja-n $i m$ by auto
have $i b$ : $i=m$ using False $a$-or- $b$ by auto
show ?thesis
proof (cases ja=0)
case True note ja0 $=$ True
have $u v: u * A \$ \$(a, j a)+v * A \$ \$(m, j a)=0$
unfolding euclid-ext2-works[OF pquvd[symmetric]] True
by (smt euclid-ext2-works[OF pquvd[symmetric]] more-arith-simps(11) mult.commute mult-minus-left)
have ?reduce-b $\$ \$(i, j a)=u * A \$ \$(a, j a)+v * A \$ \$(m, j a)$
by (smt (z3) A A-carrier True assms(4) carrier-matD $i$ ib index-mat(1) reduce-a-eq
ja-dra old.prod.case reduce-preserves-dimensions(1) zero-notin-ys reduce-b-eq
reduce-row-mod-D-preserves-dimensions)
also have $\ldots=0$ using $u v$ by blast
also have $\ldots=($ reduce a m $D A) \$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd] using True False $a$-or-b ib $j a-n$ im $A$
using $i-n o t-a$ uv by auto
finally show ?thesis by auto

## next

case False
have $j a-i n-y s: j a \in$ set ys
unfolding ys-def using False ib ja-n im a $A$ unfolding set-filter by auto
have ?reduce-b $\$ \$(i, j a)=($ if $j a=0$ then if $D$ dvd ?reduce-a $\$ \$(i, j a)$ then D
else ?reduce-a $\$ \$(i, j a)$ else ?reduce-a $\$ \$(i, j a)$ gmod $D)$ unfolding reduce-b-eq using i-not-a ja ja-in-ys by (smt $i$-dra ja-dra a-or-b index-mat(1) prod.simps(2))
also have $\ldots=($ if $j a=0$ then if $D$ dvd ?reduce-a $\$ \$(i, j a)$ then $D$ else ? A $\$ \$(i, j a)$ else ? $A \$ \$(i, j a) \operatorname{gmod} D)$
unfolding reduce-a-eq using ab a-or-b ib False ja-n im a A ja-in-ys by auto
also have $\ldots=($ reduce a m D A) $\$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd] using False a-or-b ib ja-n
$\operatorname{im} A$
using $i$-not-a by auto
finally show ?thesis.
qed
qed
qed
qed
have $r$ : ? reduce- $a=(P *$ ? BM $) * A$ using $A A^{\prime}-B Z-A B M P$ reduce- $a-P A$ by auto
have $Q * P * ? B M$ : carrier-mat $(m+n)(m+n)$ using $P B M Q$ by auto
moreover have invertible-mat $(Q * P * ? B M)$
using inv-P invertible-bezout BM P invertible-mult-JNF inv- $Q Q$ by (metis mult-carrier-mat)
moreover have (reduce a m $D A)=(Q * P *$ ? $B M) * A$ using reduce-a-eq $r$ reduce-b-eq-reduce
by (smt BM P Q assoc-mult-mat carrier-matD carrier-mat-triv dim-row-mat(1) index-mult-mat $(2,3)$ reduce-b-Q-reduce)
ultimately show ?thesis by auto qed
lemma reduce-abs-invertible-mat-case-m:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $B: B \in$ carrier-mat $n n$ and $a: a<m$ and $a b: a \neq m$
and $A$-def: $A=A^{\prime} @_{r} B$
and $j: \forall j \in$ set $x s . j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$\left(j, j^{\prime}\right)\right.$ $=0$ )
and Aaj: $A \$ \$(a, 0) \neq 0$
and $m n: m \geq n$
and $n 0: 0<n$
and pquvd: $(p, q, u, v, d)=$ euclid-ext2 $(A \$ \$(a, 0))(A \$ \$(m, 0))$
and A2-def: A2 $=$ Matrix.mat $($ dim-row $A)(\operatorname{dim}-c o l A)$
$(\lambda(i, k)$. if $i=a$ then $(p * A \$ \$(a, k)+q * A \$ \$(m, k))$
else if $i=m$ then $u * A \$ \$(a, k)+v * A \$ \$(m, k)$
else $A \$ \$(i, k)$
)
and $x s$-def: $x s=$ filter $(\lambda i$. abs $(A 2 \$ \$(a, i))>D)[0 . .<n]$
and ys-def: ys $=$ filter $(\lambda i$. abs $(A 2 \$ \$(m, i))>D)[0 . .<n]$
and j-ys: $\forall j \in$ set ys. $j<n \wedge(B \$ \$(j, j)=D) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . B \$ \$(j\right.$, $\left.j^{\prime}\right)=0$ )
and $D 0: D>0$
shows $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n) \wedge$ (reduce-abs a $m$ $D A)=P * A$
proof -
let $? A=$ Matrix.mat $($ dim-row $A)($ dim-col $A)$

```
\((\lambda(i, k)\). if \(i=a\) then \((p * A \$ \$(a, k)+q * A \$ \$(m, k))\)
 else if \(i=m\) then \(u * A \$ \$(a, k)+v * A \$ \$(m, k)\)
 else \(A \$ \$(i, k)\)
)
```

note $x s$-def $=x s$-def[unfolded A2-def]
note $y s$-def $=y s$ - $d e f[$ unfolded A2-def]
have $D: D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ using $m n$ by auto
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime} B$ mn by simp
hence $A$-carrier: ? $A \in$ carrier-mat $(m+n) n$ by auto
let $? B M=$ bezout-matrix-JNF A a m 0 euclid-ext2
have $A^{\prime}-B Z-A: ? A=? B M * A$
by (rule bezout-matrix-JNF-mult-eq[OF $A^{\prime}-$ - ab $A$-def $B$ pquvd], insert a, auto)
have invertible-bezout: invertible-mat ?BM
by (rule invertible-bezout-matrix-JNF[OF A is-bezout-ext-euclid-ext2 a - Aaj], insert a n0, auto)
have BM: ?BM $\in$ carrier-mat $(m+n)(m+n)$ unfolding bezout-matrix-JNF-def using $A$ by auto
let ?reduce-a $=$ reduce-row-mod- $D$-abs ? A a xs $D \mathrm{~m}$
define $A^{\prime} 1$ where $A^{\prime} 1=$ mat-of-rows $n[$ Matrix.row ? A $i . i \leftarrow[0 . .<m]]$
define $A^{\prime 2} 2$ where $A^{\prime} 2=$ mat-of-rows $n[$ Matrix.row ? A $i . i \leftarrow[m . .<$ dim-row A]]
have $A-A^{\prime}-D: ? A=A^{\prime} 1 @_{r} A^{\prime}{ }^{2}$ using append-rows-split $A$
by (metis (no-types, lifting) $A^{\prime} 1$-def $A^{\prime} 2$-def $A$-carrier carrier-matD le-add1)
have $j$ - $A^{\prime} 1-A^{\prime} 2: ~ \forall j \in$ set $x s . j<n \wedge A^{\prime} 2 \$ \$(j, j)=D \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\}\right.$. $\left.A^{\prime} 2 \$ \$\left(j, j^{\prime}\right)=0\right)$
proof (rule ballI)
fix $j a$ assume $j a$ : $j a \in$ set $x s$
have $j a-n: j a<n$ using $j a$ unfolding $x s$-def by auto
have ja2: ja<dim-row $A-m$ using $A m n j a-n$ by auto
have $j a-m: j a<m$ using $j a-n m n$ by auto
have abs-A-a-ja-D: $|(? A \$ \$(a, j a))|>D$ using $j a$ unfolding $x s$-def by auto
have ja-not-0: $j a \neq 0$
proof (rule ccontr, simp)
assume $j a-a$ : $j a=0$
have $A$-mja-D: $A \$ \$(m, j a)=D$
proof -
have $A \$ \$(m, j a)=\left(A^{\prime} @_{r} B\right) \$ \$(m, j a)$ unfolding $A$-def ..
also have $\ldots=B \$ \$(m-m, j a)$
by (metis $B$ append-rows-nth $A^{\prime} \operatorname{assms}(9)$ carrier-matD(1) ja-a less-add-same-cancel1 less-irrefl-nat)
also have $\ldots=B \$ \$(0,0)$ unfolding $j a-a$ by auto
also have $\ldots=D$ using $m n$ unfolding ja-a using ja-n ja j ja-a by auto finally show ?thesis.
qed
have ? $A \$ \$(a, j a)=p * A \$ \$(a, j a)+q * A \$ \$(m, j a)$ using $A$-carrier ja-n a $A$ by auto
also have $\ldots=d$ using pquvd $A$ assms(2) ja-n ja-a
by (simp add: bezout-coefficients-fst-snd euclid-ext2-def)
also have $\ldots=\operatorname{gcd}(A \$ \$(a, j a))(A \$ \$(m, j a))$
by (metis euclid-ext2-works(2) ja-a pquvd)
also have $a b s(\ldots) \leq D$ using $A-m j a-D$ by (simp add: DO)
finally have $a b s(? A \$ \$(a, j a)) \leq D$.
thus False using abs- $A-a-j a-D$ by auto
qed
show $j a<n \wedge A^{\prime} 2 \$ \$(j a, j a)=D \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j a\} . A^{\prime} 2 \mathbb{2}\left(j a, j^{\prime}\right)\right.$ $=0$ )
proof -
have A'2 \$\$ $(j a, j a)=[$ Matrix.row ? A $i . i \leftarrow[m . .<$ dim-row $A]]!j a \$ v j a$ by (metis (no-types, lifting) A A'2-def add-diff-cancel-left' carrier-matD(1)
ja-n length-map length-upt mat-of-rows-index)
also have $\ldots=? A \$ \$(m+j a, j a)$ using $A m n j a-n$ by auto
also have $\ldots=A \$ \$(m+j a, j a)$ using $A$ a $m n j a-n j a-n o t-0$ by auto
also have $\ldots=\left(A^{\prime} @_{r} B\right) \$ \$(m+j a, j a)$ unfolding $A$-def ..
also have $\ldots=B \$ \$(j a, j a)$
by (metis $B$ Groups.add-ac(2) append-rows-nth2 assms(1) ja-n mn
nat-SN.compat)
also have $\ldots=D$ using $j$ ja by blast
finally have $A 2-D: A^{\prime} 2 \$ \$(j a, j a)=D$.
moreover have $\left(\forall j^{\prime} \in\{0 . .<n\}-\{j a\} . A^{\prime} 2 \$ \$\left(j a, j^{\prime}\right)=0\right)$
proof (rule balli)
fix $j^{\prime}$ assume $j^{\prime}: j^{\prime}:\{0 . .<n\}-\{j a\}$
have $A^{\prime 2} \$ \$\left(j a, j^{\prime}\right)=[$ Matrix.row ? A $i . i \leftarrow[m . .<$ dim-row $A]]!j a \$ v j^{\prime}$ unfolding $A^{\prime} 2$-def by (rule mat-of-rows-index, insert $j^{\prime}$ ja-n ja2, auto)
also have $\ldots=$ ? $A \$ \$\left(m+j a, j^{\prime}\right)$ using $A m n j a-n j^{\prime}$ by auto
also have $\ldots=A \$ \$\left(m+j a, j^{\prime}\right)$ using $A$ a $m n j a-n j a-n o t-0 j^{\prime}$ by auto
also have $\ldots=\left(A^{\prime} @_{r} B\right) \$ \$\left(j a+m, j^{\prime}\right)$ unfolding $A$-def by (simp add: add.commute)
also have $\ldots=B \$ \$\left(j a, j^{\prime}\right)$
by (rule append-rows-nth2[OF $\left.A^{\prime} B-j a-m ~ j a-n\right]$, insert $j^{\prime}$, auto)
also have $\ldots=0$ using $m n j^{\prime} j a-n j j a$ by auto
finally show $A^{\prime 2} \$ \$\left(j a, j^{\prime}\right)=0$.
qed
ultimately show ?thesis using $j a-n$ by simp qed
qed
have reduce-a-eq: ? reduce-a = Matrix.mat (dim-row ?A) (dim-col ?A)
$(\lambda(i, k)$. if $i=a \wedge k \in$ set xs then if $k=0 \wedge D$ dvd? $A \$ \$(i, k)$ then $D$ else ?A $\$ \$(i, k)$ gmod $D$ else ? A $\$ \$(i, k))$
proof (rule reduce-row-mod-D-abs-case-m' $\left[O F A-A^{\prime}-D-a j-A^{\prime} 1-A^{\prime} 2-m n D 0\right]$ )
show $A^{\prime} 2 \in$ carrier-mat $n n$ using $A A^{\prime} 2-d e f$ by auto
show $A^{\prime} 1 \in$ carrier-mat $m n$ by (simp add: $A^{\prime} 1$-def mat-of-rows-def)
show distinct xs using distinct-filter distinct-upt xs-def by blast
qed
have reduce- $a$ : ?reduce- $a \in$ carrier-mat $(m+n) n$ using reduce-a-eq $A$ by auto
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ ? reduce- $a=$ $P * ? A$
by (rule reduce-row-mod-D-abs-invertible-mat-case-m[OF $A-A^{\prime}-D--j-A^{\prime} 1-A^{\prime}{ }^{2}$ $m n]$,
insert a $A$ A'2-def $A^{\prime} 1-d e f$, auto)
from this obtain $P$ where $P: P \in \operatorname{carrier-mat}(m+n)(m+n)$ and inv- $P$ : invertible-mat $P$
and reduce- $a-P A$ : ? reduce- $a=P *$ ? A by blast
let ? reduce-b $=$ reduce-row-mod- $D$-abs ? ? $e d u c e-a ~ m$ ys $D m$
let ? $B^{\prime}=$ mat-of-rows $n[$ Matrix.row ?reduce-a i. $i \leftarrow[0 . .<m]]$
define reduce-a1 where reduce-a1 $=$ mat-of-rows (dim-col ?reduce-a) [Matrix.row ?reduce-a $i . i \leftarrow[0 . .<m]]$
define reduce-a2 where reduce-a2 $=$ mat-of-rows (dim-col ?reduce-a) $[$ Matrix.row ?reduce-a $i . i \leftarrow[m . .<$ dim-row ?reduce-a $]]$
have reduce-a-split: ?reduce- $a=$ reduce-a1 $@_{r}$ reduce-a2
by (unfold reduce-a1-def reduce-a2-def, rule append-rows-split, insert mn A, auto)
have zero-notin-ys: $0 \notin$ set ys
proof -
have $m$ : $m<d i m$-row $A$ using $A n 0$ by auto
have ? $A \$ \$(m, 0)=u * A \$ \$(a, 0)+v * A \$ \$(m, 0)$ using $m n 0 a A$ by auto
also have $\ldots=0$ using pquvd
by (smt dvd-mult-div-cancel euclid-ext2-def euclid-ext2-works(3) more-arith-simps(11) mult.commute mult-minus-left prod.sel(1) prod.sel(2) semiring-gcd-class.gcd-dvd1)
finally show ?thesis using DO unfolding ys-def by auto

## qed

have reduce-a2: reduce-a2 $\in$ carrier-mat $n n$ unfolding reduce-a2-def using $A$ by auto
have reduce-a1: reduce-a1 $\in$ carrier-mat $m$ unfolding reduce-a1-def using $A$ by auto
have $j 2: \forall j \in$ set ys. $j<n \wedge$ reduce-a2 $\$ \$(j, j)=D \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\}\right.$. reduce-a2 $\left.\$ \$\left(j, j^{\prime}\right)=0\right)$
proof
fix $j$ assume $j$-in-ys: $j \in$ set $y s$
have $a-j m: a \neq j+m$ using $a$ by auto
have $m$-not-jm: $m \neq j+m$ using zero-notin-ys $j$-in-ys by fastforce
have $j m$ : $j+m<$ dim-row ? A using $A$-carrier $j$-in-ys unfolding ys-def by auto
have jn: $j<$ dim-col ? A using $A$-carrier j-in-ys unfolding ys-def by auto
have $j m^{\prime}: j+m<$ dim-row $A$ using $A$-carrier $j$-in-ys unfolding ys-def by auto have $j n^{\prime}: j<\operatorname{dim}$-col $A$ using $A$-carrier $j$-in-ys unfolding ys-def by auto have reduce-a2 $\$ \$\left(j, j^{\prime}\right)=B \$ \$\left(j, j^{\prime}\right)$ if $j^{\prime}: j^{\prime}<n$ for $j^{\prime}$
proof -
have reduce-a2 $\$ \$\left(j, j^{\prime}\right)=$ ?reduce-a $\$ \$\left(j+m, j^{\prime}\right)$
by (rule append-rows-nth2[symmetric, OF reduce-a1 reduce-a2 reduce-a-split], insert j-in-ys mn $j^{\prime}$, auto simp add: ys-def)
also have $\ldots=? A \$ \$\left(j+m, j^{\prime}\right)$ using reduce-a-eq $j m$ jn a-jm $j^{\prime} A$-carrier by auto
also have $\ldots=A \$ \$\left(j+m, j^{\prime}\right)$ using $a$ - $j m m$-not- $j m j m^{\prime} j n^{\prime} j^{\prime} A$-carrier by auto
also have $\ldots=B \$ \$\left(j, j^{\prime}\right)$
by (smt A append-rows-nth2 $A^{\prime} B A$-def mn carrier-matD(2) $j n^{\prime}$ le-Suc-ex that trans-less-add1)
finally show ?thesis.
qed
thus $j<n \wedge$ reduce-a2 $\$ \$(j, j)=D \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\}\right.$. reduce-a2 $\$ \$(j$, $\left.j^{\prime}\right)=0$ )
using $j$-ys $j$-in-ys by auto
qed
have reduce-b-eq: ?reduce- $b=$ Matrix.mat (dim-row ?reduce-a) (dim-col ?reduce-a)
$(\lambda(i, k)$. if $i=m \wedge k \in$ set ys then if $k=0 \wedge D$ dvd ?reduce-a $\$ \$(i, k)$ then $D$ else ?reduce-a $\$ \$(i, k)$ gmod $D$ else ?reduce-a $\$ \$(i, k))$
by (rule reduce-row-mod-D-abs-case-m ${ }^{\prime \prime}[$ OF reduce-a-split reduce-a2 reduce-a1 - j2 - mn zero-notin-ys],
insert D0, auto simp add: ys-def)
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ ? reduce- $b=$ $P$ * ? reduce- $a$
by (rule reduce-row-mod-D-abs-invertible-mat-case-m'[OF reduce-a-split reduce-a2 reduce-a1-j2-mn zero-notin-ys],
auto simp add: ys-def)
from this obtain $Q$ where $Q: Q \in$ carrier-mat $(m+n)(m+n)$ and inv- $Q$ : invertible-mat $Q$
and reduce-b- $Q$-reduce: ? reduce- $b=Q *$ ? reduce- $a$ by blast
have reduce-b-eq-reduce: ?reduce-b $=($ reduce-abs a m D A)
proof (rule eq-matI)
show dr-eq: dim-row ?reduce-b $=$ dim-row (reduce-abs a m D A)
and dc-eq: dim-col ?reduce-b $=$ dim-col (reduce-abs a m D A)
using reduce-preserves-dimensions by auto
fix $i j a$ assume $i$ : $i<$ dim-row (reduce-abs a m $D A$ ) and $j a$ : ja<dim-col (reduce-abs a m D A)
have $i m$ : $i<m+n$ using $A$ i reduce-preserves-dimensions(3) by auto
have $j a-n$ : ja<n using $A$ ja reduce-preserves-dimensions(4) by auto
show ?reduce-b $\$ \$(i, j a)=($ reduce-abs a m D A) \$\$ (i,ja)
proof (cases $(i \neq a \wedge i \neq m)$ )
case True
have ?reduce-b $\$ \$(i, j a)=$ ?reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by (smt True dr-eq dc-eq i index-mat(1) ja prod.simps(2) reduce-row-mod-D-preserves-dimensions-abs)
also have $\ldots=$ ? $A \$ \$(i, j a)$
by (smt A True carrier-matD(2) dim-col-mat(1) dim-row-mat(1) $i$ in-dex-mat(1) ja-n
reduce-a-eq reduce-preserves-dimensions(3) split-conv)
also have $\ldots=A \$ \$(i, j a)$ using $A$ True im ja-n by auto
also have $\ldots=($ reduce-abs a m D A) $\$ \$(i, j a)$ unfolding reduce-alt-def-not0 $[O F$
Aaj pquvd]
using im ja-n A True by auto
finally show ?thesis .
next
case False note $a$-or- $b=$ False
show ?thesis
proof (cases $i=a$ )
case True note $i a=$ True
hence $i$-not- $b$ : $i \neq m$ using $a b$ by auto
show ?thesis
proof $($ cases abs $((p * A \$ \$(a, j a)+q * A \$ \$(m, j a)))>D)$
case True note $g e-D=$ True
have $j a-i n-x s: j a \in$ set $x s$
unfolding $x$-def using True ja-n im a $A$ unfolding set-filter by auto
have 1: ?reduce-b $\$ \$(i, j a)=$ ?reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by $(s m t a b d c$-eq dim-row-mat(1) $d r$-eq $i$ ia index-mat(1) ja prod.simps(2) reduce-b-eq reduce-row-mod-D-preserves-dimensions-abs(2))
show ?thesis
proof (cases $j a=0 \wedge D d v d p * A \$ \$(a, j a)+q * A \$ \$(m, j a))$
case True
have ?reduce-a $\$ \$(i, j a)=D$
unfolding reduce-a-eq using True ab a-or-b i-not-b ja-n im a A ja-in-xs
False by auto
also have $\ldots=($ reduce-abs a m D A) $\$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd]
using True a-or-b i-not-b ja-n im A False ge-D
by auto
finally show ?thesis using 1 by simp
next
case False
have ? reduce-a $\$ \$(i, j a)=? A \$ \$(i, j a)$ gmod $D$
unfolding reduce-a-eq using True ab a-or-b i-not-b ja-n im a A ja-in-xs
False by auto
also have $\ldots=($ reduce-abs a m D A) $\$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd] using True a-or-b i-not-b
ja-n im A False by auto
finally show?thesis using 1 by simp
qed
next
case False
have $j a$-in-xs: $j a \notin$ set $x s$
unfolding $x s$-def using False ja-n im a $A$ unfolding set-filter by auto have ?reduce-b $\$ \$(i, j a)=$ ? reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by (smt ab dc-eq dim-row-mat(1) dr-eq i ia index-mat(1) ja prod.simps(2) reduce-b-eq reduce-row-mod-D-preserves-dimensions-abs(2))
also have $\ldots=? A \$ \$(i, j a)$
unfolding reduce-a-eq using False ab a-or-b i-not-b ja-n im a A ja-in-xs by auto
also have $\ldots=($ reduce-abs a $m D A) \$ \$(i, j a)$
unfolding reduce-alt-def-notO[OF Aaj pquvd] using False a-or-b i-not-b
ja-n im $A$ by auto
finally show? thesis.
qed
next
case False note $i$-not- $a=$ False
have $i$-drb: $i<$ dim-row ?reduce- $b$
and $i$-dra: $i<$ dim-row ?reduce- $a$
and $j a-d r b: j a<d i m$-col ?reduce-b
and ja-dra: ja <dim-col ?reduce-a using $i$ ja reduce-carrier $[O F A] A$ ja-n
$i m$ by auto
have $i b$ : $i=m$ using False $a$-or- $b$ by auto
show ?thesis
proof $($ cases abs $((u * A \$ \$(a, j a)+v * A \$ \$(m, j a)))>D)$
case True note ge-D = True
have $j a-i n-y s: j a \in$ set ys
unfolding ys-def using True False ib ja-n im a $A$ unfolding set-filter by auto
have ?reduce-b $\$ \$(i, j a)=($ if $j a=0 \wedge D$ dvd ?reduce-a\$\$(i,ja) then $D$ else ?reduce-a $\$ \$(i, j a)$ gmod $D)$
unfolding reduce-b-eq using $i$-not-a True ja ja-in-ys
by (smt i-dra ja-dra a-or-b index-mat(1) prod.simps(2))
also have $\ldots=($ if $j a=0 \wedge D$ dvd ?reduce-a\$\$(i,ja) then $D$ else ? $A \$ \$(i$, ja) $\operatorname{gmod} D)$
unfolding reduce-a-eq using True ab a-or-b ib False ja-n im a A ja-in-ys by auto
also have $\ldots=($ reduce-abs a $m D A) \$ \$(i, j a)$
proof (cases $j a=0 \wedge D$ dvd ? reduce-a $\$ \$(i, j a)$ )
case True
have ja0: ja=0 using True by auto
have $u * A \$ \$(a, j a)+v * A \$ \$(m, j a)=0$
unfolding euclid-ext2-works[OF pquvd[symmetric]] ja0
by (smt euclid-ext2-works[OF pquvd[symmetric]] more-arith-simps(11) mult.commute mult-minus-left)
hence $a b s-0: a b s((u * A \$ \$(a, j a)+v * A \$ \$(m, j a)))=0$ by auto
show ?thesis using abs-0 D0 ge-D by linarith
next
case False
then show ?thesis
unfolding reduce-alt-def-not0[OF Aaj pquvd] using True ge-D False a-or-b ib ja-n im $A$
using $i$-not-a by auto
qed
finally show ?thesis.
next
case False
have ja-in-ys: $j a \notin$ set ys
unfolding ys-def using $i$-not-a False ib ja-n im a $A$ unfolding set-filter by auto
have ?reduce-b $\$ \$(i, j a)=$ ?reduce-a $\$ \$(i, j a)$ unfolding reduce-b-eq
by (smt False a-or-b dc-eq dim-row-mat(1) dr-eq i index-mat(1) ja ja-in-ys prod.simps(2) reduce-b-eq reduce-row-mod-D-preserves-dimensions-abs(2))
also have $\ldots=$ ? $A \$ \$(i, j a)$
unfolding reduce-a-eq using False ab a-or-b i-not-a ja-n im a A ja-in-ys by auto
also have $\ldots=($ reduce-abs a m D A) $\$ \$(i, j a)$
unfolding reduce-alt-def-not0[OF Aaj pquvd] using False a-or-b i-not-a ja-n im $A$ by auto
finally show ?thesis.
qed
qed

```
 qed
 qed
 have r: ?reduce-a = (P*?BM)*A using A A'
auto
 have Q*P* ?BM : carrier-mat (m+n) (m+n) using P BM Q by auto
 moreover have invertible-mat (}Q*P*\mathrm{ ?BM)
 using inv-P invertible-bezout BM P invertible-mult-JNF inv-Q Q by (metis
mult-carrier-mat)
 moreover have (reduce-abs a m D A) =(Q*P*?BM)*A using reduce-a-eq
r reduce-b-eq-reduce
 by (smt BM P Q assoc-mult-mat carrier-matD carrier-mat-triv
 dim-row-mat(1) index-mult-mat(2,3) reduce-b-Q-reduce)
 ultimately show ?thesis by auto
qed
```

lemma reduce-not0:
assumes $A: A \in$ carrier-mat $m n$ and $a: a<m$ and $a$-less- $b: a<b$ and $j: 0<n$ and $b: b<m$
and $A a j: A \$ \$(a, 0) \neq 0$ and $D 0: D \neq 0$
shows reduce a b D A $\$ \$(a, 0) \neq 0$ (is ?reduce $\$ \$(a, 0) \neq-)$
and reduce-abs a b D A $\$ \$(a, 0) \neq 0$ (is ?reduce-abs $\$ \$(a, 0) \neq-$ )
proof -
have ? reduce $\$ \$(a, 0)=($ let $r=\operatorname{gcd}(A \$ \$(a, 0))(A \$ \$(b, 0))$ in if $D d v d r$ then $D$ else $r$ )
by (rule reduce-gcd[OF A-j Aaj], insert a, simp)
also have $\ldots \neq 0$ unfolding Let-def using $D 0$
by (smt Aaj gcd-eq-0-iff gmod-0-imp-dvd)
finally show reduce abDA\$\$(a,0)$\neq 0$.
have ?reduce-abs $\$ \$(a, 0)=($ let $r=\operatorname{gcd}(A \$ \$(a, 0))(A \$ \$(b, 0))$ in
if $D<r$ then if $D$ dvd $r$ then $D$ else $r$ gmod $D$ else $r$ )
by (rule reduce-gcd[OF A-j Aaj], insert a, simp)
also have $\ldots \neq 0$ unfolding Let-def using $D 0$
by (smt Aaj gcd-eq-0-iff gmod-0-imp-dvd)
finally show reduce-abs a b D A $\$ \$(a, 0) \neq 0$.
qed
lemma reduce-below-not0:
assumes $A: A \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$
and $A a j: A \$ \$(a, 0) \neq 0$
and distinct $x s$ and $\forall x \in$ set $x s . x<m \wedge a<x$
and $D \neq 0$
shows reduce-below a xs $D A \$ \$(a, 0) \neq 0$ (is ? $R \$ \$(a, 0) \neq-)$
using assms
proof (induct a xs $D$ A arbitrary: A rule: reduce-below.induct)
case ( 1 a $D$ )
then show ?case by auto

```
next
 case (2 a x xs D A)
 note }A=2.prems(1
 note }a=2.prems(2
 note j=2.prems(3)
 note Aaj = 2.prems(4)
 note d=2.prems(5)
 note D0 = 2.prems(7)
 note x-less-xxs = 2.prems(6)
 have xm: }x<m\mathrm{ using 2.prems by auto
 have D1:D 品 1m n carrier-mat n n by simp
 obtain pquvd where pquvd: (p,q,u,v,d)= euclid-ext2 (A$$(a,0)) (A$$(x,0))
 by (metis prod-cases5)
 let ?reduce-ax = reduce a x D A
 have reduce-ax: ?reduce-ax }\in\mathrm{ carrier-mat m n
 by (metis (no-types, lifting) A carrier-matD carrier-mat-triv reduce-preserves-dimensions)
 have h: reduce-below a xs D (reduce a x D A) $$ (a,0) \not=0
 proof (rule 2.hyps)
 show reduce a x D A $$ (a,0)}\not=
 by (rule reduce-not0[OF A a-j xm Aaj D0], insert x-less-xxs, simp)
 qed (insert A a j Aaj d x-less-xxs xm reduce-ax D0, auto)
 thus ?case by auto
qed
```

lemma reduce-below-abs-not0:
assumes $A: A \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$
and $A a j: A \$ \$(a, 0) \neq 0$
and distinct $x s$ and $\forall x \in$ set $x s . x<m \wedge a<x$
and $D \neq 0$
shows reduce-below-abs a xs $D A \$ \$(a, 0) \neq 0$ (is ? $R \$ \$(a, 0) \neq-)$
using assms
proof (induct a xs D A arbitrary: A rule: reduce-below-abs.induct)
case (1 a D A)
then show ?case by auto
next
case (2 a $x$ xs $D$ A)
note $A=$ 2.prems(1)
note $a=2 \cdot \operatorname{prems}(2)$
note $j=2 \cdot \operatorname{prems}(3)$
note $A a j=2 . \operatorname{prems}(4)$
note $d=2 . \operatorname{prems}(5)$
note $D 0=2 . \operatorname{prems}(7)$
note $x$-less-xxs $=2 . p r e m s(6)$
have $x m: x<m$ using 2.prems by auto
have $D 1: D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ by simp
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid}-\operatorname{ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))$
by (metis prod-cases5)

```
 let ?reduce-ax = reduce-abs a x D A
 have reduce-ax:?reduce-ax }\in\mathrm{ carrier-mat m n
 by (metis (no-types, lifting) A carrier-matD carrier-mat-triv reduce-preserves-dimensions)
 have h: reduce-below-abs a xs D (reduce-abs a x D A) $$ (a,0) = 0
 proof (rule 2.hyps)
 show reduce-abs a x D A $$ (a,0) =0
 by (rule reduce-not0[OF A a-j xm Aaj D0], insert x-less-xxs, simp)
 qed (insert A a j Aaj d x-less-xxs xm reduce-ax D0,auto)
 thus ?case by auto
qed
```

lemma reduce-below-not0-case-m:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and $A a j: A \$ \$(a, 0) \neq 0$
and $m n: m \geq n$
and $\forall x \in$ set xs. $x<m \wedge a<x$
and $D \neq 0$
shows reduce-below $a(x s @[m]) D A \$ \$(a, 0) \neq 0($ is ? $R \$ \$(a, 0) \neq-)$
using assms
proof (induct a xs $D$ A arbitrary: A $A^{\prime}$ rule: reduce-below.induct)
case ( 1 a $D A$ )
note $A^{\prime}=1 . \operatorname{prems}(1)$
note $a=1 . \operatorname{prems}(2)$
note $n=1 . \operatorname{prems}(3)$
note $A$-def $=1 . \operatorname{prems}(4)$
note $A a j=1 \cdot \operatorname{prems}(5)$
note $m n=1 . \operatorname{prems}(6)$
note all-less-xxs $=1 . \operatorname{prems}(7)$
note $D 0=1 . \operatorname{prems}(8)$
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def by auto
have reduce-below $a([] @[m]) D A \$ \$(a, 0)=$ reduce-below $a[m] D A \$ \$(a$,
0 ) by auto
also have $\ldots=$ reduce a m $D A \$(a, 0)$ by auto
also have ... $\neq 0$
by (rule reduce-not0[OF A-an-Aaj D0], insert a n, auto)
finally show ?case .
next
case (2 a x xs D A)
note $A^{\prime}=2 . \operatorname{prems}(1)$
note $a=2 . \operatorname{prems}(2)$
note $n=2 . \operatorname{prems}(3)$
note $A$-def $=2 . \operatorname{prems}(4)$
note $A a j=2 . \operatorname{prems}(5)$
note $m n=2 . \operatorname{prems}(6)$
note $x$-less-xxs $=2 . \operatorname{prems}(7)$
note $D 0=2 . \operatorname{prems}(8)$

```
 have xm: }x<m\mathrm{ using 2.prems by auto
 have D1:D 品 1m n carrier-mat n n by simp
 have A:A\incarrier-mat (}m+n\mathrm{) n using }\mp@subsup{A}{}{\prime}A\mathrm{ -def by auto
 obtain pquvd where pquvd: (p,q,u,v,d)=euclid-ext2 (A$$(a,0)) (A$$(x,0))
 by (metis prod-cases5)
 let ?reduce-ax = reduce a x D A
 have reduce-ax: ?reduce-ax \in carrier-mat (m+n) n
 by (metis (no-types, lifting) A carrier-matD carrier-mat-triv reduce-preserves-dimensions)
 have h: reduce-below a (xs@[m]) D (reduce a x D A) $$ (a,0)\not=0
 proof (rule 2.hyps)
 show reduce a x D A $$ (a,0) =0
 by (rule reduce-not0[OF A - - - D0], insert x-less-xxs j Aaj, auto)
 let ?reduce-ax' = mat-of-rows n (map (Matrix.row ?reduce-ax) [0..<m])
 show ?reduce-ax = ?reduce-ax' @ }\mp@subsup{}{r}{}D\cdot\mp@subsup{}{m}{}\mp@subsup{1}{m}{}n\mathrm{ by (rule reduce-append-rows-eq[OF
A'A-def a xm n Aaj])
 qed (insert A a j Aaj x-less-xxs xm reduce-ax mn D0, auto)
 thus ?case by auto
qed
lemma reduce-below-abs-not0-case-m:
 assumes \mp@subsup{A}{}{\prime}:\mp@subsup{A}{}{\prime}\incarrier-mat m n and a:a<m and j:0<n
 and A-def:A = A' @ }rr(D\cdotm(1m n)
 and Aaj:A $$ (a,0) =0
 and mn:m\geqn
 and}\forallx\in\mathrm{ set xs. }x<m\wedgea<
 and D\not=0
 shows reduce-below-abs a (xs@[m]) D A $$ (a,0)\not=0(is ?R $$ (a,0)\not=-)
 using assms
proof (induct a xs D A arbitrary: A A' rule:reduce-below-abs.induct)
 case (1 a D A)
 note }\mp@subsup{A}{}{\prime}=1.prems(1
 note a = 1.prems(2)
 note n=1.prems(3)
 note A-def = 1.prems(4)
 note Aaj = 1.prems(5)
 note mn=1.prems(6)
 note all-less-xxs = 1.prems(7)
 note D0 = 1.prems(8)
 have A:A carrier-mat (m+n) n using A'A-def by auto
 have reduce-below-abs a ([]@ [m]) D A $$ (a,0) = reduce-below-abs a [m]DA
$$ (a, 0) by auto
 also have ... = reduce-abs a m D A $$ (a,0) by auto
 also have ... }=
 by (rule reduce-not0[OF A - a n-Aaj D0], insert a n, auto)
 finally show ?case.
next
 case (2 a x xs D A)
 note }\mp@subsup{A}{}{\prime}=2.prems(1
 note a = 2.prems(2)
```

```
 note n=2.prems(3)
 note }A\mathrm{ -def = 2.prems(4)
 note Aaj = 2.prems(5)
 note mn = 2.prems(6)
 note x-less-xxs = 2.prems(7)
 note D0= 2.prems(8)
 have xm: }x<m\mathrm{ using 2.prems by auto
```



```
 have A:A carrier-mat (}m+n\mathrm{) n using }\mp@subsup{A}{}{\prime}A\mathrm{ -def by auto
 obtain p quvd where pquvd: (p,q,u,v,d) = euclid-ext2 (A$$(a,0)) (A$$(x,0))
 by (metis prod-cases5)
let ?reduce-ax = reduce-abs a x D A
have reduce-ax: ?reduce-ax \in carrier-mat (m+n) n
 by (metis (no-types, lifting) A carrier-matD carrier-mat-triv reduce-preserves-dimensions)
 have h:reduce-below-abs a (xs@[m]) D (reduce-abs a x D A) $$ (a,0) = 0
 proof (rule 2.hyps)
 show reduce-abs a x D A $$ (a,0) =0
 by (rule reduce-not0[OF A - - D0], insert x-less-xxs j Aaj, auto)
 let ?reduce-ax' = mat-of-rows n (map (Matrix.row ?reduce-ax) [0..<m])
 show ?reduce-ax=?reduce-ax' @ }D=\mp@code{m}\mp@subsup{1}{m}{}n\mathrm{ by (rule reduce-append-rows-eq[OF
A'A-def a xm n Aaj])
 qed (insert A a j Aaj x-less-xxs xm reduce-ax mn D0, auto)
 thus ?case by auto
qed
```

lemma reduce-below-invertible-mat:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and $A a j: A \$ \$(a, 0) \neq 0$
and distinct $x s$ and $\forall x \in$ set $x s . x<m \wedge a<x$
and $m \geq n$
and $D>0$
shows $(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n) \wedge$ reduce-below
a xs $D A=P * A$ )
using assms
proof (induct a xs $D$ A arbitrary: $A^{\prime}$ rule: reduce-below.induct)
case ( 1 a $D$ )
then show ?case
by (metis append-rows-def carrier-matD(1) index-mat-four-block(2) reduce-below.simps(1) index-smult-mat(2) index-zero-mat(2) invertible-mat-one left-mult-one-mat' ${ }^{\prime}$
one-carrier-mat)
next
case (2 a x xs D A)
note $A^{\prime}=2 . \operatorname{prems}(1)$
note $a=2 . \operatorname{prems}(2)$
note $j=2 . \operatorname{prems}(3)$
note $A$-def $=2 . \operatorname{prems}(4)$
note $A a j=2 \cdot \operatorname{prems}(5)$
note $d=2 . \operatorname{prems}(6)$
note $x$-less-xxs $=2 . \operatorname{prems}(7)$
note $m n=2 . \operatorname{prems}(8)$
note $D$-ge0 $=2 . \operatorname{prems}(9)$
have $D 0: D \neq 0$ using $D$-ge 0 by simp
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def by auto
have $x m$ : $x<m$ using 2.prems by auto
have D1: $D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ by simp
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid}-\operatorname{ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))$
by (metis prod-cases5)
let ?reduce-ax $=$ reduce a $x D A$
have reduce-ax: ?reduce-ax $\in$ carrier-mat $(m+n) n$
by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def carrier-matD carrier-mat-triv index-mat-four-block(2,3)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
have $h:(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n)$
$\wedge$ reduce-below a xs $D($ reduce a x $D A)=P *$ reduce a $x D A$ )
proof (rule 2.hyps[OF - aj--])
let ? $A^{\prime}=$ mat-of-rows $n($ map (Matrix.row ?reduce-ax) $[0 . .<m])$
show reduce a x $D A=? A^{\prime} @_{r} D \cdot_{m} 1_{m} n$
by (rule reduce-append-rows-eq[OF $A^{\prime} A$-def a xm $\left.j A a j\right]$ )
show reduce a x $D A \$ \$(a, 0) \neq 0$
by (rule reduce-not0[OF A-j-Aaj], insert 2.prems, auto)
qed (insert mn d x-less-xxs D-ge0, auto)
from this obtain $P$ where inv- $P$ : invertible-mat $P$ and $P: P \in \operatorname{carrier-mat~(~} m$ $+n)(m+n)$
and $r b-P r$ : reduce-below a xs $D($ reduce a $x D A)=P *$ reduce a $x D$ by blast
have *: reduce-below a $(x \#$ xs $) D A=$ reduce-below a xs $D($ reduce a $x D A)$ by simp
have $\exists Q$. invertible-mat $Q \wedge Q \in$ carrier-mat $(m+n)(m+n) \wedge($ reduce a $x D$ A) $=Q * A$
by (rule reduce-invertible-mat[OF $A^{\prime}$ a $j x m-A$-def Aaj], insert 2.prems, auto)
from this obtain $Q$ where inv- $Q:$ invertible-mat $Q$ and $Q: Q \in$ carrier-mat ( $m$ $+n)(m+n)$
and $r$ - QA: reduce a $x D A=Q * A$ by blast
have invertible-mat $(P * Q)$ using inv- $P$ inv- $Q P Q$ invertible-mult-JNF by blast
moreover have $P * Q \in$ carrier-mat $(m+n)(m+n)$ using $P Q$ by auto
moreover have reduce-below a $(x \# x s) D A=(P * Q) * A$
by $($ smt $P Q *$ assoc-mult-mat carrier-matD (1) carrier-mat-triv index-mult-mat(2)
$r$ - QA rb-Pr reduce-preserves-dimensions(1))
ultimately show ?case by blast
qed
lemma reduce-below-abs-invertible-mat:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and Aaj: $A \$ \$(a, 0) \neq 0$
and distinct $x s$ and $\forall x \in$ set $x s . x<m \wedge a<x$
and $m \geq n$
and $D>0$
shows $(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n) \wedge$ reduce-below-abs a xs $D A=P * A$ )
using assms
proof (induct a xs D A arbitrary: $A^{\prime}$ rule: reduce-below-abs.induct)
case (1 a D A)
then show ?case
by (metis carrier-append-rows invertible-mat-one left-mult-one-mat one-carrier-mat reduce-below-abs.simps(1) smult-carrier-mat)
next
case (2 a x xs D A)
note $A^{\prime}=2 . \operatorname{prems}(1)$
note $a=$ 2.prems(2)
note $j=2 . \operatorname{prems}(3)$
note $A$-def $=2 . \operatorname{prems}(4)$
note $A a j=2 . \operatorname{prems}(5)$
note $d=2 . \operatorname{prems}(6)$
note $x$-less-xxs $=2 . p r e m s(7)$
note $m n=2 . \operatorname{prems}(8)$
note $D$-ge0 $=2 . \operatorname{prems}(9)$
have $D 0: D \neq 0$ using $D$-ge 0 by simp
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def by auto
have $x m$ : $x<m$ using 2.prems by auto
have $D 1: D \cdot m{ }_{m} n \in$ carrier-mat $n n$ by simp
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid-ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))$
by (metis prod-cases5)
let ?reduce-ax $=$ reduce-abs a $x D A$
have reduce-ax: ?reduce-ax $\in$ carrier-mat $(m+n) n$
by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def carrier-matD carrier-mat-triv index-mat-four-block(2,3)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
have $h:(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n)$
$\wedge$ reduce-below-abs a xs $D($ reduce-abs a $x D A)=P *$ reduce-abs a x $D A$ )
proof (rule 2.hyps[OF-aj--])
let ? $A^{\prime}=$ mat-of-rows $n($ map (Matrix.row ?reduce-ax) $[0 . .<m])$
show reduce-abs a $x D A=? A^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$
by (rule reduce-append-rows-eq[OF $A^{\prime} A$-def a xm $\left.\left.j A a j\right]\right)$
show reduce-abs a x $D A \$ \$(a, 0) \neq 0$
by (rule reduce-not0[OF A-j-Aaj], insert 2.prems, auto)
qed (insert $m n d x$-less-xxs $D$-ge 0 , auto)
from this obtain $P$ where inv- $P$ : invertible-mat $P$ and $P: P \in \operatorname{carrier-mat}$ ( $m$ $+n)(m+n)$
and rb-Pr: reduce-below-abs a xs $D$ (reduce-abs a x $D A)=P *$ reduce-abs a $x$ $D A$ by blast
have *: reduce-below-abs a (x \# xs) D A reduce-below-abs a xs $D$ (reduce-abs a $x D$ ) by $\operatorname{simp}$
have $\exists Q$. invertible-mat $Q \wedge Q \in$ carrier-mat $(m+n)(m+n) \wedge$ (reduce-abs a $x$ $D A)=Q * A$
by (rule reduce-abs-invertible-mat[OF $A^{\prime}$ a $j x m-A$-def Aaj ], insert 2.prems, auto)
from this obtain $Q$ where inv- $Q:$ invertible-mat $Q$ and $Q: Q \in$ carrier-mat ( $m$ $+n)(m+n)$
and $r$ - $Q A$ : reduce-abs a $x D A=Q * A$ by blast
have invertible-mat $(P * Q)$ using inv- $P$ inv- $Q P Q$ invertible-mult-JNF by blast
moreover have $P * Q \in$ carrier-mat $(m+n)(m+n)$ using $P Q$ by auto
moreover have reduce-below-abs a $(x \# x s) D A=(P * Q) * A$
by $($ smt $P Q *$ assoc-mult-mat carrier-matD (1) carrier-mat-triv index-mult-mat(2)
$r$-QA rb-Pr reduce-preserves-dimensions(3))
ultimately show ?case by blast
qed
lemma reduce-below-preserves:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: j<n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and Aaj: $A \$ \$(a, 0) \neq 0$
and $m n: m \geq n$
assumes $i \notin$ set $x s$ and distinct xs and $\forall x \in$ set xs. $x<m \wedge a<x$
and $i \neq a$ and $i<m+n$
and $D>0$
shows reduce-below a xs $D A \$ \$(i, j)=A \$ \$(i, j)$
using assms
proof (induct a xs D A arbitrary: $A^{\prime}$ i rule: reduce-below.induct)
case (1 a $D$ A)
then show ?case by auto
next
case (2 a x xs D A)
note $A^{\prime}=2 . \operatorname{prems}(1)$
note $a=$ 2.prems(2)
note $j=2 . \operatorname{prems}(3)$
note $A$-def $=2 . \operatorname{prems}(4)$
note $A a j=2 . \operatorname{prems}(5)$
note $m n=2 \cdot \operatorname{prems}(6)$
note $i$-set-xxs $=2 . \operatorname{prems}(7)$
note $d=2 . \operatorname{prems}(8)$
note $x x$-less-m $=2 . \operatorname{prems}(9)$
note $i a=2 . \operatorname{prems}(10)$
note $i m m=2 . \operatorname{prems}(11)$
note $D$-ge0 $=2 . \operatorname{prems}(12)$
have $D 0: D \neq 0$ using $D$-ge0 by simp
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} m n A$-def by auto

```
have xm: \(x<m\) using 2.prems by auto
have \(D 1: D \cdot{ }_{m} 1_{m} n \in\) carrier-mat \(n n\) by (simp add: mn)
obtain \(p q u v d\) where pquvd: \((p, q, u, v, d)=\operatorname{euclid}-\operatorname{ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))\)
 by (metis prod-cases5)
let ?reduce-ax \(=(\) reduce a \(x D A)\)
have reduce-ax: ?reduce-ax \(\in\) carrier-mat \((m+n) n\)
 by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def
 carrier-matD carrier-mat-triv index-mat-four-block(2,3)
 index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
have reduce-below a \((x \#\) xs) \(D A \$ \$(i, j)=\) reduce-below a xs \(D\) (reduce a x \(D\)
A) \(\$ \$(i, j)\)
 by auto
 also have \(\ldots=\) reduce a x \(D A \$ \$(i, j)\)
proof (rule 2.hyps \([O F-a j-m n--\) ia imm D-ge0])
 let ? \(A^{\prime}=\) mat-of-rows \(n(\) map (Matrix.row ?reduce-ax) \([0 . .<m])\)
 show reduce a x \(D A=\) ? \(A^{\prime} @_{r} D \cdot_{m} 1_{m} n\)
 by (rule reduce-append-rows-eq[OF \(A^{\prime} A\)-def a xm-Aaj], insert \(j\), auto)
 show \(i \notin\) set xs using \(i\)-set-xxs by auto
 show distinct xs using \(d\) by auto
 show \(\forall x \in\) set \(x s . x<m \wedge a<x\) using \(x x s\)-less- \(m\) by auto
 show reduce a \(x D A \$ \$(a, 0) \neq 0\)
 by (rule reduce-not0[OF A - - Aaj], insert 2.prems, auto)
 show ? \(A^{\prime} \in\) carrier-mat \(m\) by auto
qed
also have \(\ldots=A \$ \$(i, j)\) by (rule reduce-preserves[OF A \(j\) Aaj], insert 2.prems,
auto)
 finally show ?case .
qed
```

lemma reduce-below-abs-preserves:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: j<n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and Aaj: $A \$ \$(a, 0) \neq 0$
and $m n: m \geq n$
assumes $i \notin$ set $x s$ and distinct $x s$ and $\forall x \in$ set $x s . x<m \wedge a<x$
and $i \neq a$ and $i<m+n$
and $D>0$
shows reduce-below-abs a xs $D A \$ \$(i, j)=A \$ \$(i, j)$
using assms
proof (induct a xs D A arbitrary: A' i rule: reduce-below-abs.induct)
case ( 1 a $D$ A)
then show ?case by auto
next
case (2 a x xs D A)
note $A^{\prime}=2 . \operatorname{prems}(1)$
note $a=2 . \operatorname{prems}(2)$

```
 note \(j=2 . \operatorname{prems}(3)\)
 note \(A\)-def \(=2 . \operatorname{prems}(4)\)
 note \(A a j=2 . \operatorname{prems}(5)\)
 note \(m n=2 . \operatorname{prems}(6)\)
 note \(i\)-set-xxs \(=2 . \operatorname{prems}(7)\)
 note \(d=2 . \operatorname{prems}(8)\)
 note \(x x s\)-less-m \(=2 . \operatorname{prems}(9)\)
 note \(i a=2 . \operatorname{prems}(10)\)
 note \(\mathrm{imm}=2 . \operatorname{prems}(11)\)
 note \(D\)-ge0 \(=2 . \operatorname{prems}(12)\)
 have \(D 0: D \neq 0\) using \(D\)-ge0 by simp
 have \(A: A \in\) carrier-mat \((m+n) n\) using \(A^{\prime} m n A\)-def by auto
 have \(x m: x<m\) using 2.prems by auto
 have \(D 1: D \cdot{ }_{m} 1_{m} n \in\) carrier-mat \(n n\) by (simp add: mn)
 obtain p quvd where pquvd: \((p, q, u, v, d)=\operatorname{euclid}-\operatorname{ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))\)
 by (metis prod-cases5)
 let ? reduce-ax \(=(\) reduce-abs a \(x \mathrm{D} A)\)
 have reduce-ax: ?reduce-ax \(\in\) carrier-mat \((m+n) n\)
 by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def
 carrier-matD carrier-mat-triv index-mat-four-block \((2,3)\)
 index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
 have reduce-below-abs a \((x \#\) xs \() D A \$ \$(i, j)=\) reduce-below-abs a xs \(D\)
(reduce-abs a \(x\) D A) \(\$ \$(i, j)\)
 by auto
 also have \(\ldots=\) reduce-abs a x \(D A \$ \$(i, j)\)
 proof (rule 2.hyps[OF - aj--mn - - ia imm D-ge0])
 let ? \(A^{\prime}=\) mat-of-rows \(n(\) map (Matrix.row ?reduce-ax) \([0 . .<m])\)
 show reduce-abs a \(x D A=\) ? \(A^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n\)
 by (rule reduce-append-rows-eq[OF \(A^{\prime} A\)-def a xm-Aaj], insert \(j\), auto)
 show \(i \notin\) set \(x s\) using \(i\)-set-xxs by auto
 show distinct xs using \(d\) by auto
 show \(\forall x \in\) set \(x s . x<m \wedge a<x\) using \(x x s\)-less- \(m\) by auto
 show reduce-abs a x \(D A \$ \$(a, 0) \neq 0\)
 by (rule reduce-not0[OF A - - Aaj], insert 2.prems, auto)
 show ? \(A^{\prime} \in\) carrier-mat \(m n\) by auto
qed
also have \(\ldots=A \$ \$(i, j)\) by (rule reduce-preserves[OF A j Aaj], insert 2.prems,
auto)
 finally show ?case .
qed
```

lemma reduce-below-0:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and Aaj: $A \$ \$(a, 0) \neq 0$
and $m n: m \geq n$
assumes $i \in$ set $x s$ and distinct $x s$ and $\forall x \in$ set $x s . x<m \wedge a<x$
and $D>0$
shows reduce-below a xs D A $\$ \$(i, 0)=0$
using assms
proof (induct a xs D A arbitrary: $A^{\prime}$ i rule: reduce-below.induct)
case (1 a D A)
then show? case by auto

## next

case (2 a x xs D A)
note $A^{\prime}=2 . \operatorname{prems}(1)$
note $a=2 . p r e m s(2)$
note $j=2 . \operatorname{prems}(3)$
note $A$-def $=2 . \operatorname{prems}(4)$
note $A a j=2 . p r e m s(5)$
note $m n=2 . \operatorname{prems}(6)$
note $i$-set-xxs $=2 . \operatorname{prems}(7)$
note $d=2 . \operatorname{prems}(8)$
note $x x s$-less-m $=2 . \operatorname{prems}(9)$
note $D$-ge $0=2 . \operatorname{prems}(10)$
have $D 0: D \neq 0$ using $D$-ge 0 by simp
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} m n A$-def by auto
have $x m$ : $x<m$ using 2.prems by auto
have $D 1: D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ by (simp add: mn)
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=$ euclid-ext2 $(A \$ \$(a, 0))(A \$ \$(x, 0))$
by (metis prod-cases5)
let ?reduce-ax $=$ reduce a $x D A$
have reduce-ax: ?reduce-ax $\in$ carrier-mat $(m+n) n$
by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def carrier-matD carrier-mat-triv index-mat-four-block(2,3)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
show ?case
proof (cases $i=x$ )
case True
have reduce-below a $(x \# x s) D A \$ \$(i, 0)=$ reduce-below a xs $D$ (reduce a $x$
$D$ A) $\$ \$(i, 0)$
by auto
also have $\ldots=($ reduce a $x D A) \$ \$(i, 0)$
proof (rule reduce-below-preserves[OF - aj--mn])
let ? $A^{\prime}=$ mat-of-rows $n($ map (Matrix.row ?reduce-ax) $[0 . .<m])$
show reduce a $x D A=? A^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$
by (rule reduce-append-rows-eq[OF $A^{\prime} A$-def a xm $\left.j A a j\right]$ )
show distinct xs using $d$ by auto
show $\forall x \in$ set $x s$. $x<m \wedge a<x$ using xxs-less- $m$ by auto
show reduce a x D A $\$ \$(a, 0) \neq 0$
by (rule reduce-not0[OF A-j-Aaj], insert 2.prems, auto)
show ? $A^{\prime} \in$ carrier-mat $m n$ by auto
show $i \notin$ set $x s$ using True $d$ by auto
show $i \neq a$ using 2.prems by blast
show $i<m+n$
by (simp add: True trans-less-add1 xm )
qed (insert $D$-ge0)
also have $\ldots=0$ unfolding True by (rule reduce- $0[O F A-j-$ - Aaj], insert 2.prems, auto)
finally show ?thesis.

