A verified algorithm for computing the Smith normal form of a matrix

Jose Divasón

February 23, 2021

Abstract

This work presents a formal proof in Isabelle/HOL of an algorithm to transform a matrix into its Smith normal form, a canonical matrix form, in a general setting: the algorithm is parameterized by operations to prove its existence over elementary divisor rings, while execution is guaranteed over Euclidean domains. We also provide a formal proof on some results about the generality of this algorithm as well as the uniqueness of the Smith normal form.

Since Isabelle/HOL does not feature dependent types, the development is carried out switching conveniently between two different existing libraries: the Hermite normal form (based on HOL Analysis) and the Jordan normal form AFP entries. This permits to reuse results from both developments and it is done by means of the lifting and transfer package together with the use of local type definitions.

Contents

1 Definition of Smith normal form in HOL Analysis 4
1.1 Definitions 4
1.2 Basic properties 5
2 Algorithm to transform a diagonal matrix into its Smith normal form 7
2.1 Implementation of the algorithm 7
2.2 Code equations to get an executable version 8
2.3 Examples of execution 9
2.4 Soundness of the algorithm 9
2.5 Implementation and formal proof of the matrices P and Q which transform the input matrix by means of elementary operations. 32
2.6 The final soundness theorem 48
3 A new bridge to convert theorems from JNF to HOL Anal- ysis and vice-versa, based on the mod-type class 49
4 Missing results 62
4.1 Miscellaneous lemmas 62
4.2 Transfer rules for the HMA_Connect file of the Perron-Frobenius development 63
4.3 Lemmas obtained from HOL Analysis using local type defi- nitions 64
4.4 Lemmas about matrices, submatrices and determinants 65
4.5 Lemmas about sorted lists, insort and pick 82
5 The Cauchy-Binet formula 88
5.1 Previous missing results about pick and insert 88
5.2 Start of the proof 93
5.3 Final theorem 117
6 Definition of Smith normal form in JNF 120
7 Some theorems about rings and ideals 123
7.1 Missing properties on ideals 123
7.2 An equivalent characterization of Bézout rings 134
8 Connection between mod-ring and mod-type 139
9 Generality of the Algorithm to transform from diagonal to Smith normal form 141
9.1 Proof of the \Longleftarrow implication in HA. 141
9.2 Trying to prove the \Longrightarrow implication in HA. 142
9.3 Proof of the \Longrightarrow implication in JNF. 143
9.4 Trying to transfer the \Longrightarrow implication to HA. 147
9.5 Transfering the \Longleftarrow implication from HA to JNF using trans- fer rules and local type definitions 153
9.6 Final theorem in JNF 155
10 Uniqueness of the Smith normal form 156
10.1 More specific results about submatrices 157
10.2 On the minors of a diagonal matrix 161
10.3 Relating minors and GCD 171
10.4 Final theorem 176
10.5 Uniqueness fixing a complete set of non-associates 180
11 The Cauchy-Binet formula in HOL Analysis 182
11.1 Definition of submatrices in HOL Analysis 182
11.2 Transferring the proof from JNF to HOL Analysis 183
12 Diagonalizing matrices in JNF and HOL Analysis 184
12.1 Diagonalizing matrices in JNF 184
12.2 Implementation and soundness result moved to HOL Analysis. 185
13 Smith normal form algorithm based on two steps in HOL Analysis 186
13.1 The implementation 186
13.2 Soundness in HOL Analysis 187
14 Algorithm to transform a diagonal matrix into its Smith normal form in JNF 187
14.1 Attempt with the third option: definitions and conditional transfer rules 188
14.2 Attempt with the second option: implementation and sound- ness in JNF 189
14.3 Applying local type definitions 198
14.4 The final result 202
15 Smith normal form algorithm based on two steps in JNF 202
15.1 Moving the result from HOL Analysis to JNF 202
16 A general algorithm to transform a matrix into its Smith normal form 203
16.1 Previous definitions and lemmas 203
16.2 Previous operations 205
16.3 The implementation 211
16.3.1 Case $1 \times n$ 220
16.3.2 Case $n \times 1$ 226
16.3.3 Case $2 \times n$ 227
16.3.4 Case $n \times 2$ 242
16.3.5 Case $m \times n$ 243
16.4 Soundness theorem 262
17 The Smith normal form algorithm in HOL Analysis 263
17.1 Transferring the result from JNF to HOL Anaylsis 263
17.2 Soundness in HOL Anaylsis 263
18 Elementary divisor rings 266
18.1 Previous definitions and basic properties of Hermite ring 267
18.2 The class that represents elementary divisor rings 269
18.3 Hermite ring implies Bézout ring 269
18.4 Elementary divisor ring implies Hermite ring 274
18.5 Characterization of Elementary divisor rings 289
18.6 Final theorem 296

```
1 9 \text { Executable Smith normal form algorithm over Euclidean do-}mains298
```

19.1 Previous code equations 299
19.2 An executable algorithm to transform 2×2 matrices into its Smith normal form in HOL Analysis 299
19.3 An executable algorithm to transform 2×2 matrices into its Smith normal form in JNF 307
19.4 An executable algorithm to transform 1×2 matrices into its Smith normal form 308
19.5 The final executable algorithm to transform any matrix into its Smith normal form 313
20 A certified checker based on an external algorithm to com- pute Smith normal form 314
1 Definition of Smith normal form in HOL Anal- ysis

```
theory Smith-Normal-Form
    imports
        Hermite.Hermite
begin
```


1.1 Definitions

```
Definition of diagonal matrix
definition isDiagonal-upt- \(k A k=(\forall a b\). (to-nat \(a \neq\) to-nat \(b \wedge\) (to-nat \(a<k \vee\) \((\) to-nat \(b<k))) \longrightarrow A \$ a \$ b=0)\)
definition isDiagonal \(A=(\forall a b\). to-nat \(a \neq\) to-nat \(b \longrightarrow A \$ a \$ b=0)\)
lemma isDiagonal-intro:
fixes \(A::^{\prime} a::\{z e r o\}^{\wedge \prime}\) cols::mod-type \({ }^{\text {' }}\) rows::mod-type
assumes \(\bigwedge a::^{\prime}\) rows. \(\bigwedge b::^{\prime}\) cols. to-nat \(a=\) to-nat \(b\)
shows isDiagonal \(A\)
using assms
unfolding isDiagonal-def by auto
Definition of Smith normal form up to position k. The element \(A_{k-1, k-1}\) does not need to divide \(A_{k, k}\) and \(A_{k, k}\) could have non-zero entries above and below.
```

```
    definition Smith-normal-form-upt-k A k=
```

 definition Smith-normal-form-upt-k A k=
 (
 (
 (\foralla b. to-nat a = to-nat b ^ to-nat a + 1<k\wedge to-nat b + 1<k\longrightarrowA$ a$
 (\foralla b. to-nat a = to-nat b ^ to-nat a + 1<k\wedge to-nat b + 1<k\longrightarrowA$ a$
 b dvd A \$ (a+1)\$(b+1))
b dvd A \$ (a+1)\$(b+1))
\wedge isDiagonal-upt-k A k
\wedge isDiagonal-upt-k A k
)

```
)
```

```
definition Smith-normal-form A=
    (\foralla b. to-nat a = to-nat b ^ to-nat a + 1<nrows A ^ to-nat b + 1<ncols
A\longrightarrowA$ a $ b dvd A $ (a+1)$ (b+1))
    \wedge ~ i s D i a g o n a l ~ A ~
    )
```


1.2 Basic properties

lemma Smith-normal-form-min: Smith-normal-form $A=$ Smith-normal-form-upt-k $A(\min ($ nrows $A)(n c o l s A))$ unfolding Smith-normal-form-def Smith-normal-form-upt-k-def nrows-def ncols-def
unfolding isDiagonal-upt-k-def isDiagonal-def
by (auto, smt Suc-le-eq le-trans less-le min.boundedI not-less-eq-eq suc-not-zero to-nat-less-card to-nat-plus-one-less-card')
lemma Smith-normal-form-upt-k-0[simp]: Smith-normal-form-upt-k A 0 unfolding Smith-normal-form-upt-k-def
unfolding isDiagonal-upt-k-def isDiagonal-def by auto
lemma Smith-normal-form-upt-k-intro:
assumes ($\bigwedge a b$. to-nat $a=$ to-nat $b \wedge$ to-nat $a+1<k \wedge$ to-nat $b+1<k \Longrightarrow$
$A \$ a \$ b d v d A \$(a+1) \$(b+1))$
and $(\bigwedge a b$. $($ to-nat $a \neq$ to-nat $b \wedge($ to-nat $a<k \vee($ to-nat $b<k))) \Longrightarrow A \$ a \$$
$b=0$)
shows Smith-normal-form-upt-k A k
unfolding Smith-normal-form-upt-k-def
unfolding isDiagonal-upt-k-def isDiagonal-def using assms by simp
lemma Smith-normal-form-upt-k-intro-alt:
assumes $(\bigwedge a b$. to-nat $a=$ to-nat $b \wedge$ to-nat $a+1<k \wedge$ to-nat $b+1<k \Longrightarrow$
$A \$ a \$ b d v d A \$(a+1) \$(b+1))$
and isDiagonal-upt-k A k
shows Smith-normal-form-upt-k A k
using assms
unfolding Smith-normal-form-upt-k-def by auto
lemma Smith-normal-form-upt-k-condition1:
fixes $A::{ }^{\prime} a::\{$ bezout-ring $\}{ }^{\wedge \prime}$ cols::mod-type ${ }^{\wedge}$ rows::mod-type
assumes Smith-normal-form-upt-k A k
and to-nat $a=$ to-nat b and to-nat $a+1<k$ and to-nat $b+1<k$
shows $A \$ a \$ b d v d A \$(a+1) \$(b+1)$
using assms unfolding Smith-normal-form-upt-k-def by auto

lemma Smith-normal-form-upt-k-condition2:

fixes $A::^{\prime} a::\{\text { bezout-ring }\}^{\wedge \prime}$ cols::mod-type ${ }^{\wedge \prime}$ rows::mod-type
assumes Smith-normal-form-upt-k A k
and to-nat $a \neq$ to-nat b and (to-nat $a<k \vee$ to-nat $b<k$)
shows $((A \$ a) \$ b)=0$
using assms unfolding Smith-normal-form-upt- k-def
unfolding isDiagonal-upt-k-def isDiagonal-def by auto
lemma Smith-normal-form-upt-k1-intro:
fixes $A::^{\prime} a::\{$ bezout-ring $\}{ }^{\wedge}$ cols::mod-type ${ }^{\wedge}$ rows::mod-type
assumes s : Smith-normal-form-upt- k A k
and cond1: $A \$$ from-nat $(k-1) \$$ from-nat $(k-1)$ dvd $A \$$ (from-nat $k) \$$
(from-nat k)
and cond2a: $\forall a$. to-nat $a>k \longrightarrow A \$ a \$$ from-nat $k=0$
and cond2b: $\forall b$. to-nat $b>k \longrightarrow A \$$ from-nat $k \$ b=0$
shows Smith-normal-form-upt-k A (Suc k)
proof (rule Smith-normal-form-upt-k-intro)
fix $a::$ 'rows and $b::$ 'cols
assume a : to-nat $a \neq$ to-nat $b \wedge($ to-nat $a<$ Suc $k \vee$ to-nat $b<$ Suc $k)$
show $A \$ a \$ b=0$
by (metis Smith-normal-form-upt-k-condition2 a
assms(1) cond2a cond2b from-nat-to-nat-id less-SucE nat-neq-iff)
next
fix $a:$:'rows and $b::^{\prime}$ cols
assume a : to-nat $a=$ to-nat $b \wedge$ to-nat $a+1<$ Suc $k \wedge$ to-nat $b+1<$ Suc k
show $A \$ a \$ b$ dvd $A \$(a+1) \$(b+1)$
by (metis (mono-tags, lifting) Smith-normal-form-upt-k-condition1 a add-diff-cancel-right'
cond1
from-nat-suc from-nat-to-nat-id less-SucE s)
qed
lemma Smith-normal-form-upt-k1-intro-diagonal:
fixes $A::{ }^{\prime} a::\{$ bezout-ring $\}{ }^{\wedge \prime}$ cols::mod-type ${ }^{\wedge}$ rows::mod-type
assumes s: Smith-normal-form-upt-k Ak
and d : isDiagonal A
and cond1: $A \$$ from-nat $(k-1) \$$ from-nat $(k-1)$ dvd $A \$$ (from-nat $k) \$$
(from-nat k)
shows Smith-normal-form-upt-k A (Suc k)
proof (rule Smith-normal-form-upt-k-intro)
fix $a::$ 'rows and $b::{ }^{\prime}$ cols
assume a: to-nat $a=$ to-nat $b \wedge$ to-nat $a+1<$ Suc $k \wedge$ to-nat $b+1<S u c k$
show $A \$ a \$ b$ dvd $A \$(a+1) \$(b+1)$
by (metis (mono-tags, lifting) Smith-normal-form-upt-k-condition1 a add-diff-cancel-right' cond1 from-nat-suc from-nat-to-nat-id less-SucE s)
next
show $\wedge a b$. to-nat $a \neq$ to-nat $b \wedge($ to-nat $a<S u c k \vee$ to-nat $b<S u c k) \Longrightarrow A$
$\$ a \$ b=0$
using d isDiagonal-def by blast
end

2 Algorithm to transform a diagonal matrix into its Smith normal form

theory Diagonal-To-Smith
imports Hermite.Hermite
HOL-Types-To-Sets.Types-To-Sets
Smith-Normal-Form
begin

lemma invertible-mat-1: invertible (mat (1::'a::comm-ring-1))
unfolding invertible-iff-is-unit by simp

2.1 Implementation of the algorithm

type-synonym ' a bezout $={ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \times{ }^{\prime} a \times{ }^{\prime} a \times{ }^{\prime} a \times{ }^{\prime} a$
hide-const Countable.from-nat
hide-const Countable.to-nat
The algorithm is based on the one presented by Bradley in his article entitled "Algorithms for Hermite and Smith normal matrices and linear diophantine equations". Some improvements have been introduced to get a general version for any matrix (including non-square and singular ones).

I also introduced another improvement: the element in the position j does not need to be checked each time, since the element $A_{i i}$ will already divide $A_{j j}$ (where $\left.j \leq k\right)$. The gcd will be placed in $A_{i i}$.

This function transforms the element $A_{j j}$ in order to be divisible by $A_{i i}$ (and it changes $A_{i i}$ as well).
The use of from-nat and from-nat is mandatory since the same index i cannot be used for both rows and columns at the same time, since they could have different type, concretely, when the matrix is rectangular.

The following definition is valid, but since execution requires the trick of converting all operations in terms of rows, then we would be recalculating the Bézout coefficients each time.

Thus, the definition is parameterized by the necessary elements instead of the operation, to avoid recalculations.
definition diagonal-step A ijd $v=$
($\chi a b$. if $a=$ from-nat $i \wedge b=$ from-nat i then d else if $a=$ from-nat $j \wedge b=$ from-nat j then $v *(A \$($ from-nat $j) \$($ from-nat $j))$ else $A \$ a \$ b)$

```
fun diagonal-to-Smith-i ::
nat list \(\Rightarrow\) 'a:: \{bezout-ring\} \({ }^{\wedge}\) cols::mod-type \({ }^{\wedge}\) rows::mod-type \(\Rightarrow\) nat \(\Rightarrow\) ('a bezout)
    \(\Rightarrow{ }^{\prime} a^{\wedge}\) 'cols::mod-type 1 'rows::mod-type
where
diagonal-to-Smith-i [] \(A\) i bezout \(=A \mid\)
diagonal-to-Smith-i \((j \# x s)\) A i bezout \(=(\)
    if \(A \$(\) from-nat i) \(\$(\) from-nat \(i)\) dvd \(A \$(\) from-nat \(j) \$(\) from-nat \(j)\)
        then diagonal-to-Smith-i xs \(A\) i bezout
    else let \((p, q, u, v, d)=\) bezout \((A \$\) from-nat \(i \$\) from-nat \(i)(A \$\) from-nat \(j \$\)
from-nat j);
        \(A^{\prime}=\) diagonal-step \(A i j d v\)
        in diagonal-to-Smith-i xs \(A^{\prime}\) i bezout
    )
```

definition Diagonal-to-Smith-row-i A i bezout
$=$ diagonal-to-Smith- $i[i+1 . .<\min ($ nrows $A)(n$ cols $A)] A$ bezout
fun diagonal-to-Smith-aux :: 'a::\{bezout-ring\} ^' cols::mod-type ${ }^{\wedge}$ 'rows::mod-type
\Rightarrow nat list $\Rightarrow\left({ }^{\prime} a\right.$ bezout $) \Rightarrow{ }^{\prime} a^{\wedge}$ cols::mod-type ${ }^{\wedge 1}$ rows::mod-type
where
diagonal-to-Smith-aux $A[]$ bezout $=A \mid$
diagonal-to-Smith-aux $A(i \# x s)$ bezout
$=$ diagonal-to-Smith-aux (Diagonal-to-Smith-row-i A i bezout) xs bezout

The minimum arises to include the case of non-square matrices (we do not demand the input diagonal matrix to be square, just have zeros in nondiagonal entries).
This iteration does not need to be performed until the last element of the diagonal, because in the second-to-last step the matrix will be already in Smith normal form.
definition diagonal-to-Smith A bezout
$=$ diagonal-to-Smith-aux $A[0 . .<\min ($ nrows $A)(n c o l s A)-1]$ bezout

2.2 Code equations to get an executable version

definition diagonal-step-row
where diagonal-step-row A ij c v $a=$ vec-lambda (\%b. if $a=$ from-nat $i \wedge b=$ from-nat i then c else

$$
\begin{aligned}
& \text { if } a=\text { from-nat } j \wedge b=\text { from-nat } j \\
& \text { then } v *(A \$(\text { from-nat } j) \$(\text { from-nat } j)) \text { else } A \$ a \$ b)
\end{aligned}
$$

lemma diagonal-step-code [code abstract]:
vec-nth (diagonal-step-row A ijcva) $=(\%$. if $a=$ from-nat $i \wedge b=$ from-nat i then c else
if $a=$ from-nat $j \wedge b=$ from-nat j
then $v *(A \$($ from-nat $j) \$($ from-nat $j))$ else $A \$ a \$ b)$
unfolding diagonal-step-row-def by auto
lemma diagonal-step-code-nth [code abstract]: vec-nth (diagonal-step Aijce) $=$ diagonal-step-row A ijcv unfolding diagonal-step-def unfolding diagonal-step-row-def[abs-def] by auto

Code equation to avoid recalculations when computing the Bezout coefficients.
lemma euclid-ext2-code[code]:
euclid-ext2 a $b=(\operatorname{let}((p, q), d)=$ euclid-ext $a b \operatorname{in}(p, q,-b$ div d, a div d,d))
unfolding euclid-ext2-def split-beta Let-def
by auto

2.3 Examples of execution

value let $A=$ list-of-list-to-matrix $[[12,0,0::$ int $],[0,6,0::$ int $],[0,0,2::$ int $]]::$ int ${ }^{\text {^3 }}$-3 in matrix-to-list-of-list (diagonal-to-Smith A euclid-ext2)

Example obtained from: https://math.stackexchange.com/questions/77063/ how-do-i-get-this-matrix-in-smith-normal-form-and-is-smith-normal-form-unique
value let $A=$ list-of-list-to-matrix
$[[:-3,1:], 0,0,0]$,
[$0,[: 1,1:], 0,0]$,
[0,0,[:1,1:],0],
$[0,0,0,[: 1,1:]]]::$ rat poly^4~4
in matrix-to-list-of-list (diagonal-to-Smith A euclid-ext2)
Polynomial matrix
value let $A=$ list-of-list-to-matrix
$[[:-3,1:], 0,0,0]$,
[$0,[: 1,1:], 0,0]$,
[0, $0,[: 1,1:], 0]$,
[0, $0,0,[: 1,1:]]$,
[0,0,0,0]]::rat poly^4~5
in matrix-to-list-of-list (diagonal-to-Smith A euclid-ext2)

2.4 Soundness of the algorithm

lemma nrows-diagonal-step[simp]: nrows (diagonal-step Aijc v)=nrows A
by (simp add: nrows-def)
lemma ncols-diagonal-step[simp]: ncols (diagonal-step A ijcv)=ncols A
by (simp add: ncols-def)

```
context
    fixes bezout::'a::{bezout-ring} 㗋 }a=>\mp@subsup{|}{}{\prime}a\times' a\times' a > ' a > ' a
    assumes ib: is-bezout-ext bezout
begin
lemma split-beta-bezout: bezout a b=
    (fst(bezout a b),
    fst (snd (bezout a b)),
    fst (snd(snd (bezout a b))),
    fst (snd (\operatorname{snd}(\mathrm{ snd (bezout a b)))),}
    snd (snd(snd(snd (bezout a b))))) unfolding split-beta by (auto simp add:
split-beta)
```

The following lemma shows that diagonal-to-Smith-i preserves the previous element. We use the assumption to-nat $a=$ to-nat b in order to ensure that we are treating with a diagonal entry. Since the matrix could be rectangular, the types of a and b can be different, and thus we cannot write either $a=$ b or $A \$ a \$ b$.
lemma diagonal-to-Smith-i-preserves-previous-diagonal:
fixes $A::^{\prime} a::\{\text { bezout-ring }\}^{\wedge} b::$ mod-type ${ }^{\wedge} c::$ mod-type
assumes i-min: $i<\min (n r o w s ~ A)(n c o l s ~ A) ~$
and to-nat $a \notin$ set xs and to-nat $a=$ to-nat b
and to-nat $a \neq i$
and elements-xs-range: $\forall x . x \in$ set $x s \longrightarrow x<\min (n r o w s ~ A)(n c o l s A)$
shows (diagonal-to-Smith-i xs A i bezout) $\$ a \$ b=A \$ a \$ b$
using assms
proof (induct xs A i bezout rule: diagonal-to-Smith-i.induct)
case (1 A i bezout)
then show ?case by auto
next
case (2 j xs A i bezout)
let ? Aii $=A \$$ from-nat $i \$$ from-nat i
let ? $A j j=A \$$ from-nat $j \$$ from-nat j
let ? $p=$ case bezout (A \$ from-nat $i \$$ from-nat i) (A \$ from-nat $j \$$ from-nat j) of $(p, q, u, v, d) \Rightarrow p$
let ? $q=$ case bezout ($A \$$ from-nat $i \$$ from-nat i) ($A \$$ from-nat $j \$$ from-nat j) of $(p, q, u, v, d) \Rightarrow q$
let ? $u=$ case bezout (A \$ from-nat $i \$$ from-nat i) (A \$ from-nat $j \$$ from-nat j) of $(p, q, u, v, d) \Rightarrow u$
let ? $v=$ case bezout ($A \$$ from-nat $i \$$ from-nat $i)$ ($A \$$ from-nat $j \$$ from-nat $j)$ of $(p, q, u, v, d) \Rightarrow v$
let ? $d=$ case bezout (A \$ from-nat $i \$$ from-nat i (A \$ from-nat $j \$$ from-nat j) of $(p, q, u, v, d) \Rightarrow d$
let ? $A^{\prime}=$ diagonal-step $A i j ? d$?v
have pquvd: $(? p, ? q, ? u, ? v, ? d)=$ bezout $(A \$$ from-nat $i \$$ from-nat $i)(A \$$ from-nat $j \$$ from-nat j)

```
    by (simp add: split-beta)
    show ?case
    proof (cases ?Aii dvd ?Ajj)
    case True
    then show ?thesis
        using 2.hyps 2.prems by auto
    next
    case False
    note i-min =2(3)
    note hyp = 2(2)
    note i-notin = 2(4)
    note a-eq-b = 2.prems(3)
    note elements-xs = 2(7)
    note a-not-i=2(6)
    have a-not-j: a f from-nat j
        by (metis elements-xs i-notin list.set-intros(1) min-less-iff-conj nrows-def
to-nat-from-nat-id)
    have diagonal-to-Smith-i ( j# xs) A i bezout = diagonal-to-Smith-i xs ?'A' i
bezout
            using False by (auto simp add: split-beta)
    also have ... $ a $ b=? 'A' $ a $ b
            by (rule hyp[OF False], insert i-notin i-min a-eq-b a-not-i pquvd elements-xs,
auto)
            also have ... = A $ a$b
            unfolding diagonal-step-def
            using a-not-j a-not-i
    by (smt i-min min.strict-boundedE nrows-def to-nat-from-nat-id vec-lambda-beta)
    finally show ?thesis.
    qed
qed
lemma diagonal-step-dvd1[simp]:
    fixes A::'a::{bezout-ring} `'b::mod-type^'c::mod-type and j i
    defines v==case bezout (A $ from-nat i $ from-nat i) (A $ from-nat j $ from-nat
j) of (p,q,u,v,d) =>v
    and d==case bezout (A $ from-nat i $ from-nat i) (A $ from-nat j $ from-nat
j) of (p,q,u,v,d) =>d
    shows diagonal-step A i j d v $ from-nat i $ from-nat i dvd A $ from-nat i $
from-nat i
    using ib unfolding is-bezout-ext-def diagonal-step-def v-def d-def
    by (auto simp add: split-beta)
lemma diagonal-step-dvd2[simp]:
    fixes A::'a::{bezout-ring} ^'b::mod-type^'c::mod-type and j i
    defines v==case bezout ( }A$\mathrm{ from-nat i $ from-nat i) (A $ from-nat j $ from-nat
j) of (p,q,u,v,d) =>v
    and d==case bezout (A $ from-nat i $ from-nat i) (A $ from-nat j $ from-nat
j) of (p,q,u,v,d) =>d
    shows diagonal-step A i j d v $ from-nat i $ from-nat i dvd A $ from-nat j $
```

```
from-nat \(j\)
    using ib unfolding is-bezout-ext-def diagonal-step-def \(v\)-def d-def
    by (auto simp add: split-beta)
end
Once the step is carried out, the new element \(A^{\prime}{ }_{i i}\) will divide the element \(A_{i i}\)
lemma diagonal-to-Smith-i-dvd-ii:
    fixes \(A:: ' a::\{\text { bezout-ring }\}^{\wedge} b::\) mod-type \({ }^{\wedge} c:: m o d-t y p e\)
    assumes ib: is-bezout-ext bezout
    shows diagonal-to-Smith-i xs \(A\) bezout \(\$\) from-nat \(i \$\) from-nat \(i\) dvd \(A \$\)
from-nat \(i \$\) from-nat \(i\)
    using \(i b\)
proof (induct xs A i bezout rule: diagonal-to-Smith-i.induct)
    case ( 1 A i bezout)
    then show ?case by auto
next
    case (2 j xs A i bezout)
    let ? Aii \(=A \$\) from-nat \(i \$\) from-nat \(i\)
    let ? Ajj \(=A \$\) from-nat \(j \$\) from-nat \(j\)
    let ? \(p=\) case bezout ( \(A \$\) from-nat \(i \$\) from-nat \(i\) ) ( \(A \$\) from-nat \(j \$\) from-nat \(j\) )
of \((p, q, u, v, d) \Rightarrow p\)
    let ? \(q=\) case bezout ( \(A\) \$ from-nat \(i \$\) from-nat \(i)\) ( \(A \$\) from-nat \(j \$\) from-nat \(j)\)
of \((p, q, u, v, d) \Rightarrow q\)
    let ?u=case bezout ( \(A\) \$ from-nat \(i \$\) from-nat \(i\) ) ( \(A\) \$ from-nat \(j \$\) from-nat \(j\) )
of \((p, q, u, v, d) \Rightarrow u\)
    let ? \(v=\) case bezout ( \(A \$\) from-nat \(i \$\) from-nat \(i\) ) ( \(A \$\) from-nat \(j \$\) from-nat \(j\) )
of \((p, q, u, v, d) \Rightarrow v\)
    let ? \(d=\) case bezout ( \(A\) \$ from-nat \(i \$\) from-nat \(i\) ) ( \(A\) \$ from-nat \(j \$\) from-nat \(j\) )
of \((p, q, u, v, d) \Rightarrow d\)
    let ? \(A^{\prime}=\) diagonal-step \(A\) i \(j ? d\) ?v
    have pquvd: \((? p, ? q, ? u, ? v, ? d)=\) bezout \((A \$\) from-nat \(i \$\) from-nat \(i)(A \$\)
from-nat \(j \$\) from-nat \(j\) )
    by (simp add: split-beta)
    note \(i b=2 . \operatorname{prems}(1)\)
    show ?case
    proof (cases ?Aii dvd ?Ajj)
            case True
            then show ?thesis
                using 2.hyps(1) 2.prems by auto
    next
        case False
        note hyp \(=2 . \operatorname{hyps}(2)\)
        have diagonal-to-Smith-i \((j \# x s) A\) bezout \(=\) diagonal-to-Smith-i xs ? \(A^{\prime} i\)
bezout
            using False by (auto simp add: split-beta)
            also have ... \$ from-nat \(i \$\) from-nat \(i d v d ? A^{\prime} \$\) from-nat \(i \$\) from-nat \(i\)
                by (rule hyp[OF False], insert pquvd ib, auto)
```

```
        also have ... dvd A $ from-nat i $ from-nat i
            unfolding diagonal-step-def using ib unfolding is-bezout-ext-def
            by (auto simp add: split-beta)
        finally show ?thesis.
    qed
qed
```

Once the step is carried out, the new element $A^{\prime}{ }_{i i}$ divides the rest of elements of the diagonal. This proof requires commutativity (already included in the type restriction bezout-ring).

```
lemma diagonal-to-Smith-i-dvd-jj:
    fixes A::'a::{bezout-ring} `'b::mod-type^'c::mod-type
    assumes ib: is-bezout-ext bezout
    and i-min: i< min (nrows A) (ncols A)
    and elements-xs-range: }\forallx.x\in set xs \longrightarrowx<min (nrows A) (ncols A)
    and to-nat a f set xs
    and to-nat a = to-nat b
    and to-nat a\not=i
    and distinct xs
shows (diagonal-to-Smith-i xs A i bezout) $ (from-nat i) $ (from-nat i)
        dvd (diagonal-to-Smith-i xs A i bezout) $ a $ b
    using assms
proof (induct xs A i bezout rule: diagonal-to-Smith-i.induct)
    case (1 A i)
    then show ?case by auto
next
    case (2 j xs A i bezout)
    let ?Aii = A $ from-nat i $ from-nat i
    let ?Ajj = A $ from-nat j $ from-nat j
    let ? p=case bezout (A $ from-nat i $ from-nat i)(A $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?q=case bezout (A $ from-nat i $ from-nat i) (A $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?u=case bezout (A $ from-nat i $ from-nat i)(A $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?v=case bezout (A $ from-nat i $ from-nat i) (A $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?d=case bezout (A $ from-nat i $ from-nat i) (A $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?. A'=diagonal-step A ij ?d ?v
    have pquvd: (?p,?q, ?u,?v,?d)=bezout (A $ from-nat i $ from-nat i) (A $
from-nat j $ from-nat j)
    by (simp add: split-beta)
    note ib = 2.prems(1)
    note to-nat-a-not-i = 2(8)
    note i-min = 2(4)
    note elements-xs = 2.prems(3)
    note a-eq-b = 2.prems(5)
    note a-in-j-xs = 2(6)
```

```
    note distinct = 2(9)
    show ?case
    proof (cases ?Aii dvd ?Ajj)
    case True note Aii-dvd-Ajj = True
    show ?thesis
    proof (cases to-nat a = j)
        case True
        have a: a= (from-nat j::'c) using True by auto
        have b: b=(from-nat j::'b)
            using True a-eq-b by auto
        have diagonal-to-Smith-i (j # xs) A i bezout = diagonal-to-Smith-i xs A i
bezout
            using Aii-dvd-Ajj by auto
        also have ... $ from-nat j $ from-nat j=A $ from-nat j $ from-nat j
                proof (rule diagonal-to-Smith-i-preserves-previous-diagonal[OF ib i-min])
            show to-nat (from-nat j::'c) & set xs using True a-in-j-xs distinct by auto
            show to-nat (from-nat j::'c) = to-nat (from-nat j::'b)
                by (metis True a-eq-b from-nat-to-nat-id)
            show to-nat (from-nat j::'c)}\not=
                using True to-nat-a-not-i by auto
            show }\forallx.x\in\mathrm{ set }xs\longrightarrowx<\operatorname{min}(nrows A) (ncols A) using elements-xs
by auto
            qed
            finally have diagonal-to-Smith-i (j # xs) A i bezout $ from-nat j $ from-nat
j
                = A $ from-nat j $ from-nat j .
    hence diagonal-to-Smith-i (j#xs) A i bezout $ a $ b=?Ajj unfolding a b .
                moreover have diagonal-to-Smith-i (j# xs) A i bezout $ from-nat i $
from-nat i dvd?Aii
                by (rule diagonal-to-Smith-i-dvd-ii[OF ib])
            ultimately show ?thesis using Aii-dvd-Ajj dvd-trans by auto
    next
            case False
            have a-in-xs: to-nat a 
            have diagonal-to-Smith-i (j # xs) A i bezout = diagonal-to-Smith-i xs A i
bezout
            using True by auto
            also have ... $(from-nat i)$(from-nat i) dvd diagonal-to-Smith-i xs A i
bezout $ a $ b
                by (rule 2.hyps(1)[OF True ib i-min - a-in-xs a-eq-b to-nat-a-not-i])
                    (insert elements-xs distinct, auto)
            finally show ?thesis.
        qed
next
    case False note Aii-not-dvd-Ajj = False
    show ?thesis
    proof (cases to-nat a \in set xs)
            case True note a-in-xs=True
```

have diagonal-to-Smith-i $(j \#$ xs $) A$ bezout $=$ diagonal-to-Smith- i xs ? $A^{\prime} i$ bezout
using False by (auto simp add: split-beta)
also have ... \$ from-nat $i \$$ from-nat i dvd diagonal-to-Smith-i xs ? $A^{\prime} i$ bezout \$ $a \$ b$
by (rule 2.hyps(2)[OF False - - - - - a-in-xs a-eq-b to-nat-a-not-i])
(insert elements-xs distinct i-min ib pquvd, auto simp add: nrows-def ncols-def)
finally show ?thesis .
next
case False
have to-nat-a-eq-j: to-nat $a=j$
using False $a-i n-j-x s$ by auto
have $a: a=\left(\right.$ from-nat $\left.j::^{\prime} c\right)$ using to-nat-a-eq-j by auto
have $b: b=($ from-nat $j:: ' b)$ using to-nat-a-eq-j $a-e q-b$ by auto
have d-eq: diagonal-to-Smith-i ($j \#$ xs) A i bezout $=$ diagonal-to-Smith- i xs ? $A^{\prime} i$ bezout
using Aii-not-dvd-Ajj by (simp add: split-beta)
also have $\ldots \$ a \$ b=? A^{\prime} \$ a \$ b$
by (rule diagonal-to-Smith-i-preserves-previous-diagonal[OF ib-False a-eq-b to-nat-a-not-i])
(insert i-min elements-xs ib, auto)
finally have diagonal-to-Smith-i $(j \# x s) A$ i bezout $\$ a \$ b=? A^{\prime} \$ a \$ b$.
moreover have diagonal-to-Smith-i $(j \neq x s) A$ bezout $\$$ from-nat $i \$$ from-nat i
dvd ? $A^{\prime} \$$ from-nat $i \$$ from-nat i
using d-eq diagonal-to-Smith-i-dvd-ii[OF ib] by simp
moreover have ? A^{\prime} \$ from-nat $i \$$ from-nat i dvd ? A^{\prime} \$ from-nat $j \$$ from-nat j
unfolding diagonal-step-def using ib unfolding is-bezout-ext-def split-beta by (auto, meson dvd-mult)+
ultimately show ?thesis using dvd-trans $a b$ by auto qed
qed
qed
The step preserves everything that is not in the diagonal

```
lemma diagonal-to-Smith-i-preserves-previous:
    fixes A::'a:: {bezout-ring}^'b::mod-type^'c::mod-type
    assumes ib: is-bezout-ext bezout
        and i-min: i< min (nrows A) (ncols A)
    and a-not-b: to-nat a\not= to-nat b
    and elements-xs-range: }\forallx.x\in\mathrm{ set xs }\longrightarrowx<\operatorname{min}(nrows A) (ncols A)
    shows (diagonal-to-Smith-i xs A i bezout) $ a $ b=A $ a $ b
    using assms
proof (induct xs A i bezout rule: diagonal-to-Smith-i.induct)
case (1 A i)
    then show ?case by auto
next
```

```
    case (2 j xs A i bezout)
    let ?Aii = A $ from-nat i $ from-nat i
    let ?Ajj = A $ from-nat j $ from-nat j
    let ?p=case bezout (A $ from-nat i $ from-nat i)(A $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?q=case bezout (A $ from-nat i $ from-nat i)(A $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?u=case bezout (A $ from-nat i $ from-nat i) (A $ from-nat j $ from-nat j)
of (p,q,u,v,d) =>u
    let ?v=case bezout (A $ from-nat i $ from-nat i) (A $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?d=case bezout (A $ from-nat i $ from-nat i)(A $ from-nat j $ from-nat j)
of (p,q,u,v,d) =>d
    let ?A'=diagonal-step A i j ?d ?v
    have pquvd:(?p,?q,?u,?v,?d) = bezout (A $ from-nat i $ from-nat i) (A$$
from-nat j $ from-nat j)
    by (simp add: split-beta)
    note ib = 2.prems(1)
    show ?case
    proof (cases ?Aii dvd ?Ajj)
    case True
    then show ?thesis
            using 2.hyps(1) 2.prems by auto
    next
    case False
    note hyp = 2.hyps(2)
    have a1: a = from-nat i\longrightarrowb}\longrightarrow\mathrm{ from-nat }
            by (metis 2.prems a-not-b from-nat-not-eq min.strict-boundedE ncols-def
nrows-def)
    have a2: a = from-nat j\longrightarrowb\not= from-nat j
            by (metis 2.prems a-not-b list.set-intros(1) min-less-iff-conj
                    ncols-def nrows-def to-nat-from-nat-id)
            have diagonal-to-Smith-i (j # xs) A i bezout = diagonal-to-Smith-i xs ?A' i
bezout
            using False by (simp add: split-beta)
            also have ... $a$ b=? 'A'$ a$b
                by (rule hyp[OF False], insert 2.prems ib pquvd, auto)
    also have ... = A $ a $ b unfolding diagonal-step-def using a1 a2 by auto
    finally show?thesis.
    qed
qed
```

lemma diagonal-step-preserves:
fixes $A::^{\prime} a::\{\text { times }\}^{\wedge \prime} b::$ mod-type ${ }^{\wedge \prime} c::$ mod-type
assumes $a i: a \neq i$ and $a j: a \neq j$ and a-min: $a<\min ($ nrows $A)(n c o l s A)$
and i-min: $i<\min ($ nrows $A)($ ncols $A)$
and j-min: $j<\min ($ nrows $A)(n c o l s A)$
shows diagonal-step $A i j d v \$$ from-nat $a \$$ from-nat $b=A \$$ from-nat a $\$$

```
from-nat b
proof -
    have 1:(from-nat a::'c)\not= from-nat i
    by (metis a-min ai from-nat-eq-imp-eq i-min min.strict-boundedE nrows-def)
    have 2: (from-nat a::'c) = from-nat j
            by (metis a-min aj from-nat-eq-imp-eq j-min min.strict-boundedE nrows-def)
    show ?thesis
            using 12 unfolding diagonal-step-def by auto
qed
context GCD-ring
begin
lemma gcd-greatest:
    assumes is-gcd gcd' and c dvd a and c dvd b
    shows c dvd gcd' a b
    using assms is-gcd-def by blast
end
This is a key lemma for the soundness of the algorithm.
```

```
lemma diagonal-to-Smith-i-dvd:
```

lemma diagonal-to-Smith-i-dvd:
fixes A::'a:: {bezout-ring} ^'b::mod-type^'c::mod-type
fixes A::'a:: {bezout-ring} ^'b::mod-type^'c::mod-type
assumes ib: is-bezout-ext bezout
assumes ib: is-bezout-ext bezout
and i-min: i< min (nrows A) (ncols A)
and i-min: i< min (nrows A) (ncols A)
and elements-xs-range: }\forallx.x\in\mathrm{ set xs }\longrightarrowx<min (nrows A) (ncols A)
and elements-xs-range: }\forallx.x\in\mathrm{ set xs }\longrightarrowx<min (nrows A) (ncols A)
and \forallab. to-nat a\ininsert i(set xs)^ to-nat a = to-nat b}
and \forallab. to-nat a\ininsert i(set xs)^ to-nat a = to-nat b}
A \$ (from-nat c) \$ (from-nat c) dvd A \$ a \$ b
A \$ (from-nat c) \$ (from-nat c) dvd A \$ a \$ b
and c\not\in(set xs) and c:c<min (nrows A) (ncols A)
and c\not\in(set xs) and c:c<min (nrows A) (ncols A)
and distinct xs
and distinct xs
shows A \$ (from-nat c) \$ (from-nat c)dvd
shows A \$ (from-nat c) \$ (from-nat c)dvd
(diagonal-to-Smith-i xs A i bezout) \$ (from-nat i) \$ (from-nat i)
(diagonal-to-Smith-i xs A i bezout) \$ (from-nat i) \$ (from-nat i)
using assms
using assms
proof (induct xs A i bezout rule: diagonal-to-Smith-i.induct)
proof (induct xs A i bezout rule: diagonal-to-Smith-i.induct)
case (1 A i)
case (1 A i)
then show ?case
then show ?case
by (auto simp add: ncols-def nrows-def to-nat-from-nat-id)
by (auto simp add: ncols-def nrows-def to-nat-from-nat-id)
next
next
case (2 j xs A i bezout)
case (2 j xs A i bezout)
let ?Aii = A \$ from-nat i \$ from-nat i
let ?Aii = A \$ from-nat i \$ from-nat i
let ?Ajj = A \$ from-nat j \$ from-nat j
let ?Ajj = A \$ from-nat j \$ from-nat j
let ?p=case bezout (A \$ from-nat i \$ from-nat i) (A \$ from-nat j \$ from-nat j)
let ?p=case bezout (A \$ from-nat i \$ from-nat i) (A \$ from-nat j \$ from-nat j)
of (}p,q,u,v,d)=>
of (}p,q,u,v,d)=>
let ?q=case bezout (A \$ from-nat i \$ from-nat i) (A \$ from-nat j \$ from-nat j)
let ?q=case bezout (A \$ from-nat i \$ from-nat i) (A \$ from-nat j \$ from-nat j)
of (}p,q,u,v,d)=>
of (}p,q,u,v,d)=>
let ?u=case bezout (A \$ from-nat i \$ from-nat i) (A \$ from-nat j \$ from-nat j)
let ?u=case bezout (A \$ from-nat i \$ from-nat i) (A \$ from-nat j \$ from-nat j)
of (p,q,u,v,d) =>u
of (p,q,u,v,d) =>u
let ?v=case bezout (A \$ from-nat i \$ from-nat i) (A \$ from-nat j \$ from-nat j)
let ?v=case bezout (A \$ from-nat i \$ from-nat i) (A \$ from-nat j \$ from-nat j)
of (p,q,u,v,d) =>v

```
of (p,q,u,v,d) =>v
```

let ? $d=$ case bezout ($A \$$ from-nat $i \$$ from-nat $i)(A \$$ from-nat $j \$$ from-nat $j)$ of $(p, q, u, v, d) \Rightarrow d$
let ? $A^{\prime}=$ diagonal-step $A i j ? d$?v
have pquvd: $(? p, ? q, ? u, ? v, ? d)=$ bezout $(A \$$ from-nat $i \$$ from-nat $i)(A \$$ from-nat $j \$$ from-nat j)
by (simp add: split-beta)
note $i b=2 . \operatorname{prems}(1)$
show ?case
proof (cases ?Aii dvd ?Ajj)
case True note Aii-dvd-Ajj $=$ True
show ?thesis using True
using 2.hyps 2.prems by force
next
case False
let ? Acc $=A \$$ from-nat $c \$$ from-nat c
let ? D=diagonal-step A ij?d ?v
note hyp $=2 . \operatorname{hyps}(2)$
note dvd-condition $=$ 2.prems (4)
note $a-e q-b=2 . h y p s$
have 1: (from-nat $\left.c::^{\prime} c\right) \neq$ from-nat i
by (metis 2.prems False c insert-iff list.set-intros(1)
min.strict-boundedE ncols-def nrows-def to-nat-from-nat-id)
have 2: (from-nat $\left.c::^{\prime} c\right) \neq$ from-nat j
by (metis 2.prems c insertI1 list.simps(15) min-less-iff-conj nrows-def to-nat-from-nat-id)
have ? $D \$$ from-nat $c \$$ from-nat $c=$?Acc
unfolding diagonal-step-def using 12 by auto
have aux: ?D \$ from-nat c \$ from-nat c dvd ? D \$ a \$ b
if a-in-set: to-nat $a \in$ insert $i($ set $x s)$ and $a b$: to-nat $a=$ to-nat b for $a b$
proof -
have Acc-dvd-Aii: ?Acc dvd ?Aii
by (metis 2.prems(2) 2.prems(4) insert-iff min.strict-boundedE ncols-def nrows-def to-nat-from-nat-id)
moreover have $A c c-d v d-A j j$: ?Acc dvd ?Ajj
by (metis 2.prems(3) 2.prems(4) insert-iff list.set-intros(1)
min-less-iff-conj ncols-def nrows-def to-nat-from-nat-id)
ultimately have $A c c-d v d-g c d:$? Acc $d v d$?d
by (metis (mono-tags, lifting) ib is-gcd-def is-gcd-is-bezout-ext)
show ?thesis
using 12 Acc-dvd-Ajj Acc-dvd-Aii Acc-dvd-gcd a-in-set ab dvd-condition unfolding diagonal-step-def by auto
qed
have ? $A^{\prime} \$$ from-nat $c \$$ from-nat $c=A \$$ from-nat $c \$$ from-nat c unfolding diagonal-step-def using 12 by auto
moreover have ? $A^{\prime} \$$ from-nat $c \$$ from-nat c
dvd diagonal-to-Smith-i xs ? $A^{\prime} i$ bezout $\$$ from-nat $i \$$ from-nat i
by (rule hyp $[$ OF False - - - - ib])
(insert nrows-def ncols-def 2.prems 2.hyps aux pquvd, auto)
ultimately show ?thesis using False by (auto simp add: split-beta)
lemma diagonal-to-Smith-i-dvd2:
fixes $A::^{\prime} a::\{\text { bezout-ring }\}^{\wedge} b::$ mod-type ${ }^{\wedge} c::$ mod-type
assumes ib: is-bezout-ext bezout
and i-min: $i<\min ($ nrows $A)($ ncols $A)$
and elements-xs-range: $\forall x . x \in$ set $x s \longrightarrow x<\min (n r o w s ~ A)(n c o l s A)$
and dvd-condition: $\forall a$ b. to-nat $a \in$ insert $i($ set $x s) \wedge$ to-nat $a=$ to-nat $b \longrightarrow$
$A \$($ from-nat $c) \$($ from-nat $c) d v d A \$ a \$ b$
and c-notin: $c \notin($ set $x s)$
and $c: c<\min ($ nrows $A)($ ncols $A)$
and distinct: distinct $x s$
and $a b$: to-nat $a=$ to-nat b
and a-in: to-nat $a \in$ insert i (set xs)
shows $A \$($ from-nat $c) \$($ from-nat $c)$ dvd (diagonal-to-Smith-i xs A i bezout) $\$$
$a \$ b$
proof (cases $a=$ from-nat i)
case True
hence $b: b=$ from-nat i
by (metis ab from-nat-to-nat-id i-min min-less-iff-conj nrows-def to-nat-from-nat-id)
show ?thesis by (unfold True b, rule diagonal-to-Smith-i-dvd, insert assms, auto)
next
case False
have ai: to-nat $a \neq i$ using False by auto
hence $b i$: to-nat $b \neq i$ by (simp $a d d: a b$)
have $A \$($ from-nat c) $\$$ (from-nat c) dvd (diagonal-to-Smith-i xs A i bezout) \$ from-nat $i \$$ from-nat i
by (rule diagonal-to-Smith-i-dvd, insert assms, auto)
also have ... dvd (diagonal-to-Smith-i xs A i bezout) $\$ a \$ b$
by (rule diagonal-to-Smith-i-dvd-jj, insert assms False ai bi, auto)
finally show? ?hesis.

qed

lemma diagonal-to-Smith-i-dvd2-k:
fixes $A:: ' a::\{$ bezout-ring $\}$ ^' $b::$ mod-type ${ }^{\wedge \prime} c::$ mod-type
assumes ib: is-bezout-ext bezout
and i-min: $i<\min ($ nrows $A)($ ncols $A)$
and elements-xs-range: $\forall x . x \in$ set $x s \longrightarrow x<k$ and $k \leq \min (n r o w s A)(n c o l s A)$
and dvd-condition: $\forall a b$. to-nat $a \in$ insert $i($ set xs) \wedge to-nat $a=$ to-nat $b \longrightarrow$
$A \$($ from-nat $c) \$($ from-nat $c) d v d A \$ a \$ b$
and c-notin: $c \notin($ set $x s)$
and $c: c<\min ($ nrows $A)($ ncols $A)$
and distinct: distinct xs
and $a b$: to-nat $a=$ to-nat b
and a-in: to-nat $a \in$ insert i (set xs)
shows $A \$($ from-nat $c) \$($ from-nat $c)$ dvd (diagonal-to-Smith-i xs A i bezout) $\$$

```
a$b
proof (cases a = from-nat i)
    case True
    hence b:b = from-nat i
    by (metis ab from-nat-to-nat-id i-min min-less-iff-conj nrows-def to-nat-from-nat-id)
    show ?thesis by (unfold True b, rule diagonal-to-Smith-i-dvd, insert assms, auto)
next
    case False
    have ai: to-nat a\not=i using False by auto
    hence bi: to-nat b\not=i by (simp add: ab)
    have A $ (from-nat c) $ (from-nat c) dvd (diagonal-to-Smith-i xs A i bezout) $
from-nat i $ from-nat i
    by (rule diagonal-to-Smith-i-dvd, insert assms, auto)
    also have ... dvd (diagonal-to-Smith-i xs A i bezout) $ a $ b
    by (rule diagonal-to-Smith-i-dvd-jj, insert assms False ai bi, auto)
    finally show ?thesis.
qed
lemma diagonal-to-Smith-row-i-preserves-previous:
    fixes A::'a::{bezout-ring} ^'b::mod-type\mp@subsup{}{}{\prime\prime}c::mod-type
    assumes ib: is-bezout-ext bezout
    and i-min: i<min (nrows A) (ncols A)
    and a-not-b: to-nat a f= to-nat b
    shows Diagonal-to-Smith-row-i A i bezout $ a $ b=A $ a $ b
    unfolding Diagonal-to-Smith-row-i-def
    by (rule diagonal-to-Smith-i-preserves-previous, insert assms, auto)
lemma diagonal-to-Smith-row-i-preserves-previous-diagonal:
    fixes A::'a:: {bezout-ring} ^'b::mod-type^'c::mod-type
    assumes ib: is-bezout-ext bezout
    and i-min: i< min (nrows A) (ncols A)
    and a-notin: to-nat a & set [i+1..<min (nrows A) (ncols A)]
    and ab: to-nat a = to-nat b
    and ai: to-nat a\not=i
    shows Diagonal-to-Smith-row-i A i bezout $ a $ b=A $ a $ b
    unfolding Diagonal-to-Smith-row-i-def
    by (rule diagonal-to-Smith-i-preserves-previous-diagonal[OF ib i-min a-notin ab
ai], auto)
context
    fixes bezout::'a::{bezout-ring} 吘'a > ' }a\times
    assumes ib: is-bezout-ext bezout
begin
lemma diagonal-to-Smith-row-i-dvd-jj:
    fixes A::'a::{bezout-ring} ^'b::mod-type^'c::mod-type
```

```
    assumes to-nat a }\in{i..<\mathrm{ min (nrows A) (ncols A)}
    and to-nat a = to-nat b
    shows (Diagonal-to-Smith-row-i A i bezout)$ (from-nat i) $ (from-nat i)
        dvd (Diagonal-to-Smith-row-i A i bezout) $ a $ b
proof (cases to-nat a = i)
    case True
    then show ?thesis
        by (metis assms(2) dvd-refl from-nat-to-nat-id)
next
    case False
    show ?thesis
        unfolding Diagonal-to-Smith-row-i-def
    by (rule diagonal-to-Smith-i-dvd-jj, insert assms False ib, auto)
qed
lemma diagonal-to-Smith-row-i-dvd-ii:
    fixes A::'a::{bezout-ring} ^'b::mod-type }\mp@subsup{}{}{\wedge\prime}c::mod-typ
    shows Diagonal-to-Smith-row-i A i bezout $ from-nat i $ from-nat i dvd A $
from-nat i $ from-nat i
    unfolding Diagonal-to-Smith-row-i-def
    by (rule diagonal-to-Smith-i-dvd-ii[OF ib])
lemma diagonal-to-Smith-row-i-dvd-jj':
    fixes A::'a::{bezout-ring} ^'b::mod-type^'c::mod-type
    assumes a-in: to-nat a \in{i..<min (nrows A) (ncols A)}
    and ab: to-nat a = to-nat b
    and ci:c\leqi
    and dvd-condition: }\foralla\mathrm{ b. to-nat }a\in(\mathrm{ set [i..<min (nrows A) (ncols A)]) }\wedge\mathrm{ to-nat
a=to-nat b
    \longrightarrow from-nat c $ from-nat c dvd A $ a $b
    shows (Diagonal-to-Smith-row-i A i bezout) $ (from-nat c) $ (from-nat c)
            dvd (Diagonal-to-Smith-row-i A i bezout) $ a $ b
proof (cases c=i)
    case True
    then show ?thesis using assms True diagonal-to-Smith-row-i-dvd-jj
        by metis
    next
    case False
    hence ciQ: c<i using ci by auto
    have 1: to-nat (from-nat c::'c) # (set [i+1..<min (nrows A) (ncols A)])
    by (metis Suc-eq-plus1 ci atLeastLessThan-iff from-nat-mono
            le-imp-less-Suc less-irrefl less-le-trans set-upt to-nat-le to-nat-less-card)
    have 2: to-nat (from-nat c) }=
            using ci2 from-nat-mono to-nat-less-card by fastforce
    have 3: to-nat (from-nat c::'c)=to-nat (from-nat c::'b)
    by (metis a-in ab atLeastLessThan-iff ci dual-order.strict-trans2 to-nat-from-nat-id
to-nat-less-card)
```

```
    have (Diagonal-to-Smith-row-i A i bezout) $ (from-nat c) $ (from-nat c)
    =A $(from-nat c) $ (from-nat c)
    unfolding Diagonal-to-Smith-row-i-def
    by (rule diagonal-to-Smith-i-preserves-previous-diagonal[OF ib - 1 3 2], insert
assms, auto)
    also have ... dvd (Diagonal-to-Smith-row-i A i bezout) $ a $ b
        unfolding Diagonal-to-Smith-row-i-def
        by (rule diagonal-to-Smith-i-dvd2, insert assms False ci ib, auto)
    finally show ?thesis.
qed
end
```

lemma diagonal-to-Smith-aux-append:
diagonal-to-Smith-aux A (xs @ ys) bezout
= diagonal-to-Smith-aux (diagonal-to-Smith-aux A xs bezout) ys bezout
by (induct A xs bezout rule: diagonal-to-Smith-aux.induct, auto)
lemma diagonal-to-Smith-aux-append2[simp]:
diagonal-to-Smith-aux A (xs @ [ys]) bezout
= Diagonal-to-Smith-row-i (diagonal-to-Smith-aux A xs bezout) ys bezout
by (induct A xs bezout rule: diagonal-to-Smith-aux.induct, auto)
lemma isDiagonal-eq-upt-k-min:
isDiagonal $A=$ isDiagonal-upt-k $A($ min (nrows $A)(n c o l s A))$
unfolding isDiagonal-def isDiagonal-upt-k-def nrows-def ncols-def
by (auto, meson less-trans not-less-iff-gr-or-eq to-nat-less-card)
lemma isDiagonal-eq-upt-k-max:
isDiagonal $A=$ isDiagonal-upt-k $A(\max ($ nrows $A)(n c o l s A))$
unfolding isDiagonal-def isDiagonal-upt-k-def nrows-def ncols-def
by (auto simp add: less-max-iff-disj to-nat-less-card)
lemma isDiagonal:
assumes isDiagonal A
and to-nat $a \neq$ to-nat b shows $A \$ a \$ b=0$
using assms unfolding isDiagonal-def by auto
lemma nrows-diagonal-to-Smith-aux[simp]:
shows nrows (diagonal-to-Smith-aux A xs bezout) $=$ nrows A unfolding nrows-def
by auto
lemma ncols-diagonal-to-Smith-aux[simp]:
shows ncols (diagonal-to-Smith-aux A xs bezout) $=$ ncols A unfolding ncols-def
by auto

```
context
```



```
    assumes ib: is-bezout-ext bezout
begin
lemma isDiagonal-diagonal-to-Smith-aux:
    assumes diag-A: isDiagonal A and k: k< min (nrows A) (ncols A)
    shows isDiagonal (diagonal-to-Smith-aux A [0..<k] bezout)
    using }
proof (induct k)
    case 0
    then show ?case using diag-A by auto
next
    case (Suc k)
    have Diagonal-to-Smith-row-i (diagonal-to-Smith-aux A [0..<k] bezout) k bezout
$ a $ b = 0
    if a-not-b: to-nat }a\not=to\mathrm{ to-nat b for a b
    proof -
    have Diagonal-to-Smith-row-i (diagonal-to-Smith-aux A [0..<k] bezout) k bezout
$ a $ b
                =(diagonal-to-Smith-aux A [0..<k] bezout) $ a $ b
                by (rule diagonal-to-Smith-row-i-preserves-previous[OF ib - a-not-b], insert
Suc.prems, auto)
    also have ... = 0
        by (rule isDiagonal[OF Suc.hyps a-not-b], insert Suc.prems, auto)
    finally show ?thesis.
    qed
    thus ?case unfolding isDiagonal-def by auto
qed
end
lemma to-nat-less-nrows[simp]:
    fixes }A::'\mp@subsup{a}{}{`\prime}b::mod-type\mp@subsup{}{}{`\prime}c::mod-typ
        and }a:\mp@subsup{:}{}{\prime}
    shows to-nat a < nrows A
    by (simp add: nrows-def to-nat-less-card)
lemma to-nat-less-ncols[simp]:
    fixes }A::'\mp@subsup{a}{}{\wedge}b::mod-type '' c::mod-typ
        and }a::'
    shows to-nat a<ncols A
    by (simp add: ncols-def to-nat-less-card)
context
    fixes bezout::'a::{bezout-ring} 缶 }a>\mp@subsup{|}{}{\prime}a\times'a\times' a > ' a > 'a
    assumes ib: is-bezout-ext bezout
begin
The variables a and b must be arbitrary in the induction
```

```
lemma diagonal-to-Smith-aux-dvd:
    fixes }A::'a::{bezout-ring} ^'b::mod-type^'c::mod-type
    assumes ab: to-nat a = to-nat b
    and c:c<k and ca:c\leqto-nat a and k: k<min (nrows A) (ncols A)
    shows diagonal-to-Smith-aux A [0..<k] bezout $ from-nat c $ from-nat c
        dvd diagonal-to-Smith-aux A [0..<k] bezout $ a $ b
    using c ab ca k
proof (induct k arbitrary: a b)
    case 0
    then show ?case by auto
next
    case (Suc k)
    note c=Suc.prems(1)
    note ab = Suc.prems(2)
    note ca = Suc.prems(3)
    note k=Suc.prems(4)
    have k-min: k< min (nrows A) (ncols A) using k by auto
    have a-less-ncols: to-nat a<ncols A using ab by auto
    show ?case
    proof (cases c=k)
        case True
        hence k: k\leqto-nat a using ca by auto
        show ?thesis unfolding True
            by (auto, rule diagonal-to-Smith-row-i-dvd-jj[OF ib - ab], insert k a-less-ncols,
auto)
    next
        case False note c-not-k = False
        let ?Dk=diagonal-to-Smith-aux A [0..<k] bezout
        have ck:c<k using Suc.prems False by auto
        have hyp: ?Dk $ from-nat c $ from-nat c dvd ?Dk $ a $ b
            by (rule Suc.hyps[OF ck ab ca k-min])
    have Dkk-Daa-bb: ?Dk $ from-nat c $ from-nat c dvd ?Dk $ aa $ bb
            if to-nat aa \in set [k..<min (nrows ?Dk) (ncols ?Dk)] and to-nat aa = to-nat
bb
            for aa bb using Suc.hyps ck k-min that(1) that(2) by auto
    show ?thesis
    proof (cases k\leqto-nat a)
            case True
            show ?thesis
                by (auto, rule diagonal-to-Smith-row-i-dvd-jj'[OF ib - ab])
                    (insert True a-less-ncols ck Dkk-Daa-bb,force+)
    next
            case False
            have diagonal-to-Smith-aux A [0..<Suc k] bezout $ from-nat c $ from-nat c
                = Diagonal-to-Smith-row-i ?Dk k bezout $ from-nat c $ from-nat c by auto
            also have ... = ?Dk $ from-nat c $ from-nat c
            proof (rule diagonal-to-Smith-row-i-preserves-previous-diagonal[OF ib])
                show }k<\operatorname{min}(nrows ?Dk) (ncols ?Dk) using k by aut
                show to-nat (from-nat c::'c) = to-nat (from-nat c::'b)
```

```
            by (metis assms(2) assms(4) less-trans min-less-iff-conj
                        ncols-def nrows-def to-nat-from-nat-id)
            show to-nat (from-nat c::'c)}\not=
                using False ca from-nat-mono' to-nat-less-card to-nat-mono' by fastforce
            show to-nat (from-nat c::'c) & set [k+1..<min (nrows ?Dk) (ncols ?Dk)]
            by (metis Suc-eq-plus1 atLeastLessThan-iff c ca from-nat-not-eq
                le-less-trans not-le set-upt to-nat-less-card)
    qed
    also have ... dvd ?Dk $ a $ b using hyp .
    also have ... = Diagonal-to-Smith-row-i ?Dk k bezout $ a $ b
            by (rule diagonal-to-Smith-row-i-preserves-previous-diagonal[symmetric,OF
ib - - ab])
            (insert False k, auto)
            also have ... = diagonal-to-Smith-aux A [0..<Suc k] bezout $ a $ b by auto
            finally show ?thesis.
        qed
    qed
qed
lemma Smith-normal-form-upt-k-Suc-imp-k:
fixes \(A:: ' a::\{\text { bezout-ring }\}^{\wedge} b:: m o d-t y p e{ }^{\wedge \prime} c:: m o d-t y p e\)
assumes \(s\) : Smith-normal-form-upt-k (diagonal-to-Smith-aux \(A[0 . .<\) Suc \(k]\) bezout) \(k\)
and \(k\) : \(k<\min (n r o w s ~ A)(n c o l s A)\)
shows Smith-normal-form-upt-k (diagonal-to-Smith-aux \(A[0 . .<k]\) bezout) \(k\)
proof (rule Smith-normal-form-upt-k-intro)
let ? \(D k=\) diagonal-to-Smith-aux \(A[0 . .<k]\) bezout
fix \(a::^{\prime} c\) and \(b:::^{\prime} b\) assume to-nat \(a=\) to-nat \(b \wedge\) to-nat \(a+1<k \wedge\) to-nat \(b+\) \(1<k\)
hence \(a b\) : to-nat \(a=\) to-nat \(b\) and ak: to-nat \(a+1<k\) and \(b k\) : to-nat \(b+1\) \(<k\) by auto
have a-not-k: to-nat \(a \neq k\) using ak by auto
have a1-less- \(k 1\) : to-nat \(a+1<k+1\) using ak by linarith
have ? \(D k \$ a \$ b=\) diagonal-to-Smith-aux \(A[0 . .<S u c k]\) bezout \(\$ a \$ b\)
by (auto, rule diagonal-to-Smith-row-i-preserves-previous-diagonal[symmetric, OF \(i b\) - - ab a-not-k])
(insert ak k, auto)
also have ... dvd diagonal-to-Smith-aux \(A[0 . .<\) Suc \(k]\) bezout \(\$(a+1) \$(b+\) 1)
using \(a b\) ak \(b k s\) unfolding Smith-normal-form-upt- \(k\)-def by auto
also have \(\ldots=\) ? \(D k \$(a+1) \$(b+1)\)
proof (auto, rule diagonal-to-Smith-row-i-preserves-previous-diagonal[OF ib])
show to-nat \((a+1) \neq k\) using \(a k\)
by (metis add-less-same-cancel2 nat-neq-iff not-add-less2 to-nat-0 to-nat-plus-one-less-card' to-nat-suc)
show to-nat \((a+1)=\) to-nat \((b+1)\)
by (metis ab ak from-nat-suc from-nat-to-nat-id \(k\) less-asym' min-less-iff-conj
```

ncols-def nrows-def suc-not-zero to-nat-from-nat-id to-nat-plus-one-less-card')
show to-nat $(a+1) \notin \operatorname{set}[k+1 . .<\min (n r o w s ~ ? D k)(n c o l s ? D k)]$
by (metis a1-less-k1 add-to-nat-def atLeastLessThan-iff k less-asym' min.strict-boundedE
not-less nrows-def set-upt suc-not-zero to-nat-1 to-nat-from-nat-id to-nat-plus-one-less-card')
show $k<\min$ (nrows ? $D k$) (ncols ? $D k$) using k by auto
qed
finally show ? $D k \$ a \$ b d v d ? D k \$(a+1) \$(b+1)$. next
let ?Dk=diagonal-to-Smith-aux $A[0 . .<k]$ bezout
fix $a::^{\prime} c$ and $b::^{\prime} b$
assume to-nat $a \neq$ to-nat $b \wedge($ to-nat $a<k \vee$ to-nat $b<k)$
hence $a b$: to-nat $a \neq$ to-nat b and $a k$-bk: (to-nat $a<k \vee$ to-nat $b<k$) by auto
have ? $D k \$ a \$ b=$ diagonal-to-Smith-aux $A[0 . .<$ Suc $k]$ bezout $\$ a \$ b$
by (auto, rule diagonal-to-Smith-row-i-preserves-previous[symmetric, OF ib $a b]$, insert k, auto)
also have $\ldots=0$
using $a b a k$-bk s unfolding Smith-normal-form-upt- k-def isDiagonal-upt- k-def by auto
finally show ? $D k \$ a \$ b=0$.
qed
lemma Smith-normal-form-upt-k-le:
assumes $a \leq k$ and Smith-normal-form-upt- $k A k$
shows Smith-normal-form-upt-k A a using assms
by (smt Smith-normal-form-upt-k-def isDiagonal-upt-k-def less-le-trans)
lemma Smith-normal-form-upt-k-imp-Suc-k:
assumes s: Smith-normal-form-upt- k (diagonal-to-Smith-aux $A[0 . .<k]$ bezout) k
and k : $k<\min$ (nrows A) (ncols A)
shows Smith-normal-form-upt-k (diagonal-to-Smith-aux $A[0 . .<$ Suc $k]$ bezout) k
proof (rule Smith-normal-form-upt-k-intro)
let ? $D k=$ diagonal-to-Smith-aux $A[0 . .<k]$ bezout
fix $a::^{\prime} c$ and $b::^{\prime} b$ assume to-nat $a=$ to-nat $b \wedge$ to-nat $a+1<k \wedge$ to-nat $b+$ $1<k$
hence $a b$: to-nat $a=$ to-nat b and ak: to-nat $a+1<k$ and $b k$: to-nat $b+1$ $<k$ by auto
have a-not- k : to-nat $a \neq k$ using ak by auto
have a1-less-k1: to-nat $a+1<k+1$ using ak by linarith
have diagonal-to-Smith-aux $A[0 . .<$ Suc $k]$ bezout $\$ a \$ b=? D k \$ a \$ b$
by (auto, rule diagonal-to-Smith-row-i-preserves-previous-diagonal[OF ib-ab a-not-k])
(insert ak k, auto)
also have ... dvd? $D k \$(a+1) \$(b+1)$
using $s a k k a b$ unfolding Smith-normal-form-upt-k-def by auto
also have $\ldots=$ diagonal-to-Smith-aux $A[0 . .<$ Suc $k]$ bezout $\$(a+1) \$(b+1)$
proof (auto, rule diagonal-to-Smith-row-i-preserves-previous-diagonal[symmetric, OF $i b]$)
show to-nat $(a+1) \neq k$ using $a k$
by (metis add-less-same-cancel2 nat-neq-iff not-add-less2 to-nat-0 to-nat-plus-one-less-card' to-nat-suc)
show to-nat $(a+1)=$ to-nat $(b+1)$
by (metis ab ak from-nat-suc from-nat-to-nat-id k less-asym' min-less-iff-conj ncols-def nrows-def suc-not-zero to-nat-from-nat-id to-nat-plus-one-less-card')
show to-nat $(a+1) \notin$ set $[k+1 . .<\min (n r o w s ? D k)(n c o l s ? D k)]$
by (metis a1-less-k1 add-to-nat-def to-nat-plus-one-less-card' less-asym' min.strict-boundedE not-less nrows-def set-upt suc-not-zero to-nat-1 to-nat-from-nat-id atLeast-LessThan-iff k)
show $k<\min$ (nrows ?Dk) (ncols ?Dk) using k by auto
qed
finally show diagonal-to-Smith-aux $A[0 . .<S u c k]$ bezout $\$ a \$ b$
dvd diagonal-to-Smith-aux $A[0 . .<$ Suc $k]$ bezout $\$(a+1) \$(b+1)$.
next
let ? $D k=$ diagonal-to-Smith-aux $A[0 . .<k]$ bezout
fix $a::^{\prime} c$ and $b::^{\prime} b$
assume to-nat $a \neq$ to-nat $b \wedge($ to-nat $a<k \vee$ to-nat $b<k)$
hence $a b$: to-nat $a \neq$ to-nat b and $a k$-bk: (to-nat $a<k \vee$ to-nat $b<k$) by auto
have diagonal-to-Smith-aux $A[0 . .<S u c k]$ bezout $\$ a \$ b=? D k \$ a \$ b$
by (auto, rule diagonal-to-Smith-row-i-preserves-previous[OF ib-ab], insert k, auto)
also have $\ldots=0$
using $a b a k$ - $b k$ s unfolding Smith-normal-form-upt- k-def isDiagonal-upt- k-def by auto
finally show diagonal-to-Smith-aux $A[0 . .<$ Suc $k]$ bezout $\$ a \$ b=0$.
qed
corollary Smith-normal-form-upt-k-Suc-eq:
assumes k : $k<\min$ (nrows A) (ncols A)
shows Smith-normal-form-upt- k (diagonal-to-Smith-aux $A[0 . .<S u c k]$ bezout) k $=$ Smith-normal-form-upt-k (diagonal-to-Smith-aux A $[0 . .<k]$ bezout) k
using Smith-normal-form-upt-k-Suc-imp-k Smith-normal-form-upt-k-imp-Suc-k k

by blast

end
lemma nrows-diagonal-to-Smith-i[simp]: nrows (diagonal-to-Smith-i xs A i bezout) $=$ nrows A
by (induct xs A i bezout rule: diagonal-to-Smith-i.induct, auto simp add: nrows-def)
lemma ncols-diagonal-to-Smith-i[simp]: ncols (diagonal-to-Smith-i xs A i bezout) $=n c o l s A$
by (induct xs A i bezout rule: diagonal-to-Smith-i.induct, auto simp add: ncols-def)
lemma nrows-Diagonal-to-Smith-row-i[simp]: nrows (Diagonal-to-Smith-row-i A i bezout) $=$ nrows A
unfolding Diagonal-to-Smith-row-i-def by auto
lemma ncols-Diagonal-to-Smith-row-i[simp]: ncols (Diagonal-to-Smith-row-i A i bezout) $=$ ncols A unfolding Diagonal-to-Smith-row-i-def by auto
lemma isDiagonal-diagonal-step:
assumes diag-A: isDiagonal A and $i: i<\min$ (nrows A) (ncols A) and $j: j<\min (n r o w s ~ A)(n c o l s A)$
shows isDiagonal (diagonal-step A ijdv)
proof -
have i-eq: to-nat (from-nat $i::^{\prime} b$) $=$ to-nat (from-nat $i::^{\prime} c$) using i
by (simp add: ncols-def nrows-def to-nat-from-nat-id)
moreover have j-eq: to-nat (from-nat $j::^{\prime} b$) $=$ to-nat (from-nat $j::^{\prime} c$) using j by (simp add: ncols-def nrows-def to-nat-from-nat-id) ultimately show ?thesis
using assms
unfolding isDiagonal-def diagonal-step-def by auto
qed
lemma isDiagonal-diagonal-to-Smith-i:
assumes isDiagonal A
and elements-xs-range: $\forall x . x \in$ set $x s \longrightarrow x<\min (n r o w s A)(n c o l s A)$ and $i<\min$ (nrows A) (ncols A)
shows isDiagonal (diagonal-to-Smith-i xs A i bezout)
using assms
proof (induct xs A i bezout rule: diagonal-to-Smith-i.induct)
case (1 A i bezout)
then show ?case by auto
next
case (2 jxs A i bezout)
let ?Aii $=A \$$ from-nat $i \$$ from-nat i
let ? $A j j=A \$$ from-nat $j \$$ from-nat j
let ? $p=$ case bezout ($A \$$ from-nat $i \$$ from-nat i) ($A \$$ from-nat $j \$$ from-nat j) of $(p, q, u, v, d) \Rightarrow p$
let ? $q=$ case bezout ($A \$$ from-nat $i \$$ from-nat i) ($A \$$ from-nat $j \$$ from-nat j) of $(p, q, u, v, d) \Rightarrow q$
let ? $u=$ case bezout (A \$ from-nat $i \$$ from-nat i (A \$ from-nat $j \$$ from-nat j) of $(p, q, u, v, d) \Rightarrow u$
let ? $v=$ case bezout ($A \$$ from-nat $i \$$ from-nat i) ($A \$$ from-nat $j \$$ from-nat j) of $(p, q, u, v, d) \Rightarrow v$
let ? $d=$ case bezout (A \$ from-nat $i \$$ from-nat i) (A \$ from-nat $j \$$ from-nat j) of $(p, q, u, v, d) \Rightarrow d$
let ? $A^{\prime}=$ diagonal-step A ij ?d ?v
have pquvd: $(? p, ? q, ? u, ? v, ? d)=$ bezout $(A \$$ from-nat $i \$$ from-nat $i)(A \$$ from-nat $j \$$ from-nat j)
by (simp add: split-beta)
show? case
proof (cases ?Aii dvd ?Ajj)

```
    case True
    thus ?thesis
        using 2.hyps 2.prems by auto
    next
    case False
    have diagonal-to-Smith-i (j # xs) A i bezout = diagonal-to-Smith-i xs ?'A' i
bezout
            using False by (simp add: split-beta)
    also have isDiagonal ... thm 2.prems
    proof (rule 2.hyps(2)[OF False])
            show isDiagonal
            (diagonal-step A i j?d ?v) by (rule isDiagonal-diagonal-step, insert 2.prems,
auto)
    qed (insert pquvd 2.prems, auto)
    finally show ?thesis.
    qed
qed
lemma isDiagonal-Diagonal-to-Smith-row-i:
    assumes isDiagonal A and i< min (nrows A) (ncols A)
    shows isDiagonal (Diagonal-to-Smith-row-i A i bezout)
    using assms isDiagonal-diagonal-to-Smith-i
    unfolding Diagonal-to-Smith-row-i-def by force
lemma isDiagonal-diagonal-to-Smith-aux-general:
    assumes elements-xs-range: }\forallx.x\in\mathrm{ set xs }\longrightarrowx<\operatorname{min}(nrows A) (ncols A)
    and isDiagonal A
shows isDiagonal (diagonal-to-Smith-aux A xs bezout)
    using assms
proof (induct A xs bezout rule: diagonal-to-Smith-aux.induct)
    case (1 A)
    then show ?case by auto
next
    case (2 A i xs bezout)
    note k=2.prems(1)
    note elements-xs-range = 2.prems(2)
    have diagonal-to-Smith-aux A (i # xs) bezout
    = diagonal-to-Smith-aux (Diagonal-to-Smith-row-i A i bezout) xs bezout
        by auto
    also have isDiagonal (...)
        by (rule 2.hyps, insert isDiagonal-Diagonal-to-Smith-row-i 2.prems k, auto)
    finally show ?case .
qed
context
    fixes bezout::'a::{bezout-ring} 㗋 }a>\mp@subsup{|}{}{\prime}a\times\mp@subsup{}{}{\prime}a\times' a\times' a\times' a
    assumes ib: is-bezout-ext bezout
```


begin

The algorithm is iterated up to position k (not included). Thus, the matrix is in Smith normal form up to position k (not included).

```
lemma Smith-normal-form-upt-k-diagonal-to-Smith-aux:
    fixes \(A:: ' a::\{\text { bezout-ring }\}^{\wedge} b::\) mod-type \({ }^{\wedge \prime} c::\) mod-type
    assumes \(k<\min (n r o w s ~ A)(n c o l s A)\) and \(d\) : isDiagonal \(A\)
    shows Smith-normal-form-upt-k (diagonal-to-Smith-aux \(A[0 . .<k]\) bezout) \(k\)
    using assms
proof (induct \(k\) )
    case 0
    then show ?case by auto
next
    case (Suc k)
    note Suc- \(k=\) Suc.prems(1)
    have hyp: Smith-normal-form-upt-k (diagonal-to-Smith-aux \(A[0 . .<k]\) bezout) \(k\)
        by (rule Suc.hyps, insert Suc.prems, simp)
    have \(k: k<\min (\) nrows \(A)(\) ncols A) using Suc.prems by auto
    let \(? A=\) diagonal-to-Smith-aux \(A[0 . .<k]\) bezout
    let ?D-Suck \(=\) diagonal-to-Smith-aux \(A[0 . .<\) Suc \(k]\) bezout
    have set-rw: \([0 . .<\) Suc \(k]=[0 . .<k] @[k]\) by auto
    show ?case
    proof (rule Smith-normal-form-upt-k1-intro-diagonal)
        show Smith-normal-form-upt-k (?D-Suck) \(k\)
            by (rule Smith-normal-form-upt-k-imp-Suc-k[OF ib hyp k])
    show ?D-Suck \(\$\) from-nat \((k-1) \$\) from-nat \((k-1)\) dvd ?D-Suck \(\$\) from-nat
\(k\) \$ from-nat \(k\)
        proof (rule diagonal-to-Smith-aux-dvd[OF ib -- Suc-k])
            show to-nat (from-nat \(k::^{\prime} c\) ) \(=\) to-nat (from-nat \(k::^{\prime} b\) )
                    by (metis \(k\) min-less-iff-conj ncols-def nrows-def to-nat-from-nat-id)
            show \(k-1 \leq\) to-nat (from-nat \(k::^{\prime} c\) )
                    by (metis diff-le-self \(k\) min-less-iff-conj nrows-def to-nat-from-nat-id)
        qed auto
        show isDiagonal (diagonal-to-Smith-aux \(A[0 . .<S u c k]\) bezout)
            by (rule isDiagonal-diagonal-to-Smith-aux[OF ib d Suc-k])
    qed
qed
end
```

lemma nrows-diagonal-to-Smith $[$ simp $]$: nrows (diagonal-to-Smith A bezout $)=$ nrows
A
unfolding diagonal-to-Smith-def by auto
lemma ncols-diagonal-to-Smith $[$ simp $]$: ncols (diagonal-to-Smith A bezout $)=$ ncols
A
unfolding diagonal-to-Smith-def by auto
lemma isDiagonal-diagonal-to-Smith:
assumes d : isDiagonal A
shows isDiagonal (diagonal-to-Smith A bezout)
unfolding diagonal-to-Smith-def
by (rule isDiagonal-diagonal-to-Smith-aux-general[OF - d], auto)
This is the soundess lemma.
lemma Smith-normal-form-diagonal-to-Smith:
fixes $A:: ' a::\{\text { bezout-ring }\}^{\wedge} b::$ mod-type ${ }^{\wedge} c:: m o d-t y p e$
assumes ib: is-bezout-ext bezout
and d : isDiagonal A
shows Smith-normal-form (diagonal-to-Smith A bezout)
proof -
let $? k=\min ($ nrows $A)(n c o l s A)-2$
let $? D k=($ diagonal-to-Smith-aux $A[0 . .<? k]$ bezout $)$
have min-eq: min (nrows A) (ncols A) $-1=S u c ? k$
by (metis Suc-1 Suc-diff-Suc min-less-iff-conj ncols-def nrows-def to-nat-1 to-nat-less-card)
have set-rw: $[0 . .<\min (n r o w s ~ A)(n c o l s A)-1]=[0 . .<? k] @[? k]$ unfolding min-eq by auto
have d2: isDiagonal (diagonal-to-Smith A bezout)
by (rule isDiagonal-diagonal-to-Smith[OF d])
have smith-Suc-k: Smith-normal-form-upt-k (diagonal-to-Smith A bezout) (Suc ?k)
proof (rule Smith-normal-form-upt-k1-intro-diagonal[OF - d2] $)$
have diagonal-to-Smith A bezout $=$ diagonal-to-Smith-aux $A[0 . .<\min$ (nrows
A) (ncols A) - 1] bezout
unfolding diagonal-to-Smith-def by auto
also have $\ldots=$ Diagonal-to-Smith-row-i ? Dk ?k bezout
unfolding set-rw
unfolding diagonal-to-Smith-aux-append2 by auto
finally have d-rw: diagonal-to-Smith A bezout $=$ Diagonal-to-Smith-row-i ? Dk ?k bezout .
have Smith-normal-form-upt-k?Dk?k
by (rule Smith-normal-form-upt-k-diagonal-to-Smith-aux[OF ib - d], insert min-eq, linarith)
thus Smith-normal-form-upt-k (diagonal-to-Smith A bezout) ?k unfolding d-rw
by (metis Smith-normal-form-upt-k-Suc-eq Suc-1 ib d-rw diagonal-to-Smith-def diff-0-eq-0
diff-less min-eq not-gr-zero zero-less-Suc)
show diagonal-to-Smith A bezout $\$$ from-nat $(? k-1)$ \$ from-nat $(? k-1)$ dvd
diagonal-to-Smith A bezout $\$$ from-nat ? $k \$$ from-nat ? k
proof (unfold diagonal-to-Smith-def, rule diagonal-to-Smith-aux-dvd[OF ib])
show ?k $-1<\min ($ nrows $A)($ ncols $A)-1$
using min-eq by linarith
show $\min (n r o w s A)(n c o l s A)-1<\min (n r o w s A)(n c o l s A)$ using min-eq by linarith
thus to-nat (from-nat ? $k::^{\prime} c$) $=$ to-nat (from-nat ? $\left.k:: ' b\right)$
by (metis (mono-tags, lifting) Suc-lessD min-eq min-less-iff-conj

```
            ncols-def nrows-def to-nat-from-nat-id)
        show ?k - 1\leq to-nat (from-nat ?k::'c)
            by (metis (no-types, lifting) diff-le-self from-nat-not-eq lessI less-le-trans
            min.cobounded1 min-eq nrows-def)
    qed
    qed
    have s-eq: Smith-normal-form (diagonal-to-Smith A bezout)
        = Smith-normal-form-upt-k (diagonal-to-Smith A bezout)
        (Suc (min (nrows (diagonal-to-Smith A bezout)) (ncols (diagonal-to-Smith A
bezout)) - 1))
    unfolding Smith-normal-form-min by (simp add: ncols-def nrows-def)
    let ?min1=(min (nrows (diagonal-to-Smith A bezout)) (ncols (diagonal-to-Smith
A (bezout)) - 1)
    show ?thesis unfolding s-eq
    proof (rule Smith-normal-form-upt-k1-intro-diagonal[OF - d2])
    show Smith-normal-form-upt-k (diagonal-to-Smith A bezout) ?min1
            using smith-Suc-k min-eq by auto
    have diagonal-to-Smith A bezout $ from-nat ?k $ from-nat ?k
            dvd diagonal-to-Smith A bezout $ from-nat (?k + 1) $ from-nat (?k+1)
                    by (smt One-nat-def Suc-eq-plus1 ib Suc-pred diagonal-to-Smith-aux-dvd
diagonal-to-Smith-def
            le-add1 lessI min-eq min-less-iff-conj ncols-def nrows-def to-nat-from-nat-id
zero-less-card-finite)
    thus diagonal-to-Smith A bezout $ from-nat (?min1 - 1) $ from-nat (?min1 -
1)
            dvd diagonal-to-Smith A bezout $ from-nat ?min1 $ from-nat ?min1
            using min-eq by auto
    qed
qed
```


2.5 Implementation and formal proof of the matrices P and

 Q which transform the input matrix by means of elementary operations.fun diagonal-step- $P Q::$ 'a::\{bezout-ring $\}$ 'cols::mod-type ${ }^{\wedge \prime}$ rows::mod-type \Rightarrow nat \Rightarrow nat \Rightarrow 'a bezout \Rightarrow
(
('a::\{bezout-ring $\}^{\wedge}$ 'rows::mod-type ^'rows::mod-type) \times
('a::\{bezout-ring\} ^'cols::mod-type^'cols::mod-type)
)
where diagonal-step- $P Q A i k$ bezout $=$
(let i-row $=$ from-nat $i ; k$-row $=$ from-nat $k ; i$-col $=$ from-nat $i ; k$-col $=$ from-nat k;
$(p, q, u, v, d)=$ bezout $(A \$ i$-row $\$$ from-nat $i)(A \$ k$-row $\$$ from-nat $k)$; $P=$ row-add (interchange-rows (row-add (mat 1) k-row i-row p) i-row k-row)
k-row i-row $(-v)$;
$Q=$ mult-column (column-add (column-add (mat 1) i-col k-col q) k-col i-col
u) $k-\operatorname{col}(-1)$

$$
\text { in }(P, Q)
$$

)