## next

case False note $i$-not- $x=$ False
have $h$ : reduce-below a xs $D($ reduce a $x D A) \$ \$(i, 0)=0$
proof (rule 2.hyps $[O F-a j-m n]$ )
let ? $A^{\prime}=$ mat-of-rows $n($ map (Matrix.row ?reduce-ax) $[0 . .<m])$
show reduce a x $D A=? A^{\prime} @_{r} D \cdot_{m} 1_{m} n$
proof (rule matrix-append-rows-eq-if-preserves[OF reduce-ax D1]) show $\forall i \in\{m . .<m+n\} . \forall j a<n$. ?reduce-ax $\$ \$(i, j a)=\left(D \cdot m 1_{m} n\right) \$ \$$ ( $i-m, j a$ )
proof (rule+)
fix $i j a$ assume $i: i \in\{m . .<m+n\}$ and $j a: j a<n$
have $j a-d c: j a<\operatorname{dim}-\operatorname{col} A$ and $i$-dr: $i<\operatorname{dim}$-row $A$ using $i j a A$ by auto
have $i$-not- $a$ : $i \neq a$ using $i$ a by auto
have $i$-not- $x$ : $i \neq x$ using $i x m$ by auto
have ?reduce-ax $\$ \$(i, j a)=A \$ \$(i, j a)$
unfolding reduce-alt-def-notO[OF Aaj pquvd] using ja-dc i-dr i-not-a $i$-not-x by auto
also have $\ldots=\left(\right.$ if $i<$ dim-row $A^{\prime}$ then $A^{\prime} \$ \$(i, j a)$ else $\left(D \cdot_{m}\left(1_{m}\right.\right.$ n) $) \$(i-m, j a))$
by (unfold $A$-def, rule append-rows-nth $\left[O F A^{\prime} D 1\right.$ - ja], insert $A i-d r$, simp)
also have $\ldots=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i-m, j a)$ using $i A^{\prime}$ by auto
finally show ? reduce-ax $\$ \$(i, j a)=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i-m, j a)$.
qed
qed
show $i \in$ set xs using $i$-set-xxs $i$-not-x by auto
show distinct xs using $d$ by auto
show $\forall x \in$ set xs. $x<m \wedge a<x$ using xxs-less- $m$ by auto
show reduce a $x D A \$ \$(a, 0) \neq 0$
by (rule reduce-not0[OF A-j-Aaj], insert 2.prems, auto)
show ? $A^{\prime} \in$ carrier-mat $m n$ by auto
qed (insert $D$-ge0)
have reduce-below a $(x \#$ xs $) D A \$ \$(i, 0)=$ reduce-below a xs $D$ (reduce a $x$ D A) $\$ \$(i, 0)$
by auto
also have $\ldots=0$ using $h$.
finally show ?thesis .
qed
qed
lemma reduce-below-abs-0:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and $A a j: A \$ \$(a, 0) \neq 0$
and $m n: m \geq n$

```
 assumes i\in set xs and distinct xs and }\forallx\in\mathrm{ set xs. }x<m\wedgea<
 and }D>
 shows reduce-below-abs a xs D A $$ (i,0)=0
 using assms
proof (induct a xs D A arbitrary: A' i rule: reduce-below-abs.induct)
 case (1 a D A)
 then show ?case by auto
next
 case (2 a x xs D A)
 note }\mp@subsup{A}{}{\prime}=2.prems(1
 note a = 2.prems(2)
 note j = 2.prems(3)
 note }A\mathrm{ -def = 2.prems(4)
 note Aaj = 2.prems(5)
 note mn=2.prems(6)
 note i-set-xxs = 2.prems(7)
 note d = 2.prems(8)
 note xxs-less-m = 2.prems(9)
 note D-ge0 = 2.prems(10)
 have D0: D\not=0 using D-ge0 by simp
 have A:A\incarrier-mat (m+n) n using A' mn A-def by auto
 have xm: }x<m\mathrm{ using 2.prems by auto
 have D1: D 'm 1m n carrier-mat n n by (simp add:mn)
 obtain pquvd where pquvd: (p,q,u,v,d)= euclid-ext2 (A$$(a,0)) (A$$(x,0))
 by (metis prod-cases5)
 let ?reduce-ax = reduce-abs a x D A
 have reduce-ax: ?reduce-ax \in carrier-mat (m+n) n
 by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def
 carrier-matD carrier-mat-triv index-mat-four-block(2,3)
 index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
 show ?case
 proof (cases i=x)
 case True
 have reduce-below-abs a (x # xs) D A $$ (i, 0) = reduce-below-abs a xs D
(reduce-abs a x D A) $$ (i, 0)
 by auto
 also have ... = (reduce-abs a x D A) $$ (i,0)
 proof (rule reduce-below-abs-preserves[OF - aj--mn])
```



```
 show reduce-abs a x D A =? 'A' @ }\mp@subsup{}{r}{}D\cdotm\mp@subsup{r}{m}{}\mp@subsup{1}{m}{}
 by (rule reduce-append-rows-eq[OF A' A-def a xm j Aaj])
 show distinct xs using d by auto
 show }\forallx\in\mathrm{ set xs. }x<m\wedgea<x\mathrm{ using xxs-less-m by auto
 show reduce-abs a x D A $$ (a,0) =0
 by (rule reduce-not0[OF A - j-Aaj], insert 2.prems, auto)
 show ?A' }\in\mathrm{ carrier-mat mn by auto
 show i\not\in set xs using True d by auto
 show }i\not=a\mathrm{ using 2.prems by blast
 show }i<m+
```

```
 by (simp add: True trans-less-add1 xm)
 qed (insert D-ge0)
 also have ... = 0 unfolding True by (rule reduce-0[OF A -j-- Aaj], insert
2.prems, auto)
 finally show ?thesis.
 next
 case False note i-not-x = False
 have h: reduce-below-abs a xs D (reduce-abs a x D A) $$ (i,0)=0
 proof (rule 2.hyps[OF - aj--mn])
 let ? }\mp@subsup{A}{}{\prime}=\mathrm{ mat-of-rows n (map (Matrix.row ?reduce-ax) [0..<m])
 show reduce-abs a x D A = ? A' @ }\mp@subsup{}{r}{}D\cdot\mp@subsup{}{m}{}\mp@subsup{1}{m}{}
 proof (rule matrix-append-rows-eq-if-preserves[OF reduce-ax D1])
 show }\foralli\in{m..<m+n}.\forallja<n.?reduce-ax $$ (i,ja)=(D 稙 1m n)$
(i - m, ja)
 proof (rule+)
 fix i ja assume i:i\in{m..<m+n} and ja: ja<n
 have ja-dc: ja<dim-col A and i-dr: i< dim-row A using i ja A by auto
 have i-not-a: i\not=a using i a by auto
 have i-not-x:i\not=x using i xm by auto
 have ?reduce-ax $$ (i,ja)=A $$ (i,ja)
 unfolding reduce-alt-def-not0[OF Aaj pquvd] using ja-dc i-dr i-not-a
i-not-x by auto
 also have ... = (if i< dim-row A' then A' $$(i,ja) else (D 'm (1 m
n))$$(i-m,ja)
 by (unfold A-def, rule append-rows-nth[OF A' D1-ja], insert A i-dr,
simp)
 also have ... = (D 'm 1m n) $$ (i-m,ja) using i A' by auto
 finally show ?reduce-ax $$(i,ja)=(D m m 1m n)$$(i-m,ja).
 qed
 qed
 show i set xs using i-set-xxs i-not-x by auto
 show distinct xs using d by auto
 show }\forallx\in\mathrm{ set xs. }x<m\wedgea<x\mathrm{ using xxs-less-m by auto
 show reduce-abs a x D A $$ (a,0) =0
 by (rule reduce-not0[OF A - j-Aaj], insert 2.prems, auto)
 show ?A' }\in\mathrm{ carrier-mat m n by auto
 qed (insert D-ge0)
 have reduce-below-abs a (x # xs) D A $$ (i,0) = reduce-below-abs a xs D
(reduce-abs a x D A) $$(i,0)
 by auto
 also have ... = 0 using h .
 finally show ?thesis.
 qed
qed
```

lemma reduce-below-preserves-case-m:

```
 assumes \(A^{\prime}: A^{\prime} \in\) carrier-mat \(m n\) and \(a: a<m\) and \(j: j<n\)
 and \(A\)-def: \(A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)\)
 and Aaj: \(A \$ \$(a, 0) \neq 0\)
 and \(m n: m \geq n\)
 assumes \(i \notin\) set \(x s\) and distinct \(x s\) and \(\forall x \in\) set \(x s . x<m \wedge a<x\)
 and \(i \neq a\) and \(i<m+n\) and \(i \neq m\)
and \(D>0\)
shows reduce-below a (xs @ [m]) D A\$\$ \((i, j)=A \$ \$(i, j)\)
using assms
proof (induct a xs D A arbitrary: A' i rule: reduce-below.induct)
 case (1 a D A)
 have reduce-below a ([] @ [m]) D A \(\$ \$(i, j)=\) reduce-below a \([m] D A \$ \$(i, j)\)
by auto
 also have \(\ldots=\) reduce a \(m D A \$(i, j)\) by auto
 also have \(\ldots=A \$ \$(i, j)\)
 by (rule reduce-preserves, insert 1, auto)
 finally show ?case .
next
 case (2 a \(x\) xs \(D\) A)
 note \(A^{\prime}=2 . \operatorname{prems}(1)\)
 note \(a=2 . \operatorname{prems}(2)\)
 note \(j=2 . \operatorname{prems}(3)\)
 note \(A\)-def \(=2 . \operatorname{prems}(4)\)
 note \(A a j=2 \cdot \operatorname{prems}(5)\)
 note \(m n=2 . \operatorname{prems}(6)\)
 note \(i\)-set-xxs \(=2 . \operatorname{prems}(7)\)
 note \(d=2 . \operatorname{prems}(8)\)
 note xxs-less-m \(=2 . \operatorname{prems}(9)\)
 note \(i a=2 . \operatorname{prems}(10)\)
 note \(i \mathrm{~mm}=2 . \operatorname{prems}(11)\)
 note \(D\)-ge0 \(=2 . \operatorname{prems}(13)\)
 have \(D 0: D \neq 0\) using \(D\)-ge0 by simp
 have \(A: A \in\) carrier-mat \((m+n) n\) using \(A^{\prime} m n A\)-def by auto
 have xm: \(x<m\) using 2.prems by auto
 have D1: \(D \cdot{ }_{m} 1_{m} n \in\) carrier-mat \(n n\) by (simp add: mn)
 obtain pquvd where pquvd: \((p, q, u, v, d)=\) euclid-ext2 \((A \$ \$(a, 0))(A \$ \$(x, 0))\)
 by (metis prod-cases5)
 let ?reduce-ax = (reduce a x D A)
 have reduce-ax: ?reduce-ax \(\in\) carrier-mat \((m+n) n\)
 by (metis (no-types, lifting) \(A^{\prime} A\)-def add.comm-neutral append-rows-def
 carrier-matD carrier-mat-triv index-mat-four-block(2,3)
 index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
 have reduce-below a ((x\#xs) @ [m]) D A \$\$ \((i, j)\)
 \(=\) reduce-below a \((x s @[m]) D\) (reduce a \(x D A) \$ \$(i, j)\)
 by auto
 also have \(\ldots=\) reduce a \(x D A \$ \$(i, j)\)
proof (rule 2.hyps \([O F-a j-\) - mn -- ia imm - D-ge0])
 let ? \(A^{\prime}=\) mat-of-rows \(n(\) map (Matrix.row ?reduce-ax) \([0 . .<m])\)
 show reduce a \(x D A=\) ? \(A^{\prime} @_{r} D \cdot_{m} 1_{m} n\)
```

```
 by (rule reduce-append-rows-eq[OF A' A-def a xm - Aaj], insert j, auto)
 show i\not\in set xs using i-set-xxs by auto
 show distinct xs using d by auto
 show }\forallx\in\mathrm{ set xs. }x<m\wedgea<x\mathrm{ using xxs-less-m by auto
 show reduce a x D A $$ (a, 0)}\not=
 by (rule reduce-not0[OF A -- Aaj], insert 2.prems, auto)
 show ? A' \in carrier-mat m n by auto
 show i\not=m using 2.prems by auto
 qed
 also have ... = A $$ (i,j) by (rule reduce-preserves[OF A j Aaj], insert 2.prems,
auto)
 finally show ?case .
qed
lemma reduce-below-abs-preserves-case-m:
 assumes }\mp@subsup{A}{}{\prime}:\mp@subsup{A}{}{\prime}\in\mathrm{ carrier-mat m n and a: a<m and j:j<n
 and A-def:A= A' @
 and Aaj: A $$ (a,0) =0
 and mn: m\geqn
 assumes }i\not\in\mathrm{ set xs and distinct xs and }\forallx\in\mathrm{ set xs. x<m^a<x
 and }i\not=a\mathrm{ and }i<m+n\mathrm{ and }i\not=
 and }D>
 shows reduce-below-abs a (xs @ [m]) D A $$ (i,j)=A$$ (i,j)
 using assms
proof (induct a xs D A arbitrary: A' i rule: reduce-below-abs.induct)
 case (1 a D A)
 have reduce-below-abs a ([] @ [m]) D A $$ (i,j) = reduce-below-abs a [m] D A
$$ (i,j) by auto
 also have ... = reduce-abs a m D A $$ (i,j) by auto
 also have ... = A $$ (i,j)
 by (rule reduce-preserves, insert 1, auto)
 finally show ?case.
next
 case (2 a x xs D A)
 note }\mp@subsup{A}{}{\prime}=2.prems(1
 note }a=2.\operatorname{prems(2)
 note j = 2.prems(3)
 note A-def = 2.prems(4)
 note Aaj = 2.prems(5)
 note mn=2.prems(6)
 note i-set-xxs = 2.prems(7)
 note d = 2.prems(8)
 note xxs-less-m = 2.prems(9)
 note ia=2.prems(10)
 note imm = 2.prems(11)
 note D-ge0 = 2.prems(13)
 have D0: D\not=0 using D-ge0 by simp
 have A:A\incarrier-mat (m+n) n using A' mn A-def by auto
```

```
 have xm: }x<m\mathrm{ using 2.prems by auto
 have D1:D D m 1 m n carrier-mat n n by (simp add:mn)
 obtain pquvd where pquvd: (p,q,u,v,d)= euclid-ext2 (A$$(a,0)) (A$$(x,0))
 by (metis prod-cases5)
 let ?reduce-ax = (reduce-abs a x D A)
 have reduce-ax: ?reduce-ax \in carrier-mat (m+n) n
 by (metis (no-types, lifting) A' A-def add.comm-neutral append-rows-def
 carrier-matD carrier-mat-triv index-mat-four-block(2,3)
 index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
have reduce-below-abs a ((x # xs) @ [m]) D A $$ (i,j)
 = reduce-below-abs a (xs@[m]) D (reduce-abs a x D A)$$ (i,j)
 by auto
also have ... = reduce-abs a x D A $$ (i,j)
proof (rule 2.hyps[OF - aj--mn-- ia imm - D-ge0])
 let ? }\mp@subsup{A}{}{\prime}=\mathrm{ mat-of-rows n (map (Matrix.row ?reduce-ax) [0..<m])
 show reduce-abs a x D A = ? A' @ }\mp@subsup{r}{}{\prime}D\cdot\mp@subsup{m}{m}{}\mp@subsup{1}{m}{}
 by (rule reduce-append-rows-eq[OF A' A-def a xm - Aaj], insert j, auto)
 show i\not\in set xs using i-set-xxs by auto
 show distinct xs using d by auto
 show }\forallx\in\mathrm{ set xs. }x<m\wedgea<x\mathrm{ using xxs-less-m by auto
 show reduce-abs a x D A $$ (a,0) =0
 by (rule reduce-not0[OF A - - Aaj], insert 2.prems, auto)
 show ? A' \in carrier-mat m n by auto
 show i\not=m using 2.prems by auto
qed
also have ... = A $$ (i,j) by (rule reduce-preserves[OF A j Aaj], insert 2.prems,
auto)
 finally show ?case .
qed
lemma reduce-below-0-case-m1:
 assumes }\mp@subsup{A}{}{\prime}:\mp@subsup{A}{}{\prime}\in\mathrm{ carrier-mat m n and a:a<m and j:0<n
 and A-def:A= A' @ }\mp@subsup{r}{}{\prime}(D\cdotm(1mn)
 and Aaj: A $$ (a,0) =0
 and mn: m\geqn
 assumes distinct xs and }\forallx\in\mathrm{ set xs. }x<m\wedgea<
 and }m\not=
 and }D>
 shows reduce-below a (xs @ [m]) D A $$ (m,0)=0
 using assms
proof (induct a xs D A arbitrary: A' rule: reduce-below.induct)
 case (1 a D A)
 have A:A carrier-mat (}m+n)n\mathrm{ using 1 by auto
 have reduce-below a ([]@ @m]) DA$$(m,0)= reduce-below a [m]DA$$(m,
0) by auto
 also have ... = reduce a m D A $$ (m,0) by auto
 also have ... = 0 by (rule reduce- O[OF A], insert 1.prems, auto)
```

```
 finally show ?case .
next
 case (2 a x xs D A)
 note }\mp@subsup{A}{}{\prime}=2.prems(1
 note a = 2.prems(2)
 note j = 2.prems(3)
 note A-def = 2.prems(4)
 note Aaj = 2.prems(5)
 note mn=2.prems(6)
 note d = 2.prems(7)
 note xxs-less-m = 2.prems(8)
 note ma=2.prems(9)
 note D-ge0 = 2.prems(10)
 have D0: D\not=0 using D-ge0 by simp
 have A:A\incarrier-mat (m+n) n using A' mn A-def by auto
 have xm: }x<m\mathrm{ using 2.prems by auto
 have D1:D 品 1m n carrier-mat n n by (simp add:mn)
 obtain pquvd where pquvd: (p,q,u,v,d)=euclid-ext2 (A$$(a,0)) (A$$(x,0))
 by (metis prod-cases5)
 let ?reduce-ax = (reduce a x D A)
 have reduce-ax: ?reduce-ax }\in\mathrm{ carrier-mat (m+n)n
 by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def
 carrier-matD carrier-mat-triv index-mat-four-block(2,3)
 index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
 have reduce-below a ((x # xs)@ [m]) D A$$ (m,0) = reduce-below a (xs@[m])
D (reduce a x D A) $$ (m,0)
 by auto
 also have ... = 0
 proof (rule 2.hyps[OF])
 let ?. A' = mat-of-rows n (map (Matrix.row ?reduce-ax) [0..<m])
 show reduce a x D A =? '' ` @ }\mp@subsup{r}{}{\prime}D\cdotm\mp@subsup{m}{m}{}\mp@subsup{1}{m}{
 by (rule reduce-append-rows-eq[OF A' A-def a xm j Aaj])
 show distinct xs using d by auto
 show }\forallx\in\mathrm{ set xs. }x<m\wedgea<x\mathrm{ using xxs-less-m by auto
 show reduce a x D A $$ (a,0) \not=0
 by (rule reduce-not0[OF A - j-Aaj], insert 2.prems, auto)
 show ? 'A' \in carrier-mat m n by auto
 qed (insert 2.prems,auto)
 finally show ?case .
qed
lemma reduce-below-abs-0-case-m1:
 assumes \mp@subsup{A}{}{\prime}:\mp@subsup{A}{}{\prime}\incarrier-mat m n and a:a<m and j:0<n
 and A-def:A= A' @ }r=(D\cdotm (1m n)
 and Aaj: A $$ (a,0) =0
 and mn: m\geqn
assumes distinct xs and }\forallx\in\mathrm{ set xs. }x<m\wedgea<
 and m\not=a
and D>0
```

shows reduce-below-abs a (xs @ [m]) D A $\$ \$(m, 0)=0$ using assms
proof (induct a xs $D$ A arbitrary: $A^{\prime}$ rule: reduce-below-abs.induct)
case (1 a $D A$ )
have $A: A \in$ carrier-mat $(m+n) n$ using 1 by auto
have reduce-below-abs a ([] @ [m]) D A $\$ \$(m, 0)=$ reduce-below-abs a $[m] D$
$A \$ \$(m, 0)$ by auto
also have $\ldots=$ reduce-abs a $m D A \$ \$(m, 0)$ by auto
also have $\ldots=0$ by (rule reduce- $0[O F A]$, insert 1.prems, auto)
finally show ?case .
next
case (2 a x xs D A)
note $A^{\prime}=2 . \operatorname{prems}(1)$
note $a=2 . \operatorname{prems}(2)$
note $j=2 . \operatorname{prems}(3)$
note $A$-def $=2 . \operatorname{prems}(4)$
note $A a j=2 . \operatorname{prems}(5)$
note $m n=2 . \operatorname{prems}(6)$
note $d=2 . \operatorname{prems}(7)$
note $x x s$-less- $m=2 . p r e m s(8)$
note $m a=2 . \operatorname{prems}(9)$
note $D$-ge0 $=2 . \operatorname{prems}(10)$
have $D 0: D \neq 0$ using $D$-ge0 by simp
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} m n A$-def by auto
have xm: $x<m$ using 2.prems by auto
have $D 1: D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ by (simp add: mn)
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid}-\operatorname{ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))$
by (metis prod-cases5)
let ?reduce-ax $=($ reduce-abs a x $D$ A)
have reduce-ax: ?reduce-ax $\in$ carrier-mat $(m+n) n$
by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def carrier-matD carrier-mat-triv index-mat-four-block(2,3)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
have reduce-below-abs a ((x \# xs)@[m])DA\$\$(m,0)=reduce-below-abs a
$(x s @[m]) D($ reduce-abs a x $D A) \$ \$(m, 0)$
by auto
also have $\ldots=0$
proof (rule 2.hyps[OF ])
let ? $A^{\prime}=$ mat-of-rows $n($ map (Matrix.row ?reduce-ax) $[0 . .<m])$
show reduce-abs a x $D A=$ ? $A^{\prime} @_{r} D \cdot m 1_{m} n$
by (rule reduce-append-rows-eq $\left[O F A^{\prime} A\right.$-def a xm $j$ Aaj])
show distinct xs using $d$ by auto
show $\forall x \in$ set $x s$. $x<m \wedge a<x$ using $x x s$-less- $m$ by auto
show reduce-abs a x $D$ A $\$ \$(a, 0) \neq 0$
by (rule reduce-not0 $[O F A-j-A a j]$, insert 2.prems, auto)
show ? $A^{\prime} \in$ carrier-mat $m$ by auto
qed (insert 2.prems, auto)
finally show ?case .
qed
lemma reduce-below-preserves-case-m2:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and Aaj: $A \$ \$(a, 0) \neq 0$
and $m n: m \geq n$
assumes $i \in$ set $x s$ and distinct $x s$ and $\forall x \in$ set xs. $x<m \wedge a<x$
and $i \neq a$ and $i<m+n$
and $D>0$
shows reduce-belowa (xs @ [m]) D A \$\$ (i,0)=reduce-below a xs D A \$\$ (i,0)
using assms
proof (induct a xs D A arbitrary: $A^{\prime} i$ rule: reduce-below.induct)
case (1 a D A)
then show ?case by auto
next
case (2 a x xs D A)
note $A^{\prime}=2 . \operatorname{prems}(1)$
note $a=2 . \operatorname{prems}(2)$
note $j=2 . p r e m s(3)$
note $A$-def $=2 . \operatorname{prems}(4)$
note $A a j=2 . \operatorname{prems}(5)$
note $m n=2 . \operatorname{prems}(6)$
note $i$-set-xxs $=2 . \operatorname{prems}(7)$
note $d=2 . \operatorname{prems}(8)$
note $x x s$-less- $m=2 . p r e m s(9)$
note $i a=2 . \operatorname{prems}(10)$
note $\operatorname{imm}=2 . \operatorname{prems}(11)$
note $D$-ge0 $=2 \cdot \operatorname{prems}(12)$
have $D 0: D \neq 0$ using $D$-ge0 by simp
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} m n A$-def by auto
have xm: $x<m$ using 2.prems by auto
have D1: $D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ by (simp add: mn)
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid}-\operatorname{ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))$
by (metis prod-cases5)
let ? reduce-ax $=($ reduce a $x D A)$
have reduce-ax: ?reduce-ax carrier-mat $(m+n) n$
by (metis (no-types, lifting) A-def $A^{\prime}$ add.comm-neutral append-rows-def carrier-matD carrier-mat-triv index-mat-four-block(2,3)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
show ? case
proof (cases $i=x$ )
case True
have reduce-below a ((x\#xs) @ [m]) D A\$\$ (i, 0)
$=$ reduce-below a (xs @ [m]) D (reduce a x D A) \$\$ (i, 0)
by auto
also have $\ldots=($ reduce a x $D$ A) $\$ \$(i, 0)$
proof (rule reduce-below-preserves-case-m[OF-aj-mn---D-ge0])

```
 let ? }\mp@subsup{A}{}{\prime}=m\mathrm{ mat-of-rows n (map (Matrix.row ?reduce-ax) [0..<m])
 show reduce a x D A =? ' ' @ @ }D\cdot\mp@code{m}\mp@subsup{1}{m}{}
 proof (rule matrix-append-rows-eq-if-preserves[OF reduce-ax D1])
 show }\foralli\in{m..<m+n}.\forallja<n. ?reduce-ax $$ (i,ja)=(D 稙 1m n)$
(i - m, ja)
 proof (rule+)
 fix i ja assume i: i\in{m..<m+n} and ja: ja<n
 have ja-dc: ja<dim-col A and i-dr: i<dim-row A using i ja A by auto
 have i-not-a:i\not=a using i a by auto
 have i-not-x:i\not=x using i xm by auto
 have ?reduce-ax $$ (i,ja)=A $$ (i,ja)
 unfolding reduce-alt-def-not0[OF Aaj pquvd] using ja-dc i-dr i-not-a
i-not-x by auto
 also have ... = (if i< dim-row A' then A' $$(i,ja) else (D *m (1m
n))$$(i-m,ja))
 by (unfold A-def, rule append-rows-nth[OF A' D1-ja], insert A i-dr,
simp)
 also have \ldots=(D 血 1m n) $$ (i-m,ja) using i A' by auto
 finally show ? reduce-ax $$ (i,ja)=(D\cdotm 1m n)$$(i-m,ja).
 qed
 qed
 show distinct xs using d by auto
 show }\forallx\in\mathrm{ set xs. }x<m\wedgea<x\mathrm{ using xxs-less-m by auto
 show reduce a x D A $$ (a,0)}=
 by (rule reduce-not0[OF A - - Aaj], insert 2.prems, auto)
 show ? A' }\in\mathrm{ carrier-mat m n by auto
 show i\not\in set xs using True d by auto
 show }i\not=a\mathrm{ using 2.prems by blast
 show }i<m+
 by (simp add: True trans-less-add1 xm)
 show }i\not=m\mathrm{ by (simp add:True less-not-refl3 xm)
 qed
 also have ... = 0 unfolding True by (rule reduce-0[OF A - - Aaj], insert
2.prems, auto)
 also have ... = reduce-below a (x# xs) D A $$ (i,0)
 unfolding True by (rule reduce-below-O[symmetric], insert 2.prems, auto)
 finally show ?thesis.
next
 case False
 have reduce-below a ((x# xs) @ [m]) D A $$ (i,0)
 = reduce-below a (xs@[m])D(reduce a x D A)$$(i,0)
 by auto
 also have ... = reduce-below a xs D (reduce a x D A) $$ (i,0)
 proof (rule 2.hyps[OF - aj--mn -- ia imm D-ge0])
 let ? A' = mat-of-rows n (map (Matrix.row ?reduce-ax) [0..<m])
 show reduce a x D A =? ' ' @ @ }D\mp@subsup{\mp@code{m}}{m}{}\mp@subsup{1}{m}{}
 by (rule reduce-append-rows-eq[OF A' A-def a xm j Aaj])
 show i\in set xs using i-set-xxs False by auto
 show distinct xs using d by auto
```

```
 show }\forallx\in\mathrm{ set xs. }x<m\wedgea<x\mathrm{ using xxs-less-m by auto
 show reduce a x D A $$ (a,0)}=
 by (rule reduce-not0[OFA - j-Aaj], insert 2.prems, auto)
 show ?A' \in carrier-mat m n by auto
 qed
 also have ... = reduce-below a (x # xs) D A $$ (i,0) by auto
 finally show ?thesis.
 qed
qed
lemma reduce-below-abs-preserves-case-m2:
assumes \(A^{\prime}: A^{\prime} \in\) carrier-mat \(m n\) and \(a: a<m\) and \(j: 0<n\)
 and A-def:A= A' @ }\mp@subsup{r}{}{\prime}(D\cdotm(1m n)
 and Aaj: A $$ (a,0) =0
 and mn: m\geqn
 assumes i\in set xs and distinct xs and }\forallx\in\mathrm{ set xs. x<m^a<x
 and}i\not=a\mathrm{ and }i<m+
 and }D>
 shows reduce-below-abs a (xs @ [m]) D A $$ (i,0)=reduce-below-abs a xs D A
$$(i,0)
 using assms
proof (induct a xs D A arbitrary: A' i rule: reduce-below-abs.induct)
 case (1 a D A)
 then show ?case by auto
next
 case (2 a x xs D A)
 note }\mp@subsup{A}{}{\prime}=2.prems(1
 note }a=2.\operatorname{prems(2)
 note j=2.prems(3)
 note }A\mathrm{ -def = 2.prems(4)
 note Aaj = 2.prems(5)
 note mn = 2.prems(6)
 note i-set-xxs = 2.prems(7)
 note d=2.prems(8)
 note xxs-less-m = 2.prems(9)
 note ia=2.prems(10)
 note imm = 2.prems(11)
 note D-ge0 = 2.prems(12)
 have D0: D\not=0 using D-ge0 by simp
 have A:A\in carrier-mat (m+n) n using A'mn A-def by auto
 have xm: x<m using 2.prems by auto
 have D1:D 品 1 m n carrier-mat n n by (simp add: mn)
 obtain p quvd where pquvd: (p,q,u,v,d) = euclid-ext2 (A$$(a,0)) (A$$(x,0))
 by (metis prod-cases5)
 let ?reduce-ax = (reduce-abs a x D A)
 have reduce-ax: ?reduce-ax \in carrier-mat (m+n)n
 by (metis (no-types, lifting) A-def A' add.comm-neutral append-rows-def
 carrier-matD carrier-mat-triv index-mat-four-block(2,3)
```

```
 index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
 show ?case
 proof (cases i=x)
 case True
 have reduce-below-abs a ((x# xs) @ [m]) D A $$ (i,0)
 = reduce-below-abs a (xs @ [m]) D (reduce-abs a x D A)$$ (i,0)
 by auto
 also have ... = (reduce-abs a x D A) $$ (i,0)
 proof (rule reduce-below-abs-preserves-case-m[OF - aj--mn---- - D-ge0])
 let ?. A' = mat-of-rows n (map (Matrix.row ?reduce-ax) [0..<m])
 show reduce-abs a x D A = ? A' @ }\mp@subsup{}{r}{}D\cdot\mp@subsup{m}{m}{}\mp@subsup{1}{m}{}
 proof (rule matrix-append-rows-eq-if-preserves[OF reduce-ax D1])
 show }\foralli\in{m..<m+n}.\forallja<n.?reduce-ax $$ (i,ja)=(D (m 1m n)$
(i - m, ja)
 proof (rule+)
 fix i ja assume i:i\in{m..<m+n} and ja: ja<n
 have ja-dc: ja<dim-col A and i-dr: i< dim-row A using i ja A by auto
 have i-not-a: i\not= a using i a by auto
 have i-not-x:i\not=x using i xm by auto
 have ?reduce-ax $$ (i,ja)=A $$ (i,ja)
 unfolding reduce-alt-def-not0[OF Aaj pquvd] using ja-dc i-dr i-not-a
i-not-x by auto
 also have ... = (if i< dim-row A' then A' $$(i,ja) else (D m
n))$$(i-m,ja))
 by (unfold A-def, rule append-rows-nth[OF A' D1-ja], insert A i-dr,
simp)
 also have ... = (D 'm 1m n)$$ (i-m,ja) using i A' by auto
 finally show ?reduce-ax $$(i,ja)=(D m m 1m n)$$(i-m,ja).
 qed
 qed
 show distinct xs using d by auto
 show }\forallx\in\mathrm{ set xs. }x<m\wedgea<x\mathrm{ using xxs-less-m by auto
 show reduce-abs a x D A $$ (a,0) =0
 by (rule reduce-not0[OF A - - Aaj], insert 2.prems, auto)
 show ? A' \in carrier-mat m n by auto
 show i\not\in set xs using True d by auto
 show }i\not=a\mathrm{ using 2.prems by blast
 show }i<m+
 by (simp add: True trans-less-add1 xm)
 show }i\not=m\mathrm{ by (simp add: True less-not-refl3 xm)
 qed
 also have ... = 0 unfolding True by (rule reduce-0[OF A - - Aaj], insert
2.prems, auto)
 also have .. = reduce-below-abs a (x# xs) D A $$ (i,0)
 unfolding True by (rule reduce-below-abs-0[symmetric], insert 2.prems, auto)
 finally show ?thesis .
next
 case False
 have reduce-below-abs a ((x # xs) @ [m]) D A $$ (i,0)
```

```
 = reduce-below-abs a (xs@[m]) D (reduce-abs a x D A)$$(i,0)
 by auto
 also have ... = reduce-below-abs a xs D (reduce-abs a x D A) $$ (i,0)
 proof (rule 2.hyps[OF - a j--mn - - ia imm D-ge0])
 let ? }\mp@subsup{A}{}{\prime}=\mathrm{ mat-of-rows n (map (Matrix.row ?reduce-ax) [0..<m])
 show reduce-abs a x D A = ? A' @ }\mp@subsup{r}{r}{}D\cdotm\mp@subsup{\mp@code{m}}{m}{}
 by (rule reduce-append-rows-eq[OF A' A-def a xm j Aaj])
 show i\in set xs using i-set-xxs False by auto
 show distinct xs using d by auto
 show }\forallx\in\mathrm{ set xs. }x<m\wedgea<x\mathrm{ using xxs-less-m by auto
 show reduce-abs a x D A $$ (a,0) =0
 by (rule reduce-not0[OF A - j-Aaj], insert 2.prems, auto)
 show ?A' \in carrier-mat m n by auto
 qed
 also have ... = reduce-below-abs a (x # xs) D A $$ (i,0) by auto
 finally show ?thesis.
 qed
qed
lemma reduce-below-0-case-m:
 assumes \mp@subsup{A}{}{\prime}:\mp@subsup{A}{}{\prime}\incarrier-mat m n and a:a<m and j:0<n
 and A-def:A= A' @
 and Aaj: A $$ (a,0) =0
 and mn: m\geqn
 assumes i\in set (xs @ [m]) and distinct xs and \forallx\in set xs. x<m^a<x
 and D>0
 shows reduce-below a (xs@ [m]) D A $$ (i,0)=0
proof (cases i=m)
 case True
 show ?thesis by (unfold True, rule reduce-below-0-case-m1, insert assms, auto)
next
 case False
 have reduce-below a (xs @ [m]) D A $$ (i,0)= reduce-below a (xs)D A$$ (i,0)
 by (rule reduce-below-preserves-case-m2[OF A' a j A-def Aaj mn], insert assms
False, auto)
 also have ... = 0 by (rule reduce-below-0, insert assms False, auto)
 finally show ?thesis.
qed
lemma reduce-below-abs-0-case-m:
 assumes A':A' \in carrier-mat m n and a:a<m and j:0<n
 and A-def:A= A' @ }r=(D\cdotm (1m n)
 and Aaj: A $$ (a,0) =0
 and mn: m\geqn
 assumes i\in set (xs @ [m]) and distinct xs and \forallx\in set xs. x<m^a<x
 and }D>
 shows reduce-below-abs a (xs @ [m])D A $$(i,0)=0
```

```
proof (cases \(i=m\))
 case True
 show ?thesis by (unfold True, rule reduce-below-abs-0-case-m1, insert assms,
auto)
next
 case False
 have reduce-below-abs a (xs @ \(m \mathrm{~m}]) D A \$ \$(i, 0)=\) reduce-below-abs a \((x s) D A\)
\$\$ \((i, 0)\)
 by (rule reduce-below-abs-preserves-case-m2 \(\left[O F A^{\prime}\right.\) a j A-def Aaj mn], insert
assms False, auto)
 also have \(\ldots=0\) by (rule reduce-below-abs-0, insert assms False, auto)
 finally show ?thesis.
qed
lemma reduce-below-0-case-m-complete:
 assumes \(A^{\prime}: A^{\prime} \in\) carrier-mat \(m n\) and \(a: 0<m\) and \(j: 0<n\)
 and \(A\)-def: \(A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)\)
 and Aaj: \(A \$ \$(0,0) \neq 0\)
 and \(m n: m \geq n\)
 assumes \(i-m n: i<m+n\) and \(d-x s\) : distinct xs and \(x s: \forall x \in\) set \(x s . x<m \wedge 0\)
\(<x\)
 and \(i a: i \neq 0\)
 and \(x s\)-def: \(x s=\operatorname{filter}(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<\) dim-row \(A]\)
 and \(D: D>0\)
 shows reduce-below 0 (xs @ [m]) D A \$\$ \((i, 0)=0\)
proof (cases \(i \in \operatorname{set}(x s @[m]))\)
 case True
 show ?thesis by (rule reduce-below-0-case-m[OF \(A^{\prime}\) a \(j A\)-def Aaj mn True d-xs
xs \(D]\))
next
 case False
 have \(A: A \in\) carrier-mat \((m+n) n\) using \(A^{\prime} A\)-def by simp
 have reduce-below 0 (xs @ [m]) D A \$\$ (i,0) =A\$\$(i,0)
 by (rule reduce-below-preserves-case-m[OF A' a j A-def Aaj mn - - - - D],
 insert i-mn d-xs xs ia False, auto)
 also have \(\ldots=0\) using False ia \(i\)-mn \(A\) unfolding xs-def by auto
 finally show ?thesis .
qed
```

lemma reduce-below-abs-0-case-m-complete:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: 0<m$ and $j: 0<n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and Aaj: $A \$ \$(0,0) \neq 0$
and $m n: m \geq n$
assumes $i-m n: i<m+n$ and $d-x s$ : distinct $x s$ and $x s: \forall x \in$ set $x s . x<m \wedge 0$
$<x$
and $i a: i \neq 0$
and $x s$-def: $x s=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<$ dim-row $A]$
and $D: D>0$
shows reduce-below-abs $0(x s @[m]) D A \$ \$(i, 0)=0$
proof (cases $i \in \operatorname{set}(x s @[m])$ )

## case True

show ?thesis by (rule reduce-below-abs-0-case-m[OF $A^{\prime}$ a j A-def Aaj mn True $d$-xs xs D])
next

## case False

have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def by simp
have reduce-below-abs 0 (xs @ [m]) D A \$\$ (i,0) =A\$\$(i,0)
by (rule reduce-below-abs-preserves-case-m[OF A' a j A-def Aaj mn ...... D],
insert i-mn d-xs xs ia False, auto)
also have $\ldots=0$ using False ia $i$-mn $A$ unfolding $x s$-def by auto
finally show ?thesis.
qed
lemma reduce-below-invertible-mat-case-m:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $n 0: 0<n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and Aaj: $A \$ \$(a, 0) \neq 0$
and $m n: m \geq n$ and distinct $x s$ and $\forall x \in$ set $x s . x<m \wedge a<x$
and $D 0: D>0$
shows $(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n) \wedge$ reduce-below $a(x s @[m]) D A=P * A)$
using assms
proof (induct a xs $D$ A arbitrary: $A^{\prime}$ rule: reduce-below.induct)
case (1 a $D A$ )
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid-ext2}(A \$ \$(a, 0))(A \$ \$(m, 0))$
by (metis prod-cases5)
have $D: D \cdot m\left(1_{m} n\right)$ : carrier-mat $n n$ by auto
note $A^{\prime}=1 . \operatorname{prems}(1)$
note $a=1$.prems(2)
note $j=1 . \operatorname{prems}(3)$
note $A$-def $=1$.prems(4)
note $A a j=1 . \operatorname{prems}(5)$
note $m n=1 . \operatorname{prems}(6)$
note $D 0=1 . \operatorname{prems}(9)$
have Am0-D: $A \$ \$(m, 0)=D$
proof -
have $A \$ \$(m, 0)=\left(D \cdot{ }_{m}\left(1_{m} n\right)\right) \$ \$(m-m, 0)$
by (smt (z3) 1 (1) 1 (3) 1 (4) $D$ append-rows-nth3 diff-is-0-eq diff-self-eq-0 less-add-same-cancel1)
also have $\ldots=D$ by (simp add: n0)
finally show ?thesis.

## qed

have reduce-below a $([] @[m]) D A=$ reduce a $m D A$ by auto
let $? A=$ Matrix.mat $($ dim-row $A)($ dim-col $A)$
$(\lambda(i, k)$. if $i=a$ then $p * A \$ \$(a, k)+q * A \$ \$(m, k)$ else if $i=m$ then $u * A \$ \$(a, k)+v * A \$ \$(m, k)$ else $A \$ \$(i, k))$
let ? $x s=[1 . .<n]$
let ?ys $=[1 . .<n]$
have $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n) \wedge$ reduce a $m$ $D A=P * A$
by (rule reduce-invertible-mat-case-m[OF $A^{\prime} D$ a-A-def - Aaj mn n0 pquvd, of ? $x s$ - - ? ys],
insert a D0 Am0-D, auto)
then show? case by auto
next

```
case (2 a x xs D A)
```

note $A^{\prime}=2 . \operatorname{prems}(1)$
note $a=$ 2.prems(2)
note $n 0=2 \cdot \operatorname{prems}(3)$
note $A$-def $=2 . \operatorname{prems}(4)$
note $A a j=2 . \operatorname{prems}(5)$
note $m n=2 . \operatorname{prems}(6)$
note $d=2 . \operatorname{prems}(7)$
note $x x s$-less-m $=2 . p r e m s(8)$
note $D 0=2 . \operatorname{prems}(9)$
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} m n A$-def by auto
have xm: $x<m$ using 2.prems by auto
have D1: $D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ by (simp add: mn)
have $A m 0-D: A \$ \$(m, 0)=D$
proof -
have $A \$ \$(m, 0)=\left(D \cdot{ }_{m}\left(1_{m} n\right)\right) \$ \$(m-m, 0)$
by (smt (z3) 2(2) 2(4) 2(5) D1 append-rows-nth3
cancel-comm-monoid-add-class.diff-cancel diff-is-0-eq less-add-same-cancel1)
also have $\ldots=D$ by (simp add: n0)
finally show ?thesis.
qed
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=$ euclid-ext2 $(A \$ \$(a, 0))(A \$ \$(x, 0))$
by (metis prod-cases5)
let ?reduce-ax $=$ reduce a x $D$ A
have reduce-ax: ?reduce-ax $\in$ carrier-mat $(m+n) n$
by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def
carrier-matD carrier-mat-triv index-mat-four-block(2,3)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
have $h:(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n)$
$\wedge$ reduce-below a $(x s @[m]) D($ reduce a $x D A)=P *$ reduce a $x D A)$
proof (rule 2.hyps[OF - a n0-- ])
let ? $A^{\prime}=$ mat-of-rows $n($ map (Matrix.row ?reduce-ax) $[0 . .<m])$
show reduce a $x D A=? A^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$
by (rule reduce-append-rows-eq[OF $A^{\prime} A$-def a xm n0 Aaj])
show reduce a $x D$ A $\$ \$(a, 0) \neq 0$
by (rule reduce-not0[OF A-n0-Aaj], insert 2.prems, auto)
qed (insert $d$ xxs-less-m mn n0 D0, auto)
from this obtain $P$ where inv- $P$ : invertible-mat $P$ and $P: P \in \operatorname{carrier-mat}$ ( $m$ $+n)(m+n)$
and $r b-P r$ : reduce-below a $(x s @[m]) D($ reduce a $x D A)=P *$ reduce a $x D A$ by blast
have *: reduce-below a $((x \# x s) @[m]) D A=$ reduce-below $a(x s @[m]) D$ (reduce a $x D$ ) by $\operatorname{simp}$
have $\exists Q$. invertible-mat $Q \wedge Q \in$ carrier-mat $(m+n)(m+n) \wedge$ (reduce a x $D$ A) $=Q * A$
by (rule reduce-invertible-mat[OF $A^{\prime}$ a n0 xm - A-def Aaj-mn D0], insert xxs-less-m, auto)
from this obtain $Q$ where inv- $Q$ : invertible-mat $Q$ and $Q: Q \in$ carrier-mat ( $m$ $+n)(m+n)$

$$
\text { and } r-Q A \text { : reduce a } x D A=Q * A \text { by blast }
$$

have invertible-mat $(P * Q)$ using inv- $P$ inv- $Q P Q$ invertible-mult-JNF by blast
moreover have $P * Q \in$ carrier-mat $(m+n)(m+n)$ using $P Q$ by auto
moreover have reduce-below a $((x \# x s) @[m]) D A=(P * Q) * A$
by (smt $P Q *$ assoc-mult-mat carrier-matD (1) carrier-mat-triv index-mult-mat(2)
$r$-QA rb-Pr reduce-preserves-dimensions(1))
ultimately show ?case by blast

## qed

```
lemma reduce-below-abs-invertible-mat-case-m:
 assumes \(A^{\prime}: A^{\prime} \in\) carrier-mat \(m n\) and \(a: a<m\) and \(n 0: 0<n\)
 and \(A\)-def: \(A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)\)
 and \(A a j: A \$ \$(a, 0) \neq 0\)
 and \(m n: m \geq n\) and distinct \(x s\) and \(\forall x \in\) set \(x s . x<m \wedge a<x\)
 and \(D 0: D>0\)
 shows \((\exists P\). invertible-mat \(P \wedge P \in\) carrier-mat \((m+n)(m+n) \wedge\) reduce-below-abs
\(a(x s @[m]) D A=P * A)\)
 using assms
proof (induct a xs \(D\) A arbitrary: \(A^{\prime}\) rule: reduce-below-abs.induct)
 case (1 a \(D A\))
 obtain \(p q u v d\) where pquvd: \((p, q, u, v, d)=\) euclid-ext2 \((A \$ \$(a, 0))(A \$ \$(m, 0))\)
 by (metis prod-cases5)
 have \(D: D \cdot m\left(1_{m} n\right)\) : carrier-mat \(n n\) by auto
 note \(A^{\prime}=1 . \operatorname{prems}(1)\)
 note \(a=1 . \operatorname{prems}(2)\)
 note \(j=1\).prems(3)
 note \(A\)-def \(=1\).prems(4)
 note \(A a j=1 \cdot \operatorname{prems}(5)\)
 note \(m n=1 . \operatorname{prems}(6)\)
 note \(D 0=1 . \operatorname{prems}(9)\)
```

```
 have \(A m 0-D: A \$ \$(m, 0)=D\)
 proof -
 have \(A \$ \$(m, 0)=\left(D \cdot{ }_{m}\left(1_{m} n\right)\right) \$ \$(m-m, 0)\)
 by (smt (z3) 1(1) 1(3) 1(4) D append-rows-nth3 diff-is-0-eq diff-self-eq-0
less-add-same-cancel1)
 also have \(\ldots=D\) by (simp add: n0)
 finally show? thesis .
 qed
 have reduce-below-abs a ([]@[m]) D A= reduce-abs a m D A by auto
 let \(? A=\) Matrix.mat \((\) dim-row \(A)(\) dim-col \(A)\)
 \((\lambda(i, k)\). if \(i=a\) then \(p * A \$ \$(a, k)+q * A \$ \$(m, k)\) else
 if \(i=m\) then \(u * A \$ \$(a, k)+v * A \$ \$(m, k)\) else \(A \$ \$(i, k))\)
 let ? \(x s=\) filter \((\lambda i . D<\mid\) ? A \(\$ \$(a, i) \mid)[0 . .<n]\)
 let ?ys \(=\) filter \((\lambda i . D<|? A \$ \$(m, i)|)[0 . .<n]\)
 have \(\exists P\). invertible-mat \(P \wedge P \in\) carrier-mat \((m+n)(m+n) \wedge\) reduce-abs a
\(m D A=P * A\)
 by (rule reduce-abs-invertible-mat-case-m[OF \(A^{\prime} D a-A\)-def-Aaj mn n0 pquvd,
of ? \(x s\) - - ? ys],
 insert a D0 Am0-D, auto)
 then show? case by auto
next
 case (2 a x xs D A)
 note \(A^{\prime}=2 . \operatorname{prems}(1)\)
 note \(a=2 \cdot \operatorname{prems}(2)\)
 note \(n 0=2 . \operatorname{prems}(3)\)
 note \(A\)-def \(=2 . \operatorname{prems}(4)\)
 note \(A a j=2 . \operatorname{prems}(5)\)
 note \(m n=2 . \operatorname{prems}(6)\)
 note \(d=2 \cdot \operatorname{prems}(7)\)
 note \(x x s\)-less-m \(=2 . p r e m s(8)\)
 note \(D 0=2 . \operatorname{prems}(9)\)
 have \(A: A \in\) carrier-mat \((m+n) n\) using \(A^{\prime} m n A\)-def by auto
 have xm: \(x<m\) using 2.prems by auto
 have \(D 1: D \cdot{ }_{m} 1_{m} n \in\) carrier-mat \(n n\) by (simp add: mn)
 have \(A m 0-D: A \$ \$(m, 0)=D\)
 proof -
 have \(A \$ \$(m, 0)=\left(D \cdot_{m}\left(1_{m} n\right)\right) \$ \$(m-m, 0)\)
 by (smt (z3) 2(2) 2(4)2(5) D1 append-rows-nth3
 cancel-comm-monoid-add-class.diff-cancel diff-is-0-eq less-add-same-cancel1)
 also have \(\ldots=D\) by (simp add: n0)
 finally show? thesis.
qed
obtain \(p\) quvd where pquvd: \((p, q, u, v, d)=\operatorname{euclid-ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))\)
 by (metis prod-cases5)
let ? reduce-ax \(=\) reduce-abs a \(x D A\)
have reduce-ax: ?reduce-ax \(\in\) carrier-mat \((m+n) n\)
 by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def
 carrier-matD carrier-mat-triv index-mat-four-block(2,3)
 index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
```

have $h:(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n)$
$\wedge$ reduce-below-abs a $(x s @[m]) D($ reduce-abs a $x D A)=P *$ reduce-abs a $x$ D A)
proof (rule 2.hyps[OF - a n0-- ])
let ? $A^{\prime}=$ mat-of-rows $n($ map (Matrix.row ?reduce-ax) $[0 . .<m])$
show reduce-abs a $x D A=$ ? $A^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$
by (rule reduce-append-rows-eq[OF $A^{\prime} A$-def a xm n0 Aaj])
show reduce-abs a x $D A \$ \$(a, 0) \neq 0$
by (rule reduce-not0[OF A-n0-Aaj], insert 2.prems, auto)
qed (insert d xxs-less-m mn n0 D0, auto)
from this obtain $P$ where inv- $P$ : invertible-mat $P$ and $P: P \in$ carrier-mat ( $m$ $+n)(m+n)$
and rb-Pr: reduce-below-abs a $(x s @[m]) D($ reduce-abs a $x D A)=P *$ reduce-abs a $x D$ by blast
have $*$ : reduce-below-abs a $((x \# x s) @[m]) D A=$ reduce-below-abs a $(x s @[m])$ $D$ (reduce-abs a $x D A$ ) by simp
have $\exists Q$. invertible-mat $Q \wedge Q \in$ carrier-mat $(m+n)(m+n) \wedge$ (reduce-abs a $x$ $D A)=Q * A$
by (rule reduce-abs-invertible-mat $\left[O F A^{\prime}\right.$ a n0 xm-A-def Aaj-mn D0], insert xxs-less-m, auto)
from this obtain $Q$ where inv- $Q:$ invertible-mat $Q$ and $Q: Q \in$ carrier-mat ( $m$ $+n)(m+n)$
and $r$ - $Q A$ : reduce-abs a $x D A=Q * A$ by blast
have invertible-mat $(P * Q)$ using inv- $P$ inv- $Q P Q$ invertible-mult-JNF by blast
moreover have $P * Q \in$ carrier-mat $(m+n)(m+n)$ using $P Q$ by auto
moreover have reduce-below-abs a $((x \# x s) @[m]) D A=(P * Q) * A$
by $($ smt $P Q *$ assoc-mult-mat carrier-matD (1) carrier-mat-triv index-mult-mat(2)
$r$-QA rb-Pr reduce-preserves-dimensions(3))
ultimately show?case by blast
qed
end
hide-const (open) $C$
This lemma will be very important, since it will allow us to prove that the output matrix is in echelon form.

```
lemma echelon-form-four-block-mat:
 assumes \(A: A \in\) carrier-mat 11
 and \(B: B \in\) carrier-mat \(1(n-1)\)
 and \(D: D \in\) carrier-mat \((m-1)(n-1)\)
 and \(H\)-def: \(H=\) four-block-mat \(A B\left(0_{m}(m-1) 1\right) D\)
 and \(A 00: A \$ \$(0,0) \neq 0\)
 and \(e-D\) : echelon-form-JNF \(D\)
 and \(m: m>0\) and \(n: n>0\)
shows echelon-form-JNF H
proof (rule echelon-form-JNF-intro)
 have \(H: H \in\) carrier-mat \(m n\)
```

by (metis H-def Num.numeral-nat(7) A D m n carrier-matD carrier-mat-triv index-mat-four-block(2,3) linordered-semidom-class.add-diff-inverse not-less-eq) have Hij-Dij: $H \$(i+1, j+1)=D \$ \$(i, j)$ if $i: i<m-1$ and $j: j<n-1$ for $i j$ proof -
have $H \$ \$(i+1, j+1)=($ if $(i+1)<$ dim-row $A$ then if $(j+1)<\operatorname{dim}-c o l ~ A$ then $A \$ \$((i+1),(j+1))$
else $B \$ \$((i+1),(j+1)-$ dim-col $A)$ else if $(j+1)<d i m-c o l ~ A ~ t h e n ~$
$\left(0_{m}(m-1) 1\right) \$ \$((i+1)-$ dim-row $A,(j+1))$ else $D \$ \$((i+1)-$ dim-row $A,(j+1)-\operatorname{dim}-\operatorname{col} A))$
unfolding $H$-def by (rule index-mat-four-block, insert A Dij, auto)
also have $\ldots=D \$ \$((i+1)-\operatorname{dim}$-row $A,(j+1)-\operatorname{dim}$-col $A)$ using $A D i j$
$B m n$ by auto
also have $\ldots=D \$ \$(i, j)$ using $A$ by auto
finally show ?thesis .
qed
have $H i j$ - $D i j^{\prime}: \quad H \$ \$(i, j)=D \$ \$(i-1, j-1)$
if $i: i<m$ and $j: j<n$ and $i 0: i>0$ and $j 0: j>0$ for $i j$
by (metis (no-types, lifting) H H-def Num.numeral-nat(7) A carrier-matD index-mat-four-block less-Suc0 less-not-refl3 i j i0 j0)
have Hi0: $H \$ \$(i, 0)=0$ if $i: i \in\{1 . .<m\}$ for $i$
proof -
have $H \$ \$(i, 0)=($ if $i<\operatorname{dim}$-row $A$ then if $0<\operatorname{dim-col} A$ then $A \$ \$(i, 0)$
else $B \$ \$(i, 0-d i m-c o l A)$ else if $0<d i m-c o l ~ A$ then
$\left(0_{m}(m-1) 1\right) \$(i-$ dim-row $A, 0)$ else $D \$(i-$ dim-row $A, 0-$ dim-col A))
unfolding $H$-def by (rule index-mat-four-block, insert A $D$ i, auto)
also have $\ldots=\left(0_{m}(m-1) 1\right) \$ \$(i-d i m$-row $A, O)$ using $A D i m n$ by auto
also have $\ldots=0$ using $i A n$ by auto
finally show ?thesis.
qed
have $A 00-H 00: A \$ \$(0,0)=H \$ \$(0,0)$ unfolding $H$-def using $A$ by auto have is-zero-row-JNF $j H$ if zero-iH: is-zero-row-JNF $i H$ and $i j: i<j$ and $j$ : $j<$ dim-row $H$
for $i j$
proof -
have $\neg$ is-zero-row-JNF 0 H unfolding is-zero-row-JNF-def using m n H A00 A00-H00 by auto
hence $i$-not $0: i \neq 0$ using zero- $i H$ by meson
have is-zero-row-JNF (i-1) D using zero-iH i-not0 Hij-Dij m n D H unfolding is-zero-row-JNF-def
by (auto, smt (z3) Suc-leI carrier-matD(1) le-add-diff-inverse2 Hij-Dij One-nat-def Suc-pred carrier-matD(1) j le-add-diff-inverse2
less-diff-conv less-imp-add-positive plus-1-eq-Suc that(2) trans-less-add1)
hence is-zero-row-JNF (j-1) D using ij e-D D j m i-not0 unfolding eche-lon-form-JNF-def
by (auto, smt H Nat.lessE Suc-pred carrier-matD(1) diff-Suc-1 diff-Suc-less order.strict-trans)
thus ?thesis

```
 by (smt A H H-def HiO D atLeastLessThan-iff carrier-matD index-mat-four-block(1)
 is-zero-row-JNF-def le-add1 less-one linordered-semidom-class.add-diff-inverse
not-less-eq
 plus-1-eq-Suc ij j zero-order(3))
 qed
 thus \foralli<dim-row H. is-zero-row-JNF i H\longrightarrow\neg(\existsj<dim-row H. i<j^ ᄀ
is-zero-row-JNF j H)
 by blast
 have (LEAST n. H $$ (i,n)\not=0)<(LEAST n.H $$ (j,n)\not=0)
 if ij: i<j and j: j< dim-row H and not-zero-iH: \neg is-zero-row-JNF i H
 and not-zero-jH: ᄀis-zero-row-JNF j H for i j
 proof (cases i=0)
 case True
 have (LEAST n. H $$ (i,n)\not=0)=0 unfolding True using A00-H00 A00
by auto
 then show ?thesis
 by (metis (mono-tags) H Hi0 LeastI True atLeastLessThan-iff carrier-matD(1)
 is-zero-row-JNF-def leI less-one not-gr0 ij j not-zero-jH)
 next
 case False note i-not0 = False
 let ?least-H = (LEAST n.H $$ (i,n)\not=0)
 let ?least-Hj = (LEAST n.H $$ (j, n)\not=0)
 have least-not0:(LEAST n. H $$ (i,n)\not=0)\not=0
 proof -
 have «dim-row H=m`
 using H by auto
 with }\langlei<j\rangle\langlej< dim-row H\rangle have <i< m
 by simp
 then have <H $$ (i,0) = 0〉
 using i-not0 by (auto simp add: Suc-le-eq intro: Hi0)
 moreover from is-zero-row-JNF-def [of i H] not-zero-iH
 obtain n}\mathrm{ where <H$$ (i,n) =0`
 by blast
 ultimately show ?thesis
 by (metis (mono-tags, lifting) LeastI)
 qed
 have least-not0j: (LEAST n.H $$ (j,n)\not=0)\not=0
 proof -
 have }\existsn.H$$(j,0)=0\wedgeH$$(j,n)\not=
 by (metis (no-types) H HiO LeastI-ex Num.numeral-nat(7) atLeastLessThan-iff
carrier-matD(1)
 is-zero-row-JNF-def linorder-neqE-nat not-gr0 not-less-Least not-less-eq
order-trans-rules(19)
 ij j not-zero-jH wellorder-Least-lemma(2))
 then show ?thesis
 by (metis (mono-tags, lifting) LeastI-ex)
 qed
```

```
 have least-n:?least-H<n
 by (smt H carrier-matD(2) dual-order.strict-trans is-zero-row-JNF-def
 not-less-Least not-less-iff-gr-or-eq not-zero-iH)
 have Hil:H $$(i,?least-H)\not=0 and ln':(\forall\mp@subsup{n}{}{\prime}.(H$$ (i,n')\not=0)\longrightarrow? ?least-H
\leq n')
 by (metis (mono-tags, lifting) is-zero-row-JNF-def that(3) wellorder-Least-lemma)+
 have Hil-Dil: H $$ (i,?least-H)=D$$ (i-1,?least-H - 1)
 proof -
 have H$$ (i,?least-H) = (if i<dim-row A then if ?least-H < dim-col A
then A $$ (i, ?least-H)
 else B $$ (i, ?least-H - dim-col A) else if ?least-H < dim-col A then
 (0m (m-1) 1) $$ (i - dim-row A, ?least- H) else D $$ (i - dim-row A,
?least-H - dim-col A))
 unfolding H-def
 by (rule index-mat-four-block, insert False j ij H A D n least-n, auto simp
add: H-def)
 also have ... = D $$(i-1, ?least-H - 1)
 using False j ij H A D n least-n B HiO Hil by auto
 finally show ?thesis .
 qed
 have not-zero-iD: ᄀ is-zero-row-JNF (i-1) D
 by (metis (no-types, lifting) Hil Hil-Dil D carrier-matD(2) is-zero-row-JNF-def
le-add1
 le-add-diff-inverse2 least-n least-not0 less-diff-conv less-one
 linordered-semidom-class.add-diff-inverse)
 have not-zero-jD: ᄀ is-zero-row-JNF (j-1) D
 by (smt H Hij-Dij' One-nat-def Suc-pred D m carrier-matD diff-Suc-1 ij
is-zero-row-JNF-def j
 least-not0j less-Suc0 less-Suc-eq-0-disj less-one neq0-conv not-less-Least
not-less-eq
 plus-1-eq-Suc not-zero-jH zero-order(3))
 have ?least-H - 1 = (LEAST n. D $$ (i-1,n) = 0^n<dim-col D)
 proof (rule Least-equality[symmetric], rule)
 show D $$ (i - 1, ?least-H - 1) }=0\mathrm{ using Hil Hil-Dil by auto
 show (LEAST n.H $$ (i,n)\not=0)-1<dim-col D using least-n least-not0
HDn by auto
 fix }\mp@subsup{n}{}{\prime}\mathrm{ assume D $$ (i-1, n')}\not=0\wedge\mp@subsup{n}{}{\prime}<dim-col D
 hence Di1n'1: D $$ (i-1, n) \not=0 and n': n' < dim-col D by auto
 have (LEAST n.H $$ (i,n)\not=0)\leqn' + 1
 proof (rule Least-le)
 have H$$(i,n'+1)=D$$(i-1,(n'+1)-1)
 by (rule Hij-Dij', insert i-not0 False H A ij j n' D, auto)
 thus Hin': H $$ (i,n'+1) =0 using False Di1n'1 Hij-Dij' by auto
 qed
 thus (LEAST n.H $$ (i,n)\not=0)-1\leqn' using least-not0 by auto
qed
 also have ... =(LEAST n. D $$ (i-1,n)\not=0)
 proof (rule Least-equality)
 have D$$(i-1,LEAST n.D $$ (i-1,n)\not=0)\not=0
```

by (metis (mono-tags, lifting) Hil Hil-Dil LeastI-ex)
moreover have leastD: $($ LEAST n. $D \$ \$(i-1, n) \neq 0)<d i m-c o l D$
by (smt dual-order.strict-trans is-zero-row-JNF-def linorder-neqE-nat not-less-Least not-zero-iD)
ultimately show $D \$(i-1$, LEAST $n . D \$ \$(i-1, n) \neq 0) \neq 0$
$\wedge($ LEAST n. $D \$ \$(i-1, n) \neq 0)<d i m-c o l ~ D$ by simp
fix $y$ assume $D \$ \$(i-1, y) \neq 0 \wedge y<\operatorname{dim}$-col $D$
thus $($ LEAST $n . D \$ \$(i-1, n) \neq 0) \leq y$ by (meson wellorder-Least-lemma(2))
qed
finally have leastHi-eq: ?least- $H-1=($ LEAST $n . D \$ \$(i-1, n) \neq 0)$.
have least-nj: ?least-Hj<n
by (smt H carrier-matD(2) dual-order.strict-trans is-zero-row-JNF-def not-less-Least not-less-iff-gr-or-eq not-zero-jH)
have $H j l: H \$ \$(j$, ?least- $H j) \neq 0$ and $l n^{\prime}:\left(\forall n^{\prime} .\left(H \$ \$\left(j, n^{\prime}\right) \neq 0\right) \longrightarrow\right.$ ?least-Hj $\leq n^{\prime}$ )
by (metis (mono-tags, lifting) is-zero-row-JNF-def not-zero-jH wellorder-Least-lemma) +
have Hjl-Djl: $H \$ \$(j$, ?least-Hj) $=D \$ \$(j-1$,?least-Hj -1$)$
proof -
have $H \$ \$(j$, ?least- $H j)=($ if $j<$ dim-row $A$ then if ?least- $H j<\operatorname{dim}-c o l A$ then $A \$ \$$ ( $j$, ?least-Hj)
else B $\$ \$(j$, ?least-Hj - dim-col $A)$ else if ?least-Hj $<\operatorname{dim-col} A$ then
( $0_{m}(m-1)$ 1) $\$ \$(j-$ dim-row $A$, ?least-Hj) else $D \$ \$(j-$ dim-row $A$, ?least-Hj - dim-col $A)$ )
unfolding $H$-def
by (rule index-mat-four-block, insert False j ij H A D n least-nj, auto simp add: H-def)
also have $\ldots=D \$ \$(j-1$, ?least- $H j-1)$
using False $j$ ij $H$ A D n least-n B HiO Hjl by auto
finally show ?thesis .
qed
have $($ LEAST $n . H \$ \$(j, n) \neq 0)-1=(\operatorname{LEAST} n . D \$ \$(j-1, n) \neq 0 \wedge$ $n<$ dim-col $D$ )
proof (rule Least-equality[symmetric], rule)
show $D \$ \$(j-1$, ?least- $H j-1) \neq 0$ using Hil Hil-Dil
by (smt H Hij-Dij' LeastI-ex carrier-matD is-zero-row-JNF-def j least-not0j linorder-neqE-nat not-gr0 not-less-Least order.strict-trans ij not-zero-jH)
show (LEAST n. H $\$ \$(j, n) \neq 0)-1<$ dim-col $D$ using least-nj least-not0j $H D n$ by auto
fix $n^{\prime}$ assume $D \$ \$\left(j-1, n^{\prime}\right) \neq 0 \wedge n^{\prime}<\operatorname{dim}$-col $D$
hence $\operatorname{Di1} n^{\prime} 1: D \$\left(j-1, n^{\prime}\right) \neq 0$ and $n^{\prime}: n^{\prime}<d i m-c o l D$ by auto
have $(L E A S T$ n. $H \$ \$(j, n) \neq 0) \leq n^{\prime}+1$
proof (rule Least-le)
have $H \$ \$\left(j, n^{\prime}+1\right)=D \$ \$\left(j-1,\left(n^{\prime}+1\right)-1\right)$
by (rule Hij-Dij', insert i-not0 False $H$ A ij j n' D, auto)
thus Hin': H $\$ \$\left(j, n^{\prime}+1\right) \neq 0$ using False Di1n'1 Hij-Dij' by auto qed
thus $(L E A S T n . H \$ \$(j, n) \neq 0)-1 \leq n^{\prime}$ using least-not0 by auto qed
also have $\ldots=(\operatorname{LEAST} n . D \$ \$(j-1, n) \neq 0)$

```
 proof (rule Least-equality)
 have D$$(j-1,LEAST n.D $$ (j-1,n)\not=0)\not=0
 by (metis (mono-tags, lifting) Hjl Hjl-Djl LeastI-ex)
 moreover have leastD: (LEAST n.D $$ (j - 1, n)\not=0)<dim-col D
 by (smt dual-order.strict-trans is-zero-row-JNF-def linorder-neqE-nat
 not-less-Least not-zero-jD)
 ultimately show D $$ (j-1,LEAST n. D $$ (j-1,n)\not=0)\not=0
 \wedge(LEAST n.D $$ (j-1,n)\not=0)<dim-col D by simp
 fix y assume D $$(j-1,y)\not=0^y<dim-col D
 thus (LEAST n.D $$ (j-1,n)\not=0)\leqy by (meson wellorder-Least-lemma(2))
 qed
 finally have leastHj-eq: (LEAST n.H $$ (j,n)\not=0) - 1 = (LEAST n.D $$
(j-1,n)\not=0).
 have ij': i-1<j-1 using ij False by auto
 have j-1 < dim-row D using D H ij j by auto
 hence (LEAST n.D $$ (i-1,n)\not=0)<(LEAST n.D $$ (j-1,n)\not=0)
 using e-D echelon-form-JNF-def ij' not-zero-jD order.strict-trans by blast
 thus ?thesis using leastHj-eq leastHi-eq by auto
qed
thus }\forallij.i<j\wedgej<\mathrm{ dim-row H}\wedge\negis-zero-row-JNF i H ^\neg is-zero-row-JN
j H
 \longrightarrow(LEAST n.H$$(i,n)\not=0)<(LEAST n.H $$ (j,n)\not=0) by blast
qed
context mod-operation
begin
lemma reduce-below:
 assumes A\incarrier-mat m n
 shows reduce-below a xs D A \in carrier-mat m n
 using assms
 by (induct a xs D A rule: reduce-below.induct, auto simp add: Let-def euclid-ext2-def)
lemma reduce-below-preserves-dimensions:
 shows [simp]: dim-row (reduce-below a xs D A) = dim-row A
 and [simp]: dim-col (reduce-below a xs D A) = dim-col A
 using reduce-below[of A dim-row A dim-col A] by auto
lemma reduce-below-abs:
 assumes A\in carrier-mat m n
 shows reduce-below-abs a xs D A \in carrier-mat m n
 using assms
 by (induct a xs D A rule: reduce-below-abs.induct, auto simp add: Let-def eu-
clid-ext2-def)
lemma reduce-below-abs-preserves-dimensions:
```

```
shows [simp]:dim-row (reduce-below-abs a xs D A) = dim-row A
 and [simp]:dim-col (reduce-below-abs a xs D A) = dim-col A
 using reduce-below-abs[of A dim-row A dim-col A] by auto
lemma FindPreHNF-1xn:
assumes A:A\incarrier-mat m n and m<2 \vee n=0
shows FindPreHNF abs-flag D A carrier-mat m n using assms by auto
lemma FindPreHNF-mx1:
assumes A:A\incarrier-mat m n and m\geq2 and n\not=0 n<2
shows FindPreHNF abs-flag D A \in carrier-mat m n
proof (cases abs-flag)
 case True
 let ?nz = (filter (\lambdai. A $$ (i,0)\not=0) [1..<m])
 have FindPreHNF abs-flag D A = (let non-zero-positions = filter (\lambdai. A $$ (i,
0) }=0\mathrm{) [Suc 0..<m]
 in reduce-below-abs 0 non-zero-positions D (if A $$ (0,0)\not=0 then A else
 let i=non-zero-positions ! 0 in swaprows 0 i A))
 using assms True by auto
 also have ... = reduce-below-abs 0 ?nz D (if A $$ (0,0) \not=0 then A
 else let i=?nz!0 in swaprows 0 i A) unfolding Let-def by auto
 also have ... \in carrier-mat m n using A by auto
 finally show ?thesis.
next
 case False
 let ?nz = (filter (\lambdai. A $$ (i,0) =0) [1..<m])
 have FindPreHNF abs-flag D A = (let non-zero-positions = filter (\lambdai. A $$ (i,
0) }=0)[\begin{array}{llcc}{\mathrm{ Suc.<m}}
 in reduce-below 0 non-zero-positions D (if A $$ (0, 0) \not=0 then A else
 let i=non-zero-positions!0 in swaprows 0 i A))
 using assms False by auto
 also have ... = reduce-below 0 ?nz D (if A $$ (0,0) \not=0 then A
 else let i=?nz!0 in swaprows 0 i A) unfolding Let-def by auto
 also have ... \in carrier-mat m n using A by auto
 finally show ?thesis.
qed
```