Examples

value let $A=$ list-of-list-to-matrix $[[12,0,0::$ int $],[0,6,0:: i n t],[0,0,2::$ int $]]::$ int ${ }^{\text {^ }}$ 3^3; $i=0 ; k=1$;
$(p, q, u, v, d)=$ euclid-ext2 $(A \$$ from-nat $i \$$ from-nat $i)(A \$$ from-nat $k \$$ from-nat k);
$(P, Q)=$ diagonal-step- $P Q A i k$ euclid-ext2
in matrix-to-list-of-list (diagonal-step A ikdv)
 $i=0 ; k=1$;
$(p, q, u, v, d)=$ euclid-ext2 $(A \$$ from-nat $i \$$ from-nat $i)(A \$$ from-nat
k \$ from-nat k);
$(P, Q)=$ diagonal-step- $P Q A i k$ euclid-ext2
in matrix-to-list-of-list $(P * *(A) * * Q)$
value let $A=$ list-of-list-to-matrix $[[12,0,0::$ int $],[0,6,0:: i n t],[0,0,2::$ int $]]::$ int 1 З 3 -3;
$i=0 ; k=1$;
$(p, q, u, v, d)=$ euclid-ext2 $(A \$$ from-nat $i \$$ from-nat $i)(A \$$ from-nat $k \$$ from-nat k);
$(P, Q)=$ diagonal-step- $P Q A$ ik euclid-ext2
in matrix-to-list-of-list $(P * *(A) * * Q)$
lemmas diagonal-step- $P Q$-def $=$ diagonal-step- $P Q$. simps
lemma from-nat-neq-rows:
fixes $A::^{\prime} a^{\wedge \prime}$ cols::mod-type^'rows::mod-type
assumes $i: i<($ nrows $A)$ and k : $k<($ nrows $A)$ and $i k: i \neq k$
shows from-nat $i \neq$ (from-nat $k::$ 'rows $)$
proof (rule ccontr, auto)
let ? $i=$ from-nat $i::$ 'rows
let $? k=$ from-nat $k::$ 'rows
assume ? $i=? k$
hence to-nat ?i $=$ to-nat $? k$ by auto
hence $i=k$
unfolding to-nat-from-nat-id[OF i[unfolded nrows-def]]
unfolding to-nat-from-nat-id[OF k[unfolded nrows-def]].
thus False using $i k$ by contradiction
qed
lemma from-nat-neq-cols:
fixes $A::^{\prime} a^{\wedge \prime}$ cols::mod-type ${ }^{\wedge}$ rows::mod-type
assumes i : $i<(n c o l s A)$ and $k: k<(n c o l s A)$ and $i k: i \neq k$
shows from-nat $i \neq($ from-nat $k:: '$ cols $)$
proof (rule ccontr, auto)

```
    let ?i=from-nat i::'cols
    let ?k=from-nat k::'cols
    assume ?i=?k
    hence to-nat ?i = to-nat ?k by auto
    hence i=k
    unfolding to-nat-from-nat-id[OF i[unfolded ncols-def]]
    unfolding to-nat-from-nat-id[OF k[unfolded ncols-def]] .
    thus False using ik by contradiction
qed
```

lemma diagonal-step- $P Q$-invertible- P :
fixes $A::^{\prime} a::\{\text { bezout-ring }\}^{\wedge \prime}$ cols::mod-type ${ }^{\wedge}$ rows::mod-type
assumes $P Q:(P, Q)=$ diagonal-step- $P Q A i k$ bezout
and pquvd: $(p, q, u, v, d)=$ bezout ($A \$$ from-nat $i \$$ from-nat i) (A \$ from-nat k
\$ from-nat k)
and i-not- $k: i \neq k$
and $i: i<\min (n r o w s A)(n c o l s A)$ and $k: k<\min (n r o w s A)(n c o l s A)$
shows invertible P
proof -
let ?step $1=\left(\right.$ row-add $($ mat 1$)\left(\right.$ from-nat $k::^{\prime}$ rows $)($ from-nat i) $p)$
let ?step2 $=$ interchange-rows ?step 1 (from-nat i) (from-nat k)
let ? step $3=$ row-add (?step2) $($ from-nat $k)($ from-nat $i)(-v)$
have $p: p=$ fst (bezout ($A \$$ from-nat $i \$$ from-nat i) ($A \$$ from-nat $k \$$ from-nat
k))
using pquvd by (metis fst-conv)
have $v:-v=(-f s t$ (snd (snd (snd (bezout (A \$ from-nat $i \$$ from-nat i) ($A \$$
from-nat $k \$$ from-nat $k)$)))))
using pquvd by (metis fst-conv snd-conv)
have i-not-k2: from-nat $k \neq$ (from-nat $i::$ 'rows)
by (rule from-nat-neq-rows, insert iki-not-k, auto)
have invertible ?step3
unfolding row-add-mat-1[of - - ?step2, symmetric]
proof (rule invertible-mult)
show invertible (row-add (mat 1) (from-nat k::'rows) (from-nat i) $(-v)$)
by (rule invertible-row-add[OF i-not-k2])
show invertible ?step2
by (metis i-not-k2 interchange-rows-mat-1 invertible-interchange-rows
invertible-mult invertible-row-add)
qed
thus ?thesis
using $P Q p v$ unfolding diagonal-step- $P Q$-def Let-def split-beta
by auto
qed
lemma diagonal-step- $P Q$-invertible- Q :

```
    fixes A::'a::{bezout-ring} ^'cols::mod-type^'rows::mod-type
    assumes }PQ:(P,Q)=\mathrm{ diagonal-step-PQ A ik bezout
    and pquvd: (p,q,u,v,d) = bezout (A $ from-nat i $ from-nat i) (A $ from-nat k
$ from-nat k)
    and i-not-k: i\not=k
    and i:i<min (nrows A) (ncols A) and k: k<min (nrows A) (ncols A)
shows invertible Q
proof -
    let ?step1 = column-add (mat 1) (from-nat i::'cols) (from-nat k) q
    let ?step2 = column-add ?step1 (from-nat k) (from-nat i) u
    let ?step3 = mult-column ?step2 (from-nat k) (- 1)
    have u:u=(fst (snd (snd (bezout (A $ from-nat i $ from-nat i) (A $ from-nat
k $ from-nat k)))))
    by (metis fst-conv pquvd snd-conv)
    have q: q=(fst (snd (bezout (A $ from-nat i $ from-nat i) (A $ from-nat k$
from-nat k))))
    by (metis fst-conv pquvd snd-conv)
    have invertible ?step3
    unfolding column-add-mat-1[of - - ?step2, symmetric]
    unfolding mult-column-mat-1[of ?step2, symmetric]
    proof (rule invertible-mult)
    show invertible (mult-column (mat 1) (from-nat k::'cols) (- 1::'a))
        by (rule invertible-mult-column[of - - 1], auto)
    show invertible ?step2
            by (metis column-add-mat-1 i i-not-k invertible-column-add invertible-mult k
                min-less-iff-conj ncols-def to-nat-from-nat-id)
    qed
    thus ?thesis
            using PQ pquvd u q unfolding diagonal-step-PQ-def
    by (auto simp add: Let-def split-beta)
qed
lemma mat-q-1[simp]: mat q $ a $ a = q unfolding mat-def by auto
lemma mat-q-O[simp]:
    assumes ab: a\not=b
    shows mat q $ a $ b=0 using ab unfolding mat-def by auto
This is an alternative definition for the matrix P in each step, where entries are given explicitly instead of being computed as a composition of elementary operations.
```


lemma diagonal-step- $P Q$ - P-alt:

```
fixes \(A::^{\prime} a::\{\text { bezout-ring }\}^{\wedge \prime}\) cols::mod-type \({ }^{\wedge}\) rows::mod-type
assumes \(P Q:(P, Q)=\) diagonal-step- \(P Q A i k\) bezout
and pquvd: \((p, q, u, v, d)=\) bezout ( \(A \$\) from-nat \(i \$\) from-nat \(i\) ) ( \(A\) \$ from-nat \(k\)
\(\$\) from-nat \(k\) )
and \(i: i<\min (n r o w s ~ A)(n c o l s A)\) and \(k: k<\min (n r o w s A)(n c o l s A)\) and \(i k: i\)
\not=k
shows
```

```
    P=(llab.
    if a=from-nat i}\wedgeb=\mathrm{ from-nat i then p else
    if a}=\mathrm{ from-nat }i\wedgeb=\mathrm{ from-nat }k\mathrm{ then 1 else
    if a=from-nat k}\wedgeb=\mathrm{ from-nat i then -v*p+1 else
    if a = from-nat k}\wedgeb=\mathrm{ from-nat k then -v else
    if }a=b\mathrm{ then 1 else 0)
proof -
    have ik1: from-nat i\not=(from-nat k::'rows)
    using from-nat-neq-rows i ik k by auto
    have P$a$b=
                (if a= from-nat i}\wedgeb=\mathrm{ from-nat i then p
                        else if a=from-nat i}\wedgeb=\mathrm{ from-nat }k\mathrm{ then 1
                    else if a= from-nat k}\wedgeb=\mathrm{ from-nat i then - v*p+1
                        else if a=from-nat k\wedgeb=from-nat k then - v else if }a=
then 1 else 0)
    for ab
        using PQ ik1 pquvd
        unfolding diagonal-step-PQ-def
        unfolding row-add-def interchange-rows-def
        by (auto simp add: Let-def split-beta)
            (metis (mono-tags, hide-lams) fst-conv snd-conv)+
    thus ?thesis unfolding vec-eq-iff unfolding vec-lambda-beta by auto
qed
This is an alternative definition for the matrix Q in each step, where entries are given explicitly instead of being computed as a composition of elementary operations.
lemma diagonal-step- \(P Q\) - \(Q\)-alt:
fixes \(A::{ }^{\prime} a::\{\text { bezout-ring }\}^{\wedge \prime}\) cols::mod-type \({ }^{\wedge}\) rows::mod-type
assumes \(P Q:(P, Q)=\) diagonal-step- \(P Q A i k\) bezout
and pquvd: \((p, q, u, v, d)=\) bezout \((A \$\) from-nat \(i \$\) from-nat \(i)(A \$\) from-nat \(k\)
\(\$\) from-nat \(k\) )
and \(i\) : \(i<\min\) (nrows \(A\) ) (ncols A) and \(k\) : \(k<\min\) (nrows A) (ncols A) and \(i k: i\) \(\neq k\)
shows
\(Q=(\chi a b\).
if \(a=\) from-nat \(i \wedge b=\) from-nat \(i\) then 1 else
if \(a=\) from-nat \(i \wedge b=\) from-nat \(k\) then \(-u\) else
if \(a=\) from-nat \(k \wedge b=\) from-nat \(i\) then \(q\) else
if \(a=\) from-nat \(k \wedge b=\) from-nat \(k\) then \(-q * u-1\) else
if \(a=b\) then 1 else 0 )
proof -
have ik1: from-nat \(i \neq(\) from-nat \(k:: '\) cols \()\)
using from-nat-neq-cols \(i\) ik \(k\) by auto
have \(Q \$ a \$ b=\)
(if \(a=\) from-nat \(i \wedge b=\) from-nat \(i\) then 1 else
if \(a=\) from-nat \(i \wedge b=\) from-nat \(k\) then \(-u\) else
if \(a=\) from-nat \(k \wedge b=\) from-nat \(i\) then \(q\) else
if \(a=\) from-nat \(k \wedge b=\) from-nat \(k\) then \(-q * u-1\) else
```

if $a=b$ then 1 else 0) for $a b$
using $P Q$ ik1 pquvd unfolding diagonal-step- $P Q$-def
unfolding column-add-def mult-column-def
by (auto simp add: Let-def split-beta)
(metis (mono-tags, hide-lams) fst-conv snd-conv)+
thus ?thesis unfolding vec-eq-iff unfolding vec-lambda-beta by auto qed
$\mathrm{P}^{* *} \mathrm{~A}$ can be rewriten as elementary operations over A.
lemma diagonal-step- $P Q-P A$:
fixes $A::^{\prime} a::\{$ bezout-ring $\}{ }^{\wedge}$ cols::mod-type ${ }^{\wedge \prime}$ rows::mod-type
assumes $P Q:(P, Q)=$ diagonal-step- $P Q A i k$ bezout
and $b:(p, q, u, v, d)=$ bezout ($A \$$ from-nat $i \$$ from-nat $i)(A \$$ from-nat $k \$$ from-nat k)
shows $P * * A=$ row-add (interchange-rows
(row-add $A($ from-nat $k)($ from-nat $i) p)($ from-nat $i)($ from-nat $k))($ from-nat $k)$
(from-nat $i)(-v)$
proof -
let ? i-row $=$ from-nat $i::$ 'rows and $? k$-row $=$ from-nat $k::$ 'rows
let ?P1 = row-add (mat 1) ?k-row? ?-row p
let $? P \mathcal{Z}^{\prime}=$ interchange-rows ? P1 ? i-row ? k-row
let ?PP $=$ interchange-rows $($ mat 1$)($ from-nat $i)($ from-nat $k)$
let ?P3 $=$ row-add $($ mat 1$)($ from-nat $k)($ from-nat $i)(-v)$
have $P=$ row-add ? P2' ?k-row ? i-row $(-v)$
using $P Q$ b unfolding diagonal-step- $P Q$-def
by (auto simp add: Let-def split-beta, metis fstI sndI)
also have $\ldots=? P 3$ ** ? $P^{\prime} 2^{\prime}$
unfolding row-add-mat-1[of - - ? P2', symmetric $]$ by auto
also have $\ldots=? P 3$ ** (?P2 ** ? P1)
unfolding interchange-rows-mat-1[of - ? ?P1, symmetric] by auto
also have \ldots ** $A=$ row-add (interchange-rows
(row-add A (from-nat $k)($ from-nat $i) p)($ from-nat $i)(f r o m-n a t ~ k))(f r o m-n a t ~ k)$
(from-nat i) $(-v)$
by (metis interchange-rows-mat-1 matrix-mul-assoc row-add-mat-1)
finally show ?thesis.
qed
lemma diagonal-step- $P Q-P A Q^{\prime}$:
fixes $A::{ }^{\prime} a::\{$ bezout-ring $\}$ ^'cols::mod-type ${ }^{\wedge}$ rows::mod-type
assumes $P Q:(P, Q)=$ diagonal-step- $P Q A i k$ bezout
and $b:(p, q, u, v, d)=$ bezout $(A \$$ from-nat $i \$$ from-nat $i)(A \$$ from-nat $k \$$
from-nat k)
shows $P * * A * * Q=$ (mult-column (column-add (column-add ($P * * A$) (from-nat
i) (from-nat $k) q$)
(from-nat $k)($ from-nat $i) u)($ from-nat $k)(-1))$
proof -
let ? i-col $=$ from-nat $i:: '$ cols and $? k$-col $=$ from-nat $k::^{\prime}$ cols
let ?Q1=(column-add (mat 1) ?i-col ? k-col q)

```
    let ?Q2' = (column-add?Q1 ?k-col ?i-col u)
    let ?Q2 = column-add (mat 1) (from-nat k) (from-nat i)u
    let ?Q3 = mult-column (mat 1) (from-nat k) (- 1)
    have }Q=\mathrm{ mult-column ?Q2' ?k-col (-1)
    using PQ b unfolding diagonal-step-PQ-def
    by (auto simp add: Let-def split-beta, metis fstI sndI)
    also have ... = ?Q2' ** ?Q3
    unfolding mult-column-mat-1[of ?Q2', symmetric] by auto
    also have ... = (?Q1**?Q2)**?Q3
    unfolding column-add-mat-1[of ?Q1, symmetric] by auto
    also have }(P**A)** ((?Q1**?Q2)**?Q3)
    (mult-column (column-add (column-add ( P**A) ?i-col ?k-col q) ?k-col ?i-col u)
?k-col (- 1))
    by (metis (no-types, lifting) column-add-mat-1 matrix-mul-assoc mult-column-mat-1)
    finally show ?thesis.
qed
corollary diagonal-step-PQ-PAQ:
    fixes A::'a::{bezout-ring} ^'cols::mod-type^'rows::mod-type
    assumes }PQ:(P,Q)=\mathrm{ diagonal-step-PQ A ik bezout
        and b: (p,q,u,v,d)= bezout (A $ from-nat i $ from-nat i) (A $ from-nat k$
from-nat k)
```

 shows \(P * * A * * Q=\) (mult-column (column-add (column-add (row-add (interchange-rows
 (row-add \(A(\) from-nat \(k)(\) from-nat \(i) p)(f r o m-n a t i)\)
 \((\) from-nat \(k))(\) from-nat \(k)(\) from-nat \(i)(-v))(\) from-nat \(i)(f r o m-n a t\)
 k) q)
(from-nat $k)($ from-nat $i) u)($ from-nat $k)(-1))$
using diagonal-step- $P Q-P A$ diagonal-step- $P Q-P A Q^{\prime}$ assms by metis
lemma isDiagonal-imp-0:
assumes isDiagonal A
and from-nat $a \neq$ from-nat b
and $a<\min ($ nrows $A)($ ncols $A)$
and $b<\min (n r o w s ~ A)(n c o l s A)$
shows $A \$$ from-nat $a \$$ from-nat $b=0$
by (metis assms isDiagonal min.strict-boundedE ncols-def nrows-def to-nat-from-nat-id)
lemma diagonal-step- $P Q$:
fixes $A::^{\prime} a::\{\text { bezout-ring }\}^{\wedge}$ cols::mod-type ${ }^{\wedge}$ rows::mod-type
assumes $P Q:(P, Q)=$ diagonal-step- $P Q A i k$ bezout
and $b:(p, q, u, v, d)=$ bezout (A \$ from-nat $i \$$ from-nat $i)(A \$$ from-nat $k \$$
from-nat k)
and $i: i<\min (n r o w s A)(n c o l s A)$ and $k: k<\min (n r o w s A)(n c o l s A)$ and $i k: i$
$\neq k$
and ib: is-bezout-ext bezout and diag: isDiagonal A
shows diagonal-step $A i k d v=P * * A * * Q$

```
proof -
    let ?i-row = from-nat i::'rows
        and ?k-row = from-nat k::'rows and ?i-col = from-nat i::'cols and ? }k\mathrm{ -col =
from-nat k::'cols
    let ?P1 = (row-add (mat 1) ?k-row ?i-row p)
    let ?Aii = A $ ?i-row $ ?i-col
    let ?Akk=A $ ?k-row $ ?k-col
    have k1: k<ncols A and k2: k<nrows A and i1: i<nrows A and i2: i<ncols A
using ik by auto
    have Aik0: A $ ?i-row $ ? k-col = 0
            by (metis diag i ik isDiagonal k min.strict-boundedE ncols-def nrows-def
to-nat-from-nat-id)
    have Aki0: A $ ?k-row $ ?i-col = 0
            by (metis diag i ik isDiagonal k min.strict-boundedE ncols-def nrows-def
to-nat-from-nat-id)
    have du:d*u=-A $ ?k-row $ ?k-col
        using b ib unfolding is-bezout-ext-def
        by (auto simp add: split-beta) (metis fst-conv snd-conv)
    have dv: d*v=A $ ?i-row $ ?i-col
        using b ib unfolding is-bezout-ext-def
        by (auto simp add: split-beta) (metis fst-conv snd-conv)
    have d:d=p * ?Aii + ?Akk * q
            using b ib unfolding is-bezout-ext-def
            by (auto simp add: split-beta) (metis fst-conv mult.commute snd-conv)
    have (?Aii -v*(p*?Aii) -v*?Akk*q)*u=(?Aii -v*((p*?Aii) +
    ?Akk * q)) *u
            by (simp add: diff-diff-add distrib-left mult.assoc)
    also have ... = (?Aii*u - d*v*u)
            by (simp add: mult.commute right-diff-distrib d)
    also have ... = 0 by (simp add: dv)
    finally have rw: (?Aii - v* (p*?Aii) - v*?Akk* q)*u=0.
    have a1: from-nat k\not= (from-nat i::'rows)
            using from-nat-neq-rows i ik k by auto
    have a2: from-nat k}\not=(\mathrm{ from-nat i::'cols)
            using from-nat-neq-cols i ik k by auto
        have Aab0:A $ a $ from-nat b=0 if ab: a\not= from-nat b and b-ncols: b<
ncols A for a b
    by (metis ab b-ncols diag from-nat-to-nat-id isDiagonal ncols-def to-nat-from-nat-id)
    have Aab0':A $ from-nat a $ b=0 if ab: from-nat }a\not=b\mathrm{ and a-nrows:a<
nrows A for a b
    by (metis ab a-nrows diag from-nat-to-nat-id isDiagonal nrows-def to-nat-from-nat-id)
    show ?thesis
    proof (unfold diagonal-step-def vec-eq-iff, auto)
        show d}=(P**A**Q)$ from-nat i $ from-nat i
            and d}=(P**A**Q)$ from-nat i $ from-nat 
            and d}=(P**A**Q)$ from-nat i $ from-nat 
            unfolding diagonal-step-PQ-PAQ[OF PQ b]
            unfolding mult-column-def column-add-def interchange-rows-def row-add-def
```

unfolding vec-lambda-beta using a1 a2
using Aik0 Aki0 d by auto
show $v * A \$$ from-nat $k \$$ from-nat $k=(P * * A * * Q) \$$ from-nat $k \$$ from-nat
and $v * A \$$ from-nat $k \$$ from-nat $k=(P * * A * * Q) \$$ from-nat $k \$$ from-nat
using a1 a2
unfolding diagonal-step- $P Q-P A Q[O F P Q \quad b]$ mult-column-def column-add-def unfolding interchange-rows-def row-add-def
unfolding vec-lambda-beta unfolding Aik0 Aki0 by (auto simp add: rw)
fix $a::$ 'rows and $b::$ 'cols
assume $a k: a \neq$ from-nat k and $a i: a \neq$ from-nat i
show $A \$ a \$ b=(P * * A * * Q) \$ a \$ b$
using ai ak a1 a2 Aab0 k1 i2
unfolding diagonal-step- $P Q-P A Q[O F P Q b]$
unfolding mult-column-def column-add-def interchange-rows-def row-add-def unfolding vec-lambda-beta by auto
next
fix $a:$:'rows and $b::^{\prime}$ cols
assume $a k: a \neq$ from-nat k and $a i: b \neq$ from-nat i
show $A \$ a \$ b=(P * * A * * Q) \$ a \$ b$
using ai ak a1 a2 Aab0 Aab0' d du k1 k2 i1 i2
unfolding diagonal-step- $P Q-P A Q[O F P Q b]$
unfolding mult-column-def column-add-def interchange-rows-def row-add-def unfolding vec-lambda-beta by auto
next
fix $a::$ 'rows and $b:: '$ cols
assume $a k: b \neq$ from-nat k and $a i: a \neq$ from-nat i
show $A \$ a \$ b=(P * * A * * Q) \$ a \$ b$
using ai ak a1 a2 Aab0 Aab0' d du k1 k2 i1 i2
unfolding diagonal-step- $P Q-P A Q[O F P Q b]$
unfolding mult-column-def column-add-def interchange-rows-def row-add-def unfolding vec-lambda-beta apply auto proof -
assume $d=p *$?Aii + ? Akk* q
then have $v *(p * ? A i i)+v *(? A k k * q)=d * v$
by (simp add: ring-class.ring-distribs(1) semiring-normalization-rules(7))
then have ? Aii- $v *(p *$?Aii $)-v *(? A k k * q)=0$
by (simp add: diff-diff-add dv)
then show ?Aii- $v *(p *$?Aii $)=v *$? Akk* q
by force
qed
next
fix $a:: ' r o w s$ and $b::$ 'cols
assume $a k: b \neq$ from-nat k and $a i: b \neq$ from-nat i
show $A \$ a \$ b=(P * * A * * Q) \$ a \$ b$
using ai ak a1 a2 Aab0 Aab0' d du k1 k2 i1 i2
unfolding diagonal-step- $P Q-P A Q[O F P Q b]$
unfolding mult-column-def column-add-def interchange-rows-def row-add-def
unfolding vec-lambda-beta by auto qed
qed

```
fun diagonal-to-Smith-i-PQ ::
nat list }=>\mathrm{ nat }=>\mathrm{ ('a::{bezout-ring} bezout)
    =>(('a^'rows::mod-type^'rows::mod-type) }\times(\mp@subsup{}{(' }{}\mp@subsup{a}{}{\wedge\prime}\mathrm{ cols::mod-type^'rows::mod-type )}
(' ' ^'cols::mod-type^'cols::mod-type))
    =>(('a^'rows::mod-type`'rows::mod-type)\times (' ' '^'cols::mod-type^'rows::mod-type)
\times (' ' ^^'cols::mod-type ''cols::mod-type))
where
diagonal-to-Smith-i-PQ [] i bezout (P,A,Q) = (P,A,Q)|
diagonal-to-Smith-i-PQ (j#xs) i bezout ( }P,A,Q)=
    if A $ (from-nat i) $ (from-nat i) dvd A $ (from-nat j) $ (from-nat j)
    then diagonal-to-Smith-i-PQ xs i bezout ( }P,A,Q
    else let ( }p,q,u,v,d)=\mathrm{ bezout (A $ from-nat i $ from-nat i) (A $ from-nat j $
from-nat j);
                A' = diagonal-step A i j d v;
                ( }\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime})=\mathrm{ diagonal-step-PQ A ij bezout
    in diagonal-to-Smith-i-PQ xs i bezout ( }\mp@subsup{P}{}{\prime}**P,\mp@subsup{A}{}{\prime},Q**\mp@subsup{Q}{}{\prime}) - Apply the step
)
```

This is implemented by fun. This way, I can do pattern-matching for (P, A, Q).
fun Diagonal-to-Smith-row-i-PQ
where Diagonal-to-Smith-row-i-PQ i bezout (P, A, Q)
$=$ diagonal-to-Smith-i-PQ $[i+1 . .<\min ($ nrows $A)(n \operatorname{cols} A)] i$ bezout (P, A, Q)
Deleted from the simplified and renamed as it would be a definition.
declare Diagonal-to-Smith-row-i-PQ.simps[simp del]
lemmas Diagonal-to-Smith-row- $i-P Q$-def $=$ Diagonal-to-Smith-row-i-PQ.simps
fun diagonal-to-Smith-aux- $P Q$
where
diagonal-to-Smith-aux- $P Q$ [] bezout $(P, A, Q)=(P, A, Q) \mid$
diagonal-to-Smith-aux- $P Q$ ($i \# x s$) bezout (P, A, Q)
$=$ diagonal-to-Smith-aux- $P Q$ xs bezout (Diagonal-to-Smith-row- $i-P Q$ i bezout $(P, A, Q))$
lemma diagonal-to-Smith-aux-PQ-append:
diagonal-to-Smith-aux-PQ (xs @ ys) bezout (P, A, Q)
$=$ diagonal-to-Smith-aux- $P Q$ ys bezout (diagonal-to-Smith-aux- $P Q$ xs bezout
$(P, A, Q))$
by (induct xs bezout (P, A, Q) arbitrary: $P A$ rule: diagonal-to-Smith-aux- $P Q$.induct)
(auto, metis prod-cases3)
lemma diagonal-to-Smith-aux-PQ-append2[simp]:
diagonal-to-Smith-aux- $P Q$ (xs @ [ys]) bezout (P, A, Q)
$=$ Diagonal-to-Smith-row- $i-P Q$ ys bezout (diagonal-to-Smith-aux- $P Q$ xs bezout $(P, A, Q))$
proof (induct xs bezout (P, A, Q) arbitrary: $P A Q$ rule: diagonal-to-Smith-aux- $P Q$. induct $)$ case (1 bezout P A Q)
then show? case
by (metis append.simps(1) diagonal-to-Smith-aux-PQ.simps prod.exhaust)
next
case (2 i xs bezout P A Q)
then show ?case
by (metis (no-types, hide-lams) append-Cons diagonal-to-Smith-aux-PQ.simps(2) prod-cases3)
qed

context

fixes $A::^{\prime} a::\{\text { bezout-ring }\}^{\wedge}$ cols::mod-type ${ }^{\wedge}$ rows::mod-type
and $B::^{\prime} a::\{\text { bezout-ring }\}^{\wedge \prime}$ cols::mod-type ${ }^{\text {^'rows: }: \text { mod-type }}$
and P and Q
and bezout::'a bezout
assumes $P A Q: P * * A * * Q=B$
and P : invertible P and Q : invertible Q
and ib: is-bezout-ext bezout

begin

The output is the same as the one in the version where P and Q are not computed.
lemma diagonal-to-Smith-i-PQ-eq:
assumes $P^{\prime} B^{\prime} Q^{\prime}:\left(P^{\prime}, B^{\prime}, Q^{\prime}\right)=$ diagonal-to-Smith-i- $P Q$ xs i bezout (P, B, Q)
and $x s: \forall x . x \in$ set $x s \longrightarrow x<\min (n r o w s A)(n c o l s A)$
and diag: isDiagonal B and i-notin: $i \notin$ set $x s$ and $i: i<\min (n r o w s ~ A)(n c o l s$
A)
shows $B^{\prime}=$ diagonal-to-Smith-i xs B i bezout
using assms $P A Q$ ib $P Q$
proof (induct xs i bezout (P, B, Q) arbitrary: P B Q rule:diagonal-to-Smith-i- $P Q . i n d u c t)$
case (1 i bezout PAQ)
then show? case by auto

next

case (2 j xs i bezout $P B Q$)
let ? $B i i=B \$$ from-nat $i \$$ from-nat i
let ? Bjj $=B \$$ from-nat $j \$$ from-nat j
let ? $p=$ case bezout ($B \$$ from-nat $i \$$ from-nat i) ($B \$$ from-nat $j \$$ from-nat j) of $(p, q, u, v, d) \Rightarrow p$
let ? $q=$ case bezout (B \$ from-nat $i \$$ from-nat i) ($B \$$ from-nat $j \$$ from-nat j)
of $(p, q, u, v, d) \Rightarrow q$

```
    let ?u=case bezout (B $ from-nat i $ from-nat i)(B $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?v=case bezout (B $ from-nat i $ from-nat i)(B$ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?d=case bezout (B $ from-nat i $ from-nat i)(B $ from-nat j $ from-nat j)
of (p,q,u,v,d) =>d
    let ?B'=diagonal-step B i j ?d ?v
    let }?\mp@subsup{P}{}{\prime}=fst(\mathrm{ diagonal-step-PQ B ij bezout)
    let ? }\mp@subsup{Q}{}{\prime}=\mathrm{ snd (diagonal-step-PQ B i j bezout)
    have pquvd: (?p, ?q, ?u, ?v,?d) = bezout (B $ from-nat i $ from-nat i) (B $
from-nat j $ from-nat j)
    by (simp add: split-beta)
    note hyp = 2.hyps(2)
    note }\mp@subsup{P}{}{\prime}\mp@subsup{B}{}{\prime}\mp@subsup{Q}{}{\prime}=2.prems(1
    note i-min = 2.prems(5)
    note PAQ-B=2.prems(6)
    note i-notin = 2.prems(4)
    note diagB = 2.prems(3)
    note xs-min =2.prems(2)
    note ib = 2.prems(7)
    note inv-P = 2.prems(8)
    note inv-Q = 2.prems(9)
    show ?case
    proof (cases ?Bii dvd ?Bjj)
    case True
    show ?thesis using 2.prems 2.hyps(1) True by auto
    next
    case False
    have aux: diagonal-to-Smith-i-PQ (j# xs) i bezout (P,B,Q)
            = diagonal-to-Smith-i-PQ xs i bezout (?P'**P,? 'B},Q**?Q'
        using False by (auto simp add: split-beta)
    have i:i< min (nrows B) (ncols B) using i-min unfolding nrows-def ncols-def
by auto
    have j: j < min (nrows B) (ncols B) using xs-min unfolding nrows-def
ncols-def by auto
    have aux2: diagonal-to-Smith-i(j # xs) B i bezout = diagonal-to-Smith-i xs ?B'
i bezout
            using False by (auto simp add: split-beta)
    have res: }\mp@subsup{B}{}{\prime}=\mathrm{ diagonal-to-Smith-i xs ?.B' i bezout
    proof (rule hyp[OF False])
    show ( }\mp@subsup{P}{}{\prime},\mp@subsup{B}{}{\prime},\mp@subsup{Q}{}{\prime})=\mathrm{ diagonal-to-Smith-i-PQ xs i bezout (?P'**P,?B'},Q**?Q'
    using aux }\mp@subsup{P}{}{\prime}\mp@subsup{B}{}{\prime}\mp@subsup{Q}{}{\prime}\mathrm{ by auto
    have }\mp@subsup{B}{}{\prime}-\mp@subsup{P}{}{\prime}\mp@subsup{B}{}{\prime}\mp@subsup{Q}{}{\prime}:?\mp@subsup{B}{}{\prime}=?\mp@subsup{P}{}{\prime}**B**?\mp@subsup{Q}{}{\prime
    by (rule diagonal-step-PQ[OF - - i j - ib diagB], insert i-notin pquvd, auto)
    show ? P'**P ** A ** (Q**?Q') = ? B'
            unfolding \mp@subsup{B}{}{\prime}-\mp@subsup{P}{}{\prime}\mp@subsup{B}{}{\prime}\mp@subsup{Q}{}{\prime}}\mathrm{ unfolding PAQ-B[symmetric]
            by (simp add: matrix-mul-assoc)
            show isDiagonal ?B' by (rule isDiagonal-diagonal-step[OF diagB i j])
```

```
        show invertible (?P'** P)
            by (metis inv-P diagonal-step-PQ-invertible-P i i-notin in-set-member
                invertible-mult j member-rec(1) prod.exhaust-sel)
            show invertible (Q**? ?')
            by (metis diagonal-step-PQ-invertible-Q i i-notin inv-Q
                invertible-mult j list.set-intros(1) prod.collapse)
    qed (insert pquvd xs-min i-min i-notin ib, auto)
    show ?thesis using aux aux2 res by auto
    qed
qed
lemma diagonal-to-Smith-i-PQ':
    assumes }\mp@subsup{P}{}{\prime}\mp@subsup{B}{}{\prime}\mp@subsup{Q}{}{\prime}:(\mp@subsup{P}{}{\prime},\mp@subsup{B}{}{\prime},\mp@subsup{Q}{}{\prime})=\mathrm{ diagonal-to-Smith-i-PQ xs i bezout ( }P,B,Q
    and xs:\forallx.x\in set xs \longrightarrowx< min (nrows A) (ncols A)
    and diag: isDiagonal B and i-notin: i\not\in set xs and i:i<min (nrows A) (ncols
A)
```



```
    using assms PAQ ib PQ
proof (induct xs i bezout ( }P,B,Q)\mathrm{ arbitrary: P B Q rule:diagonal-to-Smith-i-PQ.induct)
    case (1 i bezout)
    then show ?case using PAQ by auto
next
    case (2 j xs i bezout P B Q)
    let ?Bii=B $ from-nat i $ from-nat i
    let ?Bjj = B $ from-nat j $ from-nat j
    let ?p=case bezout (B $ from-nat i $ from-nat i)(B $ from-nat j $ from-nat j)
of (p,q,u,v,d) =>p
    let ?q=case bezout ( }B$\mathrm{ from-nat i $ from-nat i)(B $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?u=case bezout (B $ from-nat i $ from-nat i)(B $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?v=case bezout (B $ from-nat i $ from-nat i)(B $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?d=case bezout (B $ from-nat i $ from-nat i) (B $ from-nat j $ from-nat j)
of ( }p,q,u,v,d)=>
    let ?B'=diagonal-step B i j ?d ?v
    let ?P}\mp@subsup{P}{}{\prime}=fst(diagonal-step-PQ B i j bezout
    let ?Q' = snd (diagonal-step-PQ B i j bezout)
    have pquvd:(?p,?q,?u,?v,?d)= bezout (B $ from-nat i $ from-nat i)(B$
from-nat j $ from-nat j)
    by (simp add: split-beta)
    show ?case
    proof (cases ?Bii dvd ?Bjj)
        case True
        then show ?thesis using 2.prems
            using 2.hyps(1) by auto
    next
        case False
```

```
    note hyp = 2.hyps(2)
    note }\mp@subsup{P}{}{\prime}\mp@subsup{B}{}{\prime}\mp@subsup{Q}{}{\prime}=2.prems(1
    note i-min = 2.prems(5)
    note PAQ-B=2.prems(6)
    note i-notin = 2.prems(4)
    note diagB = 2.prems(3)
    note xs-min = 2.prems(2)
    note ib = 2.prems(7)
    note inv-P = 2.prems(8)
    note inv-Q = 2.prems(9)
    have aux: diagonal-to-Smith-i-PQ (j # xs) i bezout (P,B,Q)
        = diagonal-to-Smith-i-PQ xs i bezout (?P'**P,? ?B', Q**?Q')
    using False by (auto simp add: split-beta)
    have i:i< min (nrows B) (ncols B) using i-min unfolding nrows-def ncols-def
by auto
            have j: j < min (nrows B) (ncols B) using xs-min unfolding nrows-def
ncols-def by auto
    show ?thesis
    proof (rule hyp[OF False])
        show ( }\mp@subsup{P}{}{\prime},\mp@subsup{B}{}{\prime},\mp@subsup{Q}{}{\prime})=\mathrm{ diagonal-to-Smith-i-PQ xs i bezout (?P'**P,?B',}Q**?Q'
            using aux P}\mp@subsup{P}{}{\prime}\mp@subsup{B}{}{\prime}\mp@subsup{Q}{}{\prime}\mathrm{ by auto
        have }\mp@subsup{B}{}{\prime}-\mp@subsup{P}{}{\prime}\mp@subsup{B}{}{\prime}\mp@subsup{Q}{}{\prime}:?\mp@subsup{B}{}{\prime}=?\mp@subsup{P}{}{\prime}**B**?Q\mp@subsup{Q}{}{\prime
            by (rule diagonal-step-PQ[OF --ij -ib diagB], insert i-notin pquvd, auto)
            show ?P}\mp@subsup{P}{}{\prime}**P**A** (Q**?Q')=?\mp@subsup{Q}{}{\prime
            unfolding \mp@subsup{B}{}{\prime}-\mp@subsup{P}{}{\prime}\mp@subsup{B}{}{\prime}\mp@subsup{Q}{}{\prime}}\mathrm{ unfolding PAQ-B[symmetric]
            by (simp add: matrix-mul-assoc)
        show isDiagonal ?B' by (rule isDiagonal-diagonal-step[OF diagB i j])
        show invertible (?P'** P)
            by (metis inv-P diagonal-step-PQ-invertible-P i i-notin in-set-member
                invertible-mult j member-rec(1) prod.exhaust-sel)
            show invertible (Q**?Q')
            by (metis diagonal-step-PQ-invertible-Q i i-notin inv-Q
                invertible-mult j list.set-intros(1) prod.collapse)
    qed (insert pquvd xs-min i-min i-notin ib,auto)
    qed
qed
```

corollary diagonal-to-Smith-i-PQ:
assumes $P^{\prime} B^{\prime} Q^{\prime}:\left(P^{\prime}, B^{\prime}, Q^{\prime}\right)=$ diagonal-to-Smith-i- $P Q$ xs i bezout (P, B, Q)
and $x s: \forall x . x \in$ set $x s \longrightarrow x<\min (n r o w s A)(n c o l s A)$
and diag: isDiagonal B and i-notin: $i \notin$ set $x s$ and $i: i<\min$ (nrows A) (ncols
A)
shows $B^{\prime}=P^{\prime} * * A * * Q^{\prime} \wedge$ invertible $P^{\prime} \wedge$ invertible $Q^{\prime} \wedge B^{\prime}=$ diagonal-to-Smith- i
xs B i bezout
using assms diagonal-to-Smith-i-PQ' diagonal-to-Smith-i-PQ-eq by metis
lemma Diagonal-to-Smith-row-i-PQ-eq:

```
    assumes \(P^{\prime} B^{\prime} Q^{\prime}:\left(P^{\prime}, B^{\prime}, Q^{\prime}\right)=\) Diagonal-to-Smith-row-i-PQ i bezout \((P, B, Q)\)
    and diag: isDiagonal \(B\) and \(i: i<\min (n r o w s A)(n c o l s A)\)
    shows \(B^{\prime}=\) Diagonal-to-Smith-row-i B i bezout
    using assms unfolding Diagonal-to-Smith-row-i-def Diagonal-to-Smith-row-i-PQ-def
    using diagonal-to-Smith-i-PQ by (auto simp add: nrows-def ncols-def)
lemma Diagonal-to-Smith-row-i-PQ':
    assumes \(P^{\prime} B^{\prime} Q^{\prime}:\left(P^{\prime}, B^{\prime}, Q^{\prime}\right)=\) Diagonal-to-Smith-row-i-PQ i bezout \((P, B, Q)\)
        and diag: isDiagonal \(B\) and \(i: i<\min\) (nrows \(A)(n c o l s A)\)
    shows \(B^{\prime}=P^{\prime} * * A * * Q^{\prime} \wedge\) invertible \(P^{\prime} \wedge\) invertible \(Q^{\prime}\)
    by (rule diagonal-to-Smith-i-P \(Q^{\prime}\left[\right.\) OF \(P^{\prime} B^{\prime} Q^{\prime}[\) unfolded Diagonal-to-Smith-row-i-PQ-def \(]\)
- diag - i],
        auto simp add: nrows-def ncols-def)
lemma Diagonal-to-Smith-row-i-PQ:
    assumes \(P^{\prime} B^{\prime} Q^{\prime}:\left(P^{\prime}, B^{\prime}, Q^{\prime}\right)=\) Diagonal-to-Smith-row-i-PQ i bezout \((P, B, Q)\)
        and diag: isDiagonal \(B\) and \(i: i<\min\) (nrows \(A\) ) (ncols \(A\) )
    shows \(B^{\prime}=P^{\prime} * * A * * Q^{\prime} \wedge\) invertible \(P^{\prime} \wedge\) invertible \(Q^{\prime} \wedge B^{\prime}=\) Diagonal-to-Smith-row- \(i\)
B i bezout
    using assms Diagonal-to-Smith-row-i-PQ' Diagonal-to-Smith-row-i-PQ-eq by
presburger
end
context
    fixes \(A::{ }^{\prime} a::\{\text { bezout-ring }\}^{\wedge}\) cols::mod-type \({ }^{\wedge}\) rows::mod-type
    and \(B::{ }^{\prime} a::\{\text { bezout-ring }\}^{\wedge}\) cols::mod-type \({ }^{\wedge \prime}\) rows::mod-type
    and \(P\) and \(Q\)
    and bezout::'a bezout
    assumes \(P A Q: P * * A * * Q=B\)
    and \(P\) : invertible \(P\) and \(Q\) : invertible \(Q\)
    and \(i b\) : is-bezout-ext bezout
begin
lemma diagonal-to-Smith-aux-PQ:
    assumes \(P^{\prime} B^{\prime} Q^{\prime}:\left(P^{\prime}, B^{\prime}, Q^{\prime}\right)=\) diagonal-to-Smith-aux- \(P Q[0 . .<k]\) bezout \((P, B, Q)\)
    and diag: isDiagonal \(B\) and \(k: k<\min\) (nrows \(A\) ) (ncols \(A\) )
shows \(B^{\prime}=P^{\prime} * * A * * Q^{\prime} \wedge\) invertible \(P^{\prime} \wedge\) invertible \(Q^{\prime} \wedge B^{\prime}=\) diagonal-to-Smith-aux
\(B[0 . .<k]\) bezout
    using \(k P^{\prime} B^{\prime} Q^{\prime} P Q P A Q \operatorname{diag}\)
proof (induct \(k\) arbitrary: \(\left.P B Q P^{\prime} Q^{\prime} B^{\prime}\right)\)
    case 0
    then show ?case using \(P Q P A Q\) by auto
next
    case (Suc kPB \(\left.Q P^{\prime} Q^{\prime} B^{\prime}\right)\)
    note Suc-k \(=\) Suc.prems(1)
    note \(P B Q=\) Suc.prems(2)
    note \(P=\) Suc.prems(3)
```

note $Q=$ Suc.prems(4)
note $P A Q-B=$ Suc.prems(5)
note $\operatorname{diag}-B=$ Suc.prems (6)
let ${ }^{2} D k=($ diagonal-to-Smith-aux- $P Q[0 . .<k]$ bezout $(P, P * * A * * Q, Q))$
let $? P^{\prime}=f s t ? D k$
let $? B^{\prime}=f s t(s n d ? D k)$
let ? $Q^{\prime}=s n d(s n d ? D k)$
have k : $k<\min (n r o w s ~ A)(n c o l s A)$ using $S u c-k$ by auto
have hyp: ? $B^{\prime}=? P^{\prime} * * A * * ? Q^{\prime} \wedge$ invertible ? $P^{\prime} \wedge$ invertible? Q^{\prime}
$\wedge ? B^{\prime}=$ diagonal-to-Smith-aux $B[0 . .<k]$ bezout
by (rule Suc.hyps[OF $k-P Q P A Q-B$ diag-B], auto simp add: $P A Q-B$)
have diag- B^{\prime} : isDiagonal ? B^{\prime}
by (metis diag-B hyp ib isDiagonal-diagonal-to-Smith-aux k ncols-def nrows-def)
have $B^{\prime}=$ diagonal-to-Smith-aux $B[0 . .<S u c k]$ bezout
by (auto, metis Diagonal-to-Smith-row-i-PQ-eq PAQ-B Suc(3) diag-B' diagonal-to-Smith-aux- $P Q$-append2 eq-fst-iff hyp ib k sndI upt.simps(2) zero-order(1))
moreover have $B^{\prime}=P^{\prime} * * A * * Q^{\prime} \wedge$ invertible $P^{\prime} \wedge$ invertible Q^{\prime}
proof (rule Diagonal-to-Smith-row-i-PQ')
show $\left(P^{\prime}, B^{\prime}, Q^{\prime}\right)=$ Diagonal-to-Smith-row-i-PQ k bezout (? $\left.P^{\prime}, ? B^{\prime}, ? Q^{\prime}\right)$ using
Suc.prems by auto
show invertible ? P^{\prime} using hyp by auto
show ? P^{\prime} ** $A * * ? Q^{\prime}=? B^{\prime}$ using hyp by auto
show invertible? Q^{\prime} using hyp by auto
show is-bezout-ext bezout using ib by auto
show $k<\min (n r o w s A)(n c o l s A)$ using k by auto
show diag- B^{\prime} : isDiagonal ? B^{\prime} using diag- B^{\prime} by auto
qed
ultimately show ?case by auto
qed
end
fun diagonal-to-Smith- $P Q$
where diagonal-to-Smith-PQ A bezout
$=$ diagonal-to-Smith-aux- $P Q[0 . .<\min ($ nrows $A)(n c o l s A)-1]$ bezout (mat 1, A ,mat 1)
declare diagonal-to-Smith-PQ.simps[simp del]
lemmas diagonal-to-Smith- $P Q$-def $=$ diagonal-to-Smith- $P Q$.simps
lemma diagonal-to-Smith- $P Q$:
fixes $A:: ' a::\{$ bezout-ring $\}{ }^{\wedge \prime}$ cols:: $\{$ mod-type $\}{ }^{\wedge}$ rows $::\{$ mod-type $\}$
assumes A : isDiagonal A and ib: is-bezout-ext bezout
assumes $P B Q:(P, B, Q)=$ diagonal-to-Smith- $P Q A$ bezout
shows $B=P * * A * * Q \wedge$ invertible $P \wedge$ invertible $Q \wedge B=$ diagonal-to-Smith A bezout
proof (unfold diagonal-to-Smith-def, rule diagonal-to-Smith-aux- $P Q[O F--i b-$ A])

$$
\text { let } ? P=\text { mat } 1:: a^{\prime} a^{\prime \prime} \text { rows }:: \text { mod-type }{ }^{\wedge \prime} \text { rows }:: \text { mod-type }
$$

let ? $Q=$ mat $1::^{\prime} a^{\wedge}$ 'cols::mod-type ${ }^{\wedge}$ cols::mod-type
show $(P, B, Q)=$ diagonal-to-Smith-aux- $P Q[0 . .<\min ($ nrows $A)($ ncols $A)-$ 1] bezout (?P, $A, ? Q$)
using $P B Q$ unfolding diagonal-to-Smith- $P Q$-def.
show ? $P * * A * * ? Q=A$ by simp
show $\min ($ nrows $A)($ ncols $A)-1<\min ($ nrows $A)(n c o l s A)$
by (metis (no-types, lifting) One-nat-def diff-less dual-order.strict-iff-order le-less-trans
min-def mod-type-class.to-nat-less-card ncols-def not-less-eq nrows-not-0 zero-order(1))
qed (auto simp add: invertible-mat-1)
lemma diagonal-to-Smith- $P Q$-exists:
fixes $A::^{\prime} a::\{\text { bezout-ring }\}^{\wedge}$ cols::\{mod-type $\}$ ^'rows::\{mod-type $\}$
assumes A : isDiagonal A
shows $\exists P Q$.
invertible ($P:::^{\prime} a^{\wedge \prime}$ rows:: \{mod-type $\}^{\wedge \prime}$ rows: : \{ mod-type $\}$)
\wedge invertible ($Q::^{\prime} a^{\wedge \prime}$ cols::\{mod-type $\}^{\wedge \prime}$ cols::\{mod-type $\}$)
\wedge Smith-normal-form $(P * * A * * Q)$
proof -
obtain bezout::'a bezout where ib: is-bezout-ext bezout using exists-bezout-ext by blast
obtain $P B Q$ where $P B Q:(P, B, Q)=$ diagonal-to-Smith- $P Q$ A bezout
by (metis prod-cases3)
have $B=P * * A * * Q \wedge$ invertible $P \wedge$ invertible $Q \wedge B=$ diagonal-to-Smith A bezout
by (rule diagonal-to-Smith-PQ[OF A ib PBQ])
moreover have Smith-normal-form $(P * * A * * Q)$
using Smith-normal-form-diagonal-to-Smith assms calculation ib by fastforce ultimately show ?thesis by auto
qed

2.6 The final soundness theorem

lemma diagonal-to-Smith- $P Q^{\prime}$:
fixes $A:: ' a::\{\text { bezout-ring }\}^{\wedge \prime}$ cols::\{mod-type $\}$ ^'rows: $:\{$ mod-type $\}$
assumes A : isDiagonal A and ib: is-bezout-ext bezout
assumes $P B Q:(P, S, Q)=$ diagonal-to-Smith- $P Q A$ bezout
shows $S=P * * A * * Q \wedge$ invertible $P \wedge$ invertible $Q \wedge$ Smith-normal-form S
using A PBQ Smith-normal-form-diagonal-to-Smith diagonal-to-Smith- $P Q$ ib by fastforce
end

3 A new bridge to convert theorems from JNF to HOL Analysis and vice-versa, based on the mod-type class

theory Mod-Type-Connect
imports
Perron-Frobenius.HMA-Connect
Rank-Nullity-Theorem.Mod-Type
Gauss-Jordan.Elementary-Operations
begin

Some lemmas on Mod-Type.to-nat and Mod-Type.from-nat are added to have them with the same names as the analogous ones for Bij-Nat.to-nat and Bij-Nat.to-nat.
lemma inj-to-nat: inj to-nat by (simp add: inj-on-def)
lemmas from-nat-inj $=$ from-nat-eq-imp-eq
lemma range-to-nat: range (to-nat :: 'a :: mod-type \Rightarrow nat $)=\left\{0 . .<\operatorname{CARD}\left({ }^{\prime} a\right)\right\}$
by (simp add: bij-betw-imp-surj-on mod-type-class.bij-to-nat)
This theory is an adaptation of the one presented in Perron-Frobenius.HMA-Connect, but for matrices and vectors where indexes have the mod-type class restriction.
It is worth noting that some definitions still use the old abbreviation for HOL Analysis (HMA, from HOL Multivariate Analysis) instead of HA. This is done to be consistent with the existing names in the Perron-Frobenius development
context includes vec.lifting
begin
end
definition from-hmav $::{ }^{\prime} a{ }^{\wedge}$ ' $n::$ mod-type \Rightarrow ' a Matrix.vec where from-hma $_{v} v=$ Matrix.vec $\operatorname{CARD}\left({ }^{\prime} n\right)(\lambda i . v \$ h$ from-nat $i)$
definition from-hma $a_{m}:{ }^{\prime} a$ ^ 'nc :: mod-type ^ ' $n r$:: mod-type \Rightarrow 'a Matrix.mat where
from-hma $a_{m} a=$ Matrix.mat $C A R D\left({ }^{\prime} n r\right) C A R D\left({ }^{\prime} n c\right)(\lambda(i, j)$. a \$h from-nat $i \$ h$ from-nat j)
definition to-hmav $::$ 'a Matrix.vec $\Rightarrow{ }^{\prime} a{ }^{\wedge}$ ' n :: mod-type where to-hma $v=(\chi i . v \$ v$ to-nat $i)$
definition to-hma $a_{m}:$ 'a Matrix.mat $\Rightarrow{ }^{\prime} a$ へ 'nc :: mod-type ^ 'nr :: mod-type where

```
    to-hmama}=(\chiij.a$$(to-nat i, to-nat j))
```

lemma to-hma-from-hma $a_{v}[\operatorname{simp}]:$ to-hma $a_{v}\left(\right.$ from-hma $\left.a_{v} v\right)=v$
by (auto simp: to-hma v_{v}-def from-hmav-def to-nat-less-card)

```
lemma to-hma-from-hma m}[\mathrm{ [simp ]: to-hma m (from-hma m}v)=
    by (auto simp: to-hma}\mp@subsup{m}{m}{-def from-hma}\mp@subsup{m}{m}{-def to-nat-less-card)
lemma from-hma-to-hmav[simp]:
    v\incarrier-vec (CARD('n))\Longrightarrow from-hmav (to-hmavv v ::' a^'}n:: mod-type)
v
    by (auto simp: to-hmav-def from-hma}\mp@subsup{v}{v}{}\mathrm{ -def to-nat-from-nat-id)
lemma from-hma-to-hmam[simp]:
    A carrier-mat (CARD('nr)) (CARD('nc)) \Longrightarrow from-hmam (to-hmam A :: 'a ^
'nc :: mod-type ^'nr :: mod-type) = A
    by (auto simp: to-hmam-def from-hmam-def to-nat-from-nat-id)
lemma from-hmav-inj[simp]: from-hma }\mp@subsup{|}{v}{}x=\mp@subsup{\mathrm{ from-hmav}}{v}{}y\longleftrightarrowx=
    by (intro iffI, insert to-hma-from-hmav}[of x], auto
lemma from-hma m-inj[simp]: from-hma m
    by(intro iffI, insert to-hma-from-hmam [of x], auto)
```



```
    HMA-V = (\lambda v w.v = from-hmav w)
```



```
bool where
    HMA-M = (\lambda a b. a = from-hmam b)
definition HMA-I :: nat => ' n :: mod-type => bool where
    HMA-I=(\lambda ia.i= to-nat a)
context includes lifting-syntax
begin
lemma Domainp-HMA-V [transfer-domain-rule]:
    Domainp (HMA-V :: 'a Matrix.vec = 'a ^ 'n :: mod-type }=>\mathrm{ bool ) = ( }\lambdav.v
carrier-vec (CARD('n )))
    by(intro ext iffI, insert from-hma-to-hmav}[symmetric], auto simp: from-hmavv-def
HMA-V-def)
lemma Domainp-HMA-M [transfer-domain-rule]:
    Domainp (HMA-M :: 'a Matrix.mat > ' a ^ 'nc :: mod-type ^'nr :: mod-type = 
bool)
    =(\lambda A. A \in carrier-mat CARD('nr) CARD('nc))
    by (intro ext iffI, insert from-hma-to-hma m [symmetric], auto simp: from-hma m-def
HMA-M-def)
lemma Domainp-HMA-I [transfer-domain-rule]:
```

```
    Domainp (HMA-I :: nat => ' n :: mod-type }=>\mathrm{ bool) = ( }\lambda\mathrm{ i. i< CARD ('n)) (is ?l
=?r)
proof (intro ext)
    fix }i:: na
    show ?l i= ?r i
        unfolding HMA-I-def Domainp-iff
    by (auto intro: exI[of - from-nat i] simp: to-nat-from-nat-id to-nat-less-card)
qed
lemma bi-unique-HMA-V [transfer-rule]: bi-unique HMA-V left-unique HMA-V
right-unique HMA-V
    unfolding HMA-V-def bi-unique-def left-unique-def right-unique-def by auto
lemma bi-unique-HMA-M [transfer-rule]: bi-unique HMA-M left-unique HMA-M
right-unique HMA-M
    unfolding HMA-M-def bi-unique-def left-unique-def right-unique-def by auto
lemma bi-unique-HMA-I [transfer-rule]: bi-unique HMA-I left-unique HMA-I right-unique
HMA-I
    unfolding HMA-I-def bi-unique-def left-unique-def right-unique-def by auto
lemma right-total-HMA-V [transfer-rule]: right-total HMA-V
    unfolding HMA-V-def right-total-def by simp
lemma right-total-HMA-M [transfer-rule]: right-total HMA-M
    unfolding HMA-M-def right-total-def by simp
lemma right-total-HMA-I [transfer-rule]: right-total HMA-I
    unfolding HMA-I-def right-total-def by simp
lemma HMA-V-index [transfer-rule]:(HMA-V ===> HMA-I===> (=))($v)
($h)
    unfolding rel-fun-def HMA-V-def HMA-I-def from-hma
    by (auto simp: to-nat-less-card)
lemma HMA-M-index [transfer-rule]:
    (HMA-M ===> HMA-I ===> HMA-I ===> (=))(\lambdaA i j.A $$(i,j))
index-hma
    by (intro rel-funI, simp add: index-hma-def to-nat-less-card HMA-M-def HMA-I-def
from-hmam-def)
lemma HMA-V-0 [transfer-rule]: HMA-V (0v CARD('n)) (0 :: 'a :: zero ^ ' }n:
mod-type)
    unfolding HMA-V-def from-hmav-def by auto
lemma HMA-M-0 [transfer-rule]:
    HMA-M (0m CARD('nr) CARD('nc)) (0 :: 'a :: zero ^'nc:: mod-type ^ 'nr ::
```

```
mod-type)
    unfolding HMA-M-def from-hma m-def by auto
lemma HMA-M-1[transfer-rule]:
    HMA-M (1m (CARD('n))) (mat 1 :: 'a::{zero,one} ^' n:: mod-type^'n:: mod-type)
    unfolding HMA-M-def
    by (auto simp add: mat-def from-hmam-def from-nat-inj)
lemma from-hma}\mp@subsup{v}{v}{}-add: from-hmavv v+ from-hmav w from-hmav (v+w
    unfolding from-hmav
lemma HMA-V-add [transfer-rule]:(HMA-V ===> HMA-V ===> HMA-V)
(+) (+)
    unfolding rel-fun-def HMA-V-def
    by (auto simp: from-hmav-add)
lemma from-hma}\mp@subsup{v}{v}{}\mathrm{ -diff: from-hmavv v- from-hmavv w= from-hmav}(v-w
    unfolding from-hma}\mp@subsup{v}{v}{}\mathrm{ -def by auto
lemma HMA-V-diff [transfer-rule]:(HMA-V ===> HMA-V ===> HMA-V)
(-) (-)
    unfolding rel-fun-def HMA-V-def
    by (auto simp: from-hmavv-diff)
lemma from-hma m-add: from-hma m}a+from-hma m b from-hma m (a+b
    unfolding from-hmam-def by auto
lemma HMA-M-add [transfer-rule]: (HMA-M ===> HMA-M ===> HMA-M)
(+)(+)
    unfolding rel-fun-def HMA-M-def
    by (auto simp: from-hmam-add)
lemma from-hma m-diff: from-hmam a-from-hma m
    unfolding from-hmam-def by auto
lemma HMA-M-diff [transfer-rule]: (HMA-M ===> HMA-M ===> HMA-M)
(-)(-)
    unfolding rel-fun-def HMA-M-def
    by (auto simp: from-hmam-diff)
lemma scalar-product: fixes v :: ' }a\mathrm{ :: semiring-1 ^ ' }n\mathrm{ :: mod-type
    shows scalar-prod (from-hmav v) (from-hmav w) = scalar-product v w
    unfolding scalar-product-def scalar-prod-def from-hma}\mp@subsup{v}{v}{}\mathrm{ -def dim-vec
    by (simp add: sum.reindex[OF inj-to-nat, unfolded range-to-nat])
lemma [simp]:
    from-hma ( y :: 'a ^'nc :: mod-type ^'nr:: mod-type) \in carrier-mat (CARD('nr))
(CARD('nc))
```

```
dim-row (from-hmam (y :: 'a ^'nc:: mod-type ^'nr :: mod-type)) = CARD('nr)
dim-col (from-hmam (y :: 'a ^ 'nc :: mod-type ^ 'nr:: mod-type )) = CARD('nc)
unfolding from-hma}\mp@subsup{m}{m}{}-def by simp-all
lemma [simp]:
from-hmav (y :: 'a ^ 'n:: mod-type) \in carrier-vec (CARD(' n))
dim-vec (from-hmav (y :: 'a ^ ' n:: mod-type)) = CARD('n)
unfolding from-hma}\mp@subsup{v}{v}{}\mathrm{ -def by simp-all
lemma HMA-scalar-prod [transfer-rule]:
(HMA-V ===> HMA-V ===> (=)) scalar-prod scalar-product
by (auto simp: HMA-V-def scalar-product)
lemma HMA-row [transfer-rule]: (HMA-I ===> HMA-M===> HMA-V) (\lambda i
a. Matrix.row a i) row
unfolding HMA-M-def HMA-I-def HMA-V-def
by (auto simp: from-hma m-def from-hmav}\mp@subsup{v}{v}{}\mathrm{ -def to-nat-less-card row-def)
lemma HMA-col [transfer-rule]: (HMA-I===> HMA-M===>HMA-V)( \(\lambda i\) a. col a i) column
unfolding HMA-M-def HMA-I-def HMA-V-def
by (auto simp: from-hma \(a_{m}\)-def from-hma \({ }_{v}\)-def to-nat-less-card column-def)
lemma HMA-M-mk-mat[transfer-rule]: \(((H M A-I===>H M A-I===>(=))===>\) HMA-M)
\((\lambda f\). Matrix.mat \((C A R D(' n r))(C A R D(' n c))(\lambda(i, j) . f i j))\)
(mk-mat \(\left.::\left(\left({ }^{\prime} n r \Rightarrow{ }^{\prime} n c \Rightarrow{ }^{\prime} a\right) \Rightarrow^{\prime} a^{\wedge} n c:: ~ m o d-t y p e^{\wedge} n r:: ~ m o d-t y p e\right)\right)\)
proof\{
fix \(x y i j\)
assume \(i d: \forall(y a:: ' n r)(y b:: ' n c)\). ( \(x\) (to-nat ya) (to-nat \(\left.y b)::{ }^{\prime} a\right)=\) y ya yb and \(i: i<C A R D(' n r)\) and \(j: j<C A R D(' n c)\)
from to-nat-from-nat-id[OF \(i]\) to-nat-from-nat-id[OF \(j]\) id[rule-format, of from-nat \(i\) from-nat \(j]\)
have \(x i j=y\) (from-nat \(i\) ) (from-nat \(j\) ) by auto
\}
thus ?thesis
unfolding rel-fun-def mk-mat-def HMA-M-def HMA-I-def from-hma \(a_{m}\)-def by auto
qed
lemma HMA-M-mk-vec[transfer-rule]: ((HMA-I ===> (=)) ===> HMA-V)
\(\left(\lambda f\right.\). Matrix.vec \(\left.\left(\operatorname{CARD}\left({ }^{\prime} n\right)\right)(\lambda i . f i)\right)\)
(mk-vec \(::\left(\left({ }^{\prime} n{ }^{\prime} a\right) \Rightarrow^{\prime} a^{\wedge} n::\right.\) mod-type \(\left.)\right)\)
proof-
\{
fix \(x y i\)
assume \(i d: \forall(y a:: ' n) .(x(t o-n a t y a):: ' a)=y\) ya
```

```
            and i:i<CARD('n)
    from to-nat-from-nat-id[OF i] id[rule-format, of from-nat i]
    have xi=y(from-nat i) by auto
    }
    thus ?thesis
    unfolding rel-fun-def mk-vec-def HMA-V-def HMA-I-def from-hmav-def by
auto
qed
```

lemma mat-mult-scalar: $A * * B=m k$-mat ($\lambda i j$. scalar-product (row $i A$) (column j B))
unfolding vec-eq-iff matrix-matrix-mult-def scalar-product-def mk-mat-def by (auto simp: row-def column-def)
lemma mult-mat-vec-scalar: $A * v v=m k$-vec (λ i. scalar-product (row i A) v) unfolding vec-eq-iff matrix-vector-mult-def scalar-product-def mk-mat-def mk-vec-def by (auto simp: row-def column-def)
lemma dim-row-transfer-rule:
HMA-M $A\left(A^{\prime}::{ }^{\prime} a{ }^{\text {^ ' } n c:: ~ m o d-t y p e ~}{ }^{\prime} n r::\right.$ mod-type $) \Longrightarrow(=)($ dim-row $A)$ ($C A R D\left({ }^{\prime} n r\right)$)
unfolding $H M A-M$-def by auto
lemma dim-col-transfer-rule:
HMA-MA ($A^{\prime}::{ }^{\prime} a$ ^ 'nc:: mod-type ${ }^{-} n r::$ mod-type $) \Longrightarrow(=)(d i m-c o l ~ A)$ (CARD ('nc))
unfolding HMA-M-def by auto

```
lemma HMA-M-mult [transfer-rule]: (HMA-M ===> HMA-M===>HMA-M)
(*) (**)
proof -
    \{
        fix \(A B\) :: ' \(a\) :: semiring-1 mat and \(A^{\prime}::{ }^{\prime} a{ }^{\wedge} n::\) mod-type \({ }^{\prime} n r::\) mod-type
            and \(B^{\prime}::{ }^{\prime} a{ }^{-} ' n c\) :: mod-type \({ }^{\prime} n::\) mod-type
            assume \(1\left[\right.\) transfer-rule]: \(H M A-M A A^{\prime} H M A-M B B^{\prime}\)
            note \([\) transfer-rule \(]=\) dim-row-transfer-rule \([\) OF 1(1)] dim-col-transfer-rule \([O F\)
1(2)]
    have \(H M A-M(A * B)\left(A^{\prime} * * B^{\prime}\right)\)
            unfolding times-mat-def mat-mult-scalar
            by (transfer-prover-start, transfer-step + , transfer, auto)
    \}
    thus ?thesis by blast
qed
lemma HMA-V-smult [transfer-rule]: \(((=)===>H M A-V===>H M A-V)\left(\cdot{ }_{v}\right)\)
\((* s)\)
```

unfolding smult-vec-def
unfolding rel-fun-def HMA-V-def from-hma v_{v}-def
by auto
lemma HMA-M-mult-vec [transfer-rule]: (HMA-M ===> HMA-V===> HMA-V)
$\left(*_{v}\right)(* v)$
proof -
\{
fix $A::{ }^{\prime} a$:: semiring-1 mat and $v::$ 'a Matrix.vec
and $A^{\prime}::{ }^{\prime} a{ }^{\wedge}$ ' $n c$:: mod-type ${ }^{\wedge}$ ' $n r$:: mod-type and $v^{\prime}::{ }^{\prime} a{ }^{\wedge}$ ' $n c$:: mod-type
assume 1 [transfer-rule]: HMA-M A $A^{\prime} H M A-V v v^{\prime}$
note $[$ transfer-rule $]=$ dim-row-transfer-rule
have $H M A-V\left(A *_{v} v\right)\left(A^{\prime} * v v^{\prime}\right)$
unfolding mult-mat-vec-def mult-mat-vec-scalar
by (transfer-prover-start, transfer-step + , transfer, auto)
\}
thus ?thesis by blast
qed
lemma HMA-det [transfer-rule]: $(H M A-M===>(=))$ Determinant.det
(det :: ' $a::$ comm-ring-1 ^' $n::$ mod-type ^' $n::$ mod-type $\Rightarrow{ }^{\prime} a$)
proof -
\{
fix $a::{ }^{\prime} a{ }^{\wedge} \mid n::$ mod-type^' $n::$ mod-type
let ?tn = to-nat $::$ ' $n::$ mod-type \Rightarrow nat
let ?fn $=$ from-nat $::$ nat \Rightarrow 'n
let $? z n=\left\{0 . .<C A R D\left({ }^{\prime} n\right)\right\}$
let ? $U=U N I V::$ ' n set
let ? $p 1=\{p . p$ permutes ? $z n\}$
let ? $p 2=\{p . p$ permutes ? $U\}$
let ? $f=\lambda p$ i. if $i \in$? U then ? fn $(p($?tn $i))$ else i
let ? $g=\lambda p i$? ? fn $(p(? \operatorname{tn} i))$
have $f g: \bigwedge a b c$. (if $a \in$? U then b else $c)=b$ by auto
have ? $p 2=$?f ' ? $p 1$
by (rule permutes-bij', auto simp: to-nat-less-card to-nat-from-nat-id)
hence $i d: ? p 2=? g$ ' ?p1 by simp
have inj-g: inj-on ?g ?p1
unfolding inj-on-def
proof (intro ballI impI ext, auto)
fix $p q i$
assume $p: p$ permutes ? zn and $q: q$ permutes ?zn
and $i d$: $(\lambda i$. ?fn $(p($?tn $i)))=(\lambda i$. ?fn $(q($?tn $i)))$
\{
fix i
from permutes-in-image[OF p] have pi: $p($?tn $i)<C A R D\left({ }^{\prime} n\right)$ by (simp add: to-nat-less-card)
from permutes-in-image $[O F q]$ have $q i: q(? t n i)<C A R D\left({ }^{\prime} n\right)$ by $(s i m p$ add: to-nat-less-card)

```
    from fun-cong \([O F i d]\) have ? fn \((p(? t n i))=\) from-nat \((q(? t n i))\).
    from arg-cong[OF this, of ?tn] have \(p(? t n i)=q(? t n ~ i)\)
    by (simp add: to-nat-from-nat-id pi qi)
    \(\}\) note \(i d=\) this
    show \(p i=q i\)
    proof (cases \(i<C A R D\left({ }^{\prime} n\right)\) )
    case True
    hence ?tn (?fn \(i\) ) \(=i\) by (simp add: to-nat-from-nat-id)
    from id[of ?fn \(i\), unfolded this] show ?thesis .
    next
        case False
        thus ?thesis using \(p q\) unfolding permutes-def by simp
        qed
    qed
    have mult-cong: \(\bigwedge a b c d . a=b \Longrightarrow c=d \Longrightarrow a * c=b * d\) by simp
    have sum ( \(\lambda p\).
        signof \(p *\left(\prod i \in ? z n . a \$ h\right.\) ?fn \(i \$ h\) ?fn \(\left.\left.(p i)\right)\right)\) ?p1
        \(=\operatorname{sum}\left(\lambda p\right.\). of-int \(\left.(\operatorname{sign} p) *\left(\prod i \in U N I V . a \$ h i \$ h p i\right)\right)\) ? \(p 2\)
    unfolding id sum.reindex[OF inj-g]
    proof (rule sum.cong \([O F\) refl \(]\), unfold mem-Collect-eq o-def, rule mult-cong)
    fix \(p\)
    assume \(p\) : \(p\) permutes ?zn
    let ? \(q=\lambda i\). ?fn \((p(? t n i))\)
    from id \(p\) have \(q\) : ? \(q\) permutes ? \(U\) by auto
    from \(p\) have \(p p\) : permutation \(p\) unfolding permutation-permutes by auto
    let ?ft \(=\lambda p\) i.?fn \((p(? t n i))\)
    have fin: finite? zn by simp
    have sign \(p=\operatorname{sign} ? q \wedge p\) permutes ? zn
    proof (induct rule: permutes-induct \([\) OF fin - p])
        case 1
            show ?case by (auto simp: sign-id[unfolded id-def] permutes-id[unfolded
\(i d-d e f])\)
    next
        case (2 abop)
        let ? \(s a b=\) Fun.swap \(a b i d\)
        let ?sfab \(=\) Fun.swap (?fn a) (?fn b) id
        have \(p\)-sab: permutation ?sab by (rule permutation-swap-id)
        have \(p\)-sfab: permutation ?sfab by (rule permutation-swap-id)
            from 2(3) have IH1: p permutes ? zn and IH2: sign \(p=\operatorname{sign}(? f t p)\) by
auto
    have sab-perm: ? sab permutes? zn using 2(1-2) by (rule permutes-swap-id)
        from permutes-compose[OF IH1 this] have perm1: ?sab o p permutes ?zn.
        from \(I H 1\) have \(p-p 1: p \in ? p 1\) by \(\operatorname{simp}\)
        hence ?ft \(p \in\) ?ft '? \(p 1\) by (rule imageI)
        from this[folded id] have ?ft \(p\) permutes ? \(U\) by simp
        hence \(p\)-ftp: permutation (?ft p) unfolding permutation-permutes by auto
        \{
            fix \(a b\)
            assume \(a: a \in ? z n\) and \(b: b \in ? z n\)
```

```
                hence (?fn a =?fn b)=(a=b) using 2(1-2)
                    by (auto simp add: from-nat-eq-imp-eq)
            } note inj = this
    from inj[OF 2(1-2)] have id2: sign ?sfab = sign ?sab unfolding sign-swap-id
by simp
            have id:?ft (Fun.swap a b id \circ p)=Fun.swap (?fn a) (?fn b) id \circ?ft p
            proof
                fix c
            show ?ft (Fun.swap a b id \circp)c=(Fun.swap (?fn a)(?fn b) id \circ?ft p) c
            proof (cases p(?tn c)=a\veep(?tn c)=b)
                    case True
                    thus ?thesis by (cases, auto simp add: o-def swap-def)
            next
                    case False
                    hence neq: p(?tn c)\not=ap(?tn c)\not=b by auto
                    have pc: p(?tn c)\in?zn unfolding permutes-in-image[OF IH1]
                    by (simp add: to-nat-less-card)
                    from neq[folded inj[OF pc 2(1)] inj[OF pc 2(2)]]
                    have ?fn (p(?tnc))\not=?fn a ?fn (p(?tn c))\not=?fn b.
                    with neq show ?thesis by (auto simp: o-def swap-def)
            qed
        qed
        show ?case unfolding IH2 id sign-compose[OF p-sab 2(5)] sign-compose[OF
p-sfab p-ftp] id2
            by (rule conjI[OF refl perm1])
        qed
        thus signof p = of-int (sign ?q) unfolding signof-def sign-def by auto
        show ( }\i=0..<CARD('n). a $h?fn i$h?fn (pi))
            (Пi\inUNIV. a $h i$h ?q i) unfolding
            range-to-nat[symmetric] prod.reindex[OF inj-to-nat]
            by (rule prod.cong[OF ref], unfold o-def, simp)
        qed
    }
    thus ?thesis unfolding HMA-M-def
    by (auto simp: from-hma}\mp@subsup{m}{m}{}\mathrm{ -def Determinant.det-def det-def)
qed
lemma HMA-mat[transfer-rule]: ((=) ===> HMA-M) (\lambda k. k\cdotm 1m CARD('n))
    (Finite-Cartesian-Product.mat :: 'a::semiring-1 }\mp@subsup{=>}{}{\prime}\mp@subsup{a}{}{\wedge}'n :: mod-type^'n :: mod-type)
    unfolding Finite-Cartesian-Product.mat-def[abs-def] rel-fun-def HMA-M-def
    by (auto simp: from-hma m-def from-nat-inj)
```

lemma HMA-mat-minus[transfer-rule]: $(H M A-M===>H M A-M===>H M A-M)$
$(\lambda A B . A+$ map-mat uminus $B)\left((-)::{ }^{\prime} a::\right.$ group-add ${ }^{\wedge} n c::$ mod-type ${ }^{\wedge} n r::$
mod-type
$\Rightarrow{ }^{\prime} a^{\wedge} n c::$ mod-type ${ }^{\wedge} n r::$ mod-type $\Rightarrow{ }^{\prime} a^{\wedge \prime} n c::$ mod-type ${ }^{\prime} n r::$ mod-type)
unfolding rel-fun-def HMA-M-def from-hma a_{m}-def by auto
lemma HMA-transpose-matrix [transfer-rule]:
($H M A-M===>H M A-M)$ transpose-mat transpose
unfolding transpose-mat-def transpose-def HMA-M-def from-hma ${ }_{m}$-def by auto
lemma HMA-invertible-matrix-mod-type[transfer-rule]:
((Mod-Type-Connect.HMA-M ::- ${ }^{\prime} a::$ comm-ring-1 へ ' $n::$ mod-type ${ }^{\prime} n$:: mod-type
$\Rightarrow-)===>(=))$ invertible-mat invertible
proof (intro rel-funI, goal-cases)
case (1 $x y$)
note rel-xy $[$ transfer-rule $]=1$
have eq-dim: dim-col $x=$ dim-row x
using Mod-Type-Connect.dim-col-transfer-rule Mod-Type-Connect.dim-row-transfer-rule rel-xy
by fastforce
moreover have $\exists A^{\prime} . y * * A^{\prime}=$ mat $1 \wedge A^{\prime} * * y=$ mat 1
if $x B: x * B=1_{m}($ dim-row $x)$ and $B x: B * x=1_{m}($ dim-row $B)$ for B proof -
let $? A^{\prime}=$ Mod-Type-Connect.to-hma $B:^{\prime}{ }^{\prime} a::$ comm-ring- 1^{\wedge} ' n :: mod-type^
' n :: mod-type
have rel-BA[transfer-rule]: Mod-Type-Connect.HMA-M B? A^{\prime}
by (metis (no-types, lifting) Bx Mod-Type-Connect.HMA-M-def eq-dim car-rier-mat-triv dim-col-mat(1)

Mod-Type-Connect.from-hma ${ }_{m}$-def Mod-Type-Connect.from-hma-to-hma ${ }_{m}$
index-mult-mat(3)
index-one-mat(3) rel-xy $x B$)
have [simp]: dim-row $B=\operatorname{CARD}\left({ }^{\prime} n\right)$ using Mod-Type-Connect.dim-row-transfer-rule rel-BA by blast
have $[$ simp $]$: dim-row $x=\operatorname{CARD}\left({ }^{\prime} n\right)$ using Mod-Type-Connect.dim-row-transfer-rule rel-xy by blast
have $y * * ? A^{\prime}=$ mat $1 \mathbf{u s i n g} x B$ by (transfer, simp)
moreover have ? $A^{\prime}{ }^{* *} y=$ mat 1 using $B x$ by (transfer, simp)
ultimately show? ?hesis by blast
qed
moreover have $\exists B . x * B=1_{m}($ dim-row $x) \wedge B * x=1_{m}($ dim-row $B)$
if $y A: y * * A^{\prime}=$ mat 1 and $A y: A^{\prime} * * y=$ mat 1 for A^{\prime}
proof -
let $? B=\left(\right.$ Mod-Type-Connect.from-hma $\left.A_{m} A^{\prime}\right)$
have [simp]: dim-row $x=C A R D(' n)$ using rel-xy Mod-Type-Connect.dim-row-transfer-rule by blast
have [transfer-rule]: Mod-Type-Connect.HMA-M ?B A' by (simp add: Mod-Type-Connect.HMA-M-def)
hence [simp]: dim-row ? $B=C A R D(' n)$ using dim-row-transfer-rule by auto
have $x * ? B=1_{m}$ (dim-row x) using $y A$ by (transfer ${ }^{\prime}$, auto)
moreover have ? $B * x=1_{m}$ (dim-row ? B) using $A y$ by (transfer', auto)
ultimately show ?thesis by auto
qed
ultimately show? ?ase unfolding invertible-mat-def invertible-def inverts-mat-def

by auto

qed
end
Some transfer rules for relating the elementary operations are also proved.

```
context
    includes lifting-syntax
begin
lemma HMA-swaprows[transfer-rule]:
    ((Mod-Type-Connect.HMA-M :: - = ' 'a :: comm-ring-1 ^'nc :: mod-type ^ 'nr ::
mod-type = -)
        ===> (Mod-Type-Connect.HMA-I :: - >'nr :: mod-type =>-)
        ===> (Mod-Type-Connect.HMA-I :: - >'nr :: mod-type }=>-
        ===> Mod-Type-Connect.HMA-M)
```

 (\(\lambda A\) a b. swaprows a \(b A\)) interchange-rows
 by (intro rel-funI, goal-cases, auto simp add: Mod-Type-Connect.HMA-M-def
 interchange-rows-def)
(rule eq-matI, auto simp add: Mod-Type-Connect.from-hma ${ }_{m}$-def Mod-Type-Connect.HMA-I-def
to-nat-less-card to-nat-from-nat-id)
lemma HMA-swapcols[transfer-rule]:
((Mod-Type-Connect.HMA-M ::- $\boldsymbol{C}^{\prime} a$:: comm-ring-1 ^'nc :: mod-type ^ ' $n r$::
mod-type \Rightarrow-)
$===>\left(\right.$ Mod-Type-Connect.HMA-I :: - $\boldsymbol{A}^{\prime} n c::$ mod-type $\left.\Rightarrow-\right)$
$===>\left(\right.$ Mod-Type-Connect.HMA-I :: - $\boldsymbol{A}^{\prime} n c::$ mod-type $\left.\Rightarrow-\right)$
$===>$ Mod-Type-Connect.HMA-M)
(λA a b. swapcols a b A) interchange-columns
by (intro rel-funI, goal-cases, auto simp add: Mod-Type-Connect.HMA-M-def
interchange-columns-def)
(rule eq-matI, auto simp add: Mod-Type-Connect.from-hma ${ }_{m}$-def Mod-Type-Connect.HMA-I-def
to-nat-less-card to-nat-from-nat-id)
lemma HMA-addrow[transfer-rule]:
((Mod-Type-Connect.HMA-M ::- $\boldsymbol{\beta}^{\prime} a$:: comm-ring-1 へ 'nc :: mod-type ^ ' $n r$::
mod-type \Rightarrow-)
$===>\left(\right.$ Mod-Type-Connect.HMA-I :: - $\Rightarrow^{\prime} n r::$ mod-type $\left.\Rightarrow-\right)$
$===>\left(\right.$ Mod-Type-Connect.HMA-I :: - $\Rightarrow^{\prime} n r::$ mod-type $\left.\Rightarrow-\right)$
$===>(=)$
$===>$ Mod-Type-Connect.HMA-M)
(λA a b q. addrow q a b A) row-add
by (intro rel-funI, goal-cases, auto simp add: Mod-Type-Connect.HMA-M-def
row-add-def)
(rule eq-matI, auto simp add: Mod-Type-Connect.from-hma ${ }_{m}$-def Mod-Type-Connect.HMA-I-def
lemma HMA-addcol[transfer-rule]:
((Mod-Type-Connect.HMA-M ::- $\boldsymbol{C}^{\prime} a::$ comm-ring-1 へ'nc :: mod-type ${ }^{\text {- }} \mathrm{nr}$::
mod-type \Rightarrow-)
$===>\left(\right.$ Mod-Type-Connect.HMA-I ::- $\boldsymbol{A}^{\prime} n c::$ mod-type $\left.\Rightarrow-\right)$
$===>\left(\right.$ Mod-Type-Connect.HMA-I :: - $\Rightarrow^{\prime} n c::$ mod-type $\left.\Rightarrow-\right)$
$===>(=)$
$===>$ Mod-Type-Connect.HMA-M)
(λA a b q. addcol q a b A) column-add
by (intro rel-funI, goal-cases, auto simp add: Mod-Type-Connect.HMA-M-def
column-add-def)
(rule eq-matI, auto simp add: Mod-Type-Connect.from-hma ${ }_{m}$-def Mod-Type-Connect.HMA-I-def
to-nat-less-card to-nat-from-nat-id)
lemma HMA-multrow[transfer-rule]:
((Mod-Type-Connect.HMA-M ::- $\boldsymbol{\beta}^{\prime} a::$ comm-ring-1 ^'nc :: mod-type ${ }^{\text {- }} \mathrm{nr}$::
mod-type \Rightarrow-)
$===>\left(\right.$ Mod-Type-Connect.HMA-I ::- $\boldsymbol{A}^{\prime} n r::$ mod-type \Rightarrow -)
$===>(=)$
$===>$ Mod-Type-Connect.HMA-M)
(λA i q. multrow i q A) mult-row
by (intro rel-funI, goal-cases, auto simp add: Mod-Type-Connect.HMA-M-def
mult-row-def)
(rule eq-matI, auto simp add: Mod-Type-Connect.from-hma ${ }_{m}$-def Mod-Type-Connect.HMA-I-def
to-nat-less-card to-nat-from-nat-id)
lemma HMA-multcol[transfer-rule]:
((Mod-Type-Connect.HMA-M ::- $\boldsymbol{~}^{\prime} a$:: comm-ring-1 ^'nc :: mod-type ^' $n r$::
mod-type \Rightarrow-)
$===>\left(\right.$ Mod-Type-Connect.HMA-I ::- $\boldsymbol{A}^{\prime} n c::$ mod-type \Rightarrow -)
$===>$ ($=$)
$===>$ Mod-Type-Connect.HMA-M)
(λ A i q. multcol i q A) mult-column
by (intro rel-funI, goal-cases, auto simp add: Mod-Type-Connect.HMA-M-def
mult-column-def)
(rule eq-matI, auto simp add: Mod-Type-Connect.from-hma ${ }_{m}$-def Mod-Type-Connect.HMA-I-def
to-nat-less-card to-nat-from-nat-id)
end

```
fun HMA-M3 where
    HMA-M3 (P,A,Q)
    (P' :: 'a :: comm-ring-1 ^ 'nr :: mod-type ^'nr :: mod-type,
    A'::' 'a ^ 'nc :: mod-type ^ 'nr :: mod-type,
```

$$
\left.Q^{\prime}::{ }^{\prime} a \text { ^' } n c:: \text { mod-type ^'nc }:: \text { mod-type }\right)=
$$

(Mod-Type-Connect.HMA-M P $P^{\prime} \wedge$ Mod-Type-Connect.HMA-M A A' \wedge Mod-Type-Connect.HMA-M $\left.Q Q^{\prime}\right)$
lemma HMA-M3-def:
HMA-M3 A B $=\left(\right.$ Mod-Type-Connect.HMA-M $\left(f_{s t} A\right)(f s t B)$
\wedge Mod-Type-Connect.HMA-M (fst (snd A)) (fst (snd B))
\wedge Mod-Type-Connect.HMA-M (snd (snd A)) (snd (snd B)))
by (smt HMA-M3.simps prod.collapse)

context

includes lifting-syntax
begin
lemma Domainp-HMA-M3 [transfer-domain-rule]:
Domainp (HMA-M3 :: - $\Rightarrow\left(-\times\left({ }^{\prime} a::\right.\right.$ comm-ring-1^'nc::mod-type $\left.\left.\left.{ }^{\wedge} n r:: m o d-t y p e\right) \times-\right) \Rightarrow-\right)$
$=\left(\lambda(P, A, Q) . P \in\right.$ carrier-mat $C A R D\left({ }^{\prime} n r\right) C A R D\left({ }^{\prime} n r\right) \wedge A \in$ carrier-mat $C A R D\left({ }^{\prime} n r\right)$ $C A R D(' n c)$
$\wedge Q \in$ carrier-mat $\left.\operatorname{CARD}\left({ }^{\prime} n c\right) \operatorname{CARD}\left({ }^{\prime} n c\right)\right)$
proof -
let ?HMA-M3 $=H M A-M 3::-\Rightarrow\left(-\times\left({ }^{\prime} a::\right.\right.$ comm-ring-1 ${ }^{\wedge \prime} n c:: m o d-$ type $\left.\left.{ }^{\wedge} n r:: m o d-t y p e\right) \times-\right) \Rightarrow-$
have 1: $P \in$ carrier-mat $C A R D\left({ }^{\prime} n r\right) C A R D(' n r) \wedge$
$A \in$ carrier-mat $C A R D\left({ }^{\prime} n r\right) C A R D(' n c) \wedge Q \in$ carrier-mat $C A R D\left({ }^{\prime} n c\right)$
CARD (' $n c$)
if Domainp ?HMA-M3 (P, A, Q) for $P A Q$
using that unfolding Domainp-iff by (auto simp add: Mod-Type-Connect.HMA-M-def)
have 2: Domainp ?HMA-M3 (P, A, Q) if $P A Q: P \in$ carrier-mat $C A R D\left({ }^{\prime} n r\right)$
CARD ('nr)
$\wedge A \in$ carrier-mat $C A R D\left({ }^{\prime} n r\right) C A R D\left({ }^{\prime} n c\right) \wedge Q \in$ carrier-mat $C A R D\left({ }^{\prime} n c\right)$ $C A R D\left({ }^{\prime} n c\right)$ for $P A Q$
proof -
let $? P=$ Mod-Type-Connect.to-hma $a_{m} P::^{\prime} a^{\wedge \prime} n r::$ mod-type ${ }^{\wedge} n r::$ mod-type
let $? A=$ Mod-Type-Connect.to-hma $A::^{\prime} a^{\wedge \prime} n c::$ mod-type ${ }^{\wedge \prime} n r::$ mod-type
let ? $Q=$ Mod-Type-Connect.to-hma $\quad Q::{ }^{\prime} a^{\wedge \prime} n c:: m o d-t y p e{ }^{\wedge \prime} n c:: m o d-t y p e$
have HMA-M3 $(P, A, Q)(? P, ? A, ? Q)$
by (auto simp add: Mod-Type-Connect.HMA-M-def PAQ)
thus ?thesis unfolding Domainp-iff by auto
qed
have fst $x \in$ carrier-mat $C A R D\left({ }^{\prime} n r\right) C A R D\left({ }^{\prime} n r\right) \wedge$ fst $($ snd $x) \in$ carrier-mat
CARD ('nr) CARD('nc)
$\wedge($ snd $($ snd $x)) \in$ carrier-mat CARD $\left({ }^{\prime} n c\right) C A R D(' n c)$
if Domainp ?HMA-M3 x for x using 1
by (metis (full-types) surjective-pairing that)
moreover have Domainp ?HMA-M3 x
if fst $x \in$ carrier-mat $C A R D\left({ }^{\prime} n r\right) C A R D\left({ }^{\prime} n r\right) \wedge$ fst $($ snd $x) \in$ carrier-mat CARD ('nr) CARD('nc)

```
        \wedge(snd (snd x)) \in carrier-mat CARD('nc) CARD('nc) for }
    using 2
    by (metis (full-types) surjective-pairing that)
    ultimately show ?thesis by (intro ext iffI, unfold split-beta, metis+)
qed
```

lemma bi-unique-HMA-M3 [transfer-rule]: bi-unique HMA-M3 left-unique HMA-M3
right-unique HMA-M3
unfolding HMA-M3-def bi-unique-def left-unique-def right-unique-def
by (auto simp add: Mod-Type-Connect.HMA-M-def)
lemma right-total-HMA-M3 [transfer-rule]: right-total HMA-M3
unfolding HMA-M-def right-total-def
by (simp add: Mod-Type-Connect.HMA-M-def)
end
end

4 Missing results

```
theory SNF-Missing-Lemmas
    imports
        Hermite.Hermite
        Mod-Type-Connect
        Jordan-Normal-Form.DL-Rank-Submatrix
        List-Index.List-Index
begin
```

This theory presents some missing lemmas that are required for the Smith normal form development. Some of them could be added to different AFP entries, such as the Jordan Normal Form AFP entry by René Thiemann and Akihisa Yamada.
However, not all the lemmas can be added directly, since some imports are required.
hide-const (open) C
hide-const (open) measure

4.1 Miscellaneous lemmas

lemma sum-two-rw: $\left(\sum i=0 . .<2 . f i\right)=\left(\sum i \in\{0,1:: n a t\} . f i\right)$
by (rule sum.cong, auto)
lemma sum-common-left:
fixes $f::^{\prime} a \Rightarrow$ ' $b::$ comm-ring- 1
assumes finite A
shows $\operatorname{sum}(\lambda i . c * f i) A=c * \operatorname{sum} f A$
by (simp add: mult-hom.hom-sum)
lemma prod3-intro:
assumes $f s t A=a$ and $f s t(\operatorname{snd} A)=b$ and $\operatorname{snd}(\operatorname{snd} A)=c$
shows $A=(a, b, c)$ using assms by auto

4.2 Transfer rules for the HMA_Connect file of the PerronFrobenius development

hide-const (open) HMA-M HMA-I to-hma a_{m} from-hma m_{m}
hide-fact (open) from-hma a_{m}-def from-hma-to-hma $H M A$-M-def HMA-I-def dim-row-transfer-rule dim-col-transfer-rule

```
context
    includes lifting-syntax
begin
```

lemma HMA-invertible-matrix[transfer-rule]:
($\left(\right.$ HMA-Connect.HMA-M $::-\boldsymbol{A}^{\prime} a::$ comm-ring-1 $\left.\left.\wedge^{\prime} n \wedge \prime n \Rightarrow-\right)===>(=)\right)$
invertible-mat invertible
proof (intro rel-funI, goal-cases)
case ($1 \times y$)
note rel-xy[transfer-rule] $=1$
have eq-dim: dim-col $x=$ dim-row x
using HMA-Connect.dim-col-transfer-rule HMA-Connect.dim-row-transfer-rule
rel-xy
by fastforce
moreover have $\exists A^{\prime} . y * * A^{\prime}=$ Finite-Cartesian-Product.mat $1 \wedge A^{\prime} * * y=$
Finite-Cartesian-Product.mat 1
if $x B: x * B=1_{m}($ dim-row $x)$ and $B x: B * x=1_{m}($ dim-row $B)$ for B
proof -
let ? $A^{\prime}=H M A-C o n n e c t . t o-h m a_{m} B:: ' a::$ comm-ring-1 ${ }^{\wedge} n^{\wedge} ' n$
have rel-BA[transfer-rule]: HMA-M B ? A^{\prime}
by (metis (no-types, lifting) Bx HMA-M-def eq-dim carrier-mat-triv dim-col-mat(1)
from-hma ${ }_{m}$-def from-hma-to-hma a_{m} index-mult-mat(3) index-one-mat(3)
rel-xy $x B$)
have [simp]: dim-row $B=\operatorname{CARD}\left({ }^{\prime} n\right)$ using dim-row-transfer-rule rel-BA by
blast
have $[$ simp $]$: dim-row $x=\operatorname{CARD}($ ' n) using dim-row-transfer-rule rel-xy by
blast
have $y * * ? A^{\prime}=$ Finite-Cartesian-Product.mat 1 using $x B$ by (transfer, simp)
moreover have $? A^{\prime} * * y=$ Finite-Cartesian-Product.mat 1 using Bx by
(transfer, simp)
ultimately show ?thesis by blast
qed
moreover have $\exists B . x * B=1_{m}($ dim-row $x) \wedge B * x=1_{m}($ dim-row $B)$
if $y A: y * * A^{\prime}=$ Finite-Cartesian-Product.mat 1 and $A y: A^{\prime} * * y=F i$ -
nite-Cartesian-Product.mat 1 for A^{\prime}
proof -

```
    let ?B = (from-hmam A')
    have [simp]: dim-row x = CARD('n) using dim-row-transfer-rule rel-xy by
blast
    have [transfer-rule]: HMA-M ?B A' by (simp add: HMA-M-def)
    hence [simp]: dim-row ?B = CARD(' }n)\mathrm{ using dim-row-transfer-rule by auto
    have }x*?B=1m(dim-row x) using yA by (transfer', auto
    moreover have ? B *x=1m (dim-row ? B) using Ay by (transfer', auto)
    ultimately show ?thesis by auto
    qed
    ultimately show ?case unfolding invertible-mat-def invertible-def inverts-mat-def
by auto
qed
end
```


4.3 Lemmas obtained from HOL Analysis using local type definitions

thm Cartesian-Space.invertible-mult
thm invertible-iff-is-unit
thm det-non-zero-imp-unit
thm mat-mult-left-right-inverse
lemma invertible-mat-zero:
assumes A : $A \in$ carrier-mat 00
shows invertible-mat A
using A unfolding invertible-mat-def inverts-mat-def one-mat-def times-mat-def scalar-prod-def

Matrix.row-def col-def carrier-mat-def
by (auto, metis (no-types, lifting) cong-mat not-less-zero)
lemma invertible-mult-JNF:
fixes $A:: ' a::$ comm-ring-1 mat
assumes A : $A \in$ carrier-mat $n n$ and $B: B \in$ carrier-mat $n n$
and inv- A : invertible-mat A and inv- B : invertible-mat B
shows invertible-mat $(A * B)$
proof (cases $n=0$)
case True
then show ?thesis using assms
by (simp add: invertible-mat-zero)
next
case False
then show ?thesis using
invertible-mult $[$ where ?' $a=' a::$ comm-ring- 1 , where ?' $b=' n::$ finite, where $?^{\prime} c=' n:: f i n i t e$,
 auto
qed
lemma invertible-iff-is-unit-JNF:
assumes $A: A \in$ carrier-mat $n n$
shows invertible-mat $A \longleftrightarrow$ (Determinant.det A) dvd 1
proof (cases $n=0$)
case True
then show ?thesis using det-dim-zero invertible-mat-zero A by auto
next
case False
then show?thesis using invertible-iff-is-unit[untransferred, cancel-card-constraint]
A by auto
qed