lemma FindPreHNF-mxn2:
assumes $A: A \in$ carrier-mat $m n$ and $m: m \geq 2$ and $n: n \geq 2$
shows FindPreHNF abs-flag $D A \in$ carrier-mat $m n$
using assms
proof (induct abs-flag D A arbitrary: m n rule: FindPreHNF.induct)
case (1 abs-flag D A)
note $A=1 . \operatorname{prems}(1)$
note $m=1 . \operatorname{prems}(2)$
note $n=1 . \operatorname{prems}(3)$
define non-zero-positions where non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq$
0) $[1 . .<$ dim-row $A]$
define $A^{\prime}$ where $A^{\prime}=($ if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=$ non-zero-positions
! 0 in swaprows $0 i A$ )
define Reduce where $[$ simp $]$ : Reduce $=$ (if abs-flag then reduce-below-abs else reduce-below)
obtain $A^{\prime}-U L A^{\prime}-U R \quad A^{\prime}-D L \quad A^{\prime}-D R$ where $A^{\prime}$-split: $\left(A^{\prime}-U L, A^{\prime}-U R, A^{\prime}-D L\right.$, $A^{\prime}-D R$ )
$=$ split-block (Reduce 0 non-zero-positions $D\left(\right.$ make-first-column-positive $\left.\left.A^{\prime}\right)\right) 1$ 1
by (metis prod-cases4)
define sub-PreHNF where sub-PreHNF = FindPreHNF abs-flag $D A^{\prime}$-DR
have $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ unfolding $A^{\prime}$-def using $A$ by auto
have $A^{\prime}-D R: A^{\prime}-D R \in$ carrier-mat $(m-1)(n-1)$
by (cases abs-flag; rule split-block(4)[OF A'-split[symmetric]], insert Reduce-def A $A^{\prime} m n$, auto)
have sub-PreHNF: sub-PreHNF $\in$ carrier-mat $(m-1)(n-1)$
proof (cases $m-1<2$ )
case True
show ?thesis using $A^{\prime}-D R$ True unfolding sub-PreHNF-def by auto
next
case False note $m^{\prime}=$ False
show ?thesis
proof (cases $n-1<2$ )
case True
show ?thesis
unfolding sub-PreHNF-def by (rule FindPreHNF-mx1[OF A'-DR - True],
insert $n m^{\prime}$, auto)
next
case False
show ?thesis
by (unfold sub-PreHNF-def, rule 1.hyps
[of m n, OF - - non-zero-positions-def $A^{\prime}$-def Reduce-def - $A^{\prime}$-split - -
$\left.A^{\prime}-D R\right]$,
insert A False $n m^{\prime}$ Reduce-def, auto)
qed
qed
have $A^{\prime}$-UL: $A^{\prime}-U L \in$ carrier-mat 11
by (cases abs-flag; rule split-block(1)[OF $A^{\prime}$-split[symmetric], of $\left.m-1 n-1\right]$, insert $n m A^{\prime}$, auto)
have $A^{\prime}-U R: A^{\prime}-U R \in$ carrier-mat $1(n-1)$
by (cases abs-flag; rule split-block(2)[OF $A^{\prime}$-split[symmetric], of $m-1$ ], insert $n m A^{\prime}$, auto)
have $A^{\prime}-D L: A^{\prime}-D L \in$ carrier-mat $(m-1) 1$
by (cases abs-flag; rule split-block(3)[OF A'-split[symmetric], of - $n-1]$, insert $n m A^{\prime}$, auto)
have $*:(\operatorname{dim}-\operatorname{col} A=0)=$ False using $1(2-)$ by auto
have FindPreHNF-as-fbm: FindPreHNF abs-flag $D A=$ four-block-mat $A^{\prime}-U L$ $A^{\prime}-U R \quad A^{\prime}-D L$ sub-PreHNF
unfolding FindPreHNF.simps[of abs-flag $D A]$ using $A^{\prime}$-split m $n A$
unfolding Let-def sub-PreHNF-def $A^{\prime}$-def non-zero-positions-def *
apply (cases abs-flag)
by (smt (z3) Reduce-def carrier-matD(1) carrier-matD(2) linorder-not-less prod.simps(2))+
also have $\ldots \in$ carrier-mat $m n$
by (smt m A'-UL One-nat-def add.commute carrier-matD carrier-mat-triv in-dex-mat-four-block $(2,3)$
le-add-diff-inverse2 le-eq-less-or-eq lessI $n$ nat-SN.compat numerals(2) sub-PreHNF)
finally show? case .
qed
lemma FindPreHNF:
assumes $A: A \in$ carrier-mat $m n$
shows FindPreHNF abs-flag $D A \in$ carrier-mat $m n$
using assms FindPreHNF-mxn2[OF A] FindPreHNF-mx1[OF A] FindPreHNF-1xn[OF
A]
using linorder-not-less by blast
end
lemma make-first-column-positive-append-id:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and $D 0: D>0$
and $n 0: 0<n$
shows make-first-column-positive $A$
$=$ mat-of-rows $n($ map (Matrix.row (make-first-column-positive A)) $[0 . .<m]) @_{r}$
( $D \cdot m\left(1_{m} n\right)$ )
proof (rule matrix-append-rows-eq-if-preserves)
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def by auto
thus make-first-column-positive $A \in$ carrier-mat $(m+n) n$ by auto
have make-first-column-positive $A \$ \$(i, j)=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i-m, j)$
if $j: j<n$ and $i: i \in\{m . .<m+n\}$ for $i j$
proof -
have $i-m n$ : $i<m+n$ using $i$ by auto
have $A \$ \$(i, 0)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i-m, 0)$ unfolding $A$-def
by (smt A append-rows-def assms(1) assms(2) atLeastLessThan-iff car-
rier-matD
index-mat-four-block less-irrefl-nat nat-SN.compat $j$ i n0)
also have $\ldots \geq 0$ using $D 0$ mult-not-zero that(2) by auto
finally have Ai0: $A \$ \$(i, 0) \geq 0$.
have make-first-column-positive $A \$ \$(i, j)=A \$ \$(i, j)$
using make-first-column-positive-works[OF A i-mn n0] j Ai0 by auto
also have $\ldots=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i-m, j)$ unfolding $A$-def
by (smt A append-rows-def $A^{\prime} A$-def atLeastLessThan-iff carrier-matD
index-mat-four-block less-irrefl-nat nat-SN.compat $i j$ )
finally show ?thesis .
qed
thus $\forall i \in\{m . .<m+n\} . \forall j<n$. make-first-column-positive $A \$ \$(i, j)=(D \cdot m$ $\left.1_{m} n\right) \$ \$(i-m, j)$
by $\operatorname{simp}$
qed (auto)
lemma $A^{\prime}$-swaprows-invertible-mat:
fixes $A$ :: int mat
assumes $A$ : $A \in$ carrier-mat $m n$
assumes $A^{\prime}$-def: $A^{\prime}=($ if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=$ non-zero-positions
! 0 in swaprows 0 i A)
and nz-def: non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<$ dim-row $A]$
and nz-empty: $A \$ \$(0,0)=0 \Longrightarrow$ non-zero-positions $\neq[]$
and $m 0: 0<m$
shows $\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge A^{\prime}=P * A$
proof (cases $A \$ \$(0,0) \neq 0)$
case True
then show ?thesis
by (metis $A A^{\prime}$-def invertible-mat-one left-mult-one-mat one-carrier-mat)
next
case False
have nz-empty: non-zero-positions $\neq[]$ using nz-empty False by simp
let $? i=$ non-zero-positions $!0$
let $? M=($ swaprows-mat $m 0$ ? $)::$ int mat
have $i$-set-nz: ? $i \in$ set (non-zero-positions) using nz-empty by auto
have $i m$ : ? $i<m$ using $A n z$-def $i$-set-nz by auto
have $i$-not $0: ~ ? ~ i \neq 0$ using $A n z$-def $i$-set-nz by auto
have $A^{\prime}=$ swaprows 0 ?i $A$ using False $A^{\prime}$-def by simp
also have $\ldots=$ ? $M * A$
by (rule swaprows-mat $[O F A]$, insert $n z$-def nz-empty False $A$ m0 im, auto)
finally have $1: A^{\prime}=? M * A$.
have 2: ?M $\in$ carrier-mat $m \mathrm{~m}$ by auto
have Determinant.det ? $M=-1$
by (rule det-swaprows-mat[OF m0 im i-not0[symmetric]])
hence 3: invertible-mat ?M using invertible-iff-is-unit-JNF[OF 2] by auto
show ?thesis using 123 by blast
qed
lemma swaprows-append-id:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and $i: i<m$
shows swaprows 0 i $A$
$=$ mat-of-rows $n($ map (Matrix.row (swaprows 0 i A) $)[0 . .<m]) @_{r}\left(D \cdot_{m}\left(1_{m}\right.\right.$
n))
proof (rule matrix-append-rows-eq-if-preserves)
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def by auto
show swap: swaprows $0 i A \in$ carrier-mat $(m+n) n$ by (simp add: A)
have swaprows 0 i $A \$ \$(i a, j)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i a-m, j)$

$$
\text { if } i a: i a \in\{m . .<m+n\} \text { and } j: j<n \text { for } i a j
$$

proof -
have swaprows 0 i $A \$ \$(i a, j)=A \$ \$(i a, j)$ using $i$ ia $j A$ by auto
also have $\ldots=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i a-m, j)$
by (smt A append-rows-def $A^{\prime} A$-def atLeastLessThan-iff carrier-matD index-mat-four-block less-irrefl-nat nat-SN.compat ia j)
finally show swaprows 0 i $A \$(i a, j)=\left(D \cdot m 1_{m} n\right) \$ \$(i a-m, j)$. qed
thus $\forall i a \in\{m . .<m+n\} . \forall j<n$. swaprows $0 i A \$ \$(i a, j)=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i a$ - $m, j$ ) by $\operatorname{simp}$
qed (simp)
lemma non-zero-positions-xs-m:
fixes $A:: ' a::$ comm-ring-1 mat
assumes $A$-def: $A=A^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$
and nz-def: non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<\operatorname{dim}$-row $A]$
and $m 0: 0<m$ and $n 0: 0<n$
and $D 0: D \neq 0$
shows $\exists$ xs. non-zero-positions $=x s @[m] \wedge$ distinct $x s \wedge(\forall x \in$ set $x s . x<m \wedge 0$
$<x$ )
proof -
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def by auto
let $? x s=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m]$
have l-rw: $[1 . .<$ dim-row $A]=[1 . .<m+1] @[m+1 . .<$ dim-row $A]$ using $A m 0 n 0$
by (auto, metis Suc-leI less-add-same-cancel1 upt-add-eq-append upt-conv-Cons)
have f0: filter $(\lambda i . A \$ \$(i, 0) \neq 0)([m+1 . .<$ dim-row $A])=[]$
proof (rule filter-False)
have $A \$ \$(i, 0)=0$ if $i: i \in \operatorname{set}[m+1 . .<$ dim-row $A]$ for $i$
proof -
have $A \$ \$(i, 0)=\left(D \cdot m 1_{m} n\right) \$ \$(i-m, 0)$
by (rule append-rows-nth3[OF $A^{\prime}-A$-def - - n0], insert i $A$, auto)
also have $\ldots=0$ using $i A$ by auto
finally show ?thesis.
qed
thus $\forall x \in$ set $[m+1 . .<\operatorname{dim}$-row $A] . \neg A \$ \$(x, 0) \neq 0$ by blast
qed
have $f m$ : filter $(\lambda i . A \$ \$(i, 0) \neq 0)[m]=[m]$
proof -
have $A \$ \$(m, 0)=\left(D \cdot m 1_{m} n\right) \$ \$(m-m, 0)$
by (rule append-rows-nth3[OF $A^{\prime}-A$-def--n0], insert n0, auto)
also have $\ldots=D$ using $m 0 n 0$ by auto
finally show ?thesis using $D 0$ by auto
qed
have non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)([1 . .<m+1] @[m+1 . .<$ dim-row A])
using $n z$-def l-rw by auto
also have $\ldots=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m+1] @$ filter $(\lambda i . A \$ \$(i, 0) \neq$ 0) $([m+1 . .<$ dim-row $A])$
by auto
also have $\ldots=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m+1]$ using $f 0$ by auto
also have $\ldots=$ filter $(\lambda i$. $A \$ \$(i, 0) \neq 0)([1 . .<m] @[m])$ using $m 0$ by auto also have $\ldots=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m] @[m]$ using $f m$ by auto finally have non-zero-positions $=$ ? xs @ $[m]$.
moreover have distinct ? xs by auto
moreover have ( $\forall x \in$ set ? $x s . x<m \wedge 0<x)$ by auto
ultimately show ?thesis by blast
qed
lemma non-zero-positions-xs-m':
fixes $A:: ' a::$ comm-ring-1 mat
assumes $A$-def: $A=A^{\prime} @_{r} D \cdot m 1_{m} n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$
and $n z$-def: non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<$ dim-row $A]$
and $m 0: 0<m$ and $n 0: 0<n$
and $D 0: D \neq 0$
shows non-zero-positions $=($ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m]) @[m]$
$\wedge$ distinct $($ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m])$
$\wedge(\forall x \in \operatorname{set}(f i l t e r(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m]) . x<m \wedge 0<x)$
proof -
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def by auto
let ? $x s=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m]$
have l-rw: $[1 . .<$ dim-row $A]=[1 . .<m+1] @[m+1 . .<$ dim-row $A]$ using $A m 0 n 0$
by (auto, metis Suc-leI less-add-same-cancel1 upt-add-eq-append upt-conv-Cons)
have f0: filter $(\lambda i . A \$ \$(i, 0) \neq 0)([m+1 . .<$ dim-row $A])=[]$
proof (rule filter-False)
have $A \$ \$(i, 0)=0$ if $i$ : $i \in$ set $[m+1 . .<$ dim-row $A]$ for $i$
proof -
have $A \$ \$(i, 0)=\left(D \cdot m 1_{m} n\right) \$ \$(i-m, 0)$
by (rule append-rows-nth $3\left[O F A^{\prime}-A-d e f-n 0\right]$, insert $i A$, auto)
also have $\ldots=0$ using $i A$ by auto
finally show ?thesis .
qed
thus $\forall x \in \operatorname{set}[m+1 . .<$ dim-row $A] . \neg A \$ \$(x, 0) \neq 0$ by blast
qed
have fm: filter $(\lambda i . A \$ \$(i, 0) \neq 0)[m]=[m]$
proof -
have $A \$ \$(m, 0)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(m-m, 0)$
by (rule append-rows-nth3 [OF $\left.A^{\prime}-A-d e f-n 0\right]$, insert n0, auto)
also have $\ldots=D$ using $m 0 n 0$ by auto
finally show ?thesis using $D 0$ by auto
qed
have non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)([1 . .<m+1] @[m+1 . .<$ dim-row

A])
using $n z$-def $l$-rw by auto
also have $\ldots=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m+1] @ \operatorname{filter}(\lambda i . A \$ \$(i, 0) \neq$ 0) $([m+1 . .<$ dim-row $A])$
by auto
also have $\ldots=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m+1]$ using $f 0$ by auto
also have $\ldots=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)([1 . .<m] @[m])$ using $m 0$ by auto
also have $\ldots=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m]$ @ $[m]$ using $f m$ by auto
finally have non-zero-positions $=$ ?xs @ $[m]$.
moreover have distinct ? xs by auto
moreover have $(\forall x \in$ set ? xs. $x<m \wedge 0<x)$ by auto
ultimately show ?thesis by blast
qed
lemma $A-A^{\prime} D$-eq-first- $n$-rows:
assumes $A$-def: $A=A^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$
and $m n: m \geq n$
shows (mat-of-rows $n\left(\operatorname{map}\left(\right.\right.$ Matrix.row $\left.\left.\left.A^{\prime}\right)[0 . .<n]\right)\right)$
$=($ mat-of-rows $n($ map $($ Matrix.row $A)[0 . .<n]))($ is ?lhs $=$ ?rhs $)$
proof (rule eq-matI)
show dr: dim-row ?lhs $=$ dim-row?rhs and dc: dim-col ?lhs $=$ dim-col ?rhs by auto
have $D: D \cdot{ }_{m} 1_{m} n$ : carrier-mat $n n$ by simp
fix $i j$ assume $i$ : $i<$ dim-row ? rhs and $j$ : $j<$ dim-col ?rhs
have ?lhs $\$ \$(i, j)=A^{\prime} \$ \$(i, j)$ using $i j d r d c A^{\prime} m n$ by (simp add: mat-of-rows-def)
also have $\ldots=A \$ \$(i, j)$ using append-rows-nth $\left[O F A^{\prime} D\right] i j d r d c A^{\prime} m n A$-def
by auto
also have $\ldots=$ ? $r h s \$ \$(i, j)$ using $i j d r d c A^{\prime} A$-def mn
by (metis $D$ calculation carrier-matD (1) diff-zero gr-implies-not0 length-map length-upt
linordered-semidom-class.add-diff-inverse mat-of-rows-carrier (2,3)
mat-of-rows-index nat-SN.compat nth-map-upt row-append-rows1)
finally show ?lhs $\$ \$(i, j)=$ ? $r h s \$ \$(i, j)$.
qed
lemma non-zero-positions-xs-m-invertible:
assumes $A$-def: $A=A^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$
and nz-def: non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<$ dim-row $A]$
and $m 0: 0<m$ and $n 0: 0<n$
and $D 0: D \neq 0$
and inv- $A^{\prime \prime}$ : invertible-mat (map-mat rat-of-int (mat-of-rows $n$ (map (Matrix.row
$\left.\left.\left.A^{\prime}\right)[0 . .<n]\right)\right)$ )
and $A^{\prime} 00: A^{\prime} \$ \$(0,0)=0$
and $m n: m \geq n$
shows length non-zero-positions $>1$
proof -
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def by auto
have $D: D \cdot{ }_{m} 1_{m} n$ : carrier-mat $n n$ by auto
let ?RAT = map-mat rat-of-int
let $? A^{\prime \prime}=\left(\right.$ mat-of-rows $n\left(\right.$ map $\left(\right.$ Matrix.row $\left.\left.\left.A^{\prime}\right)[0 . .<n]\right)\right)$
have $A^{\prime \prime}: ? A^{\prime \prime} \in$ carrier-mat $n n$ by auto
have RAT- $A^{\prime \prime}: ? R A T$ ? $A^{\prime \prime} \in$ carrier-mat $n n$ by auto
let ? $y s=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m]$
let ? xs $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<n]$
have $x s$-not-empty: ? $x s \neq[]$
proof (rule ccontr)
assume $\neg$ ? $x s \neq[]$ hence $x s 0:$ ? $x s=[]$ by $\operatorname{simp}$
have $A 00: A \$ \$(0,0)=0$
proof -
have $A \$ \$(0,0)=A^{\prime} \$ \$(0,0)$ unfolding $A$-def using append-rows-nth $[O F$ $\left.A^{\prime} D\right] m 0 n 0 A^{\prime}$ by auto
thus ?thesis using $A^{\prime} 00$ by simp
qed
hence $(\forall i \in \operatorname{set}[1 . .<n]$. $A \$ \$(i, 0)=0)$
by (metis (mono-tags, lifting) empty-filter-conv xs0)
hence $*:(\forall i<n . A \$ \$(i, 0)=0)$ using A00 n0 using linorder-not-less by force
have col? $A^{\prime \prime} 0=0_{v} n$
proof (rule eq-vecI)
show dim-vec $\left(\right.$ col ? $\left.A^{\prime \prime} 0\right)=$ dim-vec $\left(O_{v} n\right)$ using $A^{\prime}$ by auto
fix $i$ assume $i: i<\operatorname{dim-vec}\left(O_{v} n\right)$
have col ? $A^{\prime \prime} 0 \$ v i=? A^{\prime \prime} \$ \$(i, 0)$ by (rule index-col, insert i $A^{\prime} n 0$, auto)
also have $\ldots=A \$ \$(i, 0)$
unfolding $A$-def using $i A$ append-rows-nth $\left[O F A^{\prime} D-n 0\right] A^{\prime} m n$
by (metis $A^{\prime \prime} n 0$ carrier-matD (1) index-zero-vec(2) le-add2 map-first-rows-index
mat-of-rows-carrier(2) mat-of-rows-index nat-SN.compat)
also have $\ldots=0$ using $* i$ by auto
finally show col ? $A^{\prime \prime} 0 \$ v i=0_{v} n \$ v i$ using $i$ by auto
qed
hence $\operatorname{col}\left(? R A T ? A^{\prime \prime}\right) 0=0_{v} n$ by auto
hence $\neg$ invertible-mat (?RAT ?A')
using invertible-mat-first-column-not0[OF RAT-A" - n0] by auto
thus False using inv- $A^{\prime \prime}$ by contradiction
qed
have l-rw: $[1 . .<$ dim-row $A]=[1 . .<m+1] @[m+1 . .<\operatorname{dim}$-row $A]$ using $A m 0 n 0$
by (auto, metis Suc-leI less-add-same-cancel1 upt-add-eq-append upt-conv-Cons)
have f0: filter $(\lambda i . A \$ \$(i, 0) \neq 0)([m+1 . .<$ dim-row $A])=[]$
proof (rule filter-False)
have $A \$ \$(i, 0)=0$ if $i: i \in \operatorname{set}[m+1 . .<$ dim-row $A]$ for $i$
proof -
have $A \$ \$(i, 0)=\left(D \cdot m 1_{m} n\right) \$ \$(i-m, 0)$
by (rule append-rows-nth3[OF $A^{\prime}-A$-def - n0], insert i $A$, auto)
also have $\ldots=0$ using $i A$ by auto
finally show ?thesis.
qed
thus $\forall x \in$ set $[m+1 . .<\operatorname{dim}$-row $A] . \neg A \$ \$(x, 0) \neq 0$ by blast

## qed

have fm: filter $(\lambda i, A \$ \$(i, 0) \neq 0)[m]=[m]$
proof -
have $A \$ \$(m, 0)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(m-m, 0)$
by (rule append-rows-nth3 [OF $A^{\prime}-A$-def - -n0], insert n0, auto)
also have $\ldots=D$ using $m 0 n 0$ by auto
finally show ?thesis using $D 0$ by auto
qed
have non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)([1 . .<m+1] @[m+1 . .<$ dim-row A])
using $n z$-def l-rw by auto
also have $\ldots=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m+1] @ \operatorname{filter}(\lambda i . A \$ \$(i, 0) \neq$ 0) $([m+1 . .<$ dim-row $A])$
by auto
also have $\ldots=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m+1]$ using $f 0$ by auto
also have $\ldots=$ filter $(\lambda i$. $A \$ \$(i, 0) \neq 0)([1 . .<m] @[m])$ using $m 0$ by auto
also have $\ldots=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m] @[m]$ using $f m$ by auto
finally have $n z$ : non-zero-positions $=$ ? ys @ $[\mathrm{m}]$.
moreover have ys-not-empty: ?ys $\neq[]$ using $x s$-not-empty $m n$
by (metis (no-types, lifting) atLeastLessThan-iff empty-filter-conv nat-SN.compat set-upt)
show ?thesis unfolding $n z$ using ys-not-empty by auto

## qed

corollary non-zero-positions-length-xs:
assumes $A$-def: $A=A^{\prime} @_{r} D \cdot m 1_{m} n$
and $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$
and $n z$-def: non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<$ dim-row $A]$
and $m 0: 0<m$ and $n 0: 0<n$
and $D 0: D \neq 0$
and inv- $A^{\prime \prime}$ : invertible-mat (map-mat rat-of-int (mat-of-rows n (map (Matrix.row $\left.\left.\left.A^{\prime}\right)[0 . .<n]\right)\right)$ )
and $A^{\prime} 00: A^{\prime} \$ \$(0,0)=0$
and $m n: m \geq n$
and $n z$-xs-m: non-zero-positions $=x s @[m]$
shows length $x s>0$
proof -
have length non-zero-positions $>1$
by (rule non-zero-positions-xs-m-invertible[OF $A$-def $A^{\prime} n z-\operatorname{def} m 0 n 0$ D0 inv-A' ${ }^{\prime \prime}$ $\left.A^{\prime} 00 m n\right]$ )
thus ?thesis using $n z-x s-m$ by auto
qed
lemma make-first-column-positive-nz-conv: assumes $i<d i m-$ row $A$ and $j<d i m-c o l ~ A$
shows (make-first-column-positive $A \$ \$(i, j) \neq 0)=(A \$ \$(i, j) \neq 0)$
using assms unfolding make-first-column-positive.simps by auto

```
lemma make-first-column-positive-00:
 assumes \(A\)-def: \(A=A^{\prime \prime} @_{r} D \cdot m 1_{m} n\)
 and \(A^{\prime \prime}: A^{\prime \prime}:\) carrier-mat \(m n\)
 assumes nz-def: non-zero-positions \(=\) filter \((\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<\) dim-row
A]
 and \(A^{\prime}\)-def: \(A^{\prime}=(\) if \(A \$ \$(0,0) \neq 0\) then \(A\) else let \(i=\) non-zero-positions !
0 in swaprows \(0 i A\))
 and \(m 0: 0<m\) and \(n 0: 0<n\) and \(D 0: D \neq 0\) and \(m n: m \geq n\)
 shows make-first-column-positive \(A^{\prime} \$ \$(0,0) \neq 0\)
proof -
 have \(A: A \in\) carrier-mat \((m+n) n\) using \(A\)-def \(A^{\prime \prime}\) by auto
 hence \(A^{\prime}: A^{\prime} \in\) carrier-mat \((m+n) n\) unfolding \(A^{\prime}\)-def by auto
 have (make-first-column-positive \(\left.A^{\prime} \$ \$(0,0) \neq 0\right)=\left(A^{\prime} \$ \$(0,0) \neq 0\right)\)
 by (rule make-first-column-positive-nz-conv, insert m0 n0 \(A^{\prime}\), auto)
 moreover have \(A^{\prime} \$ \$(0,0) \neq 0\)
 proof (cases A \(\$ \$(0,0) \neq 0)\)
 case True
 then show ?thesis unfolding \(A^{\prime}\)-def by auto
 next
 case False
 have \(A \$ \$(0,0)=A^{\prime \prime} \$ \$(0,0)\)
 by (smt add-gr-0 append-rows-def \(A\)-def \(A^{\prime \prime}\) carrier-matD index-mat-four-block(1)
mn n0 nat-SN.compat)
 hence \(A^{\prime \prime} 00: A^{\prime \prime} \$ \$(0,0)=0\) using False by auto
 let \(? i=\) non-zero-positions \(!0\)
 obtain xs where non-zero-positions-xs-m: non-zero-positions \(=x s @[m]\) and
\(d\)-xs: distinct xs
 and all-less-m: \(\forall x \in\) set xs. \(x<m \wedge 0<x\)
 using non-zero-positions-xs-m[OF \(A\)-def \(A^{\prime \prime} n z\)-def m0 n0] using \(D 0\) by fast
 have Ai0:A \(\$ \$(? i, 0) \neq 0\)
 by (smt append.simps(1) append-Cons append-same-eq nz-def in-set-conv-nth
length-greater-0-conv
 list.simps(3) local.non-zero-positions-xs-m mem-Collect-eq set-filter)
 have \(A^{\prime} \$ \$(0,0)=\) swaprows 0 ?i \(A \$ \$(0,0)\) using False \(A^{\prime}\)-def by auto
 also have \(\ldots \neq 0\) using \(A\) Ai0 no by auto
 finally show? ?thesis.
 qed
 ultimately show ?thesis by blast
qed
context proper-mod-operation
begin
```

lemma reduce-below-0-case-m-make-first-column-positive:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $m 0: 0<m$ and $n 0: 0<n$ and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$ and $m n: m \geq n$
assumes $i-m n: i<m+n$ and $d-x s$ : distinct xs and $x s: \forall x \in$ set $x s . x<m \wedge 0$ $<x$
and $i a: i \neq 0$
and $A^{\prime \prime}$-def: $A^{\prime \prime}=($ if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=$ non-zero-positions !
0 in swaprows 0 i A)
and $D 0: D>0$
and $n z$-def: non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<d i m-$ row $A]$
shows reduce-below 0 non-zero-positions $D$ (make-first-column-positive $A^{\prime \prime}$ ) $\$ \$$
$(i, 0)=0$
proof -
have $A$ : $A \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def by auto
define $x s$ where $x s=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m]$
have $n z$-xs-m: non-zero-positions $=x s @[m]$ and d-xs: distinct xs
and all-less-m: $\forall x \in$ set $x s . x<m \wedge 0<x$
using non-zero-positions-xs-m ${ }^{\prime}\left[O F A\right.$-def $\left.A^{\prime} n z-\operatorname{def} m 0 n 0\right]$ using $D 0 A$ unfolding $n z$-def xs-def by auto
have $A^{\prime \prime}: A^{\prime \prime} \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def $A^{\prime \prime}$-def by auto
have $D$-not0: $D \neq 0$ using $D 0$ by auto
have $A i 0: A \$ \$(i, 0)=0$ if $i m: i>m$ and $i m n: i<m+n$ for $i$
proof -
have $D:\left(D \cdot_{m}\left(1_{m} n\right)\right) \in$ carrier-mat $n n$ by simp
have $A \$ \$(i, 0)=\left(D \cdot_{m}\left(1_{m} n\right)\right) \$ \$(i-m, 0)$
unfolding $A$-def using append-rows-nth $\left[O F A^{\prime} D\right.$ imn n0] im $A^{\prime}$ by auto
also have $\ldots=0$ using im imn n0 by auto
finally show ?thesis .
qed
let $? M^{\prime}=$ mat-of-rows $n\left(\right.$ map (Matrix.row (make-first-column-positive $\left.A^{\prime \prime}\right)$ ) [0..<m])
have $M^{\prime}: ? M^{\prime} \in$ carrier-mat $m n$ using $A^{\prime \prime}$ by auto
have $m k 0$ : make-first-column-positive $A^{\prime \prime} \$ \$(0,0) \neq 0$
by (rule make-first-column-positive-00[OF A-def $A^{\prime} n z$-def $A^{\prime \prime}$-def m0 n0 D-not0 $m n]$ )
have $M-M^{\prime} D$ : make-first-column-positive $A^{\prime \prime}=? M^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$ if xs-empty: $x s \neq[]$
proof (cases $A \$ \$(0,0) \neq 0)$
case True
then have $*$ : make-first-column-positive $A^{\prime \prime}=$ make-first-column-positive $A$
unfolding $A^{\prime \prime}$-def by auto
show ?thesis
by (unfold *, rule make-first-column-positive-append-id[OF $A^{\prime} A$-def D0 n0])
next
case False
then have *: make-first-column-positive $A^{\prime \prime}$
$=$ make-first-column-positive (swaprows 0 (non-zero-positions! 0)
A)
unfolding $A^{\prime \prime}$-def by auto
show ?thesis
proof (unfold $*$, rule make-first-column-positive-append-id)
let ? $S=$ mat-of-rows $n$ (map (Matrix.row (swaprows 0 (non-zero-positions!
0) $A$ )) $[0 . .<m])$
show swaprows 0 (non-zero-positions!0) $A=$ ?S $@_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
proof (rule swaprows-append-id $\left[O F A^{\prime} A\right.$-def])
have $A^{\prime} 00: A^{\prime} \$ \$(0,0)=0$
by (metis (no-types, lifting) A False add-pos-pos append-rows-def $A^{\prime} A$-def carrier-matD index-mat-four-block m0 n0)
have length-xs: length $x s>0$ using $x s$-empty by auto
have non-zero-positions ! $0=x s!0$ unfolding nz-xs-m
by (meson length-xs nth-append)
thus non-zero-positions! $0<m$ using all-less- $m$ length-xs by simp qed
qed (insert n0 D0, auto)
qed
show ?thesis
proof (cases xs $=[]$ )
case True note xs-empty $=$ True
have reduce-below 0 non-zero-positions $D$ (make-first-column-positive $A^{\prime \prime}$ )
$=$ reduce $0 m D$ (make-first-column-positive $\left.A^{\prime \prime}\right)$
unfolding nz-xs-m True by auto
also have ... $\$ \$(i, 0)=0$
proof (cases $i=m$ )
case True
from $D 0$ have $D \geq 1 D \geq 0$ by auto
then show ?thesis using D0 True
by (metis $A$ add-sign-intros(2) $A^{\prime \prime}$-def carrier-matD(1) carrier-matD(2)
carrier-matI
index-mat-swaprows(2) index-mat-swaprows(3) less-add-same-cancel1 m0
make-first-column-positive-preserves-dimensions mk0 n0 neq0-conv re-
duce-0)
next
case False note $i$-not- $m=$ False
have nz-m: non-zero-positions ! $0=m$ unfolding $n z-x s-m$ True by auto
let $? M=$ make-first-column-positive $A^{\prime \prime}$
have $M:$ ? $M \in$ carrier-mat $(m+n) n$ using $A^{\prime \prime}$ by auto
show ?thesis
proof (cases $A \$ \$(0,0)=0)$
case True
have reduce 0 m $D$ ? $M \$ \$(i, 0)=? M \$ \$(i, 0)$
by (rule reduce-preserves $[O F M n 0 m k 0$ False ia i-mn])
also have Mi0: $\ldots=a b s\left(A^{\prime \prime} \$ \$(i, 0)\right)$
by (smt $M$ carrier-matD (1) carrier-matD(2) $i$-mn index-mat(1) make-first-column-positive.simps make-first-column-positive-preserves-dimensions n0 prod.simps(2))
also have Mi02: $\ldots=a b s(A \$ \$(i, 0))$ unfolding $A^{\prime \prime}$-def $n z-m$

```
 using True A False i-mn ia n0 by auto
 also have ... = 0
 proof -
 have filter (}\lambdan.A$$(n,0)\not=0)[1..<m]=[
 using xs-empty xs-def by presburger
 then have }\foralln.A$$(n,0)=0\veen\not\in\mathrm{ set [1..<m] using filter-empty-conv
by fast
 then show ?thesis
 by (metis (no-types) AiO False arith-simps(43) assms(9) atLeast-
LessThan-iff i-mn
 le-eq-less-or-eq less-one linorder-neqE-nat set-upt)
 qed
 finally show ?thesis
 next
 case False hence A00:A $$ (0,0)\not=0 by simp
 have reduce 0 m D ?M $$ (i,0) =?M $$ (i,0)
 by (rule reduce-preserves[OF M n0 mk0 i-not-m ia i-mn])
 also have Mi0: ... = abs (}\mp@subsup{A}{}{\prime\prime}$$(i,0)
 by (smt M carrier-matD(1) carrier-matD(2) i-mn index-mat(1) make-first-column-positive.simps
 make-first-column-positive-preserves-dimensions n0 prod.simps(2))
 also have Mi02: .. = abs (swaprows 0 m A $$ (i,0)) unfolding A''-def
nz-m
 using A00 A i-not-m i-mn ia n0 by auto
 also have ... = abs (A$$(i,0)) using False ia A00 MiO A''-def calculation
Mi02 by presburger
 also have ... = 0
 proof -
 have filter (\lambdan. A $$ (n,0)\not=0)[1..<m]=[]
 using True xs-def by presburger
 then have }\foralln.A$$(n,0)=0\veen\not\in\operatorname{set}[1..<m] using filter-empty-con
by fast
 then show ?thesis
 by (metis (no-types) Ai0 i-not-m arith-simps(43) ia atLeastLessThan-iff
i-mn
 le-eq-less-or-eq less-one linorder-neqE-nat set-upt)
 qed
 finally show ?thesis .
 qed
 qed
 finally show ?thesis .
 next
 case False note xs-not-empty = False
 note M-M'D = M-M'D[OF xs-not-empty]
 show ?thesis
 proof (cases i E set (xs @ [m]))
 case True
 show ?thesis
 by (unfold nz-xs-m, rule reduce-below-0-case-m[OF M' m0 n0 M-M'D mk0
mn True d-xs all-less-m D0])
```

next
case False note $i$-notin-xs-m $=$ False
have 1: reduce-below 0 (xs @ [m]) D (make-first-column-positive $\left.A^{\prime \prime}\right) \$ \$(i, 0)$

```
 =(make-first-column-positive A'})$$(i,0
 by (rule reduce-below-preserves-case-m[OF M' m0 n0 M-M'D mk0 mn - d-xs
all-less-m ia i-mn - D0],
 insert False, auto)
 have ((make-first-column-positive }\mp@subsup{A}{}{\prime\prime})$$(i,0)\not=0)=(\mp@subsup{A}{}{\prime\prime}$$(i,0)\not=0
 by (rule make-first-column-positive-nz-conv, insert A" i-mn n0, auto)
 hence 2: ((make-first-column-positive A') $$ (i,0)=0)=((A"$$ (i,0)=
0) by auto
 have 3:(}\mp@subsup{A}{}{\prime\prime}$$(i,0)=0
 proof (cases A$$(0,0)\not=0)
 case True
 then have }\mp@subsup{A}{}{\prime\prime}$$(i,0)=A$$(i,0)\mathrm{ unfolding }\mp@subsup{A}{}{\prime\prime}\mathrm{ -def by auto
 also have ... = 0 using False ia i-mn A nz-xs-m Ai0 unfolding nz-def
xs-def by auto
 finally show ?thesis by auto
 next
 case False hence A00:A $$(0,0)=0 by simp
 let ?i = non-zero-positions ! 0
 have i-noti:i\not=?i
 using i-notin-xs-m unfolding nz-xs-m
 by (metis Nil-is-append-conv length-greater-0-conv list.distinct(2) nth-mem)
 have }\mp@subsup{A}{}{\prime\prime}$$(i,0)=(\mathrm{ swaprows 0 ?i A) $$ (i,0) using False unfolding }\mp@subsup{A}{}{\prime\prime}\mathrm{ -def
by auto
 also have ... =A $$(i,0) using i-notin-xs-m ia i-mn A i-noti n0 unfolding
xs-def by fastforce
 also have ... = 0 using i-notin-xs-m ia i-mn A i-noti n0 unfolding xs-def
 by (smt nz-def atLeastLessThan-iff carrier-matD(1) less-one linorder-not-less
 mem-Collect-eq nz-xs-m set-filter set-upt xs-def)
 finally show ?thesis.
 qed
 show ?thesis using 12 3 nz-xs-m by argo
 qed
 qed
qed
```

lemma reduce-below-abs-0-case-m-make-first-column-positive:
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $m 0: 0<m$ and $n 0: 0<n$
and $A$-def: $A=A^{\prime} @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
and $m n: m \geq n$
assumes $i-m n: i<m+n$ and $d$-xs: distinct $x s$ and $x s: \forall x \in$ set $x s . x<m \wedge 0$
$<x$
and $i a: i \neq 0$
and $A^{\prime \prime}$-def: $A^{\prime \prime}=($ if $A \$(0,0) \neq 0$ then $A$ else let $i=$ non-zero-positions !
0 in swaprows 0 i A)
and $D 0: D>0$
and nz-def: non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<d i m$-row $A]$
shows reduce-below-abs 0 non-zero-positions $D$ (make-first-column-positive $A^{\prime \prime}$ )
$\$ \$(i, 0)=0$
proof -
have $A: A \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def by auto
define $x s$ where $x s=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m]$
have $n z$-xs-m: non-zero-positions $=x s @[m]$ and $d$-xs: distinct $x s$
and all-less-m: $\forall x \in$ set xs. $x<m \wedge 0<x$
using non-zero-positions-xs-m'[OF $A$-def $A^{\prime} n z$-def m0 n0] using D0 $A$ un-
folding $n z$-def $x s$-def by auto
have $A^{\prime \prime}: A^{\prime \prime} \in$ carrier-mat $(m+n) n$ using $A^{\prime} A$-def $A^{\prime \prime}$-def by auto
have $D$-not0: $D \neq 0$ using $D 0$ by auto
have $A i 0: A \$(i, 0)=0$ if $i m: i>m$ and $i m n: i<m+n$ for $i$
proof -
have $D:\left(D r_{m}\left(1_{m} n\right)\right) \in$ carrier-mat $n n$ by simp
have $A \$ \$(i, 0)=\left(D \cdot_{m}\left(1_{m} n\right)\right) \$ \$(i-m, 0)$
unfolding $A$-def using append-rows-nth $\left[O F A^{\prime} D\right.$ imn no] im $A^{\prime}$ by auto
also have $\ldots=0$ using im imn $n 0$ by auto
finally show ?thesis.
qed
let $? M^{\prime}=$ mat-of-rows $n\left(\operatorname{map}\right.$ (Matrix.row (make-first-column-positive $\left.\left.A^{\prime \prime}\right)\right)$ [0.. $<m$ ])
have $M^{\prime}: ? M^{\prime} \in$ carrier-mat $m n$ using $A^{\prime \prime}$ by auto
have $m k 0$ : make-first-column-positive $A^{\prime \prime} \$ \$(0,0) \neq 0$
by (rule make-first-column-positive-00[OF A-def $A^{\prime} n z-d e f A^{\prime \prime}$-def m0 n0 D-not0 $m n]$ )
have $M-M^{\prime} D$ : make-first-column-positive $A^{\prime \prime}=? M^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$ if $x s$-empty: $x s \neq[]$
proof (cases $A \$ \$(0,0) \neq 0)$
case True
then have $*$ : make-first-column-positive $A^{\prime \prime}=$ make-first-column-positive $A$ unfolding $A^{\prime \prime}$-def by auto
show ?thesis
by (unfold *, rule make-first-column-positive-append-id[OF $A^{\prime} A$-def D0 n0])
next
case False
then have $*$ : make-first-column-positive $A^{\prime \prime}$

$$
=\text { make-first-column-positive (swaprows } 0 \text { (non-zero-positions!0) }
$$

A)
unfolding $A^{\prime \prime}$-def by auto
show ?thesis
proof (unfold $*$, rule make-first-column-positive-append-id)
let ? $S=$ mat-of-rows $n$ (map (Matrix.row (swaprows 0 (non-zero-positions!
0) $A$ )) $[0 . .<m])$
show swaprows 0 (non-zero-positions!0) $A=$ ? $S @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
proof (rule swaprows-append-id $\left[O F A^{\prime} A\right.$-def])
have $A^{\prime} 00: A^{\prime} \$ \$(0,0)=0$
by (metis (no-types, lifting) A False add-pos-pos append-rows-def $A^{\prime} A$-def
carrier-matD index-mat-four-block m0 n0)
have length-xs: length $x s>0$ using $x s$-empty by auto
have non-zero-positions ! $0=x s!0$ unfolding $n z-x s-m$
by (meson length-xs nth-append)
thus non-zero-positions! $0<m$ using all-less-m length-xs by simp
qed
qed (insert n0 D0, auto)
qed
show ?thesis
proof (cases xs $=$ [])
case True note xs-empty $=$ True
have reduce-below-abs 0 non-zero-positions $D$ (make-first-column-positive $A^{\prime \prime}$ ) $=$ reduce-abs $0 m D$ (make-first-column-positive $\left.A^{\prime \prime}\right)$
unfolding $n z-x s-m$ True by auto
also have ... $\$ \$(i, 0)=0$
proof (cases $i=m$ )
case True
from $D 0$ have $D \geq 1 D \geq 0$ by auto
then show ?thesis using D0 True
by (metis $A$ add-sign-intros(2) $A^{\prime \prime}$-def carrier-matD(1) carrier-matD(2)
carrier-matI
index-mat-swaprows(2) index-mat-swaprows(3) less-add-same-cancel1 m0
make-first-column-positive-preserves-dimensions mk0 n0 neq0-conv re-
duce-0)
next
case False note $i$-not-m = False
have $n z-m$ : non-zero-positions $!0=m$ unfolding $n z-x s-m$ True by auto
let ? $M=$ make-first-column-positive $A^{\prime \prime}$
have $M: ? M \in$ carrier-mat $(m+n) n$ using $A^{\prime \prime}$ by auto
show ?thesis
proof (cases $A \$ \$(0,0)=0)$
case True
have reduce-abs $0 \mathrm{~m} D$ ? $\mathrm{M} \$ \$(i, 0)=? M \$ \$(i, 0)$
by (rule reduce-preserves $[O F M n 0 m k 0$ False ia $i$-mn])
also have Mi0: ... $=a b s\left(A^{\prime \prime} \$ \$(i, 0)\right)$
by (smt $M$ carrier-matD(1) carrier-matD(2) $i$-mn index-mat(1) make-first-column-positive.simps make-first-column-positive-preserves-dimensions n0 prod.simps(2))
also have Mi02: ... $=$ abs $(A \$ \$(i, 0))$ unfolding $A^{\prime \prime}$-def $n z-m$
using True A False i-mn ia n0 by auto
also have $\ldots=0$
proof -
have filter $(\lambda n . A \$ \$(n, 0) \neq 0)[1 . .<m]=[]$
using $x s$-empty $x s$-def by presburger
then have $\forall n . A \$ \$(n, 0)=0 \vee n \notin \operatorname{set}[1 . .<m]$ using filter-empty-conv
by fast
then show ?thesis
by (metis (no-types) Ai0 False arith-simps(43) assms(9) atLeast-
le-eq-less-or-eq less-one linorder-neqE-nat set-upt)
qed
finally show ?thesis .
next
case False hence A00: $A \$ \$(0,0) \neq 0$ by simp
have reduce-abs $0 \mathrm{~m} D$ ? $\mathrm{M} \$ \$(i, 0)=? M \$ \$(i, 0)$
by (rule reduce-preserves[OF M n0 mk0 i-not-m ia i-mn])
also have Mi0: ... $=a b s\left(A^{\prime \prime} \$ \$(i, 0)\right)$
by (smt $M$ carrier-matD(1) carrier-matD(2) i-mn index-mat(1) make-first-column-positive.simps
make-first-column-positive-preserves-dimensions n0 prod.simps(2))
also have Mi02: ... = abs (swaprows 0 m $A \$ \$(i, 0)$ ) unfolding $A^{\prime \prime}$-def
$n z-m$
using A00 A i-not-m i-mn ia n0 by auto
also have $\ldots=$ abs $(A \$ \$(i, 0))$ using False ia A00 Mi0 $A^{\prime \prime}$-def calculation
Mi02 by presburger
also have $\ldots=0$
proof -
have filter $(\lambda n . A \$ \$(n, 0) \neq 0)[1 . .<m]=[]$
using True xs-def by presburger
then have $\forall n . A \$ \$(n, 0)=0 \vee n \notin$ set $[1 . .<m]$ using filter-empty-conv
by fast
then show ?thesis
by (metis (no-types) Ai0 i-not-m arith-simps(43) ia atLeastLessThan-iff
$i-m n$
le-eq-less-or-eq less-one linorder-neqE-nat set-upt)
qed
finally show ?thesis .
qed
qed
finally show ?thesis .
next
case False note $x$ s-not-empty $=$ False
note $M-M^{\prime} D=M-M^{\prime} D[O F$ xs-not-empty $]$
show ?thesis
proof (cases $i \in \operatorname{set}(x s @[m]))$
case True
show ?thesis
by (unfold nz-xs-m, rule reduce-below-abs-0-case-m[OF M' m0 n0 M-M'D
mk0 mn True d-xs all-less-m D0])
next
case False note $i$-notin-xs-m $=$ False
have 1: reduce-below-abs 0 (xs @ [m]) D (make-first-column-positive $A^{\prime \prime}$ ) \$\$
(i,0)
$=\left(\right.$ make-first-column-positive $\left.A^{\prime \prime}\right) \$(i, 0)$
by (rule reduce-below-abs-preserves-case-m[OF $M^{\prime} m 0 n 0 M-M^{\prime} D m k 0 m n$

- d-xs all-less-m ia i-mn - DO],
insert False, auto)
have $\left(\left(\right.\right.$ make-first-column-positive $\left.\left.A^{\prime \prime}\right) \$ \$(i, 0) \neq 0\right)=\left(A^{\prime \prime} \$ \$(i, 0) \neq 0\right)$
by (rule make-first-column-positive-nz-conv, insert $A^{\prime \prime} i$-mn n0, auto)
hence 2: $\left(\left(\right.\right.$ make-first-column-positive $\left.\left.A^{\prime \prime}\right) \$(i, 0)=0\right)=\left(A^{\prime \prime} \$ \$(i, 0)=\right.$ 0 ) by auto
have 3: $\left(A^{\prime \prime} \$ \$(i, 0)=0\right)$
proof (cases $A \$ \$(0,0) \neq 0)$
case True
then have $A^{\prime \prime} \$ \$(i, 0)=A \$ \$(i, 0)$ unfolding $A^{\prime \prime}$-def by auto
also have $\ldots=0$ using False ia i-mn A nz-xs-m Ai0 unfolding nz-def $x s$-def by auto
finally show ?thesis by auto
next
case False hence A00: $A \$ \$(0,0)=0$ by simp
let $? i=$ non-zero-positions $!0$
have $i$-noti: $i \neq$ ? $i$
using $i$-notin-xs-m unfolding $n z-x s-m$
by (metis Nil-is-append-conv length-greater-0-conv list.distinct(2) nth-mem)
have $A^{\prime \prime} \$ \$(i, 0)=($ swaprows 0 ?i $A) \$ \$(i, 0)$ using False unfolding $A^{\prime \prime}$-def by auto
also have $\ldots=A \$ \$(i, 0)$ using $i$-notin-xs-m ia i-mn A i-noti n0 unfolding xs-def by fastforce
also have $\ldots=0$ using $i$-notin-xs-m ia i-mn A i-noti n0 unfolding xs-def by (smt nz-def atLeastLessThan-iff carrier-matD (1) less-one linorder-not-less mem-Collect-eq nz-xs-m set-filter set-upt xs-def)
finally show ?thesis .
qed
show ?thesis using $123 n z-x s-m$ by argo
qed
qed
qed
lemma FindPreHNF-invertible-mat-2xn:
assumes $A: A \in$ carrier-mat $m n$ and $m<2$
shows $\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge$ FindPreHNF abs-flag $D$ $A=P * A$
using assms
by (auto, metis invertible-mat-one left-mult-one-mat one-carrier-mat)
lemma FindPreHNF-invertible-mat-mx2:
assumes $A$-def: $A=A^{\prime \prime} @_{r} D \cdot m 1_{m} n$
and $A^{\prime \prime}: A^{\prime \prime} \in$ carrier-mat $m n$ and $n 2: n<2$ and $n 0: 0<n$ and $D-g 0: D>0$ and $m n: m \geq n$
shows $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ FindPreHNF abs-flag $D A=P * A$
proof -
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime \prime}$ by auto
have $m 0: m>0$ using $m n n 2 n 0$ by auto
have $D 0: D \neq 0$ using $D-g 0$ by auto


## show ?thesis

proof (cases $m+n<2$ )
case True
show ?thesis by (rule FindPreHNF-invertible-mat-2xn[OF A True])
next
case False note $m n$-le-2 $=$ False
have $d r$ - $A$ : dim-row $A \geq 2$ using False $n 2 A$ by auto
have $d c-A$ : dim-col $A<2$ using $n 2 A$ by auto
let ?non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[$ Suc $0 . .<$ dim-row $A]$
let $? A^{\prime}=($ if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=$ ?non-zero-positions $!0$ in swaprows 0 i A)
define $x s$ where $x s=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m]$
let ?Reduce $=($ if abs-flag then reduce-below-abs else reduce-below $)$
have $n z$-xs-m: ?non-zero-positions $=x s @[m]$ and $d$-xs: distinct xs
and all-less-m: $\forall x \in$ set $x s . x<m \wedge 0<x$
using non-zero-positions-xs-m'[OF $A$-def $A^{\prime \prime}$ - m0 n0 D0] using D0 $A$ un-
folding $x s$-def by auto
have *: FindPreHNF abs-flag $D A=$ (if abs-flag then reduce-below-abs 0 ?non-zero-positions $D$ ? $A^{\prime}$
else reduce-below 0 ?non-zero-positions $D$ ? $A^{\prime}$ )
using $d r-A d c-A$ by (auto simp add: Let-def)
have $l$ : length ?non-zero-positions $>1$ if $x s \neq[]$ using that unfolding $n z-x s-m$ by auto
have inv: $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n)$
$\wedge$ reduce-below 0 ?non-zero-positions $D ? A^{\prime}=P * ? A^{\prime}$
proof (cases A $\$ \$(0,0) \neq 0)$
case True
show ?thesis
by (unfold $n z-x s-m$, rule reduce-below-invertible-mat-case-m
[OF $A^{\prime \prime} m 0 n 0-$ - mn d-xs all-less-m], insert $A$-def True D-g0, auto)
next
case False hence A00: $A \$ \$(0,0)=0$ by auto
let $? S=$ swaprows $0(? n o n-z e r o-p o s i t i o n s!0) A$
have rw: (if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=$ ?non-zero-positions ! 0 in swaprows 0 i A) $=? S$ using False by auto
show ?thesis
proof (cases xs $=[]$ )
case True
have $n z-m$ : ?non-zero-positions $=[m]$ using True $n z-x s-m$ by simp
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=$ euclid-ext2 (swaprows 0 mA
$\$ \$(0,0))($ swaprows 0 m $A \$ \$(m, 0))$ by (metis prod-cases5)
have $A m 0: A \$ \$(m, 0)=D$
proof -
have $A \$ \$(m, 0)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(m-m, 0)$
by (smt (z3) A append-rows-def $A$-def $A^{\prime \prime} n 0$ carrier-matD diff-self-eq-0 index-mat-four-block
less-add-same-cancel1 less-diff-conv diff-add nat-less-le)
also have $\ldots=D$ by ( $\operatorname{simp}$ add: n0)
finally show ?thesis.
qed
have $S m 0$ : (swaprows $0 m A) \$ \$(m, 0)=0$ using $A$ False $n 0$ by auto
have S00: (swaprows $0 m A) \$ \$(0,0)=D$ using A Am0 n0 by auto
have pquvd2: $(p, q, u, v, d)=$ euclid-ext2 $(A \$ \$(m, 0))(A \$ \$(0,0))$
using pquvd Sm0 S00 Am0 A00 by auto
have reduce-below 0 ?non-zero-positions $D ? A^{\prime}=$ reduce 0 mD ? $A^{\prime}$ unfolding $n z-m$ by auto
also have $\ldots=$ reduce $0 m$ (swaprows $0 m A$ ) using True False rw nz-m by auto
have $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n) \wedge$
reduce $0 m D$ (swaprows $0 m A$ ) $=P *($ swaprows $0 m A)$
proof (rule reduce-invertible-mat-case-m[OF - m0-- mn n0])
show swaprows $0 m A \$ \$(0,0) \neq 0$ using $S 00$ D0 by auto
define $S^{\prime}$ where $S^{\prime}=$ mat-of-rows $n($ map (Matrix.row ?S) $[0 . .<m])$
define $S^{\prime \prime}$ where $S^{\prime \prime}=$ mat-of-rows $n($ map (Matrix.row ?S) $[m . .<m+n])$
define $A 2$ where $A 2=$ Matrix.mat $($ dim-row (swaprows $0 m A))($ dim-col (swaprows $0 m A$ ) )
$(\lambda(i, k)$. if $i=0$ then $p * A \$ \$(m, k)+q * A \$ \$(0, k)$
else if $i=m$ then $u * A \$ \$(m, k)+v * A \$ \$(0, k)$ else $A \$ \$(i, k))$
show $S-S^{\prime}-S^{\prime \prime}$ : swaprows $0 m A=S^{\prime} @_{r} S^{\prime \prime}$ unfolding $S^{\prime}$-def $S^{\prime \prime}$-def
by (metis A append-rows-split carrier-matD index-mat-swaprows(2,3) le-add1 nth-Cons-0 nz-m)
show $S^{\prime}: S^{\prime} \in$ carrier-mat $m$ unfolding $S^{\prime}$-def by fastforce
show $S^{\prime \prime}: S^{\prime \prime} \in$ carrier-mat $n n$ unfolding $S^{\prime \prime}$-def by fastforce
show $0 \neq m$ using $m 0$ by simp
show $(p, q, u, v, d)=$ euclid-ext2 (swaprows $0 m A \$ \$(0,0)$ ) (swaprows 0 $m A \$ \$(m, 0))$
using pquvd by simp
show A2 $=$ Matrix.mat (dim-row (swaprows 0 m A)) (dim-col (swaprows 0 mA) )
$(\lambda(i, k)$. if $i=0$ then $p *$ swaprows $0 m A \$ \$(0, k)+q *$ swaprows $0 m$ $A \$ \$(m, k)$
else if $i=m$ then $u *$ swaprows $0 m A \$ \$(0, k)+v *$ swaprows $0 m A \$ \$$ $(m, k)$ else swaprows $0 m A \$ \$(i, k))$
(is - = ?rhs) using A A2-def by auto
define $x s^{\prime}$ where $x s^{\prime}=[1 . .<n]$
define $y s^{\prime}$ where $y s^{\prime}=[1 . .<n]$
show $x s^{\prime}=[1 . .<n]$ unfolding $x s^{\prime}$-def by auto
show $y s^{\prime}=[1 . .<n]$ unfolding $y s^{\prime}$-def by auto
have $S^{\prime \prime} D:\left(S^{\prime \prime} \$ \$(j, j)=D\right) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . S^{\prime \prime} \$ \$\left(j, j^{\prime}\right)=0\right)$
if $j n: j<n$ and $j 0: j>0$ for $j$
proof -
have $S^{\prime \prime} \$ \$(j, i)=\left(D \cdot m 1_{m} n\right) \$ \$(j, i)$ if $i-n$ : $i<n$ for $i$
proof -
have $S^{\prime \prime} \$ \$(j, i)=$ swaprows $0 m A \$ \$(j+m, i)$
by (metis $S^{\prime} S^{\prime \prime} S-S^{\prime}-S^{\prime \prime}$ append-rows-nth2 mn nat-SN.compat $i$-n jn) also have $\ldots=A \$ \$(j+m, i)$ using $A j n j 0 i-n$ by auto


```
 by (smt A Groups.add-ac(2) add-mono-thms-linordered-field(1)
append-rows-def A-def A" i-n
 carrier-matD index-mat-four-block(1,2) add-diff-cancel-right'
not-add-less2 jn trans-less-add1)
 finally show ?thesis.
 qed
 thus ?thesis using jn j0 by auto
 qed
 have 0 & set xs'
 proof -
 have A2 $$ (0,0) = p*A$$(m,0) + q*A$$(0,0)
 using A A2-def n0 by auto
 also have ... = gcd (A$$(m,0)) (A$$ (0,0))
 by (metis euclid-ext2-works(1) euclid-ext2-works(2) pquvd2)
 also have .. = D using Am0 A00 D-g0 by auto
 finally have A2 $$ (0,0) = D .
 thus ?thesis unfolding xs'-def using D-g0 by auto
 qed
 thus }\forallj\in\mathrm{ set xs'. j<n^(S'I $$ (j,j)=D)^(}\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}. S"'$
(j, j') = 0)
 using S"}D=x\mp@subsup{s}{}{\prime}-\mathrm{ def by auto
 have 0}\not\in\mathrm{ set ys'
 proof -
 have A2 $$ (m,0) =u*A$$(m,0)+v*A$$(0,0)
 using A A2-def n0 m0 by auto
 also have ... = - A$$(0,0) div gcd (A$$ (m,0)) (A$$(0,0))*A
$$(m,0)
 +A$$(m,0) div gcd (A$$(m,0)) (A$$(0,0))*A$$(0,0)
 by (simp add: euclid-ext2-works[OF pquvd2[symmetric]])
 also have ... = 0 using A00 Am0 by auto
 finally have A2 $$ (m,0)=0.
 thus ?thesis unfolding ys'-def using D-g0 by auto
 qed
 thus }\forallj\in\mathrm{ set ys'. j<n^(S'I $$ (j,j)=D)^(}\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}. S'\prime$
(j, j})=0
 using S"D ys'-def by auto
 show swaprows 0 m A $$ (m,0) \in{0,D} using Sm0 by blast
 thus swaprows 0 m A $$ (m,0) = 0 \longrightarrow swaprows 0 m A $$ (0,0) = D
 using SOO by linarith
 qed (insert D-g0)
 then show ?thesis by (simp add: False nz-m)
 next
 case False note xs-not-empty = False
 show ?thesis
 proof (unfold nz-xs-m, rule reduce-below-invertible-mat-case-m[OF - m0 n0 -
- mn d-xs all-less-m D-g0])
 let ? S' = mat-of-rows n (map (Matrix.row ?S) [0..<m])
 show ? S' }\in\mathrm{ carrier-mat m n by auto
```