4.4 Lemmas about matrices, submatrices and determinants

thm mat-mult-left-right-inverse
lemma mat-mult-left-right-inverse:
fixes A :: 'a::comm-ring-1 mat
assumes $A: A \in$ carrier-mat $n n$
and $B: B \in$ carrier-mat $n n$ and $A B: A * B=1_{m} n$
shows $B * A=1_{m} n$
proof -
have Determinant.det $(A * B)=$ Determinant.det $\left(1_{m} n\right)$ using $A B$ by auto
hence Determinant.det $A *$ Determinant.det $B=1$
using Determinant.det-mult $[O F A B]$ det-one by auto
hence det- A : (Determinant.det A) dvd 1 and det- B : (Determinant.det B) dvd 1 using dvd-triv-left dvd-triv-right by metis+
hence inv-A: invertible-mat A and inv- B : invertible-mat B
using $A B$ invertible-iff-is-unit-JNF by blast+
obtain B^{\prime} where inv- $B B^{\prime}$: inverts-mat $B B^{\prime}$ and inv- $B^{\prime} B$: inverts-mat $B^{\prime} B$ using inv- B unfolding invertible-mat-def by auto
have B^{\prime}-carrier: $B^{\prime} \in$ carrier-mat $n n$
by (metis B inv- $B^{\prime} B$ inv- $B B^{\prime}$ carrier-matD(1) carrier-matD(2) carrier-mat-triv index-mult-mat(3) index-one-mat(3) inverts-mat-def)
have $B * A * B=B$ using $A A B$ by auto
hence $B * A *\left(B * B^{\prime}\right)=B * B^{\prime}$
by (smt $A \quad A B \quad B \quad B^{\prime}$-carrier assoc-mult-mat carrier-matD (1) inv- $B B^{\prime}$ in-verts-mat-def one-carrier-mat)
thus ?thesis
by (metis A B carrier-matD(1) carrier-matD(2) index-mult-mat(3) inv-BB' inverts-mat-def right-mult-one-mat')
qed
context comm-ring-1
begin
lemma col-submatrix-UNIV:
assumes $j<\operatorname{card}\{i . i<\operatorname{dim}-\operatorname{col} A \wedge i \in J\}$
shows col (submatrix A UNIV J) $j=\operatorname{col} A($ pick $J j)$
proof (rule eq-vecI)
show dim-eq:dim-vec $(\operatorname{col}($ submatrix $A U N I V J) j)=\operatorname{dim-vec}(\operatorname{col} A($ pick $J j))$

```
    by (simp add: dim-submatrix(1))
    fix i assume i<dim-vec (col A (pick J j))
    show col (submatrix A UNIV J) j$vi = col A (pick Jj)$vi
    by (smt Collect-cong assms col-def dim-col dim-eq dim-submatrix(1)
        eq-vecI index-vec pick-UNIV submatrix-index)
qed
lemma submatrix-split2: submatrix A I J = submatrix (submatrix A I UNIV)
UNIV J (is ?lhs = ?rhs)
proof (rule eq-matI)
    show dr: dim-row?lhs = dim-row ?rhs
    by (simp add: dim-submatrix(1))
    show dc: dim-col ?lhs = dim-col ?rhs
    by (simp add: dim-submatrix(2))
    fix ij assume i:i< dim-row ?rhs
    and j: j<dim-col ?rhs
    have ?rhs $$ (i,j)=(submatrix A I UNIV) $$ (pick UNIV i, pick J j)
    proof (rule submatrix-index)
    show i< card {i.i< dim-row (submatrix A I UNIV) ^i\inUNIV}
        by (metis (full-types) dim-submatrix(1) i)
    show j< card {j.j< dim-col (submatrix A I UNIV) ^j\inJ}
            by (metis (full-types) dim-submatrix(2) j)
    qed
    also have ... = A $$ (pick I (pick UNIV i), pick UNIV (pick J j))
    proof (rule submatrix-index)
        show pick UNIV i< card {i.i< dim-row A ^i\inI}
            by (metis (full-types) dr dim-submatrix(1) i pick-UNIV)
    show pick J j< card {j.j< dim-col A ^j\inUNIV}
            by (metis (full-types) dim-submatrix(2) j pick-le)
    qed
    also have ... = ?lhs $$ (i,j)
    proof (unfold pick-UNIV, rule submatrix-index[symmetric])
        show }i<card {i.i< dim-row A\wedgei\inI
        by (metis (full-types) dim-submatrix(1) dr i)
    show j< card {j. j< dim-col A ^j\inJ}
        by (metis (full-types) dim-submatrix(2) dc j)
    qed
    finally show ?lhs $$ (i,j) = ?rhs $$ (i,j) ..
qed
lemma submatrix-mult:
    submatrix ( }A*B)IJ=\mathrm{ submatrix A I UNIV * submatrix B UNIV J (is ?lhs =
?rhs)
proof (rule eq-matI)
    show dim-row ?lhs = dim-row ?rhs unfolding submatrix-def by auto
    show dim-col ?lhs = dim-col ?rhs unfolding submatrix-def by auto
    fix ij assume i:i<dim-row ?rhs and j:j<dim-col ?rhs
    have i1: i< card {i.i< dim-row (A*B)\wedgei\inI}
    by (metis (full-types) dim-submatrix(1) i index-mult-mat(2))
```

have $j 1: j<\operatorname{card}\{j . j<\operatorname{dim}-\operatorname{col}(A * B) \wedge j \in J\}$
by (metis dim-submatrix(2) index-mult-mat(3) j)
have $p i$: pick $I i<d i m$-row A using $i 1$ pick-le by auto
have $p j$: pick $J j<d i m$-col B using $j 1$ pick-le by auto
have row-rw: Matrix.row (submatrix A I UNIV) $i=$ Matrix.row A (pick I i)
using $i 1$ row-submatrix-UNIV by auto
have col-rw: col (submatrix B UNIV J) $j=\operatorname{col} B($ pick $J j)$ using $j 1$ col-submatrix-UNIV by auto
have ?lhs $\$ \$(i, j)=(A * B) \$ \$$ (pick I i, pick $J j)$ by (rule submatrix-index[OF i1 j1])
also have $\ldots=$ Matrix.row $A($ pick I $i) \cdot \operatorname{col} B($ pick $J j)$ by (rule index-mult-mat $(1)[O F$ pi $p j$])
also have $\ldots=$ Matrix.row (submatrix A I UNIV) $i \cdot$ col (submatrix B UNIV J) j
using row-rw col-rw by simp
also have $\ldots=($?rhs $) \$ \(i, j) by (rule index-mult-mat[symmetric], insert $i j$, auto)
finally show ?lhs $\$ \$(i, j)=$? $r h s \$ \(i, j).
qed
lemma det-singleton:
assumes $A: A \in$ carrier-mat 11
shows $\operatorname{det} A=A \$ \$(0,0)$
using A unfolding carrier-mat-def Determinant.det-def by auto
lemma submatrix-singleton-index:
assumes $A: A \in$ carrier-mat $n m$
and $a n: a<n$ and $b m: b<m$
shows submatrix $A\{a\}\{b\} \$ \$(0,0)=A \$ \(a, b)
proof -
have a : $\{i . i=a \wedge i<\operatorname{dim}$-row $A\}=\{a\}$ using an A unfolding carrier-mat-def
by auto
have $b:\{i . i=b \wedge i<\operatorname{dim}-c o l A\}=\{b\}$ using $b m A$ unfolding carrier-mat-def
by auto
have submatrix $A\{a\}\{b\} \$ \$(0,0)=A \$ \$($ pick $\{a\} 0, p i c k\{b\} 0)$
by (rule submatrix-index, insert a b, auto)
moreover have pick $\{a\} 0=a$ by (auto, metis (full-types) LeastI)
moreover have pick $\{b\} 0=b$ by (auto, metis (full-types) LeastI)
ultimately show ?thesis by simp
qed
end
lemma det-not-inj-on:
assumes not-inj-on: $\neg \operatorname{inj-on~} f\{0 . .<n\}$
shows $\operatorname{det}\left(\right.$ mat $_{r} n n(\lambda i$. Matrix.row $\left.B(f i))\right)=0$
proof -
obtain $i j$ where $i: i<n$ and $j: j<n$ and $f-f j: f i=f j$ and $i j: i \neq j$
using not-inj-on unfolding inj-on-def by auto
show ?thesis

```
proof (rule det-identical-rows[OF - ij i j])
    let ? B=(mat r n n (\lambdai. row B (fi)))
    show row ?B i= row ?B j
    proof (rule eq-vecI, auto)
    fix ia assume ia: ia<n
    have row ?B i $ ia=?B$$(i,ia) by (rule index-row(1), insert i ia, auto)
    also have ... =?B$$(j, ia) by (simp add: fi-fj i ia j)
        also have ... = row ?B j $ ia by (rule index-row(1)[symmetric], insert j ia,
auto)
            finally show row ?B i $ ia = row (matrr n n (\lambdai. row B (f i))) j$ ia by simp
        qed
    show matr n n (\lambdai. Matrix.row B (f i)) \in carrier-mat n n by auto
    qed
qed
```

lemma mat-row-transpose: $\left(\text { mat }_{r} n r n c f\right)^{T}=$ mat nc nr $(\lambda(i, j)$. vec-index $(f j) i)$
by (rule eq-matI, auto)
lemma obtain-inverse-matrix:
assumes $A: A \in$ carrier-mat $n n$ and i : invertible-mat A
obtains B where inverts-mat $A B$ and inverts-mat $B A$ and $B \in$ carrier-mat
n n
proof -
have $(\exists B$. inverts-mat $A B \wedge$ inverts-mat $B A)$ using i unfolding invert-ible-mat-def by auto
from this obtain B where $A B$: inverts-mat $A B$ and $B A$: inverts-mat $B A$ by auto
moreover have $B \in$ carrier-mat $n n$ using $A A B B A$ unfolding carrier-mat-def inverts-mat-def
by (auto, metis index-mult-mat(3) index-one-mat(3))+
ultimately show ?thesis using that by blast
qed
lemma invertible-mat-smult-mat:
fixes A :: ' a ::comm-ring-1 mat
assumes inv-A: invertible-mat A and $k: k$ dvd 1
shows invertible-mat $(k \cdot m A)$
proof -
obtain n where $A: A \in$ carrier-mat $n ~ n$ using inv- A unfolding invert-ible-mat-def by auto
have det-dvd-1: Determinant. det A dvd 1 using inv-A invertible-iff-is-unit-JNF[OF A] by auto
have Determinant.det $\left(k \cdot_{m} A\right)=k \wedge \operatorname{dim}-c o l A * \operatorname{Determinant}$.det A by simp also have ... dvd 1 by (rule unit-prod, insert k det-dvd-1 dvd-power-same, force+) finally show ?thesis using invertible-iff-is-unit-JNF by (metis A smult-carrier-mat)

qed

lemma invertible-mat-one[simp]: invertible-mat ($1_{m} n$)
unfolding invertible-mat-def using inverts-mat-def by fastforce
lemma four-block-mat-dim0:
assumes $A: A \in$ carrier-mat $n n$
and $B: B \in$ carrier-mat $n 0$
and $C: C \in$ carrier-mat $0 n$
and $D: D \in$ carrier-mat 00
shows four-block-mat A B C D = A
unfolding four-block-mat-def using assms by auto
lemma det-four-block-mat-lower-right-id:
assumes $A: A \in$ carrier-mat $m m$
and $B: B=0_{m} m(n-m)$
and $C: C=O_{m}(n-m) m$
and $D: D=1_{m}(n-m)$
and $n>m$
shows Determinant.det (four-block-mat A B C D) $=$ Determinant.det A using assms
proof (induct n arbitrary: $A B C D$)
case 0
then show ?case by auto
next
case (Suc n)
let ?block $=($ four-block-mat A B C D)
let $? B=$ Matrix.mat $m(n-m)(\lambda(i, j)$. 0$)$
let ? $C=$ Matrix.mat $(n-m) m(\lambda(i, j) .0)$
let $? D=1_{m}(n-m)$
have mat-eq: (mat-delete ?block $n n$) $=$ four-block-mat A ?B ?C ?D (is ?lhs = ?rhs)
proof (rule eq-matI)
fix $i j$ assume i : $i<$ dim-row (four-block-mat A ?B ?C ?D)
and $j: j<$ dim-col (four-block-mat A ? B ? C ? D)
let ?f $=($ if $i<$ dim-row A then if $j<\operatorname{dim}-c o l ~ A$ then $A \$ \(i, j) else $B \$ \$(i$, $j-\operatorname{dim}-\operatorname{col} A)$
else if $j<$ dim-col A then $C \$(i-$ dim-row $A, j)$ else $D \$ \$(i-d i m-r o w ~ A$, $j-\operatorname{dim}-\operatorname{col} A)$)
let $? g=($ if $i<$ dim-row A then if $j<$ dim-col A then $A \$ \(i, j) else ? $B \$ \$$ ($i, j-\operatorname{dim}-\operatorname{col} A$)
else if $j<$ dim-col A then ? $C \$ \$(i-d i m-r o w ~ A, j)$ else ? $D \$ \$(i-d i m-r o w$ $A, j-\operatorname{dim}-c o l A))$
have (mat-delete ?block $n n) \$ \$(i, j)=$?block $\$ \(i, j)
using ij Suc.prems unfolding mat-delete-def by auto
also have...$=$? f
by (rule index-mat-four-block, insert Suc.prems ij, auto)
also have $\ldots=$? g using $i j$ Suc.prems by auto

```
    also have ... = four-block-mat A ?B ?C ?D $$ (i,j)
    by (rule index-mat-four-block[symmetric], insert Suc.prems i j, auto)
    finally show ?lhs $$ (i,j)=? ?rhs $$ (i,j).
    qed (insert Suc.prems, auto)
    have nn-1: ?block $$ (n,n)=1 using Suc.prems by auto
    have rw0:(\sumi<n. ?block $$ (i,n)* Determinant.cofactor ?block i n)=0
    proof (rule sum.neutral, rule)
    fix }x\mathrm{ assume }x:x\in{..<n
    have block-index: ?block $$(x,n)=(if x<dim-row A then if n<dim-col A
then A $$ (x,n)
    else B$$(x,n-dim-col A) else if n<dim-col A then C $$ ( }x\mathrm{ - dim-row
A,n)
        else D$$(x - dim-row A, n - dim-col A))
        by (rule index-mat-four-block, insert Suc.prems x, auto)
    have four-block-mat A B C D $$ (x,n) = 0 using x Suc.prems by auto
    thus four-block-mat A B C D $$ (x,n)* Determinant.cofactor (four-block-mat
A B CD) x n=0
            by simp
    qed
    have Determinant.det ?block = (\sumi<Suc n. ?block $$ (i,n)* Determinant.cofactor
?block i n)
    by (rule laplace-expansion-column, insert Suc.prems, auto)
    also have ... = ?block $$ (n,n) * Determinant.cofactor ?block n n
        +(\sumi<n. ?block $$ (i,n)* Determinant.cofactor ?block i n)
        by simp
    also have ... = ?block $$(n,n) * Determinant.cofactor ?block n n using rw0
by auto
    also have ... = Determinant.cofactor ?block n n using nn-1 by simp
    also have ... = Determinant.det (mat-delete ?block n n) unfolding cofactor-def
by auto
    also have ... = Determinant.det (four-block-mat A ?B ?C ?D) using mat-eq by
simp
    also have ... = Determinant.det A (is Determinant.det ?lhs = Determinant.det
?rhs)
    proof (cases n=m)
        case True
        have ?lhs = ?rhs by (rule four-block-mat-dim0, insert Suc.prems True, auto)
        then show?thesis by simp
    next
        case False
        show ?thesis by (rule Suc.hyps, insert Suc.prems False, auto)
    qed
    finally show ?case .
qed
lemma mult-eq-first-row:
    assumes A:A\incarrier-mat 1 n
    and B:B\incarrier-mat m n
```

```
    and m0: m\not=0
    and r:Matrix.row A 0 = Matrix.row B 0
shows Matrix.row (A*V) 0= Matrix.row (B*V) 0
proof (rule eq-vecI)
    show dim-vec (Matrix.row (A*V)0) = dim-vec (Matrix.row (B*V)0) using
A Br by auto
    fix i assume i: i< dim-vec (Matrix.row (B*V) 0)
    have Matrix.row (A*V)0$vi=(A*V)$$(0,i) by (rule index-row, insert
i A, auto)
    also have ... = Matrix.row A 0 - col V i by (rule index-mult-mat, insert A i,
auto)
    also have ... = Matrix.row B 0 . col Vi using r by auto
    also have \ldots}=(B*V)$$(0,i) by (rule index-mult-mat[symmetric], insert m
B i, auto)
    also have ... = Matrix.row ( }B*V)0$vi\mathrm{ by (rule index-row[symmetric], insert
i B m0, auto)
    finally show Matrix.row (A*V)0$vi=Matrix.row (B*V)0$vi.
qed
lemma smult-mat-mat-one-element:
    assumes A:A\incarrier-mat 11 and B:B\incarrier-mat 1 n
    shows }A*B=A$$(0,0)\cdotm
proof (rule eq-matI)
    fix ij assume i:i<dim-row (A $$ (0, 0) \cdotm B) and j:j<dim-col (A$$(0,
0) }\mp@subsup{m}{m}{}B
    have i0: i=0 using A B i by auto
    have}(A*B)$$(i,j)= Matrix.row A i . col B j
        by (rule index-mult-mat, insert i j A B, auto)
    also have ... = Matrix.row A i$v 0* col Bj$v 0 unfolding scalar-prod-def
using B by auto
    also have ... = A$$(i,i)*B$$(i,j) using A i i0 j by auto
    also have ... = (A $$ (i,i) m B)$$ (i,j)
            unfolding i by (rule index-smult-mat[symmetric], insert i j B, auto)
    finally show }(A*B)$$(i,j)=(A$$(0,0)\cdotmB)$$(i,j) using i0 by sim
qed (insert A B, auto)
lemma determinant-one-element:
    assumes A:A carrier-mat 1 1 shows Determinant.det A=A$$(0,0)
proof -
    have Determinant.det A = prod-list (diag-mat A)
            by (rule det-upper-triangular[OF - A], insert A, unfold upper-triangular-def,
auto)
    also have ... = A $$ (0,0) using A unfolding diag-mat-def by auto
    finally show ?thesis.
qed
```

```
lemma invertible-mat-transpose:
    assumes inv-A: invertible-mat ( }A::''a::comm-ring-1 mat) 
    shows invertible-mat AT
proof -
    obtain n where A:A\in carrier-mat n n
            using inv-A unfolding invertible-mat-def square-mat.simps by auto
    hence At: AT}\in\mathrm{ carrier-mat n n by simp
    have Determinant.det A}\mp@subsup{A}{}{T}=\mathrm{ Determinant.det A
        by (metis Determinant.det-def Determinant.det-transpose carrier-matI
            index-transpose-mat(2) index-transpose-mat(3))
    also have ... dvd 1 using invertible-iff-is-unit-JNF[OF A] inv-A by simp
    finally show ?thesis using invertible-iff-is-unit-JNF[OF At] by auto
qed
lemma dvd-elements-mult-matrix-left:
    assumes A: (A::'a::comm-ring-1 mat) \in carrier-mat m n
    and P:P\in carrier-mat m m
    and }x:(\forallij.i<m\wedgej<n\longrightarrowx dvd A$$(i,j)
    shows (\forallij. i<m\wedge j<n\longrightarrowx dvd (P*A)$$(i,j))
proof -
    have x dvd (P*A)$$ (i,j) if i:i<m and j:j<n for ij
    proof -
        have (P*A)$$ (i,j)=(\sumia=0..<m. Matrix.row P i $v ia* col A j$via)
            unfolding times-mat-def scalar-prod-def using A P ji by auto
    also have ... = (\sumia=0..<m. Matrix.row P i$via* A$$ (ia,j))
            by (rule sum.cong, insert A j, auto)
    also have x dvd ... using x by (meson atLeastLessThan-iff dvd-mult dvd-sum
j)
    finally show ?thesis .
    qed
    thus ?thesis by auto
qed
lemma dvd-elements-mult-matrix-right:
    assumes A:(A::'a::comm-ring-1 mat) \in carrier-mat m n
    and Q:Q\incarrier-mat n n
    and x:(\forallij.i<m ^j<n\longrightarrowx dvd A$$(i,j))
    shows (\forallij.i<m^j<n\longrightarrowx dvd (A*Q)$$(i,j))
proof -
    have }x\operatorname{dvd}(A*Q)$$(i,j)\mathrm{ if }i:i<m\mathrm{ and j: j<n for ij
    proof -
        have (A*Q)$$ (i,j)=(\sumia=0..<n. Matrix.row A i$v ia* col Q j$v ia)
            unfolding times-mat-def scalar-prod-def using A Q j i by auto
        also have ... = (\sumia=0..<n.A $$ (i,ia)* col Q j $via)
            by (rule sum.cong, insert A Q i, auto)
        also have x dvd ... using x
            by (meson atLeastLessThan-iff dvd-mult2 dvd-sum i)
        finally show ?thesis .
```

```
    qed
    thus?thesis by auto
qed
```

lemma dvd-elements-mult-matrix-left-right:
assumes $A:\left(A::{ }^{\prime} a::\right.$ comm-ring- 1 mat $) \in$ carrier-mat $m n$
and $P: P \in$ carrier-mat $m m$
and $Q: Q \in$ carrier-mat $n n$
and $x:(\forall i j . i<m \wedge j<n \longrightarrow x$ dvd $A \$ \$(i, j))$
shows $(\forall i j . i<m \wedge j<n \longrightarrow x d v d(P * A * Q) \$ \$(i, j))$
using dvd-elements-mult-matrix-left $[O F A P x]$
by (meson $P A Q$ dvd-elements-mult-matrix-right mult-carrier-mat)
definition append-cols :: ' a :: zero mat $\Rightarrow{ }^{\prime} a$ mat \Rightarrow 'a mat (infixr $@_{c} 65$)where $A @_{c} B=$ four-block-mat $A B\left(0_{m} 0(\operatorname{dim}-c o l ~ A)\right)\left(0_{m} 0(\operatorname{dim}-c o l B)\right)$
lemma append-cols-carrier[simp,intro]:
$A \in$ carrier-mat $n a \Longrightarrow B \in$ carrier-mat $n b \Longrightarrow\left(A @_{c} B\right) \in$ carrier-mat n $(a+b)$
unfolding append-cols-def by auto
lemma append-cols-mult-left:
assumes $A: A \in$ carrier-mat n a
and $B: B \in$ carrier-mat $n b$
and $P: P \in$ carrier-mat $n n$
shows $P *\left(A @_{c} B\right)=(P * A) @_{c}(P * B)$
proof -
let $? P=$ four-block-mat $P\left(\begin{array}{llll}0_{m} & n & 0\end{array}\right)\left(\begin{array}{lll}0_{m} & 0 & n\end{array}\right)\left(\begin{array}{lll}0_{m} & 0 & 0\end{array}\right)$
have $P=$? P by (rule eq-matI, auto)
hence $P *\left(A @_{c} B\right)=? P *\left(A @_{c} B\right)$ by simp
also have ? $P *\left(A @_{c} B\right)=$ four-block-mat $\left(P * A+0_{m} n 0 * O_{m} 0\right.$ (dim-col A))
$\left(P * B+O_{m} n 0 * O_{m} 0(\mathrm{dim}-\mathrm{col} B)\right)\left(0_{m} 0 n * A+0_{m} 00 * O_{m} 0(\mathrm{dim}-\mathrm{col}\right.$ A))
$\left(0_{m} 0 n * B+O_{m} 00 * O_{m} 0(\right.$ dim-col B)) unfolding append-cols-def
by (rule mult-four-block-mat, insert $A B P$, auto)
also have $\ldots=$ four-block-mat $(P * A)(P * B)\left(O_{m} 0(\operatorname{dim}-c o l(P * A))\right)\left(O_{m} 0\right.$ $(\operatorname{dim}-\operatorname{col}(P * B)))$
by (rule cong-four-block-mat, insert P, auto)
also have $\ldots=(P * A) @_{c}(P * B)$ unfolding append-cols-def by auto
finally show ?thesis.
qed
lemma append-cols-mult-right-id:
assumes $A:\left(A::{ }^{\prime} a::\right.$ semiring-1 mat $) \in$ carrier-mat $n 1$
and $B: B \in$ carrier-mat $n(m-1)$
and $C: C=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(m-1)\right)\left(0_{m}(m-1) 1\right) D$
and $D: D \in$ carrier-mat $(m-1)(m-1)$
shows $\left(A @_{c} B\right) * C=A @_{c}(B * D)$
proof -
let ? $C=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(m-1)\right)\left(0_{m}(m-1)\right.$ 1) D
have $\left(A @_{c} B\right) * C=\left(A @_{c} B\right) *$? C unfolding C by auto
also have $\ldots=$ four-block-mat $A B\left(0_{m} 0(\right.$ dim-col $\left.A)\right)\left(0_{m} 0(\operatorname{dim}-c o l B)\right) * ? C$
unfolding append-cols-def by auto
also have $\ldots=$ four-block-mat $\left(A * 1_{m} 1+B * 0_{m}(m-1) 1\right)\left(A * 0_{m} 1(m\right.$ $-1)+B * D)$
$\left(0_{m} 0(\operatorname{dim}-\operatorname{col} A) * 1_{m} 1+0_{m} 0(\operatorname{dim}-\operatorname{col} B) * O_{m}(m-1) 1\right)$
$\left(0_{m} 0(\operatorname{dim}-\operatorname{col} A) * 0_{m} 1(m-1)+0_{m} 0(\operatorname{dim}-\operatorname{col} B) * D\right)$
by (rule mult-four-block-mat, insert assms, auto)
also have $\ldots=$ four-block-mat $A(B * D)\left(0_{m} 0(\right.$ dim-col $\left.A)\right)\left(0_{m} 0\right.$ (dim-col $(B * D))$)
by (rule cong-four-block-mat, insert assms, auto)
also have $\ldots=A @_{c}(B * D)$ unfolding append-cols-def by auto
finally show ?thesis.
qed
lemma append-cols-mult-right-id2:
assumes $A:\left(A::^{\prime} a::\right.$ semiring-1 mat $) \in$ carrier-mat n a
and $B: B \in$ carrier-mat $n b$
and $C: C=$ four-block-mat $D\left(0_{m} a b\right)\left(0_{m} b a\right)\left(1_{m} b\right)$
and $D: D \in$ carrier-mat a a
shows $\left(A @_{c} B\right) * C=(A * D) @_{c} B$
proof -
let ? $C=$ four-block-mat $D\left(O_{m} a b\right)\left(O_{m} b a\right)\left(1_{m} b\right)$
have $\left(A @_{c} B\right) * C=\left(A @_{c} B\right) * ? C$ unfolding C by auto
also have $\ldots=$ four-block-mat $A B\left(0_{m} 0 a\right)\left(0_{m} 0 b\right) *$? C
unfolding append-cols-def using $A B$ by auto
also have $\ldots=$ four-block-mat $\left(A * D+B * O_{m} b a\right)\left(A * O_{m} a b+B * 1_{m} b\right)$ $\left(O_{m} 0 a * D+0_{m} 0 b * O_{m} b a\right)\left(O_{m} 0 a * O_{m} a b+0_{m} 0 b * 1_{m} b\right)$
by (rule mult-four-block-mat, insert A B C D, auto)
also have $\ldots=$ four-block-mat $(A * D) B\left(O_{m} 0(\right.$ dim-col $\left.(A * D))\right)\left(O_{m} 0\right.$ (dim-col B))
by (rule cong-four-block-mat, insert assms, auto)
also have $\ldots=(A * D) @_{c} B$ unfolding append-cols-def by auto
finally show ?thesis.
qed
lemma append-cols-nth:
assumes $A: A \in$ carrier-mat $n a$
and $B: B \in$ carrier-mat $n b$
and $i: i<n$ and $j: j<a+b$
shows $\left(A @_{c} B\right) \$ \$(i, j)=(i f j<d i m-c o l ~ A$ then $A \$ \(i, j) else $B \$ \$(i, j-a))$ (is ?lhs = ?rhs)
proof -

```
    let ?C = (0m O (dim-col A))
    let ?D = (0m O (dim-col B))
    have iQ: i< dim-row A + dim-row ?D using i A by auto
    have j2: j<dim-col A + dim-col ( }\mp@subsup{O}{m}{}0(dim-col B)) using j B A by aut
    have (A @ c B) $$ (i,j) = four-block-mat A B ?C ?D $$ (i,j)
    unfolding append-cols-def by auto
    also have ... = (if i<dim-row A then if j<dim-col A then A $$ (i,j)
    else B$$ (i,j - dim-col A) else if j<dim-col A then ?C $$ (i - dim-row A, j)
    else Om O (dim-col B) $$ (i - dim-row A, j - dim-col A))
    by (rule index-mat-four-block(1)[OF i2 j2])
    also have ... = ?rhs using i A by auto
    finally show ?thesis.
qed
lemma append-cols-split:
    assumes d: dim-col A>0
    shows A = mat-of-cols (dim-row A)[col A O] @ }\mp@subsup{c}{c}{
                mat-of-cols (dim-row A) (map (col A) [1..<dim-col A]) (is ?lhs = ?A1
@ c?A2)
proof (rule eq-matI)
    fix ij assume i: i< dim-row (?A1 @ c ?A2) and j: j< dim-col (?A1 @ (?A2)
    have (?A1 @ c ?A2) $$ (i,j) = (if j < dim-col ?A1 then ?A1 $$(i,j) else
?A2$$(i,j-(dim-col ?A1)))
    by (rule append-cols-nth, insert i j, auto simp add: append-cols-def)
    also have ... = A $$ (i,j)
    proof (cases j< dim-col ?A1)
    case True
    then show ?thesis
        by (metis One-nat-def Suc-eq-plus1 add.right-neutral append-cols-def col-def i
                        index-mat-four-block(2) index-vec index-zero-mat(2) less-one list.size(3)
list.size(4)
            mat-of-cols-Cons-index-0 mat-of-cols-carrier(2) mat-of-cols-carrier(3))
    next
    case False
    then show ?thesis
    by (metis (no-types, lifting) Suc-eq-plus1 Suc-less-eq Suc-pred add-diff-cancel-right'
append-cols-def
                diff-zero i index-col index-mat-four-block(2) index-mat-four-block(3) in-
dex-zero-mat(2)
            index-zero-mat(3) j length-map length-upt linordered-semidom-class.add-diff-inverse
list.size(3)
            list.size(4) mat-of-cols-carrier(2) mat-of-cols-carrier(3) mat-of-cols-index
nth-map-upt
            plus-1-eq-Suc upt-0)
    qed
    finally show A $$ (i,j)=(?A1 @ c ?A2) $$ (i,j)..
qed (auto simp add: append-cols-def d)
```

lemma append-rows-nth:
assumes $A: A \in$ carrier-mat a n
and $B: B \in$ carrier-mat $b n$
and $i: i<a+b$ and $j: j<n$
shows $\left(A @_{r} B\right) \$ \$(i, j)=($ if $i<$ dim-row A then $A \$ \(i, j) else $B \$ \$(i-a, j))($ is ?lhs $=$? $r h s$)
proof -
let ? $C=\left(O_{m}(\right.$ dim-row $\left.A) 0\right)$
let $? D=\left(O_{m}(\right.$ dim-row $\left.B) 0\right)$
have $i 2: i<$ dim-row $A+$ dim-row ? D using $i j A B$ by auto
have $j 2: j<$ dim-col $A+$ dim-col ?D using $i j A B$ by auto
have $\left(A @_{r} B\right) \$ \$(i, j)=$ four-block-mat A ? $C B$? $D \$(i, j)$
unfolding append-rows-def by auto
also have $\ldots=$ (if $i<$ dim-row A then if $j<\operatorname{dim}$-col A then $A \$ \(i, j) else ? C \$\$ (i, j - dim-col A)
else if $j<$ dim-col A then $B \$ \$(i-\operatorname{dim}$-row $A, j)$ else ? $D \$ \$(i-d i m-r o w ~ A$, $j-\operatorname{dim}-\operatorname{col} A))$
by (rule index-mat-four-block(1)[OF i2 j2])
also have $\ldots=$? rhs using $i A j B$ by auto
finally show ?thesis.
qed
lemma append-rows-split:
assumes k : $k \leq$ dim-row A
shows $A=($ mat-of-rows $($ dim-col $A)[$ Matrix.row A i. $i \leftarrow[0 . .<k]]) @_{r}$
(mat-of-rows (dim-col A) [Matrix.row A i. $i \leftarrow[k . .<$ dim-row $A]])$ (is
?lhs = ?A1 @ ${ }_{r}$?A2)
proof (rule eq-matI)
have $\left(? A 1 @_{r} ? A 2\right) \in$ carrier-mat $(k+($ dim-row $A-k))(\operatorname{dim}-c o l A)$
by (rule carrier-append-rows, insert k, auto)
hence A1-A2: (?A1 @ ${ }_{r}$?A2) \in carrier-mat (dim-row A) (dim-col A) using k by simp
thus dim-row $A=\operatorname{dim}$-row $\left(? A 1 @_{r} ? A 2\right)$ and $\operatorname{dim}-c o l ~ A=\operatorname{dim}-c o l\left(? A 1 @_{r}\right.$?A2) by auto
fix $i j$ assume $i: i<\operatorname{dim}$-row (?A1 @ ${ }_{r}$?A2) and $j: j<\operatorname{dim}-c o l\left(? A 1 @_{r} ? A 2\right)$
have (?A1 @ ${ }_{r}$?A2) $\$ \$(i, j)=($ if $i<$ dim-row ?A1 then ?A1 $\$ \(i, j) else ?A2\$\$($i-($ dim-row ? A1) $), j)$)
by (rule append-rows-nth, insert $k i j$, auto simp add: append-rows-def)
also have $\ldots=A \$ \(i, j)
proof (cases $i<$ dim-row ?A1)
case True
then show ?thesis
by (metis (no-types, lifting) Matrix.row-def add.left-neutral add.right-neutral append-rows-def
index-mat(1) index-mat-four-block(3) index-vec index-zero-mat(3) j
length-map length-upt
mat-of-rows-carrier(2,3) mat-of-rows-def nth-map-upt prod.simps(2))
next
case False

```
    let ?xs = (map (Matrix.row A) [k..<dim-row A])
    have dim-row-A1: dim-row ?A1 = k by auto
    have ?A2 $$ (i-k,j)=?xs! (i-k)$vj
        by (rule mat-of-rows-index, insert ik False A1-A2 j, auto)
    also have ... = A $$ (i,j) using A1-A2 False ij by auto
    finally show ?thesis using A1-A2 False ij by auto
    qed
    finally show }A$$(i,j)=(?A1\mp@subsup{@}{r}{}\mathrm{ ?A2) $$ (i,j) by simp
qed
```

lemma transpose-mat-append-rows:
assumes $A: A \in$ carrier-mat a n and $B: B \in$ carrier-mat $b n$ shows $\left(A @_{r} B\right)^{T}=A^{T} @_{c} B^{T}$
by (smt append-cols-def append-rows-def A B carrier-matD(1) index-transpose-mat(3)
transpose-four-block-mat zero-carrier-mat zero-transpose-mat)
lemma transpose-mat-append-cols:
assumes $A: A \in$ carrier-mat $n a$ and $B: B \in$ carrier-mat $n b$
shows $\left(A @_{c} B\right)^{T}=A^{T} @_{r} B^{T}$
by (metis Matrix.transpose-transpose A B carrier-matD(1) carrier-mat-triv index-transpose-mat (3) transpose-mat-append-rows)
lemma append-rows-mult-right:
assumes A : ($A:: ' a:: c o m m-s e m i r i n g-1 ~ m a t) ~ \in c a r r i e r-m a t ~ a n d ~ B: ~ B \in c a r-~$
rier-mat b n
and $Q: Q \in$ carrier-mat $n n$
shows $\left(A @_{r} B\right) * Q=(A * Q) @_{r}(B * Q)$
proof -
have transpose-mat $\left(\left(A @_{r} B\right) * Q\right)=Q^{T} *\left(A @_{r} B\right)^{T}$
by (rule transpose-mult, insert $A B Q$, auto)
also have $\ldots=Q^{T} *\left(A^{T} @_{c} B^{T}\right)$ using transpose-mat-append-rows assms by metis
also have $\ldots=Q^{T} * A^{T} @_{c} Q^{T} * B^{T}$
using append-cols-mult-left assms by (metis transpose-carrier-mat)
also have transpose-mat $\ldots=(A * Q) @_{r}(B * Q)$
by (smt A B Matrix.transpose-mult Matrix.transpose-transpose append-cols-def
append-rows-def Q
carrier-mat-triv index-mult-mat(2) index-transpose-mat(2) transpose-four-block-mat zero-carrier-mat zero-transpose-mat)
finally show ?thesis by simp
qed
lemma append-rows-mult-left-id:
assumes A : ($A::$ 'a::comm-semiring-1 mat $) \in$ carrier-mat $1 n$
and $B: B \in$ carrier-mat $(m-1) n$
and $C: C=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(m-1)\right)\left(0_{m}(m-1)\right.$ 1) D
and $D: D \in$ carrier-mat $(m-1)(m-1)$
shows $C *\left(A @_{r} B\right)=A @_{r}(D * B)$
proof -
have transpose-mat $\left(C *\left(A @_{r} B\right)\right)=\left(A @_{r} B\right)^{T} * C^{T}$
by (metis (no-types, lifting) B C D Matrix.transpose-mult append-rows-def A carrier-matD
carrier-mat-triv index-mat-four-block(2,3) index-zero-mat(2) one-carrier-mat)
also have $\ldots=\left(A^{T} @_{c} B^{T}\right) * C^{T}$ using transpose-mat-append-rows $\left[\begin{array}{ll}O F & A\end{array}\right]$
by auto
also have $\ldots=A^{T} @_{c}\left(B^{T} * D^{T}\right)$ by (rule append-cols-mult-right-id, insert A $B C D$, auto)
also have transpose-mat $\ldots=A @_{r}(D * B)$
by (smt B D Matrix.transpose-mult Matrix.transpose-transpose append-cols-def append-rows-def A
carrier-matD(2) carrier-mat-triv index-mult-mat(3) index-transpose-mat(3) transpose-four-block-mat zero-carrier-mat zero-transpose-mat)
finally show ?thesis by auto
qed
lemma append-rows-mult-left-id2:
assumes A : ($A::^{\prime} a::$ comm-semiring- 1 mat $) \in$ carrier-mat a n
and $B: B \in$ carrier-mat $b n$
and $C: C=$ four-block-mat $D\left(0_{m} a b\right)\left(\begin{array}{ll}0_{m} & b\end{array}\right)\left(1_{m} b\right)$
and $D: D \in$ carrier-mat a a
shows $C *\left(A @_{r} B\right)=(D * A) @_{r} B$
proof -
have $\left(C *\left(A @_{r} B\right)\right)^{T}=\left(A @_{r} B\right)^{T} * C^{T}$ by (rule transpose-mult, insert assms, auto)
also have $\ldots=\left(A^{T} @_{c} B^{T}\right) * C^{T}$ by (metis $A B$ transpose-mat-append-rows)
also have $\ldots=\left(A^{T} * D^{T} @_{c} B^{T}\right)$ by (rule append-cols-mult-right-id2, insert
assms, auto)
also have $. .^{T}=(D * A) @_{r} B$
by (metis $A B D$ transpose-mult transpose-transpose mult-carrier-mat trans-pose-mat-append-rows)
finally show? ?hesis by simp
qed
lemma four-block-mat-preserves-column:
assumes $A:\left(A::{ }^{\prime} a::\right.$ semiring- 1 mat $) \in$ carrier-mat $n m$
and $B: B=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(m-1)\right)\left(0_{m}(m-1)\right.$ 1) C
and $C: C \in$ carrier-mat $(m-1)(m-1)$
and $i: i<n$ and $m: 0<m$
shows $(A * B) \$ \$(i, 0)=A \$ \$(i, 0)$
proof -
let ?A1 = mat-of-cols $n\left[\begin{array}{cc}\operatorname{col} A & 0\end{array}\right]$
let ?A2 $=$ mat-of-cols $n(\operatorname{map}(\operatorname{col} A)[1 . .<d i m-c o l A])$
have n2: dim-row $A=n$ using A by auto
have $A=$?A1 $@_{c}$? A2 by (rule append-cols-split[of A, unfolded n2], insert m A, auto)
hence $A * B=\left(? A 1 @_{c}\right.$?A2 $) * B$ by simp
also have $\ldots=$? A1 $@_{c}(? A 2 * C)$ by (rule append-cols-mult-right-id $[O F-B$ $C]$, insert A, auto)
also have $\ldots \$(i, 0)=$? A1 $\$ \$(i, 0)$ using append-cols-nth by (simp add: append-cols-def $i)$
also have $\ldots=A \$ \$(i, 0)$
by (metis A i carrier-matD(1) col-def index-vec mat-of-cols-Cons-index-0)
finally show ?thesis .
qed
definition lower-triangular $A=(\forall i j . i<j \wedge i<\operatorname{dim}-$ row $A \wedge j<\operatorname{dim}-c o l A$ $\longrightarrow A \$ \$(i, j)=0)$
lemma lower-triangular-index:
assumes lower-triangular $A i<j i<\operatorname{dim}$-row $A j<\operatorname{dim}$-col A
shows $A \$ \$(i, j)=0$
using assms unfolding lower-triangular-def by auto
lemma commute-multiples-identity:
assumes A : ($A::^{\prime} a::$ comm-ring- 1 mat $) \in$ carrier-mat $n n$
shows $A *\left(k \cdot m\left(1_{m} n\right)\right)=\left(k \cdot_{m}\left(1_{m} n\right)\right) * A$
proof -
have $\left(\sum i a=0 . .<n . A \$ \$(i, i a) *(k *(\right.$ if $i a=j$ then 1 else 0$\left.))\right)$ $=\left(\sum i a=0 . .<n . k *(\right.$ if $i=i a$ then 1 else 0$\left.) * A \$ \$(i a, j)\right)($ is ? lhs $=$? $r h s)$ if $i: i<n$ and $j: j<n$ for $i j$
proof -
let ?f $=\lambda i a . A \$ \$(i, i a) *(k *($ if $i a=j$ then 1 else 0$))$
let $? g=\lambda i a . k *($ if $i=i a$ then 1 else 0$) * A \$ \$(i a, j)$
have rw0: $\left(\sum i a \in(\{0 . .<n\}-\{j\})\right.$. ?f ia) $=0$ by (rule sum.neutral, auto)
have rw0': $\left(\sum i a \in(\{0 . .<n\}-\{i\})\right.$. ?g ia) $=0$ by (rule sum.neutral, auto)
have ?lhs $=$?f $j+\left(\sum i a \in(\{0 . .<n\}-\{j\})\right.$. ?f $\left.i a\right)$
by (smt atLeast0LessThan finite-atLeastLessThan lessThan-iff sum.remove j)
also have $\ldots=A \$ \$(i, j) * k$ using rw0 by auto
also have $\ldots=? g i+\left(\sum i a \in(\{0 . .<n\}-\{i\})\right.$. ?g ia) using rw0' by auto also have $\ldots=$?rhs
by (smt atLeast0LessThan finite-atLeastLessThan lessThan-iff sum.remove i)
finally show? ?thesis.
qed
thus ?thesis using A
unfolding times-mat-def scalar-prod-def
by auto (rule eq-matI, auto, smt sum.cong)
qed
lemma det-2:
assumes $A: A \in$ carrier-mat 22
shows Determinant.det $A=A \$ \$(0,0) * A \$ \$(1,1)-A \$ \$(0,1) * A \$ \$(1,0)$
proof -

```
    let ?A = (Mod-Type-Connect.to-hmam A)::'a^2^2
    have [transfer-rule]: Mod-Type-Connect.HMA-M A ?A
        unfolding Mod-Type-Connect.HMA-M-def using from-hma-to-hmam A by
auto
    have [transfer-rule]: Mod-Type-Connect.HMA-I 0 0
        unfolding Mod-Type-Connect.HMA-I-def by (simp add: to-nat-0)
    have [transfer-rule]: Mod-Type-Connect.HMA-I 1 }
        unfolding Mod-Type-Connect.HMA-I-def by (simp add: to-nat-1)
    have Determinant.det A = Determinants.det ?A by (transfer, simp)
    also have ... = ?A $h 1 $h 1*?A $h 2 $h 2 - ?A $h 1 $h 2 * ?A $h 2 $h 1
unfolding det-2 by simp
    also have ... =? ? $h 0 $h 0*?A $h 1$h 1-?A $h 0 $h 1*?A $h 1 $h 0
        by (smt Groups.mult-ac(2) exhaust-2 semiring-norm(160))
    also have ... = A$$(0,0) * A$$(1,1) - A$$(0,1)*A$$(1,0)
        unfolding index-hma-def[symmetric] by (transfer, auto)
    finally show ?thesis.
qed
lemma mat-diag-smult: mat-diag n (\lambda x. (k::'a::comm-ring-1)) = (k km 1m n)
proof -
    have mat-diag n ( }\lambdax.k)=\mathrm{ mat-diag n ( }\lambdax.k*1) by aut
    also have ... = mat-diag n (\lambda x.k)* mat-diag n (\lambda x. 1) using mat-diag-diag
        by (simp add: mat-diag-def)
    also have ... = mat-diag n (\lambdax.k)* (1m n) by auto thm mat-diag-mult-left
    also have ... = Matrix.mat n n ( }\lambda(i,j).k*(1m n)$$ (i,j)) by (rul
mat-diag-mult-left, auto)
    also have ... = (k\cdotm 1m n) unfolding smult-mat-def by auto
    finally show ?thesis.
qed
lemma invertible-mat-four-block-mat-lower-right:
    assumes A:(A::'a::comm-ring-1 mat) \in carrier-mat n n and inv-A: invert-
ible-mat A
    shows invertible-mat (four-block-mat (1m 1) ( (0m 1 n) (\begin{array}{llll}{m}&{n}&{1}\end{array})A)
proof -
```



```
    have Determinant.det ?I = Determinant.det (1m 1) * Determinant.det A
        by (rule det-four-block-mat-lower-left-zero-col, insert assms, auto)
    also have ... = Determinant.det A by auto
    finally have Determinant.det ?I = Determinant.det A .
    thus ?thesis
        by (metis (no-types, lifting) assms carrier-matD(1) carrier-matD(2) car-
rier-mat-triv
        index-mat-four-block(2) index-mat-four-block(3) index-one-mat(2) index-one-mat(3)
            invertible-iff-is-unit-JNF)
qed
```

lemma invertible-mat-four-block-mat-lower-right-id:

```
    assumes A:(A::'a::comm-ring-1 mat) \in carrier-mat m m and B: B=0 m m
(n-m) and C:C= Om}(n-m)
    and D:D=1m}(n-m)\mathrm{ and n>m and inv-A: invertible-mat A
    shows invertible-mat (four-block-mat A B C D)
proof -
    have Determinant.det (four-block-mat A B C D) = Determinant.det A
    by (rule det-four-block-mat-lower-right-id, insert assms, auto)
    thus ?thesis using inv-A
    by (metis (no-types, lifting) assms(1) assms(4) carrier-matD(1) carrier-matD(2)
carrier-mat-triv
            index-mat-four-block(2) index-mat-four-block(3) index-one-mat(2) index-one-mat(3)
                invertible-iff-is-unit-JNF)
qed
lemma split-block4-decreases-dim-row:
    assumes E: (A,B,C,D) = split-block E 1 1
    and E1: dim-row E> 1 and E2: dim-col E>1
    shows dim-row D < dim-row E
proof -
    have D carrier-mat (1+ (dim-row E - 2)) (1+(dim-col E - 2))
        by (rule split-block(4)[OF E[symmetric]], insert E1 E2, auto)
    hence D carrier-mat (dim-row E - 1) (dim-col E - 1) using E1 E2 by auto
    thus ?thesis using E1 by auto
qed
lemma inv-P'PAQQ':
    assumes A:A\in carrier-mat n n
    and P:P\incarrier-mat n n
    and inv-P: inverts-mat P' P
    and inv-Q: inverts-mat Q Q'
    and Q:Q\incarrier-mat n n
    and }\mp@subsup{P}{}{\prime}:\mp@subsup{P}{}{\prime}\in\mathrm{ carrier-mat n n
    and \mp@subsup{Q}{}{\prime}:\mp@subsup{Q}{}{\prime}\in\mathrm{ carrier-mat n n}
shows ( }\mp@subsup{P}{}{\prime}*(P*A*Q)*\mp@subsup{Q}{}{\prime})=
proof -
    have (P'*(P*A*Q)*\mp@subsup{Q}{}{\prime})=(\mp@subsup{P}{}{\prime}*(P*A*Q*\mp@subsup{Q}{}{\prime}))
    by (smt P P P
rier-mat-triv
            index-mult-mat(2) index-mult-mat(3))
    also have ... = ((P'*P)*A*(Q*Q'))
    by (smt A P P'Q Q' assoc-mult-mat carrier-matD(1) carrier-matD(2) car-
rier-mat-triv
            index-mult-mat(3) inv-Q inverts-mat-def right-mult-one-mat')
    finally show ?thesis
    by (metis P' Q A inv-P inv-Q carrier-matD(1) inverts-mat-def
            left-mult-one-mat right-mult-one-mat)
qed
```


lemma

assumes $U \in$ carrier-mat 22 and $V \in$ carrier-mat 2 2 and $A=U * V$
shows mat-mult2-00: $A \$ \$(0,0)=U \$ \$(0,0) * V \$ \$(0,0)+U \$ \$(0,1) * V \$ \$$ $(1,0)$
and mat-mult2-01: $A \$ \$(0,1)=U \$ \$(0,0) * V \$ \$(0,1)+U \$ \$(0,1) * V \$ \$(1,1)$
and mat-mult2-10: $A \$ \$(1,0)=U \$ \$(1,0) * V \$ \$(0,0)+U \$ \$(1,1) * V \$ \$(1,0)$
and mat-mult2-11: $A \$ \$(1,1)=U \$ \$(1,0) * V \$ \$(0,1)+U \$ \$(1,1) * V \$ \$(1,1)$ using assms unfolding times-mat-def Matrix.row-def col-def scalar-prod-def using sum-two-rw by auto

4.5 Lemmas about sorted lists, insort and pick

lemma sorted-distinct-imp-sorted-wrt:
assumes sorted xs and distinct xs
shows sorted-wrt $(<)$ xs
using assms
by (induct xs, insert le-neq-trans, auto)
lemma sorted-map-strict:
assumes strict-mono-on $g\{0 . .<n\}$
shows sorted (map g $[0 . .<n]$)
using assms
by (induct n, auto simp add: sorted-append strict-mono-on-def less-imp-le)

```
lemma sorted-list-of-set-map-strict:
    assumes strict-mono-on \(g\{0 . .<n\}\)
    shows sorted-list-of-set \(\left(g{ }^{\prime}\{0 . .<n\}\right)=\operatorname{map} g[0 . .<n]\)
    using assms
    proof (induct \(n\) )
    case 0
    then show ?case by auto
next
    case (Suc n)
    note \(s g=\) Suc.prems
    have sg-n: strict-mono-on \(g\{0 . .<n\}\) using \(s g\) unfolding strict-mono-on-def by
auto
    have \(g\)-image-rw: \(g\) ' \(\{0 . .<\) Suc \(n\}=\operatorname{insert}(g n)(g '\{0 . .<n\})\)
        by (simp add: set-upt-Suc)
    have sorted-list-of-set \((g \times\{0 . .<\) Suc \(n\})=\) sorted-list-of-set \((\) insert \((g n)(g\) '
\(\{0 . .<n\})\) )
    using \(g\)-image-rw by simp
    also have \(\ldots=\operatorname{insort}(g n)(\) sorted-list-of-set \((g\) ' \(\{0 . .<n\}))\)
    proof (rule sorted-list-of-set.insert)
        have inj-on \(g\{0 . .<S u c n\}\) using sg strict-mono-on-imp-inj-on by blast
        thus \(g n \notin g\) ' \(\{0 . .<n\}\) unfolding inj-on-def by fastforce
    qed ( \(\operatorname{simp}\) )
    also have \(\ldots=\operatorname{insort}(g n)(\operatorname{map} g[0 . .<n])\)
```

using Suc.hyps sg unfolding strict-mono-on-def by auto
also have $\ldots=\operatorname{map} g[0 . .<$ Suc $n]$
proof (simp, rule sorted-insort-is-snoc)
show sorted (map g $[0 . .<n]$) by (rule sorted-map-strict $[$ OF sg-n])
show $\forall x \in \operatorname{set}(\operatorname{map} g[0 . .<n]) . x \leq g n$ using sg unfolding strict-mono-on-def by (simp add: less-imp-le)
qed
finally show? case .
qed
lemma sorted-nth-strict-mono:
sorted $x s \Longrightarrow$ distinct $x s \Longrightarrow i<j \Longrightarrow j<$ length $x s \Longrightarrow x s!i<x s!j$
by (simp add: less-le nth-eq-iff-index-eq sorted-iff-nth-mono-less)
lemma sorted-list-of-set-0-LEAST:
assumes fin I : finite I and $I: I \neq\{ \}$
shows sorted-list-of-set $I!0=($ LEAST $n . n \in I)$
proof (rule Least-equality[symmetric])
show sorted-list-of-set I! $0 \in I$
by (metis I Max-in finI gr-zeroI in-set-conv-nth not-less-zero set-sorted-list-of-set)
fix y assume $y \in I$
thus sorted-list-of-set $I!0 \leq y$
by (metis eq-iff finI in-set-conv-nth neq0-conv sorted-iff-nth-mono-less
sorted-list-of-set(1) sorted-sorted-list-of-set)
qed
lemma sorted-list-of-set-eq-pick:
assumes i : $i<$ length (sorted-list-of-set I)
shows sorted-list-of-set I! $i=$ pick $I i$
proof -
have finI: finite I
proof (rule ccontr)
assume infinite I
hence length (sorted-list-of-set $I)=0$ using sorted-list-of-set.infinite by auto thus False using i by simp
qed
show ?thesis
using i
proof (induct i)
case 0
have $I: I \neq\{ \}$ using 0. prems sorted-list-of-set-empty by blast
show ?case unfolding pick.simps by (rule sorted-list-of-set-0-LEAST[OF finI
I])
next
case (Suc i)
note x-less $=$ Suc.prems
show ? case

```
    proof (unfold pick.simps, rule Least-equality[symmetric], rule conjI)
    show 1: pick I i< sorted-list-of-set I!Suc i
    by (metis Suc.hyps Suc.prems Suc-lessD distinct-sorted-list-of-set find-first-unique
lessI
            nat-less-le sorted-sorted-list-of-set sorted-sorted-wrt sorted-wrt-nth-less)
    show sorted-list-of-set I!Suc i\inI
            using Suc.prems finI nth-mem set-sorted-list-of-set by blast
    have rw: sorted-list-of-set I!i= pick I i
            using Suc.hyps Suc-lessD x-less by blast
    have sorted-less: sorted-list-of-set I!i< sorted-list-of-set I!Suc i
            by (simp add: 1 rw)
    fix y assume y: y \inI^ pick I i<y
    show sorted-list-of-set I!Suc i\leqy
            by (smt antisym-conv finI in-set-conv-nth less-Suc-eq less-Suc-eq-le nat-neq-iff
rw
                sorted-iff-nth-mono-less sorted-list-of-set(1) sorted-sorted-list-of-set x-less
y)
    qed
qed
qed
```

b is the position where we add, a the element to be added and i the position that is checked

```
lemma insort-nth':
    assumes }\forallj<b.xs!j<a and sorted xs and a\not\in set x
        and i< length xs + 1 and i<b
        and xs \not=[] and b<length xs
    shows insort a xs ! i = xs!i
    using assms
proof (induct xs arbitrary: a b i)
    case Nil
    then show ?case by auto
next
    case (Cons x xs)
    note less = Cons.prems(1)
    note sorted = Cons.prems(2)
    note a-notin = Cons.prems(3)
    note i-length = Cons.prems(4)
    note i-b = Cons.prems(5)
    note b-length = Cons.prems(7)
    show ?case
    proof (cases a \leq x)
        case True
        have insort a (x# xs)!i=(a#x# xs)!i using True by simp
        also have ... = (x##xs)! i
            using Cons.prems(1) Cons.prems(5) True by force
        finally show ?thesis.
    next
        case False note x-less-a = False
```

```
    have insort a (x# xs)!i=(x# insort a xs)! i using False by simp
    also have ... = (x# xs)! i
    proof (cases i=0)
        case True
        then show ?thesis by auto
    next
        case False
        have (x # insort a xs)!i=(insort a xs)!(i-1)
        by (simp add: False nth-Cons')
        also have ... = xs ! (i-1)
    proof (rule Cons.hyps)
        show sorted xs using sorted by simp
        show a\not\in set xs using a-notin by simp
        show i-1<length xs +1 using i-length False by auto
        show xs \not=\ using i-b b-length by force
        show i-1<b-1 by (simp add: False diff-less-mono i-b leI)
        show b-1< length xs using b-length i-b by auto
        show }\forallj<b-1.xs!j<a using less less-diff-conv by aut
    qed
    also have ... = (x# #s)!i by (simp add: False nth-Cons')
        finally show?thesis.
    qed
    finally show?thesis.
    qed
qed
lemma insort-nth:
    assumes sorted xs and a\not\in set xs
        and i<index (insort a xs) a
    and xs # []
    shows insort a xs ! i= xs ! i
    using assms
proof (induct xs arbitrary: a i)
case Nil
    then show ?case by auto
next
    case (Cons x xs)
    note sorted = Cons.prems(1)
    note a-notin = Cons.prems(2)
    note i-index = Cons.prems(3)
    show ?case
    proof (cases a\leqx)
        case True
        have insort a(x#xs)!i=(a#x#xs)!i using True by simp
        also have ... = (x# xs)!i
            using Cons.prems(1) Cons.prems(3) True by force
        finally show ?thesis.
    next
```

```
        case False note x-less-a = False
        show ?thesis
        proof (cases xs= [])
        case True
        have }x\not=a\mathrm{ using False by auto
        then show ?thesis using True i-index False by auto
        next
            case False note xs-not-empty = False
        have insort a (x# xs)!i=(x # insort a xs)!i using x-less-a by simp
        also have ... = (x##xs)!i
        proof (cases i=0)
            case True
            then show ?thesis by auto
        next
            case False note i0 = False
            have (x # insort a xs)! i= (insort a xs)! (i-1)
                by (simp add: False nth-Cons')
            also have ... = xs ! (i-1)
            proof (rule Cons.hyps[OF - - xs-not-empty])
                    show sorted xs using sorted by simp
                show }a\not\in\mathrm{ set xs using a-notin by simp
                    have index (insort a (x # xs)) a = index ((x # insort a xs)) a
                    using x-less-a by auto
                    also have ... = index (insort a xs) a+1
                    unfolding index-Cons using x-less-a by simp
            finally show i - 1<index (insort a xs) a using False i-index by linarith
            qed
            also have ... = (x # xs)!i by (simp add: False nth-Cons')
            finally show ?thesis .
            qed
            finally show ?thesis .
        qed
    qed
qed
lemma insort-nth2:
    assumes sorted xs and a\not\in set xs
        and i< length xs and i\geq index (insort a xs) a
        and }xs\not=[
    shows insort a xs ! (Suc i) = xs!i
    using assms
proof (induct xs arbitrary: a i)
    case Nil
    then show ?case by auto
next
    case (Cons x xs)
    note sorted = Cons.prems(1)
    note a-notin = Cons.prems(2)
    note i-length = Cons.prems(3)
```

```
    note index-i = Cons.prems(4)
    show ?case
    proof (cases a 
    case True
    have insort a (x# xs)! (Suc i)=(a# x# xs)!(Suc i) using True by simp
    also have ... = (x##xs)!i
        using Cons.prems(1) Cons.prems(5) True by force
    finally show ?thesis.
    next
    case False note x-less-a = False
    have insort a (x# xs)!(Suc i)=(x# insort a xs)!(Suc i) using False by
simp
    also have ... = (x# #xs)!i
    proof (cases i=0)
        case True
        then show ?thesis using index-i linear x-less-a by fastforce
        next
            case False note i0 = False
            show ?thesis
            proof -
                have Suc-i:Suc (i-1)=i
                        using i0 by auto
                have (x # insort a xs)! (Suc i)=(insort a xs)!i
                    by (simp add: nth-Cons')
            also have ... = (insort a xs)! Suc (i-1) using Suc-i by simp
            also have ... = xs ! (i-1)
            proof (rule Cons.hyps)
                    show sorted xs using sorted by simp
                    show a\not\in set xs using a-notin by simp
                    show i-1< length xs using i-length using Suc-i by auto
                        thus xs \not=[] by auto
                        have index (insort a (x # xs)) a = index ((x # insort a xs)) a using
x-less-a by simp
                    also have ... = index (insort a xs) a + 1 unfolding index-Cons using
x-less-a by simp
                finally show index (insort a xs) a si-1 using index-i i0 by auto
                    qed
                also have ... = (x # xs)! i using Suc-i by auto
                finally show ?thesis.
            qed
        qed
        finally show ?thesis.
    qed
qed
lemma pick-index:
    assumes a: a \inI and a'-card: a' < card I
    shows (pick I a'=a)=(index (sorted-list-of-set I) a = a')
proof -
```

```
    have finI: finite I using a'-card card.infinite by force
    have length-I: length (sorted-list-of-set I) = card I
    by (metis a'-card card.infinite distinct-card distinct-sorted-list-of-set
            not-less-zero set-sorted-list-of-set)
    let ?i = index (sorted-list-of-set I) a
    have (sorted-list-of-set I)! a' = pick I a'
    by (rule sorted-list-of-set-eq-pick, auto simp add: finI a'-card length-I)
moreover have (sorted-list-of-set I)!?i = a
    by (rule nth-index, simp add: a finI)
ultimately show ?thesis
    by (metis a'-card distinct-sorted-list-of-set index-nth-id length-I)
qed
end
```


5 The Cauchy-Binet formula

```
theory Cauchy-Binet
    imports
    Diagonal-To-Smith
    SNF-Missing-Lemmas
begin
```


5.1 Previous missing results about pick and insert

lemma pick-insert:
assumes a-notin- $I: a \notin I$ and $i 2: i<\operatorname{card} I$
and a-def: pick (insert a I) $a^{\prime}=a$
and $i a^{\prime}: i<a^{\prime}$
and a^{\prime}-card: $a^{\prime}<\operatorname{card} I+1$
shows pick (insert a I) $i=$ pick $I i$
proof -
have finI: finite I
using i2
using card.infinite by force
have pick (insert a I) $i=$ sorted-list-of-set (insert a I)! i
proof (rule sorted-list-of-set-eq-pick[symmetric])
have finite (insert a I)
using card.infinite i2 by force
thus $i<$ length (sorted-list-of-set (insert a I))
by (metis a-notin-I card-insert-disjoint distinct-card finite-insert
i2 less-Suc-eq sorted-list-of-set(1) sorted-list-of-set(3))
qed
also have $\ldots=$ insort a (sorted-list-of-set I)!i
using sorted-list-of-set.insert
by (metis a-notin-I card.infinite i2 not-less0)
also have $\ldots=($ sorted-list-of-set $I)!i$
proof (rule insort-nth $[O F]$)
show sorted (sorted-list-of-set I) by auto

```
    show a & set (sorted-list-of-set I) using a-notin-I
    by (metis card.infinite i2 not-less-zero set-sorted-list-of-set)
    have index (sorted-list-of-set (insert a I)) a= a'
        using pick-index a-def
        using a'-card a-notin-I finI by auto
    hence index (insort a (sorted-list-of-set I)) a= a'
        by (simp add: a-notin-I finI)
    thus i<index (insort a (sorted-list-of-set I)) a using ia' by auto
    show sorted-list-of-set I = [] using finI i2 by fastforce
    qed
    also have ... = pick I i
    proof (rule sorted-list-of-set-eq-pick)
    have finite I using card.infinite i2 by fastforce
    thus i< length (sorted-list-of-set I)
    by (metis distinct-card distinct-sorted-list-of-set i2 set-sorted-list-of-set)
    qed
    finally show ?thesis.
qed
lemma pick-insert2:
    assumes a-notin-I:a \not\inI and i2: i< card I
    and a-def: pick (insert a I) a'=a
    and ia':i\geq a'
    and \mp@subsup{a}{}{\prime}-card: a}\mp@subsup{a}{}{\prime}<c\mathrm{ card I +1
    shows pick (insert a I) i< pick I i
proof (cases i=0)
    case True
    then show ?thesis
    by (auto, metis (mono-tags, lifting) DL-Missing-Sublist.pick.simps(1) Least-le
a-def a-notin-I
    dual-order.order-iff-strict i2 ia' insertCI le-zero-eq not-less-Least pick-in-set-le)
next
    case False
    hence i0: i=Suc (i-1) using }\mp@subsup{a}{}{\prime}\mathrm{ -card ia' by auto
    have finI: finite I
    using i2 card.infinite by force
    have index-a'1: index (sorted-list-of-set (insert a I)) a = a'
    using pick-index
    using a'-card a-def a-notin-I finI by auto
    hence index-a': index (insort a (sorted-list-of-set I)) a= a'
    by (simp add: a-notin-I finI)
    have i1-length: i - 1 < length (sorted-list-of-set I) using i2
    by (metis distinct-card distinct-sorted-list-of-set finI
        less-imp-diff-less set-sorted-list-of-set)
    have 1: pick (insert a I) i= sorted-list-of-set (insert a I)!i
    proof (rule sorted-list-of-set-eq-pick[symmetric])
    have finite (insert a I)
            using card.infinite i2 by force
```

```
    thus i< length (sorted-list-of-set (insert a I))
    by (metis a-notin-I card-insert-disjoint distinct-card finite-insert
        i2 less-Suc-eq sorted-list-of-set(1) sorted-list-of-set(3))
    qed
    also have 2: .. = insort a (sorted-list-of-set I)!i
    using sorted-list-of-set.insert
    by (metis a-notin-I card.infinite i2 not-less0)
    also have ... = insort a (sorted-list-of-set I)!Suc (i-1) using i0 by auto
    also have ... < pick I i
    proof (cases i=a')
    case True
    have (sorted-list-of-set I)!i>a
    by (smt 1 Suc-less-eq True a-def a-notin-I distinct-card distinct-sorted-list-of-set
finI i2
            ia' index-a' insort-nth2 length-insort lessI list.size(3) nat-less-le not-less-zero
            pick-in-set-le set-sorted-list-of-set sorted-list-of-set(2) sorted-list-of-set.insert
                sorted-list-of-set-eq-pick sorted-sorted-wrt sorted-wrt-nth-less)
    moreover have a= insort a (sorted-list-of-set I)!i using True 12a-def by
auto
    ultimately show ?thesis using 12
        by (metis distinct-card finI i0 i2 set-sorted-list-of-set
            sorted-list-of-set(3) sorted-list-of-set-eq-pick)
    next
    case False
    have insort a (sorted-list-of-set I)!Suc (i-1)=(sorted-list-of-set I)! (i-1)
    by (rule insort-nth2, insert i1-length False ia' index- a', auto simp add: a-notin-I
finI)
    also have ... = pick I (i-1)
        by (rule sorted-list-of-set-eq-pick[OF i1-length])
    also have ... < pick I i using i0 i2 pick-mono-le by auto
    finally show ?thesis.
    qed
    finally show ?thesis.
qed
lemma pick-insert3:
    assumes a-notin-I:a \not\inI and i2: i< card I
    and a-def: pick (insert a I) a'=a
    and ia':i\geqa'
    and }\mp@subsup{a}{}{\prime}\mathrm{ -card: }\mp@subsup{a}{}{\prime}<c\operatorname{card I +1
    shows pick (insert a I) (Suc i) = pick I i
proof (cases i=0)
    case True
    have a-LEAST: a< (LEAST aa. aa\inI)
    using True a-def a-notin-I i2 ia' pick-insert2 by fastforce
    have Least-rw: (LEAST aa. aa=a\veeaa\inI)=a
    by (rule Least-equality, insert a-notin-I, auto,
            metis a-LEAST le-less-trans nat-le-linear not-less-Least)
    let ?P = \lambdaaa. (aa=a\vee aa\inI)^(LEAST aa. aa=a\veeaa\inI)<aa
```

```
    let ?Q = \lambdaaa. aa\inI
    have ?P = ?Q unfolding Least-rw fun-eq-iff
    by (auto, metis a-LEAST le-less-trans not-le not-less-Least)
    thus ?thesis using True by auto
next
    case False
    have finI: finite I
    using i2 card.infinite by force
    have index-a'1: index (sorted-list-of-set (insert a I)) a = a'
    using pick-index
    using a'-card a-def a-notin-I finI by auto
    hence index-a': index (insort a (sorted-list-of-set I)) a = a'
    by (simp add: a-notin-I finI)
    have i1-length: i < length (sorted-list-of-set I) using i2
    by (metis distinct-card distinct-sorted-list-of-set finI set-sorted-list-of-set)
    have 1: pick (insert a I) (Suc i) = sorted-list-of-set (insert a I)! (Suc i)
    proof (rule sorted-list-of-set-eq-pick[symmetric])
    have finite (insert a I)
            using card.infinite i2 by force
    thus Suc i < length (sorted-list-of-set (insert a I))
    by (metis Suc-mono a-notin-I card-insert-disjoint distinct-card distinct-sorted-list-of-set
                finI i2 set-sorted-list-of-set)
    qed
    also have 2: ... = insort a (sorted-list-of-set I)!Suc i
        using sorted-list-of-set.insert
        by (metis a-notin-I card.infinite i2 not-less0)
    also have ... = pick I i
    proof (cases i=a')
    case True
    show ?thesis
        by (metis True a-notin-I finI i1-length index-a' insort-nth2 le-refl list.size(3)
not-less0
            set-sorted-list-of-set sorted-list-of-set(2) sorted-list-of-set-eq-pick)
    next
    case False
    have insort a (sorted-list-of-set I)!Suc i=(sorted-list-of-set I)!i
        by (rule insort-nth2, insert i1-length False ia' index-a', auto simp add: a-notin-I
finI)
    also have ... = pick I i
        by (rule sorted-list-of-set-eq-pick[OF i1-length])
    finally show ?thesis.
    qed
    finally show ?thesis.
qed
lemma pick-insert-index:
    assumes Ik: card I =k
    and a-notin-I: a \not\inI
```

and $i k: i<k$
and a-def: pick (insert $a I) a^{\prime}=a$
and $a^{\prime} k: a^{\prime}<\operatorname{card} I+1$
shows pick (insert a I) (insert-index a' $\left.a^{\prime}\right)=$ pick $I i$
proof (cases $i<a^{\prime}$)
case True
have pick (insert a I) $i=$ pick $I i$
by (rule pick-insert[OF a-notin-I - a-def - $a^{\prime} k$], auto simp add: Ik ik True)
thus ?thesis using True unfolding insert-index-def by auto
next
case False note i-ge- $a^{\prime}=$ False
have fin-aI: finite (insert a I)
using Ik finite-insert $i k$ by fastforce
let $? P=\lambda a a .(a a=a \vee a a \in I) \wedge$ pick $($ insert $a I) i<a a$
let $? Q=\lambda a a . a a \in I \wedge$ pick (insert $a I) i<a a$
have $? P=? Q$ using a-notin-I unfolding fun-eq-iff
by (auto, metis False Ik a-def card.infinite card-insert-disjoint ik less-SucI linorder-neqE-nat not-less-zero order.asym pick-mono-le)
hence Least ? $P=$ Least ? Q by simp
also have $\ldots=$ pick $I i$
proof (rule Least-equality, rule conjI)
show pick $I i \in I$
by (simp add: Ik ik pick-in-set-le)
show pick (insert a I) $i<$ pick $I i$
by (rule pick-insert2[OF a-notin- $I-a$-def $\left.-a^{\prime} k\right]$, insert False, auto simp add:
Ik $i k$)
fix y assume $y: y \in I \wedge$ pick (insert a $I) i<y$
let ?xs $=$ sorted-list-of-set (insert a I)
have $y \in$ set ?xs using y by (metis fin-aI insertI2 set-sorted-list-of-set y)
from this obtain j where $x s-j-y$: ? $x s!j=y$ and $j: j<$ length ? $x s$
using in-set-conv-nth by metis
have $i j$: $i<j$ by (metis (no-types, lifting) Ik a-notin-I card.infinite card-insert-disjoint ik j
less-SucI
linorder-neqE-nat not-less-zero order.asym pick-mono-le sorted-list-of-set-eq-pick $x s-j-y y)$
have pick $I i=$ pick $($ insert a $I)(S u c i)$
by (rule pick-insert3[symmetric, OF a-notin-I - a-def - $a^{\prime} k$], insert False $I k$
$i k$, auto)
also have $\ldots \leq$ pick (insert a I) j
by (metis Ik Suc-lessI card.infinite distinct-card distinct-sorted-list-of-set eq-iff finite-insert ij ik j less-imp-le-nat not-less-zero pick-mono-le set-sorted-list-of-set)
also have $\ldots=$? xs ! j by (rule sorted-list-of-set-eq-pick[symmetric, OF j])
also have $\ldots=y$ by (rule $x s-j-y$)
finally show pick $I i \leq y$.
qed
finally show ?thesis unfolding insert-index-def using False by auto qed

5.2 Start of the proof

```
definition strict-from-inj nf=(\lambdai. if i\in{0..<n} then(sorted-list-of-set (f`{0..<n}))
! i else i)
lemma strict-strict-from-inj:
    fixes f::nat }=>\mathrm{ nat
    assumes inj-on f {0..<n} shows strict-mono-on(strict-from-inj n f) {0..<n}
proof -
    let ?I=f`{0..<n}
    have strict-from-inj n f x < strict-from-inj n f y
        if xy:x<y and x:x\in{0..<n} and y:y\in{0..<n} for x y
    proof -
        let ?xs = (sorted-list-of-set ?I)
        have sorted-xs: sorted ?xs by (rule sorted-sorted-list-of-set)
        have strict-from-inj n f x = (sorted-list-of-set ?I) ! x
            unfolding strict-from-inj-def using }x\mathrm{ by auto
        also have ... < (sorted-list-of-set ?I)!y
        proof (rule sorted-nth-strict-mono; clarsimp?)
            show }y<\operatorname{card (f'{0..<n})
                    by (metis assms atLeastLessThan-iff card-atLeastLessThan card-image
diff-zero y)
            qed (simp add: xy)
            also have ... = strict-from-inj n f y using y unfolding strict-from-inj-def by
simp
            finally show ?thesis .
    qed
    thus ?thesis unfolding strict-mono-on-def by simp
qed
```

```
lemma strict-from-inj-image':
    assumes \(f\) : inj-on \(f\{0 . .<n\}\)
    shows strict-from-inj \(n f^{\prime}\{0 . .<n\}=f^{\prime}\{0 . .<n\}\)
proof (auto)
    let ? \(I=f^{`}\{0 . .<n\}\)
    fix \(x a\) assume \(x a: x a<n\)
    have inj-on: inj-on \(f\{0 . .<n\}\) using \(f\) by auto
    have length-I: length (sorted-list-of-set ?I) \(=n\)
    by (metis card-atLeastLessThan card-image diff-zero distinct-card distinct-sorted-list-of-set
                finite-atLeastLessThan finite-imageI inj-on sorted-list-of-set(1))
    have strict-from-inj \(n\) f xa=sorted-list-of-set ?I ! xa
            using xa unfolding strict-from-inj-def by auto
    also have...\(=\) pick ?I \(x a\)
            by (rule sorted-list-of-set-eq-pick, unfold length-I, auto simp add: xa)
    also have \(\ldots \in f^{\prime}\{0 . .<n\}\) by (rule pick-in-set-le, simp add: card-image inj-on
\(x a)\)
```

finally show strict-from-inj $n f x a \in f$ ' $\{0 . .<n\}$.
obtain i where sorted-list-of-set $(f ‘\{0 . .<n\})!i=f x a$ and $i<n$
by (metis atLeast0LessThan finite-atLeastLessThan finite-imageI imageI in-set-conv-nth length-I lessThan-iff sorted-list-of-set(1) xa)
thus f xa \in strict-from-inj $n f$ ' $\{0 . .<n\}$
by (metis atLeast0LessThan imageI lessThan-iff strict-from-inj-def)
qed
definition $Z(n:: n a t)(m:: n a t)=\{(f, \pi) \mid f \pi . f \in\{0 . .<n\} \rightarrow\{0 . .<m\}$
$\wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i)$
$\wedge \pi$ permutes $\{0 . .<n\}\}$
lemma Z-alt-def: $Z n m=\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\} \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f$ $i=i)\} \times\{\pi . \pi$ permutes $\{0 . .<n\}\}$
unfolding Z-def by auto
lemma det-mul-finsum-alt:
assumes $A: A \in$ carrier-mat $n m$
and $B: B \in$ carrier-mat $m n$
shows $\operatorname{det}(A * B)=\operatorname{det}\left(\right.$ mat $_{r} n n(\lambda i$. finsum-vec TYPE ('a::comm-ring-1) n
$(\lambda k . B \$ \$(k, i) \cdot v$ Matrix.col $A k)\{0 . .<m\}))$
proof -
have $A T: A^{T} \in$ carrier-mat $m n$ using A by auto
have $B T$: $B^{T} \in$ carrier-mat $n m$ using B by auto
let ?f $=\left(\lambda i\right.$. finsum-vec TYPE $\left({ }^{\prime} a\right) n\left(\lambda k . B^{T} \$ \$(i, k) \cdot v\right.$ Matrix.row $\left.A^{T} k\right)$
$\{0 . .<m\}$)
let $? g=\left(\lambda i\right.$. finsum-vec TYPE $(' a) n\left(\lambda k . B \$ \$(k, i) \cdot{ }_{v}\right.$ Matrix.col $\left.\left.A k\right)\{0 . .<m\}\right)$
let ?lhs $=$ mat $_{r} n$ n? f
let ?rhs $=$ mat $_{r} n n$? g
have lhs-rhs: ?lhs = ?rhs
proof (rule eq-matI)
show dim-row? ?lhs $=$ dim-row ?rhs by auto
show dim-col ?lhs = dim-col ?rhs by auto
fix $i j$ assume $i: i<$ dim-row? rhs and $j: j<$ dim-col ?rhs
have j-n: $j<n$ using j by auto
have ?lhs $\$ \$(i, j)=$?f $i \$ v j$ by (rule index-mat, insert $i j$, auto)
also have $\ldots=\left(\sum k \in\{0 . .<m\} .\left(B^{T} \$ \$(i, k) \cdot v\right.\right.$ row $\left.\left.A^{T} k\right) \$ j\right)$
by (rule index-finsum-vec $[O F-j-n]$, auto simp add: A)
also have $\ldots=\left(\sum k \in\{0 . .<m\} .\left(B \$ \$(k, i) \cdot{ }_{v} \operatorname{col} A k\right) \$ j\right)$
proof (rule sum.cong, auto)
fix x assume $x: x<m$
have row-rw: Matrix.row $A^{T} x=\operatorname{col} A x$ by (rule row-transpose, insert $A x$, auto)
have $B-r w$: $B^{T} \$ \$(i, x)=B \$ \(x, i)
by (rule index-transpose-mat, insert x i B, auto)
have $\left(B^{T} \$ \$(i, x) \cdot{ }_{v}\right.$ Matrix.row $\left.A^{T} x\right) \$ v j=B^{T} \$ \$(i, x) *$ Matrix.row A^{T} $x \$ v j$
by (rule index-smult-vec, insert A j-n, auto)
also have $\ldots=B \$ \$(x, i) * \operatorname{col} A x \$ v j$ unfolding row-rw $B-r w$ by simp also have $\ldots=\left(B \$ \$(x, i) \cdot{ }_{v}\right.$ col $\left.A x\right) \$ v j$
by (rule index-smult-vec[symmetric], insert $A j$-n, auto)
finally show $\left(B^{T} \$ \$(i, x) \cdot v\right.$ Matrix.row $\left.A^{T} x\right) \$ v j=(B \$ \$(x, i) \cdot v \operatorname{col} A$
x) $\$ v j$.
qed
also have $\ldots=? g i \$ v j$
by (rule index-finsum-vec[symmetric, OF - $j-n]$, auto simp add: A)
also have $\ldots=$?rhs $\$ \(i, j) by (rule index-mat[symmetric], insert $i j$, auto)
finally show ?lhs $\$ \$(i, j)=$? rhs $\$ \(i, j).
qed
have $\operatorname{det}(A * B)=\operatorname{det}\left(B^{T} * A^{T}\right)$
using det-transpose
by (metis A B Matrix.transpose-mult mult-carrier-mat)
also have $\ldots=\operatorname{det}\left(m a t_{r} n n\left(\lambda i\right.\right.$. finsum-vec TYPE $\left({ }^{\prime} a\right) n\left(\lambda k . B^{T} \$ \$(i, k) \cdot v\right.$ Matrix.row $\left.\left.A^{T} k\right)\{0 . .<m\}\right)$)
using mat-mul-finsum-alt $[O F B T A T]$ by auto
also have $\ldots=\operatorname{det}\left(\right.$ mat $_{r} n n\left(\lambda i\right.$. finsum-vec TYPE $\left.{ }^{\prime}{ }^{\prime} a\right) n(\lambda k . B \$ \$(k, i) \cdot v$ Matrix.col A k) $\{0 . .<m\})$)
by (rule arg-cong[of - - det], rule lhs-rhs)
finally show ?thesis.
qed
lemma det-cols-mul:
assumes $A: A \in$ carrier-mat $n m$
and $B: B \in$ carrier-mat $m n$
shows $\operatorname{det}(A * B)=\left(\sum f \mid(\forall i \in\{0 . .<n\} . f i \in\{0 . .<m\}) \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow\right.$ $f i=i$).
$\left(\prod i=0 . .<n . B \$ \$(f i, i)\right) *$ Determinant. $\operatorname{det}\left(\right.$ mat $\left.\left._{r} n n(\lambda i . \operatorname{col} A(f i))\right)\right)$
proof -
let ? $V=\{0 . .<n\}$
let ? $U=\{0 . .<m\}$
let ? $F=\{f .(\forall i \in\{0 . .<n\} . f i \in ? U) \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i)\}$
let $? g=\lambda f$. det $\left(\right.$ mat $\left._{r} n n(\lambda i . B \$ \$(f i, i) \cdot v \operatorname{col} A(f i))\right)$
have fm: finite $\{0 . .<m\}$ by auto
have $f n$: finite $\{0 . .<n\}$ by auto
have det-rw: $\operatorname{det}\left(m a t_{r} n n(\lambda i . B \$ \$(f i, i) \cdot v \operatorname{col} A(f i))\right)=$ $(\operatorname{prod}(\lambda i . B \$ \$(f i, i))\{0 . .<n\}) * \operatorname{det}\left(\right.$ mat $\left._{r} n n(\lambda i . \operatorname{col} A(f i))\right)$
if $f:(\forall i \in\{0 . .<n\} . f i \in\{0 . .<m\}) \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i)$ for f
by (rule det-rows-mul, insert A col-dim, auto)
have $\operatorname{det}(A * B)=\operatorname{det}\left(\right.$ mat $_{r} n n$ (λi. finsum-vec TYPE ('a::comm-ring- 1$) n(\lambda k$.
$B \$ \$(k, i) \cdot v$ Matrix.col $A k) ? U))$
by (rule det-mul-finsum-alt $[$ OF A B $]$)
also have $\ldots=$ sum ? g ?F by (rule det-linear-rows-sum[OF fm], auto simp add: A)
also have $\ldots=\left(\sum f \in ? F . \operatorname{prod}(\lambda i . B \$ \$(f i, i))\{0 . .<n\} * \operatorname{det}\left(\right.\right.$ mat $_{r} n n(\lambda i$. $\operatorname{col} A(f i))))$
using det-rw by auto
finally show ?thesis.
qed
lemma det-cols-mul':
assumes $A: A \in$ carrier-mat $n m$
and $B: B \in$ carrier-mat $m n$
shows $\operatorname{det}(A * B)=\left(\sum f \mid(\forall i \in\{0 . .<n\} . f i \in\{0 . .<m\}) \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow\right.$ $f i=i$.
$\left(\prod i=0 . .<n . A \$ \$(i, f i)\right) * \operatorname{det}\left(\right.$ mat $_{r} n n(\lambda i$. row $\left.\left.B(f i))\right)\right)$
proof -
let ? $F=\{f .(\forall i \in\{0 . .<n\} . f i \in\{0 . .<m\}) \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i)\}$
have t : $A * B=\left(B^{T} * A^{T}\right)^{T}$ using transpose-mult[OF A B] transpose-transpose by metis
have $\operatorname{det}\left(B^{T} * A^{T}\right)=\left(\sum f \in ? F .\left(\prod i=0 . .<n . A^{T} \$ \$(f i, i)\right) * \operatorname{det}\left(\right.\right.$ mat $_{r} n n$ (λi. col $\left.\left.B^{T}(f i)\right)\right)$)
by (rule det-cols-mul, auto simp add: A B)
also have $\ldots=\left(\sum f \in ? F .\left(\prod i=0 . .<n . A \$ \$(i, f i)\right) * \operatorname{det}\left(\right.\right.$ mat $_{r} n n(\lambda i$. row $B(f i)))$)
proof (rule sum.cong, rule refl)
fix f assume $f: f \in$? F
have $\left(\prod i=0 . .<n . A^{T} \$ \$(f i, i)\right)=\left(\prod i=0 . .<n . A \$ \$(i, f i)\right)$
proof (rule prod.cong, rule refl)
fix x assume $x: x \in\{0 . .<n\}$
show $A^{T} \$ \$(f x, x)=A \$ \$(x, f x)$
by (rule index-transpose-mat(1), insert f A x, auto)
qed
moreover have $\operatorname{det}\left(\right.$ mat $\left._{r} n n\left(\lambda i . \operatorname{col} B^{T}(f i)\right)\right)=\operatorname{det}\left(\right.$ mat $_{r} n n(\lambda i$. row B (fi)))

proof -

have row-eq-colT: row $B(f i) \$ v j=\operatorname{col} B^{T}(f i) \$ v j$ if $i: i<n$ and $j: j<$ n for $i j$
proof -
have $f-m$: $f i<m$ using $f i$ by auto
have col $B^{T}(f i) \$ v j=B^{T} \$ \$(j, f i)$ by (rule index-col, insert B fi-m j, auto)
also have $\ldots=B \$ \$(f i, j)$ using $B f i-m j$ by auto
also have $\ldots=$ row $B(f i) \$ v j$ by (rule index-row[symmetric], insert B fi-m j, auto)
finally show ?thesis ..
qed
show ?thesis by (rule arg-cong[of - det], rule eq-matI, insert row-eq-colT, auto)

qed

ultimately show $\left(\prod i=0 . .<n . A^{T} \$ \$(f i, i)\right) * \operatorname{det}\left(\right.$ mat $_{r} n n\left(\lambda i . \operatorname{col} B^{T}(f\right.$ i))) $=$
$\left(\prod i=0 . .<n . A \$ \$(i, f i)\right) * \operatorname{det}\left(m a t_{r} n n(\lambda i\right.$. row $\left.B(f i))\right)$ by simp
qed
finally show ?thesis
by (metis (no-types, lifting) A B det-transpose transpose-mult mult-carrier-mat) qed

```
lemma
    assumes \(F: F=\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\} \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i)\}\)
    and \(p: \pi\) permutes \(\{0 . .<n\}\)
    shows \(\left(\sum f \in F .\left(\prod i=0 . .<n . B \$ \$(f i, \pi i)\right)\right)=\left(\sum f \in F .\left(\prod i=0 . .<n . B \$ \$\right.\right.\)
\((f i, i))\) )
proof -
    let \(? h=(\lambda f . f \circ \pi)\)
    have inj-on-F: inj-on ?h \(F\)
    proof (rule inj-onI)
        fix \(f g\) assume fop: \(f \circ \pi=g \circ \pi\)
        have \(f x=g x\) for \(x\)
    proof (cases \(x \in\{0 . .<n\}\) )
        case True
        then show ?thesis
            by (metis fop comp-apply \(p\) permutes-def)
    next
        case False
        then show? ?thesis
                by (metis fop comp-eq-elim p permutes-def)
    qed
    thus \(f=g\) by auto
    qed
    have \(h F\) : ? \(h^{‘} F=F\)
        unfolding image-def
    proof auto
    fix \(x a\) assume \(x a\) : \(x a \in F\) show \(x a \circ \pi \in F\)
        unfolding o-def \(F\)
        using F PiE \(p\) xa
        by (auto, smt F atLeastLessThan-iff mem-Collect-eq p permutes-def xa)
    show \(\exists x \in F . x a=x \circ \pi\)
    proof (rule bexI[of - xa ○ Hilbert-Choice.inv \(\pi]\) )
            show \(x a=x a \circ\) Hilbert-Choice.inv \(\pi \circ \pi\)
                using \(p\) by auto
            show \(x a \circ\) Hilbert-Choice.inv \(\pi \in F\)
                unfolding o-def \(F\)
                using \(F\) PiE \(p x a\)
                by (auto, smt atLeastLessThan-iff permutes-def permutes-less(3))
        qed
    qed
    have prod-rw: \(\left(\prod i=0 . .<n . B \$ \$(f i, i)\right)=\left(\prod i=0 . .<n . B \$ \$(f(\pi i), \pi i)\right)\)
if \(f \in F\) for \(f\)
    using prod.permute \([O F p]\) by auto
    let \(? g=\lambda f .\left(\prod i=0 . .<n . B \$ \$(f i, \pi i)\right)\)
    have \(\left(\sum f \in F .\left(\prod i=0 . .<n . B \$ \$(f i, i)\right)\right)=\left(\sum f \in F .\left(\prod i=0 . .<n . B \$ \$(f\right.\right.\)
\((\pi i), \pi i))\) )
```

using prod-rw by auto
also have $\ldots=\left(\sum f \in\left(? h^{‘} F\right) . \prod i=0 . .<n . B \$ \$(f i, \pi i)\right)$
using sum.reindex $[O F$ inj-on- F, of ? $g]$ unfolding $h F$ by auto
also have $\ldots=\left(\sum f \in F . \prod i=0 . .<n . B \$ \$(f i, \pi i)\right)$ unfolding $h F$ by auto
finally show ?thesis ..
qed
lemma $\operatorname{det} A B-Z n m-a u x$:
assumes $F: F=\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\} \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i)\}$
shows $\left(\sum \pi \mid \pi\right.$ permutes $\{0 . .<n\} .\left(\sum f \in F . \operatorname{prod}(\lambda i . B \$ \$(f i, i))\{0 . .<n\}\right.$
$*\left(\right.$ signof $\left.\left.\left.\pi *\left(\prod i=0 . .<n . A \$ \$(\pi i, f i)\right)\right)\right)\right)$
$=\left(\sum \pi \mid \pi\right.$ permutes $\{0 . .<n\} . \sum f \in F .\left(\prod i=0 . .<n . B \$ \$(f i, \pi i)\right)$
$*\left(\right.$ signof $\left.\left.\pi *\left(\prod i=0 . .<n . A \$ \$(i, f i)\right)\right)\right)$
proof -
have $\left(\sum \pi \mid \pi\right.$ permutes $\{0 . .<n\} .\left(\sum f \in F . \operatorname{prod}(\lambda i . B \$ \$(f i, i))\{0 . .<n\}\right.$
$\left.\left.*\left(\operatorname{signof} \pi *\left(\prod i=0 . .<n . A \$ \$(\pi i, f i)\right)\right)\right)\right)=$
$\left(\sum \pi \mid \pi\right.$ permutes $\{0 . .<n\} . \sum f \in F$. signof $\pi *\left(\prod i=0 . .<n . B \$ \$(f i, i) *\right.$ A $\$ \$(\pi i, f i)))$
by (smt mult.left-commute prod.cong prod.distrib sum.cong)
also have $\ldots=\left(\sum \pi \mid \pi\right.$ permutes $\{0 . .<n\}$. $\sum f \in F$. signof (Hilbert-Choice.inv
π)