have $l$ : length ?non-zero-positions $>1$ using $l$ False by blast
hence nz0-less-m: ?non-zero-positions! $0<m$
by (metis One-nat-def add.commute add.left-neutral all-less-m append-Cons-nth-left
length-append less-add-same-cancel1 list.size $(3,4)$ nth-mem nz-xs-m)
have ? $S=$ ? $S^{\prime} @_{r} D \cdot m 1_{m} n$ by (rule swaprows-append-id $\left[O F A^{\prime \prime} A\right.$-def $n z 0-l e s s-m]$ )
thus $($ if $A \$ \$(0,0) \neq 0$ then A else let $i=(x s @[m])!0$ in swaprows $0 i$ $A)=? S^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$
using $r w n z-x s-m$ by argo
have ?S $\$ \$(0,0) \neq 0$
by (smt A ladd-pos-pos carrier-matD index-mat-swaprows(1) le-eq-less-or-eq length-greater-0-conv
less-one linorder-not-less list.size(3) m0 mem-Collect-eq n0 nth-mem set-filter)
thus $($ if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=(x s @[m])!0$ in swaprows $0 i$ A) $\$ \$(0,0) \neq 0$
using $r w n z-x s-m$ by algebra
qed
qed
qed
have inv2: $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n)$
$\wedge$ reduce-below-abs 0 ?non-zero-positions $D ? A^{\prime}=P * ? A^{\prime}$
proof (cases $A \$ \$(0,0) \neq 0)$
case True
show ?thesis
by (unfold $n z-x s-m$, rule reduce-below-abs-invertible-mat-case-m
[OF A" m0 n0 - mn d-xs all-less-m], insert A-def True D-g0, auto)
next
case False hence A00: A $\$ \$(0,0)=0$ by auto
let $? S=$ swaprows 0 (?non-zero-positions! 0) A
have rw: (if A $\$ \$(0,0) \neq 0$ then $A$ else let $i=$ ?non-zero-positions ! 0 in swaprows 0 i A)
$=? S$ using False by auto
show ?thesis
proof (cases xs $=[]$ )
case True
have $n z-m$ : ?non-zero-positions $=[m]$ using True $n z-x s-m$ by simp
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=$ euclid-ext2 (swaprows $0 m A$
$\$ \$(0,0))$ (swaprows $0 m A \$ \$(m, 0))$
by (metis prod-cases5)
have $A m 0: A \$ \$(m, 0)=D$
proof -
have $A \$ \$(m, 0)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(m-m, 0)$
by (smt (z3) A append-rows-def $A$-def $A^{\prime \prime}$ n0 carrier-matD diff-self-eq-0
index-mat-four-block
less-add-same-cancel1 less-diff-conv diff-add nat-less-le)
also have $\ldots=D$ by ( $\operatorname{simp}$ add: n0)
finally show ?thesis.
qed
have Sm0: (swaprows $0 m A) \$(m, 0)=0$ using A False n0 by auto
have SO0: (swaprows $0 m A) \$(0,0)=D$ using $A$ Am0 $n 0$ by auto
have pquvd2: $(p, q, u, v, d)=\operatorname{euclid}-$ ext2 $(A \$ \$(m, 0))(A \$(0,0))$
using pquvd Sm0 S00 Am0 A00 by auto
have reduce-below 0 ?non-zero-positions $D ? A^{\prime}=$ reduce $0 m D ? A^{\prime}$ unfolding $n z-m$ by auto
also have ... = reduce $0 m$ (swaprows $0 m A$ ) using True False rw $n z-m$ by auto
have $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n) \wedge$ reduce-abs $0 m D$ (swaprows $0 m A)=P *($ swaprows $0 m A)$
proof (rule reduce-abs-invertible-mat-case-m[OF - m0 - - - mn no])
show swaprows $0 m A \$(0,0) \neq 0$ using $S 00$ D0 by auto
define $S^{\prime}$ where $S^{\prime}=$ mat-of-rows $n$ (map (Matrix.row ?S) $[0 . .<m]$ )
define $S^{\prime \prime}$ where $S^{\prime \prime}=$ mat-of-rows $n($ map (Matrix.row ? $S$ ) $[m . .<m+n])$
define $A 2$ where $A 2=$ Matrix.mat $($ dim-row (swaprows $0 m A))($ dim-col (swaprows $0 m A$ ))
$(\lambda(i, k)$. if $i=0$ then $p * A \$(m, k)+q * A \$ \$(0, k)$
else if $i=m$ then $u * A \$ \$(m, k)+v * A \$ \$(0, k)$ else $A \$(i, k))$
show $S-S^{\prime}-S^{\prime \prime}:$ swaprows $0 m A=S^{\prime} @_{r} S^{\prime \prime}$ unfolding $S^{\prime}$-def $S^{\prime \prime}$-def
by (metis A append-rows-split carrier-matD index-mat-swaprows(2,3) le-add1 nth-Cons-0 $n z-m$ )
show $S^{\prime}: S^{\prime} \in$ carrier-mat $m n$ unfolding $S^{\prime}$-def by fastforce
show $S^{\prime \prime}: S^{\prime \prime} \in$ carrier-mat $n n$ unfolding $S^{\prime \prime}$-def by fastforce
show $0 \neq m$ using $m 0$ by simp
show ( $p, q, u, v, d$ ) $=$ euclid-ext2 (swaprows $0 m A \$(0,0)$ ) (swaprows 0 $m A \$(m, 0))$
using pquvd by simp
show $A 2=$ Matrix.mat $($ dim-row (swaprows $0 m A))($ dim-col (swaprows $0 m$ A)
( $\lambda(i, k)$. if $i=0$ then $p *$ swaprows $0 m A \$(0, k)+q *$ swaprows $0 m$ $A \$ \$(m, k)$
else if $i=m$ then $u *$ swaprows $0 m A \$(0, k)+v *$ swaprows $0 m A \$ \$$ ( $m, k$ ) else swaprows $0 m A \$(i, k)$ )
(is $-=?$ rhs) using $A$ AD-def by auto
define $x s^{\prime}$ where $x s^{\prime}=$ filter $(\lambda i$. abs $($ A2 $\$ \$(0, i))>D)[0 . .<n]$
define $y s^{\prime}$ where $y s^{\prime}=$ filter $(\lambda i$. abs $(A 2 \$ \$(m, i))>D)[0 . .<n]$
show $x s^{\prime}=$ filter $(\lambda i$. abs $(A 2 \$ \$(0, i))>D)[0 . .<n]$ unfolding $x s^{\prime}-d e f$
by auto
show $y s^{\prime}=$ filter $(\lambda i$. abs $(A 2 \$ \$(m, i))>D)[0 . .<n]$ unfolding $y s^{\prime}-$ def by auto
have $S^{\prime \prime} D:\left(S^{\prime \prime} \$ \$(j, j)=D\right) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . S^{\prime \prime} \$ \$\left(j, j^{\prime}\right)=0\right)$ if $j n: j<n$ and $j 0: j>0$ for $j$
proof -
have $S^{\prime \prime} \$ \$(j, i)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(j, i)$ if $i-n: i<n$ for $i$
proof -
have $S^{\prime \prime} \$ \$(j, i)=$ swaprows $0 m A \$(j+m, i)$
by (metis $S^{\prime} S^{\prime \prime} S-S^{\prime}-S^{\prime \prime}$ append-rows-nth2 mn nat-SN.compat i-n jn) also have $\ldots=A \$ \$(j+m, i)$ using $A j n j 0 i-n$ by auto

```
 also have ... = (D m}\mp@subsup{m}{m}{}\mp@subsup{1}{m}{}n)$$(j,i
 by (smt A Groups.add-ac(2) add-mono-thms-linordered-field(1)
append-rows-def A-def A" i-n
 carrier-matD index-mat-four-block(1,2) add-diff-cancel-right'
not-add-less2 jn trans-less-add1)
 finally show ?thesis.
 qed
 thus ?thesis using jn j0 by auto
 qed
 have 0 & set xs'
 proof -
 have A2 $$ (0,0) = p*A$$(m,0) + q*A$$(0,0)
 using A A2-def n0 by auto
 also have ... = gcd (A$$(m,0)) (A$$ (0,0))
 by (metis euclid-ext2-works(1) euclid-ext2-works(2) pquvd2)
 also have .. = D using Am0 A00 D-g0 by auto
 finally have A2 $$ (0,0) = D .
 thus ?thesis unfolding xs'-def using D-g0 by auto
 qed
 thus }\forallj\in\mathrm{ set xs'. j<n^(S'I $$ (j,j)=D)^(}\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}. S"'$
(j, j') = 0)
 using S"}D=x\mp@subsup{s}{}{\prime}-\mathrm{ def by auto
 have 0}\not\in\mathrm{ set ys'
 proof -
 have A2 $$ (m,0) =u*A$$(m,0) +v*A$$(0,0)
 using A A2-def n0 m0 by auto
 also have ... = - A$$(0,0) div gcd (A$$ (m,0)) (A$$(0,0))*A
$$(m,0)
 +A$$(m,0) div gcd (A$$(m,0)) (A$$(0,0))*A$$(0,0)
 by (simp add: euclid-ext2-works[OF pquvd2[symmetric]])
 also have ... = 0 using A00 Am0 by auto
 finally have A2 $$ (m,0)=0.
 thus ?thesis unfolding ys'-def using D-g0 by auto
 qed
 thus }\forallj\in\mathrm{ set ys'. j<n^(S'I $$ (j,j)=D)^(}\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}. S'\prime$
(j, j})=0
 using S"D ys'-def by auto
 qed (insert D-g0)
 then show ?thesis by (simp add: False nz-m)
 next
 case False note xs-not-empty = False
 show ?thesis
 proof (unfold nz-xs-m, rule reduce-below-abs-invertible-mat-case-m[OF - m0
n0 - -mn d-xs all-less-m D-g0])
 let ?S' = mat-of-rows n (map (Matrix.row ?S) [0..<m])
 show ? S ' }\in\mathrm{ carrier-mat m n by auto
 have l: length ?non-zero-positions > 1 using l False by blast
 hence nz0-less-m: ?non-zero-positions! 0 < m
 by (metis One-nat-def add.commute add.left-neutral all-less-m append-Cons-nth-left
```

length-append less-add-same-cancel1 list.size $(3,4)$ nth-mem nz-xs-m)
have ? $S=$ ? $S^{\prime} @_{r} D \cdot{ }_{m} 1_{m} n$ by (rule swaprows-append-id $\left[\right.$ OF $A^{\prime \prime} A$-def nz0-less-m])
thus (if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=(x s @[m])!0$ in swaprows $0 i$ $A)=? S^{\prime} @_{r} D \cdot m 1_{m} n$
using $r w n z-x s-m$ by argo
have ? $S \$ \$(0,0) \neq 0$
by (smt A ladd-pos-pos carrier-matD index-mat-swaprows(1) le-eq-less-or-eq length-greater-0-conv
less-one linorder-not-less list.size(3) m0 mem-Collect-eq n0 nth-mem set-filter)
thus $($ if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=(x s @[m])!0$ in swaprows $0 i$ A) $\$ \$(0,0) \neq 0$
using $r w n z-x s-m$ by algebra
qed
qed
qed
show ?thesis
proof (cases abs-flag)
case False
from inv obtain $P$ where inv- $P$ : invertible-mat $P$ and $P: P \in$ carrier-mat $(m+n)(m+n)$
and $r$ - $P A^{\prime}$ : reduce-below 0 ?non-zero-positions $D ? A^{\prime}=P * ? A^{\prime}$ by blast
have Find-rw: FindPreHNF abs-flag $D A=$ reduce-below 0 ?non-zero-positions D? $A^{\prime}$
using n0 A dr-A dc-A False * by (auto simp add: Let-def)
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge ? A^{\prime}=P *$ A
by (rule $A^{\prime}$-swaprows-invertible-mat $[O F A]$, insert non-zero-positions-xs-m n0 m0 l nz-xs-m, auto)
from this obtain $Q$ where $Q: Q \in$ carrier-mat $(m+n)(m+n)$
and inv- $Q$ : invertible-mat $Q$ and $A^{\prime}-Q A: ? A^{\prime}=Q * A$ by blast
have reduce-below 0 ?non-zero-positions $D ? A^{\prime}=(P * Q) * A$ using $Q A^{\prime}-Q A$ $P r-P A^{\prime} A$ by auto
moreover have invertible-mat $(P * Q)$ using $P Q$ inv- $P$ inv- $Q$ invertible-mult-JNF by blast
moreover have $(P * Q) \in$ carrier-mat $(m+n)(m+n)$ using $P Q$ by auto
ultimately show ? thesis using Find-rw by metis

## next

case True
from inv2 obtain $P$ where inv- $P$ : invertible-mat $P$ and $P: P \in$ carrier-mat $(m+n)(m+n)$
and $r$ - $P A^{\prime}$ : reduce-below-abs 0 ?non-zero-positions $D ? A^{\prime}=P * ? A^{\prime}$ by blast
have Find-rw: FindPreHNF abs-flag $D A=$ reduce-below-abs 0 ?non-zero-positions $D$ ? $A^{\prime}$
using n0 Adr-A dc-A True * by (auto simp add: Let-def)
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge ? A^{\prime}=P *$ A
by (rule $A^{\prime}$-swaprows-invertible-mat $[O F A]$, insert non-zero-positions-xs-m n0 m0 l nz-xs-m, auto)
from this obtain $Q$ where $Q: Q \in$ carrier-mat $(m+n)(m+n)$
and inv- $Q$ : invertible-mat $Q$ and $A^{\prime}-Q A: ? A^{\prime}=Q * A$ by blast
have reduce-below-abs 0 ?non-zero-positions $D$ ? $A^{\prime}=(P * Q) * A$ using $Q$ $A^{\prime}-Q A P r-P A^{\prime} A$ by auto
moreover have invertible-mat $(P * Q)$ using $P Q$ inv- $P$ inv- $Q$ invertible-mult-JNF by blast
moreover have $(P * Q) \in$ carrier-mat $(m+n)(m+n)$ using $P Q$ by auto ultimately show ?thesis using Find-rw by metis
qed
qed
qed
corollary FindPreHNF-echelon-form-mx0:
assumes $A \in$ carrier-mat m 0
shows echelon-form-JNF (FindPreHNF abs-flag D A)
by (rule echelon-form-mx0, rule FindPreHNF[OF assms])
lemma FindPreHNF-echelon-form-mx1:
assumes $A$-def: $A=A^{\prime \prime} @_{r} D \cdot m 1_{m} n$
and $A^{\prime \prime}: A^{\prime \prime} \in$ carrier-mat $m n$ and n2: $n<2$ and $D-g 0: D>0$ and $m n: m \geq n$
shows echelon-form-JNF (FindPreHNF abs-flag D A)
proof (cases $n=0$ )
case True
have $A: A \in$ carrier-mat $m 0$ using $A$-def $A^{\prime \prime}$ True
by (metis add.comm-neutral append-rows-def carrier-matD carrier-matI in-dex-mat-four-block(2,3)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3))
show ?thesis unfolding True by (rule FindPreHNF-echelon-form-mx0, insert A, auto)
next
case False hence $n 0: 0<n$ by auto
have $A: A \in$ carrier-mat $(m+n) n$ using $A$-def $A^{\prime \prime}$ by auto
have $m 0: m>0$ using $m n n 2 n 0$ by auto
have $D 0: D \neq 0$ using $D-g 0$ by auto
show ?thesis
proof (cases $m+n<2$ )
case True
show ?thesis by (rule echelon-form-JNF-1xn[OF - True], rule FindPreHNF[OF A])
next
case False note $m n-l e-2=$ False
have $d r$ - $A$ : dim-row $A \geq 2$ using False n2 $A$ by auto
have $d c-A$ : $\operatorname{dim}-c o l A<2$ using $n 2 A$ by auto
let ?non-zero-positions $=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[$ Suc $0 . .<$ dim-row $A]$
let $? A^{\prime}=($ if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=$ ?non-zero-positions ! 0 in
swaprows 0 i A)
define $x s$ where $x s=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<m]$
let $?$ Reduce $=($ if abs-flag then reduce-below-abs else reduce-below $)$
have nz-xs-m: ?non-zero-positions $=x s @[m]$ and $d$-xs: distinct xs
and all-less-m: $\forall x \in$ set $x s . x<m \wedge 0<x$
using non-zero-positions-xs-m'[OF A-def $A^{\prime \prime}$ - m0 n0 D0] using D0 A un-
folding $x s$-def by auto
have *: FindPreHNF abs-flag $D A=$ (if abs-flag then reduce-below-abs 0
?non-zero-positions $D$ ? $A^{\prime}$
else reduce-below 0 ?non-zero-positions D ?A')
using $d r-A d c-A$ by (auto simp add: Let-def)
have $l$ : length ?non-zero-positions $>1$ if $x s \neq[]$ using that unfolding $n z-x s-m$ by auto
have e: echelon-form-JNF (reduce-below 0 ?non-zero-positions $D$ ? $A^{\prime}$ )
proof (cases A $\$ \$(0,0) \neq 0)$
case True note $A 00=$ True
have 1: reduce-below 0 ?non-zero-positions $D ? A^{\prime}=$ reduce-below 0 ?non-zero-positions D A
using True by auto
have echelon-form-JNF (reduce-below 0 ?non-zero-positions $D$ A)
proof (rule echelon-form-JNF-mx1[OF - n2])
show reduce-below 0 ?non-zero-positions $D A \in$ carrier-mat ( $m+n$ ) n using $A$ by auto
show $\forall i \in\{1 . .<m+n\}$. reduce-below 0 ?non-zero-positions $D A \$ \$(i, 0)$ $=0$
proof
fix $i$ assume $i: i \in\{1 . .<m+n\}$
show reduce-below 0 ?non-zero-positions $D A \$ \$(i, 0)=0$
proof (cases $i \in$ set ?non-zero-positions)
case True
show ?thesis unfolding $n z-x s-m$
by (rule reduce-below-0-case-m[OF $A^{\prime \prime} m 0 n 0 A$-def A00 mn-d-xs all-less-m D-g0],
insert nz-xs-m True, auto)
next
case False note $i$-notin-set $=$ False
have reduce-below 0 ?non-zero-positions $D A \$ \$(i, 0)=A \$ \$(i, 0)$
unfolding $n z-x s-m$
by (rule reduce-below-preserves-case-m[OF $A^{\prime \prime}$ m0 n0 A-def A00 mn-$d$-xs all-less-m - - D-g0],
insert i nz-xs-m i-notin-set, auto)
also have $\ldots=0$ using $i$-notin-set $i A$ unfolding set-filter by auto finally show ?thesis.
qed
qed
qed
thus ?thesis using 1 by argo
next
case False hence $A 00: A \$ \$(0,0)=0$ by simp
let $? i=((x s @[m])!0)$
let ? $S=$ swaprows 0 ?i $A$
let ? $S^{\prime}=$ mat-of-rows $n($ map (Matrix.row (swaprows 0 ?i $A$ )) $[0 . .<m])$
have rw: $($ if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=$ ?non-zero-positions! 0 in swaprows 0 i $A$ ) $=$ ? $S$
using A00 nz-xs-m by auto
have $S: ? S \in$ carrier-mat $(m+n) n$ using $A$ by auto
have $A 00-e q-A^{\prime} 00: A \$ \$(0,0)=A^{\prime \prime} \$ \$(0,0)$
by (metis $A^{\prime \prime} A$-def add-gr-0 append-rows-def n0 carrier-matD index-mat-four-block(1) m0)
show ?thesis
proof (cases xs=[])
case True
have $n z-m$ : ?non-zero-positions $=[m]$ using True $n z-x s-m$ by simp
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=$ euclid-ext2 (swaprows $0 m A$
$\$ \$(0,0))$ (swaprows $0 m A \$ \$(m, 0)$ )
by (metis prod-cases5)
have $A m 0$ : $A \$ \$(m, 0)=D$
proof -
have $A \$ \$(m, 0)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(m-m, 0)$
by (smt $A$ append-rows-def $A$-def $A^{\prime \prime}$ n0 carrier-matD diff-self-eq-0
index-mat-four-block
less-add-same-cancel1 less-diff-conv ordered-cancel-comm-monoid-diff-class.diff-add nat-less-le)
also have $\ldots=D$ by ( $\operatorname{simp}$ add: n0)
finally show? thesis.
qed
have $S m 0$ : (swaprows $0 m A) \$(m, 0)=0$ using $A$ False $n 0$ by auto
have $S 00$ : (swaprows $0 m A) \$ \$(0,0)=D$ using $A$ Am0 no by auto
have pquvd2: $(p, q, u, v, d)=$ euclid-ext2 $(A \$ \$(m, 0))(A \$ \$(0,0))$
using pquvd Sm0 S00 Am0 A00 by auto
have reduce-below 0 ?non-zero-positions $D ? A^{\prime}=$ reduce 0 mD ? $A^{\prime}$ unfolding $n z-m$ by auto
also have $\ldots=$ reduce $0 m$ (swaprows $0 m A$ ) using True False rw nz-m by auto
finally have *: reduce-below 0 ?non-zero-positions $D ? A^{\prime}=$ reduce 0 mD (swaprows $0 m A$ ).
have echelon-form-JNF (reduce 0 m D (swaprows 0 m A))
proof (rule echelon-form-JNF-mx1[OF - n2])
show reduce $0 m D$ (swaprows $0 m A) \in$ carrier-mat $(m+n) n$
using A n2 reduce-carrier by (auto simp add: Let-def)
show $\forall i \in\{1 . .<m+n\}$. reduce $0 m D$ (swaprows $0 m A) \$ \$(i, 0)=0$
proof
fix $i$ assume $i: i \in\{1 . .<m+n\}$
show reduce $0 \mathrm{~m} D$ (swaprows $0 m A) \$ \$(i, 0)=0$
proof (cases $i=m$ )
case True
show ?thesis
proof (unfold True, rule reduce-0[OF - -n0])

```
 show swaprows 0 m A E carrier-mat (m+n) n using A by auto
 qed (insert m0 n0 S00 D-g0, auto)
 next
 case False
 have reduce 0 m D (swaprows 0m A)$$(i,0)=(swaprows 0 m A)
```

$\$ \$(i, 0)$
proof (rule reduce-preserves $[O F-n 0]$ )
show swaprows $0 m A \in$ carrier-mat $(m+n) n$ using $A$ by auto
qed (insert m0 n0 S00 D-g0 False $i$, auto)
also have $\ldots=A \$ \$(i, 0)$ using $i$ False $A n 0$ by auto
also have...$=0$
proof (rule ccontr)
assume $A \$ \$(i, 0) \neq 0$ hence $i \in$ set ?non-zero-positions using $i$
$A$ by auto
hence $i=m$ using $n z-x s-m$ True by auto
thus False using False by contradiction
qed
finally show ?thesis .
qed
qed
qed
then show ?thesis using $*$ by presburger
next
case False
have $l$ : length ?non-zero-positions $>1$ using False nz-xs-m by auto
hence $l$-xs: length $x s>0$ using $n z-x s-m$ by auto
hence $x s$-m-less-m: $(x s @[m])!0<m$ by (simp add: all-less-m nth-append)
have $S 00$ : ? $S \$ \$(0,0) \neq 0$
by (smt A add-pos-pos append-Cons-nth-left n0 carrier-matD index-mat-swaprows(1)
$l$-xs m0 mem-Collect-eq nth-mem set-filter xs-def)
have $S^{\prime}: ? S^{\prime} \in$ carrier-mat $m n$ using $A$ by auto
have $S$ - $S^{\prime} D: ? S=? S^{\prime} @_{r} D \cdot_{m} 1_{m} n$ by (rule swaprows-append-id $\left[O F A^{\prime \prime}\right.$
$A$-def $x s-m$-less-m])
have 2: reduce-below 0 ?non-zero-positions $D$ ? $A^{\prime}=$ reduce-below 0 ?non-zero-positions
D?S
using A00 $n z-x s-m$ by algebra
have echelon-form-JNF (reduce-below 0 ?non-zero-positions $D$ ?S)
proof (rule echelon-form-JNF-mx1[OF - n2])
show reduce-below 0 ?non-zero-positions $D ? S \in$ carrier-mat $(m+n) n$ using
$A$ by auto
show $\forall i \in\{1 . .<m+n\}$. reduce-below 0 ?non-zero-positions $D$ ?S $\$ \$(i, 0)$
$=0$
proof
fix $i$ assume $i: i \in\{1 . .<m+n\}$
show reduce-below 0 ?non-zero-positions $D$ ? $S \$(i, 0)=0$
proof (cases íset?non-zero-positions)
case True
show ?thesis unfolding $n z-x s-m$
by (rule reduce-below-0-case-m[OF $S^{\prime} m 0 n 0 S-S^{\prime} D S 00 m n-d-x s$
all-less-m D-g0], insert True nz-xs-m, auto)
next
case False note $i$-notin-set $=$ False
have reduce-below 0 ?non-zero-positions $D$ ?S $\$ \$(i, 0)=? S \$ \$(i, 0)$
unfolding $n z-x s-m$
by (rule reduce-below-preserves-case-m[OF $S^{\prime} m 0 n 0 S-S^{\prime} D S 00 m n-$ $d$-xs all-less-m - - D-g0],
insert i nz-xs-m i-notin-set, auto)
also have $\ldots=0$ using $i$-notin-set i A S00 n0 unfolding set-filter by auto
finally show ?thesis .
qed
qed
qed
thus ?thesis using 2 by argo
qed
qed
have e2: echelon-form-JNF (reduce-below-abs 0 ?non-zero-positions D ? $A^{\prime}$ )
proof (cases $A \$ \$(0,0) \neq 0)$
case True note $A 00=$ True
have 1: reduce-below-abs 0 ?non-zero-positions $D$ ? $A^{\prime}=$ reduce-below-abs 0 ?non-zero-positions $D$ A
using True by auto
have echelon-form-JNF (reduce-below-abs 0 ?non-zero-positions $D$ A)
proof (rule echelon-form-JNF-mx1[OF - n2])
show reduce-below-abs 0 ?non-zero-positions $D A \in$ carrier-mat ( $m+n$ ) n using $A$ by auto
show $\forall i \in\{1 . .<m+n\}$. reduce-below-abs 0 ?non-zero-positions $D A \$ \$$ (i, $0)=0$
proof
fix $i$ assume $i: i \in\{1 . .<m+n\}$
show reduce-below-abs 0 ?non-zero-positions $D$ A $\$ \$(i, 0)=0$
proof (cases $i \in$ set ?non-zero-positions)
case True
show ?thesis unfolding $n z-x s-m$
by (rule reduce-below-abs-0-case-m[OF $A^{\prime \prime} m 0 n 0 A$-def A00 mn-d-xs all-less-m D-g0],
insert nz-xs-m True, auto)
next
case False note $i$-notin-set $=$ False
have reduce-below-abs 0 ?non-zero-positions $D A \$ \$(i, 0)=A \$ \$(i, 0)$ unfolding $n z-x s-m$
by (rule reduce-below-abs-preserves-case-m[OF A" m0 n0 A-def A00 $m n-d$-xs all-less-m - - D-g0],
insert inz-xs-m i-notin-set, auto)
also have $\ldots=0$ using $i$-notin-set $i A$ unfolding set-filter by auto finally show ?thesis. qed

```
qed
qed
thus ?thesis using 1 by argo
next
```

case False hence A00: A $\$ \$(0,0)=0$ by simp
let ? $i=((x s @[m])!0)$
let ? $S=$ swaprows 0 ? $i A$
let ? $S^{\prime}=$ mat-of-rows $n($ map (Matrix.row (swaprows 0 ?i $A$ )) $[0 . .<m])$
have rw: (if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=$ ?non-zero-positions! 0 in swaprows $0 i A)=$ ? $S$
using A00 nz-xs-m by auto
have $S: ? S \in$ carrier-mat $(m+n) n$ using $A$ by auto
have $A 00-e q-A^{\prime} 00: A \$ \$(0,0)=A^{\prime \prime} \$ \$(0,0)$
by (metis $A^{\prime \prime} A$-def add-gr-0 append-rows-def n0 carrier-matD index-mat-four-block(1) m0)
show ?thesis
proof (cases $x s=[]$ )
case True
have $n z-m$ : ?non-zero-positions $=[m]$ using True $n z-x s-m$ by simp
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=$ euclid-ext2 (swaprows $0 m A$
$\$ \$(0,0))$ (swaprows $0 m A \$ \$(m, 0)$ )
by (metis prod-cases5)
have Am0: $A \$(m, 0)=D$
proof -
have $A \$(m, 0)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(m-m, 0)$
by (smt $A$ append-rows-def $A$-def $A^{\prime \prime}$ n0 carrier-matD diff-self-eq-0
index-mat-four-block
less-add-same-cancel1 less-diff-conv ordered-cancel-comm-monoid-diff-class.diff-add nat-less-le)
also have $\ldots=D$ by ( $\operatorname{simp}$ add: $n 0$ )
finally show ?thesis.
qed
have $S m 0$ : (swaprows $0 m A) \$(m, 0)=0$ using $A$ False $n 0$ by auto
have $S 00$ : (swaprows $0 m A) \$(0,0)=D$ using $A$ Am0 n0 by auto
have pquvd2: $(p, q, u, v, d)=$ euclid-ext2 $(A \$ \$(m, 0))(A \$ \$(0,0))$
using pquvd Sm0 SOO Am0 A00 by auto
have reduce-below-abs 0 ?non-zero-positions $D ? A^{\prime}=$ reduce-abs $0 \mathrm{~m} D ? A^{\prime}$ unfolding $n z-m$ by auto
also have $\ldots=$ reduce-abs $0 m D$ (swaprows $0 m A$ ) using True False rw $n z-m$ by auto
finally have *: reduce-below-abs 0 ?non-zero-positions $D ? A^{\prime}=$ reduce-abs
$0 m D$ (swaprows $0 m A$ ).
have echelon-form-JNF (reduce-abs 0 m D (swaprows $0 m A$ ))
proof (rule echelon-form-JNF-mx1[OF - n2])
show reduce-abs $0 m D$ (swaprows $0 m A) \in$ carrier-mat $(m+n) n$
using A n2 reduce-carrier by (auto simp add: Let-def)
show $\forall i \in\{1 . .<m+n\}$. reduce-abs $0 m D$ (swaprows $0 m A) \$ \$(i, 0)=0$ proof
fix $i$ assume $i: i \in\{1 . .<m+n\}$

```
show reduce-abs 0 m \(D\) (swaprows \(0 m A) \$ \$(i, 0)=0\)
proof (cases \(i=m\))
 case True
 show ?thesis
 proof (unfold True, rule reduce-0[OF - -n0])
 show swaprows \(0 m A \in\) carrier-mat \((m+n) n\) using \(A\) by auto
 qed (insert m0 no S00 D-g0, auto)
next
 case False
 have reduce-abs \(0 m D\) (swaprows \(0 m A) \$(i, 0)=(\) swaprows \(0 m\)
 proof (rule reduce-preserves \([O F-n 0]\))
 show swaprows \(0 m A \in\) carrier-mat \((m+n) n\) using \(A\) by auto
 qed (insert m0 n0 S00 D-g0 False \(i\), auto)
 also have \(\ldots=A \$ \$(i, 0)\) using \(i\) False \(A n 0\) by auto
 also have \(\ldots=0\)
 proof (rule ccontr)
```

A) $\$ \$(i, 0)$
assume $A \$ \$(i, 0) \neq 0$ hence $i \in$ set ?non-zero-positions using $i$
$A$ by auto
hence $i=m$ using $n z$-xs- $m$ True by auto
thus False using False by contradiction
qed
finally show ?thesis.
qed
qed
qed
then show ?thesis using $*$ by presburger
next
case False
have $l$ : length ?non-zero-positions $>1$ using False nz-xs-m by auto
hence $l$-xs: length $x s>0$ using $n z-x s-m$ by auto
hence $x s$ - $m$-less- $m$ : $(x s @[m])!0<m$ by (simp add: all-less-m nth-append $)$
have $S 00$ : ? $S \$ \$(0,0) \neq 0$
by (smt A add-pos-pos append-Cons-nth-left n0 carrier-matD index-mat-swaprows(1)
$l$-xs m0 mem-Collect-eq nth-mem set-filter xs-def)
have $S^{\prime}: ? S^{\prime} \in$ carrier-mat $m n$ using $A$ by auto
have $S$ - $S^{\prime} D: ? S=? S^{\prime} @_{r} D{ }_{m} 1_{m} n$ by (rule swaprows-append-id $\left[O F A^{\prime \prime}\right.$
A-def $x s-m$-less-m])
have 2: reduce-below-abs 0 ?non-zero-positions $D$ ? $A^{\prime}=$ reduce-below-abs 0
?non-zero-positions $D$ ?S
using A00 $n z-x s-m$ by algebra
have echelon-form-JNF (reduce-below-abs 0 ?non-zero-positions $D$ ?S)
proof (rule echelon-form-JNF-mx1[OF - n2])
show reduce-below-abs 0 ?non-zero-positions $D ? S \in \operatorname{carrier-mat~}(m+n) n$
using $A$ by auto
show $\forall i \in\{1 . .<m+n\}$. reduce-below-abs 0 ?non-zero-positions $D$ ?S $\$ \$(i$,
$0)=0$
proof
fix $i$ assume $i: i \in\{1 . .<m+n\}$

```
 show reduce-below-abs 0 ?non-zero-positions D ?S $$ (i,0)=0
 proof (cases i\inset ?non-zero-positions)
 case True
 show ?thesis unfolding nz-xs-m
 by (rule reduce-below-abs-0-case-m[OF S'm0 n0 S-S'D S00 mn - d-xs
all-less-m D-g0],
 insert True nz-xs-m, auto)
 next
 case False note i-notin-set = False
 have reduce-below-abs 0 ?non-zero-positions D ?S $$ (i,0)=?S $$ (i,
0) unfolding nz-xs-m
 by (rule reduce-below-abs-preserves-case-m[OF S'm0 n0 S-S'D S00 mn
-d-xs all-less-m - - D-g0],
 insert i nz-xs-m i-notin-set, auto)
 also have ... = 0 using i-notin-set i A SOO n0 unfolding set-filter by
auto
 finally show ?thesis .
 qed
 qed
 qed
 thus ?thesis using 2 by argo
 qed
 qed
 thus ?thesis using *e by presburger
 qed
qed
lemma FindPreHNF-works-n-ge2:
 assumes A-def:A= A" @ }D\cdot\mp@code{m}\mp@subsup{1}{m}{}
 and \mp@subsup{A}{}{\prime\prime}:\mp@subsup{A}{}{\prime\prime}\incarrier-mat m n and n\geq2 and m-le-n: m\geqn and D>0
shows }\existsP.P\in\mathrm{ carrier-mat (m+n) (m+n) ^ invertible-mat P ^ FindPreHNF
abs-flag D A = P*A ^ echelon-form-JNF (FindPreHNF abs-flag D A)
 using assms
proof (induct abs-flag D A arbitrary: A" m n rule: FindPreHNF.induct)
 case (1 abs-flag D A)
 note }A\mathrm{ -def = 1.prems(1)
 note A" = 1.prems(2)
 note n=1.prems(3)
 note m-le-n = 1.prems(4)
 note D0 = 1.prems(5)
 let ?RAT = map-mat rat-of-int
 have A:A carrier-mat (m+n) n using A-def A" by auto
 have mn: 2\leqm+n using n by auto
 have m0:0<m using n m-le-n by auto
 have n0: 0<n using n by simp
 have D-not0: D\not=0 using D0 by auto
 define non-zero-positions where non-zero-positions = filter (\lambdai. A $$(i,0) \not=
0) [1..<dim-row A]
```

define $A^{\prime}$ where $A^{\prime}=($ if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=$ non-zero-positions ! 0 in swaprows 0 i $A$ )
let ?Reduce $=($ if abs-flag then reduce-below-abs else reduce-below $)$
obtain $A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L A^{\prime}-D R$ where $A^{\prime}$-split: $\left(A^{\prime}-U L, A^{\prime}-U R, A^{\prime}-D L\right.$, $A^{\prime}-D R$ )
$=$ split-block (?Reduce 0 non-zero-positions $D$ (make-first-column-positive $\left.A^{\prime}\right)$ ) 11
by (metis prod-cases4)
define sub-PreHNF where sub-PreHNF = FindPreHNF abs-flag D A'-DR
obtain $x s$ where non-zero-positions-xs-m: non-zero-positions $=x s @[m]$ and $d$-xs: distinct xs
and all-less-m: $\forall x \in$ set $x s . x<m \wedge 0<x$
using non-zero-positions-xs-m[OF A-def $A^{\prime \prime}$ non-zero-positions-def m0 n0] using $D 0$ by fast
define $M$ where $M=\left(\right.$ make-first-column-positive $\left.A^{\prime}\right)$
have $A^{\prime}: A^{\prime} \in$ carrier-mat $(m+n) n$ unfolding $A^{\prime}$-def using $A$ by auto
have $m k$ - $A^{\prime}$-not0:make-first-column-positive $A^{\prime} \$ \$(0,0) \neq 0$
by (rule make-first-column-positive-00[OF A-def $A^{\prime \prime}$ non-zero-positions-def $A^{\prime}$ - def m0 n0 D-not0 $m$-le-n])
have $M: M \in$ carrier-mat $(m+n) n$ using $A^{\prime} M$-def by auto
let ${ }^{\prime} M^{\prime}=$ mat-of-rows $n$ (map (Matrix.row (make-first-column-positive $A^{\prime}$ )) [0..<m])
have $M^{\prime}: ? M^{\prime} \in$ carrier-mat $m n$ by auto
have $M-M^{\prime} D$ : make-first-column-positive $A^{\prime}=? M^{\prime} @_{r} D \cdot m 1_{m} n$ if xs-empty: $x s \neq[]$
proof (cases $A \$ \$(0,0) \neq 0)$
case True
then have $*$ : make-first-column-positive $A^{\prime}=$ make-first-column-positive $A$
unfolding $A^{\prime}$-def by auto
show ?thesis
by (unfold *, rule make-first-column-positive-append-id[OF $A^{\prime \prime} A$-def D0 n0])
next
case False
then have $*$ : make-first-column-positive $A^{\prime}$ $=$ make-first-column-positive (swaprows 0 (non-zero-positions! 0)
A)
unfolding $A^{\prime}$-def by auto
show ?thesis
proof (unfold $*$, rule make-first-column-positive-append-id)
let ? $S=$ mat-of-rows $n$ (map (Matrix.row (swaprows 0 (non-zero-positions !
0) $A$ )) $[0 . .<m])$
show swaprows 0 (non-zero-positions!0) $A=$ ? $S @_{r}\left(D \cdot_{m}\left(1_{m} n\right)\right)$
proof (rule swaprows-append-id $\left[O F A^{\prime \prime} A\right.$-def])
have $A^{\prime \prime} 00$ : $A^{\prime \prime} \$ \$(0,0)=0$
by (metis (no-types, lifting) A $A^{\prime \prime} A$-def False add-sign-intros(2) ap-
pend-rows-def
carrier-matD index-mat-four-block m0 no)
have length-xs: length $x s>0$ using $x s$-empty by auto
have non-zero-positions ! $0=x s!0$ unfolding non-zero-positions-xs-m

```
 by (meson length-xs nth-append)
 thus non-zero-positions! 0<m using all-less-m length-xs by simp
 qed
 qed (insert n0 D0, auto)
 qed
 have A'-DR: A'-DR G carrier-mat (m+(n-1)) (}n-1
 by (rule split-block(4)[OF A'-split[symmetric]], insert n M M-def, auto)
 have sub-PreHNF: sub-PreHNF \in carrier-mat (m+(n-1)) (n-1)
 unfolding sub-PreHNF-def by (rule FindPreHNF[OF A'-DR])
 hence sub-PreHNF': sub-PreHNF \in carrier-mat (m+n-1) (}n-1\mathrm{) using n by
auto
 have A'-UL: A'-UL \in carrier-mat 1 1
 by (rule split-block(1)[OF A'-split[symmetric], of m+n-1 n-1], insert n A',
auto)
 have A'-UR: A'-UR \in carrier-mat 1 (n-1)
 by (rule split-block(2)[OF A'-split[symmetric], of m+n-1], insert n A', auto)
 have A'-DL: A'-DL E carrier-mat (m+(n-1)) 1
 by (rule split-block(3)[OF A'-split[symmetric], of - n-1], insert n A', auto)
 show ?case
 proof (cases abs-flag)
 case True note abs-flag = True
 hence A'-split: (}\mp@subsup{A}{}{\prime}\mathrm{ -UL, A'-UR, A'-DL, A'-DR)
 = split-block (reduce-below-abs 0 non-zero-positions D (make-first-column-positive
A')) 11 using A'-split by auto
 let ?R = reduce-below-abs 0 non-zero-positions D (make-first-column-positive
A')
 have fbm-R: four-block-mat A'-UL A'-UR A'-DL A'-DR
 = reduce-below-abs 0 non-zero-positions D (make-first-column-positive A')
 by (rule split-block(5)[symmetric, OF A'-split[symmetric], of m+n-1 n-1],
insert A' n, auto)
 have A'-DL0: }\mp@subsup{A}{}{\prime}-DL=(0m(m+(n-1))1
 proof (rule eq-matI)
 show dim-row A'-DL = dim-row (0m (m+(n-1)) 1)
 and dim-col A'-DL = dim-col (O}m(m+(n-1))1) using A'-DL by aut
 fix ij assume i:i<dim-row (Om(m+(n-1)) 1) and j:j<dim-col (Om
(m+(n-1)) 1)
 have j0: j=0 using j by auto
 have 0=? R$$(i+1,j)
 proof (unfold M-def non-zero-positions-xs-m j0,
 rule reduce-below-abs-0-case-m-make-first-column-positive[symmetric,
 OF A'' m0 n0 A-def m-le-n - d-xs all-less-m - D0 -])
 show }\mp@subsup{A}{}{\prime}=(\mathrm{ if A $$(0,0) F 0 then A else let i=(xs @ [m])!0 in swaprows
O i A)
 using A'-def non-zero-positions-def non-zero-positions-xs-m by presburger
 show xs @ [m]= filter (\lambdai.A $$ (i,0)\not=0) [1..<dim-row A]
 using A'-def non-zero-positions-def non-zero-positions-xs-m by presburger
 qed (insert i n0, auto)
```

also have $\ldots=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L A^{\prime}-D R \$ \$(i+1, j)$ unfolding $f b m-R$..
also have $\ldots=\left(\right.$ if $i+1<$ dim-row $A^{\prime}-U L$ then if $j<\operatorname{dim}$-col $A^{\prime}-U L$
then $A^{\prime}-U L \$ \$(i+1, j)$ else $A^{\prime}-U R \$ \$\left(i+1, j-d i m-c o l A^{\prime}-U L\right)$
else if $j<\operatorname{dim}-c o l A^{\prime}-U L$ then $A^{\prime}-D L \$ \$\left(i+1-\operatorname{dim}-r o w A^{\prime}-U L, j\right)$
else $A^{\prime}-D R \$ \$\left(i+1-\right.$ dim-row $\left.\left.A^{\prime}-U L, j-\operatorname{dim}-c o l A^{\prime}-U L\right)\right)$
by (rule index-mat-four-block, insert $A^{\prime}-U L A^{\prime}-D R$ i $j$, auto)
also have $\ldots=A^{\prime}-D L \$ \$(i, j)$ using $A^{\prime}-U L A^{\prime}-U R i j$ by auto
finally show $A^{\prime}-D L \$ \$(i, j)=O_{m}(m+(n-1)) 1 \$ \$(i, j)$ using $i j$ by auto

## qed

let ? $A^{\prime}-D R-m=$ mat-of-rows $(n-1)\left[\right.$ Matrix.row $A^{\prime}-D R$ i. $\left.i \leftarrow[0 . .<m]\right]$
have $A^{\prime}-D R-m: ? A^{\prime}-D R-m \in$ carrier-mat $m(n-1)$ by auto
have $A^{\prime} D R-A^{\prime} D R-m-D: A^{\prime}-D R=? A^{\prime}-D R-m @_{r} D \cdot_{m} 1_{m}(n-1)$
proof (rule eq-matI)
show dr: dim-row $A^{\prime}-D R=\operatorname{dim}$-row (? $\left.A^{\prime}-D R-m @_{r} D \cdot_{m} 1_{m}(n-1)\right)$
by (metis $A^{\prime}-D R A^{\prime}-D R-m$ append-rows-def carrier-matD (1) index-mat-four-block(2)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2))
show dc: dim-col $A^{\prime}-D R=\operatorname{dim-col}\left(? A^{\prime}-D R-m @_{r} D \cdot m 1_{m}(n-1)\right)$
by (metis $A^{\prime}-D R A^{\prime}-D R-m$ add.comm-neutral append-rows-def
carrier-matD (2) index-mat-four-block(3) index-zero-mat(3))
fix $i j$ assume $i: i<\operatorname{dim}-\operatorname{row}\left(? A^{\prime}-D R-m @_{r} D \cdot_{m} 1_{m}(n-1)\right)$
and $j: j<\operatorname{dim}-c o l\left(? A^{\prime}-D R-m @_{r} D \cdot_{m} 1_{m}(n-1)\right)$
have $j n 1: j<n-1$ using $d c j A^{\prime}-D R$ by auto
show $A^{\prime}-D R \$ \$(i, j)=\left(? A^{\prime}-D R-m @_{r} D \cdot_{m} 1_{m}(n-1)\right) \$ \$(i, j)$
proof (cases $i<m$ )
case True
have $A^{\prime}-D R \$ \$(i, j)=? A^{\prime}-D R-m \$ \$(i, j)$
by (metis $A^{\prime}-D R A^{\prime}-D R-m$ True dc carrier-matD(1) carrier-matD(2) $j$
le-add1
map-first-rows-index mat-of-rows-carrier(2) mat-of-rows-index)
also have $\ldots=\left(? A^{\prime}-D R-m @_{r} D \cdot{ }_{m} 1_{m}(n-1)\right) \$ \$(i, j)$
by (metis (mono-tags, lifting) $A^{\prime}-D R A^{\prime}-D R-m$ True append-rows-def carrier-matD dc i index-mat-four-block j)
finally show ?thesis.
next
case False note $i$-ge-m = False
let ?reduce-below $=$ reduce-below-abs 0 non-zero-positions $D$ (make-first-column-positive $A^{\prime}$ )
have 1: $\left(? A^{\prime}-D R-m @_{r} D \cdot_{m} 1_{m}(n-1)\right) \$ \$(i, j)=\left(D \cdot m 1_{m}(n-1)\right) \$ \$$ ( $i-m, j$ )
by (smt $A^{\prime}-D R A^{\prime}-D R$-m False append-rows-nth carrier-matD carrier-mat-triv $d c d r i$
index-one-mat(2) index-one-mat(3) index-smult-mat(2,3) j)
have ?reduce-below $=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L A^{\prime}-D R$ using $f b m-R$
also have $\ldots \$ \$(i+1, j+1)=\left(\right.$ if $i+1<$ dim-row $A^{\prime}-U L$ then if $j+1<$ dim-col
then $A^{\prime}-U L \$ \$(i+1, j+1)$ else $A^{\prime}-U R \$ \$\left(i+1, j+1-\operatorname{dim}-c o l A^{\prime}-U L\right)$ else if $j+1<$ dim-col $A^{\prime}-U L$ then $A^{\prime}-D L \$ \$\left(i+1-d i m-r o w A^{\prime}-U L\right.$, $j+1$ )
else $\left.A^{\prime}-D R \$ \$\left(i+1-d i m-r o w A^{\prime}-U L, j+1-\operatorname{dim}-c o l A^{\prime}-U L\right)\right)$
by (rule index-mat-four-block, insert $i j A^{\prime}-U L A^{\prime}-D R d r d c$, auto)
also have $\ldots=A^{\prime}-D R \$ \$(i, j)$ using $A^{\prime}-U L$ by auto
finally have 2: ? reduce-below $\$ \$(i+1, j+1)=A^{\prime}-D R \$ \$(i, j)$.
show ?thesis
proof (cases xs $=$ [])
case True note $x s$-empty $=$ True
have $i 1-m: i+1 \neq m$
using False less-add-one by blast
have $j 1 n$ : $j+1<n$
using jn1 less-diff-conv by blast
have i1-mn: $i+1<m+n$
using $i i$-ge-m
by (metis $A^{\prime}-D R$ carrier-matD(1) dr less-diff-conv sub-PreHNF sub-PreHNF')
have ? reduce-below $=$ reduce-abs $0 m D M$
unfolding non-zero-positions-xs-m xs-empty $M$-def by auto
also have $\ldots \$ \$(i+1, j+1)=M \$ \$(i+1, j+1)$
by (rule reduce-preserves[OF M j1n-i1-m-i1-mn], insert $M$-def $m k-A^{\prime}-n o t 0$, auto)
also have $\ldots=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$((i+1)-m, j+1)$
proof (cases A $\$ \$(0,0)=0)$
case True
let ? $S=($ swaprows $0 m A$ )
have $S: ? S \in$ carrier-mat $(m+n) n$ using $A$ by auto
have Si10: ? $S \$(i+1,0)=0$
proof -
have ? $S \$ \$(i+1,0)=A \$ \$(i+1,0)$ using i1-m n0 i1-mn $S$ by auto
also have $\ldots=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i+1-m, 0)$
by (smt $A$-def $A^{\prime \prime} A$ i-ge-m append-rows-def carrier-matD diff-add-inverse2
i1-mn
index-mat-four-block less-imp-diff-less n0)
also have $\ldots=0$ using i-ge-m n0 i1-mn by auto
finally show ?thesis.
qed
have $M \$ \$(i+1, j+1)=($ make-first-column-positive ? $S$ ) $\$ \$(i+1, j+1)$
by (simp add: $A^{\prime}$-def $M$-def True non-zero-positions-xs-m xs-empty)
also have $\ldots=($ if ? $S \$ \$(i+1,0)<0$ then - ? $S \$ \$(i+1, j+1)$ else ? $S$
$\$ \$(i+1, j+1))$
unfolding make-first-column-positive.simps using $S$ i1-mn j1n by auto
also have $\ldots=? S \$ \$(i+1, j+1)$ using Si10 by auto
also have $\ldots=A \$ \$(i+1, j+1)$ using $i 1-m n 0 i 1-m n S j n 1$ by auto
also have $\ldots=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i+1-m, j+1)$
by (smt $A$-def $A^{\prime \prime} A$ i-ge-m append-rows-def carrier-matD i1-mn in-dex-mat-four-block $(1,3)$
index-one-mat(2) index-smult-mat(2) index-zero-mat(2) j1n
less-imp-diff-less add-diff-cancel-right')
finally show ?thesis.
next
case False
have Ai10: $A \$ \$(i+1,0)=0$
proof -
have $A \$ \$(i+1,0)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i+1-m, 0)$
by (smt $A$-def $A^{\prime \prime} A$ i-ge-m append-rows-def carrier-matD diff-add-inverse2
$i 1-m n$
index-mat-four-block less-imp-diff-less n0)
also have $\ldots=0$ using $i$-ge-m n0 i1-mn by auto
finally show ?thesis.
qed
have $M \$ \$(i+1, j+1)=($ make-first-column-positive $A) \$ \$(i+1, j+1)$
by (simp add: $A^{\prime}$-def $M$-def False True non-zero-positions-xs-m)
also have $\ldots=($ if $A \$ \$(i+1,0)<0$ then $-A \$ \$(i+1, j+1)$ else $A \$ \$$ $(i+1, j+1))$
unfolding make-first-column-positive.simps using $A$ i1-mn j1n by auto
also have $\ldots=A \$ \$(i+1, j+1)$ using Ai10 by auto
also have $\ldots=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i+1-m, j+1)$
by (smt $A$-def $A^{\prime \prime} A$ i-ge-m append-rows-def carrier-matD i1-mn in-dex-mat-four-block $(1,3)$
index-one-mat(2) index-smult-mat(2) index-zero-mat(2) j1n less-imp-diff-less add-diff-cancel-right')
finally show ?thesis .
qed
also have $\ldots=D *\left(1_{m} n\right) \$ \$((i+1)-m, j+1)$
by (rule index-smult-mat, insert i jn1 $A^{\prime}-D R$ False dr, auto)
also have $\ldots=D *\left(1_{m}(n-1)\right) \$ \$(i-m, j)$ using $d c d r i j A^{\prime}-D R$ i-ge-m by (smt Nat.add-diff-assoc2 carrier-matD(1) index-one-mat(1) jn1 less-diff-conv
linorder-not-less add-diff-cancel-right' add-diff-cancel-right' add-diff-cancel-left')
also have $\ldots=\left(D \cdot_{m} 1_{m}(n-1)\right) \$ \$(i-m, j)$
by (rule index-smult-mat [symmetric], insert i jn1 $A^{\prime}-D R$ False dr, auto)
finally show ?thesis using 12 by auto
next
case False
have ?reduce-below $\$ \$(i+1, j+1)=M \$ \$(i+1, j+1)$
proof (unfold non-zero-positions-xs-m M-def,
rule reduce-below-abs-preserves-case-m[OF $M^{\prime} m 0-M-M^{\prime} D m k-A^{\prime}$-not0
$m$-le-n - d-xs all-less-m - - D0])
show $j+1<n$ using $j n 1$ by auto
show $i+1 \notin$ set xs using all-less-m i-ge-m non-zero-positions-xs-m by
auto
show $i+1 \neq 0$ by auto
show $i+1<m+n$ using $i$-ge-m $i d r A^{\prime}-D R$ by auto
show $i+1 \neq m$ using $i$-ge- $m$ by auto
qed (insert False)
also have $\ldots=\left(? M^{\prime} @_{r} D \cdot_{m} 1_{m} n\right) \$ \$(i+1, j+1)$ unfolding $M$-def using

False $M-M^{\prime} D$ by argo
also have $\ldots=\left(D \cdot m 1_{m} n\right) \$ \$((i+1)-m, j+1)$
proof -
have f1: $1+j<n$
by (metis Groups.add-ac(2) jn1 less-diff-conv)
have $f 2: \forall n . \neg n+i<m$
by (meson i-ge-m linorder-not-less nat-SN.compat not-add-less2)
have $i<m+(n-1)$
by (metis (no-types) $A^{\prime}-D R$ carrier-matD(1) dr $i$ )
then have $1+i<m+n$
using $f 1$ by linarith
then show ?thesis
using f2 f1 by (metis (no-types) Groups.add-ac(2) $M^{\prime}$ append-rows-def
carrier-matD (1)
dim-col-mat(1) index-mat-four-block(1) index-one-mat(2) index-smult-mat(2)
index-zero-mat(2,3) mat-of-rows-def nat-arith.rule0)
qed
also have $\ldots=D *\left(1_{m} n\right) \$ \$((i+1)-m, j+1)$
by (rule index-smult-mat, insert i jn1 $A^{\prime}-D R$ False dr, auto)
also have $\ldots=D *\left(1_{m}(n-1)\right) \$ \$(i-m, j)$ using dc dr ij $A^{\prime}-D R$ i-ge-m
by (smt Nat.add-diff-assoc2 carrier-matD (1) index-one-mat(1) jn1 less-diff-conv
linorder-not-less add-diff-cancel-right' add-diff-cancel-left')
also have $\ldots=\left(D \cdot m 1_{m}(n-1)\right) \$ \$(i-m, j)$
by (rule index-smult-mat[symmetric], insert i jn1 $A^{\prime}-D R$ False dr, auto)
finally have 3: ? reduce-below $\$ \$(i+1, j+1)=\left(D \cdot_{m} 1_{m}(n-1)\right) \$ \$(i-m, j)$
-
show ?thesis using 123 by presburger
qed
qed
qed
let $?^{\prime} A^{\prime}-D R-n=$ mat-of-rows $(n-1)\left(\right.$ map (Matrix.row $\left.\left.A^{\prime}-D R\right)[0 . .<n-1]\right)$
have hyp: $\exists P . P \in$ carrier-mat $(m+(n-1))(m+(n-1)) \wedge$ invertible-mat $P \wedge$ sub-PreHNF $=P * A^{\prime}-D R$
$\wedge$ echelon-form-JNF sub-PreHNF
proof (cases 2 $\leq n-1$ )
case True
show ?thesis
by (unfold sub-PreHNF-def, rule 1.hyps[OF -- non-zero-positions-def $A^{\prime}$-def - - - - -]
(insert $A$ n D0 m-le-n True $A^{\prime} D R-A^{\prime} D R-m-D A A^{\prime}$-split abs-flag, auto)
next
case False
have $\exists P . P \in$ carrier-mat $(m+(n-1))(m+(n-1)) \wedge$ invertible-mat $P \wedge$ sub-PreHNF $=P * A^{\prime}-D R$
by (unfold sub-PreHNF-def, rule FindPreHNF-invertible-mat-mx2 [OF $\left.\left.A^{\prime} D R-A^{\prime} D R-m-D A^{\prime}-D R-m-D 0-\right]\right)$
(insert False m-le-n n0 m0 1 (4), auto)
moreover have echelon-form-JNF sub-PreHNF unfolding sub-PreHNF-def by (rule FindPreHNF-echelon-form-mx1 $\left[O F A^{\prime} D R-A^{\prime} D R-m-D A^{\prime}-D R-m-D 0\right.$ -],
insert False n0 m-le-n, auto)
ultimately show? ?thesis by simp
qed
from this obtain $P$ where $P: P \in \operatorname{carrier-mat}(m+(n-1))(m+(n-1))$
and inv-P: invertible-mat $P$ and sub-PreHNF-P-A'-DR: sub-PreHNF $=P *$
$A^{\prime}-D R$ by blast
define $P^{\prime}$ where $P^{\prime}=\left(\right.$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(m+(n-1))\right)\left(0_{m}(m+(n-1))\right.$

1) $P$ )
have $P^{\prime}: P^{\prime} \in$ carrier-mat $(m+n)(m+n)$
proof -
have $P^{\prime} \in$ carrier-mat $(1+(m+(n-1)))(1+(m+(n-1)))$
unfolding $P^{\prime}$-def by (rule four-block-carrier-mat $[O F-P]$, simp)
thus ?thesis using $n$ by auto
qed
have inv- $P^{\prime}$ : invertible-mat $P^{\prime}$
unfolding $P^{\prime}$-def by (rule invertible-mat-four-block-mat-lower-right $[$ OF P inv-P])
have $d r$ - $A$ 2: dim-row $A \geq 2$ using $A m 0 n$ by auto
have $d c-A$ 2: $\operatorname{dim}-c o l ~ A \geq 2$ using $n A$ by blast
have $*:(\operatorname{dim}-\operatorname{col} A=0)=$ False using $d c-A 2$ by auto
have FindPreHNF-as-fbm: FindPreHNF abs-flag $D A=$ four-block-mat $A^{\prime}-U L$
$A^{\prime}-U R \quad A^{\prime}-D L$ sub-PreHNF
unfolding FindPreHNF.simps[of abs-flag $D A]$ using $A^{\prime}$-split mn $n A d r-A 2$
dc-A2 abs-flag
unfolding Let-def sub-PreHNF-def M-def $A^{\prime}$-def non-zero-positions-def *
by (smt (z3) linorder-not-less split-conv)
also have $\ldots=P^{\prime} *($ reduce-below-abs 0 non-zero-positions $D M)$
proof -
have $P^{\prime} *($ reduce-below-abs 0 non-zero-positions $D M)$
$=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(m+(n-1))\right)\left(0_{m}(m+(n-1)) 1\right) P$

* four-block-mat $A^{\prime}-U L A^{\prime}-U R \quad A^{\prime}-D L A^{\prime}-D R$
unfolding $P^{\prime}$-def fbm-R[unfolded $M$-def[symmetric], symmetric] ..
also have ... $=$ four-block-mat

$$
\begin{aligned}
& \left(\left(1_{m} 1\right) * A^{\prime}-U L+\left(0_{m} 1(m+(n-1)) * A^{\prime}-D L\right)\right) \\
& \left(\left(1_{m} 1\right) * A^{\prime}-U R+\left(0_{m} 1(m+(n-1))\right) * A^{\prime}-D R\right) \\
& \left(\left(0_{m}(m+(n-1)) 1\right) * A^{\prime}-U L+P * A^{\prime}-D L\right) \\
& \left(\left(0_{m}(m+(n-1)) 1\right) * A^{\prime}-U R+P * A^{\prime}-D R\right)
\end{aligned}
$$

by (rule mult-four-block-mat $\left[O F-P A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L A^{\prime}-D R\right]$, auto)
also have $\ldots=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R\left(P * A^{\prime}-D L\right)\left(P * A^{\prime}-D R\right)$
by (rule cong-four-block-mat, insert $A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L A^{\prime}-D R ~ P$, auto)
also have $\ldots=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R\left(0_{m}(m+(n-1)) 1\right)$ sub-PreHNF
unfolding $A^{\prime}$-DL0 sub-PreHNF-P- $A^{\prime}-D R$ using $P$ by simp
also have $\ldots=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L$ sub-PreHNF
unfolding $A^{\prime}-D L 0$ by simp
finally show ?thesis ..
qed
finally have Find- $P^{\prime}$-reduceM: FindPreHNF abs-flag D $A=P^{\prime} *$ (reduce-below-abs