* $\left(\prod i=0 . .<n . B \$ \$(f i, i) * A \$ \$(\right.$ Hilbert-Choice.inv $\left.\left.\pi i, f i)\right)\right)$
by (rule sum-permutations-inverse)
also have $\ldots=\left(\sum \pi \mid \pi\right.$ permutes $\{0 . .<n\} . \sum f \in F$. signof (Hilbert-Choice.inv π)
$*\left(\prod i=0 . .<n . B \$ \$(f(\pi i),(\pi i)) * A \$ \$(\right.$ Hilbert-Choice.inv $\pi(\pi i), f(\pi$ $i))$))
proof (rule sum.cong)
fix x assume $x: x \in\{\pi . \pi$ permutes $\{0 . .<n\}\}$
let ? inv-x $=$ Hilbert-Choice.inv x
have p : x permutes $\{0 . .<n\}$ using x by simp
have prod-rw: $\left(\prod i=0 . .<n . B \$ \$(f i, i) * A \$ \$(? i n v-x i, f i)\right)$
$=\left(\prod i=0 . .<n . B \$ \$(f(x i), x i) * A \$ \$(? i n v-x(x i), f(x i))\right)$ if $f \in F$
for f
using prod.permute $[O F p]$ by auto
then show $\left(\sum f \in F\right.$. signof ? inv- $x *\left(\prod i=0 . .<n . B \$ \$(f i, i) * A \$ \$(? i n v-x\right.$ $i, f i))$) $=$
$\left(\sum f \in F\right.$. signof ? inv- $x *\left(\prod i=0 . .<n . B \$ \$(f(x i), x i) * A \$ \$(? i n v-x\right.$ $(x i), f(x i))))$
by auto
qed (simp)
also have $\ldots=\left(\sum \pi \mid \pi\right.$ permutes $\{0 . .<n\} . \sum f \in F$. signof π * $\left.\left(\prod i=0 . .<n . B \$ \$(f(\pi i),(\pi i)) * A \$ \$(i, f(\pi i))\right)\right)$ by (rule sum.cong, auto, rule sum.cong, auto) (metis (no-types, lifting) finite-atLeastLessThan signof-inv)
also have $\ldots=\left(\sum \pi \mid \pi\right.$ permutes $\{0 . .<n\} . \sum f \in F$. signof π
* $\left.\left(\prod i=0 . .<n . B \$ \$(f i,(\pi i)) * A \$ \$(i, f i)\right)\right)$
proof (rule sum.cong)

```
    fix }\pi\mathrm{ assume p: }\pi\in{\pi.\pi\mathrm{ permutes {0..<n}}
    hence p:\pi permutes {0..<n} by auto
    let ?inv-pi=(Hilbert-Choice.inv \pi)
    let ?h = (\lambdaf.f\circ(Hilbert-Choice.inv \pi))
    have inj-on-F: inj-on ?h F
    proof (rule inj-onI)
    fix fg assume fop: f\circ? ?inv-pi=g\circ? ? inv-pi
    have f}x=gx\mathrm{ for }
    proof (cases x\in{0..<n})
    case True
        then show ?thesis
        by (metis fop o-inv-o-cancel p permutes-inj)
    next
    case False
    then show ?thesis
        by (metis fop o-inv-o-cancel p permutes-inj)
    qed
    thus f=g by auto
qed
have hF: ? 'h }F=
    unfolding image-def
proof auto
    fix }xa\mathrm{ assume xa: xa }\inF\mathrm{ show }xa\circ\mathrm{ Oinv-pi }\in
            unfolding o-def F
            using F PiE p xa
            by (auto, smt atLeastLessThan-iff permutes-def permutes-less(3))
    show }\existsx\inF.xa=x\circ\mathrm{ ?inv-pi
    proof (rule bexI[of - xa\circ\pi])
            show xa=xa\circ\pi\circHilbert-Choice.inv }
                using p by auto
            show }xa\circ\pi\in
                unfolding o-def F
                using F PiE p xa
                by (auto, smt atLeastLessThan-iff permutes-def permutes-less(3))
        qed
    qed
    let ?g=\lambdaf. signof \pi* (\prodi=0..<n.B $$ (f (\pii),\pii)*A$$ (i,f(\pii)))
        show (\sumf\inF. signof \pi* (\prodi=0..<n.B$$(f(\pii),\pii)*A$$(i,f(\pi
i))))=
            (\sumf\inF.signof }\pi*(\prodi=0..<n.B$$(fi,\pii)*A$$(i,fi))
            using sum.reindex[OF inj-on-F, of ?g] p unfolding hF unfolding o-def by
auto
    qed (simp)
    also have ... = (\sum\pi| \pi permutes {0..<n}. \sumf\inF. (\prodi=0..<n. B$$ (fi,\pi
i))
    * (signof }\pi*(\prodi=0..<n.A $$(i,fi)))
        by (smt mult.left-commute prod.cong prod.distrib sum.cong)
    finally show ?thesis.
qed
```

```
lemma \(\operatorname{det} A B-Z n m\) :
    assumes \(A: A \in\) carrier-mat \(n m\)
        and \(B: B \in\) carrier-mat \(m n\)
    shows \(\operatorname{det}(A * B)=\left(\sum(f, \pi) \in Z n\right.\) m. signof \(\pi *\left(\prod i=0 . .<n . A \$ \$(i, f i) *\right.\)
\(B \$ \$(f i, \pi i)))\)
proof -
    let ? \(V=\{0 . .<n\}\)
    let ? \(U=\{0 . .<m\}\)
    let ? \(P U=\{p\). p permutes ? \(U\}\)
    let ?F \(=\{f .(\forall i \in\{0 . .<n\} . f i \in ? U) \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i)\}\)
    let ? \(f=\lambda f\). \(\operatorname{det}\left(\right.\) mat \(_{r} n n\left(\lambda i . A \$ \$(i, f i) \cdot{ }_{v}\right.\) row \(\left.\left.B(f i)\right)\right)\)
    let \(? g=\lambda f\). det \(\left(\right.\) mat \(\left._{r} n n(\lambda i . B \$ \$(f i, i) \cdot v \operatorname{col} A(f i))\right)\)
    have fm: finite \(\{0 . .<m\}\) by auto
    have \(f n\) : finite \(\{0 . .<n\}\) by auto
    have \(F: ? F=\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\} \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i)\}\) by
auto
    have det-rw: \(\operatorname{det}\left(\right.\) mat \(\left._{r} n n(\lambda i . B \$ \$(f i, i) \cdot v \operatorname{col} A(f i))\right)=\)
        \((\operatorname{prod}(\lambda i . B \$ \$(f i, i))\{0 . .<n\}) * \operatorname{det}\left(\right.\) mat \(\left._{r} n n(\lambda i . \operatorname{col} A(f i))\right)\)
        if \(f:(\forall i \in\{0 . .<n\} . f i \in\{0 . .<m\}) \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i)\) for \(f\)
        by (rule det-rows-mul, insert A col-dim, auto)
    have det-rw2: \(\operatorname{det}\left(\right.\) mat \(\left._{r} n n(\lambda i . \operatorname{col} A(f i))\right)\)
    \(=\left(\sum \pi \mid \pi\right.\) permutes \(\{0 . .<n\}\). signof \(\left.\pi *\left(\prod i=0 . .<n . A \$ \$(\pi i, f i)\right)\right)\)
        if \(f: f \in\) ? \(F\) for \(f\)
    proof (unfold Determinant.det-def, auto, rule sum.cong, auto)
    fix \(x\) assume \(x\) : \(x\) permutes \(\{0 . .<n\}\)
    have \((\Pi i=0 . .<n . \operatorname{col} A(f i) \$ v x i)=\left(\prod i=0 . .<n . A \$ \$(x i, f i)\right)\)
    proof (rule prod.cong)
            fix \(x a\) assume \(x a: x a \in\{0 . .<n\}\) show \(\operatorname{col} A(f x a) \$ v x x a=A \$ \$(x x a, f\)
xa)
by (metis A atLeastLessThan-iff carrier-matD(1) col-def index-vec per-
mutes-less(1) x xa)
    qed (auto)
    then show signof \(x *\left(\prod i=0 . .<n . \operatorname{col} A(f i) \$ v x i\right)\)
            \(=\) signof \(x *\left(\prod i=0 . .<n . A \$ \$(x i, f i)\right)\) by auto
    qed
    have fin- \(n\) : finite \(\{0 . .<n\}\) and fin-m: finite \(\{0 . .<m\}\) by auto
    have \(\operatorname{det}(A * B)=\operatorname{det}\left(\right.\) mat \(_{r} n n(\lambda i\).finsum-vec TYPE('a::comm-ring-1) \(n\)
    \((\lambda k . B \$ \$(k, i) \cdot v\) Matrix.col \(A k)\{0 . .<m\}))\)
    by (rule det-mul-finsum-alt \([O F A B]\) )
    also have \(\ldots=\) sum ? \(?\) ? \(F\) by (rule det-linear-rows-sum [OF fm], auto simp add:
A)
    also have \(\ldots=\left(\sum f \in ? F . \operatorname{prod}(\lambda i . B \$ \$(f i, i))\{0 . .<n\} * \operatorname{det}\left(\right.\right.\) mat \(_{r} n n(\lambda i\).
\(\operatorname{col} A(f i))))\)
    using det-rw by auto
also have \(\ldots=\left(\sum f \in ? F\right.\). prod \((\lambda i . B \$ \$(f i, i))\{0 . .<n\} *\)
\(\left(\sum \pi \mid \pi\right.\) permutes \(\{0 . .<n\}\). signof \(\left.\left.\pi *\left(\prod i=0 . .<n . A \$ \$(\pi i, f(i))\right)\right)\right)\)
    by (rule sum.cong, auto simp add: det-rw2)
```

```
also have ... =
    (\sumf\in?F.\sum\pi|\pi permutes {0..<n}.prod (\lambdai.B$$(fi,i)){0..<n}
    * (signof \pi* (\prodi=0..<n.A $$ (\pii,f(i)))))
    by (simp add: mult-hom.hom-sum)
    also have ... = (\sum\pi|\pi permutes {0..<n}. \sumf\in?F.prod (\lambdai. B$$(fi,i))
{0..<n}
    * (signof }\pi*(\prodi=0..<n.A$$(\pii,fi)))
    by (rule VS-Connect.class-semiring.finsum-finsum-swap,
        insert finite-permutations finite-bounded-functions[OF fin-m fin-n], auto)
    thm detAB-Znm-aux
    also have ... = (\sum\pi|\pi permutes {0..<n}. \sumf\in?F. (\prodi=0..<n. B$$(fi,
\pi i))
    * (signof \pi*(\prodi=0..<n.A $$(i,fi)))) by (rule detAB-Znm-aux, auto)
    also have ... = (\sumf\in?F.\sum\pi|\pi permutes {0..<n}. (\prodi=0..<n.B $$ (fi,\pi
i))
    * (signof \pi* (\prodi=0..<n.A$$ (i,fi))))
    by (rule VS-Connect.class-semiring.finsum-finsum-swap,
        insert finite-permutations finite-bounded-functions[OF fin-m fin-n], auto)
    also have ... = (\sumf\in?F.\sum\pi|\pi permutes {0..<n}. signof \pi
    * (\prodi=0..<n.A $$ (i,fi)*B$$ (fi,\pi i)))
    unfolding prod.distrib by (rule sum.cong, auto, rule sum.cong, auto)
also have ... = sum ( }\lambda(f,\pi).(\mathrm{ signof }\pi\mathrm{ )
    * (prod (\lambdai. A$$(i,f i) * B $$ (f i,\pi i)) {0..<n})) (Z n m)
    unfolding Z-alt-def unfolding sum.cartesian-product[symmetric] F by auto
    finally show ?thesis .
qed
```

context
fixes $n m$ and $A B::^{\prime} a::$ comm-ring-1 mat
assumes $A: A \in$ carrier-mat $n m$
and $B: B \in$ carrier-mat $m n$
begin
private definition $Z-i n j=(\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\} \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow$
$f i=i$)
$\wedge \operatorname{inj}$-on $f\{0 . .<n\}\} \times\{\pi . \pi$ permutes $\{0 . .<n\}\})$
private definition Z-not-inj $=(\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\} \wedge(\forall i . i \notin\{0 . .<n\}$
$\longrightarrow f i=i)$
$\wedge \neg \operatorname{inj-on} f\{0 . .<n\}\} \times\{\pi . \pi$ permutes $\{0 . .<n\}\})$
private definition Z-strict $=(\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\} \wedge(\forall i . i \notin\{0 . .<n\}$
$\longrightarrow f i=i)$
\wedge strict-mono-on $f\{0 . .<n\}\} \times\{\pi . \pi$ permutes $\{0 . .<n\}\})$
private definition Z-not-strict $=(\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\} \wedge(\forall i . i \notin\{0 . .<n\}$
$\longrightarrow f i=i)$
$\wedge \neg$ strict-mono-on $f\{0 . .<n\}\} \times\{\pi . \pi$ permutes $\{0 . .<n\}\})$
private definition weight $f \pi$
$=(\operatorname{signof} \pi) *(\operatorname{prod}(\lambda i . A \$ \$(i, f i) * B \$ \$(f i, \pi i))\{0 . .<n\})$

```
private definition Z-good g = ({f.f\in{0..<n}->{0..<m}\wedge (\foralli.i\not\in{0..<n}
```

$\longrightarrow f i=i)$
$\left.\wedge \operatorname{inj-on} f\{0 . .<n\} \wedge\left(f^{\prime}\{0 . .<n\}=g^{‘}\{0 . .<n\}\right)\right\} \times\{\pi . \pi$ permutes $\left.\{0 . .<n\}\}\right)$
private definition F-strict $=\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\}$
$\wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i) \wedge$ strict-mono-on $f\{0 . .<n\}\}$
private definition F-inj $=\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\}$
$\wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i) \wedge \operatorname{inj}-o n f\{0 . .<n\}\}$
private definition F-not-inj $=\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\}$
$\wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i) \wedge \neg \operatorname{inj}$-on $f\{0 . .<n\}\}$
private definition $F=\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\} \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i$
$=i)\}$

The Cauchy-Binet formula is proven in https://core.ac.uk/download/pdf/ 82475020.pdf In that work, they define $\sigma \equiv \operatorname{inv} \varphi \circ \pi$. I had problems following this proof in Isabelle, since I was demanded to show that such permutations commute, which is false. It is a notation problem of the \circ operator, the author means $\sigma \equiv \pi \circ \operatorname{inv} \varphi$ using the Isabelle notation (i.e., $\sigma x=\pi((\operatorname{inv} \varphi) x))$.
lemma step-weight:

fixes $\varphi \pi$

defines $\sigma \equiv \pi \circ$ Hilbert-Choice.inv φ
assumes f-inj: $f \in F-i n j$ and $g F: g \in F$ and $p i: \pi$ permutes $\{0 . .<n\}$
and phi: φ permutes $\{0 . .<n\}$ and $f g-p h i: \forall x \in\{0 . .<n\} . f x=g(\varphi x)$
shows weight $f \pi=($ signof $\varphi) *\left(\prod i=0 . .<n . A \$ \$(i, g(\varphi i))\right)$
$*($ signof $\sigma) *\left(\prod i=0 . .<n . B \$ \$(g i, \sigma i)\right)$
proof -
let $? A=\left(\prod i=0 . .<n . A \$ \$(i, g(\varphi i))\right)$
let $? B=\left(\prod i=0 . .<n . B \$ \$(g i, \sigma i)\right)$
have sigma: σ permutes $\{0 . .<n\}$ unfolding σ-def
by (rule permutes-compose[OF permutes-inv[OF phi] pi])
have A-rw: ? $A=\left(\prod i=0 . .<n . A \$ \$(i, f i)\right)$ using $f g-p h i$ by auto
have $? B=\left(\prod i=0 . .<n . B \$ \$(g(\varphi i), \sigma(\varphi i))\right)$
by (rule prod.permute[unfolded o-def, OF phi])
also have $\ldots=\left(\prod i=0 . .<n . B \$ \$(f i, \pi i)\right)$
using $f g$-phi
unfolding σ-def unfolding o-def unfolding permutes-inverses(2)[OF phi] by auto
finally have $B-r w: ~ ? B=\left(\prod i=0 . .<n . B \$ \$(f i, \pi i)\right)$.
have $($ signof $\varphi) * ? A *($ signof $\sigma) * ? B=($ signof $\varphi) *($ signof $\sigma) * ? A * ? B$ by auto
also have $\ldots=\operatorname{signof}(\varphi \circ \sigma) * ? A *$?B unfolding signof-compose[OF phi

```
sigma] by simp
    also have ... = signof }\pi*?A*?
    by (metis (no-types, lifting) \sigma-def mult.commute o-inv-o-cancel permutes-inj
                phi sigma signof-compose)
    also have ... = signof \pi*(\prodi=0..<n.A$$ (i,fi))*(\prodi=0..<n.B$$(f
i,\pi i))
    using A-rw B-rw by auto
    also have ... = signof }\pi*(\prodi=0..<n.A$$(i,fi)*B$$(fi,\pii)) by aut
    also have ... = weight f \pi unfolding weight-def by simp
    finally show ?thesis ..
qed
lemma Z-good-fun-alt-sum:
    fixes }
    defines Z-good-fun\equiv{f.f\in{0..<n}->{0..<m}\wedge(\foralli.i\not\in{0..<n}\longrightarrowfi=
i)
    ^inj-on f {0..<n}^(f`{0..<n} = g`{0..<n})}
    assumes g:g\inF-inj
    shows (\sumf\inZ-good-fun. P f ) = (\sum\pi\in{\pi.\pi permutes {0..<n}}. P (g\circ\pi))
proof -
    let ?f = \lambda\pi. g\circ\pi
    let ?P}={\pi.\pi\mathrm{ permutes {0..<n}}
    have fP:?f`?P=Z-good-fun
    proof (unfold Z-good-fun-def, auto)
        fix xa xb assume xa permutes {0..<n} and xb<n
        hence xa xb<n by auto
        thus g(xa xb)<m using g unfolding F-inj-def by fastforce
    next
        fix xa i assume xa permutes {0..<n} and i-ge-n:\negi<n
        hence xa i=i unfolding permutes-def by auto
        thus g(xa i)=i using gi-ge-n unfolding F-inj-def by auto
    next
        fix xa assume xa permutes {0..<n} thus inj-on ( }g\circxa){0..<n
            by (metis (mono-tags, lifting) F-inj-def atLeast0LessThan comp-inj-on g
                mem-Collect-eq permutes-image permutes-inj-on)
    next
        fix \pixb assume \pi permutes {0..<n} and xb<n thus g xb \in(\lambdax.g(\pi x))'
{0..<n}
                            by (metis (full-types) atLeast0LessThan imageI image-image lessThan-iff
permutes-image)
    next
```



```
            and inj-on-x: inj-on x {0..<n} and xg: x'{0..<n} = g'{0..<n}
        let ?\tau = \lambdai. if i<n then (THE j.j<n\wedge xi=g j) else i
        show }x\in(\circ)g`{\pi.\pi permutes {0..<n}
        proof (unfold image-def, auto, rule exI[of - ?\tau], rule conjI)
        have ?\tau i= i if i:i\not\in{0..<n} for i
            using i by auto
```

```
    moreover have }\exists\mathrm{ ! j. ? }\tauj=i\mathrm{ for }
    proof (cases i<n)
    case True
    obtain }a\mathrm{ where xa-gi:x a=gi and a: a< n using xg True
        by (metis (mono-tags, hide-lams) atLeast0LessThan imageE imageI
lessThan-iff)
    show ?thesis
    proof (rule ex1I[of-a])
        have the-ai: (THE j.j<n\wedge x a = g j)=i
        proof (rule theI2)
            show }i<n\wedgexa=gi\mathrm{ using xa-gi True by auto
            fix }xa\mathrm{ assume }xa<n\wedgexa=gxa thus xa=
                    by (metis (mono-tags, lifting) F-inj-def True atLeast0LessThan
                        g inj-onD lessThan-iff mem-Collect-eq xa-gi)
            thus }xa=i
        qed
        thus ta: ?\tau a = i using a by auto
        fix j assume tj: ? }\tauj=
        show j =a
        proof (cases j<n)
            case True
            obtain b where xj-gb: x j=gb and b: b<n using xg True
                by (metis (mono-tags, hide-lams) atLeastOLessThan imageE imageI
lessThan-iff)
            let ?P=\lambdaja.ja<n\wedgexj=g ja
            have the-ji: (THE ja. ja<n\wedge x j=g ja) = i using tj True by auto
            have ?P (THE ja. ?P ja)
            proof (rule theI)
            show }b<n\wedgexj=gb\mathrm{ using xj-gb b by auto
            fix }xa\mathrm{ assume }xa<n\wedgexj=g xa thus xa=
                    by (metis (mono-tags, lifting) F-inj-def b atLeast0LessThan
                        g inj-onD lessThan-iff mem-Collect-eq xj-gb)
            qed
            hence x j=gi unfolding the-ji by auto
            hence x j = x a using xa-gi by auto
            then show ?thesis using inj-on-x a True unfolding inj-on-def by auto
        next
            case False
            then show ?thesis using tj True by auto
        qed
    qed
    next
    case False note i-ge-n = False
    show ?thesis
    proof (rule ex1I[of-i])
        show ?\tau i=i using False by simp
        fix j assume tj: ? }\tauj=
        show j = i
        proof (cases j<n)
```


case True

obtain a where $x j$ - $g a: x j=g a$ and $a: a<n$ using $x g$ True
by (metis (mono-tags, hide-lams) atLeastOLessThan imageE imageI
lessThan-iff)
have (THE ja. ja<n^xj=g ja)<n
proof (rule theI2)
show $a<n \wedge x j=g a$ using $x j$ - $g a \quad a$ by auto
fix $x a$ assume $a 1$: $x a<n \wedge x j=g$ $x a$ thus $x a=a$
using F-inj-def a atLeast0LessThan g inj-on-eq-iff xj-ga by fastforce
show $x a<n$ by (simp add: a1)
qed
then show ?thesis using tj i-ge-n by auto
next
case False
then show ?thesis using $t j$ by auto
qed
qed
qed
ultimately show? ? permutes $\{0 . .<n\}$ unfolding permutes-def by auto
show $x=g \circ$? τ
proof -
have $x x a=g($ THE $j . j<n \wedge x x a=g j)$ if $x a: x a<n$ for $x a$
proof -
obtain c where $c: c<n$ and $x x a-g c: x x a=g c$
by (metis (mono-tags, hide-lams) atLeastOLessThan imageE imageI lessThan-iff $x a x g$)
show ?thesis
proof (rule theI2)
show $c 1: c<n \wedge x x a=g c$ using $c x x a-g c$ by auto
fix $x b$ assume $c 2: x b<n \wedge x x a=g x b$ thus $x b=c$
by (metis (mono-tags, lifting) F-inj-def c1 atLeast0LessThan
g inj-onD lessThan-iff mem-Collect-eq)
show $x x a=g x b$ using $c 1 c 2$ by simp
qed
qed
moreover have $x x a=g x a$ if $x a: \neg x a<n$ for $x a$
using g x1 x2 xa unfolding F-inj-def by simp
ultimately show ?thesis unfolding o-def fun-eq-iff by auto
qed
qed
qed
have inj: inj-on ?f ?P
proof (rule inj-onI)
fix $x y$ assume $x: x \in ? P$ and $y: y \in ? P$ and $g x-g y: g \circ x=g \circ y$
have $x i=y i$ for i
proof (cases $i<n$)
case True
hence $x i: x i \in\{0 . .<n\}$ and $y i: y i \in\{0 . .<n\}$ using $x y$ by auto
have $g(x i)=g(y i)$ using $g x$ - $g y$ unfolding o-def by meson

```
        thus ?thesis using xi yi using g}\mathrm{ unfolding F-inj-def inj-on-def by blast
    next
        case False
        then show ?thesis using x y unfolding permutes-def by auto
    qed
    thus }x=y\mathrm{ unfolding fun-eq-iff by auto
    qed
    have (\sumf\inZ-good-fun. Pf)=(\sumf\in?f`?P. Pf) using fP by simp
    also have ... = sum (P\circ(\circ)g){\pi.\pi permutes {0..<n}}
    by (rule sum.reindex[OF inj])
    also have ... = (\sum\pi|\pi permutes {0..<n}. P(g\circ\pi)) by auto
    finally show ?thesis.
qed
lemma F-injI:
    assumes f}\in{0..<n}->{0..<m
    and (\foralli.i\not\in{0..<n}\longrightarrowfi=i) and inj-on f{0..<n}
    shows f}\inF\mathrm{ -inj using assms unfolding F-inj-def by simp
lemma F-inj-composition-permutation:
    assumes phi: \varphi permutes {0..<n}
    and g:g\inF-inj
    shows g\circ\varphi\inF-inj
proof (rule F-injI)
    show g}\circ\varphi\in{0..<n}->{0..<m
        using g unfolding permutes-def F-inj-def
        by (simp add: Pi-iff phi)
    show }\foralli.i\not\in{0..<n}\longrightarrow(g\circ\varphi)i=
        using g phi unfolding permutes-def F-inj-def by simp
    show inj-on ( }g\circ\varphi\mathrm{ ) {0..<n}
    by (rule comp-inj-on, insert g permutes-inj-on[OF phi] permutes-image[OF phi])
            (auto simp add: F-inj-def)
qed
lemma F-strict-imp-F-inj:
    assumes f:f\inF-strict
    shows f}\inF\mathrm{ -inj
    using f strict-mono-on-imp-inj-on
    unfolding F-strict-def F-inj-def by auto
lemma one-step:
    assumes g1: g}\inF\mathrm{ -strict
    shows det (submatrix A UNIV (g`{0..<n})) * det (submatrix B (g`{0..<n})
UNIV)
    =(\sum(x,y)\inZ-good g.weight x y) (is ?lhs = ?rhs)
proof -
```

define Z-good-fun where Z-good-fun $=\{f . f \in\{0 . .<n\} \rightarrow\{0 . .<m\} \wedge(\forall i . i \notin$ $\{0 . .<n\} \longrightarrow f i=i$)
$\left.\wedge \operatorname{inj-onf}\{0 . .<n\} \wedge\left(f^{\bullet}\{0 . .<n\}=g^{\bullet}\{0 . .<n\}\right)\right\}$
let ?Perm $=\{\pi . \pi$ permutes $\{0 . .<n\}\}$
let ?P $=\left(\lambda f . \sum \pi \in\right.$?Perm. weight $\left.f \pi\right)$
let ?inv $=$ Hilbert-Choice.inv
have $g: g \in F$-inj by (rule F-strict-imp-F-inj[OF g1])
have $\operatorname{det} A:\left(\sum \varphi \in\{\pi . \pi\right.$ permutes $\{0 . .<n\}\}$. signof $\varphi *\left(\prod i=0 . .<n . A \$ \$(i\right.$, $g(\varphi i)))$)
$=\operatorname{det}\left(\right.$ submatrix A UNIV $\left.\left(g^{*}\{0 . .<n\}\right)\right)$
proof -
have $\left\{j . j<\operatorname{dim}-\operatorname{col} A \wedge j \in g^{\prime}\{0 . .<n\}\right\}=\{j . j \in g '\{0 . .<n\}\}$
using $g A$ unfolding F-inj-def by fastforce
also have card $\ldots=n$ using F-inj-def card-image g by force
finally have card-J: card $\{j . j<\operatorname{dim}-\operatorname{col} A \wedge j \in g '\{0 . .<n\}\}=n$ by simp
have subA-carrier: submatrix A UNIV $(g '\{0 . .<n\}) \in$ carrier-mat $n n$
unfolding submatrix-def card- J using A by auto
have $\operatorname{det}\left(\right.$ submatrix A UNIV $\left.\left(g^{‘}\{0 . .<n\}\right)\right)=\left(\sum p \mid p\right.$ permutes $\{0 . .<n\}$.
signof $p *\left(\prod i=0 . .<n\right.$. submatrix A UNIV $\left.\left.(g ‘\{0 . .<n\}) \$ \$(i, p i)\right)\right)$
using subA-carrier unfolding Determinant.det-def by auto
also have $\ldots=\left(\sum \varphi \in\{\pi . \pi\right.$ permutes $\{0 . .<n\}\}$. signof $\varphi *\left(\prod i=0 . .<n . A\right.$
\$\$ $(i, g(\varphi i))))$
proof (rule sum.cong)
fix x assume $x: x \in\{\pi$. π permutes $\{0 . .<n\}\}$
have $\left(\prod i=0 . .<n\right.$. submatrix A UNIV $\left.(g ‘\{0 . .<n\}) \$ \$(i, x i)\right)$ $=\left(\prod i=0 . .<n . A \$ \$(i, g(x i))\right)$
proof (rule prod.cong, rule refl)
fix i assume $i: i \in\{0 . .<n\}$
have pick-rw: pick $\left(g^{\prime}\{0 . .<n\}\right)(x i)=g(x i)$
proof -
have index (sorted-list-of-set $(g '\{0 . .<n\}))(g(x i))=x i$
proof -
have rw: sorted-list-of-set $(g '\{0 . .<n\})=$ map $g[0 . .<n]$
by (rule sorted-list-of-set-map-strict, insert g1, simp add: F-strict-def)
have index (sorted-list-of-set $\left.\left(g^{‘}\{0 . .<n\}\right)\right)(g(x i))=$ index (map g $[0 . .<n])(g(x i))$
unfolding $r w$ by auto
also have $\ldots=$ index $[0 . .<n](x i)$
by (rule index-map-inj-on $[o f-\{0 . .<n\}]$, insert x i g, auto simp add:
F-inj-def)
also have $\ldots=x i$ using $x i$ by auto
finally show ?thesis.
qed
moreover have $(g(x i)) \in(g '\{0 . .<n\})$ using $x g i$ unfolding F-inj-def by auto
moreover have $x i<\operatorname{card}(g ‘\{0 . .<n\})$ using $x i g$ by (simp add: F-inj-def card-image)
ultimately show ?thesis using pick-index by auto qed
have submatrix A UNIV $\left(g^{〔}\{0 . .<n\}\right) \$ \$(i, x i)=A \$ \$$ (pick UNIV i, pick $\left.\left(g^{\prime}\{0 . .<n\}\right)(x i)\right)$
by (rule submatrix-index, insert i A card-J x, auto)
also have $\ldots=A \$ \$(i, g(x i))$ using pick-rw pick-UNIV by auto
finally show submatrix A UNIV $(g '\{0 . .<n\}) \$ \$(i, x i)=A \$ \$(i, g(x$
i)) .
qed
thus signof $x *\left(\prod i=0 . .<n\right.$. submatrix A UNIV $\left.(g '\{0 . .<n\}) \$ \$(i, x i)\right)$ $=\operatorname{signof} x *\left(\prod i=0 . .<n . A \$ \$(i, g(x i))\right)$ by auto
qed (simp)
finally show? ?thesis by simp
qed
have $\operatorname{det} B-r w:\left(\sum \pi \in ?\right.$ Perm. signof $(\pi \circ$?inv $\varphi) *\left(\prod i=0 . .<n . B \$ \$(g i\right.$, $(\pi \circ$? inv $\varphi) i))$)
$=\left(\sum \pi \in\right.$?Perm. signof $\left.(\pi) *\left(\prod i=0 . .<n . B \$ \$(g i, \pi i)\right)\right)$
if phi: φ permutes $\{0 . .<n\}$ for φ
proof -
let ? $h=\lambda \pi . \pi \circ$? inv φ
let $? g=\lambda \pi$. signof $(\pi) *\left(\prod i=0 . .<n . B \$ \$(g i, \pi i)\right)$
have ? h ??Perm $=$? Perm
proof -
have $\pi \circ$? inv φ permutes $\{0 . .<n\}$ if $p i: \pi$ permutes $\{0 . .<n\}$ for π
using permutes-compose permutes-inv phi that by blast
moreover have $x \in(\lambda \pi . \pi \circ$? inv $\varphi)$ '?Perm if x permutes $\{0 . .<n\}$ for x proof -
have $x \circ \varphi$ permutes $\{0 . .<n\}$
using permutes-compose phi that by blast
moreover have $x=x \circ \varphi \circ$? inv φ using phi by auto
ultimately show ?thesis unfolding image-def by auto
qed
ultimately show ?thesis by auto
qed
hence $\left(\sum \pi \in\right.$?Perm. ?g $\left.\pi\right)=\left(\sum \pi \in\right.$? $h^{`}$?Perm. ? $\left.g \pi\right)$ by simp
also have $\ldots=\operatorname{sum}(? g \circ ? h)$?Perm
proof (rule sum.reindex)
show inj-on $(\lambda \pi . \pi \circ$? inv $\varphi)\{\pi . \pi$ permutes $\{0 . .<n\}\}$
by (metis (no-types, lifting) inj-onI o-inv-o-cancel permutes-inj phi)
qed
also have $\ldots=\left(\sum \pi \in\right.$? Perm. signof $(\pi \circ$?inv $\varphi) *\left(\prod i=0 . .<n . B \$ \$(g\right.$ $i,(\pi \circ ? \operatorname{inv} \varphi) i)))$
unfolding o-def by auto
finally show?thesis by simp
qed
have detB : det (submatrix $B(g ‘\{0 . .<n\})$ UNIV)
$=\left(\sum \pi \in\right.$?Perm. signof $\left.\pi *\left(\prod i=0 . .<n . B \$ \$(g i, \pi i)\right)\right)$
proof -
have $\left\{i . i<\right.$ dim-row $\left.B \wedge i \in g^{\prime}\{0 . .<n\}\right\}=\left\{i . i \in g^{\prime}\{0 . .<n\}\right\}$
using $g B$ unfolding F-inj-def by fastforce
also have card $\ldots=n$ using F-inj-def card-image g by force
finally have card-I: card $\{j . j<$ dim-row $B \wedge j \in g '\{0 . .<n\}\}=n$ by simp have subB-carrier: submatrix $B(g '\{0 . .<n\}) U N I V \in$ carrier-mat $n n$
unfolding submatrix-def using card-I B by auto
have det (submatrix $B\left(g^{〔}\{0 . .<n\}\right)$ UNIV $)=\left(\sum p \in\right.$?Perm. signof p

* $\left(\prod i=0 . .<n\right.$. submatrix $B\left(g^{\prime}\{0 . .<n\}\right)$ UNIV $\left.\left.\$ \$(i, p i)\right)\right)$
unfolding Determinant.det-def using subB-carrier by auto
also have $\ldots=\left(\sum \pi \in\right.$? Perm. signof $\left.\pi *\left(\prod i=0 . .<n . B \$ \$(g i, \pi i)\right)\right)$
proof (rule sum.cong, rule refl)
fix x assume $x: x \in\{\pi . \pi$ permutes $\{0 . .<n\}\}$
have $\left(\prod i=0 . .<n\right.$. submatrix $B\left(g^{〔}\{0 . .<n\}\right)$ UNIV $\left.\$ \$(i, x i)\right)=\left(\prod i=0 . .<n\right.$.
B\$\$(gi,xi))
proof (rule prod.cong, rule refl)
fix i assume $i: i \in\{0 . .<n\}$
have pick-rw: pick (g ' $\{0 . .<n\}$) $i=g i$
proof -
have index (sorted-list-of-set $(g ‘\{0 . .<n\}))(g i)=i$
proof -
have rw: sorted-list-of-set $(g '\{0 . .<n\})=\operatorname{map} g[0 . .<n]$
by (rule sorted-list-of-set-map-strict, insert g1, simp add: F-strict-def)
have index (sorted-list-of-set $\left.\left(g^{\prime}\{0 . .<n\}\right)\right)(g i)=$ index $(\operatorname{map} g[0 . .<n])$
unfolding $r w$ by auto
also have...$=$ index $[0 . .<n](i)$
by (rule index-map-inj-on $[$ of $-\{0 . .<n\}]$, insert $x i g$, auto simp add: F-inj-def)
also have $\ldots=i$ using i by auto
finally show ?thesis .
qed
moreover have $(g i) \in(g$ ' $\{0 . .<n\})$ using $x g i$ unfolding F-inj-def by auto
moreover have $i<\operatorname{card}(g '\{0 . .<n\})$ using $x i g$ by (simp add: F-inj-def card-image)
ultimately show ?thesis using pick-index by auto
qed
have submatrix $B\left(g^{\prime}\{0 . .<n\}\right)$ UNIV $\$ \$(i, x i)=B \$ \$\left(\right.$ pick $\left(g^{‘}\{0 . .<n\}\right)$ i, pick UNIV ($x i)$)
by (rule submatrix-index, insert i B card-I x, auto)
also have $\ldots=B \$ \$(g i, x i)$ using pick-rw pick-UNIV by auto
finally show submatrix $B\left(g^{\prime}\{0 . .<n\}\right)$ UNIV $\$ \$(i, x i)=B \$ \$(g i, x i)$.
qed
thus signof $x *\left(\prod i=0 . .<n\right.$. submatrix $B(g '\{0 . .<n\})$ UNIV $\left.\$ \$(i, x i)\right)$
$=\operatorname{signof} x *\left(\prod i=0 . .<n . B \$ \$(g i, x i)\right)$ by simp
qed
finally show ?thesis .
qed
have ?rhs $=\left(\sum f \in Z\right.$-good-fun. $\sum \pi \in$?Perm. weight $\left.f \pi\right)$
unfolding Z-good-def sum.cartesian-product Z-good-fun-def by blast
also have $\ldots=\left(\sum \varphi \in\{\pi . \pi\right.$ permutes $\left.\{0 . .<n\}\} . ? P(g \circ \varphi)\right)$ unfolding Z-good-fun-def by (rule Z-good-fun-alt-sum [OF g])
also have $\ldots=\left(\sum \varphi \in\{\pi . \pi\right.$ permutes $\{0 . .<n\}\} . \sum \pi \in\{\pi . \pi$ permutes $\{0 . .<n\}\}$. signof $\varphi *\left(\prod i=0 . .<n . A \$ \$(i, g(\varphi i))\right) * \operatorname{signof}(\pi \circ$?inv $\varphi)$
* $\left(\prod i=0 . .<n . B \$ \$(g i,(\pi \circ\right.$? inv $\left.\left.\varphi) i)\right)\right)$
proof (rule sum.cong, simp, rule sum.cong, simp)
fix $\varphi \pi$ assume $p h i: \varphi \in$?Perm and $p i: \pi \in$?Perm
show weight $(g \circ \varphi) \pi=$ signof $\varphi *\left(\prod i=0 . .<n . A \$ \$(i, g(\varphi i))\right) *$ signof $(\pi \circ$? inv $\varphi) *\left(\prod i=0 . .<n . B \$ \$(g i,(\pi \circ\right.$?inv $\left.\varphi) i)\right)$
proof (rule step-weight)
show $g \circ \varphi \in F$-inj by (rule F-inj-composition-permutation $[O F-g]$, insert phi, auto)
show $g \in F$ using g unfolding F-def F-inj-def by simp
qed (insert phi pi, auto)
qed
also have $\ldots=\left(\sum \varphi \in\{\pi . \pi\right.$ permutes $\{0 . .<n\}\}$. signof $\varphi *\left(\prod i=0 . .<n . A \$ \$\right.$ $(i, g(\varphi i))) *$
$\left(\sum \pi \mid \pi\right.$ permutes $\{0 . .<n\}$. signof $(\pi \circ$? inv $\varphi) *\left(\prod i=0 . .<n . B \$ \$(g i,(\pi\right.$ - ? inv φ) $i)$))
by (metis (mono-tags, lifting) Groups.mult-ac(1) semiring-0-class.sum-distrib-left sum.cong)

```
    also have \(\ldots=\left(\sum \varphi \in\right.\) ?Perm. signof \(\varphi *\left(\prod i=0 . .<n . A \$ \$(i, g(\varphi i))\right) *\)
```

 \(\left(\sum \pi \in\right.\) ?Perm. signof \(\left.\left.\pi *\left(\prod i=0 . .<n . B \$ \$(g i, \pi i)\right)\right)\right)\) using detB-rw by
 auto
also have $\ldots=\left(\sum \varphi \in\right.$? Perm. signof $\left.\varphi *\left(\prod i=0 . .<n . A \$ \$(i, g(\varphi i))\right)\right) *$
$\left(\sum \pi \in\right.$?Perm. signof $\left.\pi *\left(\prod i=0 . .<n . B \$ \$(g i, \pi i)\right)\right)$
by (simp add: semiring-0-class.sum-distrib-right)
also have $\ldots=$?lhs unfolding $\operatorname{det} A \operatorname{det} B$..
finally show ?thesis ..
qed
lemma gather-by-strictness:

```
sum \((\lambda g\). sum \((\lambda(f, \pi)\). weight \(f \pi)(Z-g o o d g))\) F-strict
    \(=\operatorname{sum}\left(\lambda g . \operatorname{det}\left(\right.\right.\) submatrix A UNIV \(\left.\left(g^{〔}\{0 . .<n\}\right)\right) * \operatorname{det}\left(\operatorname{submatrix} B\left(g^{〔}\{0 . .<n\}\right)\right.\)
UNIV)) F-strict
proof (rule sum.cong)
    fix \(f\) assume \(f: f \in F\)-strict
    show \(\left(\sum(x, y) \in Z\right.\)-good \(f\). weight \(\left.x y\right)\)
        \(=\operatorname{det}\left(\right.\) submatrix \(\left.A \operatorname{UNIV}\left(f^{\prime}\{0 . .<n\}\right)\right) * \operatorname{det}\) (submatrix \(B\left(f^{\prime}\{0 . .<n\}\right)\)
UNIV)
    by (rule one-step[symmetric], rule f)
qed ( simp)
lemma finite-Z-strict[simp]: finite Z-strict
proof (unfold Z-strict-def, rule finite-cartesian-product)
    have finN: finite \(\{0 . .<n\}\) and finM: finite \(\{0 . .<m\}\) by auto
    let ? \(A=\{f \in\{0 . .<n\} \rightarrow\{0 . .<m\} .(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i) \wedge\) strict-mono-on
\(f\{0 . .<n\}\}\)
```

```
    let ?B={f\in{0..<n}->{0..<m}.(\foralli.i\not\in{0..<n}\longrightarrowfi=i)}
    have B:{f. (\foralli\in{0..<n}.fi\in{0..<m})\wedge(\foralli. i\not\in{0..<n}\longrightarrow\mp@code{li=i)}=}
?B by auto
    have ?A\subseteq?B by auto
    moreover have finite ?B using B finite-bounded-functions[OF finM finN] by
auto
    ultimately show finite ?A using rev-finite-subset by blast
    show finite {\pi. \pi permutes {0..<n}} using finite-permutations by blast
qed
lemma finite-Z-not-strict[simp]: finite Z-not-strict
proof (unfold Z-not-strict-def, rule finite-cartesian-product)
    have finN: finite {0..<n} and finM: finite {0..<m} by auto
    let ?A={f\in{0..<n}->{0..<m}.(\foralli.i\not\in{0..<n}\longrightarrowfi=i)^\neg strict-mono-on
f{0..<n}}
    let ?B={f\in{0..<n}->{0..<m}.(\foralli.i\not\in{0..<n}\longrightarrowfi=i)}
    have B:{f. (\foralli\in{0..<n}.fi\in{0..<m})\wedge(\foralli.i\not\in{0..<n}\longrightarrowfi=i)}=
?B by auto
    have ?A\subseteq?B by auto
    moreover have finite ?B using B finite-bounded-functions[OF finM finN] by
auto
    ultimately show finite ?A using rev-finite-subset by blast
    show finite {\pi.\pi permutes {0..<n}} using finite-permutations by blast
qed
lemma finite-Znm[simp]: finite (Z n m)
proof (unfold Z-alt-def, rule finite-cartesian-product)
    have finN: finite {0..<n} and finM: finite {0..<m} by auto
    let ? }A={f\in{0..<n}->{0..<m}.(\foralli.i\not\in{0..<n}\longrightarrowfi=i)
    let ?B={f\in{0..<n}->{0..<m}.(\foralli. i\not\in{0..<n}\longrightarrowfi=i)}
    have B:{f.(\foralli\in{0..<n}.fi\in{0..<m})\wedge(\foralli.i\not\in{0..<n}\longrightarrowfi=i)}=
?B by auto
    have ?A\subseteq?B by auto
    moreover have finite ?B using B finite-bounded-functions[OF finM finN] by
auto
    ultimately show finite ?A using rev-finite-subset by blast
    show finite {\pi.\pi permutes {0..<n}} using finite-permutations by blast
qed
lemma finite-F-inj[simp]: finite F-inj
proof -
    have finN: finite {0..<n} and finM: finite {0..<m} by auto
    let ?A={f f {0..<n}->{0..<m}.(\foralli.i\not\in{0..<n}\longrightarrowfi=i)^inj-onf
{0..<n}}
    let ?B={f\in{0..<n}->{0..<m}.(\foralli.i\not\in{0..<n}\longrightarrowfi=i)}
    have B:{f. (\foralli\in{0..<n}.fi\in{0..<m})\wedge(\foralli. i\not\in{0..<n}\longrightarrowfi=i)}=
?B by auto
    have ?A\subseteq?B by auto
    moreover have finite ?B using B finite-bounded-functions[OF finM finN] by
```

auto
ultimately show finite F-inj unfolding F-inj-def using rev-finite-subset by blast
qed
lemma finite-F-strict[simp]: finite F-strict
proof -
have finN: finite $\{0 . .<n\}$ and finM: finite $\{0 . .<m\}$ by auto
let $? A=\{f \in\{0 . .<n\} \rightarrow\{0 . .<m\} .(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i) \wedge$ strict-mono-on $f\{0 . .<n\}\}$
let $? B=\{f \in\{0 . .<n\} \rightarrow\{0 . .<m\} .(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i)\}$
have $B:\{f .(\forall i \in\{0 . .<n\} . f i \in\{0 . .<m\}) \wedge(\forall i . i \notin\{0 . .<n\} \longrightarrow f i=i)\}=$?B by auto
have ? $A \subseteq ? B$ by auto
moreover have finite ?B using B finite-bounded-functions $[O F$ finM finN] by auto
ultimately show finite F-strict unfolding F-strict-def using rev-finite-subset by blast
qed
lemma nth-strict-mono:
fixes $f:: n a t \Rightarrow$ nat
assumes strictf: strict-mono f and $i: i<n$
shows $f i=\left(\right.$ sorted-list-of-set $\left.\left(f^{‘}\{0 . .<n\}\right)\right)!i$
proof -
let ?I $=f^{\prime}\{0 . .<n\}$
have length (sorted-list-of-set $(f$ ' $\{0 . .<n\}))=$ card ?I
by (metis distinct-card finite-atLeastLessThan finite-imageI sorted-list-of-set(1) sorted-list-of-set(3))
also have $\ldots=n$
by (simp add: card-image strict-mono-imp-inj-on strictf)
finally have length-I: length (sorted-list-of-set ?I) $=n$.
have card-eq: card $\{a \in$?I. $a<f i\}=i$
using i
proof (induct i)
case 0
then show ?case
by (auto simp add: strict-mono-less strictf)
next
case (Suc i)
have $i: i<n$ using Suc.prems by auto
let ? $J^{\prime}=\left\{a \in f^{\prime}\{0 . .<n\} . a<f i\right\}$
let ? $J=\left\{a \in f^{\prime}\{0 . .<n\} . a<f(\right.$ Suc $\left.i)\right\}$
have cardJ': card ? $J^{\prime}=i$ by (rule Suc.hyps $[O F i]$)
have $J:$? $J=\operatorname{insert}(f i)$? J^{\prime}
proof (auto)
fix $x a$ assume 1: $f x a \neq f i$ and 2: $f x a<f(S u c i)$
show $f x a<f i$
using 12 not-less-less-Suc-eq strict-mono-less strictf by fastforce

```
    next
        fix xa assume f xa<fi thus fxa<f(Suc i)
        using less-SucI strict-mono-less strictf by blast
    next
        show fi\inf'{0..<n} using i by auto
        show fi<f(Suc i) using strictf strict-mono-less by auto
    qed
    have card ?J = Suc (card ? ? J') by (unfold J, rule card-insert-disjoint, auto)
    then show ?case using cardJ' by auto
    qed
    have sorted-list-of-set ?I ! i = pick ?I i
    by (rule sorted-list-of-set-eq-pick, simp add: {card ( ( ' {0..<n}) = n> i)
    also have ... = pick ?I (card {a\in?I. a<fi}) unfolding card-eq by simp
    also have ... = fi by (rule pick-card-in-set, simp add: i)
    finally show ?thesis ..
qed
lemma nth-strict-mono-on:
    fixes f::nat }=>\mathrm{ nat
    assumes strictf: strict-mono-on f{0..<n} and i:i<n
shows fi=(sorted-list-of-set (ff{0..<n}))!i
proof -
    let ?I = f{{0..<n}
    have length (sorted-list-of-set (f'{0..<n})) = card ?I
    by (metis distinct-card finite-atLeastLessThan finite-imageI
        sorted-list-of-set(1) sorted-list-of-set(3))
    also have ... = n
    by (metis (mono-tags, lifting) card-atLeastLessThan card-image diff-zero
        inj-on-def strict-mono-on-eqD strictf)
    finally have length-I: length (sorted-list-of-set ?I) = n .
    have card-eq: card {a\in? ?. a<fi}=i
    using i
proof (induct i)
    case 0
    then show?case
        by (auto, metis (no-types, lifting) atLeastOLessThan lessThan-iff less-Suc-eq
                        not-less0 not-less-eq strict-mono-on-def strictf)
next
    case (Suc i)
    have i:i<n using Suc.prems by auto
    let ?J'={a\inf'{0..<n}.a<fi}
    let ?J }={a\in\mp@subsup{f}{}{\prime}{0..<n}.a<f(Suc i)
    have cardJ': card ? 'J'=i by (rule Suc.hyps[OF i])
    have J:?J = insert (f i) ? 'J'
    proof (auto)
        fix xa assume 1: f xa\not=fi and 2: f xa<f(Suc i) and 3: xa<n
        show f xa<fi
            by (metis (full-types) 12 3 antisym-conv3 atLeastOLessThan i lessThan-iff
                less-SucE order.asym strict-mono-onD strictf)
```

```
    next
    fix xa assume f xa<fi and xa<n thus f xa<f(Suc i)
        using less-SucI strictf
        by (metis (no-types, lifting) Suc.prems atLeast0LessThan
            lessI lessThan-iff less-trans strict-mono-onD)
    next
        show fi\inf'{0..<n} using i by auto
        show fi<f(Suc i)
        using Suc.prems strict-mono-onD strictf by fastforce
    qed
    have card ?J = Suc (card ? 'J') by (unfold J, rule card-insert-disjoint, auto)
    then show ?case using cardJ' by auto
qed
have sorted-list-of-set ?I ! i = pick ?I i
    by (rule sorted-list-of-set-eq-pick, simp add:\card (f`{0..<n}) = n` i)
    also have ... = pick ?I (card {a\in?I. a<fi}) unfolding card-eq by simp
    also have ... = fi by (rule pick-card-in-set, simp add: i)
    finally show ?thesis ..
qed
lemma strict-fun-eq:
    assumes f:f\inF-strict and g:g\inF-strict and fg: f*{0..<n}= g{0..<n}
    shows }f=
proof (unfold fun-eq-iff, auto)
    fix }
    show fx=g x
    proof (cases x<n)
        case True
        have strictf: strict-mono-on f {0..<n} and strictg: strict-mono-on g {0..<n}
            using fg
    have fx=(sorted-list-of-set (f`{0..<n}))!x by (rule nth-strict-mono-on[OF
strictf True])
    also have ... = (sorted-list-of-set (g`{0..<n}))!x unfolding fg by simp
    also have \ldots. = gx by (rule nth-strict-mono-on[symmetric, OF strictg True])
    finally show ?thesis.
    next
        case False
        then show ?thesis using fg}\mathrm{ unfolding F-strict-def by auto
    qed
qed
lemma strict-from-inj-preserves-F:
    assumes f:f\inF-inj
    shows strict-from-inj nf GF
proof -
    {
        fix x assume x: x<n
        have inj-on: inj-on f {0..<n} using f unfolding F-inj-def by auto
```

```
    have {a.a<m\wedge \a\inf`{0..<n}} = f`{0..<n} using f unfolding F-inj-def
by auto
    hence card-eq: card {a.a<m^a\inf'{0..<n}} = n
            by (simp add: card-image inj-on)
    let ?I = f`{0..<n}
    have length (sorted-list-of-set (f ' {0..<n})) = card ?I
        by (metis distinct-card finite-atLeastLessThan finite-imageI
                sorted-list-of-set(1) sorted-list-of-set(3))
    also have ... = n
    by (simp add: card-image strict-mono-imp-inj-on inj-on)
    finally have length-I: length (sorted-list-of-set ?I) = n .
    have sorted-list-of-set (f'{0..<n})!x = pick (f'{0..<n})x
        by (rule sorted-list-of-set-eq-pick, unfold length-I, auto simp add: x)
    also have ...<m by (rule pick-le, unfold card-eq, rule x)
    finally have sorted-list-of-set (f`{0..<n})!x<m.
    }
    thus ?thesis unfolding strict-from-inj-def F-def by auto
qed
lemma strict-from-inj-F-strict: strict-from-inj n xa \in F-strict
    if xa: xa \inF-inj for }x
proof -
    have strict-mono-on (strict-from-inj n xa) {0..<n}
    by (rule strict-strict-from-inj, insert xa, simp add: F-inj-def)
    thus ?thesis using strict-from-inj-preserves-F[OF xa] unfolding F-def F-strict-def
by auto
qed
lemma strict-from-inj-image:
    assumes f:f\inF-inj
    shows strict-from-inj n f'{0..<n} = f`{0..<n}
proof (auto)
    let ?I = f`{0..<n}
    fix xa assume xa: xa<n
    have inj-on: inj-on f{0..<n} using f unfolding F-inj-def by auto
    have {a.a<m\wedgea\inf`{0..<n}}=f`{0..<n} using f unfolding F-inj-def
by auto
    hence card-eq: card {a.a<m^a\inf'{0..<n}} = n
    by (simp add: card-image inj-on)
    let ?I = f`{0..<n}
    have length (sorted-list-of-set (f'{0..<n})) = card ?I
            by (metis distinct-card finite-atLeastLessThan finite-imageI
            sorted-list-of-set(1) sorted-list-of-set(3))
    also have ... = n
        by (simp add: card-image strict-mono-imp-inj-on inj-on)
    finally have length-I: length (sorted-list-of-set ?I) = n.
    have strict-from-inj n f xa= sorted-list-of-set ?I!xa
    using xa unfolding strict-from-inj-def by auto
    also have ... = pick ?I xa
```

```
    by (rule sorted-list-of-set-eq-pick, unfold length-I, auto simp add: xa)
    also have ... \inf'{0..<n} by (rule pick-in-set-le, simp add: <card (f'{0..<n})
= n> xa)
    finally show strict-from-inj n f xa \inf'{0..<n} .
    obtain i where sorted-list-of-set (f`{0..<n})!i=fxa and i<n
    by (metis atLeast0LessThan finite-atLeastLessThan finite-imageI imageI
                in-set-conv-nth length-I lessThan-iff sorted-list-of-set(1) xa)
    thus fxa\in strict-from-inj n f'{0..<n}
    by (metis atLeastOLessThan imageI lessThan-iff strict-from-inj-def)
qed
lemma Z-good-alt:
    assumes g: g\inF-strict
    shows Z-good g={x\inF-inj. strict-from-inj n x = g} }\times{\pi.\pi permutes {0..<n}
proof -
    define Z-good-fun where Z-good-fun={f.f\in{0..<n}->{0..<m}\wedge(\foralli.i\not\in
{0..<n}\longrightarrowfi=i)
    \wedgeinj-on f {0..<n} ^(f`{0..<n}=g`{0..<n})}
    have Z-good-fun ={x\inF-inj. strict-from-inj n x = g}
    proof (auto)
            fix f}\mathrm{ assume f:f}\inZZ\mathrm{ -good-fun thus f-inj:f}\in\mathcal{F}\mathrm{ -inj unfolding F-inj-def
Z-good-fun-def by auto
    show strict-from-inj nf=g
    proof (rule strict-fun-eq[OF-g])
            show strict-from-inj nf'{0..<n} =g' {0..<n}
                using f-inj f strict-from-inj-image
                unfolding Z-good-fun-def F-inj-def by auto
            show strict-from-inj n f}\inF\mathrm{ -strict
                using F-strict-def f-inj strict-from-inj-F-strict by blast
    qed
    next
    fix f}\mathrm{ assume f-inj: f}\inF\mathrm{ F-inj and g-strict-f:g = strict-from-inj nf
    have f xa\ing'{0..<n} if }xa<n\mathrm{ for xa
            using f-inj g-strict-f strict-from-inj-image that by auto
    moreover have g xa\inf'{0..<n} if xa<n for xa
    by (metis f-inj g-strict-f imageI lessThan-atLeast0 lessThan-iff strict-from-inj-image
that)
    ultimately show f}\inZ\mathrm{ -good-fun
        using f-inj g-strict-f unfolding Z-good-fun-def F-inj-def
        by auto
    qed
    thus ?thesis unfolding Z-good-fun-def Z-good-def by simp
qed
lemma weight-0: ( }\sum(f,\pi)\inZ\mathrm{ -not-inj. weight f }\pi)=
proof -
    let ?F={f.(\foralli\in{0..<n}.fi\in{0..<m})\wedge(\foralli.i\not\in{0..<n}\longrightarrowfi=i)}
```

```
    let ?Perm ={\pi.\pi permutes {0..<n}}
    have ( }\sum(f,\pi)\inZ\mathrm{ -not-inj. weight f }\pi\mathrm{ )
    =(\sumf\inF-not-inj. (\prodi=0..<n.A $$ (i,fi))*\operatorname{det (matr}n\mp@code{n}(\lambdai.row B (f
i))))
    proof -
    have dim-row-rw: dim-row (mat r n n (\lambdai. col A (fi))) = n for f by auto
    have dim-row-rw2: dim-row (matr n n (\lambdai. Matrix.row B (fi)))=n for f by
auto
    have prod-rw: (\prodi=0..<n.B $$ (fi,\pii))=(\prodi=0..<n.row B (fi)$v
\pii)
            if f:f\inF-not-inj and pi:\pi}\in
    proof (rule prod.cong, rule refl)
            fix x assume x: x \in{0..<n}
            have fx< dim-row B using f B x unfolding F-not-inj-def by fastforce
            moreover have }\pix<dim-col B using x pi B by aut
            ultimately show B$$(fx,\pix)= Matrix.row B (fx)$v\pix by (rule
index-row[symmetric])
    qed
    have sum-rw: (\sum\pi| | permutes {0..<n}. signof \pi* (\prodi=0..<n.B$$(fi,
\pii)))
            = det (mat r n n (\lambdai. row B (f i))) if f:f\inF-not-inj for f
            unfolding Determinant.det-def using dim-row-rw2 prod-rw f by auto
    have (\sum(f,\pi)\inZ-not-inj. weight f \pi)=(\sumf\inF-not-inj.\sum\pi \in?Perm. weight
f\pi)
            unfolding Z-not-inj-def unfolding sum.cartesian-product
            unfolding F-not-inj-def by simp
    also have ... = (\sumf\inF-not-inj. \sum\pi| \pi permutes {0..<n}. signof \pi
            * (\prodi=0..<n.A $$ (i,fi)*B$$(fi,\pii)))
            unfolding weight-def by simp
    also have ... = (\sumf\inF-not-inj. (\prodi=0..<n. A $$ (i,fi))
            * (\sum\pi| \pi permutes {0..<n}. signof \pi* (\prodi=0..<n.B$$ (fi,\pi i))))
            by (rule sum.cong, rule refl, auto)
                (metis (no-types, lifting) mult.left-commute mult-hom.hom-sum sum.cong)
    also have ... = (\sumf G F-not-inj. ( }\i=0..<n. A $$ (i,fi)
            * det (matr n n (\lambdai. row B (fi)))) using sum-rw by auto
            finally show ?thesis by auto
qed
also have ... = 0
    by (rule sum.neutral, insert det-not-inj-on[of - n B], auto simp add: F-not-inj-def)
    finally show ?thesis.
qed
```


5.3 Final theorem

lemma Cauchy-Binet1:
shows $\operatorname{det}(A * B)=$
$\operatorname{sum}\left(\lambda f . \operatorname{det}\left(\right.\right.$ submatrix A UNIV $\left.\left(f^{\prime}\{0 . .<n\}\right)\right) * \operatorname{det}\left(\right.$ submatrix $B\left(f^{\prime}\{0 . .<n\}\right)$
UNIV)) F-strict
(is ?lhs $=$? $r h s$)

```
proof -
    have sum0: ( }\sum(f,\pi)\inZ\mathrm{ -not-inj. weight f }\pi)=0\mathrm{ by (rule weight-0)
    let ?f = strict-from-inj n
    have sum-rw: sum g F-inj =(\sumy\inF-strict. sum g{x\inF-inj. ?f }x=y})\mathrm{ for
g
            by (rule sum.group[symmetric], insert strict-from-inj-F-strict, auto)
    have Z-Union: Z-inj \cupZ-not-inj = Z n m
        unfolding Z-def Z-not-inj-def Z-inj-def by auto
    have Z-Inter: Z-inj \cap Z-not-inj = {}
        unfolding Z-def Z-not-inj-def Z-inj-def by auto
    have det }(A*B)=(\sum(f,\pi)\inZn m. weight f \pi
        using detAB-Znm[OF A B] unfolding weight-def by auto
    also have ... = (\sum(f,\pi)\inZ-inj. weight f \pi})+(\sum(f,\pi)\inZ\mathrm{ -not-inj. weight f }\pi
    by (metis Z-Inter Z-Union finite-Un finite-Znm sum.union-disjoint)
    also have \ldots. = (\sum(f,\pi)\inZ-inj. weight f \pi) using sum0 by force
    also have ... =( (\sumf\inF-inj. \sum\pi\in{\pi.\pi permutes {0..<n}}. weight f \pi)
    unfolding Z-inj-def unfolding F-inj-def sum.cartesian-product ..
    also have ... = ( \sumy\inF-strict. \sumf\in{x\inF-inj. strict-from-inj n x = y}.
        sum (weight f) {\pi.\pi permutes {0..<n}}) unfolding sum-rw ..
    also have ... = (\sumy\inF-strict. }\sum(f,\pi)\in({x\inF\mathrm{ Finj. strict-from-inj n x = y}
    \times{\pi.\pi permutes {0..<n}}). weight f \pi)
        unfolding F-inj-def sum.cartesian-product ..
    also have ... = sum ( }\lambda\mathrm{ g. sum ( }\lambda(f,\pi).\mathrm{ weight f }\pi\mathrm{ ) (Z-good g)) F-strict
        using Z-good-alt by auto
    also have ... = ?rhs unfolding gather-by-strictness by simp
    finally show ?thesis .
qed
lemma Cauchy-Binet:
\(\operatorname{det}(A * B)=\left(\sum I \in\{I . I \subseteq\{0 . .<m\} \wedge\right.\) card \(I=n\}\). det (submatrix A UNIV I) * \(\operatorname{det}\) (submatrix B I UNIV))
proof -
let ? \(f=(\lambda I\). ( \(\lambda\) i. if \(i<n\) then sorted-list-of-set \(I!i\) else \(i))\)
let ?set \(I=\{I . I \subseteq\{0 . .<m\} \wedge\) card \(I=n\}\)
have inj-on: inj-on?f ?setI
proof (rule inj-onI)
fix \(I J\) assume \(I: I \in\) ?set \(I\) and \(J: J \in\) ?set \(I\) and \(f I\)-f \(J:\) ?f \(I=\) ?f \(J\)
have \(x \in J\) if \(x: x \in I\) for \(x\)
by (metis (mono-tags) fI-fJ I J distinct-card in-set-conv-nth mem-Collect-eq sorted-list-of-set(1) sorted-list-of-set(3) subset-eq-atLeast0-lessThan-finite
x)
moreover have \(x \in I\) if \(x: x \in J\) for \(x\)
by (metis (mono-tags) fI-fJ I J distinct-card in-set-conv-nth mem-Collect-eq sorted-list-of-set(1) sorted-list-of-set(3) subset-eq-atLeast0-lessThan-finite
x)
ultimately show \(I=J\) by auto
qed
have \(r w\) : ?f \(I '\{0 . .<n\}=I\) if \(I: I \in\) ? setI for \(I\)
```

```
    proof -
    have sorted-list-of-set I!xa\inI if xa<n for xa
    by (metis (mono-tags, lifting) I distinct-card distinct-sorted-list-of-set mem-Collect-eq
        nth-mem set-sorted-list-of-set subset-eq-atLeast0-lessThan-finite that)
    moreover have \existsxa\in{0..<n}. x= sorted-list-of-set I!xa if x: x\inI for x
        by (metis (full-types) x I atLeast0LessThan distinct-card in-set-conv-nth
mem-Collect-eq
            lessThan-iff sorted-list-of-set(1) sorted-list-of-set(3) subset-eq-atLeastO-lessThan-finite)
    ultimately show ?thesis unfolding image-def by auto
    qed
    have f-setI: ?f` ?setI = F-strict
    proof -
    have sorted-list-of-set I!xa<m if I:I\subseteq{0..<m} and n=card I and xa
< card I
            for I xa
    by (metis I 〈xa<card I` atLeast0LessThan distinct-card finite-atLeastLessThan
lessThan-iff
            pick-in-set-le rev-finite-subset sorted-list-of-set(1)
            sorted-list-of-set(3) sorted-list-of-set-eq-pick subsetCE)
    moreover have strict-mono-on ( }\lambdai\mathrm{ . if i < card I then sorted-list-of-set I!i
else i) {0..<card I}
            if I\subseteq{0..<m} and n= card I for I
    by (smt <I\subseteq{0..<m}> atLeastLessThan-iff distinct-card finite-atLeastLessThan
pick-mono-le
                rev-finite-subset sorted-list-of-set(1) sorted-list-of-set(3)
                sorted-list-of-set-eq-pick strict-mono-on-def)
    moreover have x\in?f' {I.I\subseteq{0..<m}^ card I=n}
            if x1: x \in{0..<n} ->{0..<m} and x2: \foralli.\negi<n \longrightarrowxi=i
            and s: strict-mono-on x {0..<n} for x
    proof -
            have inj-x: inj-on x {0..<n}
                using s strict-mono-on-imp-inj-on by blast
            hence card-xn: card (x'{0..<n}) = n by (simp add: card-image)
            have }x\mathrm{ -eq: x = (di. if i<n then sorted-list-of-set (x'{0..<n})!i else i)
            unfolding fun-eq-iff
            using nth-strict-mono-on s using x2 by auto
    show ?thesis
                unfolding image-def by (auto, rule exI[of -x`{0..<n}], insert card-xn x1
x-eq, auto)
    qed
    ultimately show ?thesis unfolding F-strict-def by auto
qed
let ?g = (\lambdaf. det (submatrix A UNIV (f`{0..<n})) * det(submatrix B (f`{0..<n})
UNIV))
    have det (A*B)=sum ((\lambdaf. det (submatrix A UNIV (f'{0..<n}))
        * det (submatrix B (f'{0..<n}) UNIV)) ○?f) {I.I\subseteq{0..<m}^ card I=n}
        unfolding Cauchy-Binet1 f-setI[symmetric] by (rule sum.reindex[OF inj-on])
    also have ... = (\sumI\in{I.I\subseteq{0..<m} ^ card I=n}.det(submatrix A UNIV
I)*det(submatrix B I UNIV))
```

```
    by (rule sum.cong, insert rw, auto)
    finally show ?thesis.
qed
end
end
```


6 Definition of Smith normal form in JNF

```
theory Smith-Normal-Form-JNF
    imports
        SNF-Missing-Lemmas
begin
```

Now, we define diagonal matrices and Smith normal form in JNF
definition isDiagonal-mat $A=(\forall i j . i \neq j \wedge i<\operatorname{dim}$-row $A \wedge j<\operatorname{dim}$-col $A \longrightarrow$
$A \$ \$(i, j)=0)$
definition Smith-normal-form-mat $A=$
(
$(\forall a . a+1<\min (\operatorname{dim}-r o w A)(\operatorname{dim}-\operatorname{col} A) \longrightarrow A \$ \$(a, a) d v d A \$ \$(a+1, a+1))$
\wedge isDiagonal-mat A
)
lemma $S N F$-first-divides:
assumes SNF-A: Smith-normal-form-mat A and ($A::\left({ }^{(} a::\right.$ comm-ring-1) mat) \in
carrier-mat $n m$
and $i: i<\min (d i m-r o w A)(d i m-c o l A)$
shows $A \$ \$(0,0)$ dvd $A \$ \(i, i)
using i
proof (induct i)
case 0
then show ?case by auto
next
case (Suc i)
show ?case
by (metis (full-types) Smith-normal-form-mat-def Suc.hyps Suc.prems
Suc-eq-plus1 Suc-lessD SNF-A dvd-trans)
qed
lemma Smith-normal-form-mat-intro:
assumes $(\forall a . a+1<\min ($ dim-row $A)($ dim-col $A) \longrightarrow A \$ \$(a, a) d v d A \$ \$$
$(a+1, a+1))$
and isDiagonal-mat A
shows Smith-normal-form-mat A
unfolding Smith-normal-form-mat-def using assms by auto
lemma Smith-normal-form-mat-m0[simp]:
assumes A : $A \in$ carrier-mat m 0

```
        shows Smith-normal-form-mat A
        using A unfolding Smith-normal-form-mat-def isDiagonal-mat-def by auto
    lemma Smith-normal-form-mat-0m[simp]:
    assumes A: A\incarrier-mat 0 m
    shows Smith-normal-form-mat A
    using A unfolding Smith-normal-form-mat-def isDiagonal-mat-def by auto
lemma S00-dvd-all-A:
    assumes A:(A::'a::comm-ring-1 mat) \in carrier-mat m n
    and P:P carrier-mat m m
    and Q:Q\incarrier-mat n n
    and inv-P: invertible-mat P
    and inv-Q: invertible-mat Q
    and S-PAQ:S=P*A*Q
    and SNF-S: Smith-normal-form-mat S
    and i: i<m and j:j<n
shows }S$$(0,0) dvd A $$ (i,j
proof -
    have S00: (\foralli j. i<m^j<n\longrightarrowS$$(0,0) dvd S$$(i,j))
    using SNF-S unfolding Smith-normal-form-mat-def isDiagonal-mat-def
    by (smt P Q SNF-first-divides A S-PAQ SNF-S carrier-matD
                dvd-0-right min-less-iff-conj mult-carrier-mat)
    obtain }\mp@subsup{P}{}{\prime}\mathrm{ where }P\mp@subsup{P}{}{\prime}\mathrm{ : inverts-mat P P P' and }\mp@subsup{P}{}{\prime}P\mathrm{ : inverts-mat P}\mp@subsup{P}{}{\prime}
        using inv-P unfolding invertible-mat-def by auto
    obtain }\mp@subsup{Q}{}{\prime}\mathrm{ where Q Q': inverts-mat Q Q ' and }\mp@subsup{Q}{}{\prime}Q:\mathrm{ inverts-mat }\mp@subsup{Q}{}{\prime}
                using inv-Q unfolding invertible-mat-def by auto
    have A-P'SQ': P'*S* ' }=
    proof -
        have }\mp@subsup{P}{}{\prime}*S*\mp@subsup{Q}{}{\prime}=\mp@subsup{P}{}{\prime}*(P*A*Q)*\mp@subsup{Q}{}{\prime}\mathrm{ unfolding S-PAQ by auto
        also have ... =( P'*P)*A*(Q*Q')
            by (smt A PP' Q Q'Q P assoc-mult-mat carrier-mat-triv index-mult-mat(2)
index-mult-mat(3)
                            index-one-mat(3) inverts-mat-def right-mult-one-mat)
        also have ... = A
            by (metis A P'P QQ'A Q P carrier-matD(1) index-mult-mat(3) in-
dex-one-mat(3) inverts-mat-def
            left-mult-one-mat right-mult-one-mat)
        finally show ?thesis .
    qed
    have ( }\forallij.i<m\wedgej<n\longrightarrowS$$(0,0)dvd (\mp@subsup{P}{}{\prime}*S*\mp@subsup{Q}{}{\prime})$$(i,j)
    proof (rule dvd-elements-mult-matrix-left-right[OF - - SOO])
        show S\incarrier-mat m n using PA Q S-PAQ by auto
        show }\mp@subsup{P}{}{\prime}\in\mathrm{ carrier-mat m m
        by (metis (mono-tags, lifting) A-P'SQ' PP' P A carrier-matD carrier-matI
index-mult-mat(2)
            index-mult-mat(3) inverts-mat-def one-carrier-mat)
        show }\mp@subsup{Q}{}{\prime}\in\mathrm{ carrier-mat n n
        by (metis (mono-tags, lifting) A-P'SQ' Q'Q Q A carrier-matD(2) carrier-matI
```

```
        index-mult-mat(3) inverts-mat-def one-carrier-mat)
    qed
    thus ?thesis using A-P'SQ' i j by auto
qed
lemma SNF-first-divides-all:
    assumes SNF-A: Smith-normal-form-mat A and A: (A::('a::comm-ring-1) mat)
carrier-mat mn
    and i:i<m and j:j<n
shows A$$(0,0) dvd A $$ (i,j)
proof (cases i=j)
    case True
    then show ?thesis using assms SNF-first-divides by (metis carrier-matD min-less-iff-conj)
next
    case False
    hence A$$(i,j) = 0 using SNF-A i j A unfolding Smith-normal-form-mat-def
isDiagonal-mat-def by auto
    then show ?thesis by auto
qed
lemma SNF-divides-diagonal:
    fixes A::'a::comm-ring-1 mat
    assumes A:A\incarrier-mat n m
        and SNF-A:Smith-normal-form-mat A
        and j:j< min n m
        and ij:i\leqj
    shows A$$(i,i) dvd A$$(j,j)
    using ij j
proof (induct j)
    case 0
    then show ?case by auto
next
    case (Suc j)
    show ?case
    proof (cases i\leqj)
        case True
        have A $$ (i,i) dvd A $$ (j,j) using Suc.hyps Suc.prems True by simp
        also have ... dvd A $$ (Suc j, Suc j)
            using SNF-A Suc.prems A
            unfolding Smith-normal-form-mat-def by auto
        finally show ?thesis by auto
    next
        case False
        hence i=Suc j using Suc.prems by auto
        then show ?thesis by auto
    qed
```

```
qed
lemma Smith-zero-imp-zero:
    fixes A::'a::comm-ring-1 mat
    assumes A:A\in carrier-mat m n
        and SNF: Smith-normal-form-mat A
        and Aii: A$$(i,i)=0
        and j:j<min m n
        and ij: i\leqj
    shows }A$$(j,j)=
proof -
    have A$$(i,i) dvd A$$(j,j) by (rule SNF-divides-diagonal[OF A SNF j ij])
    thus ?thesis using Aii by auto
qed
lemma SNF-preserved-multiples-identity:
    assumes S:S carrier-mat m n and SNF: Smith-normal-form-mat (S::'a::comm-ring-1
mat)
    shows Smith-normal-form-mat (S*(k 䀁 1m n))
proof (rule Smith-normal-form-mat-intro)
    have rw: S*(k 质 1m n)= Matrix.mat mn ( }\lambda(i,j).S$$(i,j)*k
        unfolding mat-diag-smult[symmetric] by (rule mat-diag-mult-right[OF S])
    show isDiagonal-mat (S* (k\cdotm 1m n))
        using SNF S unfolding Smith-normal-form-mat-def isDiagonal-mat-def rw
        by auto
    show }\foralla.a+1<min(dim-row (S* (k\cdotm 1m n)))(dim-col (S* (k m m 1m
n)))}
            (S*(k\cdotm 1m n)) $$ (a,a) dvd (S* (k\cdotm 1m n)) $$ (a+1,a+1)
        using SNF S unfolding Smith-normal-form-mat-def isDiagonal-mat-def rw
        by (auto simp add: mult-dvd-mono)
qed
end
```


7 Some theorems about rings and ideals

```
theory Rings2-Extended
    imports
        Echelon-Form.Rings2
        HOL-Types-To-Sets.Types-To-Sets
begin
```


7.1 Missing properties on ideals

lemma ideal-generated-subset2:
assumes $\forall b \in B . b \in$ ideal-generated A
shows ideal-generated $B \subseteq$ ideal-generated A
by (metis (mono-tags, lifting) InterE assms ideal-generated-def
ideal-ideal-generated mem-Collect-eq subsetI)

```
context comm-ring-1
begin
lemma ideal-explicit: ideal-generated S
        ={y.\existsfU. finite U\wedgeU\subseteqS\wedge(\sumi\inU.fi*i)=y}
    by (simp add: ideal-generated-eq-left-ideal left-ideal-explicit)
end
lemma ideal-generated-minus:
    assumes a: a \in ideal-generated (S-{a})
    shows ideal-generated S = ideal-generated (S-{a})
proof (cases a }\inS\mathrm{ )
    case True note a-in-S = True
    show ?thesis
    proof
        show ideal-generated S\subseteqideal-generated (S-{a})
    proof (rule ideal-generated-subset2, auto)
        fix b assume b:b\inS show b\inideal-generated (S-{a})
        proof (cases b=a)
            case True
            then show ?thesis using a by auto
        next
            case False
            then show ?thesis using b
                by (simp add: ideal-generated-in)
            qed
        qed
        show ideal-generated (S - {a})\subseteqideal-generated S
        by (rule ideal-generated-subset, auto)
    qed
next
    case False
    then show ?thesis by simp
qed
lemma ideal-generated-dvd-eq:
    assumes a-dvd-b: a dvd b
    and a:a\inS
    and a-not-b: }a\not=
    shows ideal-generated S= ideal-generated (S-{b})
proof
    show ideal-generated S\subseteqideal-generated (S - {b})
    proof (rule ideal-generated-subset2, auto)
        fix x assume x: x 
        show }x\in\mathrm{ ideal-generated (S-{b})
        proof (cases x=b)
        case True
        obtain k where b-ak: b=a*k using a-dvd-b unfolding dvd-def by blast
```

```
    let ?f = \lambdac. }
    have (\sumi\in{a}. i* ?f i)=x using True b-ak by auto
    moreover have {a}\subseteqS-{b} using a-not-b a by auto
    moreover have finite {a} by auto
    ultimately show ?thesis
        unfolding ideal-def
        by (metis True b-ak ideal-def ideal-generated-in ideal-ideal-generated in-
sert-subset right-ideal-def)
    next
        case False
        then show ?thesis by (simp add: ideal-generated-in x)
    qed
    qed
show ideal-generated (S - {b})\subseteq ideal-generated S by (rule ideal-generated-subset,
auto)
qed
lemma ideal-generated-dvd-eq-diff-set:
    assumes i-in-I: i\inI and i-in-J:i\not\inJ and i-dvd-j: }\forallj\inJ.idvd
    and f: finite }
    shows ideal-generated I = ideal-generated (I - J)
    using f i-in-J i-dvd-j i-in-I
    proof (induct J arbitrary:I)
    case empty
    then show ?case by auto
    next
        case (insert x J)
        have ideal-generated I = ideal-generated ( }I-{x}
            by (rule ideal-generated-dvd-eq[of i], insert insert.prems,auto)
            also have ... = ideal-generated ((I-{x}) - J)
            by (rule insert.hyps, insert insert.prems insert.hyps, auto)
            also have ... = ideal-generated (I - insert x J)
            using Diff-insert2[of I x J] by auto
    finally show ?case .
    qed
context comm-ring-1
begin
lemma ideal-generated-singleton-subset:
    assumes d:d\in ideal-generated S and fin-S: finite S
    shows ideal-generated {d}\subseteq ideal-generated S
proof
    fix }x\mathrm{ assume }x:x\in\mathrm{ ideal-generated {d}
    obtain k}\mathrm{ where }x\mathrm{ - kd: x = k*d using x using obtain-sum-ideal-generated[OF
x]
    by (metis finite.emptyI finite.insertI sum-singleton)
    show }x\in\mathrm{ ideal-generated S
```

using d ideal-eq-right-ideal ideal-ideal-generated right-ideal-def mult-commute $x-k d$ by auto
qed
lemma ideal-generated-singleton-dvd:
assumes i : ideal-generated $S=$ ideal-generated $\{d\}$ and $x: x \in S$
shows d dvd x
by (metis $i x$ finite.intros dvd-ideal-generated-singleton
ideal-generated-in ideal-generated-singleton-subset)
lemma ideal-generated-UNIV-insert:
assumes ideal-generated $S=U N I V$
shows ideal-generated (insert a S) $=$ UNIV using assms
using local.ideal-generated-subset by blast
lemma ideal-generated-UNIV-union:
assumes ideal-generated $S=U N I V$
shows ideal-generated $(A \cup S)=U N I V$
using assms local.ideal-generated-subset
by (metis UNIV-I Un-subset-iff equalityI subsetI)
lemma ideal-explicit2:
assumes finite S
shows ideal-generated $S=\left\{y . \exists f .\left(\sum i \in S . f i * i\right)=y\right\}$
by (smt Collect-cong assms ideal-explicit obtain-sum-ideal-generated mem-Collect-eq subsetI)
lemma ideal-generated-unit:
assumes $u: u$ dvd 1
shows ideal-generated $\{u\}=$ UNIV
proof -
have $x \in$ ideal-generated $\{u\}$ for x
proof -
obtain $i n v-u$ where $i n v-u$: inv- $u * u=1$ using u unfolding dvd-def
using local.mult-ac(2) by blast
have $x=x * i n v-u * u$ using inv- u by (simp add: local.mult-ac(1))
also have $\ldots \in\{k * u \mid k . k \in U N I V\}$ by auto
also have $\ldots=$ ideal-generated $\{u\}$ unfolding ideal-generated-singleton by simp
finally show ?thesis.
qed
thus ?thesis by auto
qed
lemma ideal-generated-dvd-subset:
assumes $x: \forall x \in S . d d v d x$ and S : finite S
shows ideal-generated $S \subseteq$ ideal-generated $\{d\}$
proof
fix x assume $x \in$ ideal-generated S
from this obtain f where $f:\left(\sum i \in S . f i * i\right)=x$ using ideal-explicit2[OF S] by auto
have $d d v d$ ($\sum i \in S . f i * i$) by (rule dvd-sum, insert x, auto)
thus $x \in$ ideal-generated $\{d\}$
using f dvd-ideal-generated-singleton' ideal-generated-in singletonI by blast qed
lemma ideal-generated-mult-unit:
assumes f : finite S and $u: u d v d 1$
shows ideal-generated $\left((\lambda x . u * x)^{\prime} S\right)=$ ideal-generated S
using f
proof (induct S)
case empty
then show ?case by auto
next
case (insert $x S$)
obtain inv- u where inv-u: inv- $u * u=1$ using u unfolding $d v d$-def
using mult-ac by blast
have f : finite (insert $\left.(u * x)\left((\lambda x . u * x)^{\prime} S\right)\right)$ using insert.hyps by auto
have f : finite (insert $x S$) by (simp add: insert(1))
have f3: finite S by (simp add: insert)
have f f: finite $\left((*) u^{\prime} S\right.$) by (simp add: insert)
have inj-ux: inj-on $(\lambda x . u * x) S$ unfolding inj-on-def
by (auto, metis inv-u local.mult-1-left local.semiring-normalization-rules(18))
have ideal-generated $\left((\lambda x . u * x)^{‘}(\right.$ insert $\left.x S)\right)=$ ideal-generated (insert $(u * x)$
$\left.\left((\lambda x . u * x)^{\prime} S\right)\right)$
by auto
also have $\ldots=\left\{y . \exists f .\left(\sum i \in\right.\right.$ insert $\left.\left.(u * x)\left((\lambda x . u * x)^{\prime} S\right) . f i * i\right)=y\right\}$
using ideal-explicit2[OF f] by auto
also have $\ldots=\left\{y . \exists f .\left(\sum i \in(\right.\right.$ insert $\left.\left.x S) . f i * i\right)=y\right\}($ is $? L=? R)$
proof -
have $a \in ? L$ if $a: a \in ? R$ for a
proof -
obtain f where sum-rw: $\left(\sum i \in(\right.$ insert $\left.x S) . f i * i\right)=a$ using a by auto define b where $b=\left(\sum i \in S . f i * i\right)$
have $b \in$ ideal-generated S unfolding b-def ideal-explicit2[OF f3] by auto
hence $b \in$ ideal-generated $((*) u$ ' S) using insert.hyps(3) by auto
from this obtain g where $\left(\sum i \in((*) u\right.$ 'S). $g i * i)=b$
unfolding ideal-explicit2[OF f4] by auto
hence sum-rw2: $\left(\sum i \in S . f i * i\right)=\left(\sum i \in\left((*) u{ }^{\prime} S\right) . g i * i\right)$ unfolding b-def
by auto
let ? $g=\lambda i$. if $i=u * x$ then $f x * i n v-u$ else $g i$
have sum-rw3: sum $((\lambda i . g i * i) \circ(\lambda x . u * x)) S=\operatorname{sum}((\lambda i . ? g i * i) \circ(\lambda x$. $u * x)$) S
by (rule sum.cong, auto, metis inv-u local.insert(2) local.mult-1-right local.mult-ac(2) local.semiring-normalization-rules(18))
have sum-rw4: $\left(\sum i \in(\lambda x . u * x)^{\prime} S . g i * i\right)=\operatorname{sum}((\lambda i . g i * i) \circ(\lambda x . u * x)) S$
by (rule sum.reindex[OF inj-ux])
have $a=f x * x+\left(\sum_{i \in S .} f i * i\right)$
using sum-rw local.insert(1) local.insert(2) by auto
also have $\ldots=f x * x+\left(\sum i \in(\lambda x . u * x)^{\prime} S . g i * i\right)$ using sum-rw2 by auto
also have $\ldots=? g(u * x) *(u * x)+\left(\sum i \in(\lambda x . u * x)^{\prime} S . g i * i\right)$
using inv-u by (smt local.mult-1-right local.mult-ac(1))
also have $\ldots=? g(u * x) *(u * x)+\operatorname{sum}((\lambda i . g i * i) \circ(\lambda x . u * x)) S$
using sum-rw4 by auto
also have $\ldots=((\lambda i$. ? $g i * i) \circ(\lambda x . u * x)) x+\operatorname{sum}((\lambda i . g i * i) \circ(\lambda x . u * x))$
S by auto
also have $\ldots=((\lambda i$. ? $g i * i) \circ(\lambda x . u * x)) x+\operatorname{sum}((\lambda i$. ? $g i * i) \circ(\lambda x$.
$u * x)$) S
using sum-rw3 by auto
also have $\ldots=\operatorname{sum}((\lambda i$. ?g $i * i) \circ(\lambda x . u * x))($ insert $x S)$
by (rule sum.insert[symmetric], auto simp add: insert)
also have $\ldots=\left(\sum i \in \operatorname{insert}(u * x)\left((\lambda x . u * x)^{\prime} S\right)\right.$. ? $\left.g i * i\right)$
by (smt abel-semigroup.commute fo image-insert inv-u mult.abel-semigroup-axioms mult-1-right
semiring-normalization-rules(18) sum.reindex-nontrivial)
also have $\ldots=\left(\sum i \in(\lambda x . u * x)^{\prime}(\right.$ insert $x S)$. ?g $\left.i * i\right)$ by auto
finally show ?thesis by auto
qed
moreover have $a \in ? R$ if $a: a \in ? L$ for a
proof -
obtain f where sum-rw: $\left(\sum i \in(\right.$ insert $\left.(u * x)((*) u ' S)) . f i * i\right)=a$ using a by auto
have ux-notin: $u * x \notin((*) u$ ' $S)$
by (metis UNIV-I inj-on-image-mem-iff inj-on-inverseI inv-u local.insert(2) local.mult-1-left
local.semiring-normalization-rules(18) subsetI)
let ? $f=(\lambda x . f x * x)$
have sum ?f $\left((*) u^{\prime} S\right) \in$ ideal-generated $\left((*) u^{\prime} S\right)$
unfolding ideal-explicit2[OF f4] by auto
from this obtain g where sum-rw1: sum ($\lambda i . g i * i) S=\operatorname{sum}$?f $(((*) u$ ' S))
using insert.hyps(3) unfolding ideal-explicit2[OF f3] by blast
let ? $g=(\lambda i$. if $i=x$ then $(f(u * x) * u) * x$ else $g i * i)$
let ${ }^{2} g^{\prime}=\lambda$. if $i=x$ then $f(u * x) * u$ else $g i$
have sum-rw2: sum $(\lambda i . g i * i) S=s u m ? g S$ by (rule sum.cong, insert inj-ux ux-notin, auto)
have $a=\left(\sum i \in\left(\right.\right.$ insert $\left.\left.(u * x)\left((*) u^{\prime} S\right)\right) . f i * i\right)$ using sum-rw by simp
also have $\ldots=$?f $(u * x)+$ sum ? $f(((*) u$ 'S))
by (rule sum.insert[OF f4], insert inj-ux) (metis UNIV-I inj-on-image-mem-iff inj-on-inverseI
inv-u local.insert(2) local.mult-1-left local.semiring-normalization-rules(18) subsetI)
also have $\ldots=$?f $(u * x)+\operatorname{sum}(\lambda i . g i * i) S$ unfolding sum-rw1 by auto also have $\ldots=$? $g x+$ sum ? g S unfolding sum-rw2 using mult.assoc by auto

```
            also have ... = sum ?g (insert x S) by (rule sum.insert[symmetric, OF f3
insert.hyps(2)])
            also have ... = sum (\lambdai.?g' i*i)(insert x S) by (rule sum.cong, auto)
            finally show ?thesis by fast
                            qed
                            ultimately show ?thesis by blast
qed
also have ... = ideal-generated (insert x S) using ideal-explicit2[OF f2] by auto
finally show ?case by auto
qed
corollary ideal-generated-mult-unit2:
    assumes u: u dvd 1
    shows ideal-generated {u*a,u*b}= ideal-generated {a,b}
proof -
    let ?S = {a,b}
    have ideal-generated {u*a,u*b} = ideal-generated ((\lambdax.u*x)` {a,b}) by auto
    also have ... = ideal-generated {a,b} by (rule ideal-generated-mult-unit[OF - u],
simp)
    finally show ?thesis.
qed
lemma ideal-generated-1[simp]: ideal-generated {1} = UNIV
    by (metis ideal-generated-unit dvd-ideal-generated-singleton order-refl)
lemma ideal-generated-pair: ideal-generated {a,b}={p*a+q*b|pq. True}
proof -
    have i: ideal-generated {a,b} ={y.\existsf.(\sumi\in{a,b}.fi*i)=y} using
ideal-explicit2 by auto
    show ?thesis
    proof (cases a=b)
        case True
    show ?thesis using True i
                by (auto, metis mult-ac(2) semiring-normalization-rules)
                    (metis (no-types, hide-lams) add-minus-cancel mult-ac ring-distribs semir-
ing-normalization-rules)
    next
            case False
            have 1: \existspq.(\sumi\in{a,b}.fi*i)=p*a+q*b for f
            by (rule exI[of - fa], rule exI[of - f b], rule sum-two-elements[OF False])
            moreover have }\existsf.(\sumi\in{a,b}.fi*i)=p*a+q*b for p q
                by (rule exI[of - \lambdai. if i=a then p else q],
                    unfold sum-two-elements[OF False], insert False, auto)
            ultimately show ?thesis using i by auto
    qed
qed
lemma ideal-generated-pair-exists-pq1:
    assumes i: ideal-generated {a,b} = (UNIV ::'a set)
```

```
    shows }\existspq. p*a+q*b=
    using i unfolding ideal-generated-pair
    by (smt iso-tuple-UNIV-I mem-Collect-eq)
lemma ideal-generated-pair-UNIV:
    assumes sa-tb-u: s*a+t*b=u and u: u dvd 1
    shows ideal-generated {a,b}=UNIV
proof -
    have f: finite {a,b} by simp
    obtain inv-u where inv-u:inv-u*u=1 using u unfolding dvd-def
    by (metis mult.commute)
    have }x\in\mathrm{ ideal-generated {a,b} for x
    proof (cases a=b)
        case True
        then show ?thesis
            by (metis UNIV-I dvd-def dvd-ideal-generated-singleton' ideal-generated-unit
insert-absorb2
            mult.commute sa-tb-u semiring-normalization-rules(34) subsetI sub-
set-antisym u)
    next
        case False note a-not-b = False
        let ?f = \lambday. if y=a then inv-u*x*s else inv-u*x*t
    have (\sumi\in{a,b}. ?f i*i)=?f a*a+?f b*b by (rule sum-two-elements[OF
a-not-b])
    also have ... = x using a-not-b sa-tb-u inv-u
    by (auto, metis mult-ac(1) mult-ac(2) ring-distribs(1) semiring-normalization-rules(12))
    finally show ?thesis unfolding ideal-explicit2[OF f] by auto
    qed
    thus ?thesis by auto
qed
```

lemma ideal-generated-pair-exists:
assumes l : (ideal-generated $\{a, b\}=$ ideal-generated $\{d\}$)
shows $(\exists p q . p * a+q * b=d)$
proof -
have $d: d \in$ ideal-generated $\{d\}$ by (simp add: ideal-generated-in)
hence $d \in$ ideal-generated $\{a, b\}$ using l by auto
from this obtain $p q$ where $d=p * a+q * b$ using ideal-generated-pair[of a b] by
auto
thus ?thesis by auto
qed
lemma obtain-ideal-generated-pair:
assumes $c \in$ ideal-generated $\{a, b\}$
obtains $p q$ where $p * a+q * b=c$
proof -
have $c \in\{p * a+q * b \mid p q$. True $\}$ using assms ideal-generated-pair by auto

```
    thus ?thesis using that by auto
qed
lemma ideal-generated-pair-exists-UNIV:
    shows (ideal-generated {a,b} = ideal-generated {1})=(\existspq.p*a+q*b=1) (is
?lhs = ?rhs)
proof
    assume r: ?rhs
    have }x\in\mathrm{ ideal-generated {a,b} for }
    proof (cases a=b)
        case True
        then show ?thesis
        by (metis UNIV-I r dvd-ideal-generated-singleton finite.intros ideal-generated-1
                ideal-generated-pair-UNIV ideal-generated-singleton-subset)
    next
    case False
    have f: finite {a,b} by simp
    have 1:1\in ideal-generated {a,b}
            using ideal-generated-pair-UNIV local.one-dvd r by blast
    hence i: ideal-generated {a,b}={y.\existsf. (\sumi\in{a,b}.fi*i)=y}
        using ideal-explicit2[of {a,b}] by auto
    from this obtain f}\mathrm{ where f:fa*a+fb*b=1 using sum-two-elements 1
False by auto
    let ?f = \lambday. if y=a then x*fa else }x*f
    have (\sumi\in{a,b}. ?f i*i)=x unfolding sum-two-elements[OF False] using
f False
            using mult-ac(1) ring-distribs(1) semiring-normalization-rules(12) by force
    thus ?thesis unfolding i by auto
    qed
    thus?lhs by auto
next
    assume ?lhs thus ?rhs using ideal-generated-pair-exists[of a b 1] by auto
qed
corollary ideal-generated-UNIV-obtain-pair:
    assumes ideal-generated {a,b}= ideal-generated {1}
    shows ( }\existspq.p*a+q*b=d
proof -
    obtain x y where }x*a+y*b=1\mathrm{ using ideal-generated-pair-exists-UNIV assms
by auto
    hence d*x*a+d*y*b=d
    using local.mult-ac(1) local.ring-distribs(1) local.semiring-normalization-rules(12)
by force
    thus ?thesis by auto
qed
```

lemma sum-three-elements:

```
    shows \existsx y z::'a.(\sumi\in{a,b,c}.fi*i)=x*a+y*b+z*c
proof (cases a\not=b\wedgeb\not=c\wedgea\not=c)
    case True
    then show ?thesis by (auto, metis add.assoc)
next
    case False
    have 1: \existsx y z.fc*c=x*c+y*c+z*c
    by (rule exI[of-0],rule exI[of-0], rule exI[of-f c], auto)
    have 2: \existsxyz.fb*b+fc*c=x*b+y*b+z*c
    by (rule exI[of-0],rule exI[of-f b], rule exI[of-f c], auto)
    have 3: \existsxyz.fa*a+fc*c=x*a+y*c+z*c
    by (rule exI[of-f a],rule exI[of-0], rule exI[of-f c], auto)
    have 4: \existsxyz.(\sumi\in{c,b,c}.fi*i)=x*c+y*b+z*c if a: a=c and
b: b}=
    by (rule exI[of-0],rule exI[of-f b], rule exI[of-fc], insert a b,
        auto simp add: insert-commute)
    show ?thesis using False
    by (cases b=c, cases a=c,auto simp add:12 2 4)
qed
lemma sum-three-elements':
    shows \existsf::'a>'a.(\sumi\in{a,b,c}.fi*i)=x*a+y*b+z*c
proof (cases a\not=b\wedgeb\not=c\wedgea\not=c)
    case True
    let ?f = \lambdai. if i=a then x else if i=b then y else if i=c then z else 0
    show ?thesis by (rule exI[of - ?f], insert True mult.assoc, auto simp add: lo-
cal.add-ac)
next
    case False
    have 1: \existsf.fc*c=x*c+y*c+z*c
    by (rule exI[of-\lambdai. if i=c then x+y+z else 0], auto simp add: local.ring-distribs)
    have 2: \existsf.fa*a+fc*c=x*a+y*c+z*c if bc: b=c and ac:a\not=c
    by (rule exI[of-\lambdai. if i=a then x else y+z], insert ac bc add-ac ring-distribs,
auto)
    have 3: \existsf.fb*b+fc*c=x*b+y*b+z*c if bc: b\not=c and ac: a=b
    by (rule exI[of - \lambdai. if i=a then x+y else z], insert ac bc add-ac ring-distribs,
auto)
    have 4: \existsf. (\sumi\in{c,b,c}.fi*i)=x*c+y*b+z*c if a: a=c and b:
b}\not=
    by (rule exI[of - \lambdai. if i=c then x+z else y], insert a b add-ac ring-distribs,
                    auto simp add: insert-commute)
    show ?thesis using False
    by (cases b=c, cases }a=c\mathrm{ , auto simp add:12 3 4)
qed
```

lemma ideal-generated-triple-pair-rewrite:
assumes i1: ideal-generated $\{a, b, c\}=$ ideal-generated $\{d\}$
and $i 2$: ideal-generated $\{a, b\}=$ ideal-generated $\left\{d^{\prime}\right\}$
shows ideal-generated $\left\{d^{\prime}, c\right\}=$ ideal-generated $\{d\}$
proof
have $d^{\prime}: d^{\prime} \in$ ideal-generated $\{a, b\}$ using $i 2$ by (simp add: ideal-generated-in)
show ideal-generated $\left\{d^{\prime}, c\right\} \subseteq$ ideal-generated $\{d\}$
proof
fix x assume $x: x \in$ ideal-generated $\left\{d^{\prime}, c\right\}$
obtain $f 1 f 2$ where $f: f 1 * d^{\prime}+f 2 * c=x$ using obtain-ideal-generated-pair $[O F$
$x]$ by auto
obtain $g 1$ g2 where $g: g 1 * a+g 2 * b=d^{\prime}$ using obtain-ideal-generated-pair $[O F$
$\left.d^{\prime}\right]$ by blast
have 1: $f 1 * g 1 * a+f 1 * g 2 * b+f 2 * c=x$
using f g local.ring-distribs(1) local.semiring-normalization-rules(18) by auto
have $x \in$ ideal-generated $\{a, b, c\}$
proof -
obtain f where $\left(\sum i \in\{a, b, c\} . f i * i\right)=f 1 * g 1 * a+f 1 * g 2 * b+f 2 * c$
using sum-three-elements ${ }^{\prime} 1$ by blast
moreover have ideal-generated $\{a, b, c\}=\left\{y . \exists f .\left(\sum i \in\{a, b, c\} . f i * i\right)=y\right\}$
using ideal-explicit2[of $\{a, b, c\}]$ by simp
ultimately show ?thesis using 1 by auto
qed
thus $x \in$ ideal-generated $\{d\}$ using i1 by auto
qed
show ideal-generated $\{d\} \subseteq$ ideal-generated $\left\{d^{\prime}, c\right\}$
proof (rule ideal-generated-singleton-subset)
obtain $f 1$ f2 f3 where $f: f 1 * a+f 2 * b+f 3 * c=d$
proof -
have $d \in$ ideal-generated $\{a, b, c\}$ using i1 by (simp add: ideal-generated-in)
from this obtain f where $d:\left(\sum i \in\{a, b, c\} . f i * i\right)=d$
using ideal-explicit2[of $\{a, b, c\}]$ by auto
obtain $x y z$ where $\left(\sum i \in\{a, b, c\} . f i * i\right)=x * a+y * b+z * c$
using sum-three-elements by blast
thus ?thesis using d that by auto
qed
obtain k where k : $f 1 * a+f 2 * b=k * d^{\prime}$
proof -
have $f 1 * a+f 2 * b \in$ ideal-generated $\{a, b\}$ using ideal-generated-pair by blast
also have $\ldots=$ ideal-generated $\left\{d^{\prime}\right\}$ using $i 2$ by simp
also have $\ldots=\left\{k * d^{\prime} \mid k . k \in U N I V\right\}$ using ideal-generated-singleton by auto
finally show ?thesis using that by auto
qed
have $k * d^{\prime}+f 3 * c=d$ using $f k$ by auto
thus $d \in$ ideal-generated $\left\{d^{\prime}, c\right\}$
using ideal-generated-pair by blast
qed (simp)
qed
lemma ideal-generated-dvd:
assumes i : ideal-generated $\left\{a, b::^{\prime} a\right\}=$ ideal-generated $\{d\}$

```
    and a:d' dvd a and b: d' dvd b
shows d' dvd d
proof -
    obtain p q where p*a+q*b=d
    using i ideal-generated-pair-exists by blast
    thus ?thesis using a b by auto
qed
lemma ideal-generated-dvd2:
    assumes i: ideal-generated S= ideal-generated {d::'a}
    and finite S
    and x:}\forallx\inS..\mp@subsup{d}{}{\prime}dvd
shows d' dvd d
    by (metis assms dvd-ideal-generated-singleton ideal-generated-dvd-subset)
end
```