0 non-zero-positions $D M$ ).
have $\exists Q$. invertible-mat $Q \wedge Q \in$ carrier-mat $(m+n)(m+n)$
$\wedge$ reduce-below-abs 0 (xs @ [m]) DM=Q*M
proof (cases xs = [])
case True note xs-empty $=$ True
have rw: reduce-below-abs 0 (xs @ [m]) D M = reduce-abs $0 m D M$ using True by auto
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid-ext2}(M \$ \$(0,0))(M$ $\$ \$(m, 0))$
by (simp add: euclid-ext2-def)
have $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n) \wedge$ reduce-abs $0 m D M=P * M$
proof (rule reduce-abs-invertible-mat-case-m[OF - m0 - - - m-le-n n0 pquvd]) show $M \$ \$(0,0) \neq 0$
using $M$-def $m k-A^{\prime}$-not0 by blast
define $M^{\prime}$ where $M^{\prime}=$ mat-of-rows $n(\operatorname{map}$ (Matrix.row $\left.M)[0 . .<m]\right)$
define $M^{\prime \prime}$ where $M^{\prime \prime}=$ mat-of-rows $n($ map $($ Matrix.row $M)[m . .<m+n])$
define A2 where A2 $=$ Matrix.mat $($ dim-row $M)($ dim-col M)
$(\lambda(i, k)$. if $i=0$ then $p * M \$ \$(0, k)+q * M \$ \$(m, k)$
else if $i=m$ then $u * M \$ \$(0, k)+v * M \$ \$(m, k)$ else $M \$ \$(i, k))$
show $M-M^{\prime}-M^{\prime \prime}: M=M^{\prime} @_{r} M^{\prime \prime}$ unfolding $M^{\prime}$-def $M^{\prime \prime}$-def
by (metis $M$ append-rows-split carrier-matD le-add1)
show $M^{\prime}: M^{\prime} \in$ carrier-mat $m n$ unfolding $M^{\prime}$-def by fastforce
show $M^{\prime \prime}: M^{\prime \prime} \in$ carrier-mat $n n$ unfolding $M^{\prime \prime}$-def by fastforce
show $0 \neq m$ using $m 0$ by simp
show A2 $=$ Matrix.mat (dim-row $M)($ dim-col $M)$
$(\lambda(i, k)$. if $i=0$ then $p * M \$ \$(0, k)+q * M \$ \$(m, k)$
else if $i=m$ then $u * M \$ \$(0, k)+v * M \$ \$(m, k)$
else $M \$ \$(i, k))$
(is - = ? rhs) using A A2-def by auto
define $x s^{\prime}$ where $x s^{\prime}=$ filter $(\lambda i$.abs $(A 2 \$ \$(0, i))>D)[0 . .<n]$
define $y s^{\prime}$ where $y s^{\prime}=$ filter $(\lambda i$.abs $($ A2 $\$ \$(m, i))>D)[0 . .<n]$
show $x s^{\prime}=$ filter $(\lambda i$ abs $(A 2 \$ \$(0, i))>D)[0 . .<n]$ unfolding $x s^{\prime}$-def by auto
show $y s^{\prime}=$ filter $(\lambda i$ abs $(A 2 \$ \$(m, i))>D)[0 . .<n]$ unfolding $y s^{\prime}$-def by auto
have $M^{\prime \prime} D:\left(M^{\prime \prime} \$ \$(j, j)=D\right) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . M^{\prime \prime} \$ \$\left(j, j^{\prime}\right)=0\right)$
if $j n: j<n$ and $j 0: j>0$ for $j$
proof -
have Ajm0: $A \$ \$(j+m, 0)=0$
proof -
have $A \$ \$(j+m, 0)=\left(D \cdot m 1_{m} n\right) \$ \$(j+m-m, 0)$
by (smt 1(2) 1 (3) $M M^{\prime} M^{\prime \prime} M-M^{\prime}-M^{\prime \prime}$ add.commute append-rows-def carrier-matD
diff-add-inverse2 index-mat-four-block index-one-mat(2) in-dex-smult-mat(2)
le-add2 less-diff-conv2 n0 not-add-less2 that(1))
also have $\ldots=0$ using $j n j 0$ by auto

```
 finally show ?thesis.
 qed
 have M"$$(j,i)=(D\cdotm 1m n)$$(j,i) if i-n: i<n for i
 proof (cases A$$(0,0)=0)
 case True
 have }\mp@subsup{M}{}{\prime\prime}$$(j,i)=\mathrm{ make-first-column-positive (swaprows 0 m A) $$
(j+m,i)
 by (smt A'-def Groups.add-ac(2) M' M''M-M'-M'' M-def True
append.simps(1)
 append-rows-nth3 diff-add-inverse2 jn le-add2 local.non-zero-positions-xs-m
 nat-add-left-cancel-less nth-Cons-0 that xs-empty)
 also have ... = A $$ (j+m,i) using A jn j0 i-n Ajm0 by auto
 also have ... = (D 品 1m n)$$(j,i)
 by (smt A Groups.add-ac(2) add-mono-thms-linordered-field(1)
append-rows-def A-def A" i-n
 carrier-matD index-mat-four-block(1,2) add-diff-cancel-right'
not-add-less2 jn trans-less-add1)
 finally show ?thesis.
 next
 case False
 have }\mp@subsup{A}{}{\prime}=A\mathrm{ unfolding }\mp@subsup{A}{}{\prime}\mathrm{ -def non-zero-positions-xs-m using False
True by auto
 hence }\mp@subsup{M}{}{\prime\prime}$$(j,i)=\mathrm{ make-first-column-positive A $$ (j+m,i)
 by (smt m-le-n M' M'鼡M-M'-M" M-def append-rows-nth2 jn
nat-SN.compat that)
 also have ... = A $$ (j+m,i) using A jn j0 i-n Ajm0 by auto
 also have ... = (D m m 1m n)$$(j,i)
 by (smt A Groups.add-ac(2) add-mono-thms-linordered-field(1)
append-rows-def A-def A" i-n
 carrier-matD index-mat-four-block(1,2) add-diff-cancel-right'
not-add-less2 jn trans-less-add1)
 finally show ?thesis.
 qed
 thus ?thesis using jn j0 by auto
 qed
 have Am0D:A$$(m,0)=D
 proof -
 have }A$$(m,0)=(D\cdotm 1m n)$$(m-m,0
 by (smt 1(2) 1(3) M M' M'更-M'-M'年 append-rows-def carrier-matD
 diff-less-mono2 diff-self-eq-0 index-mat-four-block index-one-mat(2)
 index-smult-mat(2) less-add-same-cancel1 n0 semiring-norm(137))
 also have ... = D using m0 n0 by auto
 finally show ?thesis.
 qed
 hence SO0D:(swaprows 0 m A) $$ (0,0)=D using n0 m0 A by auto
 have Sm00: (swaprows 0 m A) $$ (m,0) =A$$(0,0) using n0 m0 A by
auto
 have MO0D:M $$ (0,0)=D if A00: A$$(0,0)=0
 proof -
```

have $M \$ \$(0,0)=($ make-first-column-positive (swaprows 0 m A)) $\$ \$$
unfolding $M$-def $A^{\prime}$-def using $A 00$
by (simp add: True non-zero-positions-xs-m)
also have $\ldots=($ if (swaprows $0 m A) \$ \$(0,0)<0$ then - (swaprows 0
$m A) \$ \$(0,0)$

$$
\text { else (swaprows } 0 \text { m A) } \$ \$(0,0) \text { ) }
$$

unfolding make-first-column-positive.simps using m0 n0 A by auto also have $\ldots=($ swaprows $0 m A) \$ \$(0,0)$ using $S 00 D$ D0 by auto also have $\ldots=D$ using $S 00 D$ by auto finally show ?thesis.
qed
have $M m 00: M \$ \$(m, 0)=0$ if $A 00: A \$ \$(0,0)=0$
proof -
have $M \$ \$(m, 0)=($ make-first-column-positive (swaprows 0 m A)) $\$ \$$
unfolding $M$-def $A^{\prime}$-def using $A 00$
by (simp add: True non-zero-positions-xs-m)
also have $\ldots=($ if (swaprows $0 m A) \$ \$(m, 0)<0$ then $-($ swaprows 0
$m$ A) $\$ \$(m, 0)$

$$
\text { else (swaprows } 0 \text { m A) } \$ \$(m, 0) \text { ) }
$$

unfolding make-first-column-positive.simps using m0 n0 A by auto
also have $\ldots=($ swaprows $0 m A) \$ \$(m, 0)$ using Sm00 A00 DO by auto
also have $\ldots=0$ using $\operatorname{Sm00} A 00$ by auto
finally show ?thesis.
qed
have $M 000: M \$ \$(0,0)=a b s(A \$ \$(0,0))$ if $A 00: A \$ \$(0,0) \neq 0$
proof -
have $M \$ \$(0,0)=($ make-first-column-positive $A) \$ \$(0,0)$
unfolding $M$-def $A^{\prime}$-def using $A 00$
by (simp add: True non-zero-positions-xs-m)
also have $\ldots=($ if $A \$ \$(0,0)<0$ then $-A \$ \$(0,0)$ else $A \$ \$(0,0))$
unfolding make-first-column-positive.simps using m0 n0 A by auto
also have $\ldots=$ abs $(A \$ \$(0,0))$ using $S m 00$ A00 by auto
finally show ?thesis.
qed
have $M m 0 D: M \$ \$(m, 0)=D$ if $A 00: A \$ \$(0,0) \neq 0$
proof -
have $M \$ \$(m, 0)=($ make-first-column-positive $A) \$ \$(m, 0)$
unfolding $M$-def $A^{\prime}$-def using $A 00$
by (simp add: True non-zero-positions-xs-m)
also have $\ldots=($ if $A \$ \$(m, 0)<0$ then $-A \$ \$(m, 0)$ else $A \$ \$(m, 0))$
unfolding make-first-column-positive.simps using m0 n0 A by auto
also have $\ldots=A \$ \$(m, 0)$ using $S 00 D D 0 A m 0 D$ by auto
also have $\ldots=D$ using $A m 0 D D 0$ by auto
finally show? ?thesis .
qed

```
 have 0 & set xs'
 proof -
 have A2 $$ (0,0) = p*M$$(0,0)+q*M$$(m,0)
 using A A2-def n0 M by auto
 also have ... = gcd (M $$ (0,0)) (M $$ (m,0))
 by (metis euclid-ext2-works(1,2) pquvd)
 also have abs ... \leqD using MOOD Mm00 M000 Mm0D using gcd-0-int
D0 by fastforce
 finally have abs (A2 $$ (0,0)) \leq D.
 thus ?thesis unfolding xs'-def using D0 by auto
 qed
 thus \forallj\inset xs'.j<n\wedge(M'\prime $$ (j,j)=D)\wedge(\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}. M"'$$
(j, j') = 0)
 using M''D xs'-def by auto
 have 0 & set ys'
 proof -
 have A2 $$ (m,0) =u*M$$(0,0)+v*M$$(m,0)
 using A A2-def n0 m0 M by auto
 also have ... = - M$$ (m,0) div gcd (M$$ (0,0)) (M$$ (m,0)) *
M $$ (0,0)
 +M$$(0,0) div gcd (M$$ (0,0)) (M$$ (m,0))*M$$ (m,0)
 by (simp add: euclid-ext2-works[OF pquvd[symmetric]])
 also have ... = 0 using M00D Mm00 M000 Mm0D
 by (smt dvd-div-mult-self euclid-ext2-works(3) euclid-ext2-works(5)
 more-arith-simps(11) mult.commute mult-minus-left pquvd semir-
ing-gcd-class.gcd-dvd1)
 finally have A2 $$ (m,0) = 0 .
 thus ?thesis unfolding ys'-def using D0 by auto
 qed
 thus \forallj\inset ys'.j<n\wedge(\mp@subsup{M}{}{\prime\prime}$$(j,j)=D)\wedge(\forall\mp@subsup{j}{}{\prime}\in{0..<n}-{j}. M"'$$
(j, j})=0
 using M'\D ys'-def by auto
 qed (insert D0)
 then show ?thesis using rw by auto
next
 case False
 show ?thesis
 by (unfold M-def, rule reduce-below-abs-invertible-mat-case-m[OF M' m0 n0
M-M'D[OF False]
 mk-A'-not0 m-le-n d-xs all-less-m D0])
qed
from this obtain \(Q\) where inv- \(Q:\) invertible-mat \(Q\) and \(Q: Q \in\) carrier-mat (\(m\) \(+n)(m+n)\)
and reduce-QM: reduce-below-abs 0 (xs @ \([m]\)) \(D M=Q * M\) by blast
have \(\exists R\). invertible-mat \(R\)
\(\wedge R \in\) carrier-mat (dim-row \(\left.A^{\prime}\right)\left(\right.\) dim-row \(\left.A^{\prime}\right) \wedge M=R * A^{\prime}\)
by (unfold \(M\)-def, rule make-first-column-positive-invertible)
from this obtain \(R\) where inv- \(R\) : invertible-mat \(R\)
```

and $R: R \in$ carrier-mat (dim-row $\left.A^{\prime}\right)\left(\right.$ dim-row $\left.A^{\prime}\right)$ and $M$ - $R A^{\prime}: M=R * A^{\prime}$ by blast
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge A^{\prime}=P * A$
by (rule $A^{\prime}$-swaprows-invertible-mat $\left[O F A A^{\prime}\right.$-def non-zero-positions-def], insert non-zero-positions-xs-m $n$ m0, auto)
from this obtain $S$ where inv-S: invertible-mat $S$
and $S: S \in$ carrier-mat (dim-row $A)(\operatorname{dim}$-row $A)$ and $A^{\prime}-S A: A^{\prime}=S * A$
using $A$ by auto
have $\left(P^{\prime} * Q * R * S\right) \in$ carrier-mat $(m+n)(m+n)$ using $P^{\prime} Q R S A^{\prime} A$ by auto
moreover have FindPreHNF abs-flag D $A=\left(P^{\prime} * Q * R * S\right) * A$ using Find- $P^{\prime}$-reduceM
reduce-QM
unfolding $M-R A^{\prime} A^{\prime}-S A M$-def
by (smt $A^{\prime} A^{\prime}-S A P^{\prime} Q R S$ assoc-mult-mat carrier-matD carrier-mat-triv index-mult-mat (2,3)
non-zero-positions-xs-m)
moreover have invertible-mat $\left(P^{\prime} * Q * R * S\right)$ using inv- $P^{\prime}$ inv- $Q$ inv- $R$ inv- $S$ using $P^{\prime} Q R S A^{\prime} A$
by (metis carrier-matD carrier-mat-triv index-mult-mat(2,3) invertible-mult-JNF)
ultimately have exists-inv: $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invert-
ible-mat $P$
$\wedge$ FindPreHNF abs-flag $D A=P * A$ by blast
moreover have echelon-form-JNF (FindPreHNF abs-flag D A)
proof (rule echelon-form-four-block-mat $\left[O F A^{\prime}-U L A^{\prime}-U R\right.$ sub-PreHNF' ])
show FindPreHNF abs-flag $D A=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R\left(O_{m}(m+n\right.$

- 1) 2) sub-PreHNF
using $A^{\prime}$-DLO FindPreHNF-as-fbm sub-PreHNF sub-PreHNF' by auto
have $A^{\prime}-U L \$ \$(0,0)=? R \$ \$(0,0)$
by (metis (mono-tags, lifting) A $A^{\prime}-D R A^{\prime}$-UL Find- $P^{\prime}$-reduceM M-def
〈FindPreHNF abs-flag $\left.D A=P^{\prime} * Q * R * S * A\right\rangle$ add-Suc-right
add-sign-intros(2) carrier-matD fbm-R
index-mat-four-block(1,3) index-mult-mat(3) m0 n0 plus-1-eq-Suc
zero-less-one-class.zero-less-one)
also have ... $\neq 0$
proof (cases xs=[])
case True
have ? $R \$ \$(0,0)=$ reduce-abs 0 m $D M \$(0,0)$
unfolding non-zero-positions-xs-m True M-def by simp
also have ... $\neq 0$
by (metis D-not0 M M-def add-pos-pos less-add-same-cancel1 m0 mk-A'-not0 n0 reduce-not0)
finally show ?thesis.
next
case False
show ?thesis
by (unfold non-zero-positions-xs-m,
rule reduce-below-abs-not0-case-m[OF $M^{\prime} m 0$ no $M^{\prime}-M^{\prime} D[O F$ False $]$
$m k-A^{\prime}$-not0 $m$-le-n all-less-m D-not0])
qed
finally show $A^{\prime}-U L \$ \$(0,0) \neq 0$.
qed (insert mn $n$ hyp, auto)
ultimately show ?thesis by blast
next
case False
hence $A^{\prime}$-split: $\left(A^{\prime}-U L, A^{\prime}-U R, A^{\prime}-D L, A^{\prime}-D R\right)$
= split-block (reduce-below 0 non-zero-positions $D$ (make-first-column-positive $\left.\left.A^{\prime}\right)\right) 11$ using $A^{\prime}$-split by auto
let $? R=$ reduce-below 0 non-zero-positions $D$ (make-first-column-positive $A^{\prime}$ )
have fbm-R: four-block-mat $A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L A^{\prime}-D R$
$=$ reduce-below 0 non-zero-positions $D$ (make-first-column-positive $A^{\prime}$ )
by (rule split-block(5)[symmetric, OF $A^{\prime}$-split[symmetric], of $\left.m+n-1 n-1\right]$, insert $A^{\prime} n$, auto)
have $A^{\prime}-D L 0$ : $A^{\prime}-D L=\left(0_{m}(m+(n-1)) 1\right)$
proof (rule eq-matI)
show dim-row $A^{\prime}$ - $D L=$ dim-row $\left(0_{m}(m+(n-1)) 1\right)$
and dim-col $A^{\prime}-D L=\operatorname{dim}-\operatorname{col}\left(0_{m}(m+(n-1)) 1\right) \mathbf{u s i n g} A^{\prime}-D L$ by auto
fix $i j$ assume $i: i<\operatorname{dim}$-row $\left(0_{m}(m+(n-1)) 1\right)$ and $j: j<\operatorname{dim}-c o l\left(0_{m}\right.$ $(m+(n-1)) 1)$
have $j 0: j=0$ using $j$ by auto
have $0=? R \$ \$(i+1, j)$
proof (unfold M-def non-zero-positions-xs-m j0,
rule reduce-below-0-case-m-make-first-column-positive[symmetric, OF $A^{\prime \prime} m 0 n 0 A$-def m-le-n - d-xs all-less-m - D0 - ])
show $A^{\prime}=($ if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=(x s @[m])!0$ in swaprows 0 i A)
using $A^{\prime}$-def non-zero-positions-def non-zero-positions-xs-m by presburger show $x s @[m]=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<$ dim-row $A]$
using $A^{\prime}$-def non-zero-positions-def non-zero-positions-xs-m by presburger qed (insert in0, auto)
also have $\ldots=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L A^{\prime}-D R \$ \$(i+1, j)$ unfolding $f b m-R$..
also have $\ldots=\left(\right.$ if $i+1<$ dim-row $A^{\prime}-U L$ then if $j<\operatorname{dim}$-col $A^{\prime}-U L$
then $A^{\prime}-U L \$ \$(i+1, j)$ else $A^{\prime}-U R \$ \$\left(i+1, j-\right.$ dim-col $\left.A^{\prime}-U L\right)$
else if $j<$ dim-col $A^{\prime}-U L$ then $A^{\prime}-D L \$ \$\left(i+1-d i m-r o w A^{\prime}-U L, j\right)$
else $\left.A^{\prime}-D R \$ \$\left(i+1-d i m-r o w A^{\prime}-U L, j-d i m-c o l A^{\prime}-U L\right)\right)$
by (rule index-mat-four-block, insert $A^{\prime}-U L A^{\prime}-D R i j$, auto)
also have $\ldots=A^{\prime}-D L \$ \$(i, j)$ using $A^{\prime}-U L A^{\prime}-U R i j$ by auto
finally show $A^{\prime}-D L \$ \$(i, j)=0_{m}(m+(n-1)) 1 \$ \$(i, j)$ using $i j$ by auto
qed
let ? $A^{\prime}-D R-m=$ mat-of-rows $(n-1)\left[\right.$ Matrix.row $A^{\prime}-D R$ i. $\left.i \leftarrow[0 . .<m]\right]$
have $A^{\prime}-D R-m: ? A^{\prime}-D R-m \in$ carrier-mat $m(n-1)$ by auto
have $A^{\prime} D R-A^{\prime} D R-m-D: A^{\prime}-D R=? A^{\prime}-D R-m @_{r} D \cdot m 1_{m}(n-1)$
proof (rule eq-matI)
show dr: dim-row $A^{\prime}-D R=$ dim-row $\left(? A^{\prime}-D R-m @_{r} D \cdot{ }_{m} 1_{m}(n-1)\right)$
by (metis $A^{\prime}-D R A^{\prime}-D R$-m append-rows-def carrier-matD(1) index-mat-four-block(2)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2))
show dc: dim-col $A^{\prime}-D R=$ dim-col $\left(? A^{\prime}-D R-m @_{r} D \cdot_{m} 1_{m}(n-1)\right)$
by (metis $A^{\prime}-D R A^{\prime}-D R-m$ add.comm-neutral append-rows-def
carrier-matD(2) index-mat-four-block(3) index-zero-mat(3))
fix $i j$ assume $i: i<\operatorname{dim-row}\left(? A^{\prime}-D R-m @_{r} D \cdot_{m} 1_{m}(n-1)\right)$
and $j: j<\operatorname{dim}-c o l\left(? A^{\prime}-D R-m @_{r} D \cdot_{m} 1_{m}(n-1)\right)$
have $j n 1: j<n-1$ using $d c j A^{\prime}-D R$ by auto
show $A^{\prime}-D R \$ \$(i, j)=\left(? A^{\prime}-D R-m @_{r} D \cdot{ }_{m} 1_{m}(n-1)\right) \$ \$(i, j)$
proof (cases $i<m$ )
case True
have $A^{\prime}-D R \$ \$(i, j)=? A^{\prime}-D R-m \$ \$(i, j)$
by (metis $A^{\prime}-D R A^{\prime}-D R-m$ True de carrier-matD(1) carrier-matD(2) $j$
le-add1
map-first-rows-index mat-of-rows-carrier(2) mat-of-rows-index)
also have $\ldots=\left(? A^{\prime}-D R-m @_{r} D \cdot_{m} 1_{m}(n-1)\right) \$ \$(i, j)$
by (metis (mono-tags, lifting) $A^{\prime}-D R A^{\prime}-D R-m$ True append-rows-def carrier-matD dc i index-mat-four-block j)
finally show ?thesis .


## next

case False note $i$-ge-m $=$ False
let ?reduce-below $=$ reduce-below 0 non-zero-positions $D$ (make-first-column-positive $A^{\prime}$ )
have 1: $\left(? A^{\prime}-D R-m @_{r} D \cdot{ }_{m} 1_{m}(n-1)\right) \$ \$(i, j)=\left(D \cdot_{m} 1_{m}(n-1)\right) \$ \$$ ( $i-m, j$ )
by (smt $A^{\prime}-D R A^{\prime}-D R$-m False append-rows-nth carrier-matD carrier-mat-triv $d c d r i$
index-one-mat(2) index-one-mat(3) index-smult-mat(2,3) j)
have ?reduce-below $=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L A^{\prime}-D R$ using $f b m-R$
..
also have $\ldots \$(i+1, j+1)=\left(\right.$ if $i+1<$ dim-row $A^{\prime}-U L$ then if $j+1<$ dim-col $A^{\prime}-U L$
then $A^{\prime}-U L \$ \$(i+1, j+1)$ else $A^{\prime}-U R \$ \$\left(i+1, j+1-\operatorname{dim}-c o l A^{\prime}-U L\right)$ else if $j+1<$ dim-col $A^{\prime}-U L$ then $A^{\prime}-D L \$ \$\left(i+1-d i m-r o w A^{\prime}-U L\right.$,
$j+1$ )
else $\left.A^{\prime}-D R \$ \$\left(i+1-d i m-r o w A^{\prime}-U L, j+1-\operatorname{dim}-c o l A^{\prime}-U L\right)\right)$
by (rule index-mat-four-block, insert $i j A^{\prime}-U L A^{\prime}-D R d r d c$, auto)
also have $\ldots=A^{\prime}-D R \$ \$(i, j)$ using $A^{\prime}-U L$ by auto
finally have 2: ? reduce-below $\$ \$(i+1, j+1)=A^{\prime}-D R \$ \$(i, j)$.
show ?thesis
proof (cases xs $=[]$ )
case True note xs-empty $=$ True
have $i 1-m$ : $i+1 \neq m$
using False less-add-one by blast
have $j 1 n$ : $j+1<n$
using jn1 less-diff-conv by blast
have i1-mn: $i+1<m+n$
using i i-ge-m
by (metis $A^{\prime}$-DR carrier-matD (1) dr less-diff-conv sub-PreHNF sub-PreHNF')
have ?reduce-below = reduce 0 mD M
unfolding non-zero-positions-xs-m xs-empty $M$-def by auto also have $\ldots \$(i+1, j+1)=M \$ \$(i+1, j+1)$
by (rule reduce-preserves $[O F M j 1 n-i 1-m-i 1-m n]$, insert $M-\operatorname{def} m k-A^{\prime}-n o t 0$, auto)
also have $\ldots=\left(D \cdot m 1_{m} n\right) \$ \$((i+1)-m, j+1)$
proof (cases $A \$ \$(0,0)=0)$
case True
let $? S=$ (swaprows 0 mA )
have $S: ? S \in$ carrier-mat $(m+n) n$ using $A$ by auto
have Si10: ? $S \$(i+1,0)=0$
proof -
have ? $S \$ \$(i+1,0)=A \$ \$(i+1,0)$ using i1-m n0 i1-mn $S$ by auto
also have $\ldots=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i+1-m, 0)$
by (smt $A$-def $A^{\prime \prime} A$ i-ge-m append-rows-def carrier-matD diff-add-inverse2
also have $\ldots=0$ using $i$-ge-m n0 i1-mn by auto
finally show ?thesis .
qed
have $M \$ \$(i+1, j+1)=($ make-first-column-positive ? $S$ ) $\$ \$(i+1, j+1)$
by (simp add: $A^{\prime}$-def $M$-def True non-zero-positions-xs-m xs-empty)
also have $\ldots=($ if ? $S \$ \$(i+1,0)<0$ then $-? S \$ \$(i+1, j+1)$ else ? $S$ $\$ \$(i+1, j+1))$
unfolding make-first-column-positive.simps using $S$ i1-mn j1n by auto
also have $\ldots=$ ? $S \$ \$(i+1, j+1)$ using Si10 by auto
also have $\ldots=A \$ \$(i+1, j+1)$ using i1-m n0 i1-mn $S$ jn1 by auto
also have $\ldots=\left(D \cdot_{m} 1_{m} n\right) \$ \$(i+1-m, j+1)$
by (smt $A$-def $A^{\prime \prime} A$ i-ge-m append-rows-def carrier-matD i1-mn in-dex-mat-four-block $(1,3)$
index-one-mat(2) index-smult-mat(2) index-zero-mat(2) j1n less-imp-diff-less add-diff-cancel-right')
finally show ?thesis.

## next

case False
have Ai10: $A \$ \$(i+1,0)=0$
proof -
have $A \$ \$(i+1,0)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i+1-m, 0)$
by (smt $A$-def $A^{\prime \prime} A$ i-ge-m append-rows-def carrier-matD diff-add-inverse2
index-mat-four-block less-imp-diff-less n0)
also have $\ldots=0$ using i-ge-m n0 i1-mn by auto
finally show ?thesis.
qed
have $M \$ \$(i+1, j+1)=($ make-first-column-positive A) $\$ \$(i+1, j+1)$
by (simp add: A'-def M-def False True non-zero-positions-xs-m)
also have $\ldots=($ if $A \$ \$(i+1,0)<0$ then $-A \$ \$(i+1, j+1)$ else $A \$ \$$ $(i+1, j+1))$
unfolding make-first-column-positive.simps using $A$ i1-mn j1n by auto
also have $\ldots=A \$ \$(i+1, j+1)$ using Ai10 by auto
also have $\ldots=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(i+1-m, j+1)$
by (smt $A$-def $A^{\prime \prime} A$ i-ge-m append-rows-def carrier-matD i1-mn in-dex-mat-four-block $(1,3)$
index-one-mat(2) index-smult-mat(2) index-zero-mat(2) j1n less-imp-diff-less add-diff-cancel-right')
finally show ?thesis.
qed
also have $\ldots=D *\left(1_{m} n\right) \$ \$((i+1)-m, j+1)$
by (rule index-smult-mat, insert i jn1 $A^{\prime}-D R$ False dr, auto)
also have $\ldots=D *\left(1_{m}(n-1)\right) \$ \$(i-m, j)$ using dc dr ij $A^{\prime}-D R$ i-ge-m by (smt Nat.add-diff-assoc2 carrier-matD(1) index-one-mat(1) jn1 less-diff-conv
linorder-not-less add-diff-cancel-right' add-diff-cancel-right' add-diff-cancel-left')
also have $\ldots=\left(D \cdot m 1_{m}(n-1)\right) \$ \$(i-m, j)$
by (rule index-smult-mat[symmetric], insert ijn1 $A^{\prime}$-DR False dr, auto)
finally show ?thesis using 12 by auto
next
case False
have ?reduce-below $\$ \$(i+1, j+1)=M \$ \$(i+1, j+1)$
proof (unfold non-zero-positions-xs-m M-def,
rule reduce-below-preserves-case-m[OF $M^{\prime} m 0-M-M^{\prime} D m k-A^{\prime}-n o t 0 m-l e-n$ - d-xs all-less-m - - D0])
show $j+1<n$ using $j n 1$ by auto
show $i+1 \notin$ set $x s$ using all-less-m i-ge-m non-zero-positions-xs-m by
auto
show $i+1 \neq 0$ by auto
show $i+1<m+n$ using $i-g e-m i d r A^{\prime}-D R$ by auto
show $i+1 \neq m$ using $i$-ge- $m$ by auto
qed (insert False)
also have $\ldots=\left(? M^{\prime} @_{r} D \cdot m 1_{m} n\right) \$ \$(i+1, j+1)$ unfolding $M$-def using
False $M-M^{\prime} D$ by argo
also have $\ldots=\left(D \cdot_{m} 1_{m} n\right) \$ \$((i+1)-m, j+1)$
proof -
have f1: $1+j<n$
by (metis Groups.add-ac(2) jn1 less-diff-conv)
have f2: $\forall n . \neg n+i<m$
by (meson i-ge-m linorder-not-less nat-SN.compat not-add-less2)
have $i<m+(n-1)$
by (metis (no-types) $A^{\prime}-D R$ carrier-matD(1)dr $i$ )
then have $1+i<m+n$
using $f 1$ by linarith
then show ?thesis
using f2 f1 by (metis (no-types) Groups.add-ac(2) M' append-rows-def carrier-matD (1)
dim-col-mat(1) index-mat-four-block(1) index-one-mat(2) index-smult-mat(2)
index-zero-mat(2,3) mat-of-rows-def nat-arith.rule0)
qed
also have $\ldots=D *\left(1_{m} n\right) \$ \$((i+1)-m, j+1)$
by (rule index-smult-mat, insert i jn1 $A^{\prime}-D R$ False dr, auto)
also have $\ldots=D *\left(1_{m}(n-1)\right) \$ \$(i-m, j)$ using $d c d r i j A^{\prime}-D R$ i-ge-m by (smt Nat.add-diff-assoc2 carrier-matD (1) index-one-mat(1) jn1 less-diff-conv
linorder-not-less add-diff-cancel-right' add-diff-cancel-left')
also have $\ldots=\left(D \cdot{ }_{m} 1_{m}(n-1)\right) \$ \$(i-m, j)$
by (rule index-smult-mat[symmetric], insert i jn1 $A^{\prime}-D R$ False dr, auto)
finally have 3: ? reduce-below $\$ \$(i+1, j+1)=\left(D \cdot m 1_{m}(n-1)\right) \$ \$(i-m, j)$

```
 show ?thesis using 12 3 by presburger
 qed
 qed
qed
 let ?A'-DR-n = mat-of-rows (n-1) (map (Matrix.row A'-DR) [0..<n - 1])
 have hyp: \existsP.P\incarrier-mat (m+ (n-1)) (m+ (n-1)) ^ invertible-mat P ^
sub-PreHNF = P* A'-DR
 ^ echelon-form-JNF sub-PreHNF
 proof (cases 2 \leqn-1)
 case True
 show ?thesis
 by (unfold sub-PreHNF-def, rule 1.hyps[OF - - non-zero-positions-def A'-def
- - - -])
 (insert A n D0 m-le-n True A'DR-A'DR-m-D A A'-split False, auto)
 next
 case False
 have }\existsP.P\in\mathrm{ carrier-mat (m+(n-1)) (m+(n-1)) ^ invertible-mat P ^
sub-PreHNF = P* A'-DR
 by (unfold sub-PreHNF-def, rule FindPreHNF-invertible-mat-mx2
 [OF A'DR-A'DR-m-D A'-DR-m - DO -])
 (insert False m-le-n n0 m0 1(4), auto)
 moreover have echelon-form-JNF sub-PreHNF unfolding sub-PreHNF-def
 by (rule FindPreHNF-echelon-form-mx1[OF A'DR-A'DR-m-D A'-DR-m-D0
-],
 insert False n0 m-le-n, auto)
 ultimately show ?thesis by simp
qed
from this obtain P where P:P\in carrier-mat (m+(n-1)) (m+(n-1))
 and inv-P: invertible-mat P and sub-PreHNF-P-A'-DR: sub-PreHNF = P*
A'-DR by blast
 define }\mp@subsup{P}{}{\prime}\mathrm{ where }\mp@subsup{P}{}{\prime}=(\mathrm{ four-block-mat (1m 1) (0m 1 (m+(n-1))) (0m (m+(n-1))
1) P)
 have }\mp@subsup{P}{}{\prime}:\mp@subsup{P}{}{\prime}\in\mathrm{ carrier-mat (}m+n)(m+n
 proof -
 have P}\mp@subsup{P}{}{\prime}\in\mathrm{ carrier-mat }(1+(m+(n-1)))(1+(m+(n-1))
 unfolding P'-def by (rule four-block-carrier-mat[OF - P], simp)
 thus ?thesis using n by auto
qed
have inv-P': invertible-mat P'
 unfolding P'-def by (rule invertible-mat-four-block-mat-lower-right[OF P inv-P])
```

have $d r$ - A2: dim-row $A \geq 2$ using $A m 0 n$ by auto
have $d c-A$ 2: $\operatorname{dim}-c o l ~ A \geq 2$ using $n A$ by blast
have $*:(\operatorname{dim}-\operatorname{col} A=0)=$ False using $d c-A 2$ by auto
have FindPreHNF-as-fbm: FindPreHNF abs-flag $D A=$ four-block-mat $A^{\prime}-U L$ $A^{\prime}-U R \quad A^{\prime}$-DL sub-PreHNF
unfolding FindPreHNF.simps[of abs-flag $D A]$ using $A^{\prime}$-split mn $n A d r-A 2$ dc-A2 False
unfolding Let-def sub-PreHNF-def M-def $A^{\prime}$-def non-zero-positions-def *
by (smt (z3) linorder-not-less split-conv)
also have $\ldots=P^{\prime} *($ reduce-below 0 non-zero-positions $D M)$
proof -
have $P^{\prime} *($ reduce-below 0 non-zero-positions $D M)$
$=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(m+(n-1))\right)\left(0_{m}(m+(n-1)) 1\right) P$

* four-block-mat $A^{\prime}-U L A^{\prime}-U R \quad A^{\prime}-D L A^{\prime}-D R$
unfolding $P^{\prime}$-def fbm-R[unfolded $M$-def[symmetric], symmetric] ..
also have ... $=$ four-block-mat

$$
\begin{aligned}
& \left(\left(1_{m} 1\right) * A^{\prime}-U L+\left(0_{m} 1(m+(n-1)) * A^{\prime}-D L\right)\right) \\
& \left(\left(1_{m} 1\right) * A^{\prime}-U R+\left(0_{m} 1(m+(n-1))\right) * A^{\prime}-D R\right) \\
& \left(\left(0_{m}(m+(n-1)) 1\right) * A^{\prime}-U L+P * A^{\prime}-D L\right) \\
& \left(\left(0_{m}(m+(n-1)) 1\right) * A^{\prime}-U R+P * A^{\prime}-D R\right)
\end{aligned}
$$

by (rule mult-four-block-mat $\left[O F-P A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L A^{\prime}-D R\right]$, auto)
also have $\ldots=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R\left(P * A^{\prime}-D L\right)\left(P * A^{\prime}-D R\right)$
by (rule cong-four-block-mat, insert $A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L A^{\prime}-D R P$, auto)
also have $\ldots=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R\left(0_{m}(m+(n-1)) 1\right)$ sub-PreHNF
unfolding $A^{\prime}-D L 0$ sub-PreHNF-P- $A^{\prime}-D R$ using $P$ by simp
also have $\ldots=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R A^{\prime}-D L$ sub-PreHNF
unfolding $A^{\prime}-D L 0$ by simp
finally show?thesis ..
qed
finally have Find- $P^{\prime}$-reduceM: FindPreHNF abs-flag $D A=P^{\prime} *$ (reduce-below 0 non-zero-positions $D M$ ).
have $\exists Q$. invertible-mat $Q \wedge Q \in$ carrier-mat $(m+n)(m+n)$
$\wedge$ reduce-below 0 (xs @ [m]) D $M=Q * M$
proof (cases xs $=[]$ )
case True note xs-empty $=$ True
have rw: reduce-below 0 (xs @ $[m]$ ) $D M=$ reduce $0 m D M$ using True by auto
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid-ext2}(M \$ \$(0,0))(M$ \$ $(m, 0))$
by (simp add: euclid-ext2-def)
have $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(m+n)(m+n) \wedge$ reduce $0 m$ $D M=P * M$
proof (rule reduce-invertible-mat-case-m[OF - m0 - - m-le-n n0 pquvd])
show $M \$ \$(0,0) \neq 0$
using $M$-def $m k-A^{\prime}$-not0 by blast
define $M^{\prime}$ where $M^{\prime}=$ mat-of-rows $n(\operatorname{map}$ (Matrix.row $\left.M)[0 . .<m]\right)$
define $M^{\prime \prime}$ where $M^{\prime \prime}=$ mat-of-rows $n($ map (Matrix.row $\left.M)[m . .<m+n]\right)$
define A2 where A2 $=$ Matrix.mat $($ dim-row $M)($ dim-col M)
$(\lambda(i, k)$. if $i=0$ then $p * M \$ \$(0, k)+q * M \$ \$(m, k)$
else if $i=m$ then $u * M \$ \$(0, k)+v * M \$ \$(m, k)$ else $M \$ \$(i, k))$
show $M-M^{\prime}-M^{\prime \prime}: M=M^{\prime} @_{r} M^{\prime \prime}$ unfolding $M^{\prime}$-def $M^{\prime \prime}$-def by (metis M append-rows-split carrier-matD le-add1)
show $M^{\prime}: M^{\prime} \in$ carrier-mat $m$ unfolding $M^{\prime}$-def by fastforce
show $M^{\prime \prime}: M^{\prime \prime} \in$ carrier-mat $n n$ unfolding $M^{\prime \prime}$-def by fastforce
show $0 \neq m$ using $m 0$ by simp
show $A 2=$ Matrix.mat $($ dim-row $M)($ dim-col $M)$
$(\lambda(i, k)$. if $i=0$ then $p * M \$ \$(0, k)+q * M \$ \$(m, k)$
else if $i=m$ then $u * M \$ \$(0, k)+v * M \$ \$(m, k)$
else $M \$ \$(i, k))$
(is - = ? rhs) using A A2-def by auto
define $x s^{\prime}$ where $x s^{\prime}=[1 . .<n]$
define $y s^{\prime}$ where $y s^{\prime}=[1 . .<n]$
show $x s^{\prime}=[1 . .<n]$ unfolding $x s^{\prime}$ - def by auto
show $y s^{\prime}=[1 . .<n]$ unfolding $y s^{\prime}-d e f$ by auto
have $M^{\prime \prime} D:\left(M^{\prime \prime} \$ \$(j, j)=D\right) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . M^{\prime \prime} \$ \$\left(j, j^{\prime}\right)=0\right)$
if $j n: j<n$ and $j 0: j>0$ for $j$
proof -
have Ajm0: $A \$ \$(j+m, 0)=0$
proof -
have $A \$ \$(j+m, 0)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(j+m-m, 0)$
by (smt 1(2) 1 (3) $M M^{\prime} M^{\prime \prime} M-M^{\prime}-M^{\prime \prime}$ add.commute append-rows-def carrier-matD
diff-add-inverse2 index-mat-four-block index-one-mat(2) in-dex-smult-mat(2)
le-add2 less-diff-conv2 n0 not-add-less2 that(1))
also have $\ldots=0$ using jn $j 0$ by auto
finally show ?thesis .
qed
have $M^{\prime \prime} \$ \$(j, i)=\left(D \cdot_{m} 1_{m} n\right) \$ \$(j, i)$ if $i-n$ : $i<n$ for $i$
proof (cases $A \$ \$(0,0)=0)$
case True
have $M^{\prime \prime} \$ \$(j, i)=$ make-first-column-positive (swaprows $0 m A$ ) $\$ \$$ $(j+m, i)$
by (smt $A^{\prime}$-def Groups.add-ac(2) $M^{\prime} M^{\prime \prime} M-M^{\prime}-M^{\prime \prime} M$-def True append.simps(1)
append-rows-nth3 diff-add-inverse2 jn le-add2 local.non-zero-positions-xs-m nat-add-left-cancel-less nth-Cons-0 that xs-empty)
also have $\ldots=A \$ \$(j+m, i)$ using $A j n j 0 i-n$ Ajm0 by auto
also have $\ldots=\left(D \cdot_{m} 1_{m} n\right) \$ \$(j, i)$
by (smt A Groups.add-ac(2) add-mono-thms-linordered-field(1) append-rows-def $A$-def $A^{\prime \prime} i$-n
carrier-matD index-mat-four-block(1,2) add-diff-cancel-right'
not-add-less2 jn trans-less-add1)
finally show ?thesis .
next
case False
have $A^{\prime}=A$ unfolding $A^{\prime}$-def non-zero-positions-xs-m using False

True by auto
hence $M^{\prime \prime} \$ \$(j, i)=$ make-first-column-positive $A \$ \$(j+m, i)$
by (smt m-le-n $M^{\prime} M^{\prime \prime} M-M^{\prime}-M^{\prime \prime} M$-def append-rows-nth2 $j n$ nat-SN.compat that)
also have $\ldots=A \$ \$(j+m, i)$ using $A j n j 0 i-n$ Ajm0 by auto
also have $\ldots=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(j, i)$
by (smt A Groups.add-ac(2) add-mono-thms-linordered-field(1)
append-rows-def $A$-def $A^{\prime \prime} i$-n
carrier-matD index-mat-four-block(1,2) add-diff-cancel-right'
not-add-less2 jn trans-less-add1)
finally show ?thesis.
qed
thus ?thesis using $j n j 0$ by auto
qed
have $A m 0 D: A \$ \$(m, 0)=D$
proof -
have $A \$ \$(m, 0)=\left(D \cdot{ }_{m} 1_{m} n\right) \$ \$(m-m, 0)$
by (smt 1 (2) 1 (3) $M M^{\prime} M^{\prime \prime} M-M^{\prime}-M^{\prime \prime}$ append-rows-def carrier-matD diff-less-mono2 diff-self-eq-0 index-mat-four-block index-one-mat(2) index-smult-mat(2) less-add-same-cancel1 n0 semiring-norm(137))
also have $\ldots=D$ using $m 0 n 0$ by auto
finally show ?thesis.
qed
hence $S 00 D$ : (swaprows $0 m A) \$ \$(0,0)=D$ using $n 0 \mathrm{mO} A$ by auto
have Sm00: (swaprows $0 m A) \$ \$(m, 0)=A \$ \$(0,0)$ using $n 0 m 0 A$ by
have M00D: $M \$ \$(0,0)=D$ if $A 00: A \$ \$(0,0)=0$
proof -
have $M \$ \$(0,0)=($ make-first-column-positive (swaprows $0 m A)) \$ \$$
unfolding $M$-def $A^{\prime}$-def using $A 00$
by (simp add: True non-zero-positions-xs-m)
also have $\ldots=($ if (swaprows $0 m A) \$(0,0)<0$ then - (swaprows 0
$m$ A) $\$ \$(0,0)$
else (swaprows 0 m A) $\$ \$(0,0)$ )
unfolding make-first-column-positive.simps using m0 n0 A by auto also have $\ldots=($ swaprows $0 m A) \$ \$(0,0)$ using S00D D0 by auto also have $\ldots=D$ using $S 00 D$ by auto
finally show? thesis.
qed
have $M m 00: M \$ \$(m, 0)=0$ if $A 00: A \$ \$(0,0)=0$
proof -
have $M \$ \$(m, 0)=($ make-first-column-positive (swaprows $0 m A)) \$ \$$
unfolding $M$-def $A^{\prime}$-def using $A 00$
by (simp add: True non-zero-positions-xs-m)
also have $\ldots=($ if (swaprows $0 m A) \$ \$(m, 0)<0$ then $-($ swaprows 0 $m A) \$ \$(m, 0)$

$$
\text { else (swaprows } 0 \text { m A) } \$ \$(m, 0) \text { ) }
$$

unfolding make-first-column-positive.simps using m0 n0 A by auto also have $\ldots=($ swaprows $0 m A) \$ \$(m, 0)$ using Sm00 A00 D0 by auto also have $\ldots=0$ using Sm00 A00 by auto finally show ?thesis .
qed
have $M 000: M \$ \$(0,0)=a b s(A \$ \$(0,0))$ if $A 00: A \$ \$(0,0) \neq 0$
proof -
have $M \$ \$(0,0)=($ make-first-column-positive $A) \$ \$(0,0)$
unfolding $M$-def $A^{\prime}$-def using $A 00$
by (simp add: True non-zero-positions-xs-m)
also have $\ldots=($ if $A \$ \$(0,0)<0$ then $-A \$ \$(0,0)$ else $A \$ \$(0,0))$
unfolding make-first-column-positive.simps using m0 n0 A by auto also have $\ldots=$ abs $(A \$ \$(0,0))$ using $S m 00$ A00 by auto finally show ?thesis .
qed
have $M m 0 D: M \$ \$(m, 0)=D$ if $A 00: A \$ \$(0,0) \neq 0$
proof -
have $M \$ \$(m, 0)=($ make-first-column-positive $A) \$ \$(m, 0)$
unfolding $M$-def $A^{\prime}$-def using $A 00$
by (simp add: True non-zero-positions-xs-m)
also have $\ldots=($ if $A \$ \$(m, 0)<0$ then $-A \$ \$(m, 0)$ else $A \$ \$(m, 0))$
unfolding make-first-column-positive.simps using m0 n0 A by auto
also have $\ldots=A \$ \$(m, 0)$ using $S 00 D D 0 A m 0 D$ by auto
also have $\ldots=D$ using $A m 0 D D 0$ by auto
finally show ?thesis.
qed
have $0 \notin$ set $x s^{\prime}$
proof -
have $A 2 \$ \$(0,0)=p * M \$ \$(0,0)+q * M \$ \$(m, 0)$
using $A$ A2-def n0 $M$ by auto
also have $\ldots=\operatorname{gcd}(M \$ \$(0,0))(M \$ \$(m, 0))$
by (metis euclid-ext2-works $(1,2)$ pquvd)
also have abs $\ldots \leq D$ using MOOD Mm00 M000 Mm0D using gcd-0-int DO by fastforce
finally have $a b s(A 2 \$ \$(0,0)) \leq D$.
thus ?thesis unfolding $x s^{\prime}$-def using $D 0$ by auto
qed
thus $\forall j \in$ set $x s^{\prime} . j<n \wedge\left(M^{\prime \prime} \$ \$(j, j)=D\right) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . M^{\prime \prime} \$ \$\right.$ $\left.\left(j, j^{\prime}\right)=0\right)$
using $M^{\prime \prime} D x s^{\prime}$-def by auto
have $0 \notin$ set ss $^{\prime}$
proof -
have A2 $\$ \$(m, 0)=u * M \$ \$(0,0)+v * M \$ \$(m, 0)$
using $A$ A2-def n0 m0 M by auto
also have $\ldots=-M \$ \$(m, 0)$ div $\operatorname{gcd}(M \$ \$(0,0))(M \$ \$(m, 0)) *$ M $\$ \$(0,0)$

$$
+M \$ \$(0,0) \text { div gcd }(M \$ \$(0,0))(M \$ \$(m, 0)) * M \$ \$(m, 0)
$$

by (simp add: euclid-ext2-works[OF pquvd[symmetric]])
also have $\ldots=0$ using MOOD Mm00 M000 Mm0D
by (smt dvd-div-mult-self euclid-ext2-works(3) euclid-ext2-works(5) more-arith-simps(11) mult.commute mult-minus-left pquvd semir-ing-gcd-class.gcd-dvd1)
finally have A2 $\$ \$(m, 0)=0$.
thus ?thesis unfolding $y s^{\prime}$-def using $D 0$ by auto
qed
thus $\forall j \in$ set $y s^{\prime} . j<n \wedge\left(M^{\prime \prime} \$ \$(j, j)=D\right) \wedge\left(\forall j^{\prime} \in\{0 . .<n\}-\{j\} . M^{\prime \prime} \$ \$\right.$ $\left.\left(j, j^{\prime}\right)=0\right)$
using $M^{\prime \prime} D$ ys'-def by auto
show $M \$ \$(m, 0) \in\{0, D\}$ using $M m 00 \mathrm{Mm0D}$ by blast
show $M \$ \$(m, 0)=0 \longrightarrow M \$ \$(0,0)=D$ using Mm00 Mm0D
D-not0 MOOD by blast
qed (insert D0)
then show ?thesis using $r w$ by auto
next
case False
show ?thesis
by (unfold M-def, rule reduce-below-invertible-mat-case-m[OF $M^{\prime} m 0 n 0$ M- $M^{\prime} D[$ OF False $]$
$m k-A^{\prime}$-not0 $m$-le-n d-xs all-less-m D0])
qed
from this obtain $Q$ where inv- $Q$ : invertible-mat $Q$ and $Q: Q \in$ carrier-mat ( $m$ $+n)(m+n)$
and reduce- $Q M$ : reduce-below 0 (xs @ [m]) D M=Q*M by blast
have $\exists R$. invertible-mat $R$
$\wedge R \in$ carrier-mat (dim-row $\left.A^{\prime}\right)\left(\right.$ dim-row $\left.A^{\prime}\right) \wedge M=R * A^{\prime}$
by (unfold $M$-def, rule make-first-column-positive-invertible)
from this obtain $R$ where inv- $R$ : invertible-mat $R$
and $R: R \in$ carrier-mat (dim-row $\left.A^{\prime}\right)\left(\right.$ dim-row $\left.A^{\prime}\right)$ and $M$ - $R A^{\prime}: M=R * A^{\prime}$ by blast
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge A^{\prime}=P * A$
by (rule $A^{\prime}$-swaprows-invertible-mat $\left[O F A A^{\prime}\right.$-def non-zero-positions-def], insert non-zero-positions-xs-m $n$ m0, auto)
from this obtain $S$ where inv-S: invertible-mat $S$
and $S: S \in$ carrier-mat (dim-row $A)($ dim-row $A)$ and $A^{\prime}-S A: A^{\prime}=S * A$
using $A$ by auto
have $\left(P^{\prime} * Q * R * S\right) \in$ carrier-mat $(m+n)(m+n)$ using $P^{\prime} Q R S A^{\prime} A$ by auto
moreover have FindPreHNF abs-flag $D A=\left(P^{\prime} * Q * R * S\right) * A$ using Find- $P^{\prime}$-reduceM
reduce-QM
unfolding $M-R A^{\prime} A^{\prime}-S A M$-def
by (smt $A^{\prime} A^{\prime}-S A P^{\prime} Q R S$ assoc-mult-mat carrier-matD carrier-mat-triv index-mult-mat $(2,3)$
non-zero-positions-xs-m)
moreover have invertible-mat $\left(P^{\prime} * Q * R * S\right)$ using inv- $P^{\prime}$ inv- $Q$ inv- $R$ inv- $S$ using $P^{\prime} Q R S A^{\prime} A$
by (metis carrier-matD carrier-mat-triv index-mult-mat(2,3) invertible-mult-JNF)
ultimately have exists-inv: $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invert-ible-mat $P$
$\wedge$ FindPreHNF abs-flag $D A=P * A$ by blast
moreover have echelon-form-JNF (FindPreHNF abs-flag D A)
proof (rule echelon-form-four-block-mat $\left[O F A^{\prime}-U L A^{\prime}-U R\right.$ sub-PreHNF' ])
show FindPreHNF abs-flag $D A=$ four-block-mat $A^{\prime}-U L A^{\prime}-U R\left(0_{m}(m+n\right.$

- 1) 2) sub-PreHNF
using $A^{\prime}$-DLO FindPreHNF-as-fbm sub-PreHNF sub-PreHNF' by auto
have $A^{\prime}-U L \$ \$(0,0)=? R \$ \$(0,0)$
by (metis (mono-tags, lifting) A $A^{\prime}-D R A^{\prime}$-UL Find- $P^{\prime}$-reduceM M-def〈FindPreHNF abs-flag $\left.D A=P^{\prime} * Q * R * S * A\right\rangle$ add-Suc-right add-sign-intros(2) carrier-matD fbm-R
index-mat-four-block $(1,3)$ index-mult-mat(3) m0 n0 plus-1-eq-Suc zero-less-one-class.zero-less-one)
also have $\ldots \neq 0$
proof (cases $x s=[]$ )
case True
have ? $\$ \$ \$(0,0)=$ reduce $0 m D M \$ \$(0,0)$
unfolding non-zero-positions-xs-m True $M$-def by simp
also have $\ldots \neq 0$
by (metis D-not0 M M-def add-pos-pos less-add-same-cancel1 m0 mk-A'-not0 n0 reduce-not0)
finally show ?thesis.
next
case False
show ?thesis
by (unfold non-zero-positions-xs-m, rule reduce-below-not0-case-m[OF $M^{\prime} m 0 n 0 M-M^{\prime} D[O F$ False $] m k-A^{\prime}$-not0 m-le-n all-less-m D-not0])
qed
finally show $A^{\prime}-U L \$ \$(0,0) \neq 0$.
qed (insert mn $n$ hyp, auto)
ultimately show ?thesis by blast
qed
qed


## lemma

assumes $A$-def: $A=A^{\prime \prime} @_{r} D \cdot m 1_{m} n$
and $A^{\prime \prime}: A^{\prime \prime} \in$ carrier-mat $m$ and $n \geq 2$ and $m$-le- $n: m \geq n$ and $D>0$
shows FindPreHNF-invertible-mat-n-ge2: $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ FindPreHNF abs-flag $D A=P * A$
and FindPreHNF-echelon-form-n-ge2: echelon-form-JNF (FindPreHNF abs-flag D A)
using FindPreHNF-works-n-ge2[OF assms] by blast+
lemma FindPreHNF-invertible-mat:
assumes $A$-def: $A=A^{\prime \prime} @_{r} D \cdot_{m} 1_{m} n$
and $A^{\prime \prime}: A^{\prime \prime} \in$ carrier-mat $m n$ and $n 0: 0<n$ and $m n: m \geq n$ and $D: D>0$
shows $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge$ FindPreHNF

```
abs-flag D A = P*A
proof -
 have A:A\incarrier-mat (m+n) n using A-def A" by auto
 show ?thesis
 proof (cases m+n<2)
 case True
 show ?thesis by (rule FindPreHNF-invertible-mat-2xn[OF A True])
 next
 case False note m-ge2 = False
 show ?thesis
 proof (cases n<2)
 case True
 show ?thesis by (rule FindPreHNF-invertible-mat-mx2[OF A-def A" True
n0 D mn])
 next
 case False
 show ?thesis
 by (rule FindPreHNF-invertible-mat-n-ge2[OF A-def A'' mn D], insert
False, auto)
 qed
 qed
qed
lemma FindPreHNF-echelon-form:
 assumes }A\mathrm{ -def: A= A" @ }D\cdot\mp@code{m}\mp@subsup{1}{m}{}
 and }\mp@subsup{A}{}{\prime\prime}:\mp@subsup{A}{}{\prime\prime}\in\mathrm{ carrier-mat m n and mn: m}\geqn\mathrm{ and D:D>0
 shows echelon-form-JNF (FindPreHNF abs-flag D A)
proof -
 have A:A carrier-mat (}m+n\mathrm{) n using A-def A"' by auto
 have FindPreHNF: (FindPreHNF abs-flag D A) \in carrier-mat (m+n) n by (rule
FindPreHNF[OF A])
 show ?thesis
 proof (cases m+n<2)
 case True
 show ?thesis by (rule echelon-form-JNF-1xn[OF FindPreHNF True])
 next
 case False note m-ge2 = False
 show ?thesis
 proof (cases n<2)
 case True
 show ?thesis by (rule FindPreHNF-echelon-form-mx1[OF A-def A" True D
mn])
 next
 case False
 show ?thesis
 by (rule FindPreHNF-echelon-form-n-ge2[OF A-def A" - mn D], insert
False, auto)
 qed
```

qed
qed
end
We connect the algorithm developed in the Hermite AFP entry with ours. This would permit to reuse many existing results and prove easily the soundness.
thm Hermite.Hermite-reduce-above.simps
thm Hermite.Hermite-of-row-i-def
thm Hermite.Hermite-of-upt-row-i-def
thm Hermite.Hermite-of-def
thm Hermite-reduce-above.simps
thm Hermite-of-row-i-def
thm Hermite-of-list-of-rows.simps
thm mod-operation.Hermite-mod-det-def
thm Hermite.Hermite-reduce-above.simps Hermite-reduce-above.simps
context includes lifting-syntax
begin
definition res-int $=(\lambda b n::$ int. $n \bmod b)$
lemma res-function-res-int:
res-function res-int
using res-function-euclidean2 unfolding res-int-def by auto
lemma HMA-Hermite-reduce-above[transfer-rule]:
assumes $n<C A R D$ ('m)
shows ((Mod-Type-Connect.HMA-M :: - $\Rightarrow$ int ^' $n::$ mod-type ^' $m$ :: mod-type
$\Rightarrow$-)
$===>($ Mod-Type-Connect.HMA-I $)===>($ Mod-Type-Connect.HMA-I $)===>$
(Mod-Type-Connect.HMA-M))
( $\lambda$ A i j. Hermite-reduce-above $A n i j$ )
( $\lambda$ A ij. Hermite.Hermite-reduce-above A $n i j$ res-int)
proof (intro rel-funI, goal-cases)
case ( $1 A A^{\prime} i i^{\prime} j j^{\prime}$ )
then show ?case using assms
proof (induct $n$ arbitrary: $A A^{\prime}$ )
case 0
then show? case by auto
next case (Suc n)
note $A A^{\prime}[$ transfer-rule $]=$ Suc.prems $(1)$
note $i i^{\prime}[$ transfer-rule $]=$ Suc.prems(2)
note $j j^{\prime}[$ transfer-rule $]=$ Suc.prems(3)

```
 note Suc-n-less-m = Suc.prems(4)
 let ?H-JNF = HNF-Mod-Det-Algorithm.Hermite-reduce-above
 let ?H-HMA = Hermite.Hermite-reduce-above
 let ?from-nat-rows = mod-type-class.from-nat :: - = 'm
 have nn[transfer-rule]: Mod-Type-Connect.HMA-I n (?from-nat-rows n)
 unfolding Mod-Type-Connect.HMA-I-def
 by (simp add:Suc-lessD Suc-n-less-m mod-type-class.from-nat-to-nat)
 have Anj: A' $h (?from-nat-rows n) $h j' = A $$ (n,j)
 by (unfold index-hma-def[symmetric], transfer, simp)
 have Aij: A' $h i'$h j'=A$$(i,j) by (unfold index-hma-def[symmetric],
transfer, simp)
 let ?s = (- (A $$ (n,j) div A $$ (i,j)))
 let ?s' = ((res-int (}\mp@subsup{A}{}{\prime}$h\mp@subsup{i}{}{\prime}$h\mp@subsup{j}{}{\prime})(\mp@subsup{A}{}{\prime}$h\mathrm{ ?from-nat-rows n $h j')
 - A' $h ?from-nat-rows n $h j') div A' $h i' $h j')
 have ss'[transfer-rule]: ?s = ?s' unfolding res-int-def Anj Aij
 by (metis (no-types, opaque-lifting) Groups.add-ac(2) add-diff-cancel-left'
div-by-0
 minus-div-mult-eq-mod more-arith-simps(7) nat-arith.rule0 nonzero-mult-div-cancel-right
 uminus-add-conv-diff)
 have H-JNF-eq: ?H-JNF A (Suc n) ij = ?H-JNF (addrow (- (A $$ (n,j) div
A$$(i,j))) ni A) nij
 by auto
 have H-HMA-eq: ?H-HMA A' (Suc n) i' j' res-int = ?H-HMA (row-add A'
(?from-nat-rows n) i' ?s') n i' j' res-int
 by (auto simp add: Let-def)
 have Mod-Type-Connect.HMA-M (?H-JNF (addrow ?s n i A) n i j)
 (?H-HMA (row-add A' (?from-nat-rows n) i' ?s') n i' j' res-int)
 by (rule Suc.hyps[OF - i\mp@subsup{i}{}{\prime}}\mp@subsup{j}{}{\prime}]\mathrm{], transfer-prover, insert Suc-n-less-m, simp)
 thus ?case using H-JNF-eq H-HMA-eq by auto
qed
qed
```

corollary HMA-Hermite-reduce-above':
assumes $n<C A R D$ ('m)

and Mod-Type-Connect.HMA-I $i i^{\prime}$ and Mod-Type-Connect.HMA-I j j ${ }^{\prime}$
showsMod-Type-Connect.HMA-M (Hermite-reduce-above A $n i j$ ) (Hermite.Hermite-reduce-above
$A^{\prime} n i^{\prime} j^{\prime}$ res-int)
using HMA-Hermite-reduce-above assms unfolding rel-fun-def by metis
lemma HMA-Hermite-of-row-i[transfer-rule]:
assumes upt-A: upper-triangular ${ }^{\prime} A$
and $A A^{\prime}:$ Mod-Type-Connect.HMA-M $A\left(A^{\prime}::\right.$ int $^{\wedge}$ ' $n::$ mod-type ${ }^{\wedge}$ ' $m::$ mod-type $)$
and $i i^{\prime}$ : Mod-Type-Connect.HMA-I $i i^{\prime}$
shows Mod-Type-Connect.HMA-M (Hermite-of-row-i A i)
(Hermite.Hermite-of-row-i ass-function-euclidean res-int $A^{\prime} i^{\prime}$ )
proof -
note $A A^{\prime}[$ transfer-rule $]$
note $i i^{\prime}[$ transfer-rule $]$
have $i: i<$ dim-row $A$
by (metis (full-types) AA' ii $^{\prime}$ Mod-Type-Connect.HMA-I-def
Mod-Type-Connect.dim-row-transfer-rule mod-type-class.to-nat-less-card)
show ?thesis
proof (cases is-zero-row $i^{\prime} A^{\prime}$ )
case True
hence is-zero-row-JNF i A by (transfer, simp)
hence find-fst-non0-in-row i $A=$ None using find-fst-non0-in-row-None[OF -upt- $A i]$ by auto
thus ?thesis using True $A A^{\prime}$ unfolding Hermite.Hermite-of-row-i-def Her-mite-of-row-i-def by auto
next
case False
have $n z-i A$ : $\neg i s$-zero-row-JNF $i A$ using False by transfer
hence find-fst-non0-in-row i $A \neq$ None using find-fst-non0-in-row-None[OF -upt- $A i$ ] by auto
from this obtain $j$ where $j$ : find-fst-non0-in-row i $A=$ Some $j$ by blast
have $j$-eq: $j=(L E A S T$ n. A $\$ \$(i, n) \neq 0)$
by (rule find-fst-non0-in-row-LEAST[OF - upt-A ji], auto)
have $H$-JNF-rw: (Hermite-of-row-i $A \quad i)=$
(if $A \$ \$(i, j)<0$ then Hermite-reduce-above (multrow $i(-1) A) i i j$
else Hermite-reduce-above $A$ i $i j$ ) unfolding Hermite-of-row-i-def using $j$ by auto
let ? $\mathrm{H}-\mathrm{HMA}=$ Hermite.Hermite-of-row-i
let $? j^{\prime}=\left(\right.$ LEAST $\left.n . A^{\prime} \$ h i^{\prime} \$ h n \neq 0\right)$
have $i i^{\prime}$ 2: ( mod-type-class.to-nat $i^{\prime}$ ) $=i$ using $i i^{\prime}$
by (simp add: Mod-Type-Connect.HMA-I-def)
have $j j^{\prime}[$ transfer-rule $]$ : Mod-Type-Connect.HMA-I $j$ ? $j^{\prime}$
unfolding $j$-eq index-hma-def[symmetric] by (rule HMA-LEAST[OF AA' ${ }^{\prime} i^{\prime}$ $n z-i A]$ )
have Aij: $A \$ \$(i, j)=A^{\prime} \$ h i^{\prime} \$ h\left(\right.$ LEAST $\left.n . A^{\prime} \$ h i^{\prime} \$ h n \neq 0\right)$
by (subst index-hma-def[symmetric], transfer', simp)
have H-HMA-rw: ? $H-H M A$ ass-function-euclidean res-int $A^{\prime} i^{\prime}=$
Hermite.Hermite-reduce-above (mult-row $A^{\prime} i^{\prime}\left(\left|A^{\prime} \$ h i^{\prime} \$ h ? j^{\prime}\right|\right.$
$\left.\left.\operatorname{div} A^{\prime} \$ h i^{\prime} \$ h ? j^{\prime}\right)\right)$
(mod-type-class.to-nat $i^{\prime}$ ) $i^{\prime} ? j^{\prime}$ res-int
unfolding Hermite.Hermite-of-row-i-def Let-def ass-function-euclidean-def by (auto simp add: False)
have im: $i<C A R D(' m)$ using $i i^{\prime}$ unfolding Mod-Type-Connect.HMA-I-def using mod-type-class.to-nat-less-card by blast
show ?thesis
proof (cases $A \$ \$(i, j)<0)$
case True
have $A^{\prime} i^{\prime} j^{\prime}-l e-0: A^{\prime} \$ h i^{\prime} \$ h ? j^{\prime}<0$ using Aij True by auto
hence 1: $\left(\left|A^{\prime} \$ h i^{\prime} \$ h ? j^{\prime}\right|\right.$ div $\left.A^{\prime} \$ h i^{\prime} \$ h ? j^{\prime}\right)$

```
 = -1 using div-pos-neg-trivial by auto
 have [transfer-rule]:Mod-Type-Connect.HMA-M (multrow i (-1) A)
 (mult-row A' i' (|A'$h i' $h? ?'
 div A'$h i' $h?j')) unfolding 1 by transfer-prover
 have H-HMA-rw2: Hermite-of-row-i A i = Hermite-reduce-above (multrow i
(- 1) A) i i j
 using True H-JNF-rw by auto
 have *: Mod-Type-Connect.HMA-M (Hermite-reduce-above (multrow i (- 1)
A) i i j)
 (Hermite.Hermite-reduce-above (mult-row A' i' (|A'$h i' $h?j'|
 div A' $h i' $h ? j'))
 (mod-type-class.to-nat i') i' ? j' res-int)
 unfolding 1 ii'2
 by (rule HMA-Hermite-reduce-above'[OF im - ii' jj'], transfer-prover)
 show ?thesis unfolding H-JNF-rw H-HMA-rw unfolding H-HMA-rw2
using True * by auto
 next
 case False
 have Aij-not0: A $$ (i,j)\not=0 using j-eq nz-iA
 by (metis (mono-tags) LeastI is-zero-row-JNF-def)
 have A'i}\mp@subsup{\prime}{}{\prime}\mp@subsup{j}{}{\prime}-le-0:A'$h i'$h ? ''> > 0 using False Aij-not0 Aij by aut
 hence 1: (|A'$h i'$h? 'j | div A' $h i'$h?j') = 1 by auto
 have H-HMA-rw2: Hermite-of-row-i A i = Hermite-reduce-above A i i j
 using False H-JNF-rw by auto
 have *: ?H-HMA ass-function-euclidean res-int A' }\mp@subsup{A}{}{\prime}
 (Hermite.Hermite-reduce-above A' (mod-type-class.to-nat i') i' ? 'j' res-int)
 using H-HMA-rw unfolding 1 unfolding mult-row-1-id by simp
 have Mod-Type-Connect.HMA-M (Hermite-reduce-above A i i j)
 (Hermite.Hermite-reduce-above }\mp@subsup{A}{}{\prime}(\mathrm{ mod-type-class.to-nat i') i' ? j' res-int)
 unfolding 1 ii'2
 by (rule HMA-Hermite-reduce-above'[OF im AA' ii' jj \)
 then show ?thesis using H-HMA-rw *H-HMA-rw2 by presburger
 qed
 qed
qed
lemma Hermite-of-list-of-rows-append:
Hermite-of-list-of-rows A (xs @ [x]) = Hermite-of-row-i (Hermite-of-list-of-rows A
xs) x
 by (induct xs arbitrary: A, auto)
lemma Hermite-reduce-above[simp]: Hermite-reduce-above A \(n i j \in\) carrier-mat
(dim-row A) (dim-col A)
proof (induct n arbitrary: A)
 case 0
 then show ?case by auto
next
```

```
 case (Suc n)
 let ?A = (addrow (- (A $$ (n,j) div A $$ (i,j))) n i A)
 have Hermite-reduce-above A (Suc n) ij = Hermite-reduce-above ?A n ij
 by (auto simp add: Let-def)
 also have ... \in carrier-mat (dim-row ?A) (dim-col ?A) by(rule Suc.hyps)
 finally show ?case by auto
qed
```

lemma Hermite-of-row- $i$ : Hermite-of-row-i $A \quad i \in$ carrier-mat (dim-row A) (dim-col
A)
proof -
have Hermite-reduce-above (multrow $i(-1)$ A) i i a
$\in$ carrier-mat (dim-row (multrow $i(-1) A))($ dim-col (multrow $i(-1) A))$
for $a$ by (rule Hermite-reduce-above)
thus ?thesis
unfolding Hermite-of-row-i-def using Hermite-reduce-above
by (cases find-fst-non0-in-row i A, auto)
qed
end

We now move more lemmas from HOL Analysis (with mod-type restrictions) to the JNF matrix representation.

```
context
```

begin
private lemma echelon-form-Hermite-of-row-mod-type:
fixes $A$ :: int mat
assumes $A \in$ carrier-mat $C A R D$ ('m::mod-type) $\operatorname{CARD}\left({ }^{\prime} n:: m o d-t y p e\right)$
assumes eA: echelon-form-JNF A
and $i: i<C A R D(' m)$
shows echelon-form-JNF (Hermite-of-row-i A i)
proof -
have $u A$ : upper-triangular ${ }^{\prime} A$ by (rule echelon-form-JNF-imp-upper-triangular [OF $e A]$ )
define $A^{\prime}$ where $A^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma ${ }_{m} A::$ int ${ }^{\wedge} n:$ mod-type ${ }^{\text {^' }} m$
:: mod-type)
define $i^{\prime}$ where $i^{\prime}=($ Mod-Type.from-nat $i::$ ' $m$ )
have $A A^{\prime}[$ transfer-rule $]$ : Mod-Type-Connect.HMA-M A $A^{\prime}$
unfolding Mod-Type-Connect.HMA-M-def using assms $A^{\prime}$-def by auto
have $i^{\prime}[$ transfer-rule $]:$ Mod-Type-Connect.HMA-I i $i^{\prime}$ unfolding Mod-Type-Connect.HMA-I-def $i^{\prime}$-def using assms using from-nat-not-eq order.strict-trans by blast
have $e A^{\prime}[$ transfer-rule $]$ : echelon-form $A^{\prime}$ using $e A$ by transfer
have [transfer-rule]: Mod-Type-Connect.HMA-M
(HNF-Mod-Det-Algorithm.Hermite-of-row-i A i)
(Hermite.Hermite-of-row-i ass-function-euclidean res-int $A^{\prime} i^{\prime}$ )
by (rule HMA-Hermite-of-row-i[OF uA AA' $\left.i i^{\prime}\right]$ )

```
 have echelon-form (Hermite.Hermite-of-row-i ass-function-euclidean res-int A'
i')
 by (rule echelon-form-Hermite-of-row[OF ass-function-euclidean res-function-res-int
eA`)
 thus ?thesis by (transfer, simp)
qed
private lemma echelon-form-Hermite-of-row-nontriv-mod-ring:
 fixes A:: int mat
 assumes A c carrier-mat CARD('m::nontriv mod-ring) CARD('n::nontriv mod-ring)
 assumes eA: echelon-form-JNF A
 and i<CARD('m)
 shows echelon-form-JNF (Hermite-of-row-i A i)
using assms echelon-form-Hermite-of-row-mod-type by (smt CARD-mod-ring)
lemmas echelon-form-Hermite-of-row-nontriv-mod-ring-internalized =
 echelon-form-Hermite-of-row-nontriv-mod-ring[unfolded CARD-mod-ring,
 internalize-sort 'm::nontriv, internalize-sort 'b::nontriv]
context
 fixes m::nat and n::nat
 assumes local-typedef1: \exists(Rep :: ('b b int)) Abs.type-definition Rep Abs {0..<m
:: int}
 assumes local-typedef2: \exists(Rep :: ('c = int)) Abs. type-definition Rep Abs {0..<n
:: int}
 and m:m>1
 and n:n>1
begin
lemma echelon-form-Hermite-of-row-nontriv-mod-ring-aux:
 fixes A::int mat
 assumes A \in carrier-mat m n
 assumes eA: echelon-form-JNF A
 and i<m
shows echelon-form-JNF (Hermite-of-row-i A i)
 using echelon-form-Hermite-of-row-nontriv-mod-ring-internalized
 [OF type-to-set2(1)[OF local-typedef1 local-typedef2]
 type-to-set1(1)[OF local-typedef1 local-typedef2]]
 using assms
 using type-to-set1 (2) local-typedef1 local-typedef2 n m by metis
end
context
begin
```

private lemma echelon-form-Hermite-of-row-i-cancelled-first:
$\exists$ Rep Abs. type-definition Rep Abs $\{0 . .<$ int $n\} \Longrightarrow 1<m \Longrightarrow 1<n$
$\Longrightarrow A \in$ carrier-mat $m n \Longrightarrow$ echelon-form-JNF $A \Longrightarrow i<m$
$\Longrightarrow$ echelon-form-JNF (HNF-Mod-Det-Algorithm.Hermite-of-row-i A i)
using echelon-form-Hermite-of-row-nontriv-mod-ring-aux[cancel-type-definition, of $m n A i]$
by auto
private lemma echelon-form-Hermite-of-row-i-cancelled-both:
$1<m \Longrightarrow 1<n \Longrightarrow A \in$ carrier-mat $m n \Longrightarrow$ echelon-form-JNF $A \Longrightarrow i<m$ $\Longrightarrow$ echelon-form-JNF (HNF-Mod-Det-Algorithm.Hermite-of-row-i A i)
using echelon-form-Hermite-of-row-i-cancelled-first[cancel-type-definition, of $n \mathrm{~m}$ $A i]$ by $\operatorname{simp}$
lemma echelon-form-JNF-Hermite-of-row- $i^{\prime}$ :
fixes $A$ :: int mat
assumes $A \in$ carrier-mat $m n$
assumes eA: echelon-form-JNF A
and $i<m$
and $1<m$ and $1<n$
shows echelon-form-JNF (Hermite-of-row-i A i)
using echelon-form-Hermite-of-row-i-cancelled-both assms by auto

```
corollary echelon-form-JNF-Hermite-of-row-i:
 fixes A::int mat
 assumes eA: echelon-form-JNF A
 and i: i<dim-row A
 shows echelon-form-JNF (Hermite-of-row-i A i)
proof (cases dim-row A<2)
 case True
 show ?thesis
 by (rule echelon-form-JNF-1xn[OF Hermite-of-row-i True])
next
 case False note m-ge2 = False
 show ?thesis
 proof (cases 1<dim-col A)
 case True
 show ?thesis by (rule echelon-form-JNF-Hermite-of-row-i'[OF - eA i - True],
insert m-ge2, auto)
 next
 case False
 hence dc-01: dim-col }A\in{0,1}\mathrm{ by auto
 show ?thesis
```

```
 proof (cases dim-col A=0)
 case True
 have H: Hermite-of-row-i A i carrier-mat (dim-row A) (dim-col A)
 using Hermite-of-row-i by blast
 show ?thesis by (rule echelon-form-mx0, insert True H, auto)
 next
 case False
 hence dc-1: dim-col A = 1 using dc-01 by simp
 then show ?thesis
 proof (cases i=0)
 case True
 have eA': echelon-form-JNF (multrow 0 (- 1) A)
 by (rule echelon-form-JNF-multrow[OF - eA], insert m-ge2, auto)
 show ?thesis using True unfolding Hermite-of-row-i-def
 by (cases find-fst-non0-in-row 0 A, insert eA eA', auto)
 next
 case False
 have all-zero: (}\forallj\in{i..<\mathrm{ dim-col A}. A $$ (i,j)=0) unfolding dc-1 using
False by auto
 hence find-fst-non0-in-row i A = None using find-fst-non0-in-row-None'[OF
- i] by blast
 hence Hermite-of-row-i A i = A unfolding Hermite-of-row-i-def by auto
 then show ?thesis using eA by auto
 qed
 qed
 qed
qed
lemma Hermite-of-list-of-rows:
 (Hermite-of-list-of-rows A xs) \in carrier-mat (dim-row A) (dim-col A)
proof (induct xs arbitrary: A rule: rev-induct)
 case Nil
 then show ?case by auto
next
 case (snoc x xs)
 let ?A = (Hermite-of-list-of-rows A xs)
 have hyp: (Hermite-of-list-of-rows A xs) \in carrier-mat (dim-row A) (dim-col A)
by (rule snoc.hyps)
 have Hermite-of-list-of-rows A (xs @ [x])= Hermite-of-row-i ?A x
 using Hermite-of-list-of-rows-append by auto
 also have ... \in carrier-mat (dim-row ?A) (dim-col ?A) using Hermite-of-row-i
by auto
 finally show ?case using hyp by auto
qed
lemma echelon-form-JNF-Hermite-of-list-of-rows:
 assumes A\incarrier-mat m n
```

```
and }\forallx\in\mathrm{ set xs. }x<
 and echelon-form-JNF A
shows echelon-form-JNF (Hermite-of-list-of-rows A xs)
 using assms
proof (induct xs arbitrary: A rule: rev-induct)
 case Nil
 then show ?case by auto
next
 case (snoc x xs)
 have hyp: echelon-form-JNF (Hermite-of-list-of-rows A xs)
 by (rule snoc.hyps, insert snoc.prems, auto)
 have H-Axs: (Hermite-of-list-of-rows A xs) \in carrier-mat (dim-row A) (dim-col
A)
 by (rule Hermite-of-list-of-rows)
 have (Hermite-of-list-of-rows A (xs @ [x])) = Hermite-of-row-i (Hermite-of-list-of-rows
A xs) x
 using Hermite-of-list-of-rows-append by simp
 also have echelon-form-JNF ...
 proof (rule echelon-form-JNF-Hermite-of-row-i[OF hyp])
 show }x<\mathrm{ dim-row (Hermite-of-list-of-rows A xs) using snoc.prems H-Axs by
auto
 qed
 finally show ?case .
qed
lemma HMA-Hermite-of-upt-row-i[transfer-rule]:
 assumes xs = [0..<i]
 and }\forallx\inset xs. x<CARD('m
 assumes Mod-Type-Connect.HMA-M A (A':: int ^' }n:: mod-type ^'m :: mod-type
 and echelon-form-JNF A
 shows Mod-Type-Connect.HMA-M (Hermite-of-list-of-rows A xs)
 (Hermite.Hermite-of-upt-row-i A' i ass-function-euclidean res-int)
 using assms
proof (induct xs arbitrary: A A' i rule: rev-induct)
 case Nil
 have i=0 using Nil by (metis le-0-eq upt-eq-Nil-conv)
 then show ?case using Nil unfolding Hermite-of-upt-row-i-def by auto
next
 case (snoc x xs)
 note xs-x-eq = snoc.prems(1)
 note all-xm = snoc.prems(2)
 note AA' = snoc.prems(3)
 note upt-A = snoc.prems(4)
 let ? }\mp@subsup{x}{}{\prime}=(\mathrm{ mod-type-class.from-nat x::'m)
 have xm: x < CARD('m) using all-xm by auto
```

```
 have xx'[transfer-rule]: Mod-Type-Connect.HMA-I x ? 'x
 unfolding Mod-Type-Connect.HMA-I-def using from-nat-not-eq xm by blast
 have last-i1: last [0..<i]=i-1
 by (metis append-is-Nil-conv last-upt list.simps(3) neq0-conv xs-x-eq upt.simps(1))
 have last (xs @ [x]) = i-1 using xs-x-eq last-i1 by auto
 hence x-i1: }x=i-1 by aut
 have xs-eq: xs = [0..<x] using xs-x-eq x-i1
 by (metis add-diff-inverse-nat append-is-Nil-conv append-same-eq less-one list.simps(3)
 plus-1-eq-Suc upt-Suc upt-eq-Nil-conv)
 have list-rw: [0..<i] = 0 # [1..<i]
 by (auto, metis append-is-Nil-conv list.distinct(2) upt-rec xs-x-eq)
have 1: Hermite-of-list-of-rows A (xs @ [x]) = Hermite-of-row-i (Hermite-of-list-of-rows
A xs) x
 unfolding Hermite-of-list-of-rows-append by auto
 let ?H-upt-HA = Hermite.Hermite-of-upt-row-i
 let ?H-HA = Hermite.Hermite-of-row-i ass-function-euclidean res-int
 have (Hermite-of-upt-row-i A' i ass-function-euclidean res-int) =
 foldl ?H-HA A'(map mod-type-class.from-nat [0..<i])
 unfolding Hermite-of-upt-row-i-def by auto
 also have ... = foldl ?H-HA A'((map mod-type-class.from-nat [0..<i-1])@[?x])
 by (metis list.simps(8) list.simps(9) map-append x-i1 xs-eq xs-x-eq)
 also have ... = foldl ?H-HA (?H-upt-HA A' (i - 1) ass-function-euclidean
res-int) [?x]
 unfolding foldl-append unfolding Hermite-of-upt-row-i-def[symmetric] by
auto
 also have ... = ?H-HA (Hermite-of-upt-row-i A' (i - 1) ass-function-euclidean
res-int) ?'' by auto
 finally have 2: ?H-upt-HA A' i ass-function-euclidean res-int =
 ?H-HA (Hermite-of-upt-row-i A' (i - 1) ass-function-euclidean res-int) ? }\mp@subsup{x}{}{\prime}
 have hyp[transfer-rule]: Mod-Type-Connect.HMA-M (Hermite-of-list-of-rows A
xs)
 (Hermite-of-upt-row-i A' (i - 1) ass-function-euclidean res-int)
 by (rule snoc.hyps[OF - AA' upt-A], insert xs-eq x-i1 xm, auto)
 have upt-H-Axs:upper-triangular' (Hermite-of-list-of-rows A xs)
 proof (rule echelon-form-JNF-imp-upper-triangular,
 rule echelon-form-JNF-Hermite-of-list-of-rows[OF - - upt-A])
 show A\incarrier-mat (CARD('m)) (CARD('n))
 using Mod-Type-Connect.dim-col-transfer-rule
 Mod-Type-Connect.dim-row-transfer-rule snoc(4) by blast
 show }\forallx\in\mathrm{ set xs. }x<CARD('m) using all-xm by aut
 qed
 show ?case unfolding 12
 by (rule HMA-Hermite-of-row-i[OF upt-H-Axs hyp xx |])
qed
```

lemma Hermite-Hermite-of-upt-row-i:

```
 assumes a: ass-function ass
 and r: res-function res
 and eA: echelon-form A
 shows Hermite (range ass) (\lambdac. range (res c)) (Hermite-of-upt-row-i A (nrows
A) ass res)
proof -
 let ?H = (Hermite-of-upt-row-i A (nrows A) ass res)
 show ?thesis
 proof (rule Hermite-intro, auto)
 show Complete-set-non-associates (range ass)
 by (simp add: ass-function-Complete-set-non-associates a)
 show Complete-set-residues (}\lambda\mathrm{ c. range (res c))
 by (simp add:r res-function-Complete-set-residues)
 show echelon-form?H
 by (rule echelon-form-Hermite-of-upt-row-i[OF eA a rl])
 fix i
 assume i:\neg is-zero-row i ?H
 show ?H $ i$(LEAST n. ?H $ i$n\not=0)\in range ass
 proof -
 have non-zero-i-eA: \neg is-zero-row i A
 using Hermite-of-upt-row-preserves-zero-rows[OF - - a r] i eA by blast
 have least: (LEAST n. ?H $h i $h n\not=0)=(LEAST n. A hihn\not=0)
 by (rule Hermite-of-upt-row-i-Least[OF non-zero-i-eA eA a r], simp)
 have ?H $ i$(LEAST n.A$ i$n\not=0) f range ass
 by (rule Hermite-of-upt-row-i-in-range[OF non-zero-i-eA eA ar], auto)
 thus ?thesis unfolding least by auto
 qed
 next
 fix ij assume i:\neg is-zero-row i?H and j:j<i
 show ?H $ j $ (LEAST n. ?H $ i$n\not=0)
 \epsilon range (res (?H $ i $ (LEAST n. ?H $ i $ n\not=0)))
 proof -
 have non-zero-i-eA: ᄀ is-zero-row i A
 using Hermite-of-upt-row-preserves-zero-rows[OF - ar] i eA by blast
 have least: (LEAST n. ?H $h i$hn\not=0)=(LEAST n. A $h i$hn\not=0)
 by (rule Hermite-of-upt-row-i-Least[OF non-zero-i-eA eA a r], simp)
 have ?H $ j$(LEAST n. A $ i$n\not=0) \in range (res (?H $ i$ (LEAST
n. A$ i$n\not=0)))
 by (rule Hermite-of-upt-row-i-in-range-res[OF non-zero-i-eA eA ar r-j],
auto)
 thus ?thesis unfolding least by auto
 qed
 qed
qed
```

lemma Hermite-of-row-i-0:
Hermite-of-row-i A $0=A \vee$ Hermite-of-row-i A $0=$ multrow $0(-1) A$
by (cases find-fst-non0-in-row 0 A, unfold Hermite-of-row-i-def, auto)

```
lemma Hermite-JNF-intro:
assumes
Complete-set-non-associates associates (Complete-set-residues res) echelon-form-JNF
A
 (\foralli<dim-row A. \negis-zero-row-JNF i A \longrightarrowA $$(i,LEAST n. A $$ (i,n)\not=0)
\in associates)
 (\foralli<dim-row A. \negis-zero-row-JNF i A \longrightarrow(\forallj.j<i\longrightarrowA$$(j,(LEAST n. A
$$(i,n)\not=0))
 Ges(A$$(i,(LEAST n.A $$ (i,n)\not=0)))))
shows Hermite-JNF associates res A
 using assms unfolding Hermite-JNF-def by auto
lemma least-multrow:
 assumes A\incarrier-mat m n and i<m and eA: echelon-form-JNF A
 assumes ia: ia < dim-row A and nz-ia-mrA: ᄀ is-zero-row-JNF ia (multrow i
(-1)A)
 shows (LEAST n. multrow i (- 1) A $$ (ia,n) = 0) = (LEAST n. A $$ (ia,
n)}\not=0\mathrm{)
proof (rule Least-equality)
 have nz-ia-A: ᄀ is-zero-row-JNF ia A using nz-ia-mrA ia by auto
 have Least-Aian-n: (LEAST n. A $$ (ia,n) = 0) < dim-col A
 by (smt dual-order.strict-trans is-zero-row-JNF-def not-less-Least not-less-iff-gr-or-eq
nz-ia-A)
 show multrow i (- 1) A $$ (ia,LEAST n. A $$ (ia,n)\not=0)\not=0
 by (smt LeastI Least-Aian-n class-cring.cring-simprules(22) equation-minus-iff
ia
 index-mat-multrow(1) is-zero-row-JNF-def mult-minus1 nz-ia-A)
 show \y. multrow i (-1) A $$ (ia, y) =0\Longrightarrow(LEAST n.A $$ (ia,n)\not=0)
sy
 by (metis (mono-tags, lifting) Least-Aian-n class-cring.cring-simprules(22) ia
 index-mat-multrow(1) leI mult-minus1 order.strict-trans wellorder-Least-lemma(2))
qed
lemma Hermite-Hermite-of-row- \(i\) :
assumes \(A: A \in\) carrier-mat \(1 n\)
shows Hermite-JNF (range ass-function-euclidean) (\(\lambda c\). range (res-int c)) (Hermite-of-row-i
A 0)
proof (rule Hermite-JNF-intro)
show Complete-set-non-associates (range ass-function-euclidean)
using ass-function-Complete-set-non-associates ass-function-euclidean by blast
show Complete-set-residues (\(\lambda\) c. range (res-int c))
using res-function-Complete-set-residues res-function-res-int by blast
show echelon-form-JNF (HNF-Mod-Det-Algorithm.Hermite-of-row-i A 0)
by (metis (full-types) assms carrier-matD (1) echelon-form-JNF-Hermite-of-row-i
echelon-form-JNF-def less-one not-less-zero)
let ? \(\mathrm{H}=\) Hermite-of-row-i A 0
show \(\forall i<\) dim-row ?H. \(\neg\) is-zero-row-JNF \(i\) ? \(H\)
```

```
 \longrightarrow?H $$ (i,LEAST n.?H $$ (i,n) = 0) \in range ass-function-euclidean
proof (auto)
 fix i assume i: i<dim-row ?H and nz-iH:\neg is-zero-row-JNF i ?H
 have nz-iA: \neg is-zero-row-JNF i A
 by (metis (full-types) Hermite-of-row-i Hermite-of-row-i-0 carrier-matD(1)
 i is-zero-row-JNF-multrow nz-iH)
 have ?H $$(i,LEAST n. ?H $$ (i,n)\not=0)\geq0
 proof (cases find-fst-non0-in-row 0 A)
 case None
 then show ?thesis using nz-iH unfolding Hermite-of-row-i-def
 by (smt HNF-Mod-Det-Algorithm.Hermite-of-row-i-def upper-triangular'-def
assms
 carrier-matD(1) find-fst-non0-in-row-None i less-one not-less-zero
option.simps(4))
 next
 case (Some a)
 have upA: upper-triangular' A using A unfolding upper-triangular'-def by
auto
 have eA: echelon-form-JNF A by (metis A Suc-1 echelon-form-JNF-1xn lessI)
 have i0: i=0 using Hermite-of-row-i[of A 0] A i by auto
 have Aia:A $$ (i,a)\not=0 and a0:0\leqa and an: a<n
 using i0 Some assms find-fst-non0-in-row by auto+
 have l:(LEAST n.A $$ (i,n)\not=0)=(LEAST n. multrow 0 (- 1) A$$
(i,n)\not=0)
 by (rule least-multrow[symmetric, OF A - eA -], insert nz-iA i A i0, auto)
 have a1: a = (LEAST n. A $$ (i,n)\not=0)
 by (rule find-fst-non0-in-row-LEAST[OF A upA], insert Some i0, auto)
 hence a2: a = (LEAST n. multrow 0 (-1) A $$ (i,n)\not=0) unfolding l
by simp
 have m1: multrow 0 (-1) A $$ (i, LEAST n. multrow 0 (- 1) A $$ (i,n)
0)
 =(-1)*A$$(i,LEAST n.A $$ (i,n)\not=0)
 by (metis Hermite-of-row-i-0 a1 a2 an assms carrier-matD(2) i i0 in-
dex-mat-multrow(1,4))
 then show?thesis using nz-iH Some a1 Aia a2 i0 unfolding Hermite-of-row-i-def
by auto
 qed
 thus ?H $$ (i,LEAST n. ?H $$ (i,n) = 0) \in range ass-function-euclidean
 using ass-function-int ass-function-int-UNIV by auto
 qed
 show }\foralli<dim-row ?H. \neg is-zero-row-JNF i ?H \longrightarrow(\forallj<i. ?H $$ (j,LEAST
n. ?H $$ (i,n)\not=0)
 \in range (res-int (?H $$ (i,LEAST n.?H $$ (i,n)\not=0))))
 using Hermite-of-row-i[of A 0] A by auto
 qed
lemma Hermite-of-row-i-0-eq-0:
assumes \(A\) : A carrier-mat \(m n\) and \(i: i>0\) and \(e A:\) echelon-form-JNF \(A\) and \(i m: i<m\)
```

and $n 0: 0<n$
shows Hermite-of-row-i A $0 \$ \$(i, 0)=0$
proof -
have AiO: $A \$ \$(i, 0)=0$ by (rule echelon-form-JNF-first-column- $0[O F$ eA A i im n0])
show ?thesis
proof (cases find-fst-non0-in-row 0 A)
case None
thus ?thesis using Ai0 unfolding Hermite-of-row-i-def by auto
next
case (Some a)
have $A \$ \$(0, a) \neq 0$ and $a 0: 0 \leq a$ and $a n: a<n$
using find-fst-non0-in-row[OF A Some $A$ by auto
then show ?thesis using Some AiO A an a0 im unfolding Hermite-of-row-i-def mat-multrow-def by auto
qed
qed
lemma Hermite-Hermite-of-row-i-mx1:
assumes $A: A \in$ carrier-mat $m 1$ and eA: echelon-form-JNF A
shows Hermite-JNF (range ass-function-euclidean) ( $\lambda$ c. range (res-int c)) (Hermite-of-row- $i$ A 0)
proof (rule Hermite-JNF-intro)
show Complete-set-non-associates (range ass-function-euclidean)
using ass-function-Complete-set-non-associates ass-function-euclidean by blast
show Complete-set-residues ( $\lambda c$. range (res-int c))
using res-function-Complete-set-residues res-function-res-int by blast
have $H$ : Hermite-of-row-i A 0 : carrier-mat m 1 using A Hermite-of-row-i[of
A] by auto
have upA: upper-triangular ${ }^{\prime} A$
by (simp add: eA echelon-form-JNF-imp-upper-triangular)
show eH: echelon-form-JNF (Hermite-of-row-i A 0)
proof (rule echelon-form-JNF-mx1[OF H])
show $\forall i \in\{1 . .<m\}$. HNF-Mod-Det-Algorithm.Hermite-of-row-i A $0 \$(i, 0)=$ 0
using Hermite-of-row-i-0-eq-0 assms by auto
qed ( $\operatorname{simp}$ )
let ? $\mathrm{H}=$ Hermite-of-row-i A 0
show $\forall i<$ dim-row ? $H$. $\neg i s$-zero-row-JNF $i$ ? $H$
$\longrightarrow$ ? $\mathrm{H} \$(i$, LEAST $n$. ? $\mathrm{H} \$ \$(i, n) \neq 0) \in$ range ass-function-euclidean
proof (auto)
fix $i$ assume $i$ : $i<$ dim-row ? $H$ and $n z-i H$ : $\neg i s$-zero-row-JNF $i$ ? $H$
have $n z-i A$ : $\neg i s$-zero-row-JNF i A
by (metis (full-types) Hermite-of-row-i Hermite-of-row-i-0 carrier-matD(1)
i is-zero-row-JNF-multrow $n z-i H$ )
have ? $\mathrm{H} \$ \$(i, L E A S T$. ? $H \$ \$(i, n) \neq 0) \geq 0$
proof (cases find-fst-non0-in-row 0 A)

```
 case None
 have is-zero-row-JNF i A
 by (metis H upper-triangular'-def None assms(1) carrier-matD find-fst-non0-in-row-None
 i is-zero-row-JNF-def less-one linorder-neqE-nat not-less0 upA)
 then show ?thesis using nz-iH None unfolding Hermite-of-row-i-def by
auto
 next
 case (Some a)
 have Aia: A $$ (0,a)\not=0 and a0:0\leqa and an: a<1
 using find-fst-non0-in-row[OF A Some] A by auto
 have nz-j-mA: is-zero-row-JNF j (multrow 0 (- 1) A) if j0: j>0 and jm:
j<m for }
 unfolding is-zero-row-JNF-def using A j0 jm upA by auto
 show ?thesis
 proof (cases i=0)
 case True
 then show ?thesis
 using nz-iH Some nz-j-mA A H i Aia an unfolding Hermite-of-row-i-def
by auto
 next
 case False
 have nz-iA: is-zero-row-JNF i A
 by (metis False H Hermite-of-row-i-0 carrier-matD(1) i is-zero-row-JNF-multrow
not-gr0 nz-iH nz-j-mA)
 hence is-zero-row-JNF i (multrow 0 (-1) A) using A H i by auto
 then show ?thesis using nz-iH Some nz-j-mA False nz-iA
 unfolding Hermite-of-row-i-def by fastforce
 qed
 qed
 thus ?H $$ (i,LEAST n. ?H $$ (i,n)\not=0)\in range ass-function-euclidean
 using ass-function-int ass-function-int-UNIV by auto
 qed
 show }\foralli<dim-row ?H. \neg is-zero-row-JNF i ?H \longrightarrow(\forallj<i. ?H $$ (j,LEAST
n. ?H $$ (i,n)\not=0)
 Grange (res-int (?H $$ (i,LEAST n. ?H $$ (i,n)\not=0))))
 proof auto
 fix ij assume i: i<dim-row ?H and nz-iH:\negis-zero-row-JNF i ?H and ji:
j<i
 have i=0
 by (metis H upper-triangular'-def One-nat-def nz-iH eH i carrier-matD(2)
nat-neq-iff
 echelon-form-JNF-imp-upper-triangular is-zero-row-JNF-def less-Suc0
not-less-zero)
 thus ?H $$ (j,LEAST n. ?H $$ (i,n) = 0)
 erange (res-int (?H $$ (i,LEAST n. ?H $$ (i,n)\not=0))) using ji by
auto
 qed
qed
```

```
lemma Hermite-of-list-of-rows-1xn:
 assumes A:A\incarrier-mat 1 n
 and eA: echelon-form-JNF A
 and }x:\forallx\in\mathrm{ set }xs.x<1\mathrm{ and xs: xs }\not=[
 shows Hermite-JNF (range ass-function-euclidean)
 (\lambdac. range (res-int c)) (Hermite-of-list-of-rows A xs)
 using x xs
proof (induct xs rule: rev-induct)
 case Nil
 then show ?case by auto
next
 case (snoc x xs)
 have x0:x=0 using snoc.prems by auto
 show ?case
 proof (cases xs = [])
 case True
 have Hermite-of-list-of-rows A (xs @ [x]) = Hermite-of-row-i A 0
 unfolding Hermite-of-list-of-rows-append x0 using True by auto
 then show ?thesis using Hermite-Hermite-of-row-i[OF A] by auto
 next
 case False
 have x0:x=0 using snoc.prems by auto
 have hyp: Hermite-JNF (range ass-function-euclidean)
 (\lambdac. range (res-int c)) (Hermite-of-list-of-rows A xs)
 by (rule snoc.hyps, insert snoc.prems False, auto)
 have Hermite-of-list-of-rows A (xs @ [x]) = Hermite-of-row-i (Hermite-of-list-of-rows
A xs) 0
 unfolding Hermite-of-list-of-rows-append hyp x0 ..
 thus ?thesis
 by (metis A Hermite-Hermite-of-row-i Hermite-of-list-of-rows carrier-matD(1))
 qed
qed
lemma Hermite-of-row-i-id-mx1:
 assumes H': Hermite-JNF (range ass-function-euclidean) (\lambdac. range (res-int c))
A
 and x:x<dim-row A and A:A\incarrier-mat m 1
shows Hermite-of-row-i A x = A
proof (cases find-fst-non0-in-row x A)
 case None
 then show ?thesis unfolding Hermite-of-row-i-def by auto
next
 case (Some a)
 have eH: echelon-form-JNF A using H' unfolding Hermite-JNF-def by simp
 have ut-A: upper-triangular' A by (simp add: eH echelon-form-JNF-imp-upper-triangular)
 have a-least: a = (LEAST n. A $$ (x,n) = 0)
 by (rule find-fst-non0-in-row-LEAST[OF - ut-A Some], insert x, auto)
```

have $A x a: A \$(x, a) \neq 0$ and $x a: x \leq a$ and $a: a<\operatorname{dim}-c o l A$
using find-fst-non0-in-row[OF A Some] unfolding a-least by auto
have $n z-x A$ : $\neg i s$-zero-row-JNF $x$ A using Axa xa x a unfolding is-zero-row-JNF-def by blast
have $a 0: a=0$ using $a A$ by auto
have $x 0$ : $x=0$ using echelon-form-JNF-first-column- $0[O F$ eH A] Axa a0 xa by blast
have $A \$ \$(x, a) \in$ (range ass-function-euclidean)
using $n z-x A H^{\prime} x$ unfolding a-least unfolding Hermite-JNF-def by auto
hence $A \$ \$(x, a)>0$ using $A x a$ unfolding image-def ass-function-euclidean-def by auto
then show ?thesis unfolding Hermite-of-row-i-def using Some x0 by auto qed
lemma Hermite-of-row-i-id-mx1':
assumes $e A$ : echelon-form-JNF $A$
and $x$ : $x<$ dim-row $A$ and $A: A \in$ carrier-mat $m 1$
shows Hermite-of-row-i $A x=A \vee$ Hermite-of-row-i $A x=$ multrow $0(-1) A$
proof (cases find-fst-non0-in-row $x$ A)
case None
then show ?thesis unfolding Hermite-of-row-i-def by auto
next
case (Some a)
have ut-A: upper-triangular ${ }^{\prime} A$ by (simp add: eA echelon-form-JNF-imp-upper-triangular)
have a-least: $a=($ LEAST $n . A \$ \$(x, n) \neq 0)$
by (rule find-fst-non0-in-row-LEAST[OF - ut-A Some], insert x, auto)
have $A x a: A \$ \$(x, a) \neq 0$ and $x a: x \leq a$ and $a: a<\operatorname{dim}-\operatorname{col} A$
using find-fst-non0-in-row[OF A Some] unfolding a-least by auto
have $n z-x A: \neg$ is-zero-row-JNF $x A$ using Axa xa x a unfolding is-zero-row-JNF-def by blast
have $a 0: a=0$ using $a A$ by auto
have $x 0$ : $x=0$ using echelon-form-JNF-first-column- $0[O F$ eA A] Axa a0 xa by blast
show ?thesis by (cases $A \$ \$(x, a)>0$, unfold Hermite-of-row-i-def, insert Some x0, auto)
qed
lemma Hermite-of-list-of-rows-mx1:
assumes $A: A \in$ carrier-mat $m 1$
and $e A$ : echelon-form-JNF $A$
and $x: \forall x \in$ set $x s . x<m$ and $x s: x s=[0 . .<i]$ and $i: i>0$
shows Hermite-JNF (range ass-function-euclidean)
( $\lambda c$. range (res-int c)) (Hermite-of-list-of-rows $A$ xs)
using $x$ xs $i$
proof (induct xs arbitrary: i rule: rev-induct)
case Nil
then show ?case by (metis neq0-conv not-less upt-eq-Nil-conv)
next

```
 case (snoc x xs)
 note all-n-xs-x = snoc.prems(1)
 note xs-x = snoc.prems(2)
 note i0 = snoc.prems(3)
 have i-list-rw:[0..<i]=[0..<i-1]@ [i-1] using i0 less-imp-Suc-add by fastforce
 hence xs: xs = [0..<i-1] using xs-x by force
 hence }x\mathrm{ : }x=i-1\mathrm{ using i-list-rw xs-x by auto
 have H: Hermite-of-list-of-rows A xs \in carrier-mat m 1
 using A Hermite-of-list-of-rows[of A xs] by auto
 show ?case
 proof (cases i-1=0)
 case True
 hence xs-empty:xs=[] using xs by auto
 have *:Hermite-of-list-of-rows A (xs @ [x]) = Hermite-of-row-i A 0
 unfolding Hermite-of-list-of-rows-append xs-empty x True by simp
 show ?thesis unfolding * by (rule Hermite-Hermite-of-row-i-mx1[OF A eA])
next
 case False
 have hyp: Hermite-JNF (range ass-function-euclidean)
 (\lambdac. range (res-int c)) (Hermite-of-list-of-rows A xs)
 by (rule snoc.hyps[OF - xs], insert False all-n-xs-x, auto)
 have Hermite-of-list-of-rows A (xs @ [x])
 = Hermite-of-row-i (Hermite-of-list-of-rows A xs) x
 unfolding Hermite-of-list-of-rows-append ..
 also have ... = (Hermite-of-list-of-rows A xs)
 by (rule Hermite-of-row-i-id-mx1[OF hyp - H], insert snoc.prems H x, auto)
 finally show ?thesis using hyp by auto
qed
qed
lemma invertible-Hermite-of-list-of-rows-1xn:
 assumes A\in carrier-mat 1 n
 shows \exists P. P\in carrier-mat 1 1 ^ invertible-mat P ^ Hermite-of-list-of-rows A
[0..<1] =P*A
proof -
 let ?H = Hermite-of-list-of-rows A [0..<1]
 have ?H = Hermite-of-row-i A 0 by auto
 hence H-or: ?H=A\vee?H= multrow 0 (-1) A
 using Hermite-of-row-i-0 by simp
 show ?thesis
 proof (cases ?H=A)
 case True
 then show ?thesis
 by (metis assms invertible-mat-one left-mult-one-mat one-carrier-mat)
 next
 case False
 hence H-mr: ?H = multrow 0 (- 1) A using H-or by simp
```

```
 let ?M = multrow-mat 1 0 (-1)::int mat
 show ?thesis
 proof (rule exI[of - ?M])
 have ?M \in carrier-mat 1 1 by auto
 moreover have invertible-mat ?M
 by (metis calculation det-multrow-mat det-one dvd-mult-right invertible-iff-is-unit-JNF
 invertible-mat-one one-carrier-mat square-eq-1-iff zero-less-one-class.zero-less-one)
 moreover have ? }H=?M*
 by (metis H-mr assms multrow-mat)
 ultimately show ?M \in carrier-mat 1 1 ^ invertible-mat (?M)
 \wedge ~ H e r m i t e - o f - l i s t - o f - r o w s ~ A ~ [0 . . < 1] ~ = ? M * A ~ b y ~ b l a s t
 qed
 qed
qed
```

lemma invertible-Hermite-of-list-of-rows-mx1':
assumes $A: A \in$ carrier-mat $m 1$ and eA: echelon-form-JNF $A$
and $x s-i: x s=[0 . .<i]$ and $x s-m: \forall x \in$ set $x s . x<m$ and $i: i>0$
shows $\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge$ Hermite-of-list-of-rows
$A x s=P * A$
using $x s-i x s-m i$
proof (induct xs arbitrary: i rule: rev-induct)
case Nil
then show ?case by (metis diff-zero length-upt list.size(3) zero-order(3))
next
case (snoc $x x s$ )
note all-n-xs-x = snoc.prems(2)
note $x s-x=$ snoc.prems(1)
note $i 0=$ snoc.prems(3)
have $i$-list-rw: $[0 . .<i]=[0 . .<i-1] @[i-1]$ using $i 0$ less-imp-Suc-add by fastforce
hence $x s$ : $x s=[0 . .<i-1]$ using $x s-x$ by force
hence $x$ : $x=i-1$ using $i$-list-rw $x s-x$ by auto
have $H$ : Hermite-of-list-of-rows $A$ xs $\in$ carrier-mat $m 1$
using A Hermite-of-list-of-rows[of $A$ xs] by auto
show ?case
proof (cases $i-1=0$ )
case True
hence xs-empty: xs $=[]$ using $x s$ by auto
let ? $H=$ Hermite-of-list-of-rows $A(x s @[x])$
have $*$ : Hermite-of-list-of-rows $A(x s @[x])=$ Hermite-of-row-i A 0
unfolding Hermite-of-list-of-rows-append xs-empty $x$ True by simp
hence $H$-or: ? $H=A \vee ? H=$ multrow $0(-1)$ A using Hermite-of-row-i-0
by $\operatorname{simp}$
thus ?thesis
proof (cases ? $H=A$ )
case True
then show ?thesis unfolding *
by (metis A invertible-mat-one left-mult-one-mat one-carrier-mat)
next
case False
hence $H$-mr: ? $H=$ multrow $0(-1) A$ using $H$-or by simp
let ? $M=$ multrow-mat $m 0(-1)::$ int mat
show ?thesis
proof (rule exI[of - ? $M$ ])
have ? $M \in$ carrier-mat $m m$ by auto
moreover have invertible-mat ? M
by (metis (full-types) det-multrow-mat dvd-mult-right invertible-iff-is-unit-JNF
invertible-mat-zero more-arith-simps(10) mult-minus1-right multrow-mat-carrier neq0-conv)
moreover have $? H=? M * A$ unfolding $H-m r$ using $A$ multrow-mat by blast
ultimately show ? $M \in$ carrier-mat $m m \wedge$ invertible-mat $? M \wedge ? H=? M$ * A by blast
qed
qed
next
case False
let ? $A=($ Hermite-of-list-of-rows $A x s)$
have $A^{\prime}: ? A \in$ carrier-mat $m 1$ using $A$ Hermite-of-list-of-rows[of $\left.A x s\right]$ by simp
have hyp: $\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge$ Hermite-of-list-of-rows $A x s=P * A$
by (rule snoc.hyps[OF xs], insert False all-n-xs-x, auto)
have rw: Hermite-of-list-of-rows $A$ (xs @ [x])
$=$ Hermite-of-row-i (Hermite-of-list-of-rows A xs) x
unfolding Hermite-of-list-of-rows-append ..
have $*$ : Hermite-of-row- $i ? A \quad x=? A \vee$ Hermite-of-row-i ?A $x=$ multrow $0(-$ 1) ? A
proof (rule Hermite-of-row-i-id-mx1 $\left.{ }^{\prime}[O F-A]\right)$
show echelon-form-JNF?A
using $A$ eA echelon-form-JNF-Hermite-of-list-of-rows snoc(3) by auto
show $x<$ dim-row ? $A$ using $A^{\prime} x i A$ by (simp add: snoc(3))
qed
show ?thesis
proof (cases Hermite-of-row-i ?A $x=$ ?A)
case True
then show ?thesis by (simp add: hyp rw)
next
case False
let $? M=$ multrow-mat $m 0(-1):$ :int mat
obtain $P$ where $P: P \in$ carrier-mat $m m$
and inv-P: invertible-mat $P$ and H-PA: Hermite-of-list-of-rows $A x s=P *$
A
using hyp by auto
have $M: ? M \in$ carrier-mat $m$ by auto

```
 have inv-M: invertible-mat ?M
 by (metis (full-types) det-multrow-mat dvd-mult-right invertible-iff-is-unit-JNF
 invertible-mat-zero more-arith-simps(10) mult-minus1-right multrow-mat-carrier
neq0-conv)
 have H-MA': Hermite-of-row-i ?A x = ?M * ?A using False * H multrow-mat
by metis
 have inv-MP: invertible-mat (?M*P) using M inv-M P inv-P invertible-mult-JNF
by blast
 moreover have MP:(?M*P)\in carrier-mat mm using M P by fastforce
 moreover have Hermite-of-list-of-rows A (xs @ [x])=(?M*P)*A
 by (metis A H-MA' H-PA M P assoc-mult-mat rw)
 ultimately show ?thesis by blast
 qed
 qed
qed
```

corollary invertible-Hermite-of-list-of-rows-mx1:
assumes $A \in$ carrier-mat $m 1$ and $e A$ : echelon-form-JNF $A$
shows $\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge$ Hermite-of-list-of-rows
$A[0 . .<m]=P * A$
proof (cases $m=0$ )
case True
then show ?thesis
by (auto, metis assms(1) invertible-mat-one left-mult-one-mat one-carrier-mat)
next
case False
then show ?thesis using invertible-Hermite-of-list-of-rows-mx1' assms by simp
qed
lemma Hermite-of-list-of-rows-mx0:
assumes $A: A \in$ carrier-mat $m 0$
and $x s: x s=[0 . .<i]$ and $x: \forall x \in$ set $x s . x<m$
shows Hermite-of-list-of-rows $A$ xs $=A$
using $x s x$
proof (induct xs arbitrary: i rule: rev-induct)
case Nil
then show ?case by auto
next
case (snoc $x x s$ )
note all-n-xs-x $=$ snoc.prems(2)
note $x s-x=$ snoc.prems(1)
have $i 0$ : $i>0$ using neq0-conv snoc(2) by fastforce
have $i$-list-rw: $[0 . .<i]=[0 . .<i-1] @[i-1]$ using $i 0$ less-imp-Suc-add by fastforce
hence $x s$ : $x s=[0 . .<i-1]$ using $x s-x$ by force
hence $x$ : $x=i-1$ using $i$-list-rw $x s-x$ by auto
have $H$ : Hermite-of-list-of-rows $A$ xs $\in$ carrier-mat m 0
using A Hermite-of-list-of-rows[of $A x s]$ by auto

```
 define }\mp@subsup{A}{}{\prime}\mathrm{ where }\mp@subsup{A}{}{\prime}=(\mathrm{ Hermite-of-list-of-rows A xs)
 have }\mp@subsup{A}{}{\prime}A:\mp@subsup{A}{}{\prime}=A\mathrm{ by (unfold }\mp@subsup{A}{}{\prime}\mathrm{ -def, rule snoc.hyps, insert snoc.prems xs, auto)
 have Hermite-of-list-of-rows A (xs @ [x]) = Hermite-of-row-i A' }\mp@subsup{A}{}{\prime
 using Hermite-of-list-of-rows-append A'-def by auto
 also have ... = A
 proof (cases find-fst-non0-in-row x A')
 case None
 then show ?thesis unfolding Hermite-of-row-i-def using A'A by auto
 next
 case (Some a)
 then show ?thesis
 by (metis (full-types) A'A A carrier-matD(2) find-fst-non0-in-row(3) zero-order(3))
 qed
 finally show ?case .
qed
```

Again, we move more lemmas from HOL Analysis (with mod-type restrictions) to the JNF matrix representation.

## context

begin
private lemma Hermite-Hermite-of-list-of-rows-mod-type:
fixes $A$ ::int mat
assumes $A \in$ carrier-mat $C A R D(' m:: m o d-t y p e) ~ C A R D(' n:: m o d-t y p e)$
assumes eA: echelon-form-JNF A
shows Hermite-JNF (range ass-function-euclidean)
( $\lambda c$. range (res-int c)) (Hermite-of-list-of-rows $A[0 . .<C A R D(' m)])$
proof -
define $A^{\prime}$ where $A^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma ${ }_{m} A::$ int ${ }^{\wedge \prime} n::$ mod-type ${ }^{\wedge} m$
:: mod-type)
have $A A^{\prime}\left[\right.$ transfer-rule]: Mod-Type-Connect.HMA-M A $A^{\prime}$
unfolding Mod-Type-Connect.HMA-M-def using assms $A^{\prime}$-def by auto
have $e A^{\prime}[$ transfer-rule $]$ : echelon-form $A^{\prime}$ using $e A$ by transfer
have [transfer-rule]: Mod-Type-Connect.HMA-M (Hermite-of-list-of-rows A $[0 . .<C A R D(' m)])$
(Hermite-of-upt-row-i $A^{\prime}\left(\operatorname{CARD}\left({ }^{\prime} m\right)\right.$ ) ass-function-euclidean res-int)
by (rule HMA-Hermite-of-upt-row-i[OF - AA' eA], auto)
have $[$ transfer-rule $]:($ range ass-function-euclidean $)=($ range ass-function-euclidean $)$
have $[$ transfer-rule $]:(\lambda c$. range $($ res-int $c))=(\lambda c$. range $($ res-int $c)) .$.
have $n$ : $C A R D\left({ }^{\prime} m\right)=$ nrows $A^{\prime}$ using $A A^{\prime}$ unfolding nrows-def by auto
have Hermite (range ass-function-euclidean) ( $\lambda$ c. range (res-int c))
(Hermite-of-upt-row-i $A^{\prime}(C A R D(' m))$ ass-function-euclidean res-int)
by (unfold n, rule Hermite-Hermite-of-upt-row-i[OF ass-function-euclidean
res-function-res-int e $A$ 〕)
thus ?thesis by transfer
qed
private lemma invertible-Hermite-of-list-of-rows-mod-type:
fixes $A:$ int mat
assumes $A \in$ carrier-mat $C A R D$ ('m::mod-type) $C A R D(' n:: m o d-t y p e)$
assumes $e A$ : echelon-form-JNF $A$
shows $\exists P . P \in$ carrier-mat $C A R D\left({ }^{\prime} m\right) C A R D(' m) \wedge$
invertible-mat $P \wedge$ Hermite-of-list-of-rows $A\left[0 . .<C A R D\left({ }^{\prime} m\right)\right]=P * A$
proof -
define $A^{\prime}$ where $A^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma $A::$ int ${ }^{\wedge \prime} n::$ mod-type ${ }^{\wedge} m$
:: mod-type)
have $A A^{\prime}[$ transfer-rule $]:$ Mod-Type-Connect.HMA-M A $A^{\prime}$
unfolding Mod-Type-Connect.HMA-M-def using assms $A^{\prime}$-def by auto
have $e A^{\prime}[$ transfer-rule $]$ : echelon-form $A^{\prime}$ using $e A$ by transfer
have [transfer-rule]: Mod-Type-Connect.HMA-M (Hermite-of-list-of-rows A $\left[0 . .<C A R D\left({ }^{\prime} m\right)\right]$ )
(Hermite-of-upt-row-i $A^{\prime}(C A R D(' m))$ ass-function-euclidean res-int)
by (rule HMA-Hermite-of-upt-row-i[OF--AA' eA], auto)
have $[$ transfer-rule $]:($ range ass-function-euclidean $)=($ range ass-function-euclidean $)$
have $[$ transfer-rule]: $(\lambda c$. range $($ res-int $c))=(\lambda c$. range $($ res-int $c)) .$.
have $n$ : $C A R D\left({ }^{\prime} m\right)=$ nrows $A^{\prime}$ using $A A^{\prime}$ unfolding nrows-def by auto
have $\exists P$. invertible $P \wedge$ Hermite-of-upt-row- $i A^{\prime}\left(C A R D\left({ }^{\prime} m\right)\right)$ ass-function-euclidean res-int
$=P * * A^{\prime}$ by (rule invertible-Hermite-of-upt-row-i[OF ass-function-euclidean $]$ )
thus ?thesis by (transfer, auto)
qed
private lemma Hermite-Hermite-of-list-of-rows-nontriv-mod-ring:
fixes $A$ :: int mat
assumes $A \in$ carrier-mat $C A R D$ ('m::nontriv mod-ring) $C A R D$ (' $n::$ nontriv mod-ring $)$
assumes $e A$ : echelon-form-JNF $A$
shows Hermite-JNF (range ass-function-euclidean)
( $\lambda$ c. range (res-int c)) (Hermite-of-list-of-rows $A[0 . .<C A R D(' m)])$
using assms Hermite-Hermite-of-list-of-rows-mod-type by (smt CARD-mod-ring)
private lemma invertible-Hermite-of-list-of-rows-nontriv-mod-ring:
fixes $A$ :: int mat

assumes eA: echelon-form-JNF A
shows $\exists P . P \in$ carrier-mat $C A R D\left({ }^{\prime} m\right) C A R D(' m) \wedge$
invertible-mat $P \wedge$ Hermite-of-list-of-rows $A[0 . .<C A R D(' m)]=P * A$
using assms invertible-Hermite-of-list-of-rows-mod-type by (smt CARD-mod-ring)
lemmas Hermite-Hermite-of-list-of-rows-nontriv-mod-ring-internalized $=$
Hermite-Hermite-of-list-of-rows-nontriv-mod-ring[unfolded CARD-mod-ring, internalize-sort 'm::nontriv, internalize-sort 'b::nontriv]
lemmas invertible-Hermite-of-list-of-rows-nontriv-mod-ring-internalized $=$ invertible-Hermite-of-list-of-rows-nontriv-mod-ring[unfolded CARD-mod-ring, internalize-sort ' $m$ ::nontriv, internalize-sort ' $b::$ nontriv]

```
context
 fixes m::nat and n::nat
 assumes local-typedef1:\exists(Rep :: ('b b int)) Abs.type-definition Rep Abs {0..<m
:: int}
 assumes local-typedef2: \exists(Rep :: ('c m int)) Abs.type-definition Rep Abs {0..<n
:: int}
 and m:m>1
 and n: n>1
begin
lemma Hermite-Hermite-of-list-of-rows-nontriv-mod-ring-aux:
 fixes A::int mat
 assumes A\in carrier-mat m n
 assumes eA: echelon-form-JNF A
shows Hermite-JNF (range ass-function-euclidean)
 (\lambdac. range (res-int c)) (Hermite-of-list-of-rows A [0..<m])
 using Hermite-Hermite-of-list-of-rows-nontriv-mod-ring-internalized
 [OF type-to-set2(1)[OF local-typedef1 local-typedef2]
 type-to-set1(1)[OF local-typedef1 local-typedef2]]
 using assms
 using type-to-set1 (2) local-typedef1 local-typedef2 n m by metis
lemma invertible-Hermite-of-list-of-rows-nontriv-mod-ring-aux:
 fixes A::int mat
 assumes A\incarrier-mat m n
 assumes eA: echelon-form-JNF A
 shows }\existsP.P\in\mathrm{ carrier-mat m m ^ invertible-mat P ^ Hermite-of-list-of-rows
A[0..<m]=P*A
using invertible-Hermite-of-list-of-rows-nontriv-mod-ring-internalized
 [OF type-to-set2(1)[OF local-typedef1 local-typedef2]
 type-to-set1(1)[OF local-typedef1 local-typedef2]]
 using assms
 using type-to-set1(2) local-typedef1 local-typedef2 n m by metis
end
```

context
begin
private lemma invertible-Hermite-of-list-of-rows-cancelled-first

```
\(\exists\) Rep Abs. type-definition Rep Abs \(\{0 . .<\) int \(n\}\)
\(\Longrightarrow 1<m \Longrightarrow 1<n \Longrightarrow A \in\) carrier-mat \(m n \Longrightarrow\) echelon-form-JNF \(A\)
\(\Longrightarrow \exists P . P \in\) carrier-mat \(m m \wedge\) invertible-mat \(P \wedge\) Hermite-of-list-of-rows \(A\)
\([0 . .<m]=P * A\)
 using invertible-Hermite-of-list-of-rows-nontriv-mod-ring-aux[cancel-type-definition,
of \(m n A]\)
 by auto
```

private lemma invertible-Hermite-of-list-of-rows-cancelled-both:
$1<m \Longrightarrow 1<n \Longrightarrow A \in$ carrier-mat $m n \Longrightarrow$ echelon-form-JNF A
$\Longrightarrow \exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge$ Hermite-of-list-of-rows $A$
$[0 . .<m]=P * A$
using invertible-Hermite-of-list-of-rows-cancelled-first[cancel-type-definition, of $n$
$m A]$ by $\operatorname{simp}$
private lemma Hermite-Hermite-of-list-of-rows-cancelled-first:
$\exists$ Rep Abs. type-definition Rep Abs $\{0 . .<$ int $n\} \Longrightarrow$
$1<m \Longrightarrow$
$1<n \Longrightarrow$
A $\in$ carrier-mat $m n \Longrightarrow$
echelon-form-JNF A
$\Longrightarrow$ Hermite-JNF (range ass-function-euclidean) ( $\lambda$ c. range (res-int c)) (Hermite-of-list-of-rows
$A[0 . .<m])$
using Hermite-Hermite-of-list-of-rows-nontriv-mod-ring-aux[cancel-type-definition,
of $m n A]$
by auto
private lemma Hermite-Hermite-of-list-of-rows-cancelled-both:

```
1<m\Longrightarrow
 1<n\Longrightarrow
 A carrier-mat m n}
 echelon-form-JNF A
 \Longrightarrow ~ H e r m i t e - J N F ~ (r a n g e ~ a s s - f u n c t i o n - e u c l i d e a n) ~ (\lambda c . ~ r a n g e ~ (r e s - i n t ~ c)) ~ (H e r m i t e - o f - l i s t - o f - r o w s ~
A [0..<m])
 using Hermite-Hermite-of-list-of-rows-cancelled-first[cancel-type-definition, of n
mA] by simp
```

    lemma Hermite-Hermite-of-list-of-rows':
    fixes \(A\) :: int mat
    assumes \(A \in\) carrier-mat \(m n\)
        and echelon-form-JNF A
    and $1<m$ and $1<n$
shows Hermite-JNF (range ass-function-euclidean)
( $\lambda c$. range (res-int c) ) (Hermite-of-list-of-rows $A[0 . .<m]$ )
using Hermite-Hermite-of-list-of-rows-cancelled-both assms by auto
corollary Hermite-Hermite-of-list-of-rows:
fixes $A$ :: int mat
assumes $A: A \in$ carrier-mat $m n$
and $e A$ : echelon-form-JNF $A$
shows Hermite-JNF (range ass-function-euclidean)
( $\lambda c$. range (res-int c)) (Hermite-of-list-of-rows $A[0 . .<m])$
proof (cases $m=0 \vee n=0$ )
case True
then show?thesis
by (auto, metis Hermite-Hermite-of-row-i Hermite-JNF-def A eA carrier-matD(1) one-carrier-mat zero-order(3))
(metis Hermite-Hermite-of-row-i Hermite-JNF-def Hermite-of-list-of-rows A carrier-matD(2) echelon-form-mx0 is-zero-row-JNF-def mat-carrier zero-order(3))
next
case False note not-m0-or-n0 $=$ False
show ?thesis
proof (cases $m=1 \vee n=1$ )
case True
then show? ?thesis
by (metis False Hermite-of-list-of-rows-1xn Hermite-of-list-of-rows-mx1 A eA
atLeastLessThan-iff linorder-not-less neq0-conv set-upt upt-eq-Nil-conv)
next
case False
show ?thesis
by (rule Hermite-Hermite-of-list-of-rows'[OF A eA], insert not-m0-or-n0 False, auto)
qed
qed
lemma invertible-Hermite-of-list-of-rows:
assumes $A: A \in$ carrier-mat $m n$
and eA: echelon-form-JNF A
shows $\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge$ Hermite-of-list-of-rows $A$
$[0 . .<m]=P * A$
proof (cases $m=0 \vee n=0$ )
case True
have $*$ : Hermite-of-list-of-rows $A[0 . .<m]=A$ if $n: n=0$
by (rule Hermite-of-list-of-rows-mx0, insert A n, auto)
show ?thesis using True
by (auto, metis assms(1) invertible-mat-one left-mult-one-mat one-carrier-mat)
(metis (full-types) * assms(1) invertible-mat-one left-mult-one-mat one-carrier-mat)
next

```
case False note mn = False
show ?thesis
proof (cases m=1 \vee n=1)
 case True
 then show ?thesis
 using A eA invertible-Hermite-of-list-of-rows-1xn invertible-Hermite-of-list-of-rows-mx1
by blast
 next
 case False
 then show ?thesis
 using invertible-Hermite-of-list-of-rows-cancelled-both[OF - - A eA] False mn
by auto
 qed
qed
end
end
end
end
```