7.2 An equivalent characterization of Bézout rings

The goal of this subsection is to prove that a ring is Bézout ring if and only if every finitely generated ideal is principal.
definition finitely-generated-ideal $I=($ ideal $I \wedge(\exists S$. finite $S \wedge$ ideal-generated S $=I)$)
context
assumes SORT-CONSTRAINT('a::comm-ring-1)
begin
lemma sum-two-elements':
fixes $d::^{\prime} a$
assumes $s:\left(\sum i \in\{a, b\} . f i * i\right)=d$
obtains p and q where $d=p * a+q * b$
proof (cases $a=b$)
case True
then show?thesis
by (metis (no-types, lifting) add-diff-cancel-left' emptyE finite.emptyI insert-absorb2 left-diff-distrib' s sum.insert sum-singleton that)
next
case False
show ?thesis using s unfolding sum-two-elements[OF False]
using that by auto
qed
This proof follows Theorem 6-3 in "First Course in Rings and Ideals" by Burton
lemma all-fin-gen-ideals-are-principal-imp-bezout:
assumes all: $\forall I:: ' a$ set. finitely-generated-ideal $I \longrightarrow$ principal-ideal I

```
    shows OFCLASS ('a, bezout-ring-class)
proof (intro-classes)
    fix a b::'a
    obtain d}\mathrm{ where ideal-d: ideal-generated {a,b} = ideal-generated {d}
        using all unfolding finitely-generated-ideal-def
        by (metis finite.emptyI finite-insert ideal-ideal-generated principal-ideal-def)
    have a-in-d:a fideal-generated {d}
        using ideal-d ideal-generated-subset-generator by blast
    have b-in-d: b\in ideal-generated {d}
        using ideal-d ideal-generated-subset-generator by blast
    have d-in-ab:d f ideal-generated {a,b}
        using ideal-d ideal-generated-subset-generator by auto
    obtain f}\mathrm{ where ( }\sumi\in{a,b}.fi*i)=d using obtain-sum-ideal-generated[O
d-in-ab] by auto
    from this obtain pq where d-eq: d = p*a+q*b using sum-two-elements' by
blast
    moreover have d-dvd-a: d dvd a
    by (metis dvd-ideal-generated-singleton ideal-d ideal-generated-subset insert-commute
        subset-insertI)
    moreover have d dvd b
    by (metis dvd-ideal-generated-singleton ideal-d ideal-generated-subset subset-insertI)
```



```
    proof -
    obtain s1 s2 where s1-dvd: a=s1*\mp@subsup{d}{}{\prime}}\mathrm{ and s2-dvd: b= s2* '
            using mult.commute d'-dvd unfolding dvd-def by auto
    have d}=p*a+q*b\mathrm{ using d-eq.
    also have ...=p*s1*\mp@subsup{d}{}{\prime}+q*s2*\mp@subsup{d}{}{\prime}\mathrm{ unfolding s1-dvd s2-dvd by auto}
    also have }\ldots=(p*s1+q*s2)*\mp@subsup{d}{}{\prime}\mathbf{ by (simp add: ring-class.ring-distribs(2))
    finally show d' dvd d using mult.commute unfolding dvd-def by auto
    qed
    ultimately show \existspqd. p*a+q*b=d\wedge d dvd a}^ddvd
    \wedge ( \forall d ^ { \prime } . d ^ { \prime } d v d ~ a \wedge ~ d ^ { \prime } d v d b \longrightarrow d ^ { \prime } d v d ~ d ) ~ b y ~ a u t o
qed
end
context bezout-ring
begin
lemma exists-bezout-extended:
    assumes S: finite S and ne: S\not={}
    shows }\exists\textrm{fd}.(\suma\inS.fa*a)=d\wedge(\foralla\inS.d dvd a)^(\forall\mp@subsup{d}{}{\prime}.(\foralla\inS.\mp@subsup{d}{}{\prime}dvd a
\longrightarrow d ^ { \prime } d v d ~ d )
    using S ne
proof (induct S)
    case empty
    then show ?case by auto
next
    case (insert x S)
```

```
    show ?case
    proof (cases S={})
    case True
    let ?f = \lambdax. 1
    show ?thesis by (rule exI[of - ?f], insert True, auto)
next
    case False note ne= False
    note x-notin-S = insert.hyps(2)
    obtain fd where sum-eq-d: (\suma\inS.fa*a)=d
        and d-dvd-each-a: (}\foralla\inS.d dvd a
        and d-is-gcd: (\foralld'.(\foralla\inS. d' dvd a)}\longrightarrow\mp@subsup{d}{}{\prime}\mathrm{ dvd d)
        using insert.hyps(3)[OF ne] by auto
    have }\existspq\mp@subsup{d}{}{\prime}.p*d+q*x=\mp@subsup{d}{}{\prime}\wedge\mp@subsup{d}{}{\prime}dvdd\wedge\mp@subsup{d}{}{\prime}dvdx\wedge(\forallc.cdvdd\wedge
dvd x }\longrightarrowcdvd d'
    using exists-bezout by auto
    from this obtain p q d}\mp@subsup{d}{}{\prime}\mathrm{ where pd-qx-d': p*d+q*x= d'
        and d'}\mp@subsup{d}{}{\prime}dvd-d:\mp@subsup{d}{}{\prime}dvdd\mathrm{ and }\mp@subsup{d}{}{\prime}-dvd-x:\mp@subsup{d}{}{\prime}dvd
        and d'}\mp@subsup{d}{}{\prime}-dvd:\forallc.(c dvd d\wedgec dvd x)\longrightarrowc dvd d' by blas
    let ?f = \lambdaa. if }a=x\mathrm{ then q else p*fa
    have (\suma\ininsert x S. ?f }a*a)=\mp@subsup{d}{}{\prime
    proof -
        have (\suma\ininsert x S. ?f a*a)=(\suma\inS. ?f a*a)+ ?f x*x
            by (simp add: add-commute insert.hyps(1) insert.hyps(2))
        also have ... = p*(\suma\inS.fa*a)+q*x
            unfolding sum-distrib-left
                by (auto, rule sum.cong, insert x-notin-S,
                    auto simp add: mult.semigroup-axioms semigroup.assoc)
        finally show ?thesis using pd-qx-d' sum-eq-d by auto
    qed
    moreover have ( }\foralla\in\mathrm{ insert x S. d' dvd a)
    by (metis d'-dvd-d d'-dvd-x d-dvd-each-a insert-iff local.dvdE local.dvd-mult-left)
    moreover have ( }\forallc.(\foralla\in\mathrm{ insert }xS.c dvd a)\longrightarrowc lvd d'
        by (simp add: d'-dvd d-is-gcd)
    ultimately show ?thesis by auto
qed
qed
end
lemma ideal-generated-empty: ideal-generated {}={0}
    unfolding ideal-generated-def using ideal-generated-0
by (metis empty-subsetI ideal-generated-def ideal-generated-subset ideal-ideal-generated
    ideal-not-empty subset-singletonD)
lemma bezout-imp-all-fin-gen-ideals-are-principal:
fixes I::'a :: bezout-ring set
assumes fin: finitely-generated-ideal I
shows principal-ideal I
```

```
proof -
    obtain S where fin-S: finite S and ideal-gen-S: ideal-generated S=I
        using fin unfolding finitely-generated-ideal-def by auto
    show ?thesis
    proof (cases S={})
        case True
        then show ?thesis
            using ideal-gen-S unfolding True
            using ideal-generated-empty ideal-generated-0 principal-ideal-def by fastforce
    next
        case False note ne = False
        obtain df}\mathrm{ where sum-S-d: (\i<S.fi*i)=d
        and d-dvd-a: (\foralla\inS.d dvd a) and d-is-gcd: }(\forall\mp@subsup{d}{}{\prime}.(\foralla\inS.\mp@subsup{d}{}{\prime}dvd a)\longrightarrow\mp@subsup{d}{}{\prime}dv
d)
            using exists-bezout-extended[OF fin-S ne] by auto
        have d-in-S: d \in ideal-generated S
            by (metis fin-S ideal-def ideal-generated-subset-generator
                    ideal-ideal-generated sum-S-d sum-left-ideal)
        have ideal-generated {d}\subseteq ideal-generated S
            by (rule ideal-generated-singleton-subset[OF d-in-S fin-S])
        moreover have ideal-generated S\subseteqideal-generated {d}
        proof
            fix x assume x-in-S: x ideal-generated S
            obtain f where sum-S-x: (\suma\inS.fa*a)=x
                using fin-S obtain-sum-ideal-generated x-in-S by blast
            have d-dvd-each-a: \existsk.a=k*d if }a\inS\mathrm{ for a
                by (metis d-dvd-a dvdE mult.commute that)
            let ? g = \lambdaa. SOME k. a = k*d
            have }x=(\suma\inS.fa*a) using sum-S-x by sim
            also have ... =( \suma\inS.fa*(?ga*d))
            proof (rule sum.cong)
                fix a assume a-in-S: a \inS
                    obtain k where a-kd: a=k*d using d-dvd-each-a a-in-S by auto
                    have }a=((SOME k.a=k*d)*d) by (rule someI-ex, auto simp add
a-kd)
            thus fa*a=fa*((SOME k. a=k*d)*d) by auto
            qed (simp)
            also have ... =(\suma\inS.fa*?g a*d) by (rule sum.cong, auto)
            also have ... =( \suma\inS.fa*?ga)*d using sum-distrib-right[of-S d] by
auto
            finally show }x\in\mathrm{ ideal-generated {d}
                    by (meson contra-subsetD dvd-ideal-generated-singleton' dvd-triv-right
                    ideal-generated-in singletonI)
        qed
        ultimately show ?thesis unfolding principal-ideal-def using ideal-gen-S by
auto
    qed
qed
```

Now we have the required lemmas to prove the theorem that states that a
ring is Bézout ring if and only if every finitely generated ideal is principal. They are the following ones.

- all-fin-gen-ideals-are-principal-imp-bezout
- bezout-imp-all-fin-gen-ideals-are-principal

However, in order to prove the final lemma, we need the lemmas with no type restrictions. For instance, we need a version of theorem bezout-imp-all-fin-gen-ideals-are-principal as
OFCLASS ('a,bezout-ring) \Longrightarrow the theorem with generic types (i.e., ' a with no type restrictions)
or as
class.bezout-ring -- \Longrightarrow the theorem with generic types (i.e., ' a with no type restrictions)

Thanks to local type definitions, we can obtain it automatically by means of internalize-sort.
lemma bezout-imp-all-fin-gen-ideals-are-principal-unsatisfactory:
assumes a1: class.bezout-ring $(*)(1:: ' b::$ comm-ring-1) $(+) 0(-)$ uminus
shows $\forall I:: ' b$ set. finitely-generated-ideal $I \longrightarrow$ principal-ideal I
using bezout-imp-all-fin-gen-ideals-are-principal[internalize-sort 'a::bezout-ring]
using a1 by auto
The standard library does not connect OFCLASS and class.bezout-ring in both directions. Here we show that OFCLASS \Longrightarrow class.bezout-ring.

```
lemma OFCLASS-bezout-ring-imp-class-bezout-ring:
    assumes OFCLASS (' \(a::\) comm-ring-1,bezout-ring-class \()\)
    shows class.bezout-ring \(\left((*)::^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a\right) 1(+) 0(-)\) uminus
    using assms
    unfolding bezout-ring-class-def class.bezout-ring-def
    using conjunctionD2[of OFCLASS('a, comm-ring-1-class)
    class.bezout-ring-axioms \(\left.\left((*)::^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a\right)(+)\right]\)
    by (auto, intro-locales)
```

The other implication can be obtained by thm Rings2.class.Rings2.bezout-ring.of-class.intro
thm Rings2.class.Rings2.bezout-ring.of-class.intro
Final theorem (with OFCLASS)
lemma bezout-ring-iff-fin-gen-principal-ideal:
($\bigwedge I:: ' a::$ comm-ring-1 set. finitely-generated-ideal $I \Longrightarrow$ principal-ideal I)
\equiv OFCLASS ('a, bezout-ring-class)
proof
show ($\bigwedge I$::'a::comm-ring-1 set. finitely-generated-ideal $I \Longrightarrow$ principal-ideal $I)$
$\Longrightarrow O F C L A S S$ ('a, bezout-ring-class)
using all-fin-gen-ideals-are-principal-imp-bezout $\left[\right.$ where ? $\left.a={ }^{\prime} a\right]$ by auto

```
    show \I::'a::comm-ring-1 set. OFCLASS('a, bezout-ring-class)
    \Longrightarrow ~ f i n i t e l y - g e n e r a t e d - i d e a l ~ I ~ \Longrightarrow ~ p r i n c i p a l - i d e a l ~ I ~
    using bezout-imp-all-fin-gen-ideals-are-principal-unsatisfactory[where ?'b='a]
    using OFCLASS-bezout-ring-imp-class-bezout-ring[where ?' a='a] by auto
qed
Final theorem (with class.bezout-ring)
lemma bezout-ring-iff-fin-gen-principal-ideal2:
    (}\forallI::'a::comm-ring-1 set. finitely-generated-ideal I \longrightarrow principal-ideal I)
    =(class.bezout-ring ((*)::'a 知 a>''a)1(+)0(-)uminus)
proof
    show }\forallI::'a::comm-ring-1 set. finitely-generated-ideal I \longrightarrow principal-ideal I
        \Longrightarrow \text { class.bezout-ring (*) 1(+) (0::'a) (-) uminus}
    using all-fin-gen-ideals-are-principal-imp-bezout[where ?' }a='=\
    using OFCLASS-bezout-ring-imp-class-bezout-ring[where ?'a='a]
    by auto
    show class.bezout-ring (*) 1 (+) (0::'a) (-) uminus \Longrightarrow \forallI::'a set.
    finitely-generated-ideal I \longrightarrow principal-ideal I
    using bezout-imp-all-fin-gen-ideals-are-principal-unsatisfactory by auto
qed
end
```


8 Connection between mod-ring and mod-type

This file shows that the type mod-ring, which is defined in the BerlekampZassenhaus development, is an instantiation of the type class mod-type.

```
theory Finite-Field-Mod-Type-Connection
    imports
    Berlekamp-Zassenhaus.Finite-Field
    Rank-Nullity-Theorem.Mod-Type
begin
instantiation mod-ring :: (finite) ord
begin
definition less-eq-mod-ring :: 'a mod-ring # ' 'a mod-ring }=>\mathrm{ bool
    where less-eq-mod-ring x y = (to-int-mod-ring x \leqto-int-mod-ring y)
definition less-mod-ring :: 'a mod-ring = 'a mod-ring => bool
    where less-mod-ring x y = (to-int-mod-ring x < to-int-mod-ring y)
instance proof qed
end
instantiation mod-ring :: (finite) linorder
begin
instance by (intro-classes, unfold less-eq-mod-ring-def less-mod-ring-def) (transfer,
auto)
```

```
instance mod-ring :: (finite) wellorder
proof -
have wf {(x :: 'a mod-ring, y). x<y}
    by (auto simp add: trancl-def tranclp-less intro!: finite-acyclic-wf acyclicI)
    thus OFCLASS('a mod-ring, wellorder-class)
    by(rule wf-wellorderI) intro-classes
qed
```

lemma strict-mono-to-int-mod-ring: strict-mono to-int-mod-ring unfolding strict-mono-def unfolding less-mod-ring-def by auto

```
instantiation mod-ring :: (nontriv) mod-type
begin
definition Rep-mod-ring :: 'a mod-ring }=>\mathrm{ int
    where Rep-mod-ring x = to-int-mod-ring }
definition Abs-mod-ring :: int => 'a mod-ring
    where Abs-mod-ring x =of-int-mod-ring x
instance
proof (intro-classes)
    show type-definition (Rep::'a mod-ring => int) Abs {0..<int CARD('a mod-ring)}
        unfolding Rep-mod-ring-def Abs-mod-ring-def type-definition-def by (transfer,
auto)
    show 1< int CARD('a mod-ring) using less-imp-of-nat-less nontriv by fastforce
    show 0 = (Abs::int => 'a mod-ring) 0
        by (simp add: Abs-mod-ring-def)
    show 1 = (Abs::int => 'a mod-ring) 1
        by (metis (mono-tags, hide-lams) Abs-mod-ring-def of-int-hom.hom-one of-int-of-int-mod-ring)
    fix x y::'a mod-ring
    show }x+y=Abs((Rep x + Rep y) mod int CARD('a mod-ring)) 
        unfolding Abs-mod-ring-def Rep-mod-ring-def by (transfer, auto)
    show -x = Abs( - Rep x mod int CARD('a mod-ring))
        unfolding Abs-mod-ring-def Rep-mod-ring-def by (transfer, auto simp add:
zmod-zminus1-eq-if)
    show x*y=Abs(Rep x * Rep y mod int CARD('a mod-ring))
        unfolding Abs-mod-ring-def Rep-mod-ring-def by (transfer, auto)
    show }x-y=Abs((Rep x - Rep y) mod int CARD('a mod-ring))
        unfolding Abs-mod-ring-def Rep-mod-ring-def by (transfer, auto)
    show strict-mono (Rep::'a mod-ring => int) unfolding Rep-mod-ring-def
        by (rule strict-mono-to-int-mod-ring)
qed
end
end
```


9 Generality of the Algorithm to transform from diagonal to Smith normal form

theory Admits-SNF-From-Diagonal-Iff-Bezout-Ring imports
Diagonal-To-Smith
Rings2-Extended
Smith-Normal-Form-JNF
Finite-Field-Mod-Type-Connection
begin

hide-const (open) mat
This section provides a formal proof on the generality of the algorithm that transforms a diagonal matrix into its Smith normal form. More concretely, we prove that all diagonal matrices with coefficients in a ring R admit Smith normal form if and only if R is a Bézout ring.
Since our algorithm is defined for Bézout rings and for any matrices (including non-square and singular ones), this means that it does not exist another algorithm that performs the transformation in a more abstract structure.

Firstly, we hide some definitions and facts, since we are interested in the ones developed for the mod-type class.
hide-const (open) Bij-Nat.to-nat Bij-Nat.from-nat Countable.to-nat Countable.from-nat
hide-fact (open) Bij-Nat.to-nat-from-nat-id Bij-Nat.to-nat-less-card
definition admits-SNF-HA (A::'a::comm-ring-1^' $n::\{\text { mod-type }\}^{\wedge \prime} n::\{$ mod-type $\left.\}\right)=$ (isDiagonal A
$\longrightarrow\left(\exists P Q\right.$. invertible ($\left(P::^{\prime} a::\right.$ comm-ring-1 ${ }^{\wedge \prime} n::\{\text { mod-type }\}^{\wedge \prime} n::\{$ mod-type $\left.\left.\}\right)\right)$
\wedge invertible $\left(Q:: ' a::\right.$ comm-ring-1^' $n::\{\text { mod-type }\}^{\wedge \prime} n::\{$ mod-type $\left.\}\right) \wedge$ Smith-normal-form $(P * * A * * Q)))$
definition admits-SNF-JNF $A=\left(\right.$ square-mat $\left(A::^{\prime} a::\right.$ comm-ring- 1 mat $) \wedge$ isDiag-onal-mat A
$\longrightarrow(\exists P Q . P \in$ carrier-mat (dim-row $A)$ (dim-row $A) \wedge Q \in$ carrier-mat (dim-row A) (dim-row A)
\wedge invertible-mat $P \wedge$ invertible-mat $Q \wedge$ Smith-normal-form-mat $(P * A * Q)))$

```
9.1 Proof of the }\Longleftarrow implication in HA.
lemma exists-f-PAQ-Aii':
    fixes }A::'a::{comm-ring-1}`'n::{mod-type} ^'n::{mod-type
    assumes diag-A: isDiagonal A
    shows }\exists\textrm{f.}(P**A**Q)$hi$hi=(\sumi\in(UNIV::'n set).fi*A $hi$hi
proof -
    have rw:(\sumka\inUNIV. P$hi$h ka*A$hka$hk)=P$hi$hk*A$hk
$hk for }
```

```
    proof -
    have (\sumka\inUNIV.P$hi$hka*A$hka$hk)=(\sumka\in{k}.P$hi$hka
* A $h ka $h k)
    proof (rule sum.mono-neutral-right, auto)
        fix ia assume P $hi$hia*A$hia $hk\not=0
        hence }A$h\mathrm{ ia $hk}k=0\mathrm{ by auto
            thus ia = k using diag-A unfolding isDiagonal-def by auto
    qed
    also have ... = P $hi $hk*A$hk$hk by auto
    finally show ?thesis.
qed
let ?f = \lambdak. (\sumka\inUNIV. P $hi $hka)*Q $hk$hi
have (P**A**Q)$hi$hi=(\sumk\inUNIV. (\sumka\inUNIV.P $hi$hka*A$h
ka$hk)*Q $hk$hi)
    unfolding matrix-matrix-mult-def by auto
    also have .. = (\sumk\inUNIV.P $hi$hk*Q$hk$hi*A$hk$hk)
    unfolding rw
    by (meson semiring-normalization-rules(16))
    finally show ?thesis by auto
qed
We apply internalize-sort to the lemma that we need
lemmas diagonal-to-Smith- \(P Q\)-exists-internalize-sort \(=\) diagonal-to-Smith- \(P Q\)-exists[internalize-sort ' \(a\) :: bezout-ring]
We get the \(\Longleftarrow\) implication in HA.
```

```
lemma bezout-ring-imp-diagonal-admits-SNF:
```

lemma bezout-ring-imp-diagonal-admits-SNF:
assumes of: OFCLASS('a::comm-ring-1, bezout-ring-class)
assumes of: OFCLASS('a::comm-ring-1, bezout-ring-class)
shows $\forall A::^{\prime} a^{\wedge \prime} n::\{\text { mod-type }\}^{\wedge} n::\{$ mod-type $\}$. isDiagonal A
shows $\forall A::^{\prime} a^{\wedge \prime} n::\{\text { mod-type }\}^{\wedge} n::\{$ mod-type $\}$. isDiagonal A
$\longrightarrow(\exists P Q$.
$\longrightarrow(\exists P Q$.
invertible ($P::^{\prime} a^{\wedge \prime} n::$ mod-type ${ }^{\wedge \prime} n::$ mod-type $) \wedge$
invertible ($P::^{\prime} a^{\wedge \prime} n::$ mod-type ${ }^{\wedge \prime} n::$ mod-type $) \wedge$
invertible ($Q::^{\prime} a^{\wedge \prime} n:: m o d-$ type $\left.{ }^{\wedge \prime} n:: m o d-t y p e\right) ~ \wedge$
invertible ($Q::^{\prime} a^{\wedge \prime} n:: m o d-$ type $\left.{ }^{\wedge \prime} n:: m o d-t y p e\right) ~ \wedge$
Smith-normal-form $\left.\left(P_{* *} A * * Q\right)\right)$
Smith-normal-form $\left.\left(P_{* *} A * * Q\right)\right)$
proof (rule allI, rule impI)
proof (rule allI, rule impI)
fix $A::^{\prime} a^{\wedge} n::\{\text { mod-type }\}^{\wedge} n::\{$ mod-type $\}$
fix $A::^{\prime} a^{\wedge} n::\{\text { mod-type }\}^{\wedge} n::\{$ mod-type $\}$
assume A : isDiagonal A
assume A : isDiagonal A
have br: class.bezout-ring (*) (1::'a) (+) 0 (-) uminus
have br: class.bezout-ring (*) (1::'a) (+) 0 (-) uminus
by (rule OFCLASS-bezout-ring-imp-class-bezout-ring[OF of])
by (rule OFCLASS-bezout-ring-imp-class-bezout-ring[OF of])
show $\exists P Q$.
show $\exists P Q$.
invertible ($P::^{\prime} a^{\wedge \prime} n::$ mod-type ${ }^{\wedge} n::$ mod-type $) \wedge$
invertible ($P::^{\prime} a^{\wedge \prime} n::$ mod-type ${ }^{\wedge} n::$ mod-type $) \wedge$
invertible ($Q:::^{\prime} a^{\wedge \prime} n::$ mod-type ${ }^{\wedge \prime} n::$ mod-type $) \wedge$
invertible ($Q:::^{\prime} a^{\wedge \prime} n::$ mod-type ${ }^{\wedge \prime} n::$ mod-type $) \wedge$
Smith-normal-form $(P * * A * * Q)$ by (rule diagonal-to-Smith- $P Q$-exists-internalize-sort[OF
Smith-normal-form $(P * * A * * Q)$ by (rule diagonal-to-Smith- $P Q$-exists-internalize-sort[OF
br A])
br A])
qed

```
qed
```


9.2 Trying to prove the \Longrightarrow implication in HA.

There is a problem: we need to define a matrix with a concrete dimension, which is not possible in HA (the dimension depends on the number of ele-
ments on a set, and Isabelle/HOL does not feature dependent types)

```
lemma
    assumes }\forallA::'a::comm-ring-1^'n::{mod-type} ^'n::{mod-type}. admits-SNF-HA
A
    shows OFCLASS('a::comm-ring-1, bezout-ring-class) oops
```


9.3 Proof of the \Longrightarrow implication in JNF.

lemma exists-f-PAQ-Aii:
assumes diag- A : isDiagonal-mat ($A::^{\prime} a::$ comm-ring- 1 mat)
and $P: P \in$ carrier-mat $n n$
and $A: A \in$ carrier-mat $n n$
and $Q: Q \in$ carrier-mat $n n$
and $i: i<n$

```
    shows \(\exists f .(P * A * Q) \$ \$(i, i)=\left(\sum i \in \operatorname{set}(\operatorname{diag}-m a t A) . f i * i\right)\)
```

proof -
let $? x s=$ diag-mat A
let $? n=$ length $? x s$
have length-n: length (diag-mat $A)=n$
by (metis A carrier-matD (1) diag-mat-def diff-zero length-map length-upt)
have $x s$-index: ? $x s!i=A \$ \(i, i) if $i<n$ for i
by (metis (no-types, lifting) add.left-neutral diag-mat-def length-map
length-n length-upt nth-map-upt that)
have i-length: $i<$ length ? $x s$ using i length-n by auto
have $r w:\left(\sum k a=0 . .<? n . P \$ \$(i, k a) * A \$ \$(k a, k)\right)=P \$ \$(i, k) * A \$ \$(k$,
k)
if k : $k<$ length ? $x s$ for k
proof -
have $\left(\sum k a=0 . .<? n . P \$ \$(i, k a) * A \$ \$(k a, k)\right)=\left(\sum k a \in\{k\} . P \$ \$(i, k a)\right.$

* $A \$ \$(k a, k))$
by (rule sum.mono-neutral-right, auto simp add: k,
insert diag-A A length-n that, unfold isDiagonal-mat-def, fastforce)
also have $\ldots=P \$ \$(i, k) * A \$ \(k, k) by auto
finally show?thesis .
qed
let ?positions-of $=\lambda x .\{i . A \$ \$(i, i)=x \wedge i<$ length ? $x s\}$
let ? $T=$ set ? $x s$
let ? $S=\{0 . .<$? $n\}$
let ?f $=\lambda x .\left(\sum k \in\{i . A \$ \$(i, i)=x \wedge i<\right.$ length (diag-mat $\left.A)\right\} . P \$ \$(i, k) *$
$Q \$ \$(k, i))$
let ? $g=(\lambda k . P \$ \$(i, k) * Q \$ \$(k, i) * A \$ \$(k, k))$
have UNION-positions-of: \bigcup (?positions-of'?T) $=$? S unfolding diag-mat-def
by auto
have $(P * A * Q) \$ \$(i, i)=\left(\sum i a=0 . .<? n\right.$.
Matrix.row (Matrix.mat ?n ?n $\left(\lambda(i, j) . \sum i a=0 . .<? n\right.$.
Matrix.row $P i \$ v i a * \operatorname{col} A j \$ v i a)) i \$ v i a * \operatorname{col} Q i \$ v i a)$
unfolding times-mat-def scalar-prod-def
using $P Q$ i-length length-n A by auto

```
    also have ... = (\sumk=0..<?n. (\sumka=0..<?n. P$$(i,ka)*A$$(ka,k))*Q$$
(k,i))
    proof (rule sum.cong, auto)
    fix }x\mathrm{ assume x: }x<\mathrm{ length ?xs
    have rw-colQ: col Q i$v x=Q $$(x,i)
            using Q i-length x length-n A by auto
    have rw2: Matrix.row (Matrix.mat ?n ?n
                    (\lambda(i,j).\sumia=0..<length ?xs. Matrix.row Pi$via*\operatorname{col A j$via)) i}
$vx
                    =(\sumia=0..<length ?xs. Matrix.row P i$via*col A x $via)
            unfolding row-mat[OF i-length] unfolding index-vec[OF x] by auto
    also have ... = (\sumia=0..<length ?xs. P $$ (i,ia)*A$$ (ia,x))
        by (rule sum.cong, insert P i-length x length-n A, auto)
    finally show Matrix.row (Matrix.mat ?n ? n ( }\lambda(i,j).\sumia=0..<?n. Matrix.row
Pi$via
                    * col A j $v ia)) i$vx* col Q i$vx
                    =(\sumka=0..<?n.P$$(i,ka)*A$$(ka,x))*Q$$(x,i) unfolding
rw-colQ by auto
    qed
    also have ... = (\sumk=0..<?n. P$$ (i,k)*Q$$ (k,i)*A$$ (k,k))
        by (smt rw semiring-normalization-rules(16) sum.ivl-cong)
    also have ... = sum ?g (U(?positions-of '?T))
        using UNION-positions-of by auto
    also have ... = (\sumx\in?T. sum ?g (?positions-of }x)
        by (rule sum.UNION-disjoint, auto)
    also have ... = (\sumx\inset (diag-mat A). (\sumk\in{i.A $$ (i,i)=x\wedgei<length
(diag-mat A)}.
        P$$(i,k)*Q $$ (k,i))*x)
        by (rule sum.cong, auto simp add: Groups-Big.sum-distrib-right)
    finally show ?thesis by auto
qed
```

Proof of the \Longrightarrow implication in JNF.
lemma diagonal-admits-SNF-imp-bezout-ring-JNF:
assumes admits-SNF: $\forall A n$. ($A::^{\prime} a$ mat $) \in$ carrier-mat $n n \wedge$ isDiagonal-mat A $\longrightarrow(\exists P Q . P \in$ carrier-mat $n n \wedge Q \in$ carrier-mat $n n \wedge$ invertible-mat $P \wedge$
invertible-mat Q
\wedge Smith-normal-form-mat $(P * A * Q))$
shows OFCLASS ('a::comm-ring-1, bezout-ring-class)
proof (rule all-fin-gen-ideals-are-principal-imp-bezout, rule allI, rule impI)
fix $I::^{\prime} a$ set
assume fin: finitely-generated-ideal I
obtain S where $i g$ - S : ideal-generated $S=I$ and fin-S: finite S
using fin unfolding finitely-generated-ideal-def by auto
show principal-ideal I
proof (cases $S=\{ \}$)
case True
then show?thesis
by (metis ideal-generated-0 ideal-generated-empty ig-S principal-ideal-def)

next

case False
obtain $x s$ where set-xs: set $x s=S$ and d : distinct $x s$ using finite-distinct-list $[O F$ fin-S $]$ by blast
hence length-eq-card: length $x s=$ card S using distinct-card by force
let ? $n=$ length $x s$
let ? $A=$ Matrix.mat ?n ? $n(\lambda(a, b)$. if $a=b$ then $x s$! a else 0$)$
have A-carrier: ? $A \in$ carrier-mat ?n ?n by auto
have diag-A: isDiagonal-mat?A unfolding isDiagonal-mat-def by auto
have set-xs-eq: set $x s=\{$? $A \$ \$(i, i) \mid i$. $i<$ dim-row ? $A\}$ by (auto, smt case-prod-conv d distinct-Ex1 index-mat(1))
have set-xs-diag-mat: set $x s=$ set (diag-mat ? A)
using set-xs-eq unfolding diag-mat-def by auto
obtain $P Q$ where $P: P \in$ carrier-mat ?n ?n
and $Q: Q \in$ carrier-mat ? n ? n and inv- P : invertible-mat P and inv- Q :
invertible-mat Q
and $S N F-P A Q$: Smith-normal-form-mat $(P * ? A * Q)$
using admits-SNF A-carrier diag- A by blast
define $y s$ where $y s$-def: ys $=\operatorname{diag}$-mat $(P * ? A * Q)$
have $y s: \forall i<? n . y s!i=(P * ? A * Q) \$ \(i, i) using P by (auto simp add: ys-def diag-mat-def)
have length-ys: length ys =? n unfolding $y s$-def
by (metis (no-types, lifting) P carrier-matD (1) diag-mat-def
index-mult-mat(2) length-map map-nth)
have n0: ? $n>0$ using False set-xs by blast
have set-ys-diag-mat: set ys $=$ set $($ diag-mat $(P * ? A * Q)) \mathbf{u s i n g} y s$-def by auto
let $? i=y s!0$
have $d v d$-all: $\forall a \in$ set ys. ? $i d v d a$
proof
fix a assume $a: a \in$ set $y s$
obtain j where $y s-j-a: y s!j=a$ and $j n: j<? n$ by (metis a in-set-conv-nth length-ys)
have $j P: j<d i m$-row P using $j n P$ by auto
have $j Q: j<$ dim-col Q using $j n Q$ by auto
have $(P * ? A * Q) \$ \$(0,0) d v d(P * ? A * Q) \$ \(j, j)
by (rule SNF-first-divides[OF SNF-PAQ], auto simp add: jP jQ)
thus ys! 0 dvd a using ys length-ys ys-j-a jn n0 by auto
qed
have ideal-generated $S=$ ideal-generated (set xs) using set-xs by simp
also have $\ldots=$ ideal-generated (set ys)
proof
show ideal-generated $($ set $x s) \subseteq$ ideal-generated (set ys)
proof (rule ideal-generated-subset2, rule ballI)
fix b assume $b: b \in$ set $x s$
obtain i where b - A-ii: $b=$? $A \$ \(i, i) and i-length: $i<$ length $x s$
using b set-xs-eq by auto
obtain P^{\prime} where inverts-mat- $P^{\prime}:$ inverts-mat $P P^{\prime} \wedge$ inverts-mat $P^{\prime} P$
using inv- P unfolding invertible-mat-def by auto
have $P^{\prime}: P^{\prime} \in$ carrier-mat ?n ?n
using inverts-mat- P^{\prime}
unfolding carrier-mat-def inverts-mat-def
by (auto,metis P carrier-matD index-mult-mat(3) one-carrier-mat)+
obtain Q^{\prime} where inverts-mat- $Q^{\prime}:$ inverts-mat $Q Q^{\prime} \wedge$ inverts-mat $Q^{\prime} Q$
using inv- Q unfolding invertible-mat-def by auto
have $Q^{\prime}: Q^{\prime} \in$ carrier-mat ?n ?n
using inverts-mat- Q^{\prime}
unfolding carrier-mat-def inverts-mat-def
by (auto,metis Q carrier-matD index-mult-mat(3) one-carrier-mat)+
have $r w-P A Q:\left(P^{\prime} *(P * ? A * Q) * Q^{\prime}\right) \$ \$(i, i)=? A \$ \(i, i)
using inv- $P^{\prime} P A Q Q^{\prime}\left[O F A\right.$-carrier $\left.P-Q P^{\prime} Q\right]$ inverts-mat- P^{\prime} in-verts-mat- Q^{\prime} by auto
have diag-PAQ: isDiagonal-mat $(P * ? A * Q)$
using SNF-PAQ unfolding Smith-normal-form-mat-def by auto
have $P A Q$-carrier: $(P * ? A * Q) \in$ carrier-mat ? n ?n using $P Q$ by auto
obtain f where $f:\left(P^{\prime} *(P * ? A * Q) * Q^{\prime}\right) \$ \$(i, i)=\left(\sum i \in\right.$ set (diag-mat $(P * ? A * Q)) . f i * i)$
using exists-f-PAQ-Aii $\left[O F \operatorname{diag}-P A Q P^{\prime} P A Q\right.$-carrier $Q^{\prime} i$-length $]$ by auto
hence ? $A \$ \$(i, i)=\left(\sum i \in \operatorname{set}(\operatorname{diag}-m a t(P * ? A * Q)) . f i * i\right)$ unfolding $r w-P A Q$.
thus $b \in$ ideal-generated (set ys)
unfolding ideal-explicit using set-ys-diag-mat $b-A$-ii by auto
qed
show ideal-generated $($ set ys) \subseteq ideal-generated (set xs)
proof (rule ideal-generated-subset2, rule ballI)
fix b assume $b: b \in$ set ys
have d : distinct (diag-mat ?A)
by (metis (no-types, lifting) A-carrier card-distinct carrier-matD(1) diag-mat-def length-eq-card length-map map-nth set-xs set-xs-diag-mat)
obtain i where $b-P A Q-i i:(P * ? A * Q) \$ \$(i, i)=b$ and i-length: $i<$ length $x s$ using b ys by (metis (no-types, lifting) in-set-conv-nth length-ys)
obtain f where $(P * ? A * Q) \$ \$(i, i)=\left(\sum i \in \operatorname{set}(\operatorname{diag}-m a t ? A) . f i * i\right)$ using exists-f-PAQ-Aii $[O F$ diag- $A P-Q$-length $]$ by auto
thus $b \in$ ideal-generated (set xs)
using $b-P A Q$-ii unfolding set-xs-diag-mat ideal-explicit by auto
qed
qed
also have $\ldots=$ ideal-generated $($ set ys $-($ set ys $-\{y s!0\}))$
proof (rule ideal-generated-dvd-eq-diff-set)
show ? $i \in$ set ys using n0
by (simp add: length-ys)
show ? $i \notin$ set ys $-\{? i\}$ by auto
show $\forall j \in$ set ys $-\{? i\}$. ?i dvd j using dvd-all by auto
show finite (set ys $-\{? i\}$) by auto
qed
also have $\ldots=$ ideal-generated $\{? i\}$
by (metis Diff-cancel Diff-not-in insert-Diff insert-Diff-if length-ys n0 nth-mem)
finally show principal-ideal I unfolding principal-ideal-def using $i g-S$ by auto
qed
qed
corollary diagonal-admits-SNF-imp-bezout-ring-JNF-alt:
assumes admits-SNF: \forall A. square-mat $\left(A::^{\prime}{ }^{\prime}\right.$ mat $) \wedge$ isDiagonal-mat A
$\longrightarrow(\exists P Q . P \in$ carrier-mat (dim-row $A)($ dim-row $A)$
$\wedge Q \in$ carrier-mat (dim-row $A)($ dim-row $A) \wedge$ invertible-mat $P \wedge$ invertible-mat Q
\wedge Smith-normal-form-mat $(P * A * Q))$
shows OFCLASS('a::comm-ring-1, bezout-ring-class)
proof (rule diagonal-admits-SNF-imp-bezout-ring-JNF, rule allI, rule allI, rule impI)
fix $A::^{\prime}{ }^{\prime}$ mat and n assume $A: A \in$ carrier-mat $n n \wedge$ isDiagonal-mat A
have square-mat A using A by auto
thus $\exists P Q . P \in$ carrier-mat $n n \wedge Q \in$ carrier-mat $n n$
\wedge invertible-mat $P \wedge$ invertible-mat $Q \wedge$ Smith-normal-form-mat $(P * A * Q)$ using A admits-SNF by blast
qed

9.4 Trying to transfer the \Longrightarrow implication to HA.

We first hide some constants defined in Mod-Type-Connect in order to use the ones presented in Perron-Frobenius.HMA-Connect by default.

```
context
    includes lifting-syntax
begin
lemma to-nat-mod-type-Bij-Nat:
    fixes a::'n::mod-type
    obtains b::'n where mod-type-class.to-nat a = Bij-Nat.to-nat b
    using Bij-Nat.to-nat-from-nat-id mod-type-class.to-nat-less-card by metis
```

lemma inj-on-Bij-nat-from-nat: inj-on (Bij-Nat.from-nat::nat $\left.\Rightarrow{ }^{\prime} a\right)\{0 . .<C A R D(' a:: f i n i t e)\}$
by (auto simp add: inj-on-def Bij-Nat.from-nat-def length-univ-list-card
nth-eq-iff-index-eq univ-list(1))

This lemma only holds if a and b have the same type. Otherwise, it is possible that Bij-Nat.to-nat $a=B i j-N a t . t o-n a t b$

```
lemma Bij-Nat-to-nat-neq:
    fixes a b ::'n::mod-type
    assumes to-nat a\not= to-nat b
    shows Bij-Nat.to-nat a \not= Bij-Nat.to-nat b
```

using assms to-nat-inj by blast
The following proof (a transfer rule for diagonal matrices) is weird, since it does not hold Bij-Nat.to-nat $a=$ mod-type-class.to-nat a.
At first, it seems possible to obtain the element a^{\prime} that satisfies Bij-Nat.to-nat $a^{\prime}=$ mod-type-class.to-nat a and then continue with the proof, but then we cannot prove HMA-I (Bij-Nat.to-nat a^{\prime}) a.
This means that we must use the previous lemma Bij-Nat-to-nat-neq, but this imposes the matrix to be square.

```
lemma HMA-isDiagonal[transfer-rule]: (HMA-M ===> (=))
    isDiagonal-mat (isDiagonal::('a::\{zero\} \({ }^{\wedge \prime} n::\{\) mod-type \(\}{ }^{\wedge \prime} n::\{\) mod-type \(\}=>\) bool \()\) )
proof (intro rel-funI, goal-cases)
    case (1 x y)
    note rel-xy \([\) transfer-rule \(]=1\)
    have \(y \$ h a \$ h b=0\)
    if allO: \(\forall i j\). \(i \neq j \wedge i<\) dim-row \(x \wedge j<\operatorname{dim}-\operatorname{col} x \longrightarrow x \$ \$(i, j)=0\)
        and \(a\)-noteq- \(b: a \neq b\) for \(a::^{\prime} n\) and \(b:: ' n\)
    proof -
    have to-nat \(a \neq\) to-nat \(b\) using \(a\)-noteq- \(b\) by auto
    hence distinct: Bij-Nat.to-nat \(a \neq B i j-N a t . t o-n a t ~ b\) by (rule Bij-Nat-to-nat-neq)
    moreover have Bij-Nat.to-nat \(a<d i m-r o w x\) and Bij-Nat.to-nat \(b<d i m-c o l\)
\(x\)
    using Bij-Nat.to-nat-less-card dim-row-transfer-rule rel-xy dim-col-transfer-rule
        by fastforce+
    ultimately have b: \(x \$ \$\) (Bij-Nat.to-nat a, Bij-Nat.to-nat b) \(=0\) using all0
by auto
    have [transfer-rule]: HMA-I (Bij-Nat.to-nat a) a by (simp add: HMA-I-def)
    have [transfer-rule]: HMA-I (Bij-Nat.to-nat b) b by (simp add: HMA-I-def)
    have index-hma y a \(b=0\) using \(b\) by (transfer', auto)
    thus ?thesis unfolding index-hma-def.
    qed
    moreover have \(x \$ \$(i, j)=0\)
    if all0: \(\forall a b . a \neq b \longrightarrow y \$ h a \$ h b=0\)
        and \(i j: i \neq j\) and \(i: i<\) dim-row \(x\) and \(j: j<\operatorname{dim}-\operatorname{col} x\) for \(i j\)
    proof -
    have \(i-n: i<C A R D(' n)\) and \(j-n: j<C A R D(' n)\)
        using \(i j\) rel-xy dim-row-transfer-rule dim-col-transfer-rule
        by fastforce+
    let \(? i^{\prime}=\) Bij-Nat.from-nat \(i::{ }^{\prime} n\)
    let \(? j^{\prime}=\) Bij-Nat.from-nat \(j::{ }^{\prime} n\)
    have \(i^{\prime}\)-neq- \(j^{\prime}: ? i^{\prime} \neq ? j^{\prime}\) using \(i j i-n j\)-n Bij-Nat.from-nat-inj by blast
    hence y0: index-hma y ? \(i^{\prime} ? j^{\prime}=0\) using all0 unfolding index-hma-def by
auto
    have [transfer-rule]: HMA-I \(i\) ? \(i^{\prime}\) unfolding HMA-I-def
            by (simp add: Bij-Nat.to-nat-from-nat-id i-n)
    have [transfer-rule]: HMA-I \(j\) ? \(j^{\prime}\) unfolding \(H M A-I-d e f\)
            by (simp add: Bij-Nat.to-nat-from-nat-id j-n)
```

```
    show ?thesis using y0 by (transfer, auto)
    qed
    ultimately show ?case unfolding isDiagonal-mat-def isDiagonal-def
    by auto
qed
```

Indeed, we can prove the transfer rules with the new connection based on the mod-type class, which was developed in the Mod-Type-Connect file

This is the same lemma as the one presented above, but now using the to-nat function defined in the mod-type class and then we can prove it for nonsquare matrices, which is very useful since our algorithms are not restricted to square matrices.

```
lemma HMA-isDiagonal-Mod-Type[transfer-rule]: (Mod-Type-Connect.HMA-M ===>
(=))
    isDiagonal-mat (isDiagonal::('a::\{zero\} \({ }^{\wedge} n:\) : \(\{\) mod-type \(\}\) " \(m::\{\) mod-type \(\}=>\) bool \()\) )
proof (intro rel-funI, goal-cases)
    case (1 \(x y\) )
    note rel-xy \([\) transfer-rule \(]=1\)
    have \(y \$ h a \$ h b=0\)
        if all0: \(\forall i j\). \(i \neq j \wedge i<\operatorname{dim}\)-row \(x \wedge j<\operatorname{dim}-\operatorname{col} x \longrightarrow x \$ \$(i, j)=0\)
            and \(a\)-noteq- \(b\) : to-nat \(a \neq\) to-nat \(b\) for \(a::{ }^{\prime} m\) and \(b:: ' n\)
    proof -
    have distinct: to-nat \(a \neq\) to-nat \(b\) using \(a\)-noteq- \(b\) by auto
    moreover have to-nat \(a<\) dim-row \(x\) and to-nat \(b<d i m-\operatorname{col} x\)
            using to-nat-less-card rel-xy
    using Mod-Type-Connect.dim-row-transfer-rule Mod-Type-Connect.dim-col-transfer-rule
            by fastforce+
    ultimately have \(b: x \$ \$\) (to-nat a, to-nat \(b)=0\) using allo by auto
    have [transfer-rule]: Mod-Type-Connect.HMA-I (to-nat a) a
            by (simp add: Mod-Type-Connect.HMA-I-def)
    have [transfer-rule]: Mod-Type-Connect.HMA-I (to-nat b) b
            by (simp add: Mod-Type-Connect.HMA-I-def)
    have index-hma y a \(b=0\) using \(b\) by (transfer', auto)
    thus ?thesis unfolding index-hma-def.
qed
moreover have \(x \$ \$(i, j)=0\)
    if all0: \(\forall a b\). to-nat \(a \neq\) to-nat \(b \longrightarrow y \$ h a \$ h b=0\)
        and \(i j: i \neq j\) and \(i: i<\) dim-row \(x\) and \(j: j<\operatorname{dim}\)-col \(x\) for \(i j\)
proof -
    have \(i\)-n: \(i<C A R D\left({ }^{\prime} m\right)\)
            using \(i\) rel-xy by (simp add: Mod-Type-Connect.dim-row-transfer-rule)
    have \(j\)-n: \(j<C A R D\left({ }^{\prime} n\right)\)
            using \(j\) rel-xy by (simp add: Mod-Type-Connect.dim-col-transfer-rule)
    let \(? i^{\prime}=\) from-nat \(i::^{\prime} m\)
    let \(? j^{\prime}=\) from-nat \(j::{ }^{\prime} n\)
    have to-nat \(? i^{\prime} \neq\) to-nat \(? j^{\prime}\)
            by (simp add: i-n ij j-n mod-type-class.to-nat-from-nat-id)
```

hence y0: index-hma $y ? i^{\prime} ? j^{\prime}=0$ using all0 unfolding index-hma-def by auto
have [transfer-rule]: Mod-Type-Connect.HMA-I i ? i^{\prime}
unfolding Mod-Type-Connect.HMA-I-def
by (simp add: to-nat-from-nat-id i-n)
have [transfer-rule]: Mod-Type-Connect.HMA-I j ? j^{\prime}
unfolding Mod-Type-Connect.HMA-I-def
by (simp add: to-nat-from-nat-id j-n)
show ?thesis using $y 0$ by (transfer, auto)
qed
ultimately show ?case unfolding isDiagonal-mat-def isDiagonal-def
by auto
qed
We state the transfer rule using the relations developed in the new bride of the file Mod-Type-Connect.
lemma HMA-SNF[transfer-rule]: (Mod-Type-Connect.HMA-M ===> (=)) Smith-normal-form-mat

```
(Smith-normal-form::'a::\{comm-ring-1\} ^'n::\{mod-type \(\}^{\wedge \prime} m::\{\) mod-type \(\left.\} \Rightarrow b o o l\right)\)
proof (intro rel-funI, goal-cases)
    case (1 \(x y\) )
    note rel-xy[transfer-rule] \(=1\)
    have \(y \$ h a \$ h b d v d y \$ h(a+1) \$ h(b+1)\)
    if SNF-condition: \(\forall a\). Suc \(a<\) dim-row \(x \wedge\) Suc \(a<d i m-c o l x\)
        \(\longrightarrow x \$ \$(a, a) d v d x \$ \$(S u c a\), Suc a)
        and a1: Suc (to-nat a) < nrows \(y\) and a2: Suc (to-nat b) < ncols \(y\)
        and \(a b\) : to-nat \(a=\) to-nat \(b\) for \(a:::^{\prime} m\) and \(b:::^{\prime} n\)
    proof -
    have [transfer-rule]: Mod-Type-Connect.HMA-I (to-nat a) a
        by (simp add: Mod-Type-Connect.HMA-I-def)
    have [transfer-rule]: Mod-Type-Connect.HMA-I (to-nat (a+1)) (a+1)
        by (simp add: Mod-Type-Connect.HMA-I-def)
    have [transfer-rule]: Mod-Type-Connect.HMA-I (to-nat b) \(b\)
        by (simp add: Mod-Type-Connect.HMA-I-def)
    have [transfer-rule]: Mod-Type-Connect.HMA-I (to-nat (b+1)) (b+1)
        by (simp add: Mod-Type-Connect.HMA-I-def)
    have Suc (to-nat a) < dim-row \(x\) using a1
        by (metis Mod-Type-Connect.dim-row-transfer-rule nrows-def rel-xy)
    moreover have Suc (to-nat b) <dim-col x
        by (metis Mod-Type-Connect.dim-col-transfer-rule a2 ncols-def rel-xy)
    ultimately have \(x \$ \$\) (to-nat a, to-nat b) dvd \(x \$ \$\) (Suc (to-nat a), Suc (to-nat
b))
        using \(S N F\)-condition by (simp add: ab)
    also have \(\ldots=x \$ \$\) (to-nat \((a+1)\), to-nat \((b+1))\)
        by (metis Suc-eq-plus1 a1 a2 nrows-def ncols-def to-nat-suc)
    finally have \(S N F\)-cond: \(x \$ \$\) (to-nat \(a\), to-nat \(b)\) dvd \(x \$ \$\) (to-nat \((a+1)\),
to-nat \((b+1))\).
    have \(x \$ \$\) (to-nat \(a\), to-nat b) \(=\) index-hma y a b by (transfer, simp)
    moreover have \(x \$ \$(\) to-nat \((a+1)\), to-nat \((b+1))=\) index-hma \(y(a+1)\)
```

by (transfer, simp)
ultimately show ?thesis using SNF-cond unfolding index-hma-def by auto qed
moreover have $x \$ \$(a, a) d v d x \$ \$($ Suc a, Suc $a)$
if SNF: $\forall a b$. to-nat $a=$ to-nat $b \wedge$ Suc (to-nat $a)<$ nrows $y \wedge$ Suc (to-nat b)
$<$ ncols y
$\longrightarrow y \$ h a \$ h b d v d y \$ h(a+1) \$ h(b+1)$
and a1: Suc $a<$ dim-row x and a2: Suc $a<\operatorname{dim}-c o l x$ for a
proof -
have dim-row-CARD: dim-row $x=C A R D(' m)$
using Mod-Type-Connect.dim-row-transfer-rule rel-xy by blast
have dim-col-CARD: dim-col $x=C A R D(' n)$
using Mod-Type-Connect.dim-col-transfer-rule rel-xy by blast
let $? a^{\prime}=$ from-nat $a::{ }^{\prime} m$
let $? b^{\prime}=$ from-nat $a::{ }^{\prime} n$
have Suc-a-less-CARD: $a+1<C A R D(' m)$ using a1 dim-row-CARD by auto
have Suc-b-less-CARD: $a+1<C A R D(' n)$ using a2
by (metis Mod-Type-Connect.dim-col-transfer-rule Suc-eq-plus1 rel-xy)
have $a a^{\prime}\left[\right.$ transfer-rule]: Mod-Type-Connect.HMA-I a ? a^{\prime}
unfolding Mod-Type-Connect.HMA-I-def
by (metis Suc-a-less-CARD add-lessD1 mod-type-class.to-nat-from-nat-id)
have [transfer-rule]: Mod-Type-Connect.HMA-I $(a+1)\left(? a^{\prime}+1\right)$
unfolding Mod-Type-Connect.HMA-I-def
unfolding from-nat-suc[symmetric] using to-nat-from-nat-id[OF Suc-a-less-CARD]
by auto
have $a b^{\prime}[$ transfer-rule]: Mod-Type-Connect.HMA-I a ?b'
unfolding Mod-Type-Connect.HMA-I-def
by (metis Suc-b-less-CARD add-lessD1 mod-type-class.to-nat-from-nat-id)
have [transfer-rule]: Mod-Type-Connect.HMA-I $(a+1)\left(? b^{\prime}+1\right)$
unfolding Mod-Type-Connect.HMA-I-def
unfolding from-nat-suc[symmetric] using to-nat-from-nat-id[OF Suc-b-less-CARD]
by auto
have $a a^{\prime} 1$: $a=$ to-nat ? a^{\prime} using $a a^{\prime}$ by (simp add: Mod-Type-Connect.HMA-I-def)
have $a b^{\prime} 1: a=$ to-nat $? b^{\prime}$ using $a b^{\prime}$ by (simp add: Mod-Type-Connect.HMA-I-def)
have Suc (to-nat ? a^{\prime}) < nrows y using a1 dim-row-CARD by (simp add: mod-type-class.to-nat-from-nat-id nrows-def)
moreover have Suc (to-nat ?b') < ncols y using a2 dim-col-CARD by (simp add: mod-type-class.to-nat-from-nat-id ncols-def)
ultimately have $S N F^{\prime}: y \$ h ? a^{\prime} \$ h ? b^{\prime}$ dvd $y \$ h\left(? a^{\prime}+1\right) \$ h\left(? b^{\prime}+1\right)$ using $S N F a b^{\prime} 1 a^{\prime} 1$ by auto
have index-hma y ? $a^{\prime} ? b^{\prime}=x \$ \(a, a) by (transfer, simp)
moreover have index-hma $y\left(? a^{\prime}+1\right)\left(? b^{\prime}+1\right)=x \$ \$(a+1, a+1)$ by (transfer, simp)
ultimately show ?thesis using $S N F^{\prime}$ unfolding index-hma-def by auto qed
ultimately show? case unfolding Smith-normal-form-mat-def Smith-normal-form-def
using rel-xy by (auto) (transfer', auto)+
qed
lemma HMA-admits-SNF [transfer-rule]:
((Mod-Type-Connect.HMA-M ::- $\boldsymbol{-}^{\prime} a::$ comm-ring-1 ^' $n::\{$ mod-type $\}{ }^{\wedge}$ ' $n::\{$ mod-type $\}$
$\Rightarrow-)===>(=))$
admits-SNF-JNF admits-SNF-HA
proof (intro rel-funI, goal-cases)
case (1 $x y$)
note $[$ transfer-rule $]=$ this
hence id: dim-row $x=C A R D(' n)$ by (auto simp: Mod-Type-Connect.HMA-M-def)
then show ? case unfolding admits-SNF-JNF-def admits-SNF-HA-def
by (transfer, auto, metis 1 Mod-Type-Connect.dim-col-transfer-rule)
qed
end
Here we have a problem when trying to apply local type definitions
lemma diagonal-admits-SNF-imp-bezout-ring:
assumes admits-SNF: $\forall A::{ }^{\prime} a::$ comm-ring-1 ${ }^{\wedge} n::\{$ mod-type $\}{ }^{\wedge} n$ n::\{mod-type $\}$. is-
Diagonal A
$\longrightarrow\left(\exists P\right.$ Q. invertible ($P::{ }^{\prime} a::$ comm-ring-1^' $n::\{\text { mod-type }\}^{\wedge \prime} n::\{$ mod-type $\left.\}\right)$
\wedge invertible ($Q::^{\prime} a::$ comm-ring-1^' $n::\{$ mod-type $\}{ }^{\wedge} n::\{$ mod-type $\left.\}\right)$
\wedge Smith-normal-form $(P * * A * * Q))$
shows OFCLASS ('a::comm-ring-1, bezout-ring-class)
proof (rule diagonal-admits-SNF-imp-bezout-ring-JNF, auto)
fix $A::^{\prime} a$ mat and n
assume $A: A \in$ carrier-mat $n n$ and diag-A: isDiagonal-mat A
have $a: \forall A::{ }^{\prime} a::$ comm-ring-1 1 ' $n::\{$ mod-type $\}{ }^{\wedge} n::\{$ mod-type $\}$. admits-SNF-HA A
using admits-SNF unfolding admits-SNF-HA-def .
have JNF: $\forall\left(A::^{\prime} a\right.$ mat $) \in$ carrier-mat $C A R D\left({ }^{\prime} n\right) C A R D(' n)$. admits-SNF-JNF
A

proof

fix $A::^{\prime} a m a t$
assume $A: A \in$ carrier-mat $C A R D(' n) C A R D(' n)$
let $? B=\left(\right.$ Mod-Type-Connect.to-hma $A::^{\prime} a::$ comm-ring-1^' $n:\{\text { mod-type }\}^{\wedge} n::\{$ mod-type $\left.\}\right)$
have [transfer-rule]: Mod-Type-Connect.HMA-M A ?B
using A unfolding Mod-Type-Connect.HMA-M-def by auto
have b : admits-SNF-HA ?B using a by auto
show admits-SNF-JNF A using b by transfer
qed
thus $\exists P . P \in$ carrier-mat $n \cap \wedge$
$(\exists Q . Q \in$ carrier-mat $n n \wedge$ invertible-mat P
\wedge invertible-mat $Q \wedge$ Smith-normal-form-mat $(P * A * Q))$
using JNF A diag-A unfolding admits-SNF-JNF-def unfolding square-mat.simps
oops
This means that the \Longrightarrow implication cannot be proven in HA, since we
cannot quantify over type variables in Isabelle/HOL. We then prove both implications in JNF.

9.5 Transfering the \Longleftarrow implication from HA to JNF using transfer rules and local type definitions

```
lemma bezout-ring-imp-diagonal-admits-SNF-mod-ring:
    assumes of: OFCLASS('a::comm-ring-1, bezout-ring-class)
    shows \forallA::'a^'n::nontriv mod-ring^'n::nontriv mod-ring. isDiagonal A
        \longrightarrow }\existsPQ\mathrm{ .
            invertible ( }P::'\mp@subsup{|}{}{\wedge`}n::nontriv mod-ring^'n::nontriv mod-ring) ^
            invertible ( Q::'a^'n::nontriv mod-ring^'n::nontriv mod-ring) ^
        Smith-normal-form (P**A**Q))
    using bezout-ring-imp-diagonal-admits-SNF[OF assms] by auto
lemma bezout-ring-imp-diagonal-admits-SNF-mod-ring-admits:
    assumes of:class.bezout-ring (*) (1::'a::comm-ring-1) (+) 0 (-) uminus
    shows }\forallA::'a^'n::nontriv mod-ring^'n::nontriv mod-ring. admits-SNF-HA A
    using bezout-ring-imp-diagonal-admits-SNF
        [OF Rings2.class.Rings2.bezout-ring.of-class.intro[OF of]]
    unfolding admits-SNF-HA-def by auto
I start here to apply local type definitions
context
    fixes p::nat
    assumes local-typedef: \exists(Rep :: ('b m int)) Abs. type-definition Rep Abs {0..<p
:: int}
    and p:p>1
begin
lemma type-to-set:
    shows class.nontriv TYPE('b) (is ?a) and p=CARD('b) (is ?b)
proof -
    from local-typedef obtain Rep::('b=> int) and Abs
        where t: type-definition Rep Abs {0..<p :: int} by auto
    have card (UNIV :: 'b set) = card {0..<p} using t type-definition.card by
fastforce
    also have ... = p by auto
    finally show ?b ..
    then show ?a unfolding class.nontriv-def using p by auto
qed
```

I transfer the lemma from HA to JNF, substituting $C A R D\left({ }^{\prime} n\right)$ by p. I apply internalize-sort to ' n and get rid of the nontriv restriction.
lemma bezout-ring-imp-diagonal-admits-SNF-mod-ring-admits-aux: assumes class.bezout-ring (*) (1::'a::comm-ring-1) (+) $0(-)$ uminus shows Ball $\left\{A::{ }^{\prime} a::\right.$ comm-ring-1 mat. $A \in$ carrier-mat p p $\}$ admits-SNF-JNF using bezout-ring-imp-diagonal-admits-SNF-mod-ring-admits[untransferred, unfolded CARD-mod-ring,
internalize-sort ' $n::$ nontriv, where $\left.?^{\prime} a={ }^{\prime} b\right]$
unfolding type-to-set(2)[symmetric] using type-to-set(1) assms by auto end

The \Longleftarrow implication in JNF
Since nontriv imposes the type to have more than one element, the cases $n=0(A \in$ carrier-mat 00$)$ and $n=1(A \in$ carrier-mat 11$)$ must be treated separately.
lemma bezout-ring-imp-diagonal-admits-SNF-mod-ring-admits-aux2:
assumes of: class.bezout-ring $(*)(1:: ' a::$ comm-ring-1) $(+) 0(-)$ uminus
shows $\forall\left(A::^{\prime} a\right.$ mat $) \in$ carrier-mat n n. admits-SNF-JNF A
proof (cases $n=0$)
case True
show ?thesis
by (rule, unfold True admits-SNF-JNF-def isDiagonal-mat-def invertible-mat-def
Smith-normal-form-mat-def carrier-mat-def inverts-mat-def, fastforce)
next
case False note not0 $=$ False
show ?thesis
proof (cases $n=1$)
case True
show ?thesis
by (rule, unfold True admits-SNF-JNF-def isDiagonal-mat-def invertible-mat-def
Smith-normal-form-mat-def carrier-mat-def inverts-mat-def, auto)
(metis dvd-1-left index-one-mat(2) index-one-mat(3) less-Suc0 nat-dvd-not-less

```
                right-mult-one-mat' zero-less-Suc)
```

next
case False
then have $n>1$ using not0 by auto
then show?thesis
using bezout-ring-imp-diagonal-admits-SNF-mod-ring-admits-aux[cancel-type-definition, of n] of
by auto
qed
qed
Alternative statements
lemma bezout-ring-imp-diagonal-admits-SNF-JNF:
assumes of: class.bezout-ring $(*)(1:: ' a::$ comm-ring-1) $(+) 0(-)$ uminus
shows $\forall A::^{\prime} a$ mat. admits-SNF-JNF A
proof
fix $A::^{\prime} a$ mat
have $A \in$ carrier-mat (dim-row A) (dim-col A) unfolding carrier-mat-def by auto
thus admits-SNF-JNF A
using bezout-ring-imp-diagonal-admits-SNF-mod-ring-admits-aux2[OF of] by (metis admits-SNF-JNF-def square-mat.elims(2))
qed
lemma admits-SNF-JNF-alt-def:
(\forall A::'a::comm-ring-1 mat. admits-SNF-JNF A)
$=\left(\forall A n\right.$. $\left(A::^{\prime} a\right.$ mat $) \in$ carrier-mat $n n \wedge$ isDiagonal-mat A
$\longrightarrow(\exists P Q . P \in$ carrier-mat $n n \wedge Q \in$ carrier-mat $n n \wedge$ invertible-mat $P \wedge$
invertible-mat Q
\wedge Smith-normal-form-mat $(P * A * Q))($ is ? $a=? b)$
by (auto simp add: admits-SNF-JNF-def, metis carrier-matD(1) carrier-matD(2), blast)

9.6 Final theorem in JNF

Final theorem using class.bezout-ring
theorem diagonal-admits-SNF-iff-bezout-ring:
shows class.bezout-ring (*) (1::'a::comm-ring-1) (+) $0(-)$ uminus $\longleftrightarrow\left(\forall A::^{\prime} a\right.$ mat. admits-SNF-JNF $\left.A\right)($ is ? $a \longleftrightarrow$? $b)$
proof
assume ?a
thus ?b using bezout-ring-imp-diagonal-admits-SNF-JNF by auto
next
assume $b: ? b$
have $r w: \forall A n$. (A::'a mat $) \in$ carrier-mat $n n \wedge$ isDiagonal-mat $A \longrightarrow$
$(\exists P Q . P \in$ carrier-mat $n n \wedge Q \in$ carrier-mat $n n \wedge$ invertible-mat P \wedge invertible-mat $Q \wedge$ Smith-normal-form-mat $(P * A * Q))$
using admits-SNF-JNF-alt-def b by auto
show ?a
using diagonal-admits-SNF-imp-bezout-ring-JNF[OF rw]
using OFCLASS-bezout-ring-imp-class-bezout-ring [where ?'a='a]
by auto
qed
Final theorem using OFCLASS
theorem diagonal-admits-SNF-iff-bezout-ring':
shows OFCLASS ('a::comm-ring-1, bezout-ring-class) $\equiv(\bigwedge A:: ' a$ mat. admits-SNF-JNF
A)
proof
fix $A::^{\prime}$ a mat
assume a: OFCLASS('a, bezout-ring-class)
show admits-SNF-JNF A
using OFCLASS-bezout-ring-imp-class-bezout-ring[OF a] diagonal-admits-SNF-iff-bezout-ring by auto
next
assume ($\bigwedge A$::'a mat. admits-SNF-JNF A)
hence $*$: class.bezout-ring $(*)\left(1::^{\prime} a\right)(+) 0(-)$ uminus
using diagonal-admits-SNF-iff-bezout-ring by auto

```
    show OFCLASS('a, bezout-ring-class)
    by (rule Rings2.class.Rings2.bezout-ring.of-class.intro, rule *)
qed
end
```


10 Uniqueness of the Smith normal form

```
theory SNF-Uniqueness
imports
    Cauchy-Binet
    Smith-Normal-Form-JNF
    Admits-SNF-From-Diagonal-Iff-Bezout-Ring
begin
lemma dvd-associated1:
    fixes a::'a::comm-ring-1
    assumes \existsu.u dvd 1^a=u*b
    shows advd b^bdvd a
    using assms by auto
```

This is a key lemma. It demands the type class to be an integral domain.
This means that the uniqueness result will be obtained for GCD domains,
instead of rings.
lemma dvd-associated2:
fixes $a:: ' a:: i d o m$
assumes $a b: a d v d b$ and $b a: b d v d a$ and $a: a \neq 0$
shows $\exists u$. u dvd $1 \wedge a=u * b$
proof -
obtain k where $a-k b: a=k * b$ using $a b$ unfolding $d v d-d e f$
by (metis Groups.mult-ac(2) ba dvdE)
obtain q where $b-q a: b=q * a$ using $b a$ unfolding $d v d-d e f$
by (metis Groups.mult-ac(2) ab dvdE)
have 1: $a=k * q * a$ using $a-k b b-q a$ by auto
hence $k * q=1$ using a by simp
thus ?thesis using 1 by (metis a-kb dvd-triv-left)
qed
corollary dvd-associated:
fixes a ::' $a:$:idom
assumes $a \neq 0$
shows $(a d v d b \wedge b d v d a)=(\exists u . u d v d 1 \wedge a=u * b)$
using assms dvd-associated1 dvd-associated2 by metis
lemma exists-inj-ge-index:
assumes $S: S \subseteq\{0 . .<n\}$ and $S k:$ card $S=k$
shows $\exists f$. inj-on $f\{0 . .<k\} \wedge f^{\prime}\{0 . .<k\}=S \wedge(\forall i \in\{0 . .<k\} . i \leq f i)$

```
proof -
    have \existsh.bij-betw h {0..<k} S
        using S Sk ex-bij-betw-nat-finite subset-eq-atLeast0-lessThan-finite by blast
    from this obtain g}\mathrm{ where inj-on-g: inj-on g{0..<k} and gk-S: g`{0..<k}=S
        unfolding bij-betw-def by blast
    let ?f = strict-from-inj kg
    have strict-mono-on ?f {0..<k} by (rule strict-strict-from-inj[OF inj-on-g])
    hence 1: inj-on ?f {0..<k} using strict-mono-on-imp-inj-on by blast
    have 2: ?f{{0..<k} =S by (simp add: strict-from-inj-image' inj-on-g gk-S)
    have 3: \foralli\in{0..<k}. i\leq ?f i
    proof
        fix i assume i:i\in{0..<k}
        let ?xs = sorted-list-of-set ( }\mp@subsup{g}{}{*}{0..<k}
        have strict-from-inj k gi=?xs!i unfolding strict-from-inj-def using i by
auto
    moreover have i\leq??ss!i
    proof (rule sorted-wrt-less-idx, rule sorted-distinct-imp-sorted-wrt)
            show sorted ?xs
                using sorted-sorted-list-of-set by blast
            show distinct ?xs using distinct-sorted-list-of-set by blast
            show i< length ?xs
                by (metis S Sk atLeast0LessThan distinct-card distinct-sorted-list-of-set gk-S
i
                    lessThan-iff set-sorted-list-of-set subset-eq-atLeast0-lessThan-finite)
    qed
    ultimately show i\leq? ? }i\mathrm{ by auto
    qed
    show ?thesis using 1 2 3 by auto
qed
```


10.1 More specific results about submatrices

```
lemma diagonal-imp-submatrix0:
    assumes dA: diagonal-mat \(A\) and \(A\)-carrier: \(A \in\) carrier-mat \(n m\)
    and \(I k:\) card \(I=k\) and \(J k:\) card \(J=k\)
    and \(r: \forall\) row-index \(\in I\). row-index \(<n\)
    and \(c: \forall\) col-index \(\in J\). col-index \(<m\)
    and \(a: a<k\) and \(b: b<k\)
shows submatrix A I J \$\$ \((a, b)=0 \vee\) submatrix A \(I J \$ \$(a, b)=A \$ \$(\) pick I a,
pick I a)
proof (cases submatrix A I J \$\$ \((a, b)=0)\)
    case True
    then show? ?thesis by auto
next
    case False note not0 \(=\) False
    have aux: submatrix A IJ \$\$ \((a, b)=A \$ \$\) pick I a, pick \(J b)\)
    proof (rule submatrix-index)
        have card \(\{i . i<\operatorname{dim}\)-row \(A \wedge i \in I\}=k\)
            by (smt A-carrier Ik carrier-matD(1) equalityI mem-Collect-eq r subsetI)
```

```
    moreover have card {i.i<dim-col A ^i\inJ}=k
        by (metis (no-types, lifting) A-carrier Jk c carrier-matD(2) carrier-mat-def
            equalityI mem-Collect-eq subsetI)
    ultimately show a<card {i.i<dim-row A}\wedgei\inI
        and b<card {i.i<dim-col A}\wedgei\inJ} using ab by aut
    qed
    thus ?thesis
    proof (cases pick I a = pick J b)
        case True
        then show ?thesis using aux by auto
    next
        case False
        then show ?thesis
            by (metis aux A-carrier Ik Jk a b c carrier-matD dA diagonal-mat-def
pick-in-set-le r)
    qed
qed
lemma diagonal-imp-submatrix-element-not0:
    assumes dA: diagonal-mat A
    and A-carrier: A \in carrier-mat n m
    and Ik:card I =k and Jk: card J=k
    and I:I\subseteq{0..<n}
    and }J:J\subseteq{0..<m
    and b: b<k
    and ex-not0: \existsi. i<k\wedge submatrix A I J $$ (i,b)\not=0
shows }\exists\mathrm{ !i. i<k ^ submatrix A I J $$ (i,b) =0
proof -
    have I-eq: I = {i. i< dim-row A}\wedgei\inI} using I A-carrier unfolding
carrier-mat-def by auto
    have J-eq: J ={i.i<dim-col A ^i\inJ} using J A-carrier unfolding
carrier-mat-def by auto
    obtain a where sub-ab: submatrix A I J $$ (a,b)\not=0 and ak: a<k using
ex-not0 by auto
    moreover have i=a if sub-ib: submatrix A I J $$ (i,b)\not=0 and ik:i<k for
i
    proof -
    have 1: pick I i< dim-row A
        using I-eq Ik ik pick-in-set-le by auto
    have 2: pick J b<dim-col A
        using J-eq Jk b pick-le by auto
    have 3: pick I a<dim-row A
                using I-eq Ik calculation(2) pick-le by auto
    have submatrix A I J$$(i,b)=A$$ (pick I i, pick J b)
        by (rule submatrix-index, insert I-eq Ik ik J-eq Jk b, auto)
        hence pick-Ii-Jb: pick I i = pick J b using dA sub-ib 1 2 unfolding diago-
nal-mat-def by auto
```

```
    have submatrix A I J $$ (a,b) = A $$ (pick I a, pick J b)
            by (rule submatrix-index, insert I-eq Ik ak J-eq Jk b, auto)
            hence pick-Ia-Jb:pick I a = pick J b using dA sub-ab 3 2 unfolding diago-
nal-mat-def by auto
    have pick-Ia-Ii: pick I a = pick I i using pick-Ii-Jb pick-Ia-Jb by simp
    thus ?thesis by (metis Ik ak ik nat-neq-iff pick-mono-le)
    qed
    ultimately show ?thesis by auto
qed
lemma submatrix-index-exists:
    assumes A-carrier: A\in carrier-mat n m
    and Ik: card I = k and Jk: card J=k
    and a:a\inI and b:b\inJ and k:k>0
    and I:I\subseteq{0..<n} and J:J\subseteq{0..<m}
shows \exists\mp@subsup{a}{}{\prime}\mp@subsup{b}{}{\prime}.\mp@subsup{a}{}{\prime}<k\wedge\mp@subsup{b}{}{\prime}<k\wedge\mathrm{ submatrix A I J $$ ( a', b})=A$$(a,b)
        \wedgea=pick I a'^}^b=\mathrm{ pick J b
proof -
    let ?xs = sorted-list-of-set I
    let ?ys = sorted-list-of-set J
    have finI: finite I and finJ: finite J using k Ik Jk card-ge-0-finite by metis+
    have set-xs: set ?xs =I by (rule set-sorted-list-of-set[OF finI])
    have set-ys: set ?ys = J by (rule set-sorted-list-of-set[OF finJ])
    have a-in-xs: a\in set ?xs and b-in-ys: b\in set ?ys using set-xs a set-ys b by auto
    have length-xs: length ?xs = k by (metis Ik distinct-card set-xs sorted-list-of-set(3))
    have length-ys: length ?ys = k by (metis Jk distinct-card set-ys sorted-list-of-set(3))
    obtain }\mp@subsup{a}{}{\prime}\mathrm{ where }\mp@subsup{a}{}{\prime}:?xs!\mp@subsup{a}{}{\prime}=a\mathrm{ and }\mp@subsup{a}{}{\prime}\mathrm{ -length: }\mp@subsup{a}{}{\prime}<length ?x
        by (meson a-in-xs in-set-conv-nth)
    obtain }\mp@subsup{b}{}{\prime}\mathrm{ where }\mp@subsup{b}{}{\prime}:\mathrm{ ? ys ! }\mp@subsup{b}{}{\prime}=b\mathrm{ and }\mp@subsup{b}{}{\prime}\mathrm{ -length: }\mp@subsup{b}{}{\prime}<length ?y
        by (meson b-in-ys in-set-conv-nth)
    have pick-a: a = pick I a' using a' a'-length finI sorted-list-of-set-eq-pick by
auto
    have pick-b: b = pick J b' using b' b'-length finJ sorted-list-of-set-eq-pick by
auto
    have I-rw: }I={i.i<dim-row A\wedgei\inI} and J-rw: J={i.i<dim-col A\wedge
i\inJ}
            using I A-carrier J by auto
    have a'k: a' <k using a'-length length-xs by auto
    moreover have }\mp@subsup{b}{}{\prime}k:\mp@subsup{b}{}{\prime}<k\mathrm{ using }\mp@subsup{b}{}{\prime}\mathrm{ -length length-ys by auto
    moreover have sub-eq: submatrix A IJ $$ (a', b})=A$$(a,b
        unfolding pick-a pick-b
            by (rule submatrix-index, insert J-rw I-rw Ik Jk a'-length length-xs b'-length
length-ys, auto)
    ultimately show ?thesis using pick-a pick-b by auto
qed
```

lemma mat-delete-submatrix-insert:

```
    assumes A-carrier: A \in carrier-mat n m
    and Ik: card I = k and Jk: card J=k
    and I:I\subseteq{0..<n} and }J:J\subseteq{0..<m
    and a:a<n and b:b<m
    and k: k<min nm
    and a-notin-I: a\not\inI and b-notin-J:b\not\inJ
    and a}\mp@subsup{a}{}{\prime}k:\mp@subsup{a}{}{\prime}<Suck\mathrm{ and }\mp@subsup{b}{}{\prime}k: \mp@subsup{b}{}{\prime}<Suc 
    and a-def: pick (insert a I) a'=a
    and b-def: pick (insert b J) b}\mp@subsup{b}{}{\prime}=
shows mat-delete (submatrix A (insert a I) (insert b J)) a' b' = submatrix A I J
(is ?lhs = ?rhs)
proof (rule eq-matI)
    have I-eq: }I={i.i<dim-row A\wedgei\inI
    using I A-carrier unfolding carrier-mat-def by auto
    have J-eq: J ={i.i<dim-col A\wedgei\inJ}
    using J A-carrier unfolding carrier-mat-def by auto
    have insert-I-eq: insert a I={i.i< dim-row }A\wedgei\ininsert a I
    using I A-carrier a k unfolding carrier-mat-def by auto
    have card-Suc-k: card {i. i< dim-row A}\wedgei\in\mathrm{ insert a I}=Suc k
    using insert-I-eq Ik a-notin-I
    by (metis I card-insert-disjoint finite-atLeastLessThan finite-subset)
have insert-J-eq: insert b J ={i. i< dim-col A\wedgei\in insert b J}
    using J A-carrier b k unfolding carrier-mat-def by auto
    have card-Suc-k':card {i. i<dim-col A ^i\in insert b J}=Suc k
    using insert-J-eq Jk b-notin-J
    by (metis J card-insert-disjoint finite-atLeastLessThan finite-subset)
show dim-row ?lhs = dim-row?rhs
    unfolding mat-delete-dim unfolding dim-submatrix using card-Suc-k I-eq Ik
by auto
    show dim-col ?lhs = dim-col ?rhs
    unfolding mat-delete-dim unfolding dim-submatrix using card-Suc-k' J-eq Jk
by auto
    fix ij assume i: i< dim-row (submatrix A I J)
        and j:j< dim-col (submatrix A I J)
    have ik: i<k by (metis I-eq Ik dim-submatrix(1) i)
    have jk: j<k by (metis J-eq Jk dim-submatrix(2) j)
    show ?lhs $$ (i,j)=?rhs $$ (i,j)
    proof -
    have index-eq1: pick (insert a I) (insert-index a' i) = pick I i
        by (rule pick-insert-index[OF Ik a-notin-I ik a-def], simp add: Ik a'k)
    have index-eq2: pick (insert b J) (insert-index b}\mp@subsup{b}{}{\prime}j)=\mathrm{ pick J j
                by (rule pick-insert-index[OF Jk b-notin-J jk b-def], simp add: Jk b'k)
    have ?lhs $$ (i,j)
                =(submatrix A (insert a I) (insert b J)) $$ (insert-index a' i, insert-index
b
    proof (rule mat-delete-index[symmetric, OF - a'k b
            show submatrix A (insert a I) (insert b J) \in carrier-mat (Suc k) (Suc k)
            by (metis card-Suc-k card-Suc-k' carrier-matI dim-submatrix(1) dim-submatrix(2))
    qed
```

```
    also have ... = A $$(pick (insert a I) (insert-index a' i), pick (insert b J)
(insert-index b' j))
    proof (rule submatrix-index)
        show insert-index a' i< card {i.i< dim-row A ^i\in insert a I}
            using card-Suc-k ik insert-index-def by auto
        show insert-index b' j<card {j.j< dim-col A ^j\ininsert b J}
            using card-Suc-k' insert-index-def jk by auto
    qed
    also have ... = A $$ (pick I i, pick J j) unfolding index-eq1 index-eq2 by auto
    also have ... = submatrix A I J $$ (i,j)
        by (rule submatrix-index[symmetric], insert ik I-eq Ik Jk J-eq jk, auto)
    finally show ?thesis.
    qed
qed
```