Now we have all the required stuff to prove the soundness of the algorithm.
context proper-mod-operation
begin
lemma Hermite-mod-det-mx0:
assumes $A \in$ carrier-mat m 0
shows Hermite-mod-det abs-flag $A=A$
unfolding Hermite-mod-det-def Let-def using assms by auto
lemma Hermite-JNF-mx0:
assumes $A: A \in$ carrier-mat m 0
shows Hermite-JNF (range ass-function-euclidean) ( $\lambda$ c. range (res-int c)) A
unfolding Hermite-JNF-def using $A$ echelon-form-mx0 unfolding is-zero-row-JNF-def
using ass-function-Complete-set-non-associates[OF ass-function-euclidean]
using res-function-Complete-set-residues[OF res-function-res-int $]$ by auto
lemma Hermite-mod-det-soundness-mx0:
assumes $A: A \in$ carrier-mat $m n$
and $n 0: n=0$
shows Hermite-JNF (range ass-function-euclidean) ( $\lambda c$. range (res-int c)) (Hermite-mod-det abs-flag A)
and $(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m \wedge$ (Hermite-mod-det abs-flag
$A)=P * A$ )
proof -
have $A: A \in$ carrier-mat $m 0$ using $A n 0$ by blast
then show Hermite-JNF (range ass-function-euclidean) ( $\lambda$ c. range (res-int c))
using Hermite-JNF-mx $0[O F A]$ Hermite-mod-det-mx $0[O F A]$ by auto
show $(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m \wedge$ (Hermite-mod-det abs-flag $A)=P * A)$
by (metis A Hermite-mod-det-mx0 invertible-mat-one left-mult-one-mat one-carrier-mat) qed
lemma Hermite-mod-det-soundness-mxn:
assumes $m n$ : $m=n$
and $A: A \in$ carrier-mat $m n$
and $n 0: 0<n$
and inv-RAT-A: invertible-mat (map-mat rat-of-int $A$ )
shows Hermite-JNF (range ass-function-euclidean) ( $\lambda$ c. range (res-int c)) (Hermite-mod-det abs-flag A)
and $(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m \wedge$ (Hermite-mod-det abs-flag
$A)=P * A$ )
proof -
define $D A^{\prime} E H H^{\prime}$ where $D$-def: $D=\mid$ Determinant. $\operatorname{det} A \mid$
and $A^{\prime}$-def: $A^{\prime}=A @_{r} D \cdot{ }_{m} 1_{m} n$ and $E$-def: $E=$ FindPreHNF abs-flag $D A^{\prime}$
and $H$-def: $H=$ Hermite-of-list-of-rows $E[0 . .<m+n]$
and $H^{\prime}$-def: $H^{\prime}=$ mat-of-rows $n($ map (Matrix.row $\left.H)[0 . .<m]\right)$
have $A^{\prime}: A^{\prime} \in$ carrier-mat $(m+n) n$ using $A A^{\prime}$-def by auto
let ?RAT $=$ of-int-hom.mat-hom :: int mat $\Rightarrow$ rat mat
have RAT-A: ?RAT $A \in$ carrier-mat $n n$
using A map-carrier-mat mat-of-rows-carrier(1) mn by auto
have $\operatorname{det}$-RAT-fs-init: $\operatorname{det}(? R A T A) \neq 0$
using inv-RAT-A unfolding invertible-iff-is-unit-JNF $[O F R A T-A]$ by auto
moreover have mat-of-rows $n$ (map (Matrix.row $A^{\prime}$ ) $[0 . .<n]$ ) $=A$
proof
let $? A^{\prime}=$ mat-of-rows $n\left(\right.$ map (Matrix.row $\left.\left.A^{\prime}\right)[0 . .<n]\right)$
show dr: dim-row ? $A^{\prime}=\operatorname{dim}$-row $A$ and $d c: \operatorname{dim}$-col $? A^{\prime}=\operatorname{dim}-c o l ~ A$ using
A mn by auto
fix $i j$ assume $i: i<d i m-r o w ~ A$ and $j: j<\operatorname{dim}$-col $A$
have $D: D \cdot{ }_{m} 1_{m} n \in$ carrier-mat $n n$ using $m n$ by auto
have ? $A^{\prime} \$ \$(i, j)=\left(\right.$ map $\left(\right.$ Matrix.row $\left.\left.A^{\prime}\right)[0 . .<n]\right)!i \$ v j$
by (rule mat-of-rows-index, insert $i j d r d c$ A, auto)
also have $\ldots=A^{\prime} \$ \$(i, j)$ using $A^{\prime} m n i j A$ by auto
also have $\ldots=A \$ \$(i, j)$ unfolding $A^{\prime}$-def using $i$ append-rows- $n t h[$ OF A D]
$m n j A$ by auto
finally show ? $A^{\prime} \$ \$(i, j)=A \$ \$(i, j)$.
qed
ultimately have inv-RAT- $A^{\prime} n$ :
invertible-mat (map-mat rat-of-int (mat-of-rows $n\left(\right.$ map (Matrix.row $\left.\left.\left.A^{\prime}\right)[0 . .<n]\right)\right)$ )
using inv-RAT-A by auto
have $e E$ : echelon-form-JNF $E$
by (unfold E-def, rule FindPreHNF-echelon-form[OF A'-def A - -],
insert mn D-def det-RAT-fs-init, auto)
have $E: E \in$ carrier-mat $(m+n) n$ unfolding $E$-def by (rule FindPreHNF[OF A ])
have $\exists P . P \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $P \wedge E=P * A^{\prime}$
by (unfold E-def, rule FindPreHNF-invertible-mat[OF A'-def A n0--],
insert mn D-def det-RAT-fs-init, auto)
from this obtain $P$ where $P: P \in$ carrier-mat $(m+n)(m+n)$
and inv-P: invertible-mat $P$ and $E-P A^{\prime}: E=P * A^{\prime}$
by blast
have $\exists Q . Q \in$ carrier-mat $(m+n)(m+n) \wedge$ invertible-mat $Q \wedge H=Q * E$
by (unfold H-def, rule invertible-Hermite-of-list-of-rows[OF E eE])
from this obtain $Q$ where $Q: Q \in$ carrier-mat $(m+n)(m+n)$
and inv- $Q$ : invertible-mat $Q$ and $H-Q E: H=Q * E$ by blast
let ?ass $=($ range ass-function-euclidean $)$
let ?res $=(\lambda c$. range $($ res-int $c))$
have Hermite-H: Hermite-JNF (range ass-function-euclidean) ( $\lambda c$. range (res-int
c)) $H$
by (unfold H-def, rule Hermite-Hermite-of-list-of-rows[OF EeE])
hence $e H$ : echelon-form-JNF $H$ unfolding Hermite-JNF-def by auto
have $H^{\prime}: H^{\prime} \in$ carrier-mat $m n$ using $H^{\prime}$-def by auto
have $H-H^{\prime} 0: H=H^{\prime} @_{r} 0_{m} m n$
proof (unfold $H^{\prime}$-def, rule upper-triangular-append-zero)
show upper-triangular' $H$ using eH by (rule echelon-form-JNF-imp-upper-triangular)
show $H \in$ carrier-mat $(m+m) n$
unfolding $H$-def using Hermite-of-list-of-rows[of $E] E$ mn by auto
qed (insert $m n$, simp)
obtain $P^{\prime}$ where $P P^{\prime}$ : inverts-mat $P P^{\prime}$
and $P^{\prime} P$ : inverts-mat $P^{\prime} P$ and $P^{\prime}: P^{\prime} \in$ carrier-mat $(m+n)(m+n)$
using $P$ inv- $P$ obtain-inverse-matrix by blast
obtain $Q^{\prime}$ where $Q Q^{\prime}$ : inverts-mat $Q Q^{\prime}$
and $Q^{\prime} Q$ : inverts-mat $Q^{\prime} Q$ and $Q^{\prime}: Q^{\prime} \in$ carrier-mat $(m+n)(m+n)$
using $Q$ inv- $Q$ obtain-inverse-matrix by blast
have $P^{\prime} Q^{\prime}:\left(P^{\prime} * Q^{\prime}\right) \in \operatorname{carrier-mat}(m+m)(m+m)$ using $P^{\prime} Q^{\prime} m n$ by simp
have $A^{\prime}-P^{\prime} Q^{\prime} H: A^{\prime}=P^{\prime} * Q^{\prime} * H$
proof -
have $Q P: Q * P \in$ carrier-mat $(m+m)(m+m)$ using $Q P m n$ by auto
have $H=Q *\left(P * A^{\prime}\right)$ using $H-Q E E-P A^{\prime}$ by auto
also have $\ldots=(Q * P) * A^{\prime}$ using $A^{\prime} P Q$ by auto
also have $\left(P^{\prime} * Q^{\prime}\right) * \ldots=\left(\left(P^{\prime} * Q^{\prime}\right) *(Q * P)\right) * A^{\prime}$ using $A^{\prime} P^{\prime} Q^{\prime} Q P m n$
by auto
also have $\ldots=\left(P^{\prime} *\left(Q^{\prime} * Q\right) * P\right) * A^{\prime}$
by (smt $P P^{\prime} P^{\prime} Q^{\prime} Q Q^{\prime} \operatorname{assms}(1)$ assoc-mult-mat)
also have $\ldots=\left(P^{\prime} * P\right) * A^{\prime}$
by (metis $P^{\prime} Q^{\prime} Q^{\prime} Q$ carrier-matD(1) inverts-mat-def right-mult-one-mat)
also have $\ldots=A^{\prime}$
by (metis $A^{\prime} P^{\prime} P^{\prime} P$ carrier-mat $D(1)$ inverts-mat-def left-mult-one-mat)
finally show $A^{\prime}=P^{\prime} * Q^{\prime} * H .$.
qed
have inv- $P^{\prime} Q^{\prime}$ : invertible-mat $\left(P^{\prime} * Q^{\prime}\right)$
by (metis $P^{\prime} P^{\prime} P P P^{\prime} Q^{\prime} Q^{\prime} Q$ QQ carrier-matD(1) carrier-matD(2) invert-
invertible-mult-JNF square-mat.simps)
interpret vec-module TYPE (int) .
interpret B: cof-vec-space $n$ TYPE (rat) .
interpret $A$ : LLL-with-assms $n m$ (Matrix.rows $A$ ) 4/3
proof
show length (rows $A$ ) $=m$ using $A$ unfolding Matrix.rows-def by simp
have s: set (map of-int-hom.vec-hom (rows A)) $\subseteq$ carrier-vec $n$
using $A$ unfolding Matrix.rows-def by auto
have rw: (map of-int-hom.vec-hom (rows A)) $=($ rows $(? R A T A))$
by (metis A s carrier-matD(2) mat-of-rows-map mat-of-rows-rows rows-mat-of-rows
set-rows-carrier subsetI)
have B.lin-indpt (set (map of-int-hom.vec-hom (rows A)))
unfolding rw by (rule B.det-not-0-imp-lin-indpt-rows[OF RAT-A det-RAT-fs-init])
moreover have distinct (map of-int-hom.vec-hom (rows A)::rat Matrix.vec list)
proof (rule ccontr)
assume $\neg$ distinct (map of-int-hom.vec-hom (rows A)::rat Matrix.vec list)
from this obtain $i j$ where row $(? R A T A) i=$ row $(? R A T A) j$ and $i \neq j$
and $i<n$ and $j<n$
unfolding $r w$
by (metis Determinant.det-transpose RAT-A add-0 cols-transpose det-RAT-fs-init
not-add-less2 transpose-carrier-mat vec-space.det-rank-iff vec-space.non-distinct-low-rank)
thus False using Determinant.det-identical-rows $[O F R A T-A]$ using det-RAT-fs-init
$R A T-A$ by auto
qed
ultimately show B.lin-indpt-list (map of-int-hom.vec-hom (rows A))
using $s$ unfolding B.lin-indpt-list-def by auto
qed (simp)
have $A$-eq: mat-of-rows $n$ (Matrix.rows $A$ ) $=A$ using $A$ mat-of-rows-rows by
blast
have $D$ - $A: D=\mid \operatorname{det}($ mat-of-rows $n($ rows $A)) \mid$ using $D$ - $\operatorname{def} A$-eq by auto
have Hermite- $H^{\prime}$ : Hermite-JNF ?ass ?res $H^{\prime}$
by (rule A.Hermite-append-det-id(1)[OF - mn - $H^{\prime} H-H^{\prime} 0 P^{\prime} Q^{\prime} i n v-P^{\prime} Q^{\prime}$
$A^{\prime}-P^{\prime} Q^{\prime} H$ Hermite- $H$ ],
insert $D$-def $A^{\prime}$-def mn $A$ inv-RAT-A $D-A A$-eq, auto)
have $d c$ : dim-row $A=m$ and $d r$ : $\operatorname{dim}$-col $A=n$ using $A$ by auto
have Hermite-mod-det- $H^{\prime}$ : Hermite-mod-det abs-flag $A=H^{\prime}$
unfolding Hermite-mod-det-def Let-def $H^{\prime}$-def H-def E-def $A^{\prime}$-def D-def dc dr
det-int by blast
show Hermite-JNF ?ass ?res (Hermite-mod-det abs-flag A) using Hermite-mod-det- $H^{\prime}$
Hermite- $H^{\prime}$ by simp
have $\exists R$. invertible-mat $R \wedge R \in$ carrier-mat $m m \wedge A=R * H^{\prime}$
by (subst A-eq[symmetric],
rule A.Hermite-append-det-id(2)[OF - mn - $H^{\prime} H-H^{\prime} 0 P^{\prime} Q^{\prime}$ inv- $P^{\prime} Q^{\prime}$
$A^{\prime}-P^{\prime} Q^{\prime} H$ Hermite- $H$ ],
insert $D$-def $A^{\prime}$-def mn $A$ inv-RAT-A $D-A A$-eq, auto)
from this obtain $R$ where inv- $R$ : invertible-mat $R$
and $R: R \in$ carrier-mat $m$ and $A-R H^{\prime}: A=R * H^{\prime}$
by blast
obtain $R^{\prime}$ where inverts- $R$ : inverts-mat $R R^{\prime}$ and $R^{\prime}: R^{\prime} \in$ carrier-mat $m m$ by (meson $R$ inv- $R$ obtain-inverse-matrix)
have inv- $R^{\prime}$ : invertible-mat $R^{\prime}$ using inverts- $R$ unfolding invertible-mat-def inverts-mat-def
using $R R^{\prime}$ mat-mult-left-right-inverse by auto
moreover have $H^{\prime}=R^{\prime} * A$
proof -
have $R^{\prime} * A=R^{\prime} *\left(R * H^{\prime}\right)$ using $A-R H^{\prime}$ by auto
also have $\ldots=\left(R^{\prime} * R\right) * H^{\prime}$ using $H^{\prime} R R^{\prime}$ by auto
also have $\ldots=H^{\prime}$
by (metis $H^{\prime} R R^{\prime}$ mat-mult-left-right-inverse carrier-matD(1)
inverts- $R$ inverts-mat-def left-mult-one-mat)
finally show ?thesis ..
qed
ultimately show $\exists S$. invertible-mat $S \wedge S \in$ carrier-mat $m m \wedge$ Hermite-mod-det abs-flag $A=S * A$
using $R^{\prime}$ Hermite-mod-det- $H^{\prime}$ by blast
qed
lemma Hermite-mod-det-soundness:
assumes $m n$ : $m=n$
and $A$-def: $A \in$ carrier-mat $m n$
and $i$ : invertible-mat (map-mat rat-of-int $A$ )
shows Hermite-JNF (range ass-function-euclidean) ( $\lambda c$. range (res-int c)) (Hermite-mod-det abs-flag A)
and $(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m \wedge$ (Hermite-mod-det abs-flag
$A)=P * A)$
using $A$-def Hermite-mod-det-soundness-mx0(1) Hermite-mod-det-soundness-mxn(1) $m n i$
by blast (insert Hermite-mod-det-soundness-mx0(2) Hermite-mod-det-soundness-mxn(2)
assms, blast)
We can even move the whole echelon form algorithm echelon-form-of from HOL Analysis to JNF and then we can combine it with Hermite-of-list-of-rows to have another HNF algorithm which is not efficient, but valid for arbitrary matrices.
lemma reduce-D0:
reduce a b $0 A=($ let $A a j=A \$ \$(a, 0) ; A b j=A \$ \$(b, 0)$
in
if $A a j=0$ then $A$ else
case euclid-ext2 Aaj Abj of $(p, q, u, v, d) \Rightarrow$
Matrix.mat (dim-row A) (dim-col A)
$(\lambda(i, k)$. if $i=a$ then $(p * A \$ \$(a, k)+q * A \$ \$(b, k))$ else if $i=b$ then $u * A \$ \$(a, k)+v * A \$ \$(b, k)$
else $A \$ \$(i, k)$
)
) (is ?lhs = ? rhs)

```
proof
 obtain pquvd where pquvd: (p,q,u,v,d)= euclid-ext2 (A$$(a,0)) (A$$(b,
0))
 by (simp add: euclid-ext2-def)
 have *: Matrix.mat (dim-row A) (dim-col A)
(\lambda(i,k).
 if i=a then let r=p*A$$(a,k)+q*A$$(b,k) in if 0<|r| then
 if k}=0\wedge0\mathrm{ dvd r then 0 else r mod 0 else r
 else if i=b then let r=u*A$$(a,k)+v*A$$(b,k) in
 if 0< |r| then r mod 0 else r else A $$ (i,k))
 = Matrix.mat (dim-row A) (dim-col A)
 (\lambda(i,k). if i=a then (}p*A$$(a,k)+q*A$$(b,k)
 else if }i=b\mathrm{ then }u*A$$(a,k)+v*A$$(b,k
 else A$$(i,k)
)
 by (rule eq-matI, auto simp add: Let-def)
 show dim-row?lhs = dim-row ?rhs
 unfolding reduce.simps Let-def by (smt dim-row-mat(1) pquvd prod.simps(2))
 show dim-col ?lhs = dim-col ?rhs
 unfolding reduce.simps Let-def by (smt dim-col-mat(1) pquvd prod.simps(2))
 fix ij assume i:i<dim-row ?rhs and j: j<dim-col ?rhs
 show ?lhs $$ (i,j) = ?rhs $$ (i,j)
 by (cases A $$(a,0) = 0, insert * pquvd i j, auto simp add: case-prod-beta
Let-def)
qed
```

lemma bezout-matrix-JNF-mult-eq':
assumes $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ and $a: a<m$ and $b: b<m$ and $a b: a \neq b$
and $A$-def: $A=A^{\prime} @_{r} B$ and $B: B \in$ carrier-mat $t n$
assumes pquvd: $(p, q, u, v, d)=$ euclid-ext2 $(A \$ \$(a, j))(A \$ \$(b, j))$
shows Matrix.mat (dim-row A) (dim-col A)
$(\lambda(i, k)$. if $i=a$ then $(p * A \$ \$(a, k)+q * A \$ \$(b, k))$
else if $i=b$ then $u * A \$ \$(a, k)+v * A \$ \$(b, k)$
else $A \$ \$(i, k)$
$)=($ bezout-matrix-JNF A a bjeuclid-ext2) $* A($ is ? $A=? B M * A)$
proof (rule eq-matI)
have $A: A \in$ carrier-mat $(m+t) n$ using $A$-def $A^{\prime} B$ by simp
hence $A$-carrier: $? A \in$ carrier-mat $(m+t) n$ by auto
show dr: dim-row ? A $=$ dim-row $(? B M * A)$ and dc:dim-col ?A $=$ dim-col (?BM*A)
unfolding bezout-matrix-JNF-def by auto
fix $i j a$ assume $i: i<\operatorname{dim}$-row $(? B M * A)$ and $j a$ : ja<dim-col $(? B M * A)$
let ?f $=\lambda$ ia. (bezout-matrix-JNF A a b j euclid-ext2) $\$ \$(i, i a) * A \$ \$(i a, j a)$
have $d v: \operatorname{dim}-v e c(\operatorname{col} A j a)=m+t$ using $A$ by auto
have $i$-dr: $i<$ dim-row $A$ using $i A$ unfolding bezout-matrix-JNF-def by auto
have $a$-dr: $a<d i m$-row $A$ using $A$ a ja by auto
have $b$ - $d r$ : $b<$ dim-row $A$ using $A b j a$ by auto

```
show ?A $$ (i,ja)=(?BM*A)$$ (i,ja)
proof -
 have (?BM * A) $$ (i,ja)= Matrix.row ?BM i . col A ja
 by (rule index-mult-mat, insert i ja, auto)
 also have ... = (\sumia=0..<dim-vec (col A ja).
 Matrix.row(bezout-matrix-JNF A a b j euclid-ext2) i $v ia * col A ja $v
ia)
 by (simp add: scalar-prod-def)
 also have ... = (\sumia=0..<m+t. ?f ia)
 by (rule sum.cong, insert A i dr dc, auto) (smt bezout-matrix-JNF-def car-
rier-matD(1)
 dim-col-mat(1) index-col index-mult-mat(3) index-row(1) ja)
 also have ... = (\sumia
 by (rule sum.cong, insert a a-dr b A ja, auto)
 also have ... =sum ?f {a,b} + sum ?f ({0..<m+t} - {a,b})
 by (rule sum.union-disjoint, auto)
 finally have BM-A-ija-eq:(?BM*A) $$ (i,ja) = sum ?f {a,b} + sum ?f
({0..<m+t} - {a,b}) by auto
 show ?thesis
 proof (cases i=a)
 case True
 have sum0: sum ?f ({0..<m+t}-{a,b})=0
 proof (rule sum.neutral, rule)
 fix x assume x:x\in{0..<m+t}-{a,b}
 hence xm: }x<m+t\mathrm{ by auto
 have x-not-i: x\not=i using True x by blast
 have }x\mathrm{ -dr: }x<\mathrm{ dim-row A using }xA\mathrm{ by auto
 have bezout-matrix-JNF A a b j euclid-ext2 $$ (i,x)=0
 unfolding bezout-matrix-JNF-def
 unfolding index-mat(1)[OF i-dr x-dr] using x-not-i }x\mathrm{ by auto
 thus bezout-matrix-JNF A a b j euclid-ext2 $$ (i,x)*A $$ (x,ja)=0 by
auto
 qed
 have fa: bezout-matrix-JNF A a b j euclid-ext2 $$ (i,a) = p
 unfolding bezout-matrix-JNF-def index-mat(1)[OF i-dr a-dr] using True
pquvd
 by (auto, metis split-conv)
 have fb: bezout-matrix-JNF A a b j euclid-ext2 $$ (i,b) = q
 unfolding bezout-matrix-JNF-def index-mat(1)[OF i-dr b-dr] using True
pquvd ab
 by (auto, metis split-conv)
 have sum ?f {a,b} + sum ?f ({0..<m+t} - {a,b}) = ?f a + ?f b using
sum0 by (simp add: ab)
 also have ... = p*A$$(a,ja)+q*A$$(b,ja) unfolding fa fb by simp
 also have ... = ?A $$ (i,ja) using A True dr i ja by auto
 finally show ?thesis using BM-A-ija-eq by simp
 next
 case False note i-not-a = False
 show ?thesis
```

```
proof (cases i=b)
```

    case True
    have sum0: sum ?f \((\{0 . .<m+t\}-\{a, b\})=0\)
    proof (rule sum.neutral, rule)
        fix \(x\) assume \(x: x \in\{0 . .<m+t\}-\{a, b\}\)
        hence \(x m\) : \(x<m+t\) by auto
        have \(x\)-not- \(i: x \neq i\) using True \(x\) by blast
        have \(x\)-dr: \(x<\) dim-row \(A\) using \(x A\) by auto
        have bezout-matrix-JNF A a b jeuclid-ext2 \(\$ \$(i, x)=0\)
            unfolding bezout-matrix-JNF-def
            unfolding index-mat(1)[OF i-dr \(x\)-dr] using \(x\)-not-i \(x\) by auto
        thus bezout-matrix-JNF A a b j euclid-ext2 \(\$ \$(i, x) * A \$ \$(x, j a)=0\)
    by auto
qed
have fa: bezout-matrix-JNF A a b j euclid-ext2 \$\$ $(i, a)=u$
unfolding bezout-matrix-JNF-def index-mat(1)[OF i-dr a-dr] using True
i-not-a pquvd
by (auto, metis split-conv)
have fb: bezout-matrix-JNF A a b j euclid-ext2 $\$ \$(i, b)=v$
unfolding bezout-matrix-JNF-def index-mat(1)[OF i-dr b-dr] using True
$i$-not-a pquvd ab
by (auto, metis split-conv)
have sum ?f $\{a, b\}+$ sum ?f $(\{0 . .<m+t\}-\{a, b\})=$ ?f $a+$ ?f $b$ using
sum0 by (simp add: ab)
also have $\ldots=u * A \$ \$(a, j a)+v * A \$ \$(b, j a)$ unfolding $f a f b$ by simp
also have $\ldots=$ ? A $\$ \$(i, j a)$ using $A$ True $i-n o t-a d r i j a$ by auto
finally show ?thesis using $B M-A-i j a-e q$ by simp
next
case False note $i$-not- $b=$ False
have sum0: sum ?f $(\{0 . .<m+t\}-\{a, b\}-\{i\})=0$
proof (rule sum.neutral, rule)
fix $x$ assume $x: x \in\{0 . .<m+t\}-\{a, b\}-\{i\}$
hence $x m$ : $x<m+t$ by auto
have $x$-not- $i: x \neq i$ using $x$ by blast
have $x$-dr: $x<$ dim-row $A$ using $x A$ by auto
have bezout-matrix-JNF A a bjeuclid-ext2 $\$ \$(i, x)=0$
unfolding bezout-matrix-JNF-def
unfolding index-mat(1)[OF i-dr $x$-dr] using $x$-not-i $x$ by auto
thus bezout-matrix-JNF A a bjeuclid-ext2 $\$ \$(i, x) * A \$ \$(x, j a)=0$
by auto
qed
have fa: bezout-matrix-JNF A a b j euclid-ext2 $\$ \$(i, a)=0$
unfolding bezout-matrix-JNF-def index-mat(1)[OF i-dr a-dr] using False
i-not-a pquvd
by auto
have fb: bezout-matrix-JNF A a b j euclid-ext2 $\$ \$(i, b)=0$
unfolding bezout-matrix-JNF-def index-mat(1)[OF i-dr b-dr] using False
i-not-a pquvd
by auto

```
 have sum ?f ({0..<m+t} - {a,b})=sum ?f (insert i}({0..<m+t}-{a,b
- {i}))
 by (rule sum.cong, insert i-dr A i-not-a i-not-b, auto)
 also have ... = ?f i + sum ?f ({0..<m+t} - {a,b} - {i}) by (rule
sum.insert, auto)
 also have ... = ?f i using sum0 by simp
 also have ... = ?A $$ (i,ja)
 unfolding bezout-matrix-JNF-def using i-not-a i-not-b A dr i ja by
fastforce
 finally show ?thesis unfolding BM-A-ija-eq by (simp add: ab fa fb)
 qed
 qed
 qed
qed
```

lemma bezout-matrix-JNF-mult-eq2:
assumes $A: A \in$ carrier-mat $m n$ and $a: a<m$ and $b: b<m$ and $a b: a \neq b$
assumes pquvd: $(p, q, u, v, d)=$ euclid-ext2 $(A \$ \$(a, j))(A \$ \$(b, j))$
shows Matrix.mat (dim-row A) (dim-col A)
$(\lambda(i, k)$. if $i=a$ then $(p * A \$ \$(a, k)+q * A \$ \$(b, k))$
else if $i=b$ then $u * A \$ \$(a, k)+v * A \$ \$(b, k)$
else $A \$ \$(i, k)$
$)=($ bezout-matrix-JNF A a b j euclid-ext2) $* A($ is ? $A=? B M * A)$
proof (rule bezout-matrix-JNF-mult-eq'[OF A abab--pquvd])
show $A=A @_{r}\left(0_{m} 0 n\right)$ by (rule eq-matI, unfold append-rows-def, auto)
show $\left(0_{m} 0 n\right) \in$ carrier-mat $0 n$ by auto
qed
lemma reduce-invertible-mat-D0-BM:
assumes $A: A \in$ carrier-mat $m n$
and $a: a<m$
and $b: b<m$
and $a b: a \neq b$
and $A a 0: A \$ \$(a, 0) \neq 0$
shows reduce aboA=(bezout-matrix-JNF A aboeuclid-ext2) * A
proof -
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=$ euclid-ext2 $(A \$ \$(a, 0))(A \$ \$(b, 0))$
by (simp add: euclid-ext2-def)
let ? $B M=$ bezout-matrix-JNF A a b 0 euclid-ext2
let $? A=$ Matrix.mat $($ dim-row $A)($ dim-col $A)$
$(\lambda(i, k)$. if $i=a$ then $(p * A \$ \$(a, k)+q * A \$ \$(b, k))$
else if $i=b$ then $u * A \$ \$(a, k)+v * A \$ \$(b, k)$ else $A \$ \$(i, k))$
have $A^{\prime}-B Z-A: ? A=? B M * A$
by (rule bezout-matrix-JNF-mult-eq2[OF A - ab pquvd], insert a b, auto)
moreover have $? A=$ reduce a b 0 A using pquvd Aa0 unfolding reduce-D0

```
Let-def
 by (metis (no-types, lifting) split-conv)
 ultimately show ?thesis by simp
qed
lemma reduce-invertible-mat-D0:
 assumes A:A\incarrier-mat m n
 and a: a<m
 and b:b<m
 and n0:0<n
 and ab:a\not=b
 and a-less-b: a<b
 shows }\existsP\mathrm{ . invertible-mat }P\wedgeP\in\mathrm{ carrier-mat mm^ reduce ab0A=P*A
proof (cases A$$(a,0)=0)
 case True
 then show ?thesis
 by (smt A invertible-mat-one left-mult-one-mat one-carrier-mat reduce.simps)
next
 case False
 obtain p qu v d where pquvd: (p,q,u,v,d) = euclid-ext2 (A$$(a,0)) (A$$(b,0))
 by (simp add: euclid-ext2-def)
 let ?BM = bezout-matrix-JNF A a b 0 euclid-ext2
 have reduce a b 0 A =? BM*A by (rule reduce-invertible-mat-D0-BM[OF A
a b ab False])
 moreover have invertible-bezout: invertible-mat ?BM
 by (rule invertible-bezout-matrix-JNF[OF A is-bezout-ext-euclid-ext2 a-less-b -
n0 False],
 insert a-less-b b, auto)
 moreover have BM: ?BM \in carrier-mat m m unfolding bezout-matrix-JNF-def
using }A\mathrm{ by auto
 ultimately show ?thesis by blast
qed
lemma reduce-below-invertible-mat-D0:
 assumes A':A\in carrier-mat m n and a: a<m and j:0<n
 and distinct xs and }\forallx\in\mathrm{ set xs. }x<m\wedgea<
 and D=0
shows (\existsP. invertible-mat P}\wedge P\in\mathrm{ carrier-mat m m ^ reduce-below a xs D A =
P*A)
 using assms
proof (induct a xs D A arbitrary: A rule: reduce-below.induct)
 case (1 a D A)
 then show ?case
 by (auto, metis invertible-mat-one left-mult-one-mat one-carrier-mat)
next
 case (2 a x xs D A)
 note }A=2.prems(1
 note a = 2.prems(2)
```

note $j=2 . \operatorname{prems}(3)$
note $d=2 . \operatorname{prems}(4)$
note $x$-xs $=2 . \operatorname{prems}(5)$
note $D 0=2 . \operatorname{prems}(6)$
have $x m$ : $x<m$ using 2.prems by auto
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid-ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))$
by (metis prod-cases5)
let ?reduce-ax $=$ reduce ax $D A$
have reduce-ax: ?reduce-ax $\in$ carrier-mat $m n$
by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def
carrier-matD carrier-mat-triv index-mat-four-block(2,3)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
have $h$ : $(\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m$
$\wedge$ reduce-below a xs $D($ reduce a x $D A)=P *$ reduce a x $D A$ )
by (rule 2.hyps[OF-aj--],insert dx-xs D0 reduce-ax, auto)
from this obtain $P$ where inv- $P$ : invertible-mat $P$ and $P: P \in$ carrier-mat $m$ $m$
and $r b-P r$ : reduce-below a xs $D($ reduce a $x D A)=P *$ reduce a $x D$ by blast
have *: reduce-below a $(x \#$ xs $) D A=$ reduce-below a xs $D($ reduce a $x D A$ ) by simp
have $\exists Q$. invertible-mat $Q \wedge Q \in$ carrier-mat $m m($ reduce a x $D A)=Q * A$
by (unfold D0, rule reduce-invertible-mat-D0[OF A a xm j], insert 2.prems, auto)
from this obtain $Q$ where inv- $Q$ : invertible-mat $Q$ and $Q: Q \in$ carrier-mat $m$ $m$
and $r$ - $Q A$ : reduce a $x D A=Q * A$ by blast
have invertible-mat $(P * Q)$ using inv- $P$ inv- $Q P Q$ invertible-mult-JNF by blast
moreover have $P * Q \in$ carrier-mat $m m$ using $P Q$ by auto
moreover have reduce-below a $(x \# x s) D A=(P * Q) * A$
by (smt $P Q *$ assoc-mult-mat carrier-matD (1) carrier-mat-triv index-mult-mat(2)
$r-Q A \quad r b-P r$ reduce-preserves-dimensions(1))
ultimately show?case by blast

## qed

lemma reduce-not0':
assumes $A: A \in$ carrier-mat $m n$ and $a: a<m$ and $a$-less- $b: a<b$ and $j: 0<n$ and $b: b<m$
and $A a j: A \$ \$(a, 0) \neq 0$
shows reduce a b 0 A $\$ \$(a, 0) \neq 0$ (is ?reduce-ab $\$ \$(a, 0) \neq-)$
proof -
have ?reduce-ab $\$ \$(a, 0)=($ let $r=\operatorname{gcd}(A \$ \$(a, 0))(A \$ \$(b, 0))$ in if 0 dvd $r$ then 0 else $r$ )
by (rule reduce-gcd[OF A-j Aaj], insert a, simp)
also have $\ldots \neq 0$ unfolding Let-def
by (simp add: assms(6))
finally show ?thesis.

## qed

lemma reduce-below-preserves-D0:
assumes $A^{\prime}: A \in$ carrier-mat $m n$ and $a: a<m$ and $j: j<n$
and $A a j: A \$ \$(a, 0) \neq 0$
assumes $i \notin$ set $x s$ and distinct $x s$ and $\forall x \in$ set $x s . x<m \wedge a<x$
and $i \neq a$ and $i<m$
and $D=0$
shows reduce-below a xs $D A \$ \$(i, j)=A \$ \$(i, j)$
using assms
proof (induct a xs $D$ A arbitrary: A i rule: reduce-below.induct)
case (1 a D A)
then show ?case by auto
next
case (2 a $x$ xs $D$ A)
note $A=2 . \operatorname{prems}(1)$
note $a=2 . \operatorname{prems}(2)$
note $j=$ 2.prems(3)
note $A a j=2 . \operatorname{prems}(4)$
note $i$-set-xxs $=2 . \operatorname{prems}(5)$
note $d=2 . \operatorname{prems}(6)$
note $x x s$-less- $m=2 . \operatorname{prems}(7)$
note $i a=2 . \operatorname{prems}(8)$
note $i m=2 . \operatorname{prems}(9)$
note $D 0=2 . \operatorname{prems}(10)$
have $x m$ : $x<m$ using 2.prems by auto
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid}-\operatorname{ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))$
by (metis prod-cases5)
let ? reduce-ax $=($ reduce a $x D A)$
have reduce-ax: ?reduce-ax $\in$ carrier-mat $m n$
by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def carrier-matD carrier-mat-triv index-mat-four-block(2,3)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
have reduce-below a $(x \#$ xs) $D A \$ \$(i, j)=$ reduce-below a xs $D$ (reduce a $x D$
A) $\$ \$(i, j)$
by auto
also have $\ldots=$ reduce a x $D$ A $\$ \$(i, j)$
proof (rule 2.hyps[OF-aj--])
show $i \notin$ set xs using $i$-set-xxs by auto
show distinct xs using $d$ by auto
show $\forall x \in$ set $x s . x<m \wedge a<x$ using $x x s$-less- $m$ by auto
show reduce a $x D A \$ \$(a, 0) \neq 0$
by (unfold D0, rule reduce-not0 ${ }^{\prime}$ OF A -- Aaj], insert 2.prems, auto)
show reduce a $x D A \in$ carrier-mat $m n$ using reduce-ax by linarith
qed (insert 2.prems, auto)
also have $\ldots=A \$ \$(i, j)$ by (rule reduce-preserves[OF A $j$ Aaj], insert 2.prems, auto)
finally show ?case .
lemma reduce-below-0-D0:
assumes $A: A \in$ carrier-mat $m n$ and $a: a<m$ and $j: 0<n$
and $A a j: A \$(a, 0) \neq 0$
assumes $i \in$ set $x s$ and distinct $x s$ and $\forall x \in$ set xs. $x<m \wedge a<x$
and $D=0$
shows reduce-below a xs $D A \$ \$(i, 0)=0$
using assms
proof (induct a xs $D$ A arbitrary: A i rule: reduce-below.induct)
case (1 a D A)
then show ?case by auto
next
case (2 a $x$ xs $D$ A)
note $A=2 . \operatorname{prems}(1)$
note $a=2 . \operatorname{prems}(2)$
note $j=$ 2.prems(3)
note $A a j=2 . \operatorname{prems}(4)$
note $i$-set-xxs $=2 . \operatorname{prems}(5)$
note $d=2 . \operatorname{prems}(6)$
note $x x s$-less-m $=2 . \operatorname{prems}(7)$
note $D 0=2 . \operatorname{prems}(8)$
have xm: $x<m$ using 2.prems by auto
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=\operatorname{euclid}-\operatorname{ext2}(A \$ \$(a, 0))(A \$ \$(x, 0))$
by (metis prod-cases5)
let ?reduce-ax $=$ reduce a $x D A$
have reduce-ax: ?reduce-ax $\in$ carrier-mat $m n$
by (metis (no-types, lifting) 2 add.comm-neutral append-rows-def carrier-matD carrier-mat-triv index-mat-four-block(2,3)
index-one-mat(2) index-smult-mat(2) index-zero-mat(2,3) reduce-preserves-dimensions)
show ?case
proof (cases $i=x$ )
case True
have reduce-below a $(x \#$ xs) $D A \$ \$(i, 0)=$ reduce-below a xs $D$ (reduce a $x$
$D$ A) \$ (i, 0)
by auto
also have $\ldots=($ reduce a x D A) $\$ \$(i, 0)$
proof (rule reduce-below-preserves-D0[OF - aj--])
show reduce a x $D A \in$ carrier-mat $m n$ using reduce-ax by linarith
show distinct xs using $d$ by auto
show $\forall x \in$ set $x s . x<m \wedge a<x$ using $x x s$-less- $m$ by auto
show reduce a x D A $\$ \$(a, 0) \neq 0$
by (unfold D0, rule reduce-not0'[OF A--j-Aaj], insert 2.prems, auto)
show $i \notin$ set xs using True $d$ by auto
show $i \neq a$ using 2.prems by blast
show $i<m$ by (simp add: True trans-less-add1 xm)
qed (insert D0)

```
 also have ... = 0 unfolding True by (rule reduce-0[OF A - j- - Aaj], insert
2.prems, auto)
 finally show ?thesis.
 next
 case False note i-not-x = False
 have h: reduce-below a xs D (reduce a x D A) $$ (i,0) = 0
 proof (rule 2.hyps[OF - aj--])
 show reduce a x D A \in carrier-mat m n using reduce-ax by linarith
 show i\in set xs using i-set-xxs i-not-x by auto
 show distinct xs using d by auto
 show }\forallx\in\mathrm{ set xs. }x<m\wedgea<x\mathrm{ using xxs-less-m by auto
 show reduce a x D A $$ (a,0)}=
 by (unfold D0, rule reduce-not0'[OF A - j - Aaj], insert 2.prems, auto)
 qed (insert D0)
 have reduce-below a (x # xs) D A $$ (i,0) = reduce-below a xs D (reduce a x
D A) $$ (i,0)
 by auto
 also have ... = 0 using h .
 finally show ?thesis .
 qed
qed
end
Definition of the echelon form algorithm in JNF
primrec bezout-iterate-JNF
where bezout-iterate-JNF A 0 i j bezout = A
 | bezout-iterate-JNF A (Suc n) i j bezout=
 (if (Suc n) \leq i then A else
 bezout-iterate-JNF (bezout-matrix-JNF A i ((Suc n)) j bezout * A) n i
j bezout)
```


## definition

```
 echelon-form-of-column- \(k\)-JNF bezout \(A^{\prime} k=\)
```

    echelon-form-of-column- \(k\)-JNF bezout \(A^{\prime} k=\)
    (let \((A, i)=A^{\prime}\)
    (let \((A, i)=A^{\prime}\)
    in if \((i=\) dim-row \(A) \vee(\forall m \in\{i . .<\) dim-row \(A\} . A \$ \$(m, k)=0)\) then \((A\),
    in if \((i=\) dim-row \(A) \vee(\forall m \in\{i . .<\) dim-row \(A\} . A \$ \$(m, k)=0)\) then \((A\),
    i) else
i) else
if $(\forall m \in\{i+1 . .<$ dim-row $A\} . A \$ \$(m, k)=0)$ then $(A, i+1)$ else
if $(\forall m \in\{i+1 . .<$ dim-row $A\} . A \$ \$(m, k)=0)$ then $(A, i+1)$ else
let $n=($ LEAST $n . A \$ \$(n, k) \neq 0 \wedge i \leq n)$;
let $n=($ LEAST $n . A \$ \$(n, k) \neq 0 \wedge i \leq n)$;
interchange- $A=$ swaprows $i n A$
interchange- $A=$ swaprows $i n A$
in
in
(bezout-iterate-JNF (interchange-A) (dim-row $A-1) i k$ bezout, $i+1)$ )

```
 (bezout-iterate-JNF (interchange-A) (dim-row \(A-1) i k\) bezout, \(i+1)\))
```

definition echelon-form-of-upt-k-JNF A $k$ bezout $=(f s t$ (foldl (echelon-form-of-column-k-JNF bezout) $(A, 0)[0 . .<$ Suc $k]))$
definition echelon-form-of-JNF A bezout $=$ echelon-form-of-upt-k-JNF A (dim-col A-1) bezout

```
context includes lifting-syntax
begin
lemma HMA-bezout-iterate[transfer-rule]:
 assumes n<CARD('m)
 shows ((Mod-Type-Connect.HMA-M :: - => int ^'n :: mod-type ^'m :: mod-type
=> -)
 ===>(Mod-Type-Connect.HMA-I) ===> (Mod-Type-Connect.HMA-I) ===>
(=) ===> (Mod-Type-Connect.HMA-M))
 (}\lambdaA i j bezout. bezout-iterate-JNF A n i j bezout)
 (}\lambdaA i j bezout. bezout-iterate A n i j bezout)
proof (intro rel-funI, goal-cases)
 case (1 A A' i i' j j' bezout bezout')
 then show ?case using assms
 proof (induct n arbitrary: A A')
 case 0
 then show ?case by auto
 next
 case (Suc n)
 note AA'[transfer-rule] = Suc.prems(1)
 note }\mp@subsup{i}{}{\prime}[\mathrm{ [transfer-rule] = Suc.prems(2)
 note jj'[transfer-rule] = Suc.prems(3)
 note }b\mp@subsup{b}{}{\prime}[\mathrm{ transfer-rule] =Suc.prems(4)
 note Suc-n-less-m = Suc.prems(5)
 let ?BI-JNF = bezout-iterate-JNF
 let ?BI-HMA = bezout-iterate
 let ?from-nat-rows = mod-type-class.from-nat :: - = 'm
 have Sucn[transfer-rule]: Mod-Type-Connect.HMA-I (Suc n) (?from-nat-rows
(Suc n))
 unfolding Mod-Type-Connect.HMA-I-def
 by (simp add: Suc-lessD Suc-n-less-m mod-type-class.from-nat-to-nat)
 have n: n <CARD('m) using Suc-n-less-m by simp
 have [transfer-rule]:
 Mod-Type-Connect.HMA-M (?BI-JNF (bezout-matrix-JNF A i (Suc n) j bezout
* A) n i j bezout)
 (?BI-HMA (bezout-matrix A' i'(?from-nat-rows (Suc n)) j' bezout' ** A') n
i' j' bezout')
 by (rule Suc.hyps[OF - i\mp@subsup{i}{}{\prime} j\mp@subsup{j}{}{\prime}}b\mp@subsup{b}{}{\prime}n],\mathrm{ transfer-prover)
 moreover have Suc n\leqi\Longrightarrow Suc n \leq mod-type-class.to-nat i'
 and Suc n> i\LongrightarrowSuc n> mod-type-class.to-nat i'
 by (metis 1(2) Mod-Type-Connect.HMA-I-def)+
 ultimately show ?case using AA' by auto
 qed
qed
```

corollary HMA-bezout-iterate'[transfer-rule]:

```
fixes \(A^{\prime}::\) int ^ ' \(n::\) mod-type ^' \(m\) :: mod-type
assumes \(n\) : \(n<C A R D(' m)\)
and Mod-Type-Connect.HMA-M A \(A^{\prime}\)
 and Mod-Type-Connect.HMA-I \(i i^{\prime}\) and Mod-Type-Connect.HMA-I j \(j^{\prime}\)
shows Mod-Type-Connect.HMA-M (bezout-iterate-JNF A n ij bezout) (bezout-iterate
\(A^{\prime} n i^{\prime} j^{\prime}\) bezout)
using assms HMA-bezout-iterate[OF n] unfolding rel-fun-def by force
```

lemma snd-echelon-form-of-column-k-JNF-le-dim-row:
assumes $i<$ dim-row $A$
shows snd (echelon-form-of-column-k-JNF bezout $(A, i) k$ ) $\leq$ dim-row $A$
using assms unfolding echelon-form-of-column-k-JNF-def by auto

```
lemma HMA-echelon-form-of-column-k[transfer-rule]:
 assumes \(k\) : \(k<C A R D(' n)\)
 shows \(\left((=)===>\right.\) rel-prod (Mod-Type-Connect.HMA-M :: \(\Rightarrow\) int \({ }^{\text {- } n ~:: ~}\)
mod-type ^ ' \(m::\) mod-type \(\Rightarrow-)(\lambda a b . a=b \wedge a \leq C A R D(' m))\)
 \(===>\left(\right.\) rel-prod (Mod-Type-Connect.HMA-M) \(\left.\left.\left(\lambda a b . a=b \wedge a \leq C A R D\left({ }^{\prime} m\right)\right)\right)\right)\)
 (\(\lambda\) bezout A. echelon-form-of-column- \(k\)-JNF bezout A \(k\))
 (\(\lambda\) bezout A. echelon-form-of-column- \(k\) bezout \(A k\))
proof (intro rel-funI, goal-cases)
 case (1 bezout bezout' xa ya)
 obtain \(A i\) where \(x a\) : xa \(=(A, i)\) using surjective-pairing by blast
 obtain \(A^{\prime} i^{\prime}\) where \(y a\) : ya \(=\left(A^{\prime}, i^{\prime}\right)\) using surjective-pairing by blast
 have \(i^{\prime}\) [transfer-rule]: \(i=i^{\prime}\) using 1 (2) xa ya by auto
 have \(i\)-le-m: \(i \leq C A R D(' m)\) using 1 (2) xa ya by auto
 have \(A A^{\prime}[\) transfer-rule \(]\) : Mod-Type-Connect.HMA-M A \(A^{\prime}\) using 1(2) xa ya by
auto
 have \(b b^{\prime}[\) transfer-rule \(]\) : bezout \(=\) bezout' using 1 by auto
 let ?from-nat-rows \(=\) mod-type-class.from-nat \(::-\Rightarrow{ }^{\prime} m\)
 let ?from-nat-cols \(=\) mod-type-class.from-nat \(::-\boldsymbol{\beta}^{\prime} n\)
 have \(k k^{\prime}[\) transfer-rule]: Mod-Type-Connect.HMA-I \(k\) (?from-nat-cols \(k\))
 by (simp add: Mod-Type-Connect.HMA-I-def assms mod-type-class.to-nat-from-nat-id)
 have \(c 1\)-eq: \((i=\) dim-row \(A)=\left(i=\right.\) nrows \(\left.A^{\prime}\right)\)
 by (metis AA' Mod-Type-Connect.dim-row-transfer-rule nrows-def)
 have \(c \mathcal{Z}\)-eq: \((\forall m \in\{i . .<\) dim-row \(A\} . A \$ \$(m, k)=0)\)
 \(=\left(\forall m \geq\right.\) ?from-nat-rows i. \(A^{\prime} \$ m \$\) ?from-nat-cols \(\left.k=0\right)(\) is ?lhs \(=\) ? ?rhs \()\) if
\(i\)-not: \(i \neq\) dim-row \(A\)
 proof
 assume lhs: ?lhs
 show ?rhs
 proof (rule+)
 fix \(m\)
 assume im: ?from-nat-rows \(i \leq m\)
```

have $\mathrm{im}^{\prime}$ : $i<C A R D\left({ }^{\prime} m\right)$ using $i$-le-m i-not
by (simp add: c1-eq dual-order.order-iff-strict nrows-def)
let $?^{\prime} m^{\prime}=$ mod-type-class.to-nat $m$
have $m m^{\prime}[$ transfer-rule $]$ : Mod-Type-Connect.HMA-I ? $m^{\prime} m$
by (simp add: Mod-Type-Connect.HMA-I-def)
from im have mod-type-class.to-nat (?from-nat-rows $i$ ) $\leq m^{\prime}$
by (simp add: to-nat-mono')
hence ? $m^{\prime}>=i$ using $i m i m^{\prime}$ by (simp add: mod-type-class.to-nat-from-nat-id)
hence $? m^{\prime} \in\{i . .<$ dim-row $A\}$
using AA' Mod-Type-Connect.dim-row-transfer-rule mod-type-class.to-nat-less-card
by fastforce
hence $A \$ \$\left(? m^{\prime}, k\right)=0$ using lhs by auto
moreover have $A \$ \$\left(? m^{\prime}, k\right)=A^{\prime} \$ h m \$ h$ ?from-nat-cols $k$ unfolding
index-hma-def[symmetric] by transfer-prover
ultimately show $A^{\prime} \$ h m \$ h$ ?from-nat-cols $k=0$ by simp
qed
next
assume rhs: ?rhs
show ?lhs
proof (rule)
fix $m$ assume $m: m \in\{i . .<$ dim-row $A\}$
let ? $m=$ ?from-nat-rows $m$
have $m m^{\prime}[$ transfer-rule]: Mod-Type-Connect.HMA-I m?m
by (metis AA' Mod-Type-Connect.HMA-I-def Mod-Type-Connect.dim-row-transfer-rule atLeastLessThan-iff m mod-type-class.from-nat-to-nat)
have $m$-ge- $i$ : ? $m \geq$ ? from-nat-rows $i$
using $A A^{\prime}$ Mod-Type-Connect.dim-row-transfer-rule from-nat-mono' $m$ by
fastforce
hence $A^{\prime} \$ h$ ? $m$ \$h ?from-nat-cols $k=0$ using rhs by auto
moreover have $A \$ \$(m, k)=A^{\prime} \$ h$ ? $m$ \$h ?from-nat-cols $k$
unfolding index-hma-def[symmetric] by transfer-prover
ultimately show $A \$ \$(m, k)=0$ by simp
qed
qed
show? case
proof $($ cases $(i=$ dim-row $A) \vee(\forall m \in\{i . .<$ dim-row $A\} . A \$ \$(m, k)=0))$
case True
hence $*$ : ( $\forall m \geq$ ?from-nat-rows $i . A^{\prime} \$ m$ \$ ?from-nat-cols $\left.k=0\right) \vee(i=n r o w s$
$A^{\prime}$ )
using c1-eq $c 2-e q$ by auto
have echelon-form-of-column-k-JNF bezout xa $k=(A, i)$
unfolding echelon-form-of-column-k-JNF-def using True xa by auto
moreover have echelon-form-of-column- $k$ bezout ya $k=\left(A^{\prime}, i^{\prime}\right)$
unfolding echelon-form-of-column-k-def Let-def using * ya $i^{\prime}$ by simp
ultimately show ?thesis unfolding xa ya rel-prod.simps using $A A^{\prime} i i^{\prime} b b^{\prime}$
$i-l e-m$ by blast
next
case False note not-c1 = False
hence $i m$ ': $i<C A R D(' m)$
by (metis c1-eq dual-order.order-iff-strict $i$-le-m nrows-def)
have $*:(\forall m \in\{i+1 . .<$ dim-row $A\} . A \$ \$(m, k)=0)$
$=\left(\forall m>\right.$ ?from-nat-rows i. $A^{\prime} \$ m \$$ ?from-nat-cols $\left.k=0\right)($ is ?lhs $=$ ? $r h s)$
proof
assume lhs: ?lhs
show ?rhs
proof (rule + )
fix $m$
assume im: ?from-nat-rows $i<m$
let $? m^{\prime}=$ mod-type-class.to-nat $m$
have $m m^{\prime}[$ transfer-rule $]:$ Mod-Type-Connect.HMA-I ? $m^{\prime} m$
by (simp add: Mod-Type-Connect.HMA-I-def)
from im have mod-type-class.to-nat (?from-nat-rows $i)<? m^{\prime}$
by (simp add: to-nat-mono)
hence $? m^{\prime}>i$ using $i m i m^{\prime}$ by (simp add: mod-type-class.to-nat-from-nat-id)
hence $? m^{\prime} \in\{i+1 . .<$ dim-row $A\}$
using AA' Mod-Type-Connect.dim-row-transfer-rule mod-type-class.to-nat-less-card
by fastforce
hence $A \$ \$\left(? m^{\prime}, k\right)=0$ using lhs by auto
moreover have $A \$ \$\left(? m^{\prime}, k\right)=A^{\prime} \$ h m \$ h$ ?from-nat-cols $k$ unfolding
index-hma-def[symmetric] by transfer-prover
ultimately show $A^{\prime} \$ h m \$ h$ ?from-nat-cols $k=0$ by simp
qed
next
assume rhs: ?rhs
show ?lhs
proof (rule)
fix $m$ assume $m: m \in\{i+1 . .<$ dim-row $A\}$
let $? m=$ ?from-nat-rows $m$
have $\mathrm{mm}^{\prime}[$ transfer-rule $]:$ Mod-Type-Connect.HMA-I m ?m
by (metis AA' Mod-Type-Connect.HMA-I-def Mod-Type-Connect.dim-row-transfer-rule atLeastLessThan-iff m mod-type-class.from-nat-to-nat)
have $m$-ge- $i$ : ? $m>$ ? from-nat-rows $i$
by (metis Mod-Type-Connect.HMA-I-def One-nat-def add-Suc-right atLeast-
LessThan-iff from-nat-mono
le-simps(3) $\mathrm{mmm} \mathrm{m}^{\prime}$ mod-type-class.to-nat-less-card nat-arith.rule0)
hence $A^{\prime} \$ h$ ? $m$ ? ? from-nat-cols $k=0$ using rhs by auto
moreover have $A \$ \$(m, k)=A^{\prime} \$ h$ ? $m \$ h$ ?from-nat-cols $k$
unfolding index-hma-def[symmetric] by transfer-prover
ultimately show $A \$(m, k)=0$ by simp

## qed

qed
show ?thesis
proof $($ cases $(\forall m \in\{i+1 . .<$ dim-row $A\} . A \$ \$(m, k)=0))$
case True
have echelon-form-of-column- $k$-JNF bezout xa $k=(A, i+1)$
unfolding echelon-form-of-column- $k$-JNF-def using True xa not-c1 by auto
moreover have echelon-form-of-column-k bezout ya $k=\left(A^{\prime}, i^{\prime}+1\right)$
unfolding echelon-form-of-column-k-def Let-def using ya $i i^{\prime} *$ True c1-eq
c2-eq not-c1 by auto
ultimately show ?thesis unfolding xa ya rel-prod.simps using $A A^{\prime} i i^{\prime} b b^{\prime}$ $i$-le-m
by (metis Mod-Type-Connect.dim-row-transfer-rule le-neq-implies-less le-simps(3) not-c1 semiring-norm(175))
next

## case False

hence $*$ : $\neg\left(\forall m>\right.$ ? from-nat-rows $i . A^{\prime} \$ m$ \$ ?from-nat-cols $\left.k=0\right)$ using $*$ by auto
have $* *: \neg\left(\left(\forall m \geq\right.\right.$ ? from-nat-rows $i . A^{\prime} \$ h m$ \$h ?from-nat-cols $\left.k=0\right) \vee i=$ nrows $A^{\prime}$ )
using c1-eq c2-eq not-c1 by auto
define $n$ where $n=(L E A S T$ n. $A \$ \$(n, k) \neq 0 \wedge i \leq n)$
define $n^{\prime}$ where $n^{\prime}=\left(\right.$ LEAST $n$. $A^{\prime} \$ n \$$ ?from-nat-cols $k \neq 0 \wedge$ ?from-nat-rows $i \leq n$ )
let ? interchange- $A=$ swaprows in $A$
let ?interchange- $A^{\prime}=$ interchange-rows $A^{\prime}\left(\right.$ ?from-nat-rows $\left.i^{\prime}\right) n^{\prime}$
have $n n^{\prime}[$ transfer-rule $]:$ Mod-Type-Connect.HMA-I $n n^{\prime}$
proof -
let $? n^{\prime}=$ mod-type-class.to-nat $n^{\prime}$
have exist: $\exists n . A^{\prime} \$ n \$$ ?from-nat-cols $k \neq 0 \wedge$ ?from-nat-rows $i \leq n$ using * by auto
from this obtain $a$ where $c: A^{\prime} \$ a \$$ ?from-nat-cols $k \neq 0 \wedge$ ?from-nat-rows $i \leq a$ by blast
have $n=? n^{\prime}$
proof (unfold $n$-def, rule Least-equality)
have $n^{\prime} n^{\prime}\left[\right.$ transfer-rule]: Mod-Type-Connect.HMA-I ? $n^{\prime} n^{\prime}$
by (simp add: Mod-Type-Connect.HMA-I-def)
have $e:\left(A^{\prime} \$ n^{\prime} \$\right.$ ?from-nat-cols $k \neq 0 \wedge$ ?from-nat-rows $\left.i \leq n^{\prime}\right)$
by (metis (mono-tags, lifting) LeastI c2-eq $n^{\prime}$-def not-c1)
hence $i \leq$ mod-type-class.to-nat $n^{\prime}$
using $\mathrm{im}^{\prime}$ mod-type-class.from-nat-to-nat to-nat-mono' by fastforce
moreover have $A^{\prime} \$ n^{\prime} \$$ ?from-nat-cols $k=A \$ \$\left(? n^{\prime}, k\right)$
unfolding index-hma-def[symmetric] by (transfer', auto)
ultimately show $A \$ \$\left(? n^{\prime}, k\right) \neq 0 \wedge i \leq ? n^{\prime}$
using $e$ by auto
show $\wedge y . A \$ \$(y, k) \neq 0 \wedge i \leq y \Longrightarrow$ mod-type-class.to-nat $n^{\prime} \leq y$
by (smt AA' Mod-Type-Connect.HMA-M-def Mod-Type-Connect.from-hma ${ }_{m}$-def
assms from-nat-mono
from-nat-mono' index-mat(1) linorder-not-less mod-type-class.from-nat-to-nat-id mod-type-class.to-nat-less-card $n^{\prime}$-def order.strict-trans prod.simps(2)
wellorder-Least-lemma(2))
qed
thus ?thesis unfolding Mod-Type-Connect.HMA-I-def by auto
qed
have $d r 1[$ transfer-rule $]:\left(\right.$ nrows $\left.A^{\prime}-1\right)=($ dim-row $A-1)$ unfolding nrows-def
using $A A^{\prime}$ Mod-Type-Connect.dim-row-transfer-rule by force
have ii'2[transfer-rule]: Mod-Type-Connect.HMA-I i (?from-nat-rows $i^{\prime}$ )
by (metis ** Mod-Type-Connect.HMA-I-def i-le-m ii' le-neq-implies-less mod-type-class.to-nat-from-nat-id nrows-def)
have $i i^{\prime}$ '3[transfer-rule]: Mod-Type-Connect.HMA-I $i^{\prime}$ (?from-nat-rows $i^{\prime}$ ) using $i i^{\prime} i i^{\prime} 2$ by blast
let ?BI-JNF $=($ bezout-iterate-JNF $($ ?interchange-A $)($ dim-row $A-1) i k$ bezout)
let ?BI-HA $=\left(\right.$ bezout-iterate $\left(?\right.$ interchange- $\left.A^{\prime}\right)\left(\right.$ nrows $\left.A^{\prime}-1\right)(? f r o m-n a t-r o w s$ i) (?from-nat-cols k) bezout)
have e-rw: echelon-form-of-column-k-JNF bezout xa $k=(? B I-J N F, i+1)$ unfolding echelon-form-of-column- $k$-JNF-def $n$-def using False xa not-c1 by auto
have e-rw2: echelon-form-of-column-k bezout ya $k=($ ?BI-HA,i+1) unfolding echelon-form-of-column-k-def Let-def $n^{\prime}$-def using * ya ** $i i^{\prime}$ by auto
have $s[$ transfer-rule $]$ : Mod-Type-Connect.HMA-M (swaprows $i^{\prime} n A$ ) (interchange-rows $A^{\prime}$ (?from-nat-rows $i^{\prime}$ ) $n^{\prime}$ )
by transfer-prover
have $n-C A R D:\left(\right.$ nrows $\left.A^{\prime}-1\right)<C A R D(' m)$ unfolding nrows-def by auto
note a[transfer-rule $]=H M A$-bezout-iterate $[O F n$-CARD]
have BI[transfer-rule]:Mod-Type-Connect.HMA-M ?BI-JNF ?BI-HA unfolding $i i^{\prime} d r 1$
by (rule HMA-bezout-iterate ${ }^{\prime}\left[O F-s i i^{\prime} 3 k k '\right]$, insert $n$-CARD, transfer ${ }^{\prime}$, simp)
thus ?thesis using e-rw e-rw2 $b b^{\prime}$
by (metis (mono-tags, lifting) AA' False Mod-Type-Connect.dim-row-transfer-rule atLeastLessThan-iff dual-order.trans order-less-imp-le rel-prod-inject)
qed
qed
qed
corollary HMA-echelon-form-of-column- $k^{\prime}[$ transfer-rule $]$ :
assumes $k$ : $k<C A R D\left({ }^{\prime} n\right)$ and $i \leq C A R D(' m)$
and (Mod-Type-Connect.HMA-M ::- $\Rightarrow$ int ${ }^{\wedge}$ ' $n::$ mod-type ${ }^{\wedge}$ ' $m$ :: mod-type $\Rightarrow$
-) $A A^{\prime}$
shows (rel-prod (Mod-Type-Connect.HMA-M) ( $\left.\lambda a b . a=b \wedge a \leq C A R D\left({ }^{\prime} m\right)\right)$ ) (echelon-form-of-column-k-JNF bezout $(A, i) k$ )
(echelon-form-of-column-k bezout ( $\left.A^{\prime}, i\right) k$ )
using assms HMA-echelon-form-of-column- $k\left[\begin{array}{ll}\text { OF } & k\end{array}\right]$ unfolding rel-fun-def by force
lemma HMA-foldl-echelon-form-of-column-k:
assumes $k$ : $k \leq C A R D(' n)$
shows ((Mod-Type-Connect.HMA-M ::- $\Rightarrow$ int ${ }^{\wedge}$ ' $n::$ mod-type ${ }^{\text {- } m}::$ mod-type
$\Rightarrow-)===>(=)$
$===>\left(\right.$ rel-prod (Mod-Type-Connect.HMA-M) $\left.\left.\left(\lambda a b . a=b \wedge a \leq C A R D\left({ }^{\prime} m\right)\right)\right)\right)$
( $\lambda A$ bezout. (foldl (echelon-form-of-column-k-JNF bezout) $(A, 0)[0 . .<k]))$
( $\lambda A$ bezout. (foldl (echelon-form-of-column-k bezout) $(A, 0)[0 . .<k]))$
proof (intro rel-funI, goal-cases)

```
 case (1 A A' bezout bezout')
 then show ?case using assms
 proof (induct k arbitrary: A A')
 case 0
 then show ?case by auto
 next
 case (Suc k)
 note AA'[transfer-rule] = Suc.prems(1)
 note bb'[transfer-rule] = Suc.prems(2)
 note Suc-k-less-m = Suc.prems(3)
 let ?foldl-JNF = foldl (echelon-form-of-column-k-JNF bezout) (A,0)
 let ?foldl-HA = foldl (echelon-form-of-column-k bezout') (A',0)
 have set-rw: [0..<Suc k]=[0..<k]@ [k] by auto
 have f-JNF:?foldl-JNF [0..<Suc k] = echelon-form-of-column-k-JNF bezout
(?foldl-JNF [0..<k]) k
 by auto
 have f-HA:?foldl-HA [0..<Suc k]= echelon-form-of-column-k bezout'(?foldl-HA
[0..<k])k
 by auto
 have hyp[transfer-rule]: rel-prod Mod-Type-Connect.HMA-M (\lambdaa b. a=b ^
a\leqCARD('m))(?foldl-JNF [0..<k])(?foldl-HA [0..<k])
 by (rule Suc.hyps[OF AA'], insert Suc.prems, auto)
 show ?case unfolding f-JNF unfolding f-HA bb' using HMA-echelon-form-of-column-k'
 by (smt 1(2)Suc-k-less-m Suc-le-lessD hyp rel-prod.cases)
 qed
qed
```

lemma HMA-echelon-form-of-upt-k[transfer-rule]:
assumes $k$ : $k<C A R D(' n)$
shows ((Mod-Type-Connect.HMA-M ::- $\Rightarrow$ int ^' $n::$ mod-type ^'m :: mod-type
$\Rightarrow-)===>(=)$
$===>($ Mod-Type-Connect.HMA-M) $)$
( $\lambda A$ bezout. echelon-form-of-upt- $k$-JNF A $k$ bezout)
( $\lambda A$ bezout. echelon-form-of-upt- $k$ A $k$ bezout)
proof (intro rel-funI, goal-cases)
case ( 1 A A' bezout bezout')
have $k^{\prime}$ : Suc $k \leq \operatorname{CARD}\left({ }^{\prime} n\right)$ using $k$ by auto
have rel-foldl: (rel-prod (Mod-Type-Connect.HMA-M) ( $\lambda a b . a=b \wedge a \leq C A R D(' m)))$
(foldl (echelon-form-of-column-k-JNF bezout) $(A, 0)[0 . .<S u c k])$
(foldl (echelon-form-of-column-k bezout) $\left.\left(A^{\prime}, 0\right)[0 . .<S u c k]\right)$
using HMA-foldl-echelon-form-of-column-k[OF $k\rceil$ by (smt 1(1) rel-fun-def)
then show ?case using assms unfolding echelon-form-of-upt- $k$-JNF-def eche-
lon-form-of-upt-k-def
by (metis (no-types, lifting) 1(2) prod.collapse rel-prod-inject)
qed

```
lemma HMA-echelon-form-of[transfer-rule]:
 shows ((Mod-Type-Connect.HMA-M :: - = int ^ ' }n :: mod-type ^'m :: mod-type
=>-) ===> (=)
 ===> (Mod-Type-Connect.HMA-M))
 (}\lambdaA\mathrm{ bezout. echelon-form-of-JNF A bezout)
 (}\lambdaA\mathrm{ bezout. echelon-form-of A bezout)
proof (intro rel-funI, goal-cases)
 case (1 A A' bezout bezout')
 note }A\mp@subsup{A}{}{\prime}[\mathrm{ transfer-rule }]=1(1
 note bb'[transfer-rule] = 1(2)
 have *: (dim-col A - 1) < CARD('n) using 1
 using Mod-Type-Connect.dim-col-transfer-rule by force
 note **[transfer-rule] = HMA-echelon-form-of-upt-k[OF *]
 have [transfer-rule]: (ncols A' - 1) = (dim-col A - 1)
 by (metis 1(1) Mod-Type-Connect.dim-col-transfer-rule ncols-def)
 have [transfer-rule]: (dim-col A - 1) = (dim-col A - 1) ..
 show ?case unfolding echelon-form-of-def echelon-form-of-JNF-def bb'
 by (metis (mono-tags) ** 1(1)<ncols A'-1 = dim-col A - 1〉rel-fun-def)
qed
end
```