10.2 On the minors of a diagonal matrix

```
lemma det-minors-diagonal:
    assumes dA: diagonal-mat \(A\) and \(A\)-carrier: \(A \in\) carrier-mat \(n m\)
        and \(I k\) : card \(I=k\) and \(J k:\) card \(J=k\)
        and \(r: I \subseteq\{0 . .<n\}\)
        and \(c: J \subseteq\{0 . .<m\}\) and \(k: k>0\)
    shows \(\operatorname{det}(\) submatrix \(A I J)=0\)
    \(\vee(\exists\) xs. \((\operatorname{det}\) (submatrix A I J) \(=\) prod-list xs \(\vee \operatorname{det}(\) submatrix A IJ) \(=-\)
prod-list xs)
    \(\wedge\) set \(x s \subseteq\{A \$ \$(i, i) \mid i . i<\min n m \wedge A \$ \$(i, i) \neq 0\} \wedge\) length \(x s=k)\)
    using \(I k J k r c k\)
proof (induct \(k\) arbitrary: \(I J\) )
    case 0
    then show ?case by auto
next
    case (Suc k)
    note card \(I=\) Suc.prems(1)
    note \(\operatorname{cardJ}=\) Suc.prems(2)
    note \(I=\) Suc.prems(3)
    note \(J=\) Suc.prems(4)
    have \(*:\{i . i<\) dim-row \(A \wedge i \in I\}=I\) using I Ik \(A\)-carrier carrier-mat-def by
auto
    have \(* *:\{j . j<\operatorname{dim}\)-col \(A \wedge j \in J\}=J\) using \(J J k\)-carrier carrier-mat-def
by auto
    show? case
    proof (cases \(k=0\) )
    case True note \(k 0=\) True
    from this obtain \(a\) where \(a I: I=\{a\}\) using True cardI card-1-singletonE by
auto
    from this obtain \(b\) where \(b J: J=\{b\}\) using True cardJ card-1-singletonE
by auto
    have an: \(a<n\) using aI I by auto
    have \(b m\) : \(b<m\) using \(b J J\) by auto
```

have sub-carrier: submatrix $A\{a\}\{b\} \in$ carrier-mat 11
unfolding carrier-mat-def submatrix-def
using * ** aI bJ by auto
have 1: $\operatorname{det}($ submatrix $A\{a\}\{b\})=($ submatrix $A\{a\}\{b\}) \$ \$(0,0)$ by (rule det-singleton $[$ OF sub-carrier $]$)
have 2: $\ldots=A \$ \(a, b)
by (rule submatrix-singleton-index[OF A-carrier an bm])
show ?thesis
proof (cases A $\$ \$(a, b) \neq 0)$
let ? x s $=[$ submatrix $A\{a\}\{b\} \$ \$(0,0)]$
case True
hence $a=b$ using $d A A$-carrier an bm unfolding diagonal-mat-def car-
rier-mat-def by auto
hence set ? $x s \subseteq\{A \$ \$(i, i) \mid i . i<\min n m \wedge A \$ \$(i, i) \neq 0\}$
using 2 True an bm by auto
moreover have det (submatrix $A\{a\}\{b\})=$ prod-list ? xs using 1 by auto
moreover have length ? $x s=$ Suc k using $k 0$ by auto
ultimately show ?thesis using an bm unfolding aI bJ by blast
next
case False
then show ?thesis using 12 aI bJ by auto
qed
next
case False
hence $k 0$: $0<k$ by simp
have $k: k<\min n m$
by (metis I J cardI cardJ le-imp-less-Suc less-Suc-eq-le min.commute min-def not-less subset-eq-atLeast0-lessThan-card)
have subIJ-carrier: (submatrix A I J) \in carrier-mat (Suc k) (Suc k)
unfolding carrier-mat-def using $* * *$ cardI card J
unfolding submatrix-def by auto
obtain b^{\prime} where $b^{\prime} k$: $b^{\prime}<$ Suc k by auto
let ? $f=\lambda i$. submatrix $A I J \$ \$\left(i, b^{\prime}\right) *$ cofactor (submatrix A I J) $i b^{\prime}$
have det-rw: det (submatrix A I J)
$=\left(\sum i<\right.$ Suc k. submatrix A I J \$\$ $\left(i, b^{\prime}\right) *$ cofactor (submatrix A I J) i b^{\prime})
by (rule laplace-expansion-column $\left[O F\right.$ subIJ-carrier $\left.b^{\prime} k\right]$)
show ?thesis
proof (cases $\exists a^{\prime}<$ Suc k. submatrix A I J $\left.\$ \$\left(a^{\prime}, b^{\prime}\right) \neq 0\right)$
case True
obtain a^{\prime} where sub-IJ-0: submatrix A I $\$ \$\left(a^{\prime}, b^{\prime}\right) \neq 0$ and $a^{\prime} k$: $a^{\prime}<S u c k$
and unique: $\forall j . j<$ Suc $k \wedge$ submatrix $A I J \$ \$\left(j, b^{\prime}\right) \neq 0 \longrightarrow j=a^{\prime}$ using diagonal-imp-submatrix-element-not0[OF dA A-carrier cardI cardJ I
$J b^{\prime} k$ True] by auto
have submatrix A I J $\$ \$\left(a^{\prime}, b^{\prime}\right)=A \$ \$$ (pick I a^{\prime}, pick $\left.J b^{\prime}\right)$
by (rule submatrix-index, auto simp add: * $a^{\prime} k$ cardI $* * b^{\prime} k$ cardJ)
from this obtain $a b$ where $a n: a<n$ and $b m: b<m$
and sub-index: submatrix A I $J \$\left(a^{\prime}, b^{\prime}\right)=A \$ \(a, b)
and pick-a: pick $I a^{\prime}=a$ and pick-b: pick $J b^{\prime}=b$
using $* * * A$-carrier $a^{\prime} k b^{\prime} k$ cardI cardJ pick-le by fastforce
obtain I^{\prime} where $a I^{\prime}: I=$ insert a I^{\prime} and a-notin: $a \notin I^{\prime}$
by (metis Set.set-insert $a^{\prime} k$ cardI pick-a pick-in-set-le)
obtain J^{\prime} where $b J^{\prime}: J=$ insert $b J^{\prime}$ and b-notin: $b \notin J^{\prime}$
by (metis Set.set-insert $b^{\prime} k$ cardJ pick-b pick-in-set-le)
have Suc-k0: $0<S u c k$ by simp
have $a I: a \in I$ using $a I^{\prime}$ by auto
have $b J: b \in J$ using $b J^{\prime}$ by auto
have cardI': card $I^{\prime}=k$
by (metis aI' a-notin cardI card.infinite card-insert-disjoint
finite-insert nat.inject nat.simps(3))
have $\operatorname{card} J^{\prime}$: card $J^{\prime}=k$
by (metis bJ' b-notin cardJ card.infinite card-insert-disjoint finite-insert nat.inject nat.simps(3))
have $I^{\prime}: I^{\prime} \subseteq\{0 . .<n\}$ using I a I^{\prime} by blast
have $J^{\prime}: J^{\prime} \subseteq\{0 . .<m\}$ using $J b J^{\prime}$ by blast
have det-sub-I' $J^{\prime}:$ Determinant.det (submatrix A $\left.I^{\prime} J^{\prime}\right)=0 \vee$
$\left(\exists x s .\left(\operatorname{det}\left(\right.\right.\right.$ submatrix $\left.A I^{\prime} J^{\prime}\right)=$ prod-list $x s \vee \operatorname{det}$ (submatrix A $\left.I^{\prime} J^{\prime}\right)=-$ prod-list xs)
\wedge set $x s \subseteq\{A \$ \$(i, i) \mid i . i<\min n m \wedge A \$ \$(i, i) \neq 0\} \wedge$ length $x s=k)$
proof (rule Suc.hyps[OF cardI' cardJ' - - k0])
show $I^{\prime} \subseteq\{0 . .<n\}$ using $I a I^{\prime}$ by blast
show $J^{\prime} \subseteq\{0 . .<m\}$ using $J b J^{\prime}$ by blast
qed
have mat-delete-sub:
mat-delete (submatrix $A\left(\right.$ insert a $\left.I^{\prime}\right)\left(\right.$ insert $\left.\left.b J^{\prime}\right)\right) a^{\prime} b^{\prime}=$ submatrix $A I^{\prime} J^{\prime}$
by (rule mat-delete-submatrix-insert[OF A-carrier cardI' card $J^{\prime} I^{\prime} J^{\prime}$ an bm
k
a-notin b-notin $\left.a^{\prime} k b^{\prime} k\right]$, insert pick-a pick-b a $I^{\prime} b J^{\prime}$, auto)
have set-rw: $\{0 . .<$ Suc $k\}=$ insert $a^{\prime}\left(\{0 . .<\right.$ Suc $\left.k\}-\left\{a^{\prime}\right\}\right)$
by (simp add: $a^{\prime} k$ insert-absorb)
have rw0: sum ?f $\left(\{0 . .<\right.$ Suc $\left.k\}-\left\{a^{\prime}\right\}\right)=0$ by (rule sum.neutral, insert unique, auto)
have det (submatrix A I J)
$=\left(\sum i<S u c k\right.$. submatrix A I J $\$ \$\left(i, b^{\prime}\right) *$ cofactor (submatrix A I J) i b^{\prime})
by (rule laplace-expansion-column [OF subIJ-carrier $\left.b^{\prime} k\right]$)
also have $\ldots=$?f $a^{\prime}+$ sum ?f $\left(\{0 . .<\right.$ Suc $\left.k\}-\left\{a^{\prime}\right\}\right)$
by (metis (no-types, lifting) Diff-iff atLeast0LessThan finite-atLeastLessThan finite-insert set-rw singletonI sum.insert)
also have $\ldots=$?f a^{\prime} using rw0 unfolding cofactor-def by auto
also have $\ldots=$ submatrix A IJ $\$ \$\left(a^{\prime}, b^{\prime}\right) *\left((-1) \wedge\left(a^{\prime}+b^{\prime}\right) * \operatorname{det}\right.$ (submatrix $\left.A I^{\prime} J^{\prime}\right)$)
unfolding cofactor-def using mat-delete-sub aI' bJ' by simp
finally have det-submatrix-IJ: det (submatrix A I J)
$=A \$ \$(a, b) *\left((-1) \wedge\left(a^{\prime}+b^{\prime}\right) * \operatorname{det}\left(\right.\right.$ submatrix $\left.\left.A I^{\prime} J^{\prime}\right)\right)$ unfolding sub-index .
show ?thesis
proof (cases det (submatrix A $\left.I^{\prime} J^{\prime}\right)=0$)
case True
then show ?thesis using det-submatrix-IJ by auto
next
case False note det-not0 $=$ False
from this obtain $x s$ where prod-list-xs: $\operatorname{det}\left(\right.$ submatrix $\left.A I^{\prime} J^{\prime}\right)=$ prod-list
let $? y s=A \$ \$(a, b) \# x s$
have length-ys: length ?ys $=$ Suc k using length-xs by auto
have $a-e q-b: a=b$
using A-carrier an bm sub-IJ-0 sub-index dA unfolding diagonal-mat-def
by auto
have A-aa-in: $A \$ \$(a, a) \in\{A \$ \$(i, i) \mid i . i<\min n m \wedge A \$ \$(i, i) \neq 0\}$ using a-eq-b an bm sub-IJ-0 sub-index by auto
have ys: set ?ys $\subseteq\{A \$ \$(i, i) \mid i . i<\min n m \wedge A \$ \$(i, i) \neq 0\}$
using $x s A$-aa-in $a-e q-b$ by auto
show ?thesis
proof (cases even $\left(a^{\prime}+b^{\prime}\right)$) case True
have det-submatrix-IJ: det (submatrix A I J) $=A \$ \$(a, b) * \operatorname{det}$ (submatrix $\left.A I^{\prime} J^{\prime}\right)$
using det-submatrix-IJ True by auto
show ?thesis
proof (cases det (submatrix A $I^{\prime} J^{\prime}$) $=$ prod-list xs)
case True
have $\operatorname{det}($ submatrix $A I J)=$ prod-list ?ys
using det-submatrix-IJ unfolding True by auto
then show ?thesis using ys length-ys by blast
next
case False
hence $\operatorname{det}\left(\right.$ submatrix $\left.A I^{\prime} J^{\prime}\right)=-$ prod-list xs using prod-list-xs by
simp
hence det (submatrix $A I J)=-$ prod-list ?ys using det-submatrix-IJ
by auto
then show ?thesis using ys length-ys by blast
qed
next
case False
have det-submatrix-IJ: $\operatorname{det}($ submatrix $A I J)=A \$ \$(a, b) *-\operatorname{det}$
(submatrix $A I^{\prime} J^{\prime}$)
using det-submatrix-IJ False by auto
show ?thesis
proof (cases $\operatorname{det}\left(\right.$ submatrix $\left.A I^{\prime} J^{\prime}\right)=$ prod-list $x s$)
case True
have det (submatrix A $I J$) $=-$ prod-list ?ys using det-submatrix-IJ unfolding True by auto
then show ?thesis using ys length-ys by blast

```
            next
                    case False
                    hence det (submatrix A I' }\mp@subsup{J}{}{\prime}\mathrm{ ) = - prod-list xs using prod-list-xs by
simp
            hence det (submatrix A I J) = prod-list ?ys using det-submatrix-IJ by
auto
            then show ?thesis using ys length-ys by blast
                qed
                qed
            qed
    next
            case False
            have sum ?f {0..<Suc k} = 0 by (rule sum.neutral, insert False, auto)
            thus ?thesis using det-rw
                by (simp add: atLeast0LessThan)
    qed
    qed
qed
definition minors A k ={det (submatrix A I J)| IJ.I\subseteq{0..<dim-row A }
    \wedgeJ\subseteq{0..<dim-col A}^card I = k^card J=k}
lemma Gcd-minors-dvd:
    fixes A::'a::{semiring-Gcd,comm-ring-1} mat
    assumes PAQ-B: P*A*Q = B
    and P:P\incarrier-mat m m
    and A:A\incarrier-mat m n
    and Q:Q\incarrier-mat n n
    and I:I\subseteq{0..<dim-row A} and J:J\subseteq{0..<dim-col A}
    and Ik: card I = k and Jk: card J =k
    shows Gcd (minors A k) dvd det (submatrix B I J)
proof -
    let ?subPA = submatrix (P*A)I UNIV
    let ?subQ = submatrix Q UNIV J
    have subPA: ?subPA \in carrier-mat k n
    proof -
        have I={i.i< dim-row P}\wedgei\inI} using PI A by aut
        hence card {i. i<dim-row P}\wedgei\inI}=k using Ik by aut
        thus ?thesis using A unfolding submatrix-def by auto
    qed
    have subQ: submatrix Q UNIV J \in carrier-mat n k
    proof -
        have J-eq: J={j.j< dim-col Q\wedgej\inJ} using Q J A by auto
        hence card {j.j<dim-col Q\wedgej\inJ} = k using Jk by auto
        moreover have card {i. i< dim-row Q}\i\inUNIV}=n using Q by aut
        ultimately show ?thesis unfolding submatrix-def by auto
    qed
```

have sub-sub-PA: (submatrix ?subPA UNIV $\left.I^{\prime}\right)=\operatorname{submatrix}(P * A) I I^{\prime}$ for I^{\prime} using submatrix-split2[symmetric] by auto
have det-subPA-rw: det (submatrix $\left.(P * A) I I^{\prime}\right)=$
$\left(\sum J^{\prime} \mid J^{\prime} \subseteq\{0 . .<m\} \wedge\right.$ card $J^{\prime}=k$. det $\left(\left(\right.\right.$ submatrix $\left.\left.P I J^{\prime}\right)\right) * \operatorname{det}($ submatrix $\left.A J^{\prime} I^{\prime}\right)$)
if $I^{\prime} 1: I^{\prime} \subseteq\{0 . .<n\}$ and $I^{\prime} 2:$ card $I^{\prime}=k$ for I^{\prime}
proof -
have submatrix $(P * A) I I^{\prime}=$ submatrix $P I U N I V *$ submatrix A UNIV I^{\prime} unfolding submatrix-mult ..
also have det $\ldots=\left(\sum C \mid C \subseteq\{0 . .<m\} \wedge\right.$ card $C=k$.
det (submatrix (submatrix P I UNIV) UNIV C) * det (submatrix (submatrix A UNIV $\left.I^{\prime}\right)$ C UNIV))
proof (rule Cauchy-Binet)
have $I=\{i . i<$ dim-row $P \wedge i \in I\}$ using $P I A$ by auto
thus submatrix P I UNIV \in carrier-mat $k m$ using $I k P$ unfolding subma-trix-def by auto
have $I^{\prime}=\left\{j . j<\operatorname{dim}-\operatorname{col} A \wedge j \in I^{\prime}\right\}$ using $I^{\prime} 1 A$ by auto
thus submatrix A UNIV $I^{\prime} \in$ carrier-mat $m k$ using $I^{\prime} 2 A$ unfolding submatrix-def by auto
qed
also have $\ldots=\left(\sum J^{\prime} \mid J^{\prime} \subseteq\{0 . .<m\} \wedge \operatorname{card} J^{\prime}=k\right.$.
$\operatorname{det}\left(\right.$ submatrix $\left.P I J^{\prime}\right) * \operatorname{det}\left(\right.$ submatrix A $\left.J^{\prime} I^{\prime}\right)$)
unfolding submatrix-split2[symmetric] submatrix-split[symmetric] by simp
finally show? thesis .
qed
have $\operatorname{det}($ submatrix $B I J)=\operatorname{det}($ submatrix $(P * A * Q) I J)$ using $P A Q-B$ by simp
also have $\ldots=\operatorname{det}(? s u b P A * ? s u b Q)$ unfolding submatrix-mult by auto
also have $\ldots=\left(\sum I^{\prime} \mid I^{\prime} \subseteq\{0 . .<n\} \wedge\right.$ card $I^{\prime}=k$. det (submatrix ? subPA UNIV I^{\prime})

* det (submatrix ?subQ I' UNIV))
by (rule Cauchy-Binet[OF subPA subQ])
also have $\ldots=\left(\sum I^{\prime} \mid I^{\prime} \subseteq\{0 . .<n\} \wedge\right.$ card $I^{\prime}=k$.
$\operatorname{det}\left(\right.$ submatrix $\left.(P * A) I I^{\prime}\right) * \operatorname{det}\left(\right.$ submatrix $\left.\left.Q I^{\prime} J\right)\right)$
using submatrix-split[symmetric, of Q] submatrix-split2[symmetric, of $P * A$] by presburger
also have $\ldots=\left(\sum I^{\prime}\left|I^{\prime} \subseteq\{0 . .<n\} \wedge \operatorname{card} I^{\prime}=k . \sum J^{\prime}\right| J^{\prime} \subseteq\{0 . .<m\} \wedge\right.$ card $J^{\prime}=k$.
$\operatorname{det}\left(\right.$ submatrix P $\left.I J^{\prime}\right) * \operatorname{det}\left(\right.$ submatrix $\left.A J^{\prime} I^{\prime}\right) * \operatorname{det}\left(\right.$ submatrix $\left.\left.Q I^{\prime} J\right)\right)$
using det-subPA-rw by (simp add: semiring-0-class.sum-distrib-right)
finally have det-rw: det (submatrix $B I J)=\left(\sum I^{\prime} \mid I^{\prime} \subseteq\{0 . .<n\} \wedge \operatorname{card} I^{\prime}=\right.$ k.
$\sum J^{\prime} \mid J^{\prime} \subseteq\{0 . .<m\} \wedge$ card $J^{\prime}=k$.
$\operatorname{det}\left(\right.$ submatrix $\left.P I J^{\prime}\right) * \operatorname{det}\left(\right.$ submatrix $\left.\left.A J^{\prime} I^{\prime}\right) * \operatorname{det}\left(\operatorname{submatrix} Q I^{\prime} J\right)\right)$.
show ?thesis
proof (unfold det-rw, (rule dvd-sum)+)
fix $I^{\prime} J^{\prime}$
assume $I^{\prime}: I^{\prime} \in\left\{I^{\prime} . I^{\prime} \subseteq\{0 . .<n\} \wedge\right.$ card $\left.I^{\prime}=k\right\}$
and $J^{\prime}: J^{\prime} \in\left\{J^{\prime} . J^{\prime} \subseteq\{0 . .<m\} \wedge\right.$ card $\left.J^{\prime}=k\right\}$
have Gcd (minors $A k) d v d \operatorname{det}\left(\right.$ submatrix $\left.A J^{\prime} I^{\prime}\right)$
by (rule Gcd-dvd, unfold minors-def, insert $A I^{\prime} J^{\prime}$, auto)
then show $G c d$ (minors $A k$) dvd det (submatrix P $I J^{\prime}$) * det (submatrix A $\left.J^{\prime} I^{\prime}\right)$
* det (submatrix $\left.Q I^{\prime} J\right)$ by auto
qed
qed
lemma det-minors-diagonal2:
assumes $d A$: diagonal-mat A and A-carrier: $A \in$ carrier-mat n m
and $I k$: card $I=k$ and $J k:$ card $J=k$
and $r: I \subseteq\{0 . .<n\}$
and $c: J \subseteq\{0 . .<m\}$ and $k: k>0$
shows det (submatrix $A I J)=0 \vee(\exists S . S \subseteq\{0 . .<\min n m\} \wedge \operatorname{card} S=k \wedge$ $S=I \wedge$
$\left(\operatorname{det}\left(\right.\right.$ submatrix A I J) $=\left(\prod i \in S . A \$ \$(i, i)\right) \vee \operatorname{det}($ submatrix A I J) $=-$ $\left.\left.\left(\prod i \in S . A \$ \$(i, i)\right)\right)\right)$
using $I k J k r c k$
proof (induct k arbitrary: $I J$)
case 0
then show ?case by auto
next
case (Suc k)
note $\operatorname{cardI}=$ Suc.prems(1)
note cardJ $=$ Suc.prems(2)
note $I=$ Suc.prems(3)
note $J=$ Suc.prems(4)
have $*$: $\{i . i<$ dim-row $A \wedge i \in I\}=I$ using I Ik A-carrier carrier-mat-def by auto
have $* *:\{j . j<\operatorname{dim}$-col $A \wedge j \in J\}=J$ using $J J k A$-carrier carrier-mat-def by auto
show ?case
proof (cases $k=0$)
case True note $k 0=$ True
from this obtain a where $a I: I=\{a\}$ using True cardI card-1-singletonE by auto
from this obtain b where $b J: J=\{b\}$ using True cardJ card-1-singletonE by auto
have an: $a<n$ using $a I I$ by auto
have $b m$: $b<m$ using $b J J$ by auto
have sub-carrier: submatrix $A\{a\}\{b\} \in$ carrier-mat 11
unfolding carrier-mat-def submatrix-def
using * ** aI bJ by auto
have 1: $\operatorname{det}($ submatrix $A\{a\}\{b\})=($ submatrix $A\{a\}\{b\}) \$ \$(0,0)$
by (rule det-singleton[OF sub-carrier])
have 2: $\ldots=A \$ \(a, b)
by (rule submatrix-singleton-index[OF A-carrier an bm])
show ?thesis

```
    proof (cases A $$ (a,b) \not=0)
    let ?S={a}
    case True
        hence ab: a = b using dA A-carrier an bm unfolding diagonal-mat-def
carrier-mat-def by auto
    hence ?S \subseteq{0..<min n m} using an bm by auto
    moreover have det (submatrix A {a} {b})=(\prodi\in?S. A $$ (i,i)) using 1
2 ab by auto
    moreover have card ?S = Suc k using k0 by auto
    ultimately show ?thesis using an bm unfolding aI bJ by blast
    next
    case False
    then show ?thesis using 12 aI bJ by auto
    qed
next
    case False
    hence k0: 0<k by simp
    have k:k< min n m
    by (metis I J cardI cardJ le-imp-less-Suc less-Suc-eq-le min.commute
        min-def not-less subset-eq-atLeastO-lessThan-card)
    have subIJ-carrier: (submatrix A I J) \in carrier-mat (Suc k) (Suc k)
        unfolding carrier-mat-def using *** cardI cardJ
        unfolding submatrix-def by auto
    obtain }\mp@subsup{b}{}{\prime}\mathrm{ where }\mp@subsup{b}{}{\prime}k:\mp@subsup{b}{}{\prime}<Suc k by aut
    let ?f=\lambdai. submatrix A IJ $$ (i, b})*\mathrm{ cofactor (submatrix A I J) i b
    have det-rw: det (submatrix A I J)
        =(\sumi<Suc k. submatrix A I J $$ (i, b})*\mathrm{ cofactor (submatrix A I J) i b
    by (rule laplace-expansion-column[OF subIJ-carrier b'k])
    show ?thesis
    proof (cases \existsa⿱一𫝀口
    case True
    obtain }\mp@subsup{a}{}{\prime}\mathrm{ where sub-IJ-0: submatrix A I J $$ ( a', b})\not=
        and a}\mp@subsup{a}{}{\prime}k:\mp@subsup{a}{}{\prime}<Suc
        and unique: }\forallj.j<\mathrm{ Suc }k\wedge\mathrm{ submatrix A I J $$ (j,b})\not=0\longrightarrowj=\mp@subsup{a}{}{\prime
        using diagonal-imp-submatrix-element-notO[OF dA A-carrier cardI cardJ I
J b'k True] by auto
    have submatrix A I J $$ ( a', b') = A $$ (pick I a', pick J b')
        by (rule submatrix-index, auto simp add:* a'k cardI ** b}\mp@subsup{b}{}{\prime}k\mathrm{ cardJ)
    from this obtain ab where an: a<n and bm: b<m
            and sub-index: submatrix A IJ $$( a', b})=A$$(a,b
            and pick-a: pick I a'=a and pick-b: pick J b'=b
            using * ** A-carrier a'k b}\mp@subsup{b}{}{\prime}k\mathrm{ cardI cardJ pick-le by fastforce
    obtain I' where aI': I = insert a I' and a-notin: a \not\inI'
            by (metis Set.set-insert a'k cardI pick-a pick-in-set-le)
            obtain }\mp@subsup{J}{}{\prime}\mathrm{ where }b\mp@subsup{J}{}{\prime}:J=\mathrm{ insert }b\mp@subsup{J}{}{\prime}\mathrm{ and b-notin: b}\not\in\mp@subsup{J}{}{\prime
            by (metis Set.set-insert b'k cardJ pick-b pick-in-set-le)
    have Suc-k0: 0<Suc k by simp
    have aI:a }\inI\mathrm{ using aI' by auto
    have bJ:b\inJ using bJ' by auto
```

have cardI': card $I^{\prime}=k$
by (metis a I^{\prime} a-notin cardI card.infinite card-insert-disjoint finite-insert nat.inject nat.simps(3))
have card J^{\prime} : card $J^{\prime}=k$
by (metis bJ' b-notin cardJ card.infinite card-insert-disjoint finite-insert nat.inject nat.simps(3))
have $I^{\prime}: I^{\prime} \subseteq\{0 . .<n\}$ using $I a I^{\prime}$ by blast
have $J^{\prime}: J^{\prime} \subseteq\{0 . .<m\}$ using $J b J^{\prime}$ by blast
have det-sub- $I^{\prime} J^{\prime}: \operatorname{det}\left(\right.$ submatrix $\left.A I^{\prime} J^{\prime}\right)=0 \vee(\exists S \subseteq\{0 . .<\min n m\}$. card $S=k \wedge S=I^{\prime}$
$\wedge\left(\operatorname{det}\left(\right.\right.$ submatrix $\left.A I^{\prime} J^{\prime}\right)=\left(\prod i \in S . A \$ \$(i, i)\right)$
$\vee \operatorname{det}\left(\right.$ submatrix $\left.\left.\left.A I^{\prime} J^{\prime}\right)=-\left(\prod i \in S . A \$ \$(i, i)\right)\right)\right)$
proof (rule Suc.hyps $\left[O F\right.$ cardI' card $\left.J^{\prime}-{ }^{\prime}-k 0\right]$)
show $I^{\prime} \subseteq\{0 . .<n\}$ using $I a I^{\prime}$ by blast
show $J^{\prime} \subseteq\{0 . .<m\}$ using $J b J^{\prime}$ by blast
qed
have mat-delete-sub:
mat-delete (submatrix $A\left(\right.$ insert a $\left.I^{\prime}\right)\left(\right.$ insert $\left.\left.b J^{\prime}\right)\right) a^{\prime} b^{\prime}=$ submatrix $A I^{\prime} J^{\prime}$
by (rule mat-delete-submatrix-insert[OF A-carrier cardI' card $J^{\prime} I^{\prime} J^{\prime}$ an bm
k
a-notin b-notin $\left.a^{\prime} k b^{\prime} k\right]$, insert pick-a pick-b aI $I^{\prime} b J^{\prime}$, auto)
have set-rw: $\{0 . .<$ Suc $k\}=$ insert $a^{\prime}\left(\{0 . .<\right.$ Suc $\left.k\}-\left\{a^{\prime}\right\}\right)$
by (simp add: a'k insert-absorb)
have rw0: sum ?f $\left(\{0 . .<\right.$ Suc $\left.k\}-\left\{a^{\prime}\right\}\right)=0$ by (rule sum.neutral, insert unique, auto)
have det (submatrix A I J)
$=\left(\sum i<\right.$ Suc k. submatrix A I J $\$ \$\left(i, b^{\prime}\right) *$ cofactor (submatrix A I J) i b^{\prime})
by (rule laplace-expansion-column $\left[O F\right.$ subIJ-carrier $\left.b^{\prime} k\right]$)
also have $\ldots=$?f $a^{\prime}+$ sum ?f $\left(\{0 . .<\right.$ Suc $\left.k\}-\left\{a^{\prime}\right\}\right)$
by (metis (no-types, lifting) Diff-iff atLeast0LessThan finite-atLeastLessThan finite-insert set-rw singletonI sum.insert)
also have $\ldots=$?f a^{\prime} using rw0 unfolding cofactor-def by auto
also have $\ldots=$ submatrix A I $J \$ \$\left(a^{\prime}, b^{\prime}\right) *\left((-1) \wedge\left(a^{\prime}+b^{\prime}\right) * \operatorname{det}\right.$ (submatrix $\left.A I^{\prime} J^{\prime}\right)$)
unfolding cofactor-def using mat-delete-sub aI' bJ' by simp
finally have det-submatrix-IJ: det (submatrix A I J) $=A \$ \$(a, b) *\left((-1) \wedge\left(a^{\prime}+b^{\prime}\right) * \operatorname{det}\left(\right.\right.$ submatrix $\left.\left.A I^{\prime} J^{\prime}\right)\right)$ unfolding sub-index .
show ?thesis
proof (cases det (submatrix $\left.A I^{\prime} J^{\prime}\right)=0$)
case True
then show ?thesis using det-submatrix-IJ by auto
next
case False note det-not0 $=$ False
from this obtain $x s$ where prod-list-xs: $\operatorname{det}\left(\right.$ submatrix $\left.A I^{\prime} J^{\prime}\right)=\left(\prod i \in x s\right.$. A $\$ \$(i, i))$
$\vee \operatorname{det}\left(\right.$ submatrix A $\left.I^{\prime} J^{\prime}\right)=-\left(\prod i \in x s . A \$ \$(i, i)\right)$
and $x s: x s \subseteq\{0 . .<\min n m\}$
and length-xs: card $x s=k$
and $x s-I^{\prime}: x s=I^{\prime}$
using det-sub-I'J' by blast
let ? $y s=$ insert $a x s$
have a-notin-xs: $a \notin x s$
by (simp add: xs-I' a-notin)
have length-ys: card ? ys $=$ Suc k
using length-xs a-notin-xs by (simp add: card-ge-0-finite k0)
have $a-e q-b: a=b$
using A-carrier an bm sub-IJ-0 sub-index $d A$ unfolding diagonal-mat-def by auto
have A-aa-in: $A \$ \$(a, a) \in\{A \$ \$(i, i) \mid i . i<\min n m \wedge A \$ \$(i, i) \neq 0\}$ using a-eq-b an bm sub-IJ-0 sub-index by auto
show ?thesis
proof (cases even $\left(a^{\prime}+b^{\prime}\right)$)
case True
have det-submatrix-IJ: det (submatrix A I J) $=A \$ \$(a, b) * \operatorname{det}$ (submatrix $A I^{\prime} J^{\prime}$)
using det-submatrix-IJ True by auto
show ?thesis
proof (cases det (submatrix A $\left.\left.I^{\prime} J^{\prime}\right)=\left(\prod i \in x s . A \$ \$(i, i)\right)\right)$
case True
have det (submatrix A $I J)=\left(\prod i \in\right.$?ys. $\left.A \$ \$(i, i)\right)$
using det-submatrix-IJ unfolding True $a-e q-b$
by (metis (no-types, lifting) a-notin-xs a-eq-b
card-ge-0-finite k0 length-xs prod.insert)
then show ?thesis using length-ys
using $a-e q-b$ an $b m$ xs $x s-I^{\prime}$
by (simp add: aI')
next
case False
hence $\operatorname{det}\left(\right.$ submatrix $\left.A I^{\prime} J^{\prime}\right)=-\left(\prod i \in x s . A \$ \$(i, i)\right)$ using prod-list-xs by simp
hence det (submatrix A $I J)=-\left(\prod i \in\right.$?ys. $\left.A \$ \$(i, i)\right)$ using det-submatrix-IJ a-eq-b
by (metis (no-types, lifting) a-notin-xs card-ge-0-finite $k 0$
length-xs mult-minus-right prod.insert)
then show ?thesis using length-ys
using $a-e q-b$ an $b m$ xs $a I^{\prime} x s-I^{\prime}$ by force
qed
next
case False
have det-submatrix-IJ: $\operatorname{det}($ submatrix $A I J)=A \$ \$(a, b) *-\operatorname{det}$ (submatrix $A I^{\prime} J^{\prime}$)
using det-submatrix-IJ False by auto
show ?thesis
proof (cases det (submatrix $\left.\left.A I^{\prime} J^{\prime}\right)=\left(\prod i \in x s . A \$ \$(i, i)\right)\right)$
case True
have det (submatrix A I J) $=-\left(\prod i \in\right.$?ys. $\left.A \$ \$(i, i)\right)$
using det-submatrix-IJ unfolding True

```
                    by (metis (no-types, lifting) a-eq-b a-notin-xs card-ge-0-finite k0
                    length-xs mult-minus-right prod.insert)
                    then show ?thesis using length-ys
                    using a-eq-b an bm xs aI' xs-I' by force
            next
                case False
            hence det (submatrix A I' }\mp@subsup{J}{}{\prime})=-(\prodi\inxs.A$$(i,i)) using prod-list-x
by }\operatorname{simp
            hence det (submatrix A I J) =(\prodi\in?ys. A $$ (i,i)) using det-submatrix-IJ
                by (metis (mono-tags, lifting) a-eq-b a-notin-xs card-ge-0-finite
                    equation-minus-iff k0 length-xs prod.insert)
                    then show ?thesis using length-ys
                    using a-eq-b an bm xs aI' xs-I' by force
            qed
            qed
        qed
    next
        case False
        have sum ?f {0..<Suc k} = 0 by (rule sum.neutral, insert False, auto)
        thus ?thesis using det-rw
            by (simp add: atLeastOLessThan)
    qed
    qed
qed
```


10.3 Relating minors and GCD

```
lemma diagonal-dvd-Gcd-minors:
fixes \(A:\) :' \(^{\prime}\) :: \(\{\) semiring-Gcd,comm-ring-1\} mat
assumes \(A: A \in\) carrier-mat \(n m\) and SNF-A: Smith-normal-form-mat \(A\)
shows \(\left(\prod i=0 . .<k . A \$ \$(i, i)\right) d v d\) Gcd (minors \(\left.A k\right)\)
proof (cases \(k=0\) )
case True
then show ?thesis by auto
next
case False
hence \(k\) : \(0<k\) by simp
show ?thesis
proof (rule Gcd-greatest)
have diag-A: diagonal-mat \(A\)
using SNF-A unfolding Smith-normal-form-mat-def isDiagonal-mat-def
diagonal-mat-def by auto
fix \(b\) assume \(b\)-in-minors: \(b \in\) minors \(A k\)
show \(\left(\prod i=0 . .<k\right.\). \(\left.A \$ \$(i, i)\right) d v d b\)
proof (cases \(b=0\) )
case True
then show ?thesis by auto
next
```


case False

obtain $I J$ where $b: b=\operatorname{det}($ submatrix $A I J)$ and $I: I \subseteq\{0 . .<\operatorname{dim}$-row $A\}$
and $J: J \subseteq\{0 . .<\operatorname{dim}$-col $A\}$ and $I k:$ card $I=k$ and $J k:$ card $J=k$
using b-in-minors unfolding minors-def by blast
obtain S where $S: S \subseteq\{0 . .<\min n m\}$ and $S k$: card $S=k$
and det-subS: $\operatorname{det}\left(\right.$ submatrix A I J) $=\left(\prod i \in S . A \$ \$(i, i)\right)$
$\vee \operatorname{det}($ submatrix $A I J)=-\left(\prod i \in S . A \$ \$(i, i)\right)$
using det-minors-diagonal2[OF diag-A A $I k J k-k] I J A$ False b by auto
obtain f where inj-f: inj-on $f\{0 . .<k\}$ and $f k-S: f^{‘}\{0 . .<k\}=S$
and i-fi: $\quad(\forall i \in\{0 . .<k\} . i \leq f i)$ using exists-inj-ge-index $[O F S S k]$ by blast
have $\left(\prod i=0 . .<k . A \$ \$(i, i)\right) d v d\left(\prod i \in\{0 . .<k\} . A \$ \$(f i, f i)\right)$
by (rule prod-dvd-prod, rule SNF-divides-diagonal $[O F A S N F-A]$, insert fk-S $S i$-fi, force+)
also have $\ldots=\left(\prod i \in f \cdot\{0 . .<k\} . A \$ \$(i, i)\right)$
by (rule prod.reindex[symmetric, unfolded o-def, OF inj-f])
also have $\ldots=\left(\prod i \in S . A \$ \$(i, i)\right)$ using $f k$ - S by auto
finally have $*:\left(\prod i=0 . .<k . A \$ \$(i, i)\right) d v d\left(\prod i \in S . A \$ \$(i, i)\right)$.
show $\left(\prod i=0 . .<k\right.$. $\left.A \$ \$(i, i)\right) d v d b$ using det-subS $b *$ by auto
qed
qed
qed
lemma Gcd-minors-dvd-diagonal:
fixes $A::^{\prime} a::\{$ semiring-Gcd,comm-ring-1\} mat
assumes $A: A \in$ carrier-mat $n m$ and SNF-A: Smith-normal-form-mat A
and $k: k \leq \min n m$
shows Gcd (minors $A k) d v d\left(\prod i=0 . .<k . A \$ \$(i, i)\right)$
proof (rule Gcd-dvd)
define I where $I=\{0 . .<k\}$
have $\left(\prod i=0 . .<k . A \$ \$(i, i)\right)=\operatorname{det}($ submatrix A I I)
proof -
have sub-eq: submatrix $A I I=$ mat $k k(\lambda(i, j) . A \$ \$(i, j))$
proof (rule eq-matI, auto)
have $I=\{i . i<\operatorname{dim}$-row $A \wedge i \in I\}$ unfolding I-def using $A k$ by auto hence ck: card $\{i . i<$ dim-row $A \wedge i \in I\}=k$
unfolding I-def using card-atLeastLessThan by presburger
have $I=\{i . i<$ dim-col $A \wedge i \in I\}$ unfolding I-def using $A k$ by auto
hence ck2: card $\{j$. $j<\operatorname{dim}$-col $A \wedge j \in I\}=k$
unfolding I-def using card-atLeastLessThan by presburger
show dr: dim-row (submatrix AII) $=k$ using ck unfolding submatrix-def
by auto
show dc: dim-col (submatrix A I I) $=k$ using ck2 unfolding submatrix-def
by auto
fix $i j$ assume $i: i<k$ and $j: j<k$
have $p 1$: pick $I i=i$
proof -
have $\{0 . .<i\}=\{a \in I . a<i\}$ using I-def i by auto

```
        hence \(i\)-eq: \(i=\operatorname{card}\{a \in I . a<i\}\)
            by (metis card-atLeastLessThan diff-zero)
        have pick \(I i=\) pick \(I\) (card \(\{a \in I . a<i\})\) using \(i\)-eq by simp
        also have \(\ldots=i\) by (rule pick-card-in-set, insert \(i\) I-def, simp)
        finally show? thesis .
    qed
    have \(p\) 2: pick \(I j=j\)
    proof -
        have \(\{0 . .<j\}=\{a \in I . a<j\}\) using \(I\)-def \(j\) by auto
        hence \(j\)-eq: \(j=\) card \(\{a \in I . a<j\}\)
            by (metis card-atLeastLessThan diff-zero)
        have pick \(I j=\) pick \(I(\) card \(\{a \in I . a<j\})\) using \(j\)-eq by simp
        also have \(\ldots=j\) by (rule pick-card-in-set, insert \(j\) I-def, simp)
        finally show ?thesis.
    qed
    have submatrix A I I \(\$ \$(i, j)=A \$ \$\) (pick I \(i\), pick \(I j)\)
    proof (rule submatrix-index)
        show \(i<\operatorname{card}\{i . i<\) dim-row \(A \wedge i \in I\}\) by (metis dim-submatrix(1) \(d r i\) )
        show \(j<\operatorname{card}\{j . j<\operatorname{dim}\)-col \(A \wedge j \in I\}\) by (metis dim-submatrix(2) dc j)
        qed
        also have \(\ldots=A \$ \$(i, j)\) using \(p 1 p 2\) by simp
        finally show submatrix A I I \(\$ \$(i, j)=A \$ \$(i, j)\).
    qed
    hence \(\operatorname{det}(\) submatrix \(A I I)=\operatorname{det}(\) mat \(k k(\lambda(i, j) . A \$ \$(i, j)))\) by \(\operatorname{simp}\)
    also have \(\ldots=\) prod-list (diag-mat (mat \(k k(\lambda(i, j) . A \$ \$(i, j)))\) )
    proof (rule det-upper-triangular)
    show mat \(k k(\lambda(i, j)\). \(A \$ \$(i, j)) \in\) carrier-mat \(k k\) by auto
        show upper-triangular (Matrix.mat \(k k(\lambda(i, j)\). A \(\$ \$(i, j)))\)
        using SNF-A A \(k\) unfolding Smith-normal-form-mat-def isDiagonal-mat-def
by auto
    qed
    also have \(\ldots=\left(\prod i=0 . .<k . A \$ \$(i, i)\right)\)
    by (metis (mono-tags, lifting) atLeastLessThan-iff dim-row-mat(1) index-mat(1)
        prod.cong prod-list-diag-prod split-conv)
    finally show ?thesis ..
qed
moreover have \(I \subseteq\{0 . .<\) dim-row \(A\}\) using \(k A I\)-def by auto
moreover have \(I \subseteq\{0 . .<\operatorname{dim}-\operatorname{col} A\}\) using \(k A I\)-def by auto
moreover have card \(I=k\) using \(I\)-def by auto
ultimately show \(\left(\prod i=0 . .<k . A \$ \$(i, i)\right) \in\) minors \(A k\) unfolding minors-def
by auto
qed
```

lemma Gcd-minors-A-dvd-Gcd-minors-PAQ:
fixes $A::^{\prime} a::\{$ semiring-Gcd,comm-ring-1\} mat
assumes $A: A \in$ carrier-mat $m n$
and $P: P \in$ carrier-mat $m m$ and $Q: Q \in$ carrier-mat $n n$

```
    shows Gcd (minors A k) dvd Gcd (minors ( }P*A*Q)k
proof (rule Gcd-greatest)
    let ? B=(P*A*Q)
    fix b assume b\in minors ? B k
```



```
{0..<dim-row?B}
    and }J:J\subseteq{0..<dim-col ?B} and Ik:card I=k and Jk:card J=
    unfolding minors-def by blast
    have Gcd (minors A k) dvd det (submatrix ?B I J)
    by (rule Gcd-minors-dvd[OF-P A Q - Ik Jk], insert A I J P Q, auto)
    thus Gcd (minors A k) dvd b using b by simp
qed
lemma Gcd-minors-PAQ-dvd-Gcd-minors-A:
    fixes A::'a::{semiring-Gcd,comm-ring-1} mat
    assumes A:A\incarrier-mat m n
        and P:P\incarrier-mat m m
        and Q:Q\incarrier-mat n n
        and inv-P: invertible-mat P
        and inv-Q: invertible-mat Q
    shows Gcd (minors (P*A*Q)k) dvd Gcd (minors A k)
proof (rule Gcd-greatest)
    let ? B=P*A*Q
    fix b assume b minors A k
    from this obtain IJ where b:b=\operatorname{det (submatrix A IJ) and I:I\subseteq{0..<dim-row}
A}
        and }J:J\subseteq{0..<dim-col A} and Ik:card I = k and Jk:card J =k
        unfolding minors-def by blast
    obtain }\mp@subsup{P}{}{\prime}\mathrm{ where }P\mp@subsup{P}{}{\prime}\mathrm{ : inverts-mat P P P' and }\mp@subsup{P}{}{\prime}P\mathrm{ : inverts-mat P' P
    using inv-P unfolding invertible-mat-def by auto
    obtain }\mp@subsup{Q}{}{\prime}\mathrm{ where }Q\mp@subsup{Q}{}{\prime}:\mathrm{ inverts-mat }Q\mp@subsup{Q}{}{\prime}\mathrm{ and }\mp@subsup{Q}{}{\prime}Q:\mathrm{ inverts-mat }\mp@subsup{Q}{}{\prime}
        using inv-Q unfolding invertible-mat-def by auto
    have }\mp@subsup{P}{}{\prime}:\mp@subsup{P}{}{\prime}\in\mathrm{ carrier-mat mm using PP' P'P unfolding inverts-mat-def
        by (metis P carrier-matD(1) carrier-matD(2) carrier-matI index-mult-mat(3)
index-one-mat(3))
    have Q': Q' 
        using Q Q' Q'Q unfolding inverts-mat-def
        by (metis Q carrier-matD(1) carrier-matD(2) carrier-matI index-mult-mat(3)
index-one-mat(3))
    have rw: }\mp@subsup{P}{}{\prime}*?B*\mp@subsup{Q}{}{\prime}=
    proof -
    have f1: P'* * = 1m m
            by (metis (no-types) P' P'P carrier-matD(1) inverts-mat-def)
    have *: P'*P*A= 的*(P*A)
            by (meson A P P' assoc-mult-mat)
    have }\mp@subsup{P}{}{\prime}*(P*A*Q)*\mp@subsup{Q}{}{\prime}=\mp@subsup{P}{}{\prime}*P*A*Q*\mp@subsup{Q}{}{\prime
            by (smt A P P ' Q assoc-mult-mat mult-carrier-mat)
    also have \ldots. = P'*P*(A*Q* Q')
```

using $A P P^{\prime} Q Q^{\prime} f 1 *$ by auto
also have $\ldots=A * Q * Q^{\prime}$ using $P^{\prime} P A P^{\prime}$ unfolding inverts-mat-def by auto
also have $\ldots=A$ using $Q Q^{\prime} A Q^{\prime} Q$ unfolding inverts-mat-def by auto
finally show ?thesis .
qed
have Gcd (minors ? $B k$) dvd det (submatrix $\left.\left(P^{\prime} * ? B * Q^{\prime}\right) I J\right)$
by (rule Gcd-minors-dvd[OF-P $\left.{ }^{\prime}-Q^{\prime}-I k J k\right]$, insert P A Q I J, auto)
also have $\ldots=\operatorname{det}($ submatrix $A I J)$ using $r w$ by simp
finally show $G c d$ (minors ? B k) $d v d b$ using b by simp
qed
lemma Gcd-minors-dvd-diag-PAQ:
fixes P A $Q:{ }^{\prime}{ }^{\prime} a::\{$ semiring-Gcd,comm-ring-1\} mat
assumes $A: A \in$ carrier-mat $m n$
and $P: P \in$ carrier-mat $m m$
and $Q: Q \in$ carrier-mat $n n$
and SNF: Smith-normal-form-mat $(P * A * Q)$
and k : $k \leq \min m n$
shows Gcd (minors $A k) d v d\left(\prod i=0 . .<k .(P * A * Q) \$ \$(i, i)\right)$
proof -
have Gcd (minors $A k$) dvd Gcd (minors $(P * A * Q) k$)
by (rule Gcd-minors-A-dvd-Gcd-minors-PAQ[OF A P Q)
also have $\ldots d v d\left(\prod i=0 . .<k .(P * A * Q) \$ \$(i, i)\right)$
by (rule Gcd-minors-dvd-diagonal $[O F-S N F k]$, insert P A Q, auto)
finally show? ?thesis.
qed
lemma diag-PAQ-dvd-Gcd-minors:
fixes P A $Q:{ }^{\prime}{ }^{\prime} a::\{$ semiring-Gcd,comm-ring-1\} mat
assumes $A: A \in$ carrier-mat $m n$
and $P: P \in$ carrier-mat $m m$
and $Q: Q \in$ carrier-mat $n n$
and inv-P: invertible-mat P
and inv- Q : invertible-mat Q
and SNF: Smith-normal-form-mat $(P * A * Q)$
shows $\left(\prod i=0 . .<k .(P * A * Q) \$ \$(i, i)\right) d v d G c d$ (minors $\left.A k\right)$
proof -
have $\left(\prod i=0 . .<k .(P * A * Q) \$ \$(i, i)\right)$ dvd Gcd (minors $\left.(P * A * Q) k\right)$
by (rule diagonal-dvd-Gcd-minors $[O F-S N F]$, auto)
also have ... dvd Gcd (minors A k)
by (rule Gcd-minors-PAQ-dvd-Gcd-minors- $A[O F-$ - inv-P inv-Q], insert $P A$ Q, auto)
finally show ?thesis.
qed

```
lemma Smith-prod-zero-imp-last-zero:
    fixes A::'a::{semidom,comm-ring-1} mat
    assumes A:A\incarrier-mat m n
        and SNF:Smith-normal-form-mat A
        and prod-0:(\prodj=0..<Suc i. A $$ (j,j))=0
    and i:i<min m n
    shows }A$$(i,i)=
proof -
    obtain j where Ajj: A$$(j,j)=0 and j: j<Suc i using prod-0 prod-zero-iff by
auto
    show A $$(i,i) = 0 by (rule Smith-zero-imp-zero[OF A SNF Ajj i], insert j,
auto)
qed
```


10.4 Final theorem

lemma Smith-normal-form-uniqueness-aux:
fixes P A $Q::^{\prime} a::\{$ idom,semiring-Gcd $\}$ mat
assumes $A: A \in$ carrier-mat $m n$
and $P: P \in$ carrier-mat $m m$
and $Q: Q \in$ carrier-mat $n n$
and inv- P : invertible-mat P
and inv- Q : invertible-mat Q
and $P A Q-B: P * A * Q=B$
and SNF: Smith-normal-form-mat B
and $P^{\prime}: P^{\prime} \in$ carrier-mat $m m$
and $Q^{\prime}: Q^{\prime} \in$ carrier-mat $n n$
and inv- P^{\prime} : invertible-mat P^{\prime}
and inv- Q^{\prime} : invertible-mat Q^{\prime}
and $P^{\prime} A Q^{\prime}-B^{\prime}: P^{\prime} * A * Q^{\prime}=B^{\prime}$
and SNF-B': Smith-normal-form-mat B^{\prime}
and $k: k<\min m n$
shows $\forall i \leq k . B \$ \(i, i) dvd $B^{\prime} \$ \$(i, i) \wedge B \$ \(i, i) dvd $B \$ \(i, i)
proof (rule allI, rule impI)
fix i assume $i k: i \leq k$
show $B \$ \$(i, i) d v d B^{\prime} \$ \$(i, i) \wedge B^{\prime} \$ \(i, i) dvd $B \$ \(i, i)
proof -
let ? $\Pi B i=\left(\prod i=0 . .<i . B \$ \$(i, i)\right)$
let $? \Pi B^{\prime} i=\left(\prod i=0 . .<i . B^{\prime} \$ \$(i, i)\right)$
have ? $\Pi B^{\prime} i$ dvd Gcd (minors A i)
by (unfold $P^{\prime} A Q^{\prime}-B^{\prime}[$ symmetric $]$, rule diag- $P A Q$-dvd-Gcd-minors $\left[O F A P^{\prime} Q^{\prime}\right.$
inv- P^{\prime} inv- Q^{\prime}],
insert $P^{\prime} A Q^{\prime}-B^{\prime} S N F-B^{\prime}$ ik k, auto)
also have ... dvd ? $\Pi B i$
by (unfold PAQ-B[symmetric], rule Gcd-minors-dvd-diag-PAQ[OF A P Q], insert PAQ-B SNF ik k, auto)
finally have $B^{\prime}-i-d v d-B-i$: ? $\Pi B^{\prime} i d v d ? \Pi B i$.
have ? Π Bi dvd Gcd (minors A i)
by (unfold PAQ-B[symmetric], rule diag-PAQ-dvd-Gcd-minors[OF A P Q inv- P inv- Q],
insert PAQ-B SNF ik k, auto)
also have ... dvd ? $\Pi B^{\prime} i$
by (unfold $P^{\prime} A Q^{\prime}-B^{\prime}[$ symmetric $]$, rule Gcd-minors-dvd-diag-PAQ[OF A $\left.P^{\prime} Q^{\prime}\right]$, insert $P^{\prime} A Q^{\prime}-B^{\prime} S N F-B^{\prime} i k k$, auto)
finally have $B-i-d v d-B^{\prime}-i$: ? $\Pi B i d v d ? \Pi B^{\prime} i$.
let $? \Pi B-S u c=\left(\prod i=0 . .<\right.$ Suc i. $\left.B \$ \$(i, i)\right)$
let ${ }^{\text {? }} \mathrm{B}^{\prime}$-Suc $=\left(\prod i=0 . .<\right.$ Suc i. $\left.B^{\prime} \$ \$(i, i)\right)$
have ? ΠB^{\prime}-Suc dvd Gcd (minors A (Suc i))
by (unfold $P^{\prime} A Q^{\prime}-B^{\prime}[$ symmetric $]$, rule diag-PAQ-dvd-Gcd-minors $\left[\right.$ OF $A P^{\prime} Q^{\prime}$ inv- P^{\prime} inv- Q^{\prime}],
insert $P^{\prime} A Q^{\prime}-B^{\prime} S N F-B^{\prime}$ ik k, auto)
also have ... dvd ? Π-Suc
by (unfold PAQ-B[symmetric], rule Gcd-minors-dvd-diag-PAQ[OF A P Q], insert $P A Q-B S N F$ ik k, auto)
finally have 3: ? ΠB^{\prime}-Suc dvd ? $\Pi B-S u c$.
have ? ΠB-Suc dvd Gcd (minors $A(S u c i)$)
by (unfold PAQ-B[symmetric], rule diag-PAQ-dvd-Gcd-minors[OF A P Q inv- P inv- Q],
insert PAQ-B SNF ik k, auto)
also have ... dvd ? ΠB^{\prime}-Suc
by (unfold $P^{\prime} A Q^{\prime}-B^{\prime}[$ symmetric $]$, rule Gcd-minors-dvd-diag-PAQ[OF A $\left.P^{\prime} Q^{\prime}\right]$, insert $P^{\prime} A Q^{\prime}-B^{\prime} S N F-B^{\prime}$ ik k, auto)
finally have 4: ? Π-Suc $d v d$? ΠB^{\prime}-Suc .
show ?thesis
proof (cases ? Π B-Suc $=0$)
case True
have True2: ? $\Pi B^{\prime}-S u c=0$ using 4 True by fastforce
have $B \$ \$(i, i)=0$ by (rule Smith-prod-zero-imp-last-zero[OF - SNF True], insert ik kPAQ-B P, auto)
moreover have $B^{\prime} \$ \$(i, i)=0$
by (rule Smith-prod-zero-imp-last-zero[OF - SNF-B'True2],
insert ik $k P^{\prime} A Q^{\prime}-B^{\prime} P^{\prime} Q^{\prime}$, auto)
ultimately show ?thesis by auto
next
case False
have $\exists u$. u dvd $1 \wedge$? $\Pi B^{\prime} i=u * ? \Pi B i$
by (rule dvd-associated2[OF $\left.B^{\prime}-i-d v d-B-i B-i-d v d-B^{\prime}-i\right]$, insert False $B^{\prime}-i-d v d-B-i$, force)
from this obtain u where eq1: $\left(\prod i=0 . .<i . B^{\prime} \$ \$(i, i)\right)=u *\left(\prod i=0 . .<i\right.$. B $\$ \$(i, i))$
and u-dvd-1: u dvd 1 by blast
have $\exists u . u$ dvd $1 \wedge ? \Pi B-S u c=u * ? \Pi B^{\prime}-S u c$
by (rule dvd-associated2[OF 43 False])
from this obtain w where eq2: ($\prod i=0 . .<$ Suc i. B $\left.\$ \$(i, i)\right)=w *$ (Пi=0..<Suc i. $\left.B^{\prime} \$ \$(i, i)\right)$

```
            and w-dvd-1: w dvd 1 by blast
            have B$$(i,i)*(\prodi=0..<i.B $$ (i,i))=(\prodi=0..<Suc i. B $$ (i,i))
            by (simp add: prod.atLeastO-lessThan-Suc ik)
            also have ... = w* (\prodi=0..<Suc i. B' $$ (i,i)) unfolding eq2 by auto
            also have ... =w*(\mp@subsup{B}{}{\prime}$$(i,i)*(\prodi=0..<i. B'$$(i,i)))
            by (simp add: prod.atLeast0-lessThan-Suc ik)
            also have ... =w*(B'$$(i,i)*u*(\prodi=0..<i. B$$(i,i)))
            unfolding eq1 by auto
            finally have B $$ (i,i)=w*u* 列$$(i,i)
            using False by auto
            moreover have w*u dvd 1 using u-dvd-1 w-dvd-1 by auto
            ultimately have }\existsu\mathrm{ . is-unit }u\wedgeB$$(i,i)=u*\mp@subsup{B}{}{\prime}$$(i,i) by aut
            thus ?thesis using dvd-associated2 by force
    qed
qed
qed
```

lemma Smith-normal-form-uniqueness:
fixes P A $Q::{ }^{\prime} a::\{$ idom,semiring-Gcd $\}$ mat
assumes $A: A \in$ carrier-mat $m n$
and $P: P \in$ carrier-mat $m m$
and $Q: Q \in$ carrier-mat $n n$
and inv-P: invertible-mat P
and inv- Q : invertible-mat Q
and $P A Q-B: P * A * Q=B$
and SNF: Smith-normal-form-mat B
and $P^{\prime}: P^{\prime} \in$ carrier-mat $m m$
and $Q^{\prime}: Q^{\prime} \in$ carrier-mat $n n$
and inv- P^{\prime} : invertible-mat P^{\prime}
and inv- Q^{\prime} : invertible-mat Q^{\prime}
and $P^{\prime} A Q^{\prime}-B^{\prime}: P^{\prime} * A * Q^{\prime}=B^{\prime}$
and SNF-B': Smith-normal-form-mat B^{\prime}
and $i: i<\min m n$
shows $\exists u$. u dvd $1 \wedge B \$ \$(i, i)=u * B^{\prime} \$ \(i, i)
proof (cases $B \$ \$(i, i)=0)$
case True
let $? \Pi B-S u c=\left(\prod i=0 . .<\right.$ Suc i. B $\left.\$ \$(i, i)\right)$
let ? B^{\prime}-Suc $=\left(\prod i=0 . .<\right.$ Suc i. $\left.B^{\prime} \$ \$(i, i)\right)$
have ? ΠB-Suc dvd Gcd (minors $A(S u c i))$
by (unfold PAQ-B[symmetric], rule diag-PAQ-dvd-Gcd-minors[OF A P Q inv-P inv-Q],
insert $P A Q-B S N F i$, auto)
also have ... dvd ? ΠB^{\prime}-Suc
by (unfold $P^{\prime} A Q^{\prime}$ - $B^{\prime}[$ symmetric $]$, rule Gcd-minors-dvd-diag- $P A Q\left[O F A P^{\prime} Q^{\prime}\right.$, insert $P^{\prime} A Q^{\prime}-B^{\prime} S N F-B^{\prime}$ i, auto)
finally have 4: ? ΠB-Suc dvd ? ΠB^{\prime}-Suc .

```
    have prod0: ?\PiB-Suc=0 using True by auto
    have True2:?\PiB'-Suc = 0 using & by (metis dvd-0-left-iff prod0)
    have }\mp@subsup{B}{}{\prime}$$(i,i)=
    by (rule Smith-prod-zero-imp-last-zero[OF - SNF-B' True2],
            insert i P'AQ'-B' P' Q',auto)
    thus ?thesis using True by auto
next
    case False
    have }\foralla\leqi.B$$(a,a)dvd B'$$(a,a)\wedge B'$$(a,a)dvd B$$(a,a
    by (rule Smith-normal-form-uniqueness-aux[OF assms])
    hence }B$$(i,i) dvd \mp@subsup{B}{}{\prime}$$(i,i)\wedgeB$$(i,i) dvd B$$(i,i) using i by aut
    thus ?thesis using dvd-associated2 False by blast
qed
The final theorem, moved to HOL Analysis
lemma Smith-normal-form-uniqueness-HOL-Analysis:
    fixes A::'a::{idom,semiring-Gcd}`'m::mod-type^' }n::m\mathrm{ mod-type
    and P P '::'a^' }n::\mathrm{ mod-type^' }n::mod-typ
    and Q Q'::'a^'m::mod-type^'m::mod-type
    assumes
    inv-P: invertible P
    and inv-Q: invertible Q
    and PAQ-B: P**A**Q = B
    and SNF:Smith-normal-form B
    and inv-P': invertible P
    and inv-Q': invertible Q}\mp@subsup{Q}{}{\prime
    and }\mp@subsup{P}{}{\prime}A\mp@subsup{Q}{}{\prime}-\mp@subsup{B}{}{\prime}:\mp@subsup{P}{}{\prime}**A**\mp@subsup{Q}{}{\prime}=\mp@subsup{B}{}{\prime
    and SNF-B':Smith-normal-form B'
    and i: i< min (nrows A) (ncols A)
shows \existsu.u dvd 1^B $h Mod-Type.from-nat i $h Mod-Type.from-nat i
=u*\mp@subsup{B}{}{\prime}$h Mod-Type.from-nat i $h Mod-Type.from-nat i
proof -
    let ?P = Mod-Type-Connect.from-hmam }
    let ?A = Mod-Type-Connect.from-hmam}
    let ?Q = Mod-Type-Connect.from-hmam}
    let ?B = Mod-Type-Connect.from-hma m
    let ?P' = Mod-Type-Connect.from-hmam}\mp@subsup{P}{m}{\prime
    let ?Q' = Mod-Type-Connect.from-hmam Q'
    let ?B' = Mod-Type-Connect.from-hmam B'
    let ? }i=(\mathrm{ Mod-Type.from-nat i)::'n
    let ? }\mp@subsup{i}{}{\prime}=(\mathrm{ Mod-Type.from-nat i)::'m
    have [transfer-rule]: Mod-Type-Connect.HMA-M ?P P by (simp add: Mod-Type-Connect.HMA-M-def)
    have [transfer-rule]: Mod-Type-Connect.HMA-M ?A A by (simp add: Mod-Type-Connect.HMA-M-def)
    have [transfer-rule]: Mod-Type-Connect.HMA-M ?Q Q by (simp add: Mod-Type-Connect.HMA-M-def)
    have [transfer-rule]: Mod-Type-Connect.HMA-M ?B B by (simp add: Mod-Type-Connect.HMA-M-def)
    have [transfer-rule]: Mod-Type-Connect.HMA-M ?P' P' by (simp add: Mod-Type-Connect.HMA-M-def)
    have [transfer-rule]: Mod-Type-Connect.HMA-M ?Q' Q' by (simp add: Mod-Type-Connect.HMA-M-def)
```

have [transfer-rule]: Mod-Type-Connect.HMA-M ?B' B' by (simp add: Mod-Type-Connect.HMA-M-def)
have [transfer-rule]: Mod-Type-Connect.HMA-I i ?i
by (metis Mod-Type-Connect.HMA-I-def i min.strict-boundedE mod-type-class.to-nat-from-nat-id nrows-def)
have [transfer-rule]: Mod-Type-Connect.HMA-I i ? i^{\prime} by (metis Mod-Type-Connect.HMA-I-def i min.strict-boundedE mod-type-class.to-nat-from-nat-id ncols-def)
have $i 2: i<\min C A R D(' m) C A R D(' n)$ using i unfolding nrows-def ncols-def by auto
have $\exists u$. u dvd $1 \wedge$? $B \$ \$(i, i)=u * ? B^{\prime} \$ \(i, i)
proof (rule Smith-normal-form-uniqueness[of - CARD (' n) CARD $\left.\left.\left({ }^{\prime} m\right)\right]\right)$
show ? $P *$? $A *$? $Q=$? B using $P A Q-B$ by (transfer ${ }^{\prime}$, auto)
show Smith-normal-form-mat ?B using SNF by (transfer', auto)
show ? $P^{\prime} * ? A * ? Q^{\prime}=? B^{\prime}$ using $P^{\prime} A Q^{\prime}-B^{\prime}$ by (transfer ${ }^{\prime}$, auto)
show Smith-normal-form-mat ? B^{\prime} using $S N F-B^{\prime}$ by (transfer', auto)
show invertible-mat ?P using inv-P by (transfer, auto)
show invertible-mat ? P^{\prime} using inv- P^{\prime} by (transfer, auto)
show invertible-mat? Q using inv- Q by (transfer, auto)
show invertible-mat? Q^{\prime} using inv- Q^{\prime} by (transfer, auto)
qed (insert i2, auto)
hence $\exists u . u$ dvd $1 \wedge\left(\right.$ index-hma B ?i ? $\left.i^{\prime}\right)=u *\left(\right.$ index-hma B^{\prime} ?i ? $\left.i^{\prime}\right)$ by (transfer ${ }^{\prime}$, rule)
thus ?thesis unfolding index-hma-def by simp qed

10.5 Uniqueness fixing a complete set of non-associates

definition Smith-normal-form-wrt $A \mathcal{Q}=($
($\forall a b$. Mod-Type.to-nat $a=$ Mod-Type.to-nat $b \wedge \operatorname{Mod}$-Type.to-nat $a+1<$ nrows A
\wedge Mod-Type.to-nat $b+1<$ ncols $A \longrightarrow A \$ h a \$ h b d v d A \$ h(a+1) \$ h$ $(b+1))$
\wedge isDiagonal $A \wedge$ Complete-set-non-associates \mathcal{Q}
$\wedge(\forall a b$. Mod-Type.to-nat $a=$ Mod-Type.to-nat $b \wedge$ Mod-Type.to-nat $a<\min$ (nrows A) (ncols A)
\wedge Mod-Type.to-nat $b<\min ($ nrows $A)($ ncols $A) \longrightarrow A \$ h a \$ h b \in \mathcal{Q})$
)
lemma Smith-normal-form-wrt-uniqueness-HOL-Analysis:
fixes $A::^{\prime} a::\{i d o m$, semiring-Gcd $\}{ }^{\wedge \prime} m:: m o d-t y p e{ }^{\wedge \prime} n:: m o d-t y p e$
and $P P^{\prime}:::^{\prime} a^{\wedge} n::$ mod-type ${ }^{\wedge} n::$ mod-type
and $Q Q^{\prime}::^{\prime} a^{\wedge \prime} m:: m o d-t y p e{ }^{\wedge \prime} m:: m o d-t y p e$
assumes
P : invertible P
and Q : invertible Q
and $P A Q-S: P * * A * * Q=S$
and SNF: Smith-normal-form-wrt $S \mathcal{Q}$
and P^{\prime} : invertible P^{\prime}
and Q^{\prime} : invertible Q^{\prime}
and $P^{\prime} A Q^{\prime}-S^{\prime}: P^{\prime} * * A * * Q^{\prime}=S^{\prime}$
and $S N F-S^{\prime}:$ Smith-normal-form-wrt $S^{\prime} \mathcal{Q}$
shows $S=S^{\prime}$
proof -
have $S \$ h i \$ h j=S^{\prime} \$ h i \$ h j$ for $i j$
proof (cases Mod-Type.to-nat $i \neq$ Mod-Type.to-nat j)
case True
then show ?thesis using SNF SNF-S' unfolding Smith-normal-form-wrt-def
isDiagonal-def by auto
next
case False
let $? i=$ Mod-Type.to-nat i
let ? $j=$ Mod-Type.to-nat j
have complete-set: Complete-set-non-associates \mathcal{Q}
using $S N F-S^{\prime}$ unfolding Smith-normal-form-wrt-def by simp
have $i j: ? i=? j$ using False by auto
show ?thesis
proof (rule ccontr)
assume $d: S \$ h i \$ h j \neq S^{\prime} \$ h i \$ h j$
have n : normalize $(S \$ h i \$ h j) \neq$ normalize $\left(S^{\prime} \$ h i \$ h j\right)$
proof (rule in-Ass-not-associated $[$ OF complete-set $--d]$)
show $S \$ h i \$ h j \in \mathcal{Q}$ using $S N F$ unfolding Smith-normal-form-wrt-def
by (metis False min-less-iff-conj mod-type-class.to-nat-less-card ncols-def
nrows-def)
show $S^{\prime} \$ h i \$ h j \in \mathcal{Q}$ using $S N F-S^{\prime}$ unfolding Smith-normal-form-wrt-def
by (metis False min-less-iff-conj mod-type-class.to-nat-less-card ncols-def nrows-def)
qed
have $\exists u . u d v d 1 \wedge S \$ h i \$ h j=u * S^{\prime} \$ h i \$ h j$
proof -
have $\exists u . u$ dvd $1 \wedge S \$ h$ Mod-Type.from-nat ? $\$$ h Mod-Type.from-nat ?i $=u * S^{\prime} \$ h$ Mod-Type.from-nat ? $i \$ h$ Mod-Type.from-nat ? i
proof (rule Smith-normal-form-uniqueness-HOL-Analysis[OF P Q PAQ-S -
$\left.\left.P^{\prime} Q^{\prime} P^{\prime} A Q^{\prime}-S^{\prime}-\right]\right)$
show Smith-normal-form S and Smith-normal-form S^{\prime}
using SNF SNF-S' Smith-normal-form-def Smith-normal-form-wrt-def
by blast+
show ? $i<\min ($ nrows $A)($ ncols $A)$
by (metis ij min-less-iff-conj mod-type-class.to-nat-less-card ncols-def
nrows-def) qed
thus ?thesis using False by auto
qed
from this obtain u where is-unit u and $S \$ h i \$ h j=u * S^{\prime} \$ h i \$ h j$ by auto
thus False using n
by (simp add: normalize-1-iff normalize-mult)
qed
qed
thus ?thesis by vector
qed
end

11 The Cauchy-Binet formula in HOL Analysis

theory Cauchy-Binet-HOL-Analysis imports
Cauchy-Binet
Perron-Frobenius.HMA-Connect
begin

11.1 Definition of submatrices in HOL Analysis

definition submatrix-hma :: ' a ^' $n c$ ^' $n r \Rightarrow$ nat set \Rightarrow nat set $\Rightarrow\left({ }^{\prime} a^{\wedge \prime} n c \mathcal{D}^{\wedge 1} n r 2\right)$ where submatrix-hma A IJ $=\left(\begin{array}{l}\chi \\ a\end{array}\right.$ b. A \$h (from-nat (pick I (to-nat a))) $\$ h$ (from-nat (pick J (to-nat b))))

```
context includes lifting-syntax
begin
context
    fixes I::nat set and J::nat set
    assumes I: card {i.i<CARD('nr::finite) ^ i\inI} = CARD('nr2::finite)
    assumes J:card {i.i<CARD('nc::finite) ^i\inJ}=CARD('nc2:::fnite)
begin
lemma HMA-submatrix[transfer-rule]: (HMA-M ===> HMA-M) (\lambdaA. submatrix
A I J)
```



```
proof (intro rel-funI, goal-cases)
    case (1 A B)
    note relAB[transfer-rule] = this
    show ?case unfolding HMA-M-def
    proof (rule eq-matI, auto)
        show dim-row (submatrix A I J) = CARD('nr\mathcal{Q})
            unfolding submatrix-def
            using I dim-row-transfer-rule relAB by force
    show dim-col (submatrix A I J) = CARD('nc\mathcal{L}
            unfolding submatrix-def
            using J dim-col-transfer-rule relAB by force
    let ?B=(submatrix-hma B I J)::'a ^'nc\mathcal{ ^'nr2}
    fix ij assume i: i<CARD('nr2) and
                j:j<CARD('nc2)
    have i2: i< card {i. i< dim-row }A\wedgei\inI
```

using I dim-row-transfer-rule i relAB by fastforce
have $j 2: j<\operatorname{card}\{j . j<\operatorname{dim}$-col $A \wedge j \in J\}$
using J dim-col-transfer-rule j relAB by fastforce
let $? i=($ from-nat $($ pick I $i))::^{\prime} n r$
let $? j=($ from-nat $($ pick $J j)):: ' n c$
let $?^{\prime} i^{\prime}=$ Bij-Nat.to-nat $\left((\right.$ Bij-Nat.from-nat $\left.i)::^{\prime} n r 2\right)$
let $? j^{\prime}=$ Bij-Nat.to-nat $(($ Bij-Nat.from-nat j)::'nc2)
have $i^{\prime}: ? i^{\prime}=i$ by (rule to-nat-from-nat-id $[O F i]$)
have $j^{\prime}: ? j^{\prime}=j$ by (rule to-nat-from-nat-id $[$ OF $j]$)
let $? f=(\lambda(i, j)$.
B \$h Bij-Nat.from-nat (pick I (Bij-Nat.to-nat ((Bij-Nat.from-nat i)::'nr2)))
$\$ h$
Bij-Nat.from-nat (pick J (Bij-Nat.to-nat ((Bij-Nat.from-nat j)::'nc2))))
have [transfer-rule]: HMA-I (pick I i) ?i
by (simp add: Bij-Nat.to-nat-from-nat-id I i pick-le HMA-I-def)
have [transfer-rule]: HMA-I (pick $J j$) ?j
by (simp add: Bij-Nat.to-nat-from-nat-id J j pick-le HMA-I-def)
have submatrix A I J \$\$ $(i, j)=A \$ \$$ (pick I i, pick $J j$) by (rule subma-trix-index[OF i2 j2])
also have $\ldots=$ index-hma B ?i ?j by (transfer, simp)
also have $\ldots=B \$ h$ Bij-Nat.from-nat (pick I (Bij-Nat.to-nat ((Bij-Nat.from-nat i)::'nr2))) \$h

Bij-Nat.from-nat (pick J (Bij-Nat.to-nat ((Bij-Nat.from-nat j)::'nc2)))
unfolding $i^{\prime} j^{\prime}$ index-hma-def by auto
also have $\ldots=$? $f(i, j)$ by auto
also have $\ldots=$ Matrix.mat $C A R D\left({ }^{\prime} n r 2\right) \operatorname{CARD}\left({ }^{\prime} n c 2\right)$?f $\$ \(i, j)
by (rule index-mat[symmetric, OF i j])
also have $\ldots=$ from-hma a_{m} ? $B \$(i, j)$
unfolding from-hma ${ }_{m}$-def submatrix-hma-def by auto
finally show submatrix $A I J \$ \$(i, j)=$ from-hma a_{m} ? $\$ \(i, j).
qed
qed
end
end

11.2 Transferring the proof from JNF to HOL Analysis

lemma Cauchy-Binet-HOL-Analysis:

fixes $A:: ' a::$ comm-ring- $1{ }^{\wedge \prime} m^{\wedge \prime} n$ and $B::^{\prime} a^{\wedge \prime} n^{\wedge \prime} m$
shows Determinants. $\operatorname{det}(A * * B)=\left(\sum I \in\{I . I \subseteq\{0 . .<\right.$ ncols $A\} \wedge$ card $I=$ nrows $A\}$.

Determinants.det ((submatrix-hma A UNIV I)::' $\left.a^{\wedge \prime} n^{\wedge \prime} n\right)$ *
Determinants.det ((submatrix-hma B I UNIV)::' $\left.a^{\wedge \prime} n \wedge \prime\right)$)
proof -
let ? $A=\left(\right.$ from-hma $\left.a_{m} A\right)$
let $? B=\left(\right.$ from-hma $\left.a_{m} B\right)$
have relA[transfer-rule]: $H M A-M$?A A unfolding $H M A-M$-def by simp
have relB[transfer-rule]: $H M A-M$?B B unfolding $H M A-M$-def by simp

```
have (\sumI\in{I.I\subseteq{0..<ncols A}}\wedge\mathrm{ card I= nrows A}.
    Determinants.det ((submatrix-hma A UNIV I)::'a ' }
    Determinants.det ((submatrix-hma B I UNIV)::' a^' }\mp@subsup{n}{}{\wedge\prime}n))
    (\sumI\in{I.I\subseteq{0..<ncols A} ^ card I=nrows A}. det (submatrix ?A UNIV
I)
    * det (submatrix ?B I UNIV))
    proof (rule sum.cong)
    fix I assume I:I\in{I.I\subseteq{0..<ncols A} ^ card I=nrows A}
    let ?sub-A= ((submatrix-hma A UNIV I)::' ' \^' }n\mp@subsup{\wedge}{}{\wedge\prime}n
    let ?sub-B= ((submatrix-hma B I UNIV)::'a^` }n\mp@subsup{}{}{\wedge\prime}n
    have c1: card {i. i<CARD('n)^i\inUNIV} = CARD('n) using I by auto
    have c2: card {i. i<CARD('m)^i\inI} = CARD('n)
    proof -
        have}I={i.i<CARD('m)\wedgei\inI} using I unfolding nrows-def ncols-de
by auto
            thus ?thesis using I nrows-def by auto
    qed
    have [transfer-rule]: HMA-M (submatrix ?A UNIV I) ?sub-A
        using HMA-submatrix[OF c1 c2] relA unfolding rel-fun-def by auto
    have [transfer-rule]: HMA-M (submatrix ?B I UNIV) ?sub-B
        using HMA-submatrix[OF c2 c1] relB unfolding rel-fun-def by auto
    show Determinants.det ?sub-A * Determinants.det ?sub-B
        = det (submatrix ?A UNIV I) * det (submatrix ?B I UNIV) by (transfer',
auto)
    qed (auto)
    also have ... = det (?A*?B)
        by (rule Cauchy-Binet[symmetric], unfold nrows-def ncols-def, auto)
    also have ... = Determinants.det ( }A**B)\mathrm{ by (transfer', auto)
    finally show ?thesis ..
qed
end
```


12 Diagonalizing matrices in JNF and HOL Analysis

theory Diagonalize
imports Admits-SNF-From-Diagonal-Iff-Bezout-Ring
begin

This section presents a locale that assumes a sound operation to make a matrix diagonal. Then, the result is transferred to HOL Analysis.

12.1 Diagonalizing matrices in JNF

We assume a diagonalize-JNF operation in JNF, which is applied to matrices over a Bézout ring. However, probably a more restrictive type class is required.
locale diagonalize $=$
fixes diagonalize-JNF :: 'a::bezout-ring mat \Rightarrow 'a bezout \Rightarrow ('a mat \times 'a mat \times 'a mat)
assumes soundness-diagonalize-JNF:
$\forall A$ bezout. $A \in$ carrier-mat $m n \wedge$ is-bezout-ext bezout \longrightarrow
(case diagonalize-JNF A bezout of $(P, S, Q) \Rightarrow$
$P \in$ carrier-mat $m m \wedge Q \in$ carrier-mat $n n \wedge S \in$ carrier-mat $m n$ \wedge invertible-mat $P \wedge$ invertible-mat $Q \wedge$ isDiagonal-mat $S \wedge S=P * A * Q$)
begin
lemma soundness-diagonalize-JNF':
fixes $A::^{\prime}$ a mat
assumes is-bezout-ext bezout and $A \in$ carrier-mat $m n$
and diagonalize-JNF A bezout $=(P, S, Q)$
shows $P \in$ carrier-mat $m m \wedge Q \in$ carrier-mat $n n \wedge S \in$ carrier-mat $m n$ \wedge invertible-mat $P \wedge$ invertible-mat $Q \wedge$ isDiagonal-mat $S \wedge S=P * A * Q$
using soundness-diagonalize-JNF assms unfolding case-prod-beta by (metis fst-conv snd-conv)

12.2 Implementation and soundness result moved to HOL Analysis.

definition diagonalize :: 'a::bezout-ring ^ 'nc :: mod-type ^ 'nr :: mod-type
\Rightarrow 'a bezout \Rightarrow
(('a ^'nr :: mod-type ^ 'nr :: mod-type)
$\times\left({ }^{\prime} a{ }^{\text {^ ' } n c}::\right.$ mod-type へ $n r::$ mod-type $)$
$\times\left({ }^{\prime} a\right.$ ^ 'nc :: mod-type ^ 'nc :: mod-type $)$)
where diagonalize A bezout $=($
let $(P, S, Q)=$ diagonalize-JNF (Mod-Type-Connect.from-hma m_{m} A) bezout
in (Mod-Type-Connect.to-hma ${ }_{m}$ P,Mod-Type-Connect.to-hma ${ }_{m}$ S,Mod-Type-Connect.to-hma ${ }_{m}$ Q)
)
lemma soundness-diagonalize:
assumes b: is-bezout-ext bezout
and d : diagonalize A bezout $=(P, S, Q)$
shows invertible $P \wedge$ invertible $Q \wedge$ isDiagonal $S \wedge S=P * * A * * Q$
proof -
define A^{\prime} where $A^{\prime}=$ Mod-Type-Connect.from-hma ${ }_{m} A$
obtain $P^{\prime} S^{\prime} Q^{\prime}$ where d-JNF: $\left(P^{\prime}, S^{\prime}, Q^{\prime}\right)=$ diagonalize-JNF A^{\prime} bezout by (metis prod-cases3)
define m and n where $m=\operatorname{dim}$-row A^{\prime} and $n=\operatorname{dim}$-col A^{\prime}
hence $A^{\prime}: A^{\prime} \in$ carrier-mat $m n$ by auto
have res-JNF: $P^{\prime} \in$ carrier-mat $m m \wedge Q^{\prime} \in$ carrier-mat $n n \wedge S^{\prime} \in$ carrier-mat m n
\wedge invertible-mat $P^{\prime} \wedge$ invertible-mat $Q^{\prime} \wedge$ isDiagonal-mat $S^{\prime} \wedge S^{\prime}=P^{\prime} * A^{\prime} * Q^{\prime}$ by (rule soundness-diagonalize-JNF ${ }^{\prime}\left[\right.$ OF b $A^{\prime} d$-JNF[symmetric $\left.\left.]\right]\right)$
have Mod-Type-Connect.to-hma $a_{m} P^{\prime}=P$ using d unfolding diagonalize-def Let-def

```
        by (metis A'-def d-JNF fst-conv old.prod.case)
    hence }\mp@subsup{P}{}{\prime}=\mathrm{ Mod-Type-Connect.from-hma m P using A'-def m-def res-JNF by
auto
    hence [transfer-rule]: Mod-Type-Connect.HMA-M P' P
        unfolding Mod-Type-Connect.HMA-M-def by auto
    have Mod-Type-Connect.to-hmam ( Q' = Q using d unfolding diagonalize-def
Let-def
    by (metis A'-def d-JNF snd-conv old.prod.case)
    hence }\mp@subsup{Q}{}{\prime}=\mathrm{ Mod-Type-Connect.from-hmam Q using A'-def n-def res-JNF by
auto
    hence [transfer-rule]: Mod-Type-Connect.HMA-M Q' Q
        unfolding Mod-Type-Connect.HMA-M-def by auto
    have Mod-Type-Connect.to-hmam S'=S using d unfolding diagonalize-def
Let-def
    by (metis A'-def d-JNF snd-conv old.prod.case)
    hence S'= Mod-Type-Connect.from-hma m S using A'-def m-def n-def res-JNF
by auto
    hence [transfer-rule]: Mod-Type-Connect.HMA-M S'S
        unfolding Mod-Type-Connect.HMA-M-def by auto
    have [transfer-rule]: Mod-Type-Connect.HMA-M A' A
        using A'-def unfolding Mod-Type-Connect.HMA-M-def by auto
    have invertible P using res-JNF by (transfer, simp)
    moreover have invertible Q using res-JNF by (transfer, simp)
    moreover have isDiagonal S using res-JNF by (transfer, simp)
    moreover have S=P**A**Q using res-JNF by (transfer, simp)
    ultimately show ?thesis by simp
qed
end
end
```


13 Smith normal form algorithm based on two steps in HOL Analysis

theory SNF-Algorithm-Two-Steps
imports Diagonalize
begin
This file contains an algorithm to transform a matrix to its Smith normal form, based on two steps: first it is converted into a diagonal matrix and then transformed from diagonal to Smith.
We assume the existence of a diagonalize operation, and then we just have to connect it to the existing algorithm (in HOL Analysis) to transform a diagonal matrix into its Smith normal form.

13.1 The implementation

context diagonalize

begin

```
definition Smith-normal-form-of \(A\) bezout \(=(\)
    let \(\left(P^{\prime \prime}, D, Q^{\prime \prime}\right)=\) diagonalize \(A\) bezout;
        \(\left(P^{\prime}, S, Q^{\prime}\right)=\) diagonal-to-Smith- \(P Q D\) bezout
    in ( \(\left.P^{\prime} * * P^{\prime \prime}, S, Q^{\prime \prime} * * Q^{\prime}\right)\)
)
```


13.2 Soundness in HOL Analysis

```
lemma Smith-normal-form-of-soundness:
    fixes \(A::^{\prime} a::\{\) bezout-ring \(\}{ }^{\wedge}\) cols::\{mod-type \(\}^{\wedge}\) rows:: \(\{\) mod-type \(\}\)
    assumes b: is-bezout-ext bezout
    assumes \(P S Q:(P, S, Q)=\) Smith-normal-form-of \(A\) bezout
    shows \(S=P * * A * * Q \wedge\) invertible \(P \wedge\) invertible \(Q \wedge\) Smith-normal-form \(S\)
proof -
    obtain \(P^{\prime \prime} D Q^{\prime \prime}\) where \(P D Q\)-diag: \(\left(P^{\prime \prime}, D, Q^{\prime \prime}\right)=\) diagonalize \(A\) bezout
        by (metis prod-cases3)
    have 1: invertible \(P^{\prime \prime} \wedge\) invertible \(Q^{\prime \prime} \wedge\) isDiagonal \(D \wedge D=P^{\prime \prime} * * A * * Q^{\prime \prime}\)
        by (rule soundness-diagonalize[OF b PDQ-diag[symmetric]])
    obtain \(P^{\prime} Q^{\prime}\) where PSQ-D: \(\left(P^{\prime}, S, Q^{\prime}\right)=\) diagonal-to-Smith- \(P Q D\) bezout
        using \(P S Q P D Q\)-diag unfolding Smith-normal-form-of-def
        unfolding Let-def by (smt Pair-inject case-prod-beta' surjective-pairing)
    have 2: invertible \(P^{\prime} \wedge\) invertible \(Q^{\prime} \wedge\) Smith-normal-form \(S \wedge S=P^{\prime} * * D * * Q^{\prime}\)
        using diagonal-to-Smith- \(P Q^{\prime} 1\) b \(P S Q-D\) by blast
    have \(P: P=P^{\prime} * * P^{\prime \prime}\)
        by (metis (mono-tags, lifting) PDQ-diag PSQ-D Pair-inject
            Smith-normal-form-of-def PSQ old.prod.case)
    have \(Q: Q=Q^{\prime \prime * *} Q^{\prime}\)
        by (metis (mono-tags, lifting) PDQ-diag PSQ-D Pair-inject
            Smith-normal-form-of-def PSQ old.prod.case)
    have \(S=P * * A * * Q\) using 12 by (simp add: \(P Q\) matrix-mul-assoc)
    moreover have invertible \(P\) using \(P\) by (simp add: 12 invertible-mult)
    moreover have invertible \(Q\) using \(Q\) by (simp add: 12 invertible-mult)
    ultimately show ?thesis using 2 by auto
qed
end
end
```


14 Algorithm to transform a diagonal matrix into its Smith normal form in JNF

theory Diagonal-To-Smith-JNF
imports Admits-SNF-From-Diagonal-Iff-Bezout-Ring
begin

In this file, we implement an algorithm to transform a diagonal matrix into its Smith normal form, using the JNF library.

There are, at least, three possible options:

1. Implement and prove the soundness of the algorithm from scratch in JNF
2. Implement it in JNF and connect it to the HOL Analysis version by means of transfer rules. Thus, we could obtain the soundness lemma in JNF.
3. Implement it in JNF, with calls to the HOL Analysis version by means of the functions from-hma a_{m} and to-hma . That is, transform the matrix to HOL Analysis, apply the existing algorith in HOL Analysis to get the Smith normal form and then transform the output to JNF. Then, we could try to get the soundness theorem in JNF by means of transfer rules and local type definitions.

The first option requires much effort. As we will see, the third option is not possible.

14.1 Attempt with the third option: definitions and conditional transfer rules

```
context
    fixes A::'a::bezout-ring mat
    assumes A \in carrier-mat CARD('nr::mod-type) CARD('nc::mod-type)
begin
private definition diagonal-to-Smith-PQ-JNF' bezout =(
    let A' = Mod-Type-Connect.to-hmam A::'a^'nc::mod-type^'nr::mod-type;
        (P,S,Q)=(diagonal-to-Smith-PQ A' bezout)
    in (Mod-Type-Connect.from-hma m P, Mod-Type-Connect.from-hma m S, Mod-Type-Connect.from-hma m
Q))
end
```

This approach will not work. The type is necessary in the definition of the function. That is, outside the context, the function will be:
diagonal-to-Smith-PQ-JNF' TYPE('nc) TYPE ('nr) A bezout
And we cannot get rid of such TYPE (' $n c$).
That is, we could get a lemma like:
lemma assumes $A \in$ carrier-mat $m n$ and $(P, S, Q)=$ diagonal-to-Smith- $P Q-J N F^{\prime}$
TYPE ('nr::mod-type) TYPE('nc::mod-type) A bezout shows invertible-mat
$P \wedge$ invertible-mat $Q \wedge S=P * A * Q \wedge$ Smith-normal-form-mat S
But we wouldn't be able to get rid of such types.