## context

begin
private lemma echelon-form-of-euclidean-invertible-mod-type:
fixes $A$ :: int mat
assumes $A \in$ carrier-mat $C A R D$ ('m::mod-type) $C A R D(' n:: m o d-t y p e)$
shows $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat (CARD('m::mod-type)) (CARD('m::mod-type))
$\wedge P * A=$ echelon-form-of-JNF A euclid-ext2
$\wedge$ echelon-form-JNF (echelon-form-of-JNF A euclid-ext2)
proof -
define $A^{\prime}$ where $A^{\prime}=\left(\right.$ Mod-Type-Connect.to-hma ${ }_{m} A::$ int $^{\text {^' }} n::$ mod-type ${ }^{\text {^' } m}$
:: mod-type)
have $A A^{\prime}\left[\right.$ transfer-rule]: Mod-Type-Connect.HMA-M A $A^{\prime}$
unfolding Mod-Type-Connect.HMA-M-def using assms $A^{\prime}$-def by auto
have [transfer-rule]: Mod-Type-Connect.HMA-M
(echelon-form-of-JNF A euclid-ext2) (echelon-form-of $A^{\prime}$ euclid-ext2)
by transfer-prover
have $\exists P$. invertible $P \wedge P * * A^{\prime}=\left(\right.$ echelon-form-of $A^{\prime}$ euclid-ext2)
$\wedge$ echelon-form (echelon-form-of $A^{\prime}$ euclid-ext2)
by (rule echelon-form-of-euclidean-invertible)
thus ?thesis by (transfer, auto)
qed
private lemma echelon-form-of-euclidean-invertible-nontriv-mod-ring:
fixes $A$ :: int mat
assumes $A \in$ carrier-mat $C A R D$ ('m::nontriv mod-ring) $C A R D$ (' $n::$ nontriv mod-ring)
shows $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $(C A R D(' m))(C A R D(' m))$
$\wedge P * A=$ echelon-form-of-JNF A euclid-ext2
$\wedge$ echelon-form-JNF (echelon-form-of-JNF A euclid-ext2)
using assms echelon-form-of-euclidean-invertible-mod-type by (smt CARD-mod-ring)
lemmas echelon-form-of-euclidean-invertible-nontriv-mod-ring-internalized $=$ echelon-form-of-euclidean-invertible-nontriv-mod-ring[unfolded CARD-mod-ring, internalize-sort 'm::nontriv, internalize-sort 'b::nontriv]

```
context
 fixes m::nat and n::nat
 assumes local-typedef1: \exists(Rep :: ('b 盾 int)) Abs.type-definition Rep Abs {0..<m
:: int}
 assumes local-typedef2: \exists(Rep :: ('c m int)) Abs.type-definition Rep Abs {0..<n
:: int}
 and m:m>1
 and n: n>1
begin
lemma echelon-form-of-euclidean-invertible-nontriv-mod-ring-aux:
 fixes A:: int mat
 assumes A \in carrier-mat m n
 shows \existsP. invertible-mat P}\wedge P carrier-mat m m
 \wedge P*A = echelon-form-of-JNF A euclid-ext2
 \wedge ~ e c h e l o n - f o r m - J N F ~ (e c h e l o n - f o r m - o f - J N F ~ A ~ e u c l i d - e x t 2) ~ ()
using echelon-form-of-euclidean-invertible-nontriv-mod-ring-internalized
 [OF type-to-set2(1)[OF local-typedef1 local-typedef2]
 type-to-set1(1)[OF local-typedef1 local-typedef2]]
 using assms
 using type-to-set1(2) local-typedef1 local-typedef2 n m by metis
end
```

context
begin
private lemma echelon-form-of-euclidean-invertible-cancelled-first:
$\exists$ Rep Abs. type-definition Rep Abs $\{0 . .<$ int $n\} \Longrightarrow 1<m \Longrightarrow 1<n \Longrightarrow$
$A \in$ carrier-mat $m n \Longrightarrow \exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m$
$\wedge P *(A::$ int mat $)=$ echelon-form-of-JNF A euclid-ext2 $\wedge$ echelon-form-JNF
(echelon-form-of-JNF A euclid-ext2)
using echelon-form-of-euclidean-invertible-nontriv-mod-ring-aux[cancel-type-definition, of $m n A]$
by force
private lemma echelon-form-of-euclidean-invertible-cancelled-both:
$1<m \Longrightarrow 1<n \Longrightarrow A \in$ carrier-mat $m n \Longrightarrow \exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m$
$\wedge P *(A::$ int mat $)=$ echelon-form-of-JNF A euclid-ext2 $\wedge$ echelon-form-JNF (echelon-form-of-JNF A euclid-ext2)
using echelon-form-of-euclidean-invertible-cancelled-first[cancel-type-definition, of $n m A]$
by force

```
lemma echelon-form-of-euclidean-invertible':
fixes \(A\) :: int mat
 assumes \(A \in\) carrier-mat \(m n\)
 and \(1<m\) and \(1<n\)
 shows \(\exists P\). invertible-mat \(P \wedge\)
 \(P \in\) carrier-mat \(m m \wedge P * A=\) echelon-form-of-JNF A euclid-ext2
 \(\wedge\) echelon-form-JNF (echelon-form-of-JNF A euclid-ext2)
 using echelon-form-of-euclidean-invertible-cancelled-both assms by auto
end
end
context mod-operation
begin
definition FindPreHNF-rectangular A
 \(=\quad\) (let \(m=\) dim-row \(A ; n=\) dim-col \(A\) in
 if \(m<2 \vee n=0\) then \(A\) else - No operations are carried out if \(\mathrm{m}=1\)
 if \(n=1\) then
 let non-zero-positions \(=\) filter \((\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<\) dim-row \(A]\) in
 if non-zero-positions \(=[]\) then \(A\)
 else let \(A^{\prime}=(\) if \(A \$ \$(0,0) \neq 0\) then \(A\) else let \(i=\) non-zero-positions \(!0\) in
swaprows 0 i A)
 in reduce-below-impl 0 non-zero-positions \(0 A^{\prime}\)
 else (echelon-form-of-JNF A euclid-ext2))
```

This is the (non-efficient) HNF algorithm obtained from the echelon form and Hermite normal form AFP entries
definition $H N F$-algorithm-from-HA A

$$
=\text { Hermite-of-list-of-rows }(\text { FindPreHNF-rectangular } A)[0 . .<(\text { dim-row } A)]
$$

Now we can combine FindPreHNF-rectangular, FindPreHNF and Hermite-of-list-of-rows to get an algorithm to compute the HNF of any matrix (if it is square and
invertible, then the HNF is computed reducing entries modulo D)

```
definition \(H N F\)-algorithm abs-flag \(A=\)
 (let \(m=\) dim-row \(A ; n=\operatorname{dim}\)-col \(A\) in
 if \(m \neq n\) then Hermite-of-list-of-rows (FindPreHNF-rectangular A) \([0 . .<m]\)
 else
 let \(D=a b s(\) det-int \(A)\) in
 if \(D=0\) then Hermite-of-list-of-rows (FindPreHNF-rectangular A) \([0 . .<m]\)
 else
 let \(A^{\prime}=A @_{r} D \cdot_{m} 1_{m} n\);
 \(E=\) FindPreHNF abs-flag D \(A^{\prime}\);
 \(H=\) Hermite-of-list-of-rows \(E[0 . .<m+n]\)
 in mat-of-rows \(n(\) map \((\) Matrix.row \(H)[0 . .<m]))\)
end
declare mod-operation.FindPreHNF-rectangular-def[code]
declare mod-operation.HNF-algorithm-from-HA-def[code]
declare mod-operation.HNF-algorithm-def[code]
context proper-mod-operation
begin
```

lemma FindPreHNF-rectangular-soundness:
fixes $A$ :: int mat
assumes $A: A \in$ carrier-mat $m n$
shows $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m \wedge P * A=$ FindPreHNF-rectangular
A
$\wedge$ echelon-form-JNF (FindPreHNF-rectangular A)
proof (cases $m<2 \vee n=0$ )
case True
then show ?thesis
by (smt A FindPreHNF-rectangular-def carrier-matD echelon-form-JNF-1xn
echelon-form-mx0
invertible-mat-one left-mult-one-mat one-carrier-mat)
next
case False
have $m 1: m>1$ using False by auto
have n0: $n>0$ using False by auto
show ?thesis
proof (cases $n=1$ )
case True note $n 1=$ True
let $? n z=$ filter $(\lambda i . A \$ \$(i, 0) \neq 0)[1 . .<$ dim-row $A]$
let ? $A^{\prime}=($ if $A \$ \$(0,0) \neq 0$ then $A$ else let $i=$ ? $n z!0$ in swaprows $0 i A)$
have $A^{\prime}: ? A^{\prime} \in$ carrier-mat $m n$ using $A$ by auto
have $A^{\prime} 00: ? A^{\prime} \$ \$(0,0) \neq 0$ if $? n z \neq[]$
by (smt True assms carrier-matD index-mat-swaprows(1) length-greater-0-conv
m1
mem-Collect-eq nat-SN.gt-trans nth-mem set-filter that zero-less-one-class.zero-less-one)
have e-r: echelon-form-JNF (reduce-below 0 ? $n z 0$ ? $A^{\prime}$ ) if nz-not-empty: ? $n z \neq$ []
proof (rule echelon-form-JNF-mx1)
show (reduce-below 0 ?nz 0 ? $A^{\prime}$ ) $\in$ carrier-mat $m n$ using $A$ reduce-below by auto

```
 have (reduce-below 0 ?nz 0 ? A') $$(i,0)=0 if i:i\in{1..<m} for }
```

    proof (cases \(i \in\) set ?nz)
            case True
            show ?thesis
                by (rule reduce-below- \(0-D 0\left[O F A^{\prime}-A^{\prime} 00\right.\) True \(]\), insert m1 n0 True \(A\)
    nz-not-empty, auto)

## next

case False
have (reduce-below 0 ?nz 0 ? $A^{\prime}$ ) $\$ \$(i, 0)=? A^{\prime} \$ \$(i, 0)$
by (rule reduce-below-preserves-D0[OF $A^{\prime}-A^{\prime} 00$ False], insert m1 n0 True A i nz-not-empty, auto)
also have $\ldots=0$ using False n1 assms that by auto
finally show ?thesis.
qed
thus $\forall i \in\{1 . .<m\}$. (reduce-below 0 ? $n z 0$ ? $\left.A^{\prime}\right) \$ \$(i, 0)=0$
by simp
qed (insert True, simp)
have $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m \wedge$ reduce-below 0 ?nz 0 ? $A^{\prime}$ $=P * ? A^{\prime}$
by (rule reduce-below-invertible-mat-D0[OF A ], insert m1 n0 True A, auto)
moreover have $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m \wedge ? A^{\prime}=P * A$ if $? n z \neq[]$
using $A A^{\prime}$-swaprows-invertible-mat $m 1$ that by blast
ultimately have e-inv: $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m \wedge$ reduce-below 0 ? $n z 0 ? A^{\prime}=P * A$
if $? n z \neq[]$
by (smt that A assoc-mult-mat invertible-mult-JNF mult-carrier-mat)
have e-r1: echelon-form-JNF A if nz-empty: ? $n z=[]$
proof (rule echelon-form-JNF-mx1[OF A])
show $\forall i \in\{1 . .<m\}$. $A \$ \$(i, 0)=0$ using nz-empty
by (metis (mono-tags, lifting) A carrier-matD(1) empty-filter-conv set-upt)
qed (insert $n 1$, simp)
have e-inv1: $\exists P$. invertible-mat $P \wedge P \in$ carrier-mat $m m \wedge A=P * A$
by (metis A invertible-mat-one left-mult-one-mat one-carrier-mat)
have FindPreHNF-rectangular $A=($ if $? n z=[]$ then $A$ else reduce-below-impl 0 ? $n z 0$ ? $A^{\prime}$ )
unfolding FindPreHNF-rectangular-def Let-def using m1 n1 A True by auto
also have reduce-below-impl 0 ?nz 0 ? $A^{\prime}=$ reduce-below 0 ?nz 0 ? $A^{\prime}$
by (rule reduce-below-impl[OF--A $]$, insert m1 n0 A, auto)
finally show ?thesis using e-inv e-r e-r1 e-inv1 by metis

## next

case False
have $f$-rw: FindPreHNF-rectangular $A=$ echelon-form-of-JNF A euclid-ext2 unfolding FindPreHNF-rectangular-def Let-def using m1 n0 A False by auto

```
 show ?thesis unfolding f-rw
 by (rule echelon-form-of-euclidean-invertible'[OF A], insert False n0 m1, auto)
 qed
qed
```

lemma HNF-algorithm-from-HA-soundness:
assumes $A: A \in$ carrier-mat $m n$
shows Hermite-JNF (range ass-function-euclidean) ( $\lambda c$ c. range (res-int c)) (HNF-algorithm-from-HA A)
$\wedge(\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge$ (HNF-algorithm-from-HA
$A)=P * A)$
proof -
have $m$ : dim-row $A=m$ using $A$ by auto
have $(\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge$ (HNF-algorithm-from-HA
$A)=P *($ FindPreHNF-rectangular $A))$ unfolding HNF-algorithm-from-HA-def m
proof (rule invertible-Hermite-of-list-of-rows)
show FindPreHNF-rectangular $A \in$ carrier-mat $m n$ by (smt A FindPreHNF-rectangular-soundness mult-carrier-mat)
show echelon-form-JNF (FindPreHNF-rectangular A)
using FindPreHNF-rectangular-soundness by blast
qed
moreover have $(\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge$ (FindPreHNF-rectangular $A)=P * A$ )
by (metis A FindPreHNF-rectangular-soundness)
ultimately have $(\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge$ (HNF-algorithm-from- $H A$
$A)=P * A$ )
by (smt assms assoc-mult-mat invertible-mult-JNF mult-carrier-mat)
moreover have Hermite-JNF (range ass-function-euclidean) ( $\lambda c$. range (res-int
c)) (HNF-algorithm-from-HA A)
by (metis A FindPreHNF-rectangular-soundness HNF-algorithm-from-HA-def
m
Hermite-Hermite-of-list-of-rows mult-carrier-mat)
ultimately show ?thesis by simp
qed
Soundness theorem for any matrix
lemma $H N F$-algorithm-soundness:
assumes $A$ : $A \in$ carrier-mat $m n$
shows Hermite-JNF (range ass-function-euclidean) ( $\lambda$ c. range (res-int c) ) (HNF-algorithm
abs-flag A)
$\wedge(\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge(H N F$-algorithm abs-flag $A)$
$=P * A$ )
proof (cases $m \neq n \vee$ Determinant. $\operatorname{det} A=0$ )
case True
have $H$-rw: HNF-algorithm abs-flag $A=$ Hermite-of-list-of-rows (FindPreHNF-rectangular
A) $[0 . .<m]$
using True $A$ unfolding HNF-algorithm-def Let-def by auto
have $(\exists P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge$ (HNF-algorithm abs-flag

```
A)}=P*(\mathrm{ FindPreHNF-rectangular A)
 unfolding H-rw
 proof (rule invertible-Hermite-of-list-of-rows)
 show FindPreHNF-rectangular A carrier-mat m n
 by (smt A FindPreHNF-rectangular-soundness mult-carrier-mat)
 show echelon-form-JNF (FindPreHNF-rectangular A)
 using FindPreHNF-rectangular-soundness by blast
 qed
 moreover have (}\existsP.P\in\mathrm{ carrier-mat m m ^ invertible-mat P }\\mathrm{ (FindPreHNF-rectangular
A) = P*A)
 by (metis A FindPreHNF-rectangular-soundness)
 ultimately have (}\existsP.P\in\mathrm{ carrier-mat m m ^ invertible-mat P ^(HNF-algorithm
abs-flag A) = P*A)
 by (smt assms assoc-mult-mat invertible-mult-JNF mult-carrier-mat)
 moreover have Hermite-JNF (range ass-function-euclidean) (}\lambdac\mathrm{ c. range (res-int
c))(HNF-algorithm abs-flag A)
 by (metis A FindPreHNF-rectangular-soundness H-rw Hermite-Hermite-of-list-of-rows
mult-carrier-mat)
 ultimately show ?thesis by simp
next
 case False
 hence mn: m=n and det-A-not0:(Determinant.det A)}\not=0\mathrm{ by auto
 have inv-RAT-A: invertible-mat (map-mat rat-of-int A)
 proof -
 have det (map-mat rat-of-int A)}=0\mathrm{ using det-A-not0 by auto
 thus ?thesis
 by (metis False assms dvd-field-iff invertible-iff-is-unit-JNF map-carrier-mat)
 qed
 have HNF-algorithm abs-flag A= Hermite-mod-det abs-flag A
 unfolding HNF-algorithm-def Hermite-mod-det-def Let-def using False A by
simp
 then show ?thesis using Hermite-mod-det-soundness[OF mn A inv-RAT-A] by
auto
qed
end
New predicate of soundness of a HNF algorithm, without providing explicitly the transformation matrix.
definition is-sound-HNF \({ }^{\prime}\) algorithm associates res
\(=(\forall\). let \(H=\) algorith \(A ; m=\) dim-row \(A ; n=\operatorname{dim}\)-col \(A\) in Hermite-JNF associates res \(H\)
\(\wedge H \in\) carrier-mat \(m n \wedge(\exists P . P \in\) carrier-mat \(m m \wedge\) invertible-mat \(P \wedge\) \(A=P * H)\))
lemma is-sound-HNF-conv:
assumes \(s\) : is-sound-HNF' algorithm associates res
shows is-sound-HNF (\(\lambda A\). let \(H=\) algorithm \(A\) in (SOME \(P . P \in\) carrier-mat (dim-row \(A\)) (dim-row \(A\))
\(\wedge\) invertible-mat \(P \wedge A=P * H, H)\)) associates res
```

proof (unfold is-sound-HNF-def Let-def prod.case, rule allI)
fix $A::^{\prime} a$ mat
define $m$ where $m=$ dim-row $A$
obtain $P$ where $P: P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge A=P *$ (algorithm A)
using $s$ unfolding is-sound-HNF'-def Let-def m-def by auto
let ? some- $P=(S O M E P . P \in$ carrier-mat $m m \wedge$ invertible-mat $P \wedge A=P *$ algorithm $A$ )
have some- $P$ : ?some- $P \in$ carrier-mat $m m \wedge$ invertible-mat ?some- $P \wedge A=$ ?some- $P *$ algorithm $A$
by (smt $P$ verit-sko-ex-indirect)
moreover have algorithm $A \in$ carrier-mat (dim-row $A$ ) (dim-col $A$ )
and Hermite-JNF associates res (algorithm A) using $s$ unfolding is-sound-HNF'-def Let-def by auto
ultimately show ?some- $P \in$ carrier-mat $m m \wedge$ algorith $m A \in$ carrier-mat $m$ (dim-col A)
$\wedge$ invertible-mat ?some- $P \wedge A=$ ?some- $P *$ algorithm $A \wedge$ Hermite-JNF associates res (algorithm A)
unfolding is-sound-HNF-def Let-def m-def by (auto split: prod.split)
qed
context proper-mod-operation
begin
corollary is-sound-HNF'-HNF-algorithm:
is-sound-HNF' (HNF-algorithm abs-flag) (range ass-function-euclidean) ( $\lambda c$. range (res-int c))
proof -
have Hermite-JNF (range ass-function-euclidean) ( $\lambda$ c. range (res-int c)) (HNF-algorithm abs-flag $A$ ) for $A$
using HNF-algorithm-soundness by blast
moreover have $H N F$-algorithm abs-flag $A \in$ carrier-mat (dim-row $A$ ) (dim-col
A) for $A$
by (metis HNF-algorithm-soundness carrier-matI mult-carrier-mat)
moreover have $\exists P . P \in$ carrier-mat (dim-row $A)($ dim-row $A) \wedge$ invertible-mat $P \wedge A=P * H N F$-algorithm abs-flag $A$ for $A$
proof -
have $\exists P . P \in$ carrier-mat (dim-row $A)($ dim-row $A) \wedge$ invertible-mat $P \wedge$
HNF-algorithm abs-flag $A=P * A$
using HNF-algorithm-soundness by blast
from this obtain $P$ where $P: P \in$ carrier-mat (dim-row $A$ ) (dim-row $A$ ) and inv-P: invertible-mat $P$
and $H$-PA: HNF-algorithm abs-flag $A=P * A$ by blast
obtain $P^{\prime}$ where $P P^{\prime}$ : inverts-mat $P P^{\prime}$ and $P^{\prime} P$ : inverts-mat $P^{\prime} P$
using inv- $P$ unfolding invertible-mat-def by auto
have $P^{\prime}: P^{\prime} \in$ carrier-mat (dim-row $\left.A\right)($ dim-row $A)$
by (metis $P P P^{\prime} P^{\prime} P$ carrier-matD carrier-mat-triv index-mult-mat(3) in-dex-one-mat(3) inverts-mat-def)
moreover have inv- $P^{\prime}$ : invertible-mat $P^{\prime}$
by (metis $P^{\prime} P^{\prime} P$ PP $P^{\prime}$ carrier-matD(1) carrier-matD(2) invertible-mat-def

```
square-mat.simps)
 moreover have }A=\mp@subsup{P}{}{\prime}*HNF-algorithm abs-flag A
 by (smt H-PA P P'P assoc-mult-mat calculation(1) carrier-matD(1) car-
rier-matI inverts-mat-def left-mult-one-mat')
 ultimately show ?thesis by auto
 qed
 ultimately show ?thesis
 unfolding is-sound-HNF'-def Let-def by auto
qed
corollary is-sound-HNF'-HNF-algorithm-from-HA:
 is-sound-HNF' (HNF-algorithm-from-HA) (range ass-function-euclidean) (}\lambdac
range (res-int c))
proof -
 have Hermite-JNF (range ass-function-euclidean) (\lambdac. range (res-int c)) (HNF-algorithm-from-HA
A) for }
 using HNF-algorithm-from-HA-soundness by blast
 moreover have HNF-algorithm-from-HA A Carrier-mat (dim-row A) (dim-col
A) for }
 by (metis HNF-algorithm-from-HA-soundness carrier-matI mult-carrier-mat)
 moreover have }\existsP.P\in\mathrm{ carrier-mat (dim-row A) (dim-row A)^ invertible-mat
P\wedgeA=P*HNF-algorithm-from-HA A for A
 proof -
 have }\existsP.P\in\mathrm{ carrier-mat (dim-row A) (dim-row A) ^ invertible-mat P ^
HNF-algorithm-from-HA A = P* A
 using HNF-algorithm-from-HA-soundness by blast
 from this obtain P where P:P\incarrier-mat (dim-row A) (dim-row A) and
inv-P: invertible-mat P
 and H-PA: HNF-algorithm-from-HA A=P* A by blast
 obtain P' where PP': inverts-mat P P ' and P'P: inverts-mat P' P
 using inv-P unfolding invertible-mat-def by auto
 have }\mp@subsup{P}{}{\prime}:\mp@subsup{P}{}{\prime}\in\mathrm{ carrier-mat (dim-row A) (dim-row A)
 by (metis P PP' P'P carrier-matD carrier-mat-triv index-mult-mat(3) in-
dex-one-mat(3) inverts-mat-def)
 moreover have inv-P': invertible-mat P'
 by (metis P}\mp@subsup{P}{}{\prime}\mp@subsup{P}{}{\prime}P P\mp@subsup{P}{}{\prime}\mathrm{ carrier-matD(1) carrier-matD(2) invertible-mat-def
square-mat.simps)
 moreover have A= P'*HNF-algorithm-from-HA A
 by (smt H-PA P P'P assoc-mult-mat calculation(1) carrier-matD(1) car-
rier-matI inverts-mat-def left-mult-one-mat')
 ultimately show ?thesis by auto
 qed
 ultimately show ?thesis
 unfolding is-sound-HNF'-def Let-def by auto
qed
end
```

Some work to make the algorithm executable
definition find-non0' $::$ nat $\Rightarrow$ nat $\Rightarrow{ }^{\prime} a::$ comm-ring- 1 mat $\Rightarrow$ nat option where
find-non0' $i k A=($ let is $=[i . .<$ dim-row $A]$;
Ais $=$ filter $(\lambda j$. A $\$ \$(j, k) \neq 0)$ is
in case Ais of []$\Rightarrow$ None $\mid-\Rightarrow$ Some (Ais!0))

## lemma find-non0':

assumes $A: A \in$ carrier-mat $m n$
and res: find-non0' $i k A=$ Some $j$
shows $A \$ \$(j, k) \neq 0 i \leq j j<$ dim-row $A$
proof -
let ? $x s=$ filter $(\lambda j . A \$ \$(j, k) \neq 0)[i . .<\operatorname{dim}$-row $A]$
from res[unfolded find-non0'-def Let-def]
have $x s:$ ? $x s \neq[]$ by (cases ? $x s$, auto)
have $j$-in-xs: $j \in$ set ?xs using res unfolding find-non0'-def Let-def
by (metis (no-types, lifting) length-greater-0-conv list.case(2) list.exhaust nth-mem option.simps(1) xs)
show $A \$ \$(j, k) \neq 0 i \leq j j<$ dim-row $A$ using $j$-in-xs by auto+ qed
lemma find-non0'-w-zero-before:
assumes $A: A \in$ carrier-mat $m n$
and res: find-non0' $i k A=$ Some $j$
shows $\forall j^{\prime} \in\{i . .<j\} . A \$ \$\left(j^{\prime}, k\right)=0$
proof -
let ? $x s=$ filter $(\lambda j . A \$ \$(j, k) \neq 0)[i . .<$ dim-row $A]$
from res[unfolded find-non0'-def Let-def]
have $x s:$ ? $x s \neq[]$ by (cases ? $x s$, auto)
have $j$-in-xs: $j \in$ set ?xs using res unfolding find-non0'-def Let-def
by (metis (no-types, lifting) length-greater-0-conv list.case(2) list.exhaust nth-mem option.simps (1) xs)
have $j$-xs $0: j=$ ? $x s$ ! 0
by (smt res[unfolded find-non0'-def Let-def] list.case(2) list.exhaust option.inject xs)
show $\forall j^{\prime} \in\{i . .<j\} . A \$ \$\left(j^{\prime}, k\right)=0$
proof (rule+, rule ccontr)
fix $j^{\prime}$ assume $j^{\prime}: j^{\prime}:\{i . .<j\}$ and $A l j^{\prime}: A \$ \$\left(j^{\prime}, k\right) \neq 0$
have $j^{\prime} j: j^{\prime}<j$ using $j^{\prime}$ by auto
have $j^{\prime}$-in-xs: $j^{\prime} \in$ set ? xs
by (metis (mono-tags, lifting) A Alj' Set.member-filter atLeastLessThan-iff filter-set
find-non0 ${ }^{\prime}(3) j^{\prime}$ nat-SN.gt-trans res set-upt)
have $l$-rw: $[i . .<$ dim-row $A]=[i \quad . .<j] @[j . .<$ dim-row $A]$
using assms(1) assms(2) find-non0'(3) $j^{\prime}$ upt-append
by (metis atLeastLessThan-iff le-trans linorder-not-le)
have $x$-rw: ? $x s=$ filter $(\lambda j . A \$ \$(j, k) \neq 0)([i . .<j] @[j . .<$ dim-row $A])$
using $l$-rw by auto
hence filter $(\lambda j$. $A \$ \$(j, k) \neq 0)[i \quad . .<j]=[]$ using $j$-xs0
by (metis (no-types, lifting) Set.member-filter atLeastLessThan-iff filter-append

```
filter-set
 length-greater-0-conv nth-append nth-mem order-less-irrefl set-upt)
 thus False using j-xs0 j' j-xs0
 by (metis Set.member-filter filter-empty-conv filter-set j'-in-xs set-upt)
 qed
qed
lemma find-non0'-LEAST:
 assumes A:A\incarrier-mat m n
 and res: find-non0' i k A = Some j
shows j=(LEAST n. A $$ (n,k)\not=0^i\leqn)
proof (rule Least-equality[symmetric])
 show }A$$(j,k)\not=0\wedgei\leq
 using A res find-non0'[OF A] by auto
 show }\y.A$$(y,k)\not=0\wedgei\leqy\Longrightarrowj\leq
 by (meson A res atLeastLessThan-iff find-non0'-w-zero-before linorder-not-le)
qed
lemma echelon-form-of-column-k-JNF-code[code]:
 echelon-form-of-column-k-JNF bezout (A,i) k=
 (if (i=dim-row A)\vee (\forallm\in{i..<dim-row A}.A$$(m,k)=0) then (A,i)
else
 if (}\forallm\in{i+1..<dim-row A}. A $$ (m,k)=0) then (A,i+1) els
 let n= the (find-non0' i kA);
 interchange- }A=\mathrm{ swaprows i n A
 in
 (bezout-iterate-JNF (interchange-A) (dim-row A - 1) ik bezout, i + 1))
proof (cases }\neg((i=\mathrm{ dim-row }A)\vee(\forallm\in{i..<dim-row A}.A $$ (m,k)=0)
 \wedge \neg (\forall m \in \{ i + 1 . . < d i m - r o w ~ A \} . A ~ \$ \$ ~ (m , k) = 0))
 case True
 let ?n = the (find-non0' ikA)
 let ?interchange-A = swaprows i ?n A
 have f-rw: (the (find-non0' ik A))=(LEAST n. A $$ (n,k) = 0^i\leqn)
 proof (rule find-non0'-LEAST)
 have find-non0' i kA\not= None using True unfolding find-non0'-def Let-def
 by (auto split: list.split)
 (metis (mono-tags, lifting) atLeastLessThan-iff atLeastLessThan-upt empty-filter-conv)
 thus find-non0'i ikA=Some (the (find-non0'ikA)) by auto
 qed (auto)
 show ?thesis unfolding echelon-form-of-column-k-JNF-def Let-def f-rw using
True by auto
next
 case False
 then show ?thesis unfolding echelon-form-of-column-k-JNF-def by auto
qed
```


### 8.3 Instantiation of the HNF-algorithm with modulo-operation

We currently use a Boolean flag to indicate whether standard-mod or symmetric modulo should be used.
lemma sym-mod: proper-mod-operation sym-mod sym-div by (unfold-locales, auto simp: sym-mod-sym-div)
lemma standard-mod: proper-mod-operation (mod) (div)
by (unfold-locales, auto, intro HOL.nitpick-unfold(7))
definition $H N F$-algorithm :: bool $\Rightarrow$ int mat $\Rightarrow$ int mat where
HNF-algorithm use-sym-mod $=$ (if use-sym-mod
then mod-operation.HNF-algorithm sym-mod False else mod-operation.HNF-algorithm (mod) True)
definition $H N F$-algorithm-from- $H A::$ bool $\Rightarrow$ int mat $\Rightarrow$ int mat where
HNF-algorithm-from-HA use-sym-mod $=$ (if use-sym-mod
then mod-operation.HNF-algorithm-from-HA sym-mod else mod-operation.HNF-algorithm-from-HA (mod))
corollary is-sound-HNF'-HNF-algorithm:
is-sound-HNF' (HNF-algorithm use-sym-mod) (range ass-function-euclidean)
( $\lambda c$. range (res-int c))
using proper-mod-operation.is-sound-HNF'-HNF-algorithm[OF sym-mod]
proper-mod-operation.is-sound-HNF'-HNF-algorithm[OF standard-mod]
unfolding HNF-algorithm-def by (cases use-sym-mod, auto)
corollary is-sound-HNF'-HNF-algorithm-from-HA:
is-sound-HNF ${ }^{\prime}$ (HNF-algorithm-from-HA use-sym-mod) (range ass-function-euclidean)
( $\lambda c$. range (res-int $c)$ )
using proper-mod-operation.is-sound-HNF'-HNF-algorithm-from-HA[OF sym-mod]
proper-mod-operation.is-sound-HNF'-HNF-algorithm-from-HA[OF standard-mod]
unfolding HNF-algorithm-from-HA-def by (cases use-sym-mod, auto)
value $[$ code $]$ let $A=$ mat-of-rows-list 4 (
[ $[0,3,1,4]$,
[7,1,0,0],
[8,0,19,16],
[2,0,0,3::int],
[9,-3,2,5],
[ $6,3,2,4]]$ ) in
show (HNF-algorithm True A)

```
value [code]let A = mat-of-rows-list 6 (
 [[0,3,1,4,8,7],
 [7,1,0,0,4,1],
 [8,0,19,16,33,5],
 [2,0,0,3::int,-5,8]]) in
show (HNF-algorithm False A)
value [code]let A = mat-of-rows-list 6 (
 [[0,3,1,4,8,7],
 [7,1,0,0,4,1],
 [8,0,19,16,33,5],
 [0,3,1,4,8,7],
 [2,0,0,3::int,-5,8],
 [2,4,6,8,10,12]]) in
 show (Determinant.det A, HNF-algorithm True A)
value [code]let A = mat-of-rows-list 6(
 [[0,3,1,4,8,7],
 [7,1,0,0,4,1],
 [8,0,19,16,33,5],
 [5,6,1,2,8,7],
 [2,0,0,3::int,-5,8],
 [2,4,6,8,10,12]]) in
 show (Determinant.det A,HNF-algorithm True A)
end
```


## 9 LLL certification via Hermite normal forms

In this file, we define the new certified approach and prove its soundness.

```
theory LLL-Certification-via-HNF
 imports
 LLL-Basis-Reduction.LLL-Certification
 Jordan-Normal-Form.DL-Rank
 HNF-Mod-Det-Soundness
begin
context LLL-with-assms
begin
lemma m-le-n: m\leqn
proof -
 have gs.lin-indpt (set (RAT fs-init))
 using cof-vec-space.lin-indpt-list-def lin-dep by blast
 moreover have gs.dim = n
```

```
 by (simp add: gs.dim-is-n)
 moreover have card (set (RAT fs-init)) =m
 using LLL-invD(2) LLL-inv-initial-state cof-vec-space.lin-indpt-list-def dis-
tinct-card lin-dep
 by blast
 ultimately show ?thesis using gs.li-le-dim
 by (metis cof-vec-space.lin-indpt-list-def gs.fin-dim lin-dep)
qed
end
```

This lemma is a generalization of the theorem named $H N F-A-e q-H N F-P A$, using the new uniqueness statement of the HNF. We provide two versions, one assuming the existence and the other one obtained from a sound algorithm.
lemma HNF-A-eq-HNF-PA'-exist:
fixes $A$ ::int mat
assumes $A: A \in$ carrier-mat $n n$ and inv-A: invertible-mat (map-mat rat-of-int A)
and inv-P: invertible-mat $P$ and $P: P \in$ carrier-mat $n n$
and HNF-H1: Hermite-JNF associates res H1
and H1: H1 $\in$ carrier-mat $n n$
and HNF-H2: Hermite-JNF associates res H2
and H2: H2 $\in$ carrier-mat $n$ n
and sound-HNF1: $\exists P 1 . P 1 \in$ carrier-mat $n n \wedge$ invertible-mat P1 $\wedge(P * A)$
$=P 1 * H 1$
and sound-HNF2: $\exists$ P2. P2 $\in$ carrier-mat $n n \wedge$ invertible-mat P2 $\wedge A=P 2$

* H2
shows $H 1=H 2$
proof -
obtain inv- $P$ where $P$-inv- $P$ : inverts-mat $P$ inv- $P$ and inv- $P-P$ : inverts-mat inv-P $P$
and inv- $P$ : inv- $P \in$ carrier-mat $n n$
using $P$ inv- $P$ obtain-inverse-matrix by blast
obtain P1 where P1: P1 $\in$ carrier-mat $n n$ and inv-P1: invertible-mat P1 and P1-H1: $P * A=P 1 * H 1$
using sound-HNF1 by auto
obtain P2 where P2: P2 $\in$ carrier-mat $n n$ and inv-P2: invertible-mat P2 and P2-H2: $A=P 2 * H 2$
using sound-HNF2 by auto
have invertible-inv- $P$ : invertible-mat inv- $P$
using $P$-inv- $P$ inv- $P$ inv- $P-P$ invertible-mat-def square-mat.simps by blast
have $P-A-P 1-H 1: P * A=P 1 * H 1$ using P1-H1 P2-H2 unfolding is-sound-HNF-def
Let-def
by (metis (mono-tags, lifting) case-prod-conv)
hence $A=$ inv- $P *(P 1 * H 1)$
by (smt A P inv-P-P inv-P assoc-mult-mat carrier-matD(1) inverts-mat-def left-mult-one-mat)
hence $A$-inv-P-P1-H1: $A=($ inv- $P * P 1) * H 1$ using P P1-H1 assoc-mult-mat

```
inv-P H1 P1 by auto
 have invertible-inv-P-P1: invertible-mat (inv-P*P1)
 by (rule invertible-mult-JNF[OF inv-P P1 invertible-inv-P inv-P1])
 show ?thesis
 proof (rule HNF-unique-generalized-JNF[OF A - H1 P2 H2 A-inv-P-P1-H1
P2-H2
 inv-A invertible-inv-P-P1 inv-P2 HNF-H1 HNF-H2])
 show inv-P * P1 \in carrier-mat n n
 by (metis carrier-matD(1) carrier-matI index-mult-mat(2) inv-P
 invertible-inv-P-P1 invertible-mat-def square-mat.simps)
 qed
qed
corollary HNF-A-eq-HNF-PA':
 fixes A::int mat
 assumes A: A \in carrier-mat n n and inv-A: invertible-mat (map-mat rat-of-int
A)
 and inv-P: invertible-mat P and P: P carrier-mat n n
 and sound-HNF: is-sound-HNF HNF associates res
 and P1-H1: (P1,H1) = HNF (P*A)
 and P2-H2: (P2,H2) = HNF A
 shows H1 = H2
proof -
 have H1:H1 \in carrier-mat n n
 by (smt P1-H1 A P carrier-matD index-mult-mat is-sound-HNF-def prod.sel(2)
sound-HNF split-beta)
 have H2: H2 \in carrier-mat n n
 by (smt P2-H2 A carrier-matD index-mult-mat is-sound-HNF-def prod.sel(2)
sound-HNF split-beta)
 have HNF-H1: Hermite-JNF associates res H1
 by (smt P1-H1 is-sound-HNF-def prod.sel(2) sound-HNF split-beta)
 have HNF-H2: Hermite-JNF associates res H2
 by (smt P2-H2 is-sound-HNF-def prod.sel(2) sound-HNF split-beta)
 have sound-HNF1: \existsP1.P1 \in carrier-mat n n ^ invertible-mat P1 ^(P*A)
= P1 * H1
 using sound-HNF P1-H1 unfolding is-sound-HNF-def Let-def
 by (metis (mono-tags, lifting) P carrier-matD(1) index-mult-mat(2) old.prod.simps(2))
 have sound-HNF2: \exists P2. P2 \in carrier-mat n n ^ invertible-mat P2 ^ A = P2
* H2
 using sound-HNF P1-H1 unfolding is-sound-HNF-def Let-def
 by (metis (mono-tags, lifting) A P2-H2 carrier-matD(1) old.prod.simps(2))
 show ?thesis
 by (rule HNF-A-eq-HNF-PA'-exist[OF A inv-A inv-P P HNF-H1 H1 HNF-H2
H2 sound-HNF1 sound-HNF2])
qed
context LLL-with-assms
```


## begin

lemma certification-via-eq-HNF2-exist:
assumes HNF-H1: Hermite-JNF associates res H1
and H1: H1 $\in$ carrier-mat $n$ n
and HNF-H2: Hermite-JNF associates res H2
and H2: H2 $\in$ carrier-mat $n n$
and sound-HNF1: $\exists P 1 . P 1 \in$ carrier-mat $n n \wedge$ invertible-mat P1 $\wedge$ (mat-of-rows
$n f_{s}$-init) $=P 1 * H 1$
and sound-HNF2: $\exists$ P2. P2 $\in$ carrier-mat $n n \wedge$ invertible-mat P2 $\wedge$ (mat-of-rows
$n g s)=P 2 * H 2$
and gs: set gs $\subseteq$ carrier-vec $n$
and $l$ : lattice-of fs-init $=$ lattice-of gs
and $m n: m=n$ and len-gs: length $g s=n$
shows $H 1=H 2$
proof -
have $\exists P \in$ carrier-mat $n n$. invertible-mat $P \wedge$ mat-of-rows $n$ fs-init $=P *$ mat-of-rows $n$ gs
by (rule eq-lattice-imp-mat-mult-invertible-rows[OF fs-init gs lin-dep len[unfolded $m n]$ len-gs l])
from this obtain $P$ where $P: P \in$ carrier-mat $n n$ and inv- $P$ : invertible-mat $P$ and $f s$ - $P$-gs: mat-of-rows $n f s$-init $=P *$ mat-of-rows $n$ gs by auto
obtain P1 where P1: P1 $\in$ carrier-mat $n n$ and inv-P1: invertible-mat P1 and P1-H1: ( mat-of-rows $n f s$-init $)=P 1 * H 1$
using sound-HNF1 by auto
obtain P2 where P2: P2 $\in$ carrier-mat $n n$ and inv-P2: invertible-mat P2 and P2-H2: (mat-of-rows n gs) $=$ P2 $* H_{2}$
using sound-HNF2 by auto
have $P 1$-H1-2: $P *$ mat-of-rows $n$ gs $=P 1 * H 1$
using P1-H1 fs-P-gs by auto
have gs-carrier: mat-of-rows $n$ gs $\in$ carrier-mat $n n$ by (simp add: len-gs car-rier-matI)
show ?thesis
proof (rule HNF-A-eq-HNF-PA'-exist[OF gs-carrier - inv-P P HNF-H1 H1 HNF-H2 H2 - sound-HNF2])
from inv- $P$ obtain $P^{\prime}$ where $P P^{\prime}$ : inverts-mat $P P^{\prime}$ and $P^{\prime} P$ : inverts-mat $P^{\prime}$ $P$
using invertible-mat-def by blast
let ?RAT $=$ of-int-hom.mat-hom :: int mat $\Rightarrow$ rat mat
have det-RAT-fs-init: $\operatorname{det}(? R A T$ (mat-of-rows $n f s$-init $)) \neq 0$
proof (rule gs.lin-indpt-rows-imp-det-not-0)
show ?RAT (mat-of-rows $n$ fs-init) $\in$ carrier-mat $n n$
using len map-carrier-mat mat-of-rows-carrier(1) mn by blast
have rw: Matrix.rows (?RAT (mat-of-rows $n$ fs-init)) $=R A T$ fs-init
by (metis cof-vec-space.lin-indpt-list-def fs-init lin-dep mat-of-rows-map rows-mat-of-rows)
thus gs.lin-indpt (set (Matrix.rows (?RAT (mat-of-rows $n$ fs-init))))
by (insert lin-dep, simp add: cof-vec-space.lin-indpt-list-def)

```
 show distinct (Matrix.rows (?RAT (mat-of-rows n fs-init)))
 using rw cof-vec-space.lin-indpt-list-def lin-dep by auto
 qed
 hence d: det (?RAT (mat-of-rows n fs-init)) dvd 1 using dvd-field-iff by blast
 hence inv-RAT-fs-init: invertible-mat (?RAT (mat-of-rows n fs-init))
 using invertible-iff-is-unit-JNF by (metis mn len map-carrier-mat mat-of-rows-carrier(1))
 have invertible-mat (?RAT P)
 by (metis P dvd-field-iff inv-P invertible-iff-is-unit-JNF map-carrier-mat
 not-is-unit-0 of-int-hom.hom-0 of-int-hom.hom-det)
 have det (?RAT (mat-of-rows n fs-init)) = det (?RAT P) * det (?RAT
(mat-of-rows n gs))
 by (metis Determinant.det-mult P fs-P-gs gs-carrier of-int-hom.hom-det
of-int-hom.hom-mult)
 hence det (?RAT (mat-of-rows n gs)) \not=0 using d by auto
 thus invertible-mat (?RAT (mat-of-rows n gs))
 by (meson dvd-field-iff gs-carrier invertible-iff-is-unit-JNF map-carrier-mat)
 show \existsP1.P1 \in carrier-mat n n ^ invertible-mat P1 ^ P* mat-of-rows n gs
=P1*H1
 using P1 P1-H1-2 inv-P1 by blast
 qed
qed
lemma certification-via-eq-HNF2:
 assumes sound-HNF: is-sound-HNF HNF associates res
 and P1-H1:(P1,H1) = HNF (mat-of-rows n fs-init)
 and P2-H2: (P2,H2) = HNF (mat-of-rows n gs)
 and gs: set gs \subseteqcarrier-vec n
 and l: lattice-of fs-init = lattice-of gs
 and mn:m}=n\mathrm{ and len-gs: length gs =n
 shows H1 = H2
proof -
 have \existsP\in carrier-mat n n. invertible-mat P ^ mat-of-rows n fs-init = P**
mat-of-rows n gs
 by (rule eq-lattice-imp-mat-mult-invertible-rows[OF fs-init gs lin-dep len[unfolded
mn] len-gs l])
 from this obtain P where P:P\incarrier-mat n n and inv-P: invertible-mat P
 and fs-P-gs: mat-of-rows n fs-init =P* mat-of-rows n gs by auto
 have P1-H1-2: (P1,H1) = HNF (P* mat-of-rows n gs) using fs-P-gs P1-H1
by auto
 have gs-carrier: mat-of-rows n gs \in carrier-mat n n by (simp add: len-gs car-
rier-matI)
 show ?thesis
 proof (rule HNF-A-eq-HNF-PA'[OF gs-carrier - inv-P P sound-HNF P1-H1-2
P2-H2])
 from inv-P obtain P' where PP': inverts-mat P P' and P'P: inverts-mat P'
P
 using invertible-mat-def by blast
 let ?RAT = of-int-hom.mat-hom :: int mat }=>\mathrm{ rat mat
 have det-RAT-fs-init: det (?RAT (mat-of-rows n fs-init)) = 0
```

```
 proof (rule gs.lin-indpt-rows-imp-det-not-0)
 show ?RAT (mat-of-rows n fs-init) \in carrier-mat n n
 using len map-carrier-mat mat-of-rows-carrier(1) mn by blast
 have rw: Matrix.rows (?RAT (mat-of-rows n fs-init)) = RAT fs-init
 by (metis cof-vec-space.lin-indpt-list-def fs-init lin-dep mat-of-rows-map
rows-mat-of-rows)
 thus gs.lin-indpt (set (Matrix.rows (?RAT (mat-of-rows n fs-init))))
 by (insert lin-dep, simp add: cof-vec-space.lin-indpt-list-def)
 show distinct (Matrix.rows (?RAT (mat-of-rows n fs-init)))
 using rw cof-vec-space.lin-indpt-list-def lin-dep by auto
 qed
 hence d: det (?RAT (mat-of-rows n fs-init)) dvd 1 using dvd-field-iff by blast
 hence inv-RAT-fs-init: invertible-mat (?RAT (mat-of-rows n fs-init))
 using invertible-iff-is-unit-JNF by (metis mn len map-carrier-mat mat-of-rows-carrier(1))
 have invertible-mat (?RAT P)
 by (metis P dvd-field-iff inv-P invertible-iff-is-unit-JNF map-carrier-mat
 not-is-unit-0 of-int-hom.hom-0 of-int-hom.hom-det)
 have det (?RAT (mat-of-rows n fs-init)) = det (?RAT P) * det (?RAT
(mat-of-rows n gs))
 by (metis Determinant.det-mult P fs-P-gs gs-carrier of-int-hom.hom-det
of-int-hom.hom-mult)
 hence det (?RAT (mat-of-rows n gs)) \not=0 using d by auto
 thus invertible-mat (?RAT (mat-of-rows n gs))
 by (meson dvd-field-iff gs-carrier invertible-iff-is-unit-JNF map-carrier-mat)
 qed
qed
```

corollary lattice-of-eq-via-HNF:
assumes sound-HNF: is-sound-HNF HNF associates res
and P1-H1: $(P 1, H 1)=H N F$ (mat-of-rows $n$ fs-init)
and P2-H2: $($ P2,H2 $)=H N F($ mat-of-rows $n$ gs)
and gs: set gs $\subseteq$ carrier-vec $n$
and $m n: m=n$ and len-gs: length $g s=n$
shows $(H 1=H 2) \longleftrightarrow$ (lattice-of fs-init $=$ lattice-of gs)
using certification-via-eq-HNF certification-via-eq-HNF2 assms by metis
end
context
begin
interpretation vec-module TYPE(int) $n$.
lemma lattice-of-eq-via-HNF-paper:
fixes $F G$ :: int mat and $H N F$ :: int mat $\Rightarrow$ int mat assumes sound-HNF': is-sound-HNF' HNF $\mathcal{A} \mathcal{R}$ and inv-F-Q: invertible-mat (map-mat rat-of-int $F$ )
and $F G:\{F, G\} \subseteq$ carrier-mat $n n$
shows $(H N F F=\overline{H N F} G) \longleftrightarrow($ lattice-of $($ rows $F)=$ lattice-of $($ rows $G))$

## proof -

define $H N F^{\prime}$
where $H N F^{\prime}=(\lambda A$. let $H=H N F A$
in $(S O M E P . P \in$ carrier-mat $($ dim-row $A)($ dim-row $A) \wedge$ invertible-mat $P \wedge$
$A=P * H, H)$ )
have sound-HNF': is-sound-HNF $H N F^{\prime} \mathcal{A} \mathcal{R}$ by (unfold $H N F^{\prime}$-def, rule is-sound-HNF-conv[OF sound-HNF 〕)
have $F$-eq: $F=$ mat-of-rows $n$ (rows $F$ ) and $G$-eq: $G=$ mat-of-rows $n$ (rows $G$ )
using $F G$ by auto
interpret $L$ : LLL-with-assms $n$ n (rows F) 4/3
proof
interpret gs: cof-vec-space $n$ TYPE (rat) .
thm gs.upper-triangular-imp-lin-indpt-rows
let ?RAT = map-mat rat-of-int
have m-rw: (map (map-vec rat-of-int) (rows $F)$ ) $=$ rows (?RAT F)
unfolding Matrix.rows-def by auto
show gs.lin-indpt-list (map (map-vec rat-of-int) (rows F))
proof -
have det-RAT-F: $\operatorname{det}(? R A T F) \neq 0$
by (metis inv-F-Q carrier-mat-triv invertible-iff-is-unit-JNF
invertible-mat-def not-is-unit-0 square-mat.simps)
have d-RAT-F: distinct (rows (?RAT F))
proof (rule ccontr)
assume $\neg$ distinct (rows (?RAT F))
from this obtain $i j$
where $i j$ : row $(? R A T F) i=$ row $(? R A T F) j$
and $i: i<$ dim-row (?RAT $F$ ) and $j: j<$ dim-row (?RAT F)
and $i$-not- $j: i \neq j$
unfolding Matrix.rows-def distinct-conv-nth by auto
have $\operatorname{det}(? R A T F)=0$ using ij $i j i$-not-j
by (metis Determinant.det-def Determinant.det-identical-rows carrier-mat-triv)
thus False using inv-F-Q
by (metis carrier-mat-triv invertible-iff-is-unit-JNF invertible-mat-def
not-is-unit-0 square-mat.simps)
qed
moreover have $\neg$ gs.lin-dep (set (rows $(? R A T F))$ )
using gs.det-not-0-imp-lin-indpt-rows $[O F-d e t-R A T-F]$ using $F G$ by auto
ultimately show ?thesis
unfolding gs.lin-indpt-list-def m-rw using $F G$ unfolding Matrix.rows-def
by auto
qed
qed (insert FGF-eq, auto)
show ?thesis
proof (rule L.lattice-of-eq-via-HNF[OF sound-HNF $]$ )
show $\left(\right.$ fst $\left.\left(H N F^{\prime} F\right), H N F F\right)=H N F^{\prime}($ mat-of-rows n (rows $\left.F)\right)$
unfolding $H N F^{\prime}$-def Let-def using $F$-eq by auto
show $\left(f s t\left(H N F^{\prime} G\right), H N F G\right)=H N F^{\prime}($ mat-of-rows n (rows $G)$ )

```
 unfolding HNF'-def Let-def using G-eq by auto
 show length (rows G) =n using FG by auto
 show set (rows G)\subseteqcarrier-vec n using FG
 by (metis G-eq mat-of-rows-carrier(3) rows-carrier)
 qed (simp)
qed
end
```

We define a new const similar to external-lll-solver, but now it only returns the reduced matrix.
consts external-lll-solver ${ }^{\prime}::$ integer $\times$ integer $\Rightarrow$ integer list list $\Rightarrow$ integer list list

## hide-type (open) Finite-Cartesian-Product.vec

The following definition is an adaptation of reduce-basis-external

```
definition reduce-basis-external \({ }^{\prime}::\) (int mat \(\Rightarrow\) int mat) \(\Rightarrow\) rat \(\Rightarrow\) int vec list \(\Rightarrow\)
int vec list where
 reduce-basis-external' HNF \(\alpha f s=(\) case fs of Nil \(\Rightarrow[] \mid\) Cons \(f-\Rightarrow\) (let
 \(r b=\) reduce-basis \(\alpha\);
 \(f s i=\operatorname{map}(\) map integer-of-int o list-of-vec) \(f s\);
 \(n=\) dim-vec \(f\);
 \(m=\) length \(f s\);
 gsi \(=\) external-lll-solver \({ }^{\prime}(\) map-prod integer-of-int integer-of-int (quotient-of \(\left.\alpha)\right)\)
fsi;
 \(g s=(\) map (vec-of-list o map int-of-integer) gsi) in
 if \(\neg(\) length gs \(=m \wedge(\forall\) gi \(\operatorname{set}\) gs. dim-vec \(g i=n))\) then
 Code.abort (STR '"error in external LLL invocation: dimensions of reduced
basis do not fit \(\hookleftarrow\) input to external solver: "
 + String.implode \((\) show \(\left.f s)+S T R{ }^{\prime}{ }^{\prime} \hookleftarrow \omega^{\prime \prime}\right)(\lambda\)-. rb fs \()\)
 else
 let \(F s=\) mat-of-rows \(n f s\);
 \(G s=\) mat-of-rows ngs;
 \(H 1=H N F F s ;\)
 H2 \(=H N F\) Gs in
 if \((H 1=H 2)\) then \(r b\) gs
 else Code.abort (STR 'the reduced matrix does not span the same lat-
tice \(\hookleftarrow f, g, P 1, P 2, H 1, H 2\) are as follows \(\hookleftarrow^{\prime \prime}\)
 + String.implode (show Fs) + STR
 + String.implode (show Gs) + STR
 + String.implode (show H1) + STR
 + String.implode (show H2) + STR ' \({ }^{\prime} \hookleftarrow{ }^{\prime \prime}\)
) \((\lambda-. r b f s))\)
)
locale certification \(=\) LLL-with-assms +
 fixes \(H N F::\) int mat \(\Rightarrow\) int mat and associates res
 assumes sound-HNF': is-sound-HNF' HNF associates res
begin
```

lemma reduce-basis-external': assumes res: reduce-basis-external' $H N F \alpha f_{s}$-init $=f s$
shows reduced fs m LLL-invariant True $m$ fs
proof (atomize(full), goal-cases)
case 1
show ?case
proof (cases LLL-Impl.reduce-basis $\alpha$ fs-init $=f s$ )
case True
from reduce-basis[OF this] show ?thesis by simp
next
case False note $a=$ False
show ?thesis
proof (cases fs-init)
case Nil
with res have $f s=[]$ unfolding reduce-basis-external'-def by auto
with False Nil have False by (simp add: LLL-Impl.reduce-basis-def)
thus ?thesis ..
next
case (Cons f rest)
from Cons $f s$-init len have dim-fs- $n$ : dim-vec $f=n$ by auto
let ?ext $=$ external-lll-solver ${ }^{\prime}$ (map-prod integer-of-int integer-of-int (quotient-of
$\alpha)$ )
(map (map integer-of-int $\circ$ list-of-vec) fs-init)
note res $=$ res[unfolded reduce-basis-external'-def Cons Let-def list.case
Code.abort-def dim-fs-n, folded Cons]
define gs where gs = map (vec-of-list o map int-of-integer) ?ext
define $F s$ where $F s=$ mat-of-rows $n f s$-init
define $G s$ where $G s=$ mat-of-rows $n g s$
define $H 1$ where $H 1=H N F$ Fs
define $H 2$ where $H 2=H N F$ Gs
note res $=$ res[unfolded ext option.simps split len dim-fs-n, folded gs-def]
from res False have not: $(\neg($ length gs $=m \wedge(\forall$ gi $\in$ set gs. dim-vec gi $=n)))$
$=$ False
by (auto split: if-splits)
note res $=$ res[unfolded this if-False]
from not have gs: set gs $\subseteq$ carrier-vec $n$
and len-gs: length gs $=m$ by auto
show ?thesis
proof (cases H1 = H2)
case True
hence H1-eq-H2: H1 = H2 by auto
let $? H N F=(\lambda A$. let $H=H N F A$ in $(S O M E P . P \in$ carrier-mat (dim-row
A) $($ dim-row $A) \wedge$ invertible-mat $P \wedge A=P * H, H))$
obtain P1 where P1-H1: $($ P1,H1 $)=$ ?HNF Fs by (metis H1-def)
obtain P2 where P2-H2: $($ P2,H2 $)=$ ?HNF Gs by (metis H2-def)
have sound-HNF: is-sound-HNF ? HNF associates res
by (rule is-sound-HNF-conv[OF sound-HNF $]$ )

```
 have laticce-gs-fs-init:lattice-of gs = lattice-of fs-init
 and gs-assms: LLL-with-assms n m gs \alpha
 by (rule certification-via-eq-HNF[OF sound-HNF P1-H1[unfolded Fs-def]
 P2-H2[unfolded Gs-def] H1-eq-H2 gs len-gs])+
 from res a True
 have gs-fs: LLL-Impl.reduce-basis \alpha gs = fs by (auto split: prod.split)
 have lattice-gs-fs:lattice-of gs = lattice-of fs
 and gram-schmidt-fs.reduced n (map of-int-hom.vec-hom fs) \alpha m
 and gs.lin-indpt-list (map of-int-hom.vec-hom fs)
 and length fs = length gs
 using LLL-with-assms.reduce-basis gs-fs gs-assms laticce-gs-fs-init gs-assms
 using LLL-with-assms-def len-gs unfolding LLL.L-def by fast+
 from this show ?thesis
 using laticce-gs-fs-init gs-assms LLL-with-assms-def lattice-gs-fs
 unfolding LLL-invariant-def L-def by auto
 next
 case False
 then show ?thesis
 using a Fs-def Gs-def res H1-def H2-def by auto
 qed
 qed
 qed
qed
end
context LLL-with-assms
begin
We interpret the certification context using our formalized HNF-algorithm
interpretation efficient-cert: certification n m fs-init \(\alpha\) HNF-algorithm use-sym-mod range ass-function-euclidean \(\lambda c\). range (res-int c)
by (unfold-locales, rule is-sound-HNF'-HNF-algorithm)
thm efficient-cert.reduce-basis-external'
Same, but applying the naive HNF algorithm, moved to JNF library from the echelon form and Hermite normal form AFP entries
interpretation cert: certification \(n m\) fs-init \(\alpha\) HNF-algorithm-from-HA use-sym-mod range ass-function-euclidean \(\lambda c\). range (res-int c)
by (unfold-locales, rule is-sound-HNF'-HNF-algorithm-from-HA)
thm cert.reduce-basis-external \({ }^{\prime}\)
lemma RBE-HNF-algorithm-efficient:
assumes reduce-basis-external' (HNF-algorithm use-sym-mod) \(\alpha\) fs-init \(=f s\)
shows gram-schmidt-fs.reduced \(n\) (map of-int-hom.vec-hom fs) \(\alpha m\)
```

and LLL-invariant True $m$ fs using efficient-cert.reduce-basis-external' assms by blast+
lemma RBE-HNF-algorithm-naive:
assumes reduce-basis-external' (HNF-algorithm-from-HA use-sym-mod) $\alpha$ fs-init $=f s$
shows gram-schmidt-fs.reduced $n$ (map of-int-hom.vec-hom fs) $\alpha m$ and LLL-invariant True $m$ fs using cert.reduce-basis-external' assms by blast+
end
lemma external-lll-solver'-code[code]:
external-lll-solver' $=$ Code.abort $\left(S T R{ }^{\prime \prime}\right.$ require proper implementation of exter-nal-lll-solver ${ }^{\prime \prime}$ ) ( $\lambda$-. external-lll-solver' ${ }^{\prime}$ )
by simp
end


[^0]:    *Supported by FWF (Austrian Science Fund) project Y757 and by project MTM2017-88804-P (Spanish Ministry of Science and Innovation).