14.2 Attempt with the second option: implementation and soundness in JNF

definition diagonal-step-JNF A ijdv=
Matrix.mat (dim-row $A)($ dim-col $A)(\lambda(a, b)$.if $a=i \wedge b=i$ then d
else

$$
\begin{aligned}
& \text { if } a=j \wedge b=j \\
& \text { then } v *(A \$ \$(j, j)) \text { else } A \$ \$(a, b))
\end{aligned}
$$

Conditional transfer rules are required, so I prove them within context with assumptions.

```
context
    includes lifting-syntax
    fixes }i\mathrm{ and j::nat
    assumes i: i<min (CARD('nr::mod-type)) (CARD('nc::mod-type))
    and j:j<min (CARD('nr::mod-type)) (CARD('nc::mod-type))
begin
lemma HMA-diagonal-step[transfer-rule]:
    ((Mod-Type-Connect.HMA-M :: - > 'a :: comm-ring-1 ^'nc :: mod-type ^ 'nr ::
mod-type = -)
    ===> (=) ===> (=) ===> Mod-Type-Connect.HMA-M)
        ( }\lambda\mathrm{ A. diagonal-step-JNF A i j) ( }\lambda\mathrm{ B. diagonal-step B i j)
    by (intro rel-funI, goal-cases, auto simp add: Mod-Type-Connect.HMA-M-def
        diagonal-step-JNF-def diagonal-step-def)
    (rule eq-matI, auto simp add: Mod-Type-Connect.from-hmam-def, insert from-nat-eq-imp-eq
i j, auto)
end
definition diagonal-step-PQ-JNF ::
    'a::{bezout-ring} mat }=>\mathrm{ nat }=>\mathrm{ nat }=>\mp@subsup{'}{}{\prime}a\mathrm{ bezout }=>('a mat > ('a mat))
    where diagonal-step-PQ-JNF A i k bezout =
    (let m=dim-row A; n= dim-col A;
        (p,q,u,v,d) = bezout (A$$ (i,i)) (A$$ (k,k));
        P}=\mathrm{ addrow (-v)ki (swaprows ik (addrow p ki (1m m)));
        Q multcol k (-1) (addcol u ki (addcol qi k (1m n)))
        in (P,Q)
        )
context
    includes lifting-syntax
    fixes }i\mathrm{ and }k::na
    assumes }i:i<\operatorname{min}(CARD('nr::mod-type)) (CARD('nc::mod-type))
    and k: k<min (CARD('nr::mod-type)) (CARD('nc::mod-type))
begin
lemma HMA-diagonal-step-PQ[transfer-rule]:
    ((Mod-Type-Connect.HMA-M :: - = 'a :: bezout-ring ^ 'nc :: mod-type ^ 'nr ::
```

```
mod-type = -)
    ===> (=) ===> rel-prod Mod-Type-Connect.HMA-M Mod-Type-Connect.HMA-M)
    ( }\lambdaA\mathrm{ bezout. diagonal-step-PQ-JNF A i k bezout) ( }\lambdaA\mathrm{ bezout. diagonal-step-PQ
A ik bezout)
proof (intro rel-funI, goal-cases)
    case (1 A A' bezout bezout')
    note HMA-M-AA'[transfer-rule] = 1(1)
    let ?d-JNF = (diagonal-step-PQ-JNF A i k bezout)
    let ?d-HA = (diagonal-step-PQ A' i k bezout)
    have [transfer-rule]: Mod-Type-Connect.HMA-I k (from-nat k::'nc)
    and [transfer-rule]: Mod-Type-Connect.HMA-I k (from-nat k::'nr)
    by (metis Mod-Type-Connect.HMA-I-def k min.strict-boundedE to-nat-from-nat-id)+
    have [transfer-rule]: Mod-Type-Connect.HMA-I i (from-nat i::'nc)
    and [transfer-rule]: Mod-Type-Connect.HMA-I i (from-nat i::'nr)
    by (metis Mod-Type-Connect.HMA-I-def i min.strict-boundedE to-nat-from-nat-id)+
    have [transfer-rule]: A $$ (i,i)=\mp@subsup{A}{}{\prime}$h from-nat i $h from-nat i
    proof -
    have A$$(i,i)= index-hma A' (from-nat i) (from-nat i) by (transfer, simp)
    also have ... = A' $h from-nat i $h from-nat i unfolding index-hma-def by
auto
    finally show ?thesis .
    qed
    have [transfer-rule]: A $$ (k,k)=\mp@subsup{A}{}{\prime}$h from-nat k $h from-nat k
    proof -
    have A $$ (k,k)= index-hma A' (from-nat k) (from-nat k) by (transfer, simp)
    also have ... = A' $h from-nat k$h from-nat k unfolding index-hma-def by
auto
    finally show ?thesis .
    qed
    have dim-row-CARD: dim-row A = CARD('nr)
        using HMA-M-AA' Mod-Type-Connect.dim-row-transfer-rule by blast
    have dim-col-CARD: dim-col A = CARD('nc)
        using HMA-M-AA' Mod-Type-Connect.dim-col-transfer-rule by blast
    let ?p = fst (bezout ( }\mp@subsup{A}{}{\prime}$h\mathrm{ from-nat i $h from-nat i)( }\mp@subsup{A}{}{\prime}$h\mathrm{ from-nat }k$
from-nat k))
    let ?v = fst (snd (snd (snd (bezout (A $$ (i,i)) (A $$ (k,k))))))
    have Mod-Type-Connect.HMA-M (fst ?d-JNF) (fst ?d-HA)
    unfolding diagonal-step-PQ-JNF-def diagonal-step-PQ-def Mod-Type-Connect.HMA-M-def
    unfolding Let-def split-beta dim-row-CARD
            by (auto, transfer, auto simp add: Mod-Type-Connect.HMA-M-def Rel-def
rel-funI)
    moreover have Mod-Type-Connect.HMA-M (snd ?d-JNF) (snd ?d-HA)
    unfolding diagonal-step-PQ-JNF-def diagonal-step-PQ-def Mod-Type-Connect.HMA-M-def
    unfolding Let-def split-beta dim-col-CARD
            by (auto, transfer, auto simp add: Mod-Type-Connect.HMA-M-def Rel-def
rel-funI)
```

ultimately show ?case unfolding rel-prod-conv using 1
by (simp add: split-beta)
qed
end
fun diagonal-to-Smith-i-PQ-JNF ::
nat list \Rightarrow nat $\Rightarrow\left({ }^{\prime} a::\{\right.$ bezout-ring $\}$ bezout $)$
$\Rightarrow\left({ }^{\prime} a\right.$ mat $\times{ }^{\prime} a$ mat \times 'a mat $) \Rightarrow\left({ }^{\prime} a\right.$ mat $\times{ }^{\prime} a$ mat $\left.\times{ }^{\prime} a \mathrm{mat}\right)$
where
diagonal-to-Smith-i-PQ-JNF [] i bezout $(P, A, Q)=(P, A, Q) \mid$
diagonal-to-Smith-i-PQ-JNF ($j \# x s$) i bezout $(P, A, Q)=($
if $A \$ \(i, i) dvd $A \$ \(j, j)
then diagonal-to-Smith-i-PQ-JNF xs i bezout (P, A, Q)
else let $(p, q, u, v, d)=$ bezout $(A \$ \$(i, i))(A \$ \$(j, j))$;
$A^{\prime}=$ diagonal-step-JNF A ijdv;
$\left(P^{\prime}, Q^{\prime}\right)=$ diagonal-step- $P Q$-JNF A ij bezout
in diagonal-to-Smith-i-PQ-JNF xs i bezout $\left(P^{\prime} * P, A^{\prime}, Q * Q^{\prime}\right)$ - Apply the step)

```
context
    includes lifting-syntax
    fixes }i\mathrm{ and xs
    assumes i: i< min (CARD('nr::mod-type)) (CARD('nc::mod-type))
    and xs: }\forallj\in\mathrm{ set xs. j < min (CARD('nr::mod-type)) (CARD('nc::mod-type))
begin
declare diagonal-step-PQ.simps[simp del]
lemma HMA-diagonal-to-Smith-i-PQ-aux: HMA-M3 ( }P,A,Q
    ( ' ' :: 'a :: bezout-ring ^'nr :: mod-type ^' 'nr :: mod-type,
    A' :: 'a :: bezout-ring ^ 'nc :: mod-type ^ 'nr :: mod-type,
    \mp@subsup{Q}{}{\prime}:: 'a :: bezout-ring ^ 'nc :: mod-type ^ 'nc :: mod-type)
    \LongrightarrowHMA-M3 (diagonal-to-Smith-i-PQ-JNF xs i bezout (P,A,Q))
            (diagonal-to-Smith-i-PQ xs i bezout ( }\mp@subsup{P}{}{\prime},\mp@subsup{A}{}{\prime},\mp@subsup{Q}{}{\prime})
    using i xs
proof (induct xs i bezout ( }\mp@subsup{P}{}{\prime},\mp@subsup{A}{}{\prime},\mp@subsup{Q}{}{\prime})\mathrm{ arbitrary: }\mp@subsup{P}{}{\prime}\mp@subsup{A}{}{\prime}\mp@subsup{Q}{}{\prime}PA Q rule: diago
nal-to-Smith-i-PQ.induct)
    case (1 i bezout P' A' Q')
    then show ?case by auto
next
    case (2 j xs i bezout P' A' Q')
    note HMA-M3[transfer-rule] = 2.prems(1)
    note }i=2(4
    note j=2(5)
    note IH1=2.hyps(1)
    note IH2=2.hyps(2)
```

```
    have j-min: j< min CARD('nr) CARD('nc) using j by auto
    have HMA-M-AA'[transfer-rule]: Mod-Type-Connect.HMA-M A A' using HMA-M3
by auto
    have [transfer-rule]: Mod-Type-Connect.HMA-I j (from-nat j::'nc)
        and [transfer-rule]: Mod-Type-Connect.HMA-I j (from-nat j::'nr)
    by (metis Mod-Type-Connect.HMA-I-def j-min min.strict-boundedE to-nat-from-nat-id)+
    have [transfer-rule]: Mod-Type-Connect.HMA-I i (from-nat i::'nc)
        and [transfer-rule]: Mod-Type-Connect.HMA-I i (from-nat i::'nr)
    by (metis Mod-Type-Connect.HMA-I-def i min.strict-boundedE to-nat-from-nat-id)+
    have [transfer-rule]: A $$ (i,i)=A'$h from-nat i $h from-nat i
    proof -
    have A$$(i,i)= index-hma A' (from-nat i) (from-nat i) by (transfer, simp)
    also have ... = A' $h from-nat i $h from-nat i unfolding index-hma-def by
auto
    finally show ?thesis .
    qed
    have [transfer-rule]: A $$ (j,j)=A' $h from-nat j $h from-nat j
    proof -
    have A$$(j,j)= index-hma A' (from-nat j) (from-nat j) by (transfer, simp)
    also have ... = A' $h from-nat j $h from-nat j unfolding index-hma-def by
auto
    finally show ?thesis .
    qed
    show ?case
    proof (cases A $$ (i,i) dvd A $$ (j,j))
        case True
        hence }\mp@subsup{A}{}{\prime}$h\mathrm{ from-nat i $h from-nat i dvd A' $h from-nat j $h from-nat j by
transfer
    then show ?thesis using True IH1 HMA-M3 i j by auto
    next
    case False
    obtain p quvd where b: (p,q,u,v,d) = bezout (A $$(i,i)) (A $$(j,j))
        by (metis prod-cases5)
    let ?'A'-JNF = diagonal-step-JNF A ijdv
```



```
nal-step-PQ-JNF A i j bezout
            by (metis surjective-pairing)
    have not-dvd: \neg A'$h from-nat i $h from-nat i dvd A' $h from-nat j $h from-nat
j using False by transfer
    let ? }\mp@subsup{A}{}{\prime}=\mathrm{ diagonal-step }\mp@subsup{A}{}{\prime}ijdv
    obtain P}\mp@subsup{P}{}{\prime\prime}\mp@subsup{Q}{}{\prime\prime}\mathrm{ where }\mp@subsup{P}{}{\prime\prime}\mp@subsup{Q}{}{\prime\prime}:(\mp@subsup{P}{}{\prime\prime},\mp@subsup{Q}{}{\prime\prime})=\mathrm{ diagonal-step-PQ A' i j bezout
        by (metis surjective-pairing)
        have b2: (p,q,u,v,d) = bezout ( }\mp@subsup{A}{}{\prime}$h\mathrm{ from-nat i $h from-nat i) ( }\mp@subsup{A}{}{\prime}$
from-nat j $h from-nat j)
    using b by (transfer,auto)
    let ?D-HA = diagonal-to-Smith-i-PQ xs i bezout ( }\mp@subsup{P}{}{\prime\prime}**\mp@subsup{P}{}{\prime},?\mp@subsup{A}{}{\prime},\mp@subsup{Q}{}{\prime}**\mp@subsup{Q}{}{\prime\prime}
let ?D-JNF = diagonal-to-Smith-i-PQ-JNF xs i bezout ( }\mp@subsup{P}{}{\prime\prime}-JNF*P,?A'-JNF,Q*Q'\prime-JNF)
    have rw-1: diagonal-to-Smith-i-PQ-JNF (j # xs) i bezout (P,A,Q) =?D-JNF
```

using False b $P^{\prime \prime} Q^{\prime \prime}-J N F$
by (auto, unfold split-beta, metis fst-conv snd-conv)
have rw-2: diagonal-to-Smith-i-PQ $\left(j \#\right.$ xs) i bezout $\left(P^{\prime}, A^{\prime}, Q^{\prime}\right)=? D-H A$
using not-dvd b2 $P^{\prime \prime} Q^{\prime \prime}$ by (auto, unfold split-beta, metis fst-conv snd-conv)
have HMA-M3 ?D-JNF ? D-HA
proof (rule IH2[OF not-dvd b2], auto)
have $j: j<\min C A R D\left({ }^{\prime} n r\right) C A R D\left({ }^{\prime} n c\right)$ using j by auto
have [transfer-rule]: rel-prod Mod-Type-Connect.HMA-M Mod-Type-Connect.HMA-M
(diagonal-step- $P Q$-JNF A $i j$ bezout) (diagonal-step- $P Q A^{\prime} i j$ bezout)
using HMA-diagonal-step- $P Q[O F i j] H M A-M-A A^{\prime}$ unfolding rel-fun-def
by auto
hence [transfer-rule]: Mod-Type-Connect.HMA-M $P^{\prime \prime}$-JNF $P^{\prime \prime}$
and [transfer-rule]: Mod-Type-Connect.HMA-M $Q^{\prime \prime}$-JNF $Q^{\prime \prime}$
using $P^{\prime \prime} Q^{\prime \prime} P^{\prime \prime} Q^{\prime \prime}$-JNF unfolding rel-prod-conv split-beta
by (metis fst-conv, metis snd-conv)
have [transfer-rule]: Mod-Type-Connect.HMA-M P P^{\prime} using HMA-M3 by auto
show Mod-Type-Connect.HMA-M $\left(P^{\prime \prime}-J N F * P\right)\left(P^{\prime \prime} * * P^{\prime}\right)$
by (transfer-prover-start, transfer-step + , auto)
show Mod-Type-Connect.HMA-M (diagonal-step-JNF A ijdv) (diagonal-step $\left.A^{\prime} i j d v\right)$
using HMA-diagonal-step[OF $i j] H M A-M-A A^{\prime}$ unfolding rel-fun-def by auto
have [transfer-rule]: Mod-Type-Connect.HMA-M $Q Q^{\prime}$ using HMA-M3 by auto
show Mod-Type-Connect.HMA-M $\left(Q * Q^{\prime \prime}-J N F\right)\left(Q^{\prime} * * Q^{\prime \prime}\right)$
by (transfer-prover-start, transfer-step + , auto)
qed (insert $i j P^{\prime \prime} Q^{\prime \prime}$, auto)
then show ?thesis using rw-1 rw-2 by auto
qed
qed
lemma HMA-diagonal-to-Smith-i-PQ[transfer-rule]:

$$
((=)
$$

$===>\left(\right.$ HMA-M3 $::\left(-\Rightarrow\left(-\times\left({ }^{\prime} a::\right.\right.\right.$ bezout-ring ${ }^{\wedge} n c::$ mod-type ${ }^{\wedge}$ 'nr $::$ mod-type $)$ $\times-) \Rightarrow-))$
$===>$ HMA-M3) (diagonal-to-Smith-i-PQ-JNF xs i) (diagonal-to-Smith-i-PQ xs i)
proof (intro rel-funI, goal-cases)
case (1 x y bezout bezout')
then show ?case using HMA-diagonal-to-Smith-i-PQ-aux by (auto, smt HMA-M3.elims(2))
qed
end

```
fun Diagonal-to-Smith-row-i-PQ-JNF
    where Diagonal-to-Smith-row-i-PQ-JNF i bezout ( }P,A,Q
    = diagonal-to-Smith-i-PQ-JNF [i+1..<min (dim-row A) (dim-col A)] i bezout
(P,A,Q)
declare Diagonal-to-Smith-row-i-PQ-JNF.simps[simp del]
lemmas Diagonal-to-Smith-row-i-PQ-JNF-def = Diagonal-to-Smith-row-i-PQ-JNF.simps
context
    includes lifting-syntax
    fixes i
    assumes }i:i<\operatorname{min}(CARD('nr::mod-type)) (CARD('nc::mod-type))
begin
lemma HMA-Diagonal-to-Smith-row-i-PQ[transfer-rule]:
    ((=) ===> (HMA-M3 :: (- = (-×('a::bezout-ring^'nc::mod-type^'nr::mod-type)
x-)=>-)) ===> HMA-M3)
    (Diagonal-to-Smith-row-i-PQ-JNF i) (Diagonal-to-Smith-row-i-PQ i)
proof (intro rel-funI, clarify, goal-cases)
    case (1-bezout P A Q P' A' Q')
    note HMA-M3[transfer-rule] = 1
    let ?xs1=[i+1..<min (dim-row A) (dim-col A)]
    let ?xs2=[i+1..<min (nrows A')(ncols A')}
    have xs-eq[transfer-rule]:?xs1 = ?xs2
        using HMA-M3
        by (auto intro: arg-cong2[where f=upt]
            simp: Mod-Type-Connect.dim-col-transfer-rule Mod-Type-Connect.dim-row-transfer-rule
                nrows-def ncols-def)
    have j-xs: }\forallj\inset ?xs1. j< min CARD('nr) CARD('nc) using i
        by (metis atLeastLessThan-iff ncols-def nrows-def set-upt xs-eq)
    have rel: HMA-M3 (diagonal-to-Smith-i-PQ-JNF ?xs1 i bezout (P,A,Q))
                    (diagonal-to-Smith-i-PQ ?xs1 i bezout ( }\mp@subsup{P}{}{\prime},\mp@subsup{A}{}{\prime},\mp@subsup{Q}{}{\prime})\mathrm{ )
    using HMA-diagonal-to-Smith-i-PQ[OF i j-xs] HMA-M3 unfolding rel-fun-def
by blast
    then show ?case
    unfolding Diagonal-to-Smith-row-i-PQ-JNF-def Diagonal-to-Smith-row-i-PQ-def
        by (metis Suc-eq-plus1 xs-eq)
qed
end
fun diagonal-to-Smith-aux-PQ-JNF
    where
    diagonal-to-Smith-aux-PQ-JNF [] bezout (P,A,Q) = (P,A,Q)|
    diagonal-to-Smith-aux-PQ-JNF (i#xs) bezout (P,A,Q)
    = diagonal-to-Smith-aux-PQ-JNF xs bezout (Diagonal-to-Smith-row-i-PQ-JNF
i bezout (P,A,Q))
```

```
context
    includes lifting-syntax
    fixes xs
    assumes xs: }\forallj\in\mathrm{ set xs. j < min (CARD('nr::mod-type)) (CARD('nc::mod-type))
begin
lemma HMA-diagonal-to-Smith-aux-PQ-JNF[transfer-rule]:
    ((=) ===> (HMA-M3 :: (- > (- × ('a::bezout-ring^'nc::mod-type^'nr::mod-type)
x -) =>-)) ===> HMA-M3)
    (diagonal-to-Smith-aux-PQ-JNF xs) (diagonal-to-Smith-aux-PQ xs)
proof (intro rel-funI, clarify, goal-cases)
    case (1-bezout PA Q P' A' Q')
    note HMA-M3[transfer-rule] = 1
    show ?case
        using xs HMA-M3
    proof (induct xs arbitrary: P' A' Q' P A Q)
        case Nil
        then show ?case by auto
    next
        case (Cons i xs)
        note IH = Cons(1)
        note HMA-M3 = Cons.prems(2)
        have i: i< min CARD('nr) CARD('nc) using Cons.prems by auto
        let ?D-JNF = (Diagonal-to-Smith-row-i-PQ-JNF i bezout (P,A,Q))
        let ?D-HA = (Diagonal-to-Smith-row-i-PQ i bezout ( }\mp@subsup{P}{}{\prime},\mp@subsup{A}{}{\prime},\mp@subsup{Q}{}{\prime})
        have rw-1: diagonal-to-Smith-aux-PQ-JNF ( }i##s)\mathrm{ bezout ( }P,A,Q
            = diagonal-to-Smith-aux-PQ-JNF xs bezout ?D-JNF by auto
        have rw-2: diagonal-to-Smith-aux-PQ (i # xs) bezout ( }\mp@subsup{P}{}{\prime},\mp@subsup{A}{}{\prime},\mp@subsup{Q}{}{\prime}
            = diagonal-to-Smith-aux-PQ xs bezout ?D-HA by auto
        have HMA-M3 ?D-JNF ?D-HA
        using HMA-Diagonal-to-Smith-row-i-PQ[OF i] HMA-M3 unfolding rel-fun-def
by blast
        then show ?case
            by (auto, smt Cons.hyps HMA-M3.elims(2) list.set-intros(2) local.Cons(2))
        qed
qed
end
fun diagonal-to-Smith-PQ-JNF
    where diagonal-to-Smith-PQ-JNF A bezout
    = diagonal-to-Smith-aux-PQ-JNF [0..<min (dim-row A) (dim-col A) - 1]
        bezout (1m (dim-row A),A,1m (dim-col A))
declare diagonal-to-Smith-PQ-JNF.simps[simp del]
lemmas diagonal-to-Smith-PQ-JNF-def = diagonal-to-Smith-PQ-JNF.simps
lemma diagonal-step-PQ-JNF-dim:
```

assumes $A: A \in$ carrier-mat $m n$
and d: diagonal-step- $P Q$-JNF A ij bezout $=(P, Q)$
shows $P \in$ carrier-mat $m m \wedge Q \in$ carrier-mat $n n$
using $A d$ unfolding diagonal-step- $P Q$-JNF-def split-beta Let-def by auto
lemma diagonal-step-JNF-dim:
assumes $A: A \in$ carrier-mat $m n$
shows diagonal-step-JNF A ijd $v \in$ carrier-mat $m n$
using A unfolding diagonal-step-JNF-def by auto
lemma diagonal-to-Smith-i-PQ-JNF-dim:
assumes $P^{\prime} \in$ carrier-mat $m m \wedge A^{\prime} \in$ carrier-mat $m n \wedge Q^{\prime} \in$ carrier-mat $n n$ and diagonal-to-Smith-i-PQ-JNF xs i bezout $\left(P^{\prime}, A^{\prime}, Q^{\prime}\right)=(P, A, Q)$
shows $P \in$ carrier-mat $m m \wedge A \in$ carrier-mat $m n \wedge Q \in$ carrier-mat $n n$
using assms
proof (induct xs i bezout ($P^{\prime}, A^{\prime}, Q^{\prime}$) arbitrary: $P A Q P^{\prime} A^{\prime} Q^{\prime}$ rule: diago-
nal-to-Smith-i-PQ-JNF.induct)
case (1 i bezout P A Q)
then show? case by auto
next
case (2 j xs i bezout $P^{\prime} A^{\prime} Q^{\prime}$)
show ? case
proof (cases $\left.A^{\prime} \$ \$(i, i) d v d A^{\prime} \$ \$(j, j)\right)$
case True
then show ?thesis using 2 by auto
next

case False

obtain $p q u v d$ where $b:(p, q, u, v, d)=$ bezout $\left(A^{\prime} \$ \$(i, i)\right)\left(A^{\prime} \$ \$(j, j)\right)$
by (metis prod-cases5)
let $? A^{\prime}=$ diagonal-step-JNF A^{\prime} i $j d v$
obtain $P^{\prime \prime} Q^{\prime \prime}$ where $P^{\prime \prime} Q^{\prime \prime}:\left(P^{\prime \prime}, Q^{\prime \prime}\right)=$ diagonal-step- $P Q$-JNF $A^{\prime} i j$ bezout
by (metis surjective-pairing)
let ? $A^{\prime}=$ diagonal-step-JNF A^{\prime} i j d v
let ? $D-J N F=$ diagonal-to-Smith-i-PQ-JNF xs i bezout $\left(P^{\prime \prime} * P^{\prime}, ? A^{\prime}, Q^{\prime} * Q^{\prime \prime}\right)$
have rw-1: diagonal-to-Smith-i-PQ-JNF $(j \# x s)$ i bezout $\left(P^{\prime}, A^{\prime}, Q^{\prime}\right)=$? D-JNF
using False b $P^{\prime \prime} Q^{\prime \prime}$
by (auto, unfold split-beta, metis fst-conv snd-conv)
show ?thesis
proof (rule 2.hyps(2)[OF False b])
show ? $D-J N F=(P, A, Q)$ using rw-1 2 by auto
have $P^{\prime \prime} \in$ carrier-mat $m m$ and $Q^{\prime \prime} \in$ carrier-mat $n n$
using diagonal-step- $P Q$-JNF-dim $\left[O F-P^{\prime \prime} Q^{\prime \prime}[\right.$ symmetric $]$ 2.prems by auto
thus $P^{\prime \prime} * P^{\prime} \in$ carrier-mat $m m \wedge ? A^{\prime} \in$ carrier-mat $m n \wedge Q^{\prime} * Q^{\prime \prime} \in$
carrier-mat $n n$
using diagonal-step-JNF-dim 2 by (metis mult-carrier-mat)
qed (insert $P^{\prime \prime} Q^{\prime \prime}$, auto)
qed
qed

lemma Diagonal-to-Smith-row-i-PQ-JNF-dim:

assumes $P^{\prime} \in$ carrier-mat $m m \wedge A^{\prime} \in$ carrier-mat $m n \wedge Q^{\prime} \in$ carrier-mat $n n$ and Diagonal-to-Smith-row-i-PQ-JNF i bezout $\left(P^{\prime}, A^{\prime}, Q^{\prime}\right)=(P, A, Q)$
shows $P \in$ carrier-mat $m m \wedge A \in$ carrier-mat $m n \wedge Q \in$ carrier-mat $n n$
by (rule diagonal-to-Smith-i-PQ-JNF-dim, insert assms,
auto simp add: Diagonal-to-Smith-row-i-PQ-JNF-def)
lemma diagonal-to-Smith-aux-PQ-JNF-dim:
assumes $P^{\prime} \in$ carrier-mat $m m \wedge A^{\prime} \in$ carrier-mat $m n \wedge Q^{\prime} \in$ carrier-mat $n n$ and diagonal-to-Smith-aux- $P Q$-JNF xs bezout $\left(P^{\prime}, A^{\prime}, Q^{\prime}\right)=(P, A, Q)$
shows $P \in$ carrier-mat $m m \wedge A \in$ carrier-mat $m n \wedge Q \in$ carrier-mat $n n$
using assms
proof (induct xs bezout ($P^{\prime}, A^{\prime}, Q^{\prime}$) arbitrary: $P A Q P^{\prime} A^{\prime} Q^{\prime}$ rule: diago-nal-to-Smith-aux-PQ-JNF.induct)
case (1 bezout P A Q)
then show? case by simp
next
case (2 i xs bezout $P^{\prime} A^{\prime} Q^{\prime}$)
let ? $D=\left(\right.$ Diagonal-to-Smith-row-i-PQ-JNF i bezout $\left.\left(P^{\prime}, A^{\prime}, Q^{\prime}\right)\right)$
have diagonal-to-Smith-aux-PQ-JNF ($i \#$ xs) bezout $\left(P^{\prime}, A^{\prime}, Q^{\prime}\right)=$ diagonal-to-Smith-aux- $P Q-J N F$ xs bezout ?D by auto
hence $*$: $\ldots=(P, A, Q)$ using 2 by auto
let ? $P=f s t ? D$
let ? $S=f s t$ (snd ? D)
let ? $Q=$ snd (snd ? D)
show ? case
proof (rule 2.hyps)
show Diagonal-to-Smith-row-i-PQ-JNF i bezout $\left(P^{\prime}, A^{\prime}, Q^{\prime}\right)=(? P, ? S, ? Q)$
by auto
show diagonal-to-Smith-aux- $P Q$-JNF xs bezout $(? P, ? S, ? Q)=(P, A, Q)$
using * by simp
show ? $P \in$ carrier-mat $m m \wedge ? S \in$ carrier-mat $m n \wedge ? Q \in$ carrier-mat n
n
by (rule Diagonal-to-Smith-row-i-PQ-JNF-dim, insert 2, auto)
qed
qed
lemma diagonal-to-Smith- $P Q$-JNF-dim:
assumes $A \in$ carrier-mat $m n$
and $P S Q$: diagonal-to-Smith- $P Q$-JNF A bezout $=(P, S, Q)$
shows $P \in$ carrier-mat $m m \wedge S \in$ carrier-mat $m n \wedge Q \in$ carrier-mat $n n$
by (rule diagonal-to-Smith-aux-PQ-JNF-dim, insert assms,
auto simp add: diagonal-to-Smith- $P Q$-JNF-def)
context
includes lifting-syntax
begin

```
lemma HMA-diagonal-to-Smith-PQ-JNF[transfer-rule]:
\(((\) Mod-Type-Connect.HMA-M) \(===>(=)===>\) HMA-M3) (diagonal-to-Smith- \(P Q\)-JNF)
(diagonal-to-Smith-PQ)
proof (intro rel-funI, clarify, goal-cases)
    case ( 1 A A \(A^{\prime}\) - bezout)
    let ?xs1 \(=[0 . .<\min (\) dim-row \(A)(\operatorname{dim}-\operatorname{col} A)-1]\)
    let ?xs2 \(=\left[0 . .<\min \left(\right.\right.\) nrows \(\left.A^{\prime}\right)\left(\right.\) ncols \(\left.\left.A^{\prime}\right)-1\right]\)
    let ? \(P A Q=\left(1_{m}(\operatorname{dim}-\right.\) row \(\left.A), A, 1_{m}(\operatorname{dim}-c o l ~ A)\right)\)
    have \(d r\) : dim-row \(A=C A R D\left({ }^{\prime} c\right)\)
        using 1 Mod-Type-Connect.dim-row-transfer-rule by blast
    have \(d c\) : dim-col \(A=C A R D(' b)\)
        using 1 Mod-Type-Connect.dim-col-transfer-rule by blast
    have \(x s\)-eq: ? \(x s 1=\) ? \(x s 2\)
        by (simp add: dc dr ncols-def nrows-def)
    have \(j\)-xs: \(\forall j \in\) set ? xss \(1 . j<\min C A R D\left({ }^{\prime} c\right) C A R D\left({ }^{\prime} b\right)\)
        using dc dr less-imp-diff-less by auto
    let ?D-JNF \(=\) diagonal-to-Smith-aux- \(P Q-J N F\) ?xs1 bezout ?PAQ
    let ? \(D-H A=\) diagonal-to-Smith-aux- \(P Q\) ?xs1 bezout (mat 1, \(A^{\prime}\), mat 1)
    have mat-rel-init: HMA-M3 ? PAQ (mat 1, \(A^{\prime}\), mat 1)
    proof -
    have Mod-Type-Connect.HMA-M ( \(\left.1_{m}(\operatorname{dim-row} A)\right)\left(\right.\) mat \(\left.1::^{\prime} a^{\wedge} c:: m o d-t y p e^{\wedge} c:: m o d-t y p e\right)\)
        unfolding \(d r\) by (transfer-prover-start,transfer-step, auto)
    moreover have Mod-Type-Connect.HMA-M ( \(\left.1_{m}(\operatorname{dim}-c o l A)\right)\left(\right.\) mat \(1::{ }^{\prime} a^{\wedge}\) ' \(b::\) mod-type \({ }^{\wedge} b::\) mod-type \()\)
            unfolding \(d c\) by (transfer-prover-start,transfer-step, auto)
    ultimately show ?thesis using 1 by auto
    qed
    have HMA-M3 ?D-JNF ?D-HA
        using HMA-diagonal-to-Smith-aux-PQ-JNF[OF j-xs] mat-rel-init unfolding
rel-fun-def by blast
    then show ?case using xs-eq unfolding diagonal-to-Smith-PQ-JNF-def diago-
nal-to-Smith-PQ-def
    by auto
qed
end
```


14.3 Applying local type definitions

Now we get the soundness lemma in JNF, via the one in HOL Analysis. I need transfer rules and local type definitions.

```
context
    includes lifting-syntax
begin
```

private lemma diagonal-to-Smith- $P Q$-JNF-with-types:
assumes $A: A \in$ carrier-mat $C A R D(' n r::$ mod-type) $C A R D(' n c:: m o d-t y p e)$
and $S: S \in$ carrier-mat $C A R D\left({ }^{\prime} n r\right) C A R D\left({ }^{\prime} n c\right)$
and $P: P \in$ carrier-mat $C A R D\left({ }^{\prime} n r\right) C A R D\left({ }^{\prime} n r\right)$
and $Q: Q \in$ carrier-mat $C A R D\left({ }^{\prime} n c\right) C A R D\left({ }^{\prime} n c\right)$
and PSQ: diagonal-to-Smith-PQ-JNF A bezout $=(P, S, Q)$
and $d: i s D i a g o n a l-m a t ~ A$ and ib: is-bezout-ext bezout
shows $S=P * A * Q \wedge$ invertible-mat $P \wedge$ invertible-mat $Q \wedge$ Smith-normal-form-mat S
proof -
let $? P=$ Mod-Type-Connect.to-hma $a_{m} P::^{\prime} a^{\wedge \prime} n r::$ mod-type ${ }^{\wedge \prime} n r::$ mod-type
let ? $A=$ Mod-Type-Connect.to-hma $A::^{\prime} a^{\wedge \prime} n c::$ mod-type ${ }^{\wedge \prime} n r:: m o d-t y p e$
let ? $Q=$ Mod-Type-Connect.to-hma $\quad Q:: '^{\prime} a^{\wedge \prime} n c::$ mod-type ${ }^{\wedge \prime} n c::$ mod-type
let ?S = Mod-Type-Connect.to-hma $S::^{\prime} a^{\wedge} n c:: m o d-t y p e^{\wedge \prime} n r::$ mod-type
have [transfer-rule]: Mod-Type-Connect.HMA-M A ?A
by (simp add: Mod-Type-Connect.HMA-M-def A)
moreover have [transfer-rule]: Mod-Type-Connect.HMA-M P ?P
by (simp add: Mod-Type-Connect.HMA-M-def P)
moreover have [transfer-rule]: Mod-Type-Connect.HMA-M Q?Q
by (simp add: Mod-Type-Connect.HMA-M-def Q)
moreover have [transfer-rule]: Mod-Type-Connect.HMA-M S ?S
by (simp add: Mod-Type-Connect.HMA-M-def S)
ultimately have [transfer-rule]: HMA-M3 $(P, S, Q)(? P, ? S, ? Q)$ by simp
have [transfer-rule]: bezout $=$ bezout ..
have PSQ2: $(? P, ? S, ? Q)=$ diagonal-to-Smith- $P Q$?A bezout by (transfer, insert $P S Q$, auto)
have $? S=? P * * ? A * * ? Q \wedge$ invertible $? P \wedge$ invertible ? $Q \wedge$ Smith-normal-form ?S
by (rule diagonal-to-Smith- $P Q^{\prime}[O F-i b$ PSQ2], transfer, auto simp add: d)
with this[untransferred] show?thesis by auto
qed
private lemma diagonal-to-Smith-PQ-JNF-mod-ring-with-types:
assumes $A: A \in$ carrier-mat CARD('nr::nontriv mod-ring) CARD('nc::nontriv mod-ring)
and $S: S \in$ carrier-mat $C A R D$ ('nr mod-ring) CARD('nc mod-ring)
and $P: P \in$ carrier-mat $C A R D$ ('nr mod-ring) $C A R D$ ('nr mod-ring)
and $Q: Q \in$ carrier-mat $C A R D$ ('nc mod-ring) CARD('nc mod-ring)
and PSQ: diagonal-to-Smith- $P Q$-JNF A bezout $=(P, S, Q)$
and $d: i s D i a g o n a l-m a t ~ A$ and ib: is-bezout-ext bezout
shows $S=P * A * Q \wedge$ invertible-mat $P \wedge$ invertible-mat $Q \wedge$ Smith-normal-form-mat S
by (rule diagonal-to-Smith-PQ-JNF-with-types $[O F a s s m s])$
thm diagonal-to-Smith-PQ-JNF-mod-ring-with-types[unfolded CARD-mod-ring, internalize-sort ' $n r:: n o n t r i v]$
private lemma diagonal-to-Smith-PQ-JNF-internalized-first:
class.nontriv TYPE ('a::type $) \Longrightarrow$

```
    A carrier-mat CARD('a) CARD('nc::nontriv) \Longrightarrow
    S carrier-mat CARD('a) CARD('nc)\Longrightarrow
    P}\in\mathrm{ carrier-mat CARD('a) CARD('a) }
    Q f carrier-mat CARD('nc) CARD('nc)\Longrightarrow
    diagonal-to-Smith-PQ-JNF A bezout }=(P,S,Q)
    isDiagonal-mat A \Longrightarrow is-bezout-ext bezout }
    S=P*A*Q\wedge invertible-mat P}\wedge\mathrm{ invertible-mat Q^Smith-normal-form-mat
S
    using diagonal-to-Smith-PQ-JNF-mod-ring-with-types[unfolded CARD-mod-ring,
        internalize-sort 'nr::nontriv] by blast
```

 private lemma diagonal-to-Smith- \(P Q\)-JNF-internalized:
 class.nontriv TYPE('c::type) \(\Longrightarrow\)
 class.nontriv TYPE('a::type) \(\Longrightarrow\)
 \(A \in\) carrier-mat \(C A R D\left({ }^{\prime} a\right) C A R D\left({ }^{\prime} c\right) \Longrightarrow\)
 \(S \in\) carrier-mat \(C A R D\left({ }^{\prime} a\right) C A R D\left({ }^{\prime} c\right) \Longrightarrow\)
 \(P \in\) carrier-mat \(C A R D\left({ }^{\prime} a\right) C A R D\left({ }^{\prime} a\right) \Longrightarrow\)
 \(Q \in\) carrier-mat \(C A R D\left({ }^{\prime} c\right) C A R D\left({ }^{\prime} c\right) \Longrightarrow\)
 diagonal-to-Smith-PQ-JNF A bezout \(=(P, S, Q) \Longrightarrow\)
 isDiagonal-mat \(A \Longrightarrow\) is-bezout-ext bezout \(\Longrightarrow\)
 $S=P * A * Q \wedge$ invertible-mat $P \wedge$ invertible-mat $Q \wedge$ Smith-normal-form-mat
S
using diagonal-to-Smith-PQ-JNF-internalized-first[internalize-sort ' $n c::$ nontriv]
by blast

context

fixes $m:: n a t$ and $n:: n a t$
assumes local-typedef1: $\exists\left(\right.$ Rep $::\left({ }^{\prime} b \Rightarrow\right.$ int $\left.)\right)$ Abs. type-definition Rep Abs $\{0 . .<m$:: int $\}$
assumes local-typedef2: $\exists\left(\right.$ Rep $::\left({ }^{\prime} c \Rightarrow\right.$ int $\left.)\right)$ Abs. type-definition Rep Abs $\{0 . .<n$
:: int $\}$
and $m: m>1$
and $n: n>1$
begin
lemma type-to-set1:
shows class.nontriv TYPE ('b) (is ?a) and $m=C A R D\left({ }^{\prime} b\right)$ (is ?b)
proof -
from local-typedef1 obtain Rep::('b \Rightarrow int) and Abs
where t : type-definition Rep Abs $\{0 . .<m::$ int $\}$ by auto
have card (UNIV :: 'b set) $=$ card $\{0 . .<m\}$ using t type-definition.card by fastforce
also have $\ldots=m$ by auto
finally show ?b ..
then show ?a unfolding class.nontriv-def using m by auto qed

```
lemma type-to-set2:
    shows class.nontriv TYPE('c) (is ?a) and n=CARD('c) (is ?b)
proof -
    from local-typedef2 obtain Rep::('c m int) and Abs
        where t: type-definition Rep Abs {0..<n :: int} by blast
    have card (UNIV :: 'c set) = card {0..<n} using t type-definition.card by force
    also have ... = n by auto
    finally show ?b ..
    then show ?a unfolding class.nontriv-def using n by auto
qed
lemma diagonal-to-Smith-PQ-JNF-local-typedef:
    assumes A: isDiagonal-mat A and ib: is-bezout-ext bezout
    and A-dim: A carrier-mat m n
    assumes PSQ: (P,S,Q) = diagonal-to-Smith-PQ-JNF A bezout
    shows S = P*A*Q ^ invertible-mat P ^ invertible-mat Q ^ Smith-normal-form-mat
S
    \wedgeP\incarrier-mat m m ^S\incarrier-mat m n ^ Q\incarrier-mat n n
proof -
    have dim-matrices: P carrier-mat m m ^S\in carrier-mat m n ^Q E car-
rier-mat n n
    by (rule diagonal-to-Smith-PQ-JNF-dim[OF A-dim PSQ[symmetric]])
    show ?thesis
    using diagonal-to-Smith-PQ-JNF-internalized[where ?' }c=\mp@subsup{=}{}{\prime}c\mathrm{ , where ?' }a='b\mathrm{ ,
        OF type-to-set2(1) type-to-set(1), of m A S P Q]
    unfolding type-to-set1(2)[symmetric] type-to-set2(2)[symmetric]
    using assms m dim-matrices local-typedef1 by auto
qed
end
end
context
begin
private lemma diagonal-to-Smith-PQ-JNF-canceled-first:
    \existsRep Abs. type-definition Rep Abs {0..<int n}\Longrightarrow{0..<int m} = {}\Longrightarrow
    1<m\Longrightarrow1<n\Longrightarrow isDiagonal-mat A\Longrightarrow is-bezout-ext bezout \Longrightarrow
    A carrier-mat m n \Longrightarrow(P,S,Q)=diagonal-to-Smith-PQ-JNF A bezout }
    S=P*A*Q\wedge invertible-mat P}\wedge\mathrm{ invertible-mat Q^Smith-normal-form-mat
S
    \wedgeP\incarrier-mat m m ^S Carrier-mat m n ^ Q E carrier-mat n n
    using diagonal-to-Smith-PQ-JNF-local-typedef[cancel-type-definition] by blast
```

private lemma diagonal-to-Smith- $P Q$-JNF-canceled-both:
$\{0 . .<$ int $n\} \neq\{ \} \Longrightarrow\{0 . .<$ int $m\} \neq\{ \} \Longrightarrow 1<m \Longrightarrow 1<n \Longrightarrow$
isDiagonal-mat $A \Longrightarrow$ is-bezout-ext bezout $\Longrightarrow A \in$ carrier-mat $m n \Longrightarrow$
$(P, S, Q)=$ diagonal-to-Smith- $P Q$-JNF A bezout $\Longrightarrow S=P * A * Q \wedge$
invertible-mat $P \wedge$ invertible-mat $Q \wedge$ Smith-normal-form-mat S $\wedge P \in$ carrier-mat $m m \wedge S \in$ carrier-mat $m n \wedge Q \in$ carrier-mat $n n$ using diagonal-to-Smith-PQ-JNF-canceled-first[cancel-type-definition] by blast

14.4 The final result

lemma diagonal-to-Smith- $P Q$-JNF:
assumes A : isDiagonal-mat A and ib: is-bezout-ext bezout
and $A \in$ carrier-mat $m n$
and $P B Q:(P, S, Q)=$ diagonal-to-Smith- $P Q$-JNF A bezout
and $n: n>1$ and $m: m>1$
shows $S=P * A * Q \wedge$ invertible-mat $P \wedge$ invertible-mat $Q \wedge$ Smith-normal-form-mat S
$\wedge P \in$ carrier-mat $m m \wedge S \in$ carrier-mat $m n \wedge Q \in$ carrier-mat $n n$
using diagonal-to-Smith-PQ-JNF-canceled-both $[O F-m n]$ using assms by force
end
end

15 Smith normal form algorithm based on two steps in JNF

theory SNF-Algorithm-Two-Steps-JNF
imports
Diagonalize
Diagonal-To-Smith-JNF
begin

```
15.1 Moving the result from HOL Analysis to JNF
context diagonalize
begin
definition Smith-normal-form-of-JNF A bezout =(
    let ( }\mp@subsup{P}{}{\prime\prime},D,\mp@subsup{Q}{}{\prime\prime})=\mathrm{ diagonalize-JNF A bezout;
        ( }\mp@subsup{P}{}{\prime},S,\mp@subsup{Q}{}{\prime})=\mathrm{ diagonal-to-Smith-PQ-JNF D bezout
    in (P
)
```

lemma Smith-normal-form-of-JNF-soundness:
assumes b : is-bezout-ext bezout and $A: A \in$ carrier-mat $m n$
and $n: 1<n$ and $m: 1<m$
and PSQ: Smith-normal-form-of-JNF A bezout $=(P, S, Q)$
shows $S=P * A * Q \wedge$ invertible-mat $P \wedge$ invertible-mat $Q \wedge$ Smith-normal-form-mat S
$\wedge P \in$ carrier-mat $m m \wedge S \in$ carrier-mat $m n \wedge Q \in$ carrier-mat $n n$ proof -
obtain $P^{\prime \prime} D Q^{\prime \prime}$ where $P D Q$-diag: $\left(P^{\prime \prime}, D, Q^{\prime \prime}\right)=$ diagonalize-JNF A bezout by (metis prod-cases3)
have 1: invertible-mat $P^{\prime \prime} \wedge$ invertible-mat $Q^{\prime \prime} \wedge$ isDiagonal-mat $D \wedge D=$ $P^{\prime \prime} * A * Q^{\prime \prime}$
$\wedge P^{\prime \prime} \in$ carrier-mat $m m \wedge Q^{\prime \prime} \in$ carrier-mat $n n \wedge D \in$ carrier-mat $m n$
using soundness-diagonalize-JNF'[OF b A PDQ-diag[symmetric]] by auto obtain $P^{\prime} Q^{\prime}$ where $P S Q-D:\left(P^{\prime}, S, Q^{\prime}\right)=$ diagonal-to-Smith- $P Q-J N F D$ bezout using PSQ PDQ-diag unfolding Smith-normal-form-of-JNF-def Let-def split-beta by (metis Pair-inject prod.collapse)
have 2: invertible-mat $P^{\prime} \wedge$ invertible-mat $Q^{\prime} \wedge$ Smith-normal-form-mat $S \wedge S$ $=P^{\prime} * D * Q^{\prime}$
$\wedge P^{\prime} \in$ carrier-mat $m m \wedge Q^{\prime} \in$ carrier-mat $n n \wedge S \in$ carrier-mat $m n$
using diagonal-to-Smith- $P Q-J N F[O F-b-P S Q-D n m] 1 n m$ by auto
have $P: P=P^{\prime} * P^{\prime \prime}$
by (metis (no-types, lifting) PDQ-diag PSQ PSQ-D Smith-normal-form-of-JNF-def fst-conv prod.simps(2))
have $Q: Q=Q^{\prime \prime} * Q^{\prime}$
by (metis (no-types, lifting) PDQ-diag PSQ PSQ-D Smith-normal-form-of-JNF-def snd-conv prod.simps(2))
have $S=P^{\prime} *\left(P^{\prime \prime} * A * Q^{\prime \prime}\right) * Q^{\prime}$ using 12 by auto
also have $\ldots=\left(P^{\prime} * P^{\prime \prime}\right) * A *\left(Q^{\prime \prime} * Q^{\prime}\right)$
by (smt 12 A assoc-mult-mat carrier-matD carrier-mat-triv index-mult-mat)
finally have $S=\left(P^{\prime} * P^{\prime \prime}\right) * A *\left(Q^{\prime \prime} * Q^{\prime}\right)$.
moreover have invertible-mat P unfolding P by (rule invertible-mult-JNF, insert 1 2, auto)
moreover have invertible-mat Q unfolding Q by (rule invertible-mult-JNF, insert 1 2, auto)
ultimately show ?thesis using $12 P Q$ by auto qed
end
end

16 A general algorithm to transform a matrix into its Smith normal form

```
theory SNF-Algorithm
    imports
        Smith-Normal-Form-JNF
begin
```

This theory presents an executable algorithm to transform a matrix to its Smith normal form.

16.1 Previous definitions and lemmas

definition is-SNF A $R=$ (case R of $(P, S, Q) \Rightarrow$
$P \in$ carrier-mat (dim-row A) (dim-row $A) \wedge$

$$
Q \in \text { carrier-mat }(\text { dim-col } A)(\text { dim-col } A)
$$

\wedge invertible-mat $P \wedge$ invertible-mat Q
\wedge Smith-normal-form-mat $S \wedge S=P * A * Q$)

lemma is-SNF-intro:

assumes $P \in$ carrier-mat (dim-row A) (dim-row $A)$
and $Q \in$ carrier-mat (dim-col $A)(d i m-c o l A)$
and invertible-mat P and invertible-mat Q
and Smith-normal-form-mat S and $S=P * A * Q$
shows is-SNF $A(P, S, Q)$ using assms unfolding is-SNF-def by auto

```
lemma Smith-1xn-two-matrices:
    fixes \(A\) :: 'a::comm-ring-1 mat
    assumes \(A: A \in\) carrier-mat \(1 n\)
    and \(P S Q:(P, S, Q)=(\) Smith-1xn \(A)\)
    and is-SNF: is-SNF A (Smith-1xn A)
shows \(\exists\) Smith- \(1 x n^{\prime}\). is-SNF \(A\left(1_{m} 1,\left(S m i t h-1 x n^{\prime} A\right)\right)\)
proof -
    let \(? Q=P \$ \$(0,0) \cdot m Q\)
    have \(P 00-d v d-1: ~ P \$ \$(0,0)\) dvd 1
    by (metis (mono-tags, lifting) assms carrier-matD(1) determinant-one-element
            invertible-iff-is-unit-JNF is-SNF-def prod.simps(2))
    have \(i s\)-SNF \(A\left(1_{m} 1, S, ? Q\right)\)
    proof (rule is-SNF-intro)
    show invertible-mat \((P \$ \$(0,0) \cdot m Q)\)
        by (rule invertible-mat-smult-mat, insert P00-dvd-1 assms, auto simp add:
is-SNF-def)
    show \(S=1_{m} 1 * A *(P \$ \$(0,0) \cdot m Q)\)
            by (smt A PSQ is-SNF carrier-matD(2) index-mult-mat(2) index-one-mat(2)
left-mult-one-mat
                                    mult-smult-assoc-mat mult-smult-distrib smult-mat-mat-one-element
is-SNF-def split-conv)
    qed (insert assms, auto simp add: is-SNF-def)
    thus ?thesis by auto
qed
lemma Smith-1xn-two-matrices-all:
    assumes is-SNF: \(\forall\left(A::^{\prime} a::\right.\) comm-ring-1 mat \() \in\) carrier-mat 1 n . is-SNF A
(Smith-1xn A)
    shows \(\exists\) Smith- \(1 x n^{\prime} . \forall\left(A::^{\prime} a::\right.\) comm-ring-1 mat \() \in\) carrier-mat 1 n . is-SNF \(A\)
\(\left(1_{m} 1,\left(\right.\right.\) Smith- \(\left.\left.1 x n^{\prime} A\right)\right)\)
proof -
    let ?Smith-1xn' \(=\lambda A\). let \((P, S, Q)=(\) Smith-1xn A) in \((S, P \$ \$(0,0) \cdot m Q)\)
    show ?thesis by (rule exI[of - ?Smith-1xn ]) (smt Smith-1xn-two-matrices assms
```

```
carrier-matD
    carrier-matI case-prodE determinant-one-element index-smult-mat(2,3)
invertible-iff-is-unit-JNF
                    invertible-mat-smult-mat smult-mat-mat-one-element left-mult-one-mat
is-SNF-def
    mult-smult-assoc-mat mult-smult-distrib prod.simps(2))
qed
```


16.2 Previous operations

contex
assumes SORT-CONSTRAINT('a::comm-ring-1)
begin
definition is-div-op :: ($\left.{ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a\right) \Rightarrow b o o l$
where is-div-op div-op $=(\forall a b . b$ dvd $a \longrightarrow d i v-o p a b * b=a)$
lemma div-op-SOME: is-div-op ($\lambda a b$. (SOME $k . k * b=a)$)
proof (unfold is-div-op-def, rule+)
fix $a b::^{\prime} a$ assume $d v d: b d v d a$
show (SOME $k . k * b=a) * b=a$ by (rule someI-ex, insert dvd dvd-def) (metis dvdE mult.commute)
qed

```
fun reduce-column-aux :: \(\left({ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a\right) \Rightarrow\) nat list \(\Rightarrow{ }^{\prime} a\) mat \(\Rightarrow\left({ }^{\prime} a\right.\) mat \(\times\) 'a mat)
\(\Rightarrow\) ('a mat \(\times\) 'a mat)
    where reduce-column-aux div-op [] \(H(P, K)=(P, K)\)
    | reduce-column-aux div-op \((i \# x s) H(P, K)=\)
        - Reduce the i-th row
        let \(k=\operatorname{div}\)-op \((H \$ \$(i, 0))(H \$ \$(0,0))\);
            \(P^{\prime}=\) addrow-mat (dim-row \(\left.H\right)(-k)\) i 0 ;
            \(K^{\prime}=\) addrow \((-k) i 0 K\)
    in reduce-column-aux div-op xs \(H\left(P^{\prime} * P, K^{\prime}\right)\)
    )
```

definition reduce-column div-op $H=$ reduce-column-aux div-op [2..<dim-row H]
$H\left(1_{m}(\right.$ dim-row $\left.H), H\right)$
lemma reduce-column-aux:
assumes $H: H \in$ carrier-mat $m n$
and P-init: P-init \in carrier-mat $m m$
and K-init: K-init \in carrier-mat $m n$
and P-init- H-K-init: P-init $* H=K$-init
and PK-H: $(P, K)=$ reduce-column-aux div-op xs H (P-init,K-init)
and $m: 0<m$
and inv-P: invertible-mat P-init
and $x s: 0 \notin$ set $x s$
shows $P \in$ carrier-mat $m m \wedge K \in$ carrier-mat $m n \wedge P * H=K \wedge$ invertible-mat P
using assms
unfolding reduce-column-def
proof (induct div-op xs H (P-init,K-init) arbitrary: P-init K-init rule: reduce-column-aux.induct)
case (1 div-op H P K)
then show? case by simp
next
case (2 div-op i xs H P-init K-init)
show ?case
proof (rule 2.hyps)
let ? $x=\operatorname{div-op}(H \$ \$(i, 0))(H \$ \$(0,0))$
let ? $x a=$ addrow-mat $($ dim-row $H)(-? x)$ i 0
let $? x b=$ addrow $(-$? $x)$ i 0 K-init
show $(P, K)=$ reduce-column-aux div-op xs $H(? x a * P$-init, ? $x b)$
using 2.prems by (auto simp add: Let-def)
show ? xa $* P$-init \in carrier-mat $m m$ using 2(2) 2(3) by auto
show $0 \notin$ set xs using 2.prems by auto
have ? $x a * K$-init $=$? $x b$
by (rule addrow-mat[symmetric], insert 2.prems, auto)
thus ? $x a * P$-init $* H=$? $x b$
by (metis (no-types, lifting) 2(5) 2.prems(1) 2.prems(2) addrow-mat-carrier assoc-mult-mat carrier-matD (1))
show invertible-mat (?xa * P-init) proof (rule invertible-mult-JNF)
show $x a$: ? $x a \in$ carrier-mat $m m$ using 2(2) by auto
have Determinant.det ? xa = 1 by (rule det-addrow-mat, insert 2.prems,
auto)
thus invertible-mat ?xa unfolding invertible-iff-is-unit-JNF $[O F$ xa] by simp
qed (auto simp add: 2.prems)
qed(auto simp add: 2.prems)
qed
lemma reduce-column-aux-preserves:
assumes $H: H \in$ carrier-mat $m n$
and P-init: P-init \in carrier-mat $m m$
and K-init: K-init \in carrier-mat $m n$
and P-init- H - K-init: P-init $* H=K$-init
and PK-H: $(P, K)=$ reduce-column-aux div-op xs H (P-init,,K-init)
and $m: 0<m$
and inv-P: invertible-mat P-init
and $x s: 0 \notin$ set $x s$ and $i: i \notin$ set $x s$ and $i m: i<m$
shows Matrix.row $K i=$ Matrix.row K-init i
using $P K$ - H inv- P H P-init K-init m xs i
unfolding reduce-column-def
proof (induct div-op xs H (P-init, K-init) arbitrary: P-init K-init K rule: re-

```
duce-column-aux.induct)
    case (1 div-op H P K)
    then show ?case by auto
next
    case (2 div-op x xs H P-init K-init)
    thm 2.prems
    2.hyps
        let ? }x=\mathrm{ div-op (H $$ (x,0)) (H$$(0,0))
        let ?xa = addrow-mat (dim-row H) (- ?x) x 0
        let ?xb = addrow (- ?x) x 0 K-init
        have IH: Matrix.row K i= Matrix.row ?xb i
    proof (rule 2.hyps)
            show }(P,K)=\mathrm{ reduce-column-aux div-op xs H (?xa * P-init,?xb)
                using 2.prems by (auto simp add: Let-def)
            show ?xa*P-init }\in\mathrm{ carrier-mat m m
                using 2(4) 2(5) by auto
            have ?xa*K-init = ?xb
                by (rule addrow-mat[symmetric], insert 2.prems, auto)
            show invertible-mat (?xa*P-init)
            proof (rule invertible-mult-JNF)
                show xa: ?xa \in carrier-mat m m using 2.prems by auto
                    have Determinant.det ?xa = 1 by (rule det-addrow-mat, insert 2.prems,
auto)
                    thus invertible-mat ?xa unfolding invertible-iff-is-unit-JNF[OF xa] by
simp
            qed (auto simp add: 2.prems)
            show i\not\in set xs using 2(9) by auto
            show 0 & set xs using 2(8) by auto
            qed(auto simp add: 2.prems)
            also have ... = Matrix.row K-init i
                    by (rule eq-vecI, auto, insert 2 2.prems im, auto)
            finally show ?case.
qed
lemma reduce-column-aux-index':
    assumes H:H\incarrier-mat m n
        and P-init: P-init }\in\mathrm{ carrier-mat m m
        and K-init: K-init }\in\mathrm{ carrier-mat m n
    and P-init-H-K-init: P-init * H=K-init
    and PK-H: (P,K) = reduce-column-aux div-op xs H (P-init,K-init)
    and m:0<m
    and inv-P: invertible-mat P-init
    and xs: 0 & set xs
    and }\forallx\in\mathrm{ set xs. }x<
    and distinct xs
shows ( }\foralli\in\mathrm{ set xs. Matrix.row K i=
    Matrix.row (addrow (-(div-op (H$$ (i,0)) (H$$(0,0)))) i 0 K-init) i)
    using assms
    unfolding reduce-column-def
```

proof (induct div-op xs H (P-init, K-init) arbitrary: P-init K-init K rule: re-duce-column-aux.induct)
case (1 div-op H P K)
then show ?case by simp

next

case (2 div-op i xs H P-init K-init)
let ? $x=\operatorname{div-op}(H \$ \$(i, 0))(H \$ \$(0,0))$
let ? $x a=$ addrow-mat $($ dim-row $H)$? x i 0
thm 2.prems
thm 2.hyps
let $? x b=$ addrow $(-$?x) i 0 K-init
let ? $x a=$ addrow-mat $($ dim-row $H)(-$?x) i 0
have reduce-column-aux div-op (i\#xs) H (P-init,K-init)
= reduce-column-aux div-op xs H (?xa*P-init,?xb)
by (auto simp add: Let-def)
hence $P K:(P, K)=$ reduce-column-aux div-op xs H (?xa*P-init,? ?xb) using 2.prems by simp
have $x a$-P-init: ? $x a * P$-init \in carrier-mat $m m$ using 2(2) 2(3) by auto
have zero-notin-xs: $0 \notin$ set xs using 2.prems by auto
have ? $x a * K$-init $=$? $x b$
by (rule addrow-mat[symmetric], insert 2.prems, auto)
hence $r w$: ? $x a * P$-init $* H=$? $x b$
by (metis (no-types, lifting) 2(5) 2.prems(1) 2.prems(2) addrow-mat-carrier
assoc-mult-mat carrier-matD (1))
have inv-xa-P-init: invertible-mat (?xa * P-init)
proof (rule invertible-mult-JNF)
show $x a$: ? $x a \in$ carrier-mat $m m$ using 2(2) by auto
have Determinant.det ?xa $=1$ by (rule det-addrow-mat, insert 2.prems,
auto)
thus invertible-mat ?xa unfolding invertible-iff-is-unit-JNF[OF xa] by simp
qed (auto simp add: 2.prems)
have $i 1$: $i \neq 0$ using 2.prems(8) by auto
have i : : $i<m$ by (simp add: 2.prems(9))
have $i 3$: $i \notin$ set $x s$ using 2 by auto
have d : distinct xs using 2 by auto
have $\forall i \in$ set x s. Matrix.row $K i=$ Matrix.row (addrow ($-($ div-op (H\$\$ (i,
0)) $(H \$ \$(0,0))))$
$i 0$? xb) i
by (rule 2.hyps, insert xa-P-init zero-notin-xs rw inv-xa-P-init d, auto simp add: 2.prems Let-def)
 0 ? $x b$) j
$=$ Matrix.row (addrow $(-($ div-op $(H \$ \$(j, 0))(H \$ \$(0,0))))$ j 0 K-init $) j$
(is Matrix.row? ?lhs $j=$ Matrix.row ?rhs j)
if $j: j \in$ set $x s$ for j
proof (rule eq-vecI)
fix $i a$ assume $i a$: $i a<\operatorname{dim}-v e c(M a t r i x . r o w ? r h s j)$
let $? k=\operatorname{div-op}(H \$ \$(j, 0))(H \$ \$(0,0))$
let ? $L=($ addrow $(-($ div-op $(H \$ \$(i, 0))(H \$ \$(0,0))))$ i 0 K-init $)$
have Matrix.row?lhs $j \$ v i a=$?lhs $\$ \$(j, i a)$
by (metis (no-types, lifting) Matrix.row-def ia index-mat-addrow(5) in-dex-row(2) index-vec)
also have $\ldots=(-? k) * ? L \$ \$(0, i a)+? L \$ \$(j, i a)$
by (smt 2.prems(1) 2.prems(9) carrier-matD(1) ia index-mat-addrow(1,5)
index-row(2)
insert-iff list.set(2) mult-carrier-mat rw that xa-P-init)
also have $\ldots=$?rhs $\$ \$(j, i a)$ using 2(10) 2(4) i1 i3 ia j by auto
also have $\ldots=$ Matrix.row ?rhs $j \$ v$ ia using 2 ia j by auto
finally show Matrix.row? ?lhs $j \$ v i a=$ Matrix.row? ? $\mathrm{rhs} j \$ v i a$.
qed (auto)
ultimately have $\forall j \in$ set xs. Matrix.row $K j=$
Matrix.row (addrow (- (div-op $(H \$ \$(j, 0))(H \$ \$(0,0))))$ j $0 K$-init) j by auto
moreover have Matrix.row $K i=$ Matrix.row ? $x b i$
by (rule reduce-column-aux-preserves $[O F-x a-P$-init - rw PK - inv-xa-P-init zero-notin-xs
i3 i2], insert 2.prems, auto)
ultimately show ?case by auto
qed
corollary reduce-column-aux-index:
assumes $H: H \in$ carrier-mat $m n$
and P-init: P-init \in carrier-mat $m m$
and K-init: K-init \in carrier-mat $m n$
and P-init- H-K-init: P-init $* H=K$-init
and PK-H: $(P, K)=$ reduce-column-aux div-op xs H (P-init,K-init)
and $m: 0<m$
and inv-P: invertible-mat P-init
and $x s: 0 \notin$ set $x s$
and $\forall x \in$ set $x s . x<m$
and distinct $x s$
and $i \in$ set $x s$
shows Matrix.row K $i=$
Matrix.row (addrow (-(div-op (H\$\$(i,0)) (H\$\$(0,0)))) i 0 K-init) i
using reduce-column-aux-index' assms by simp
corollary reduce-column-aux-works:
assumes $H: H \in$ carrier-mat $m n$
and $P K-H:(P, K)=$ reduce-column-aux div-op xs $H\left(1_{m}(\right.$ dim-row $\left.H), H\right)$
and $m: 0<m$
and $x s: 0 \notin$ set $x s$
and $x m: \forall x \in$ set $x s . x<m$
and d-xs: distinct $x s$
and $i: i \in$ set $x s$
and dvd: $H \$ \$(0,0)$ dvd $H \$ \$(i, 0)$
and $j 0: \forall j \in\{1 . .<n\} . H \$ \$(0, j)=0$
and $j 1 n: j \in\{1 . .<n\}$
and $n: 0<n$
and id: is-div-op div-op
shows $K \$ \$(i, 0)=0$ and $K \$ \$(i, j)=H \$ \(i, j)
proof -
let $? k=\operatorname{div-op}(H \$ \$(i, 0))(H \$ \$(0,0))$
let $? L=$ addrow $(-? k) i 0 H$
have $k H 00$-eq-Hi0: ? $k * H \$ \$(0,0)=H \$ \$(i, 0)$
using id dvd unfolding is-div-op-def by simp
have *: Matrix.row $K i=$ Matrix.row ? $L i$
by (rule reduce-column-aux-index[OF H--PK-H], insert assms, auto)
also have $\ldots \$ v 0=? L \$ \$(i, 0)$ by (rule index-row, insert xm i H n, auto)
also have $\ldots=(-? k) * H \$ \$(0,0)+H \$ \$(i, 0)$ by (rule index-mat-addrow, insert
i xm H n, auto)
also have $\ldots=0$ using $k H 00-e q-H i 0$ by auto
finally show $K \$(i, 0)=0$
by (metis H Matrix.row-def $* n$ carrier-matD(2) dim-vec index-mat-addrow(5) index-vec)
have Matrix.row ? $L i \$ v j=? L \$ \(i, j) by (rule index-row, insert xm i H $n j 1 n$, auto)
also have $\ldots=(-? k) * H \$ \$(0, j)+H \$ \(i, j) by (rule index-mat-addrow, insert xm i H j1n, auto)
also have $\ldots=H \$ \(i, j) using $j 1 n j 0$ by auto
finally show $K \$ \$(i, j)=H \$ \(i, j) by (metis $H *$ Matrix.row-def atLeast-LessThan-iff
carrier-matD(2) dim-vec index-mat-addrow(5) index-vec j1n)
qed
lemma reduce-column:
assumes $H: H \in$ carrier-mat $m n$
and $P K-H:(P, K)=$ reduce-column div-op H
and $m: 0<m$
shows $P \in$ carrier-mat $m m \wedge K \in$ carrier-mat $m n \wedge P * H=K \wedge$ invertible-mat P
by (rule reduce-column-aux[OF -- PK-H[unfolded reduce-column-def]], insert assms, auto)
lemma reduce-column-preserves:
assumes $H: H \in$ carrier-mat $m n$
and $P K-H:(P, K)=$ reduce-column div-op H
and $m: 0<m$
and $i \in\{0,1\}$
and $i<m$
shows Matrix.row $K i=$ Matrix.row $H i$
by (rule reduce-column-aux-preserves[OF - - - PK-H[unfolded reduce-column-def]],
insert assms, auto)

```
lemma reduce-column-preserves2:
    assumes H:H\in carrier-mat mn
    and PK-H:(P,K) = reduce-column div-op H
    and m:0<m and i:i\in{0,1} and im: i<m and j:j<n
shows K$$ (i,j)=H$$(i,j)
    using reduce-column-preserves[OF H PK-H m i im]
    by (metis H Matrix.row-def j carrier-matD(2) dim-vec index-vec)
corollary reduce-column-works:
    assumes H:H\in carrier-mat mn
    and PK-H:(P,K) = reduce-column div-op H
    and m: 0<m
    and dvd:H $$(0,0) dvd H$$ (i,0)
    and j0:\forallj\in{1..<n}. H $$ (0,j)=0
    and j1n: j\in{1..<n}
    and n:0<n
    and i\in{2..<m}
    and id: is-div-op div-op
shows K$$(i,0)=0 and K$$(i,j)=H$$(i,j)
    by (rule reduce-column-aux-works[OF H PK-H[unfolded reduce-column-def]],
insert assms, auto)+
end
```


16.3 The implementation

We define a locale where we implement the algorithm. It has three fixed operations:

1. an operation to transform any 1×2 matrix into its Smith normal form
2. an operation to transform any 2×2 matrix into its Smith normal form
3. an operation that provides a witness for division (this operation always exists over a commutative ring with unit, but maybe we cannot provide a computable algorithm).

Since we are working in a commutative ring, we can easily get an operation for 2×1 matrices via the 1×2 operation.

```
locale Smith-Impl =
    fixes Smith-1x2 :: ('a::comm-ring-1) mat \(\Rightarrow\) ('a mat \(\times\) 'a mat)
        and Smith-2x2 :: 'a mat \(\Rightarrow\) ('a mat \(\times{ }^{\prime}\) a mat \(\times{ }^{\prime} a\) mat \()\)
        and div-op :: ' \(a \Rightarrow^{\prime} a \Rightarrow^{\prime} a\)
    assumes SNF-1x2-works: \(\forall\left(A::^{\prime} a \operatorname{mat}\right) \in\) carrier-mat 1 2. is-SNF A (1m 1 ,
(Smith-1x2 A))
    and SNF-2x2-works: \(\forall\left(A::^{\prime}{ }^{\prime}\right.\) mat \() \in\) carrier-mat 2 2. is-SNF A (Smith-2x2 A)
    and \(i d\) : is-div-op div-op
begin
```

From a 2×2 matrix (the B), we construct the identity matrix of size n with the elements of B placed to modify the first element of a matrix and the element in position (k, k)
definition make-mat $n k\left(B:^{\prime}{ }^{\prime}\right.$ a mat $)=($ Matrix.mat $n n(\lambda(i, j)$. if $i=0 \wedge j=0$ then $B \$(0,0)$ else

$$
\text { if } i=0 \wedge j=k \text { then } B \$ \$(0,1) \text { else if } i=k \wedge j=0
$$

then $B \$ \$(1,0)$ else if $i=k \wedge j=k$ then $B \$ \$(1,1)$
else if $i=j$ then 1 else 0$)$)
lemma make-mat-carrier [simp]:
shows make-mat $n k B \in$ carrier-mat $n n$
unfolding make-mat-def by auto

```
lemma upper-triangular-mat-delete-make-mat:
    shows upper-triangular (mat-delete (make-mat \(n k B) 00\) )
proof -
    \(\{\) let \(? M=\) make-mat \(n k B\)
    fix \(i j\)
    assume \(i<\) dim-row? \(M-S u c 0\) and \(j i: j<i\)
    hence \(i-n 1\) : \(i<n-1\) by (simp add: make-mat-def)
    hence Suc-i: Suc \(i<n\) by linarith
    hence Suc-j: Suc \(j<n\) using \(j i\) by auto
    have i1: insert-index \(0 i=\) Suc \(i\) by (rule insert-index, auto)
    have j1: insert-index \(0 j=\) Suc \(j\) by (rule insert-index, auto)
    have mat-delete? \(M 00 \$ \$(i, j)=? M \$ \$\) (insert-index \(0 i\), insert-index \(0 j\) )
            by (rule mat-delete-index[symmetric, OF --i-n1], insert Suc-i Suc-j, auto)
    also have \(\ldots=\) ? \(M \$ \$\) (Suc \(i\), Suc \(j\) ) unfolding \(i 1 j 1\) by simp
    also have \(\ldots=0\) unfolding make-mat-def unfolding index-mat[OF Suc-i Suc-j]
using \(j i\) by auto
    finally have mat-delete? \(\mathrm{M} 00 \$ \$(i, j)=0\).
    \}
    thus ?thesis unfolding upper-triangular-def by auto
qed
```

lemma upper-triangular-mat-delete-make-mat2:
assumes $k n$: $k<n$
shows upper-triangular (mat-delete (mat-delete (make-mat nkB) $0 k$) $(k-1)$
0)
proof -
$\{$ let $? M=$ local.make-mat $n k B$
let ? $\mathrm{MD}=$ mat-delete ? M 0 k
fix $i j$ assume $i: i<d i m$-row ? $M-2$ and $j i: j<i$
have insert-in: insert-index $0 i<n$ and insert-Sucin: insert-index 0 (Suc i) $<$
n
using i make-mat-def by auto
have insert- k-Sucj: insert-index k (Suc $j)<n$
using insert-in insert-index-def $j i$ by auto
have insert- j : insert-index $0 j=$ Suc j by simp
have mat-delete ?MD $(k-1) 0 \$ \$(i, j)=? M D \$ \$$ (insert-index $(k-1) i$,

```
insert-index 0 j)
    proof (rule mat-delete-index[symmetric])
        show }i<n-2 using i by (simp add: make-mat-def
        thus ?MD \in carrier-mat (Suc (n - 2)) (Suc (n - 2))
        by (metis Suc-diff-Suc card-num-simps(30) make-mat-carrier mat-delete-carrier
                nat-diff-split-asm not-less0 not-less-eq numerals(2))
    show }k-1<Suc(n-2) using kn by aut
    show 0<Suc (n-2) by blast
    show j<n-2 using ji i by (simp add: make-mat-def)
    qed
    also have ... = ?MD $$ (insert-index (k-1) i, Suc j) unfolding insert-j by auto
    also have ... = 0
    proof (cases i< (k-1))
        case True
        hence insert-index (k-1) i=i by auto
    hence ?MD $$ (insert-index (k-1) i, Suc j) = ?MD $$ (i,Suc j) by auto
    also have ... = ?M $$ (insert-index 0 i, insert-index k (Suc j))
    proof (rule mat-delete-index[symmetric])
        show ?M \in carrier-mat (Suc (n-1)) (Suc (n-1)) using assms by auto
        show 0<Suc (n-1)
            by blast
        show k<Suc ( n-1)using kn by simp
        show }i<n-1\mathrm{ using i using True assms by linarith
        thus Suc j<n-1 using ji less-trans-Suc by blast
    qed
    also have .. = 0 unfolding make-mat-def index-mat[OF insert-in insert-k-Sucj]
        using True ji by auto
    finally show ?thesis .
    next
        case False
        hence insert-index (k-1) i=Suc i by auto
            hence ?MD $$ (insert-index (k-1) i, Suc j) = ?MD $$ (Suc i, Suc j) by
auto
    also have ... =?M $$ (insert-index 0 (Suc i), insert-index k (Suc j))
    proof (rule mat-delete-index[symmetric])
        show ?M \in carrier-mat (Suc (n-1)) (Suc (n-1)) using assms by auto
        thus Suc i<n-1 using i using False assms
        by (metis One-nat-def Suc-diff-Suc carrier-matD(1) diff-Suc-1 diff-Suc-eq-diff-pred
                    diff-is-0-eq' linorder-not-less nat.distinct(1) numeral-2-eq-2)
        show 0<Suc (n-1)
            by blast
        show }k<Suc (n-1)using kn by sim
        show Suc j<n-1 using ji less-trans-Suc
            using <Suc i<n-1` by linarith
    qed
        also have ... = 0 unfolding make-mat-def index-mat[OF insert-Sucin in-
sert-k-Sucj]
```

using False ji by (auto, smt insert-index-def less-SucI nat.inject nat-neq-iff)
finally show? thesis.
qed
finally have mat-delete ? $M D(k-1) 0 \$ \$(i, j)=0$.
\}
thus ?thesis unfolding upper-triangular-def by auto
qed
corollary det-mat-delete-make-mat:
assumes $k n$: $k<n$
shows Determinant.det (mat-delete (mat-delete (make-mat nkB) $0 k$) $(k-1)$
$0)=1$
proof -
let ? $M=$ make-mat $n k B$
let ? $M D=$ mat-delete? ${ }^{\text {M }} 0 k$
let ? $M D M D=$ mat-delete ? $M D(k-1) 0$
have eq1: ? $M D M D \$ \$(i, i)=1$ if $i: i<n-2$ for i
proof -
have i1: insert-index 0 (insert-index $(k-1) i)<n$ using i insert-index-def by auto
have $i 2$: insert-index k (insert-index $0 i)<n$ using i insert-index-def by auto
have ?MDMD $\$ \$(i, i)=$? $M D \$ \$$ (insert-index $(k-1) i$, insert-index $0 i)$
proof (rule mat-delete-index[symmetric, OF --iii])
show mat-delete (local.make-mat $n k B) 0 k \in$ carrier-mat (Suc (n-2)) (Suc ($n-2$))
by (metis (mono-tags, hide-lams) Suc-diff-Suc card-num-simps(30) i make-mat-carrier mat-delete-carrier nat-diff-split-asm not-less0 not-less-eq numerals(2))
show $k-1<\operatorname{Suc}(n-2)$ using $k n$ by auto
show $0<S u c(n-2)$ using $k n$ by auto
qed
also have $\ldots=$? $M \$ \$$ (insert-index 0 (insert-index $(k-1)$ i), insert-index k (insert-index 0 i))
proof (rule mat-delete-index[symmetric])
show make-mat $n k B \in$ carrier-mat $(S u c(n-1))(S u c(n-1))$ using i by auto
show insert-index $(k-1) i<n-1$ using $k n i$
by (metis diff-Suc-eq-diff-pred diff-commute insert-index-def nat-neq-iff not-less0
numeral-2-eq-2 zero-less-diff)
show insert-index $0 i<n-1$ using i by auto
qed (insert $k n$, auto)
also have $\ldots=1$ unfolding make-mat-def index-mat[OF i1 i2]
by (auto, metis One-nat-def diff-Suc-1 insert-index-exclude)
(metis One-nat-def diff-Suc-eq-diff-pred insert-index-def zero-less-diff)+
finally show ?thesis.
qed
have Determinant.det ?MDMD = prod-list (diag-mat ?MDMD)
by (meson assms det-upper-triangular make-mat-carrier mat-delete-carrier
upper-triangular-mat-delete-make-mat2)
also have...$=1$
proof (rule prod-list-neutral)
fix x assume $x: x \in$ set (diag-mat ?MDMD)
from this obtain i where index: $x=$?MDMD $\$ \(i, i) and $i: i<d i m$-row ? $M D M D$
unfolding diag-mat-def by auto
have ? $M D M D \$ \$(i, i)=1$ by (rule eq1, insert i, auto simp add: make-mat-def)
thus $x=1$ using index by blast
qed
finally show ?thesis .
qed
lemma swaprows-make-mat:
assumes $B: B \in$ carrier-mat 22 and $k 0: k \neq 0$ and $k: k<n$
shows swaprows $k 0$ (make-mat $n k B$) $=$ make-mat $n k$ (swaprows $10 B$) (is
$? l h s=? r h s)$
proof (cases $n=0$)
case True
then show? thesis
using make-mat-def by auto
next
case False
show ?thesis
proof (rule eq-matI)
show dim-row? lhs = dim-row ?rhs and dim-col ?lhs = dim-col ?rhs
by (simp add: make-mat-def)+
next
let $? M=($ make-mat $n k B)$
fix $i j$ assume $i: i<$ dim-row? rhs and $j: j<$ dim-col ?rhs
hence $i 2: i<$ dim-row ?lhs and $j 2: j<$ dim-col ?lhs by (auto simp add: make-mat-def)
then have $i 3: i<$ dim-row ? M and $j 3: j<$ dim-col ? M by auto
then have $i_{4}: i<n$ and $j_{4}: j<n$ by (metis carrier-matD $(1,2)$ make-mat-carrier) +
have lhs: ?lhs $\$ \$(i, j)=$
(if $k=i$ then ? $M \$ \$(0, j)$ else if $0=i$ then ? $M \$ \(k, j) else ? $M \$ \(i, j)) by (rule index-mat-swaprows, insert i3 j3, auto)
also have $\ldots=$? rhs $\$ \(i, j) using $B i_{4} j_{4}$ False $k 0 k$
unfolding make-mat-def index-mat $[O F ~ i 4 ~ j 4]$ by auto
finally show? lhs $\$ \$(i, j)=$? rhs $\$ \(i, j).
qed
qed
lemma cofactor-make-mat-00:
assumes $k: k<n$ and $k 0: k \neq 0$
shows cofactor (make-mat nkB) $00=B \$ \$(1,1)$
proof -
let $? M=$ make-mat $n k B$
let ?MD = mat-delete ?M 00
have $M D$-rows: dim-row ? $M D=n-1$ by (simp add: make-mat-def)
have 1: ? $M D \$ \$(i, i)=1$ if $i: i<n-1$ and $i k$: Suc $i \neq k$ for i
proof -
have Suc-i: Suc $i<n$ using i by linarith
have ? $M D \$ \$(i, i)=$? $M \$ \$$ (insert-index $0 i$, insert-index $0 i)$
by (rule mat-delete-index[symmetric, OF --i], insert Suc-i, auto)
also have $\ldots=$? $\mathrm{M} \$ \$$ (Suc i, Suc i) by simp
also have $\ldots=1$ unfolding make-mat-def index-mat[OF Suc-i Suc-i] using
$i k$ by auto
finally show ?thesis .
qed
have 2: ? $M D \$ \$(i, i)=B \$ \$(1,1)$ if $i: i<n-1$ and $i k$: Suc $i=k$ for i
proof -
have Suc- i : Suc $i<n$ using i by linarith
have ? $M D \$ \$(i, i)=$? $M \$ \$$ (insert-index $0 i$, insert-index $0 i)$
by (rule mat-delete-index[symmetric, OF --i], insert Suc-i, auto)
also have $\ldots=$? $\mathrm{M} \$ \$$ (Suc i, Suc i) by simp
also have $\ldots=B \$ \$(1,1)$ unfolding make-mat-def index-mat[OF Suc-i Suc-i]
using $i k$ by auto
finally show ?thesis .
qed
have set-rw: insert $(k-1)(\{0 . .<$ dim-row ?MD $\}-\{k-1\})=\{0 . .<$ dim-row?MD $\}$
using $k k 0$ MD-rows by auto
have up: upper-triangular ?MD by (rule upper-triangular-mat-delete-make-mat)
have Determinant.cofactor (local.make-mat nkB) 00

$$
=\text { Determinant.det (mat-delete (make-mat } n k B) 00 \text {) unfolding cofactor-def }
$$

by auto
also have $\ldots=$ prod-list (diag-mat ?MD) using up
using det-upper-triangular make-mat-carrier mat-delete-carrier by blast
also have $\ldots=\left(\prod i=0 . .<\right.$ dim-row ?MD. ?MD $\left.\$ \$(i, i)\right)$ unfolding prod-list-diag-prod by simp
also have $\ldots=\left(\Pi i \in \operatorname{insert}(k-1)(\{0 . .<\right.$ dim-row? $M D\}-\{k-1\})$? ${ }^{2} M D \$ \$(i$, i))
using set-rw by simp
also have $\ldots=$? $M D \$ \$(k-1, k-1) *\left(\prod i \in\{0 . .<\right.$ dim-row ? $M D\}-\{k-1\}$.
?MD $\$ \$(i, i))$
by (metis (no-types, lifting) Diff-iff finite-atLeastLessThan finite-insert prod.insert set-rw singletonI)
also have $\ldots=B \$ \$(1,1)$
by (smt 12 DiffD1 DiffD2 Groups.mult-ac(2) MD-rows add-diff-cancel-left'
add-diff-inverse-nat
k0 atLeastLessThan-iff class-cring.finprod-all1 insertI1 less-one more-arith-simps(5)
plus-1-eq-Suc set-rw)
finally show ?thesis.
qed

```
lemma cofactor-make-mat-0k:
    assumes kn: k<n and k0:k\not=0 and n0: 1<n
    shows cofactor (make-mat n k B) 0k= - B $$ (1,0)
proof -
    let ?M = make-mat n k B
    let ?MD = mat-delete ?M 0 k
    have n0: 0<n-1 using n0 by auto
    have MD-carrier: ?MD \in carrier-mat ( }n-1)(n-1
        using make-mat-carrier mat-delete-carrier by blast
    have MD-k1: ?MD $$ (k-1,0)=B$$(1,0)
    proof -
    have n0': 0<n using n0 by auto
    have insert-i: insert-index 0 ( k-1) = k using k0 by auto
    have insert-k: insert-index k 0 = 0 using k0 by auto
    have ?MD $$ (k-1,0)=?M $$ (insert-index 0 (k-1), insert-index k 0)
            by (rule mat-delete-index[symmetric, OF -- n0], insert k0 kn, auto)
    also have ... = ?M $$ (k,0) unfolding insert-i insert-k by simp
    also have ... = B$$(1,0) using k0 unfolding make-mat-def index-mat[OF
kn n0] by auto
    finally show ?thesis.
    qed
    have MD0: ?MD $$ (i,0)=0 if i:i<n-1 and ik: Suc i\not=k for i
    proof -
    have i2: Suc i<n using i by auto
    have n0':0<n using n0 by auto
    have insert-i: insert-index 0i=Suc i by simp
    have insert-k: insert-index k 0 = 0 using k0 by auto
    have ?MD $$ (i,0) =?M $$ (insert-index 0 i, insert-index k 0)
        by (rule mat-delete-index[symmetric, OF -- i], insert i n0 kn, auto)
    also have ... =?M $$ (Suc i,0) unfolding insert-i insert-k by simp
    also have ... = 0 using ik unfolding make-mat-def index-mat[OF i2 n0] by
auto
    finally show ?thesis .
    qed
    have det-cofactor: Determinant.cofactor ?MD (k-1) 0 = (-1) ^ (k - 1)
    unfolding cofactor-def using det-mat-delete-make-mat[OF kn] by auto
    have sum0: (\sumi\in{0..<n-1}-{k-1}. ?MD $$ (i,0)* Determinant.cofactor
?MD i 0) = 0
    by (rule sum.neutral, insert MD0, fastforce)
    have Determinant.det ?MD = (\sumi<n - 1. ?MD $$ (i,0) * Determinant.cofactor
?MD i 0)
    by (rule laplace-expansion-column[OF MD-carrier n0])
also have ... = ?MD $$ (k-1,0)*Determinant.cofactor ?MD (k-1)0
        +(\sumi\in{0..<n-1}-{k-1}. ?MD $$(i,0) * Determinant.cofactor ?MD i
0)
            by (metis (no-types, lifting) Suc-less-eq add-diff-inverse-nat atLeast0LessThan
```

```
finite-atLeastLessThan
                            k0 kn lessThan-iff less-one n0 nat-diff-split-asm plus-1-eq-Suc rel-simps(70)
sum.remove)
    also have ... = ?MD $$ (k-1,0)* Determinant.cofactor ?MD (k-1) 0 unfolding
sum0 by simp
    also have ... = ?MD $$ (k-1,0)*(-1)^(k-1) unfolding det-cofactor by
auto
    also have ... = (-1)^ (k-1)*B$$ (1,0) using MD-k1 by auto
    finally show ?thesis unfolding cofactor-def
        by (metis (no-types, lifting) arithmetic-simps(49) k0 left-minus-one-mult-self
            more-arith-simps(11) mult-minus1 power-eq-if)
qed
lemma invertible-make-mat:
    assumes inv-B: invertible-mat B and B:B\incarrier-mat 2 2
        and kn: k<n and k0: k\not=0
    shows invertible-mat (make-mat n k B)
proof -
    let ?M = (make-mat n k B)
    have M-carrier: ?M \in carrier-mat n n by auto
    show ?thesis
    proof (cases n=0)
        case True
        thus ?thesis using M-carrier using invertible-mat-zero by blast
    next
        case False note n-not-0 = False
        show ?thesis
        proof (cases n=1)
            case True
            then show ?thesis using M-carrier using invertible-mat-zero assms by auto
        next
            case False
            hence n: 0<n using n-not-0 by auto
            hence n1: 1<n using False n-not-0 by auto
            have M00:?M $$ (0,0) = B $$(0,0) by (simp add: make-mat-def n)
            have M0k: ?M $$ (0,k) = B $$ (0,1) by (simp add: k0 kn make-mat-def n)
            have sum0: (\sumj\in({0..<n}-{0}-{k}).?M $$ (0,j) * Determinant.cofactor
?M 0 j) = 0
            proof (rule sum.neutral, rule ballI)
                fix }x\mathrm{ assume }x\mathrm{ : }x\in{0..<n}-{0}-{k
                    have make-mat nk B $$ (0,x)=0 unfolding make-mat-def using x by
auto
            thus local.make-mat n k B $$(0,x)* Determinant.cofactor (local.make-mat
nk B) Ox=0
                    by simp
            qed
            have cofactor-M-00: Determinant.cofactor ?M 0 0 = B$$(1,1)
                by (rule cofactor-make-mat-00[OF kn k0])
```

```
    have cofactor-M-0k: Determinant.cofactor ?M 0 k = - B $$ (1,0)
        by (rule cofactor-make-mat-0k[OF kn k0 n1])
    have Determinant.det ?M = (\sumj<n.?M $$ (0, j)* Determinant.cofactor
?M 0 j)
            using laplace-expansion-row[OF M-carrier n] by auto
    also have ... = (\sumj\in{0..<n}. ?M $$ (0,j)* Determinant.cofactor ?M 0 j)
        by (rule sum.cong, auto)
    also have \ldots.=?M $$(0,0)* Determinant.cofactor ?M 0 0
        +?M $$(0,k)* Determinant.cofactor ?M 0 k
        +(\sumj\in({0..<n}-{0}-{k}). ?M $$ (0, j)*Determinant.cofactor ?M 0
j)
            by (metis (no-types, lifting) add-cancel-right-right kn k0 atLeastOLessThan
                    atLeast1-lessThan-eq-remove0 finite-atLeastLessThan insert-Diff-single
insert-iff
            lessThan-iff n sum.atLeast-Suc-lessThan sum.remove sum0)
        also have ... = ?M $$(0,0) * Determinant.cofactor ?M 0 0
                +?M $$ (0,k)* Determinant.cofactor ?M 0 k using sum0 by auto
            also have ... = ?M $$ (0,0)*B$$(1,1) - ?M $$ (0,k)*B$$ (1,0)
            unfolding cofactor-M-00 cofactor-M-0k by auto
        also have ... = B$$(0,0)*B$$(1,1)-B$$(0,1)*B$$(1,0)
            unfolding M00 MOk by auto
            also have ... = Determinant.det B unfolding det-2[OF B] by auto
            finally have Determinant.det ?M = Determinant.det B .
            thus ?thesis unfolding cofactor-def
            using invertible-iff-is-unit-JNF by (metis B M-carrier inv-B)
    qed
    qed
qed
lemma make-mat-index:
    assumes i:i<n and j:j<n
    shows make-mat n k B $$ (i,j)=(if i=0\wedgej=0 then B$$(0,0) else
        if i=0\wedgej=k then B$$(0,1) else if i=k\wedgej=0
            then B$$(1,0) else if i=k\wedge j=k then B$$(1,1)
            else if i=j then 1 else 0)
    unfolding make-mat-def index-mat[OF i j] by simp
lemma make-mat-works:
    assumes A:A\incarrier-mat m n and Suc-i-less-n:Suc i<n
    and Q-step-def: Q-step = (make-mat n (Suc i) (snd (Smith-1x2
            (Matrix.mat 12 ( }\lambda(a,b)\mathrm{ . if }b=0\mathrm{ then A $$ (0,0) else A $$(0,Suc i))))))
    shows A $$ (0,0)*Q-step $$ (0,(Suc i)) + A $$ (0, Suc i) * Q-step $$ (Suc i,
Suc i)=0
proof -
    have n0: 0<n using Suc-i-less-n by simp
    let ?A =(Matrix.mat 1 2 ( }\lambda(a,b)\mathrm{ . if b = 0 then A $$ (0,0) else A $$ (0, Suc
i)))
    let ?S = fst (Smith-1x2 ?A)
    let ?Q = snd (Smith-1x2 ?A)
```

have 1: (make-mat $n($ Suc $i) ? Q) \$ \$(0, S u c i)=? Q \$ \$(0,1)$
unfolding make-mat-index[OF n0 Suc-i-less-n] by auto
have 2: (make-mat n (Suc i) ?Q) $\$ \$($ Suc i, Suc $i)=$? $Q \$ \$(1,1)$
unfolding make-mat-index[OF Suc-i-less-n Suc-i-less-n] by auto
have is-SNF-A': is-SNF ?A ($1_{m} 1$, Smith-1x2 ?A) using SNF-1x2-works by auto
have $S N F-S$: Smith-normal-form-mat ? S and $S: ? S=1_{m} 1 * ? A * ? Q$
and $Q: ? Q \in$ carrier-mat 22
using is-SNF- A^{\prime} unfolding is-SNF-def by auto
have ? $S \$ \$(0,1)=(? A * ? Q) \$ \$(0,1)$ unfolding S by auto
also have $\ldots=$ Matrix.row ?A $0 \cdot$ col ?Q 1 by (rule index-mult-mat, insert Q, auto)
also have $\ldots=\left(\sum i a=0 . .<\operatorname{dim-vec}(\operatorname{col}\right.$?Q 1). Matrix.row ?A $0 \$ v i a * c o l$? Q $1 \$ v i a)$
unfolding scalar-prod-def by auto
also have $\ldots=\left(\sum i a \in\{0,1\}\right.$. Matrix.row ? A $0 \$ v i a *$ col ? $\left.Q 1 \$ v i a\right)$
by (rule sum.cong, insert Q, auto)
also have $\ldots=$ Matrix.row?A $0 \$ v 0 * \operatorname{col}$?Q $1 \$ v 0+$ Matrix.row ?A $0 \$ v 1$

* col ? Q 1 \$v 1
using sum-two-elements by auto
also have $\ldots=A \$ \$(0,0) * ? Q \$(0,1)+A \$ \$(0, S u c i) * ? Q \$ \$(1,1)$
by (smt One-nat-def Q carrier-matD(1) carrier-matD(2) dim-col-mat(1) dim-row-mat(1)
index-col
index-mat(1) index-row(1) lessI numeral-2-eq-2 pos2 prod.simps(2) rel-simps(93))
finally have ? $S \$(0,1)=A \$ \$(0,0) * ? Q \$ \$(0,1)+A \$ \$(0, S u c i) * ? Q \$ \$$ $(1,1)$ by simp
moreover have ? $S \$ \$(0,1)=0$ using $S N F-S$ unfolding Smith-normal-form-mat-def
isDiagonal-mat-def
by (metis (no-types, lifting) Q S card-num-simps(30) carrier-matD(2) in-dex-mult-mat(2)
index-mult-mat(3) index-one-mat(2) lessI n-not-Suc-n numeral-2-eq-2)
ultimately show ?thesis using 12 unfolding Q-step-def by auto qed

16.3.1 Case $1 \times n$

fun Smith-1xn-aux :: nat $\Rightarrow{ }^{\prime} a$ mat $\Rightarrow\left({ }^{\prime} a m a t \times{ }^{\prime} a m a t\right) \Rightarrow\left({ }^{\prime} a m a t \times{ }^{\prime} a\right.$ mat $)$
where
Smith-1xn-aux $0 A(S, Q)=(S, Q) \mid$
Smith-1xn-aux (Suc i) $A(S, Q)=($ let
A-step-1x2 $=($ Matrix.mat $12(\lambda(a, b)$. if $b=0$ then $S \$ \$(0,0)$ else $S \$(0, S u c$
i)));
$(S$-step-1x2, Q-step-1x2) $=$ Smith-1x2 A-step-1x2;
Q-step $=$ make-mat $(\operatorname{dim}-c o l A)(S u c i) Q$-step-1x2;
$S^{\prime}=S * Q$-step
in Smith-1xn-aux i $A\left(S^{\prime}, Q * Q\right.$-step $\left.)\right)$
definition Smith-1xn $A=\left(\right.$ if dim-col $A=0$ then $\left(A, 1_{m}(\operatorname{dim}-\operatorname{col} A)\right)$
else Smith-1xn-aux (dim-col $\left.A-1) A\left(A, 1_{m}(\operatorname{dim}-c o l ~ A)\right)\right)$

```
lemma Smith-1xn-aux-Q-carrier:
    assumes r: (S',Q') =(Smith-1xn-aux i A (S,Q))
    assumes A:A\incarrier-mat 1 n and Q:Q\incarrier-mat n n
    shows }\mp@subsup{Q}{}{\prime}\in\mathrm{ carrier-mat n n
    using Ar Q
proof (induct i A (S,Q) arbitrary: S Q rule: Smith-1xn-aux.induct)
    case (1ASQ)
    then show ?case by auto
next
    case (2 i A S Q)
    note }A=2.prems(1
    note }\mp@subsup{S}{}{\prime}\mp@subsup{Q}{}{\prime}=2.\operatorname{prems(2)
    note }Q=2.prems(3
    let ?A-step-1x2 = (Matrix.mat 1 2 ( }\lambda(a,b)\mathrm{ . if b = 0 then S $$ (0,0) else S
$$(0,Suc i)))
    let ?S-step-1x2 = fst (Smith-1x2 ?A-step-1x2)
    let ?Q-step-1x2 = snd (Smith-1x2 ?A-step-1x2)
    let ?Q-step = make-mat (dim-col A) (Suc i) ?Q-step-1x2
    have rw: A* (Q*?Q-step ) =A*Q*?Q-step
        by (smt A Q assoc-mult-mat carrier-matD(2) make-mat-carrier)
    have Smith-rw: Smith-1xn-aux (Suc i) A (S,Q) = Smith-1xn-aux i A (S*
    ?Q-step, Q*?Q-step)
        by (auto, metis (no-types, lifting) old.prod.exhaust snd-conv split-conv)
    show ?case
    proof (rule 2.hyps[of ?A-step-1x2 (?S-step-1x2, ?Q-step-1x2) ?S-step-1x2 ?Q-step-1x2])
        show S*?Q-step =S*?Q-step ..
        show }A\in\mathrm{ carrier-mat 1 n using }A\mathrm{ by auto
        show (S', Q') = Smith-1xn-aux i A (S*?Q-step, Q*?Q-step) using 2.prems
Smith-rw by auto
        show }Q*\mathrm{ ?Q-step }\in\mathrm{ carrier-mat n n using A Q by auto
    qed (auto)
qed
lemma Smith-1xn-aux-invertible-Q:
    assumes r: (S',Q') = (Smith-1xn-aux i A (S,Q))
    assumes A:A\incarrier-mat 1 n and Q:Q\incarrier-mat n n
        and i:i<n and inv-Q: invertible-mat Q
    shows invertible-mat }\mp@subsup{Q}{}{\prime
    using r A Q inv-Q i
proof (induct i A (S,Q) arbitrary: S Q rule: Smith-1xn-aux.induct)
    case (1 A S Q)
    then show ?case by auto
next
    case (2 i A SQ)
        let ?A-step-1x2 = (Matrix.mat 1 2 ( }\lambda(a,b)\mathrm{ . if }b=0\mathrm{ then S $$ (0,0) else S
$$(0,Suc i)))
    let ?S-step-1x2 = fst (Smith-1x2 ?A-step-1x2)
```

```
    let ?Q-step-1x2 = snd (Smith-1x2 ?A-step-1x2)
    let ?Q-step = make-mat (dim-col A) (Suc i) ?Q-step-1x2
    have Smith-rw: Smith-1xn-aux (Suc i) A (S,Q) =Smith-1xn-aux i A (S*
?Q-step, Q* ?Q-step)
        by (auto, metis (no-types, lifting) old.prod.exhaust snd-conv split-conv)
    have i-col:Suc i<dim-col A
        using 2.prems Suc-lessD by blast
    have i-n: i<n by (simp add: 2.prems Suc-lessD)
    show ?case
    proof (rule 2.hyps[of ?A-step-1x2 (?S-step-1x2, ?Q-step-1x2) ?S-step-1x2 ?Q-step-1x2])
    show A E carrier-mat 1 n using 2.prems by auto
    show Q* ?Q-step }\in\mathrm{ carrier-mat n n using 2.prems by auto
    show S*?Q-step =S*?Q-step ..
    show (S', Q')=Smith-1xn-aux i A (S*?Q-step, Q*?Q-step) using 2.prems
Smith-rw by auto
    show invertible-mat ( Q*?Q-step)
    proof (rule invertible-mult-JNF)
            show Q\in carrier-mat n n using 2.prems by auto
            show ?Q-step \incarrier-mat n n using 2.prems by auto
            show invertible-mat Q using 2.prems by auto
            show invertible-mat ?Q-step
                by (rule invertible-make-mat[OF - - i-col], insert SNF-1x2-works, unfold
is-SNF-def, auto)
            (metis (no-types, lifting) case-prodE mat-carrier snd-conv)+
    qed
    qed (auto simp add: i-n)
qed
lemma Smith-1xn-aux-S'-AQ':
    assumes r:( }\mp@subsup{S}{}{\prime},\mp@subsup{Q}{}{\prime})=(\mathrm{ Smith-1xn-aux i A (S,Q))
    assumes A:A\incarrier-mat 1 n and S:S\incarrier-mat 1 n and Q:Q\in
carrier-mat n n
    and S-AQ:S=A*Q and i:i<n
    shows }\mp@subsup{S}{}{\prime}=A*\mp@subsup{Q}{}{\prime
    using A Sr Q S-AQ
proof (induct i A (S,Q) arbitrary: S Q rule: Smith-1xn-aux.induct)
    case (1 A S Q)
    then show ?case by auto
next
    case (2 i A S Q)
    let ?A-step-1x2 = (Matrix.mat 1 2 ( }\lambda(a,b)\mathrm{ . if b = 0 then S $$ (0,0) else S
$$(0,Suc i)))
    let ?S-step-1x2 = fst (Smith-1x2 ?A-step-1x2)
    let ?Q-step-1x2 = snd (Smith-1x2 ?A-step-1x2)
    let ?Q-step = make-mat (dim-col A) (Suc i) ?Q-step-1x2
    have rw: A* (Q*?Q-step ) =A*Q*?Q-step
    by (smt 2.prems assoc-mult-mat carrier-matD(2) make-mat-carrier)
    have Smith-rw: Smith-1xn-aux (Suc i) A (S,Q) = Smith-1xn-aux i A (S*
?Q-step, Q*?Q-step)
```

```
    by (auto, metis (no-types, lifting) old.prod.exhaust snd-conv split-conv)
    show ?case
    proof (rule 2.hyps[of ?A-step-1x2 (?S-step-1x2, ?Q-step-1x2) ?S-step-1x2 ?Q-step-1x2])
    show A\in carrier-mat 1 n using 2.prems by auto
    show Q* ?Q-step \in carrier-mat n n using 2.prems by auto
    show S*?Q-step =S*?Q-step.
    show (S', Q') = Smith-1xn-aux i A (S*?Q-step, Q* ?Q-step) using 2.prems
Smith-rw by auto
    show S*?Q-step =A*(Q*?Q-step) using 2.prems rw by auto
    show S*?Q-step }\in\mathrm{ carrier-mat 1 n
        using 2.prems by (smt carrier-matD(2) make-mat-carrier mult-carrier-mat)
    qed (auto)
qed
lemma Smith-1xn-aux-S'-works:
    assumes r:( }\mp@subsup{S}{}{\prime},\mp@subsup{Q}{}{\prime})=(\mathrm{ Smith-1xn-aux i A (S,Q))
    assumes A:A\incarrier-mat 1n and S:S\incarrier-mat 1 n and Q:Q\in
carrier-mat n n
    and S-AQ:S=A*Q and i: i<n and j0:0<j and jn: j<n
    and all-j-zero: }\forallj\in{i+1..<n}.S$$(0,j)=
    shows }\mp@subsup{S}{}{\prime}$$(0,j)=
    using A S r Q i S-AQ all-j-zero j0 jn
proof (induct i A (S,Q) arbitrary: S Q rule: Smith-1xn-aux.induct)
    case (1AS Q)
    then show ?case using j0 jn by auto
next
    case (2 i A S Q)
    let ?A-step-1x2 = (Matrix.mat 1 2 ( }\lambda(a,b)\mathrm{ . if b = 0 then S $$ (0,0) else S
$$(0,Suc i)))
    let ?S-step-1x2 = fst (Smith-1x2 ?A-step-1x2)
    let ?Q-step-1x2 = snd (Smith-1x2 ?A-step-1x2)
    let ?Q-step = make-mat (dim-col A) (Suc i) ?Q-step-1x2
    have i-less-n: i<n by (simp add: 2(6) Suc-lessD)
    have rw: A* (Q*?Q-step)=A*Q*?Q-step
        by (smt 2.prems assoc-mult-mat carrier-matD(2) make-mat-carrier)
        have Smith-rw: Smith-1xn-aux (Suc i) A (S,Q) =Smith-1xn-aux i A (S*
?Q-step,}Q*?Q-step
        by (auto, metis (no-types, lifting) old.prod.exhaust snd-conv split-conv)
    have }\mp@subsup{S}{}{\prime}-A\mp@subsup{Q}{}{\prime}:\mp@subsup{S}{}{\prime}=A*\mp@subsup{Q}{}{\prime
            by (rule Smith-1xn-aux-S'-AQ', insert 2.prems, auto)
    show ?case
    proof (rule 2.hyps[of ?A-step-1x2 (?S-step-1x2, ?Q-step-1x2) ?S-step-1x2 ?Q-step-1x2])
    show A\incarrier-mat 1 n using 2.prems by auto
    show Q-Q-step-carrier: Q*?Q-step }\in\mathrm{ carrier-mat n n using 2.prems by auto
    show S*?Q-step =S*?Q-step ..
    show (S', Q')=Smith-1xn-aux i A (S*?Q-step, Q*?Q-step) using 2.prems
Smith-rw by auto
```

$$
\text { show } S * \text { ?Q-step }=A *(Q * \text { ?Q-step }) \text { using 2.prems rw by auto }
$$

show $S * ? Q$-step \in carrier-mat $1 n$
using 2.prems by (smt carrier-matD(2) make-mat-carrier mult-carrier-mat)
show $\forall j \in\{i+1 . .<n\} .(S * ? Q$-step $) \$ \$(0, j)=0$
proof (rule balli)
fix j assume $j: j \in\{i+1 . .<n\}$
have $(S *$? Q-step $) \$ \$(0, j)=$ Matrix.row $S 0 \cdot$ col ?Q-step j
by (rule index-mult-mat, insert j 2.prems, auto simp add: make-mat-def)
also have $\ldots=0$
proof (cases $j=$ Suc i)
case True
let ?f $=\lambda x$. Matrix.row $S 0 \$ v x * \operatorname{col}$? Q-step $j \$ v x$
let ?set $=\{0 . .<$ dim-vec $($ col ? Q-step $j)\}$
have set-rw: ?set $=$ insert $0($ insert $j($?set $-\{0\}-\{j\}))$
using 2.prems True make-mat-def by auto
have sum0: $\left(\sum x \in\right.$?set $-\{0\}-\{j\}$. ?f $\left.x\right)=0$
proof (rule sum.neutral, rule balli)
fix x assume $x: x \in$?set $-\{0\}-\{j\}$
show ?f $x=0$ using 2(6) 2.prems True make-mat-def x by auto
qed
have Matrix.row S $0 \cdot$ col ? Q-step $j=\left(\sum x=0 . .<\operatorname{dim-vec}(\right.$ col ? Q-step $j)$. ? $f x)$
unfolding scalar-prod-def by simp
also have $\ldots=\left(\sum x \in \operatorname{insert} 0(\right.$ insert $j($?set $-\{0\}-\{j\}))$. ?f $\left.x\right)$ using
set-rw by auto
also have $\ldots=$?f $0+\left(\sum x \in\right.$ insert $j($?set $-\{0\}-\{j\})$. ?f $\left.x\right)$ by (simp
add: True)
also have $\ldots=$?f $0+$?f $j+\left(\sum x \in\right.$?set $-\{0\}-\{j\}$. ?f $\left.x\right)$
by (simp add: set-rw sum.insert-remove)
also have $\ldots=$?f $0+$?f j using sum0 by auto
also have $\ldots=S \$ \$(0,0) * ? Q$-step $\$ \$(0$, Suc $i)+S \$ \$(0, S u c i) *$
?Q-step $\$ \$$ (Suc i, Suc i)
using 2.prems True make-mat-def by auto
also have $\ldots=0$ by (rule make-mat-works, insert 2.prems, auto)
finally show ?thesis .
next
case False note j-not-Suc- $i=$ False
show ?thesis
unfolding scalar-prod-def
proof (rule sum.neutral, rule ballI)
fix x assume $x: x \in\{0 . .<$ dim-vec (col ?Q-step j) $\}$
have $x n$: $x<n$ using 2(2) make-mat-def x by auto
have jn2: $j<d i m$-col A using 2(2) j by auto
have xn2: $x<$ dim-col A using 2.prems(1) $x n$ by blast
have Matrix.row $S 0 \$ v x=S \$ \$(0, x)$ using 2.prems make-mat-def x by
moreover have col ?Q-step $j \$ v x=$? Q-step $\$ \(x, j) using Q - Q-step-carrier $j x$ by auto
ultimately have eq: Matrix.row S $0 \$ v x *$ col ? Q-step $j \$ v x=S \$ \$$ $(0, x) * ? Q$-step $\$ \(x, j) by auto
have S-0x: $S \$ \$(0, x)=0$ if Suc $i+1 \leq x$ using 2.prems xn that by auto moreover have? Q-step $\$ \$(x, j)=0$ if $x \leq$ Suc i
using that j j-not-Suc-i unfolding make-mat-def index-mat[OF xn2 jn2] by auto
ultimately show Matrix.row S $0 \$ v x *(\operatorname{col}$? Q-step $j) \$ v x=0$ using eq by force
qed
qed
finally show $(S * ? Q$-step $) \$ \$(0, j)=0$. qed
qed (auto simp add: 2.prems i-less-n)
qed
lemma Smith-1xn-works:
assumes $A: A \in$ carrier-mat $1 n$
and $S Q:(S, Q)=$ Smith-1xn A
shows is-SNF $A\left(1_{m} 1, S, Q\right)$
proof (cases $n=0$)
case True
thus ?thesis using assms
unfolding is-SNF-def
by (auto simp add: Smith-1xn-def)
next
case False
hence $n 0: 0<n$ by auto
show ?thesis
proof (rule is-SNF-intro)
have $S Q$-eq: $(S, Q)=$ local.Smith-1xn-aux (dim-col $A-1) A\left(A, 1_{m}\right.$ (dim-col A))
using $S Q$ unfolding Smith-1xn-def by simp
have col: dim-col $A-1<\operatorname{dim}$-col A using n0 A by auto
show $1_{m} 1 \in$ carrier-mat (dim-row A) (dim-row A) using A by auto
show $Q: Q \in$ carrier-mat (dim-col $A)(\operatorname{dim}-c o l A)$ by (rule Smith-1xn-aux-Q-carrier[OF SQ-eq], insert A, auto)
show invertible-mat ($1_{m} 1$) by simp
show invertible-mat Q by (rule Smith-1xn-aux-invertible-Q[OF SQ-eq], insert A n0, auto)
have $S-A Q: S=A * Q$
by (rule Smith-1xn-aux- $S^{\prime}-A Q^{\prime}[O F S Q$-eq], insert A n0, auto)
thus $S=1_{m} 1 * A * Q$ using A by auto
have $S: S \in$ carrier-mat $1 n$ using $S-A Q A Q$ by auto
show Smith-normal-form-mat S
proof (rule Smith-normal-form-mat-intro)
show $\forall a . a+1<\min ($ dim-row $S)(d i m-c o l S) \longrightarrow S \$ \$(a, a) d v d S \$ \$(a$ $+1, a+1)$

```
            using S by auto
            have S $$ (0,j)=0 if j0:0<j and jn: j<n for j
            by (rule Smith-1xn-aux-S'-works[OF SQ-eq], insert A n0 j0 jn, auto)
            thus isDiagonal-mat S unfolding isDiagonal-mat-def using S by simp
        qed
    qed
qed
```


16.3.2 Case $n \times 1$

definition Smith-nx1 $A=$
(let $(S, P)=($ Smith-1xn-aux (dim-row $A-1)$ (transpose-mat $A)$ (transpose-mat $A, 1_{m}($ dim-row $\left.\left.A)\right)\right)$
in (transpose-mat P, transpose-mat $S)$)

lemma Smith-nx1-works:

assumes $A: A \in$ carrier-mat $n 1$
and $S Q:(P, S)=$ Smith-nx1 A
shows is-SNF $A\left(P, S, 1_{m} 1\right)$
proof (cases $n=0$)
case True
thus ?thesis using assms
unfolding is-SNF-def
by (auto simp add: Smith-nx1-def)
next
case False
hence $n 0: 0<n$ by auto
show ?thesis
proof (rule is-SNF-intro)
have $S Q$-eq: $\left(S^{T}, P^{T}\right)=($ Smith-1xn-aux (dim-row $A-1) A^{T}\left(A^{T}, 1_{m}\right.$ (dim-row A)))
using $S Q[$ unfolded Smith-nx1-def] unfolding Let-def split-beta by auto
have is-SNF $\left(A^{T}\right)\left(1_{m} 1, S^{T}, P^{T}\right)$
by (rule Smith-1xn-works[unfolded Smith-1xn-def, OF - -], insert SQ-eq A, auto)
have Pt: $P^{T} \in$ carrier-mat (dim-col $\left.\left(A^{T}\right)\right)\left(\operatorname{dim}-\operatorname{col}\left(A^{T}\right)\right)$
by (rule Smith-1xn-aux-Q-carrier[OF $S Q$-eq], insert A n0, auto)
thus $P: P \in$ carrier-mat (dim-row A) (dim-row A) by auto
show $1_{m} 1 \in$ carrier-mat (dim-col A) (dim-col A) using A by simp
have invertible-mat (P^{T})
by (rule Smith-1xn-aux-invertible-Q[OF SQ-eq], insert A n0, auto)
thus invertible-mat P by (metis det-transpose P Pt invertible-iff-is-unit-JNF)
show invertible-mat ($1_{m} 1$) by simp
have $S^{T}=A^{T} * P^{T}$
by (rule Smith-1xn-aux- $S^{\prime}-A Q^{\prime}[O F S Q$-eq], insert A n0, auto)
hence $S=P * A$ by (metis A transpose-mult transpose-transpose P car-rier-matD(1))
thus $S=P * A * 1_{m} 1$ using $P A$ by auto
hence $S: S \in$ carrier-mat $n 1$ using $P A$ by auto
have $i s$-SNF $\left(A^{T}\right)\left(1_{m} 1, S^{T}, P^{T}\right)$
by (rule Smith-1xn-works[unfolded Smith-1xn-def, OF - -], insert SQ-eq A, auto)
hence Smith-normal-form-mat (S^{T}) unfolding is-SNF-def by auto
thus Smith-normal-form-mat S unfolding Smith-normal-form-mat-def isDiag-onal-mat-def by auto
qed
qed
16.3.3 Case $2 \times n$
function Smith-2xn :: 'a mat \Rightarrow ('a mat \times 'a mat \times 'a mat $)$

where

Smith-2xn A = (
if dim-col $A=0$ then $\left(1_{m}(\right.$ dim-row $\left.A), A, 1_{m} 0\right)$ else
if dim-col $A=1$ then let $(P, S)=$ Smith-nx1 A in $\left(P, S, 1_{m}(\operatorname{dim}-c o l A)\right)$ else
if dim-col $A=2$ then Smith-2x2 A
else
let $A 1=$ mat-of-cols (dim-row $A)[\operatorname{col} A 0]$;
$A 2=$ mat-of-cols $($ dim-row $A)[\operatorname{col} A$ i. $i \leftarrow[1 . .<$ dim-col $A]]$;
$(P 1, D 1, Q 1)=$ Smith-2xn A2;
$C=(P 1 * A 1) @_{c}(P 1 * A 2 * Q 1) ;$
$D=$ mat-of-cols (dim-row A) [col C 0, col C 1];
$E=$ mat-of-cols (dim-row $A)[\operatorname{col} C$ i. $i \leftarrow[2 . .<\operatorname{dim}-\operatorname{col} A]] ;$
(P2,D2,Q2) $=$ Smith-2x2 D;
$H=(P 2 * D * Q 2) @_{c}(P 2 * E)$;
$k=(\operatorname{div-op}(H \$ \$(0,2))(H \$ \$(0,0)))$;
H2 = addcol (-k) 20 H;
(-,-,-,H2-DR) = split-block H2 1 1;
$(H-1 x n, Q 3)=$ Smith-1xn H2-DR;
$S=$ four-block-mat (Matrix.mat $11(\lambda(a, b) . H \$ \$(0,0)))\left(O_{m} 1\right.$ (dim-col A

- 1)) ($\left.\begin{array}{l}m_{m} 11\end{array}\right) H-1 x n$;
$Q 1^{\prime}=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(\operatorname{dim}-\operatorname{col} A-1)\right)\left(O_{m}(\operatorname{dim}-c o l A-1)\right.$

1) $Q 1$;

Q2' $=$ four-block-mat $Q 2\left(0_{m} 2(\operatorname{dim}-\operatorname{col} A-2)\right)\left(O_{m}(\operatorname{dim}-c o l A-2)\right.$ 2) ($\left.1_{m}(\operatorname{dim}-\operatorname{col} A-2)\right)$;
Q-div-k $=$ addrow-mat $($ dim-col $A)(-k) 02$;
$Q 3^{\prime}=$ four-block-mat $\left(\begin{array}{ll}1 & 1\end{array}\right)\left(O_{m} 1(\right.$ dim-col $\left.A-1)\right)\left(O_{m}(d i m-c o l A-\right.$

1) 2) $Q 3$
in $\left.\left(P 2 * P 1, S, Q 1^{\prime} * Q 2^{\prime} * Q-d i v-k * Q 3^{\prime}\right)\right)$
by pat-completeness auto
termination apply (relation measure $(\lambda A . \operatorname{dim}-\operatorname{col} A))$ by auto
lemma Smith-2xn-0:
assumes $A: A \in$ carrier-mat 20
shows is-SNF A (Smith-2xn A)
proof -
```
    have Smith-2xn A = (1m (dim-row A),A,1m 0)
    using }A\mathrm{ by auto
    moreover have is-SNF A ... by (rule is-SNF-intro, insert A, auto)
    ultimately show ?thesis by simp
qed
lemma Smith-2xn-1:
    assumes A:A\incarrier-mat 2 1
    shows is-SNF A (Smith-2xn A)
proof -
    obtain PS where PS: Smith-nx1 A = (P,S) using prod.exhaust by blast
    have *: is-SNF A (P, S,1m 1) by (rule Smith-nx1-works[OF A PS[symmetric]])
    moreover have Smith-2xn A = (P,S,1m (dim-col A))
    using A PS by auto
    moreover have is-SNF A ... using * A by auto
    ultimately show ?thesis by simp
qed
lemma Smith-2xn-2:
    assumes A: A c carrier-mat 2 2
    shows is-SNF A (Smith-2xn A)
proof -
    have Smith-2xn A = Smith-2x2 A using A by auto
    from this show ?thesis using SNF-2x2-works using A by auto
qed
lemma is-SNF-Smith-2xn-n-ge-2:
    assumes A:A\incarrier-mat 2 n and n: n>2
    shows is-SNF A (Smith-2xn A)
    using A n id
proof (induct A arbitrary: n rule: Smith-2xn.induct)
    case (1 A)
    note A=1.prems(1)
    note n-ge-2 = 1.prems(2)
    have dim-col-A-g2: dim-col A>2 using n-ge-2 A by auto
    define A1 where A1 = mat-of-cols (dim-row A) [col A 0}
    define A2 where A2 = mat-of-cols (dim-row A) [col A i. i\leftarrow [1..<dim-col A]]
    obtain P1 D1 Q1 where P1D1Q1: (P1,D1,Q1) = Smith-2xn A2 by (metis
prod-cases3)
    define C where C=(P1*A1) @ 
    define D where D=mat-of-cols (dim-row A) [col C 0, col C 1]
    define E where E = mat-of-cols (dim-row A) [col C i. i\leftarrow[2..<dim-col A]]
    obtain P2 D2 Q2 where P2D2Q2: (P2,D2,Q2) = Smith-2x2 D by (metis
prod-cases3)
    define H where H=(P2*D*Q2) @ cc}(P2*E
    define k where k= div-op (H$$(0,2)) (H$$(0,0))
    define H2 where H2 = addcol (-k) 2 0 H
    obtain H2-UL H2-UR H2-DL H2-DR
        where split-H2: (H2-UL,H2-UR,H2-DL,H2-DR) = (split-block H2 1 1) by
```

(metis prod-cases4)
obtain $H-1 x n$ Q3 where $H-1 x n-Q 3:(H-1 x n, Q 3)=$ Smith $-1 x n H 2-D R$ by (metis surj-pair)
define S where $S=$ four-block-mat (Matrix.mat $11(\lambda(a, b) . H \$ \$(0,0)))\left(0_{m} 1\right.$ (dim-col $A-1)$) (0 m 1 1) $H-1 x n$
define $Q 1^{\prime}$ where $Q 1^{\prime}=$ four-block-mat $\left(\begin{array}{ll}1_{m} & 1)\left(0_{m} 1(\operatorname{dim}-c o l\right. \\ A-1)\end{array}\right)\left(0_{m}\right.$ (dim-col $A-1)$ 1) $Q 1$
define Q 2' $^{\prime}$ where $Q^{2}{ }^{\prime}=$ four-block-mat $Q 2\left(0_{m}\right.$ 2 $($ dim-col $\left.A-2)\right)\left(0_{m}(\right.$ dim-col A-2) 2) ($\left.1_{m}(\operatorname{dim}-\operatorname{col} A-2)\right)$
define Q-div- k where Q-div- $k=a d d r o w-m a t(\operatorname{dim}-c o l ~ A)(-k) 02$
define $Q 3^{\prime}$ where $Q 3^{\prime}=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(\operatorname{dim-col} A-1)\right)\left(0_{m}\right.$ (dim-col $A-1)$ 1) Q3
have Smith-2xn-rw: Smith-2xn $A=\left(P 2 * P 1, S, Q 1^{\prime} * Q 2^{\prime} * Q\right.$-div- $\left.k * Q 3^{\prime}\right)$
proof (rule prod3-intro)
have P1-def: fst (Smith-2xn A2) $=$ P1 and Q1-def: snd (snd (Smith-2xn A2)) $=Q 1$
and P2-def: fst $($ Smith-2x2 D $)=$ P2 and Q2-def: snd $($ snd $($ Smith-2x2 D $))=$ Q2
and H-1xn-def: fst (Smith-1xn H2-DR) $=H-1 x n$ and Q3-def: snd (Smith-1xn $H 2-D R)=Q 3$
and H2-DR-def: snd (snd (snd (split-block H2 1 1))) $=$ H2-DR
using P2D2Q2 P1D1Q1 H-1xn-Q3 split-H2 fstI sndI by metis+
note $a u x=P 1-\operatorname{def} Q 1-\operatorname{def} Q 1$ '-def $Q^{2}{ }^{\prime}-\operatorname{def} Q$-div- k-def $Q 3$ '-def S-def A1-def[symmetric]
C-def[symmetric] P2-def Q2-def Q3-def D-def[symmetric] E-def[symmetric]
H-def[symmetric]
k-def[symmetric] H2-def[symmetric] H2-DR-def H-1xn-def A2-def[symmetric]
show fst (Smith-2xn A) $=P 2 * P 1$
using dim-col-A-g2 unfolding Smith-2xn.simps[of A] Let-def split-beta
by (insert P1D1Q1 P2D2Q2 D-def C-def, unfold aux, auto simp del: Smith-2xn.simps)
show fst $($ snd $($ Smith-2xn A) $)=S$
using dim-col-A-g2 unfolding Smith-2xn.simps[of A] Let-def split-beta
by (insert P1D1Q1 P2D2Q2, unfold aux, auto simp del: Smith-2xn.simps)
show snd $\left(\right.$ snd $($ Smith-2xn A) $)=Q 1^{\prime} * Q 2^{\prime} * Q$-div- $k * Q 3^{\prime}$
using dim-col-A-g2 unfolding Smith-2xn.simps[of A] Let-def split-beta
by (insert P1D1Q1 P2D2Q2, unfold aux, auto simp del: Smith-2xn.simps)
qed
show ?case
proof (unfold Smith-2xn-rw, rule is-SNF-intro)
have is-SNF-A2: is-SNF A2 (Smith-2xn A2)
proof (cases $2<$ dim-col A2)
case True
show ?thesis
by (rule 1.hyps, insert True A dim-col-A-g2 id, auto simp add: A2-def)
next
case False
hence dim-col $A 2=2$ using n-ge- 2 A unfolding $A 2$-def by auto hence A2: A2 carrier-mat 22 unfolding A2-def using A by auto hence $*:$ Smith-2xn A2 $=$ Smith-2x2 A2 by auto show ?thesis unfolding * using SNF-2x2-works A2 by auto

qed

have $A 1[$ simp $]: A 1 \in$ carrier-mat (dim-row A) 1 unfolding A1-def by auto
have $A \mathcal{2}[$ simp $]: A 2 \in$ carrier-mat (dim-row A) (dim-col $A-1)$ unfolding A2-def by auto
have P1[simp]: P1 \in carrier-mat (dim-row $A)($ dim-row $A)$
and inv-P1: invertible-mat P1
and Q1: Q1 \in carrier-mat (dim-col A2) (dim-col A2) and inv-Q1: invert-
ible-mat Q1
and SNF-P1A2Q1: Smith-normal-form-mat (P1*A2*Q1)
using is-SNF-A2 P1D1Q1 A2 unfolding is-SNF-def by fastforce+
have $D[$ simp $]: D \in$ carrier-mat 22 unfolding D-def
by (metis 1(2) One-nat-def Suc-eq-plus1 carrier-matD(1) list.size(3)
list.size(4) mat-of-cols-carrier (1) numerals(2))
have is-SNF-D: is-SNF D (Smith-2x2 D) using SNF-2x2-works D by auto
hence P2[simp]: P2 \in carrier-mat (dim-row A) (dim-row A) and inv-P2: invertible-mat P2
and $Q 2[$ simp $]: ~ Q 2 \in$ carrier-mat (dim-col $D)($ dim-col $D)$ and inv-Q2: invertible-mat Q^{2}
using P2D2Q2 D-def unfolding is-SNF-def by force +
show P2-P1: P2 * P1 \in carrier-mat (dim-row A) (dim-row A) by (rule mult-carrier-mat[OF P2 P1])
show invertible-mat (P2 * P1) by (rule invertible-mult-JNF[OF P2 P1 inv-P2 inv-P1])
have $Q 1^{\prime}: Q 1^{\prime} \in$ carrier-mat (dim-col $\left.A\right)($ dim-col $A)$ using $Q 1$ unfolding Q1'-def
by (auto, smt A2 One-nat-def add-diff-inverse-nat carrier-matD(1) car-rier-matD (2) carrier-matI
dim-col-A-g2 gr-implies-not0 index-mat-four-block(2) index-mat-four-block(3)
index-one-mat(2) index-one-mat(3) less-Suc0)
have $Q 2^{\prime}: Q 2^{\prime} \in$ carrier-mat (dim-col A) (dim-col A) using Q2 unfolding Q2'-def
by (smt D One-nat-def Suc-lessD add-diff-inverse-nat carrier-matD(1) car-rier-matD(2)
carrier-matI dim-col-A-g2 gr-implies-not0 index-mat-four-block(2) in-dex-mat-four-block(3)
index-one-mat(2) index-one-mat(3) less-2-cases numeral-2-eq-2 semir-ing-norm(138))
have $H 2[$ simp $]: H 2 \in \operatorname{carrier-mat}(d i m-r o w ~ A)(d i m-c o l A)$ using $A P 2 D$ unfolding H2-def H-def
by (smt E-def Q2 Q2' $Q 2^{\prime}$-def append-cols-def arithmetic-simps(50) car-rier-matD(1) carrier-matD(2)
carrier-mat-triv index-mat-addcol(4) index-mat-addcol(5) index-mat-four-block(2)
index-mat-four-block(3) index-mult-mat(2) index-mult-mat(3) index-one-mat(2) index-zero-mat(2)
index-zero-mat(3) length-map length-upt mat-of-cols-carrier(3))
have $H^{\prime}[\operatorname{simp}]: H 2-D R \in$ carrier-mat $1(n-1)$
by (rule split-block(4)[OF split-H2[symmetric]], insert H2 A n-ge-2, auto)
have is-SNF- H^{\prime} : is-SNF H2-DR ($1_{m} 1, H-1 x n, Q 3$)
by (rule Smith-1xn-works[OF $\left.\left.H^{\prime} H-1 x n-Q 3\right]\right)$
from this have Q3: Q3 \in carrier-mat (dim-col H2-DR) (dim-col H2-DR) and inv-Q3: invertible-mat Q3
unfolding is-SNF-def by auto
have $Q 3^{\prime}: Q 3^{\prime} \in$ carrier-mat $(\operatorname{dim}-\operatorname{col} A)(\operatorname{dim}-c o l A)$
by (metis A A2 H' Q1 Q1' Q1'-def Q3 Q3'-def carrier-matD(1) carrier-matD(2) carrier-matI
index-mat-four-block(2) index-mat-four-block(3))
have Q-div-k[simp]: Q-div- $k \in$ carrier-mat (dim-col A) (dim-col A) unfolding Q-div-k-def by auto
have inv-Q-div-k: invertible-mat Q-div- k
by (metis Q-div-k Q-div-k-def det-addrow-mat det-one invertible-iff-is-unit-JNF
invertible-mat-one nat.simps(3) numerals(2) one-carrier-mat)
show $Q 1^{\prime} * Q 2^{\prime} * Q$-div- $k * Q 3^{\prime} \in \operatorname{carrier-mat}(\operatorname{dim}-c o l A)(d i m-c o l ~ A)$
using $Q 1^{\prime} Q 2^{\prime}$ Q-div-k $Q 3^{\prime}$ by auto
have inv-Q1': invertible-mat $Q 1^{\prime}$
proof -
have invertible-mat (four-block-mat $\left(1_{m} 1\right)\binom{\left.O_{m} 1(n-1)\right)\left(O_{m}(n-1)\right.}{n}$ Q1)
by (rule invertible-mat-four-block-mat-lower-right, insert Q1 inv-Q1 A2 1.prems, auto)
thus ?thesis unfolding $Q 1^{\prime}$-def using A by auto
qed
have inv-Q2': invertible-mat $Q 2^{\prime}$
by (unfold Q^{2} '-def, rule invertible-mat-four-block-mat-lower-right-id,
insert Q2 n-ge-2 inv-Q2 A D, auto)
have inv-Q3': invertible-mat Q3'
proof -
have invertible-mat (four-block-mat $\left(1_{m} 1\right)\binom{\left.O_{m} 1(n-1)\right)\left(O_{m}(n-1)\right.}{n}$ Q3)
by (rule invertible-mat-four-block-mat-lower-right, insert Q3 H^{\prime} inv-Q3 1.prems, auto) thus ?thesis unfolding $Q 3^{\prime}$-def using A by auto
qed
show invertible-mat ($Q 1^{\prime} * Q 2^{\prime} * Q$-div-k * Q3') using inv-Q1' inv-Q2' inv-Q-div-k inv-Q3' by (meson Q1' Q2' Q3' Q-div-k invertible-mult-JNF mult-carrier-mat)
have A-A1-A2: $A=A 1 @_{c}$ A2 unfolding A1-def A2-def append-cols-def proof (rule eq-matI, auto)
fix i assume $i: i<$ dim-row A show 1: $A \$ \$(i, 0)=$ mat-of-cols (dim-row A) $[\operatorname{col} A \quad 0] \$ \$(i, 0)$
by (metis dim-col-A-g2 gr-zeroI i index-col mat-of-cols-Cons-index-0 not-less0) let ?xs $=(\operatorname{map}(\operatorname{col} A)[$ Suc $0 . .<\operatorname{dim}-\operatorname{col} A])$
fix j
assume j1: $j<\operatorname{Suc}(\operatorname{dim}-\operatorname{col} A-S u c 0)$
and $j 2: 0<j$
have mat-of-cols (dim-row $A)$? xs $\$ \$(i, j-S u c 0)=? x s!(j-S u c 0) \$ v i$

```
            by (rule mat-of-cols-index, insert j1 j2 i, auto)
            also have ... = A $$ (i,j) using dim-col-A-g2 i j1 j2 by auto
            finally show A $$ (i,j) = mat-of-cols (dim-row A) ?xs $$ (i,j - Suc 0) ..
            next
            show dim-col A = Suc (dim-col A - Suc 0) using n-ge-2 A by auto
    qed
    have C-P1-A-Q1': C=P1*A*Q1'
    proof -
        have aux: P1 * (A1 @ cA2) = ((P1*A1) @ cc (P1*A2) )
        by (rule append-cols-mult-left, insert A1 A2 P1, auto)
    have P1*A*Q1'=P1* (A1 @ cA2)* Q1' using A-A1-A2 by simp
    also have ... =((P1*A1) @ c}(P1*A2))*Q1' unfolding aux ..
    also have ... =(P1*A1) @ c ((P1*A2) * Q1)
        by (rule append-cols-mult-right-id, insert P1 A1 A2 Q1'-def Q1, auto)
    finally show ?thesis unfolding C-def by auto
    qed
    have E-ij-0: E $$(i,j)=0 if i: i<dim-row E and j:j<dim-col E and ij:(i,j)
# (1,0)
        for ij
    proof -
        let ?ws = (map (col C) [2..<dim-col A])
        have E$$(i,j)=?ws!j$vi
            by (unfold E-def, rule mat-of-cols-index, insert i j A E-def, auto)
    also have \ldots. = (col C (j+2)) $vi using E-def j by auto
    also have ... = C $$ (i,j+2)
    by (metis C-P1-A-Q1'P1 Q1' E-def carrier-matD(1) carrier-matD(2) index-col
index-mult-mat(2)
            index-mult-mat(3) length-map length-upt less-diff-conv mat-of-cols-carrier(2)
                mat-of-cols-carrier(3) i j)
    also have ... = (if j + 2 < dim-col (P1*A1) then (P1*A1) $$ (i,j+2)
        else (P1*A2 * Q1) $$ (i,(j+2) - 1))
            unfolding C-def
            by (rule append-cols-nth, insert i j P1 A1 A2 Q1 A, auto simp add: E-def)
    also have ... =(P1*A2*Q1) $$ (i,j+1)
    by (metis A1 One-nat-def add.assoc add-diff-cancel-right' add-is-0 arith-special(3)
                carrier-matD(2) index-mult-mat(3) less-Suc0 zero-neq-numeral)
    also have ... = 0 using SNF-P1A2Q1 unfolding Smith-normal-form-mat-def
isDiagonal-mat-def
            by (metis (no-types, lifting) A A2 P1 Q1 Suc-diff-Suc Suc-mono E-def
add-Suc-right
            add-lessD1 arith-extra-simps(6) carrier-matD(1) carrier-matD(2) dim-col-A-g2
            gr-implies-not0 index-mult-mat(2) index-mult-mat(3) length-map length-upt
less-Suc-eq
                mat-of-cols-carrier(2) mat-of-cols-carrier (3) numeral-2-eq-2 plus-1-eq-Suc
ij ij)
    finally show ?thesis.
```


qed

have C - D - E : $C=D @_{c} E$
proof (rule eq-matI)
have $C \$ \$(i, j)=$ mat-of-cols $($ dim-row $A)[\operatorname{col} C 0, \operatorname{col} C 1] \$ \(i, j)
if i : $i<\operatorname{dim}$-row A and $j: j<2$ for $i j$
proof -
let ? ws $=[\operatorname{col} C 0, \operatorname{col} C 1]$
have mat-of-cols (dim-row A) [col C 0, col C 1] $\$ \$(i, j)=? w s!j \$ v i$
by (rule mat-of-cols-index, insert $i j$, auto)
also have $\ldots=C \$ \(i, j) using j index-col
by (auto, smt A C-P1-A-Q1' P1 Q1' Suc-lessD carrier-matD i index-col index-mult-mat (2,3)
less-2-cases n-ge-2 nth-Cons-0 nth-Cons-Suc numeral-2-eq-2)
finally show? ?thesis by simp
qed
moreover have $C \$ \$(i, j)=$ mat-of-cols $($ dim-row $A)(\operatorname{map}(\operatorname{col} C)[2 . .<d i m-c o l$ A]) $\$ \$(i, j-2)$
if $i: i<\operatorname{dim}$-row A and $j 1: j<\operatorname{dim}-\operatorname{col} A$ and $j 2: j \geq 2$ for $i j$
proof -
let ? ws $=(\operatorname{map}(\operatorname{col} C)[2 . .<d i m-\operatorname{col} A])$
have mat-of-cols (dim-row A) ?ws $\$ \$(i, j-2)=$? ws ! $(j-2) \$ v i$
by (rule mat-of-cols-index, insert i j1 j2, auto)
also have $\ldots=C \$ \(i, j)
by (metis C-P1-A-Q1' P1 Q1' add-diff-inverse-nat carrier-matD(1) car-rier-matD (2) dim-col-A-g2
i index-col index-mult-mat(2) index-mult-mat(3) less-diff-iff less-imp-le-nat

linorder-not-less nth-map-upt j1 j2)

finally show ?thesis by auto
qed
ultimately show $\bigwedge i j$. $i<\operatorname{dim-row}\left(D @_{c} E\right) \Longrightarrow j<\operatorname{dim}-\operatorname{col}\left(D @_{c} E\right) \Longrightarrow$ $C \$ \$(i, j)=\left(D @_{c} E\right) \$ \(i, j)
unfolding D-def E-def append-cols-def by (auto simp add: numerals)
show dim-row $C=$ dim-row $\left(D @_{c} E\right)$ using P1 A unfolding C-def D-def E-def append-cols-def by auto
show dim-col $C=\operatorname{dim}-\operatorname{col}\left(D @_{c} E\right)$ using A1 Q1 A2 A n-ge-2
unfolding C-def D-def E-def append-cols-def by auto
qed
have $E[$ simp $]$: $E \in$ carrier-mat $2(n-2)$ unfolding E-def using A by auto
have $H[$ simp $]: H \in$ carrier-mat (dim-row A) (dim-col A) unfolding H-def append-cols-def using A
by (smt E Groups.add-ac(1) One-nat-def P2-P1 Q2 Q2' Q2'-def carrier-matD index-mat-four-block
plus-1-eq-Suc index-mult-mat index-one-mat index-zero-mat numeral-2-eq-2 carrier-matI)
have $H-P 2-P 1-A-Q 1^{\prime}-Q 2^{\prime}: H=P 2 * P 1 * A * Q 1^{\prime} * Q 2^{\prime}$
proof -
have aux: $\left(P 2 * D @_{c} P 2 * E\right)=P 2 *\left(D @_{c} E\right)$
by (rule append-cols-mult-left[symmetric], insert D E P2 A, auto simp add:

D-def E-def)

have $H=P 2 * D * Q 2 @_{c} P 2 * E$ using H-def by auto
also have $\ldots=\left(P 2 * D @_{c} P 2 * E\right) * Q 2^{\prime}$ by (rule append-cols-mult-right-id2[symmetric], insert Q2 D Q2'-def, auto simp add: D-def E-def)
also have $\ldots=\left(P 2 *\left(D @_{c} E\right)\right) * Q 2^{\prime}$ using aux by auto
also have $\ldots=P 2 * C * Q 2^{\prime}$ unfolding $C-D-E$ by auto
also have $\ldots=P 2 * P 1 * A * Q 1^{\prime} * Q 2^{\prime}$ unfolding $C-P 1-A-Q 1^{\prime}$
by (smt P1 P2 Q1' P2-P1 assoc-mult-mat carrier-mat-triv index-mult-mat(2))
finally show ?thesis.
qed
have $H 2-H$ - Q-div- k : H2 $=H * Q$-div- k unfolding H2-def Q-div- k-def
by (metis H-P2-P1-A-Q1'-Q2' Q2' addcol-mat carrier-matD(2) dim-col-A-g2 gr-implies-not0 mat-carrier times-mat-def zero-order (5))
hence H2-P2-P1-A-Q1'-Q2'-Q-div-k: H2 $=P 2 * P 1 * A * Q 1^{\prime} * Q 2^{\prime} * Q-d i v-k$ unfolding $H-P 2-P 1-A-Q 1^{\prime}-Q 2^{\prime}$ by simp
have H2-as-four-block-mat: H2 = four-block-mat H2-UL H2-UR H2-DL H2-DR
by (rule split-block[OF split-H2[symmetric], of - $n-1]$, insert H2 A n-ge-2, auto)
have H2-UL: H2-UL \in carrier-mat 11
by (rule split-block[OF split-H2[symmetric], of - $n-1]$, insert H2 A n-ge-2, auto)
have H2-UR: H2-UR \in carrier-mat 1 (dim-col $A-1$)
by (rule split-block(2)[OF split-H2[symmetric]], insert H2 A n-ge-2, auto)
have H2-DL: H2-DL \in carrier-mat 11
by (rule split-block[OF split-H2[symmetric], of - $n-1$], insert H2 A n-ge-2,
auto)
have $H 2-D R: H 2-D R \in$ carrier-mat 1 (dim-col $A-1$)
by (rule split-block[OF split-H2[symmetric]], insert H2 A n-ge-2, auto)
have H2-UR-00: H2-UR $\$ \$(0,0)=0$
proof -
have H2-UR $\$ \$(0,0)=H 2 \$ \$(0,1)$
by (smt A H2-H-Q-div-k H2-UL H2-as-four-block-mat H2-def H-P2-P1-A-Q1'-Q2'
Num.numeral-nat(7) P2-P1 Q2' add-diff-cancel-left' carrier-matD
dim-col-A-g2 index-mat-addcol
index-mat-four-block index-mult-mat less-trans-Suc plus-1-eq-Suc pos2
semiring-norm(138)
zero-less-one-class.zero-less-one)
also have $\ldots=H \$ \$(0,1)$
unfolding H2-def by (rule index-mat-addcol, insert H A n-ge-2, auto)
also have $\ldots=(P 2 * D * Q 2) \$ \$(0,1)$
by (smt C-D-E C-P1-A-Q1' D H2-H-Q-div-k H2-UL H2-as-four-block-mat H-P2-P1-A-Q1'-Q2' H-def Q1'

Q2 add-lessD1 append-cols-def carrier-matD (1) carrier-matD(2) dim-col-A-g2 index-mat-four-block index-mult-mat(2) index-mult-mat(3) lessI numerals(2) plus-1-eq-Suc zero-less-Suc)

```
    also have ... = 0 using is-SNF-D P2D2Q2 D
        unfolding is-SNF-def Smith-normal-form-mat-def isDiagonal-mat-def by
auto
    finally show H2-UR $$ (0,0)=0.
    qed
    have H2-UR-0j:H2-UR $$ (0,j) = 0 if j-ge-1: j> 1 and j:j<n-1 for j
    proof -
    have col-E-0: col E (j-1)= 0v 2
        by (rule eq-vecI, unfold col-def, insert E E-ij-0 j j-ge-1 n-ge-2, auto)
            (metis E Suc-diff-Suc Suc-lessD Suc-less-eq Suc-pred carrier-matD index-vec
        numerals(2), insert E, blast)
    have H2-UR $$ (0,j)=H2 $$ (0,j+1)
    by (metis (no-types, lifting) A H2-P2-P1-A-Q1'-Q2'-Q-div-k H2-UL H2-as-four-block-mat
H2-def
                            H-P2-P1-A-Q1'-Q2' P2-P1 Q2' add-diff-cancel-right' carrier-matD in-
dex-mat-addcol(5)
            index-mat-four-block index-mult-mat(2,3) less-diff-conv less-numeral-extra(1)
not-add-less2 pos2 j)
    also have }\ldots=H$$(0,j+1) unfolding H2-de
    by (metis A H2-P2-P1-A-Q1'-Q2'-Q-div-k H2-def H-P2-P1-A-Q1'-Q2' One-nat-def
P2-P1 Q-div-k-def
            add-right-cancel carrier-matD(1) carrier-matD(2) index-mat-addcol(3)
index-mat-addcol(5)
            index-mat-addrow-mat(3) index-mult-mat(2) index-mult-mat(3) less-diff-conv
less-not-refl2
            numerals(2) plus-1-eq-Suc pos2 j j-ge-1)
    also have ... = (if j+1 < dim-col (P2 * D * Q2)
            then (P2 * D*Q2) $$ (0,j+1) else (P2*E) $$ (0, (j+1) - 2))
            by (unfold H-def, rule append-cols-nth, insert E P2 A Q2 D j, auto simp add:
E-def)
    also have ... = (P2*E) $$ (0, j - 1)
        by (metis (no-types, lifting) D One-nat-def Q2 add-Suc-right add-lessD1
arithmetic-simps(50)
            carrier-matD(2) diff-Suc-Suc index-mult-mat(3) not-less-eq numeral-2-eq-2
j-ge-1)
    also have ... = Matrix.row P2 0 - col E (j - 1)
                            by (rule index-mult-mat, insert P2 j-ge-1 A j, auto simp add: E-def)
                            also have ... = 0 unfolding col-E-0 by (simp add: scalar-prod-def)
                            finally show ?thesis.
    qed
    have H00-dvd-D01: H$$(0,0) dvd D$$(0,1)
    proof -
    have H$$(0,0) = (P2*D*Q2) $$ (0,0) unfolding H-def using append-cols-nth
DE
    by (smt A C-D-E C-P1-A-Q1' D H2-DR H2-H-Q-div-k H2-UL H2-as-four-block-mat
H-P2-P1-A-Q1'-Q2'
One-nat-def P1 Q1' Q2 Suc-lessD append-cols-def carrier-matD dim-col-A-g2
        index-mat-four-block index-mult-mat numerals(2) plus-1-eq-Suc zero-less-Suc)
```

also have \ldots dvd $D \$ \$(0,1)$ by (rule $S 00-d v d-a l l-A[O F D-$ - inv-P2 inv-Q2], insert is-SNF-D P2D2Q2 P2 Q2 D, unfold is-SNF-def, auto)
finally show ?thesis.
qed
have D01-dvd-H02: $D \$ \$(0,1)$ dvd $H \$ \$(0,2)$ and $D 01-d v d-H 12: D \$(0,1)$ dvd H\$\$(1,2)
proof -
have $D \$ \$(0,1)=C \$ \$(0,1)$ unfolding $C-D-E$
by (smt A C-D-E C-P1-A-Q1' D One-nat-def P1 Q1' append-cols-def car-rier-matD (1) carrier-matD(2)
dim-col-A-g2 index-mat-four-block(1) index-mat-four-block(2) index-mat-four-block(3)
index-mult-mat(2) index-mult-mat(3) lessI less-trans-Suc numerals(2) pos2)
also have $\ldots=(P 1 * A 2 * Q 1) \$(0,0)$ using C-def
by (smt 1(2) A1 A-A1-A2 P1 Q1 add-diff-cancel-left' append-cols-def card-num-simps(30)
carrier-matD dim-col-A-g2 index-mat-four-block index-mult-mat less-numeral-extra(4)
less-trans-Suc plus-1-eq-Suc pos2)
also have $\ldots d v d(P 1 * A 2 * Q 1) \$ \$(1,1)$
by (smt 1(2) A2 One-nat-def P1 Q1 S00-dvd-all-A SNF-P1A2Q1 car-rier-matD (1) carrier-matD(2) dim-col-A-g2 dvd-elements-mult-matrix-left-right inv-P1 inv-Q1 lessI less-diff-conv numeral-2-eq-2 plus-1-eq-Suc)
also have $\ldots=C \$ \$(1,2)$ unfolding C-def
by (smt 1(2) A1 A-A1-A2 One-nat-def P1 Q1 append-cols-def carrier-matD (1) carrier-matD(2) diff-Suc-1
dim-col-A-g2 index-mat-four-block index-mult-mat lessI not-numeral-less-one numeral-2-eq-2)
also have $\ldots=E \$ \$(1,0)$ unfolding $C-D-E$
by (smt 1(3) A C-D-E C-P1-A-Q1' D One-nat-def append-cols-def car-rier-matD less-irrefl-nat

P1 Q1' diff-Suc-1 diff-Suc-Suc index-mat-four-block index-mult-mat lessI numerals(2))
finally have $*: D \$(0,1)$ dvd $E \$(1,0)$ by auto
also have ... dvd $(P 2 * E) \$ \$(0,0)$
by (smt 1(3) A E E-ij-0 P2 carrier-matD(1) carrier-matD(2) dvd-0-right dvd-elements-mult-matrix-left dvd-refl pos2 zero-less-diff)
also have $\ldots=H \$ \$(0,2)$ unfolding H-def
by (smt 1 (3) A C-D-E C-P1-A-Q1' D Groups.add-ac(1) H2-DR H2-H-Q-div-k H2-UL H2-as-four-block-mat

H-P2-P1-A-Q1'-Q2' One-nat-def P1 Q1' Q2 add-diff-cancel-left' ap-pend-cols-def carrier-matD index-mat-four-block index-mult-mat less-irrefl-nat numerals(2) plus-1-eq-Suc pos2)
finally show $D \$(0,1)$ dvd $H \$(0,2)$.
have $E \$ \$(1,0)$ dvd $(P 2 * E) \$ \$(1,0)$
by (smt 1(3) A E E-ij-0 P2 carrier-matD(1) carrier-matD(2) dvd-0-right
dvd-elements-mult-matrix-left dvd-refl rel-simps(49) semiring-norm(76)
zero-less-diff)
also have $\ldots=H \$ \$(1,2)$ unfolding H-def
by (smt A C-D-E C-P1-A-Q1' D H2-DR H2-H-Q-div-k H2-UL H2-as-four-block-mat H-P2-P1-A-Q1'-Q2'

One-nat-def P1 Q1' Q2 add-diff-cancel-left' append-cols-def carrier-matD
diff-Suc-eq-diff-pred
index-mat-four-block index-mult-mat lessI less-irrefl-nat n-ge-2 numerals(2)
plus-1-eq-Suc)
finally show $D \$ \$(0,1)$ dvd $H \$ \$(1,2)$ using * by auto
qed
have $k H 00$-eq-H02: $k * H \$ \$(0,0)=H \$ \$(0,2)$
using id D01-dvd-H02 H00-dvd-D01 unfolding k-def is-div-op-def by auto
have H2-UR-01: H2-UR $\$ \$(0,1)=0$
proof -
have H2-UR $\$ \$(0,1)=H 2 \$ \$(0,2)$
by (metis (no-types, lifting) A H2-P2-P1-A-Q1'-Q2'-Q-div-k H2-UL H2-as-four-block-mat One-nat-def P2-P1 Q-div-k-def carrier-matD diff-Suc-1 dim-col-A-g2 index-mat-addrow-mat(3) index-mat-four-block index-mult-mat(2,3) numeral-2-eq-2 pos2 rel-simps(50) rel-simps(68))
also have $\ldots=(-k) * H \$ \$(0,0)+H \$ \$(0,2)$
by (unfold H2-def, rule index-mat-addcol[of -], insert H A n-ge-2, auto)
also have $\ldots=0$ using $k H 00-e q-H 02$ by auto
finally show ?thesis .
qed
have $H 2-U R-0$: $H 2-U R=\left(0_{m} 1(n-1)\right)$
by (rule eq-matI, insert H2-UR-0j H2-UR-01 H2-UR-00 H2-UR A nat-neq-iff, auto)
have $H 2-U L-H$: $H 2-U L \$ \$(0,0)=H \$ \$(0,0)$
proof -
have $H 2-U L \$ \$(0,0)=H 2 \$ \$(0,0)$
by (metis (no-types, lifting) Pair-inject index-mat(1) split-H2 split-block-def zero-less-one-class.zero-less-one)
also have $\ldots=H \$ \$(0,0)$
unfolding H2-def by (rule index-mat-addcol, insert H A n-ge-2, auto)
finally show? ?thesis.
qed
have H2-DL-H-10: H2-DL $\$ \$(0,0)=H \$ \$(1,0)$
proof -
have $H 2-D L \$ \$(0,0)=H 2 \$ \$(1,0)$
by (smt H2-DL One-nat-def Pair-inject add.right-neutral add-Suc-right carrier-matD (1)
dim-row-mat(1) index-mat(1) rel-simps(68) split-H2 split-block-def split-conv)
also have $\ldots=H \$ \$(1,0)$ unfolding $H 2$-def by (rule index-mat-addcol, insert H A n-ge-2, auto)
finally show? ?thesis.
qed
have $H-10: H \$(1,0)=0$
proof -
have $H \$ \$(1,0)=(P 2 * D * Q 2) \$ \$(1,0)$ unfolding H-def
by (smt A C-D-E C-P1-A-Q1' D E One-nat-def P1 P2-P1 Q2 Q2' Q2'-def Suc-lessD append-cols-def carrier-matD dim-col-A-g2 index-mat-four-block index-mult-mat in-
dex-one-mat
index-zero-mat lessI numerals(2))
also have $\ldots=0$ using is-SNF-D P2D2Q2 D
unfolding is-SNF-def Smith-normal-form-mat-def isDiagonal-mat-def by auto
finally show ?thesis.
qed
have S-H2-Q3': $S=H 2 * Q 3^{\prime}$
and S-as-four-block-mat: $S=$ four-block-mat $(H 2-U L)\left(O_{m} 1(n-1)\right)(H 2-D L)$ (H2-DR*Q3)
proof -
have $H 2 * Q 3^{\prime}=$ four-block-mat $\left(H 2-U L * 1_{m} 1+H 2-U R * O_{m}(\right.$ dim-col A - 1) 1)
$\left(H 2-U L * O_{m} 1(\operatorname{dim}-\operatorname{col} A-1)+H 2-U R * Q 3\right)$
$\left(H 2-D L * 1_{m} 1+H 2-D R * O_{m}(\operatorname{dim}-c o l A-1) 1\right)\left(H 2-D L * O_{m} 1\right.$ (dim-col $A-1)+H 2-D R * Q 3)$
unfolding H2-as-four-block-mat Q3'-def
by (rule mult-four-block-mat[OF H2-UL H2-UR H2-DL H2-DR], insert Q3 A H^{\prime}, auto)
also have $\ldots=$ four-block-mat $(H 2-U L)\left(O_{m} 1(n-1)\right)(H 2-D L)(H 2-D R *$ Q3)
by (rule cong-four-block-mat, insert H2-UR-0 H2-UL H2-UR H2-DL H2-DR Q3, auto)
also have $*: \ldots=S$ unfolding S-def
proof (rule cong-four-block-mat)
show $H 2-U L=$ Matrix.mat $11(\lambda(a, b)$. H \$\$ $(0,0))$
by (rule eq-matI, insert H2-UL H2-UL-H, auto)
show $H 2-D R * Q 3=H-1 x n$ using $i s-S N F-H^{\prime}$ unfolding is-SNF-def by auto
show $0_{m} 1(n-1)=0_{m} 1($ dim-col $A-1)$ using A by auto
show $H 2-D L=0_{m} 11$ using H2-DL H2-DL-H-10 H-10 by auto
qed
finally show $S=H 2 * Q 3^{\prime}$
and $S=$ four-block-mat $(H 2-U L)\left(O_{m} 1(n-1)\right)(H 2-D L)(H 2-D R * Q 3)$
using * by auto
qed
thus $S=P 2 * P 1 * A *\left(Q 1^{\prime} * Q 2^{\prime} * Q-d i v-k * Q 3^{\prime}\right)$ unfolding H2-P2-P1-A-Q1'-Q2'-Q-div-k
by (smt $Q 1^{\prime} Q 2^{\prime} Q 2^{\prime}-\operatorname{def} Q 3^{\prime} Q 3^{\prime}-$ def Q-div-k assoc-mult-mat carrier-matD carrier-mat-triv index-mult-mat)
show Smith-normal-form-mat S
proof (rule Smith-normal-form-mat-intro)
have $\operatorname{Sij-0:S} S \$(i, j)=0$ if $i j: i \neq j$ and $i: i<d i m-r o w ~ S$ and $j: j<d i m-c o l$
proof (cases $i=1 \wedge j=0$)
case True
have $S \$ \$(1,0)=0$ using S-as-four-block-mat
by (metis (no-types, lifting) H2-DL-H-10 H2-UL H-10 One-nat-def True
carrier-matD diff-Suc-1
index-mat-four-block rel-simps(71) that(2) that(3) zero-less-one-class.zero-less-one)
then show ?thesis using True by auto
next
case False note not-10 = False
show ?thesis
proof (cases $i=0$)
case True
hence $j 0: j>0$ using $i j$ by auto
then show ?thesis using S-as-four-block-mat
by (smt 1(2) H2-DR H2-H-Q-div-k H2-UL H-P2-P1-A-Q1'-Q2'
Num.numeral-nat(7) P2-P1 Q3 S-H2-Q3'
Suc-pred True carrier-matD index-mat-four-block index-mult-mat
index-zero-mat(1)
not-less-eq plus-1-eq-Suc pos2 that(3) zero-less-one-class.zero-less-one)
next
case False
have SNF-H-1xn: Smith-normal-form-mat $H-1 x n$ using is-SNF- H^{\prime} un-
folding is-SNF-def by auto
have i1: $i=1$ using False ij i H2-DR H2-UL S-as-four-block-mat by auto
hence $j 1: j>1$ using ij not-10 by auto thm is-SNF- H^{\prime}
have $S \$ \$(i, j)=($ if $i<$ dim-row H2-UL then if $j<$ dim-col H2-UL then
H2-UL \$\$ (i, j)
else $\left(0_{m} 1(n-1)\right) \$ \$(i, j-$ dim-col H2-UL)
else if $j<$ dim-col H2-UL then H2-DL $\$ \$(i-\operatorname{dim}$-row H2- $U L, j)$
else $(H 2-D R * Q 3) \$ \$(i-d i m-r o w H 2-U L, j-d i m-c o l H 2-U L))$
unfolding S-as-four-block-mat
by (rule index-mat-four-block, insert i j H2-UL H2-DR Q3 S-H2-Q3' H2
Q3' A, auto)
also have $\ldots=(H 2-D R * Q 3) \$ \$(0, j-1)$ using H2-UL i1 not-10 by
auto
also have $\ldots=H-1 x n \$ \$(0, j-1)$
using S-def calculation i1 j not-10 i by auto
also have $\ldots=0$ using $S N F-H-1 x n j 1 i j$
unfolding Smith-normal-form-mat-def isDiagonal-mat-def
by (simp add: S-def i1)
finally show ?thesis.
qed
qed
thus isDiagonal-mat S unfolding isDiagonal-mat-def by auto
have $S \$ \$(0,0)$ dvd $S \$ \$(1,1)$
proof -
have dvd-all: $\forall i j . i<2 \wedge j<n \longrightarrow H 2-U L \$ \$(0,0) d v d(H 2 * Q 3) \$ \$(i$,
j)
proof (rule dvd-elements-mult-matrix-right)
show H2': H2 \in carrier-mat $2 n$ using $H 2$ A by auto
show $Q 3^{\prime} \in$ carrier-mat $n n$ using $Q 3^{\prime} A$ by auto
have H2-UL \$\$ (0,0) dvd H2 $\$ \(i, j) if $i: i<2$ and $j: j<n$ for $i j$
proof (cases $i=0$)
case True
then show ?thesis
by (metis (no-types, lifting) A H2-H-Q-div-k H2-UL H2-UR-0
H2-as-four-block-mat H-P2-P1-A-Q1'-Q2' P2-P1 Q3 Q-div-k S-as-four-block-mat Sij-0 carrier-matD dvd-0-right dvd-refl index-mat-four-block index-mult-mat(2,3) j less-one pos2)
next
case False
hence $i 1$: $i=1$ using i by auto
have H2-10-0: H2 \$\$ $(1,0)=0$
by (metis (no-types, lifting) H2-H-Q-div-k H2-def H-10 H-P2-P1-A-Q1'-Q2' One-nat-def

Q2' H2' basic-trans-rules(19) carrier-matD dim-col-A-g2 in-dex-mat-addcol(3)
index-mult-mat(2,3) lessI numeral-2-eq-2 rel-simps(76))
moreover have H2-UL00-dvd-H211:H2-UL \$\$ (0, 0) dvd H2 \$\$ (1, 1)
proof -
have $H 2-U L \$ \$(0,0)=H \$ \$(0,0)$ by (simp add: H2-UL-H)
also have $\ldots=(P 2 * D * Q 2) \$ \$(0,0)$ unfolding H-def using
append-cols-nth D E
by (smt A C-D-E C-P1-A-Q1' D H2-DR H2-H-Q-div-k H2-UL
H2-as-four-block-mat
H-P2-P1-A-Q1'-Q2' One-nat-def P1 Q1' Q2 Suc-lessD append-cols-def carrier-matD
dim-col-A-g2 index-mat-four-block index-mult-mat numerals(2) plus-1-eq-Suc zero-less-Suc)
also have ... dvd $(P 2 * D * Q 2)$ \$ $(1,1)$
using is-SNF-D P2D2Q2 unfolding is-SNF-def Smith-normal-form-mat-def by auto
(metis D Q2 carrier-matD index-mult-mat(1) index-mult-mat(2) lessI numerals(2) pos2)
also have $\ldots=H \$ \$(1,1)$ unfolding H-def using append-cols-nth $D E$
by (smt A C-D-E C-P1-A-Q1' H2-DR H2-H-Q-div-k H2-UL
H2-as-four-block-mat H-P2-P1-A-Q1'-Q2'
One-nat-def P1 Q1' Q2 append-cols-def carrier-matD(1)
carrier-matD(2) dim-col-A-g2
index-mat-four-block index-mult-mat(2) index-mult-mat(3) lessI
less-trans-Suc
numerals(2) plus-1-eq-Suc pos2)
also have $\ldots=$ H2 $\$ \$(1,1)$
by (metis A H2-def H-P2-P1-A-Q1'-Q2' One-nat-def P2-P1 Q2'
carrier-matD dim-col-A-g2 i i1
index-mat-addcol(3) index-mult-mat(2) index-mult-mat(3)
less-trans-Suc nat-neq-iff pos2)
finally show ?thesis .
qed
moreover have H2-UL00-dvd-H212: H2-UL $\$ \$(0,0)$ dvd H2 \$\$ (1, 2)
proof -
have $H 2-U L \$ \$(0,0)=H \$ \$(0,0)$ by (simp add: H2-UL-H)
also have ... dvd H $\$ \$(1,2)$ using D01-dvd-H12 H00-dvd-D01 dvd-trans by blast
also have $\ldots=(-k) * H \$ \$(1,0)+H \$ \$(1,2)$
using $H-10$ by auto
also have $\ldots=H 2 \$ \$(1,2)$
unfolding H2-def by (rule index-mat-addcol[symmetric], insert $H A$ n-ge-2, auto)
finally show ?thesis.
qed
moreover have H2 $\$ \$(1, j)=0$ if $j 1: j>2$ and $j: j<n$
proof -
let ?f $=\left(\lambda(i, j) . \sum i a=0 . .<\operatorname{dim-vec}(\operatorname{col} E j)\right.$. Matrix.row P2 $i \$ v i a$ * col E j \$v ia)
have H2 $\$ \$(1, j)=H \$ \$(1, j)$ unfolding H2-def using j j1 n-ge-2
by (metis (mono-tags, lifting) 1(2) H2' H-10 H-P2-P1-A-Q1'-Q2' Q2' arithmetic-simps(49)
carrier-matD i i1 index-mat-addcol(1) index-mult-mat semir-ing-norm(64) H2-H-Q-div-k)
also have $\ldots=(P 2 * E) \$ \$(1, j-2)$ unfolding H-def
by (smt A C-D-E C-P1-A-Q1' D H2' H2-H-Q-div-k H-P2-P1-A-Q1'-Q2' P1 Q1' Q2 append-cols-def basic-trans-rules(19) carrier-matD index-mat-four-block in-dex-mult-mat(2) index-mult-mat(3) j less-one nat-neq-iff not-less-less-Suc-eq numerals(2) j1)
also have $\ldots=$ Matrix.mat (dim-row P2) (dim-col E) ?f $\$ \$(1, j-2)$
unfolding times-mat-def scalar-prod-def by simp
also have $\ldots=$?f $(1, j-2)$ by (rule index-mat, insert P2 E E-def n-ge-2 j $j 1$ A, auto)
also have $\ldots=\left(\sum i a=0 . .<2\right.$. Matrix.row P2 $1 \$ v i a * \operatorname{col} E(j-2)$
$\$ v i a)$
using $E A E-d e f j j 1$ by auto
also have $\ldots=\left(\sum i a \in\{0,1\}\right.$. Matrix.row P2 $1 \$ v i a * \operatorname{col} E(j-2) \$ v$ ia)
by (rule sum.cong, auto)
also have $\ldots=$ Matrix. .row P2 $1 \$ v 0 * \operatorname{col} E(j-2) \$ v 0$

+ Matrix.row P2 $1 \$ v 1 * \operatorname{col} E(j-2) \$ v 1$
by (simp add: sum-two-elements [OF zero-neq-one])
also have $\ldots=0$ using E-ij- 0 E-def $E A$
by (auto, smt D Q2 Q2' Q2'-def Suc-lessD add-cancel-right-right add-diff-inverse-nat
arith-extra-simps(19) carrier-matD i i1 index-col index-mat-four-block(3)
index-one-mat(3) less-2-cases nat-add-left-cancel-less numeral-2-eq-2 semiring-norm(138) semiring-norm(160) j j1 zero-less-diff)

```
            finally show ?thesis.
            qed
            ultimately show ?thesis using i1 False
            by (metis One-nat-def dvd-0-right less-2-cases nat-neq-iff j)
                qed
                thus \forallij.i<2^j<n\longrightarrowH2-UL $$ (0,0) dvd H2 $$ (i,j) by auto
                qed
            have S$$(0,0) = H2-UL $$(0,0) using H2-UL S-as-four-block-mat by auto
            also have ... dvd (H2*Q3') $$ (1,1) using dvd-all n-ge-2 by auto
            also have \ldots=S$$(1,1) using S-H2-Q3' by auto
            finally show ?thesis.
            qed
            thus }\foralla.a+1<\operatorname{min}(\mathrm{ dim-row S) (dim-col S)}\longrightarrowS$$(a,a)dvd S$$(
+ 1,a+1)
            by (metis 1(2) H2-H-Q-div-k H-P2-P1-A-Q1'-Q2' One-nat-def P2-P1
S-H2-Q3' Suc-eq-plus1
                index-mult-mat(2) less-Suc-eq less-one min-less-iff-conj numeral-2-eq-2
carrier-matD(1))
    qed
    qed
qed
```

lemma is-SNF-Smith-2xn:
assumes $A: A \in$ carrier-mat $2 n$
shows is-SNF A (Smith-2xn A)
proof (cases $n>2$)
case True
then show ?thesis using is-SNF-Smith-2xn-n-ge-2[OF A] by simp
next
case False
hence $n=0 \vee n=1 \vee n=2$ by auto
then show ?thesis using Smith-2xn-0 Smith-2xn-1 Smith-2xn-2 A by blast
qed

16.3.4 Case $n \times 2$

definition Smith-nx2 $A=\left(\operatorname{let}(P, S, Q)=\right.$ Smith-2xn A^{T} in $\left.\left(Q^{T}, S^{T}, P^{T}\right)\right)$
lemma is-SNF-Smith-nx2:
assumes $A: A \in$ carrier-mat $n 2$
shows is-SNF A (Smith-nx2 A)
proof -
obtain $P S Q$ where PSQ: $(P, S, Q)=$ Smith-2xn A^{T} by (metis prod-cases3)
hence rw: Smith-nx2 $A=\left(Q^{T}, S^{T}, P^{T}\right)$ unfolding Smith-nx2-def by (metis split-conv)
have is-SNF A^{T} (Smith-2xn A^{T}) by (rule is-SNF-Smith-2xn, insert id A, auto)
hence $i s$-SNF-PSQ: is-SNF $A^{T}(P, S, Q)$ using $P S Q$ by auto
show ?thesis
proof (unfold rw, rule is-SNF-intro)
show $Q t: Q^{T} \in$ carrier-mat (dim-row A) (dim-row A)
and Pt: $P^{T} \in$ carrier-mat (dim-col A) (dim-col A)
and invertible-mat Q^{T} and invertible-mat P^{T}
using is-SNF-PSQ invertible-mat-transpose unfolding is-SNF-def by auto
have Smith-normal-form-mat S and $P A T Q: S=P * A^{T} * Q$
using is-SNF-PSQ invertible-mat-transpose unfolding is-SNF-def by auto
thus Smith-normal-form-mat S^{T} unfolding Smith-normal-form-mat-def isDi-agonal-mat-def by auto
show $S^{T}=Q^{T} * A * P^{T}$ using $P A T Q$
by (smt Matrix.transpose-mult Matrix.transpose-transpose Pt Qt assoc-mult-mat carrier-mat-triv index-mult-mat(2))
qed
qed

16.3.5 Case $m \times n$

declare Smith-2xn.simps[simp del]
function (domintros) Smith-mxn :: 'a mat $\Rightarrow\left({ }^{\prime} a\right.$ mat \times 'a mat \times 'a mat)
where
Smith-mxn $A=($
if dim-row $A=0 \vee$ dim-col $A=0$ then $\left(1_{m}(\operatorname{dim-row} A), A, 1_{m}(\operatorname{dim}-c o l A)\right)$
else if dim-row $A=1$ then ($1_{m} 1$, Smith-1xn A)
else if dim-row $A=2$ then Smith-2xn A
else if dim-col $A=1$ then let $(P, S)=$ Smith-nx1 A in $\left(P, S, 1_{m} 1\right)$
else if dim-col $A=2$ then Smith-nx2 A
else
let A1 = mat-of-row (Matrix.row A 0);
A2 $=$ mat-of-rows $($ dim-col $A)[$ Matrix.row $A i . i \leftarrow[1 . .<$ dim-row $A]]$;
$($ P1,D1,Q1 $)=$ Smith-mxn A2;
$C=(A 1 * Q 1) @_{r}(P 1 * A 2 * Q 1)$;
$D=$ mat-of-rows (dim-col A) [Matrix.row C 0, Matrix.row C 1];
$E=$ mat-of-rows (dim-col A) [Matrix.row C i. $i \leftarrow[2 . .<$ dim-row $A]]$;
$(P 2, F, Q 2)=$ Smith-2xn D;
$H=(P 2 * D * Q 2) @_{r}(E * Q 2)$;
(P-H2, H2) $=$ reduce-column div-op H;
(H2-UL, H2-UR, H2-DL, H2-DR) = split-block H2 1 1;
$\left(P 3, S^{\prime}, Q 3\right)=$ Smith-mxn H2-DR;
$S=$ four-block-mat (Matrix.mat $11(\lambda(a, b) . H \$ \$(0,0)))\left(0_{m} 1\right.$ (dim-col A

- 1)) $\left(0_{m}(\right.$ dim-row $\left.A-1) 1\right) S^{\prime}$;
$P 1^{\prime}=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(\right.$ dim-row $\left.A-1)\right)\left(0_{m}(\operatorname{dim-row} A-1)\right.$

1) $P 1$;

P2' ${ }^{\prime}=$ four-block-mat P2 $\left(0_{m}\right.$ 2 $($ dim-row $\left.A-2)\right)\left(0_{m}(\right.$ dim-row $A-2)$ 2) (1_{m} (dim-row $\left.A-2\right)$);
$P 3^{\prime}=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(\right.$ dim-row $\left.A-1)\right)\left(0_{m}(\right.$ dim-row $A-1)$ 1) $P 3$;
$Q 3^{\prime}=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(\operatorname{dim}-\operatorname{col} A-1)\right)\left(0_{m}(\operatorname{dim}-c o l A-1) 1\right)$ Q3
in $\left(P 3^{\prime} * P-H 2 * P 2^{\prime} * P 1^{\prime}, S, Q 1 * Q 2 * Q 3^{\prime}\right)$)
by pat-completeness fast

```
declare Smith-2xn.simps[simp]
lemma Smith-mxn-dom-nm-less-2:
    assumes A:A\incarrier-mat m n and mn: n\leq2 \vee m\leq2
    shows Smith-mxn-dom A
    by (rule Smith-mxn.domintros, insert assms, auto)
lemma Smith-mxn-pinduct-carrier-less-2:
    assumes A:A\incarrier-mat m n and mn: n\leq2 \vee m\leq2
    shows fst (Smith-mxn A) \in carrier-mat m m
    fst (snd (Smith-mxn A)) \in carrier-mat m n
    \wedge snd (snd (Smith-mxn A)) \in carrier-mat n n
proof -
    have A-dom: Smith-mxn-dom A using Smith-mxn-dom-nm-less-2[OF assms] by
simp
    show ?thesis
proof (cases dim-row A=0\vee dim-col A=0)
    case True
    have Smith-mxn A = (1m (dim-row A),A,1m (dim-col A))
        using Smith-mxn.psimps[OF A-dom] True by auto
    thus ?thesis using A by auto
next
    case False note 1 = False
    show ?thesis
    proof (cases dim-row A=1)
        case True
        have Smith-mxn A = (1m 1,Smith-1xn A)
            using Smith-mxn.psimps[OF A-dom] True 1 by auto
    then show ?thesis using Smith-1xn-works unfolding is-SNF-def
        by (smt Smith-1xn-aux-Q-carrier Smith-1xn-aux-S'-AQ' Smith-1xn-def True
assms(1) carrier-matD
                carrier-matI diff-less fst-conv index-mult-mat not-gr0 one-carrier-mat
prod.collapse
            right-mult-one-mat' snd-conv zero-less-one-class.zero-less-one)
    next
    case False note 2 = False
```

```
    then show ?thesis
    proof (cases dim-row A = 2)
    case True
    hence A': A \in carrier-mat 2 n using A by auto
    have Smith-mxn A = Smith-2xn A using Smith-mxn.psimps[OF A-dom] True
1 2 \text { by auto}
    then show ?thesis using is-SNF-Smith-2xn[OF A'] A unfolding is-SNF-def
            by (metis (mono-tags, lifting) carrier-matD carrier-mat-triv case-prod-beta
index-mult-mat(2,3))
    next
        case False note 3 = False
            show ?thesis
            proof (cases dim-col A=1)
                case True
                hence }\mp@subsup{A}{}{\prime}:A\in\mathrm{ carrier-mat m 1 using A by auto
            have Smith-mxn A = (let (P,S) = Smith-nx1 A in (P,S,1m 1))
                using Smith-mxn.psimps[OF A-dom] True 1 2 3 by auto
            then show ?thesis using Smith-nx1-works[OF A] A unfolding is-SNF-def
            by (metis (mono-tags, lifting) carrier-matD carrier-mat-triv case-prod-unfold
                index-mult-mat(2,3) surjective-pairing)
    next
            case False
            hence dim-col A=2 using 123 mn A by auto
            hence }\mp@subsup{A}{}{\prime}:A\in\mathrm{ carrier-mat m 2 using }A\mathrm{ by auto
            hence Smith-mxn A = Smith-nx2 A
                using Smith-mxn.psimps[OF A-dom] 1 2 3 False by auto
            then show ?thesis using is-SNF-Smith-nx2[OF A] A unfolding is-SNF-def
by force
            qed
        qed
    qed
qed
qed
lemma Smith-mxn-pinduct-carrier-ge-2: \(\llbracket\) Smith-mxn-dom \(A ; A \in\) carrier-mat \(m\) \(n ; m>2 ; n>2 \rrbracket \Longrightarrow\)
fst \((\) Smith-mxn \(A) \in\) carrier-mat \(m m\)
\(\wedge f s t(\) snd \((\) Smith-mxn A) \() \in\) carrier-mat m \(n\)
\(\wedge \operatorname{snd}(\) snd \((\) Smith-mxn A) \() \in\) carrier-mat \(n n\)
proof (induct arbitrary: \(m\) n rule: Smith-mxn.pinduct)
case (1 A)
note \(A\)-dom \(=1(1)\)
note \(A=1 . \operatorname{prems}(1)\)
note \(m=1 . \operatorname{prems}(2)\)
note \(n=1 . \operatorname{prems}(3)\)
define \(A 1\) where \(A 1=\) mat-of-row (Matrix.row A 0 )
define \(A 2\) where \(A 2=\) mat-of-rows \((\operatorname{dim}-c o l A)[M a t r i x . r o w ~ A ~ i . i \leftarrow[1 . .<d i m-r o w\) A]]
```

obtain P1 D1 Q1 where P1D1Q1: $(P 1, D 1, Q 1)=$ Smith-mxn A2 by (metis prod-cases3)
define C where $C=(A 1 * Q 1) @_{r}(P 1 * A 2 * Q 1)$
define D where $D=$ mat-of-rows (dim-col A) [Matrix.row C 0 , Matrix.row C 1]
define E where $E=$ mat-of-rows $($ dim-col $A)[$ Matrix.row $C i . i \leftarrow[2 . .<$ dim-row A]]
obtain P2 F Q2 where P2FQ2: $($ P2, F , Q2 $)=$ Smith-2xn D by (metis prod-cases3) define H where $H=(P 2 * D * Q 2) @_{r}(E * Q 2)$
obtain P-H2 H2 where P-H2H2: (P-H2, H2) $=$ reduce-column div-op H by (metis surj-pair)
obtain H2-UL H2-UR H2-DL H2-DR where split-H2: (H2-UL, H2-UR, H2-DL, $H 2-D R)=$ split-block H2 11
by (metis split-block-def)
obtain P3 $S^{\prime} Q 3$ where $P 3 S^{\prime} Q 3:\left(P 3, S^{\prime}, Q 3\right)=$ Smith-mxn H2-DR by (metis prod-cases3)
define S where $S=$ four-block-mat (Matrix.mat $11(\lambda(a, b)$. $H \$ \$(0,0)))\left(0_{m}\right.$ 1 (dim-col $A-1$)
($0_{m}($ dim-row $\left.A-1) 1\right) S^{\prime}$
define $P 1^{\prime}$ where $P 1^{\prime}=$ four-block-mat $\left(\begin{array}{ll}1_{m} & 1\end{array}\right)\left(\begin{array}{l}0_{m} \\ 1 \\ (\text { dim-row } A-1\end{array}\right)\left(0_{m}\right.$ (dim-row $A-1$) 1) P1
define $P 2^{\prime}{ }^{\prime}$ where P^{2} ' $^{\prime}=$ four-block-mat P2 $\left(0_{m} 2(\right.$ dim-row $\left.A-2)\right)\left(O_{m}(\right.$ dim-row A - 2) 2) $\left(1_{m}\right.$ (dim-row A - 2))
define $P 3^{\prime}$ where $P 3^{\prime}=$ four-block-mat $\left(\begin{array}{ll}1 & 1\end{array}\right)\binom{0_{m}}{1($ dim-row $A-1)}\left(0_{m}\right.$ (dim-row $A-1$ 1) P3
define $Q 3^{\prime}$ where $Q 3^{\prime}=$ four-block-mat $\left(1_{m} 1\right)\left(O_{m} 1(\operatorname{dim}-c o l A-1)\right)\left(0_{m}\right.$ (dim-col $A-1)$ 1) Q3
have A1: A1 \in carrier-mat $1 n$ unfolding A1-def using A by auto
have A2: A2 \in carrier-mat $(m-1) n$ unfolding A2-def using A by auto
have f st (Smith-mxn A2) \in carrier-mat $(m-1)(m-1)$
\wedge fst $($ snd $($ Smith-mxn A2 $)) \in$ carrier-mat $(m-1) n$
$\wedge \operatorname{snd}($ snd $($ Smith-mxn A2) $) \in$ carrier-mat $n n$
proof (cases 2<m-1)
case True
show ?thesis by (rule 1.hyps(2), insert A m n A2-def A1-def True id, auto)
next
case False
hence $m=3$ using m by auto
hence A2' $^{\prime}:$ A2 \in carrier-mat $2 n$ using A2 by auto
have A2-dom: Smith-mxn-dom A2 by (rule Smith-mxn.domintros, insert A2', auto)
have dim-row A2 $=2$ using A2 A2' by fast
hence Smith-mxn A2 $=$ Smith-2xn A2
using n unfolding Smith-mxn.psimps[OF A2-dom] by auto
then show ?thesis using is-SNF-Smith-2xn[OF A2] m A2 unfolding is-SNF-def split-beta
by (metis carrier-matD carrier-matI index-mult-mat(2,3))
qed
hence P1: P1 \in carrier-mat $(m-1)(m-1)$
and D1: D1 \in carrier-mat $(m-1) n$
and Q1: Q1 \in carrier-mat n n using P1D1Q1 by (metis fst-conv snd-conv) + have $C \in$ carrier-mat $(1+(m-1)) n$ unfolding C-def
by (rule carrier-append-rows, insert P1 D1 Q1 A1, auto)
hence $C: C \in$ carrier-mat $m n$ using m by simp
have $D: D \in$ carrier-mat $2 n$ unfolding D-def using $C A$ by auto
have $E: E \in$ carrier-mat (m-2) n unfolding E-def using A by auto
have $P 2: P 2 \in$ carrier-mat 22 and $Q 2: Q 2 \in$ carrier-mat $n n$
using is-SNF-Smith-2xn[OF D] P2FQ2 D unfolding is-SNF-def by auto
have $H \in$ carrier-mat $(2+(m-2)) n$ unfolding H-def
by (rule carrier-append-rows, insert P2 D Q2 E, auto)
hence $H: H \in$ carrier-mat $m n$ using m by auto
have H2: H2 \in carrier-mat $m n$ using m H P-H2H2 reduce-column by blast
have $H 2-D R: H 2-D R \in$ carrier-mat $(m-1)(n-1)$
by (rule split-block(4)[OF split-H2[symmetric]], insert H2 m n, auto)
have $f s t$ (Smith-mxn H2-DR) \in carrier-mat $(m-1)(m-1)$
\wedge fst $($ snd $(S m i t h-m x n ~ H 2-D R)) \in$ carrier-mat $(m-1)(n-1)$
\wedge snd $($ snd $($ Smith-mxn H2-DR $)) \in$ carrier-mat $(n-1)(n-1)$
proof (cases $2<m-1 \wedge 2<n-1$)
case True
show ?thesis
proof (rule 1.hyps(3)[OF - - - A1-def A2-def P1D1Q1 - - C-def])
show $(P 2, F, Q 2)=$ Smith-2xn D using P2FQ2 by auto
qed (insert A P1D1Q1 D-def E-def P2FQ2 P-H2H2 P3S'Q3 H-def split-H2
H2-DR True id, auto)
next
case False note m-eq-3-or- $n-e q-3=$ False
show ?thesis
proof (cases (2<m-1))
case True
hence $n 3$: $n=3$ using m-eq- 3 -or- n-eq- $3 n m$ by auto
have H2-DR-dom: Smith-mxn-dom H2-DR
by (rule Smith-mxn.domintros, insert H2-DR n3, auto)
have H2-DR': H2-DR \in carrier-mat ($m-1$) 2 using H2-DR n3 by auto
hence dim-col H2-DR $=2$ by simp
hence Smith-mxn H2-DR = Smith-nx2 H2-DR
using $n H 2-D R^{\prime}$ True unfolding Smith-mxn.psimps $[O F H 2-D R-d o m]$ by auto
then show ?thesis using is-SNF-Smith-nx2[OF H2-DR] m H2-DR unfolding is-SNF-def by auto
next
case False
hence $m 3$: $m=3$ using m-eq-3-or- n-eq- $3 n m$ by auto
have H2-DR-dom: Smith-mxn-dom H2-DR
by (rule Smith-mxn.domintros, insert H2-DR m3, auto)
have $H 2-D R^{\prime}: H 2-D R \in$ carrier-mat $2(n-1)$ using $H 2-D R ~ m 3$ by auto
hence dim-row $H 2-D R=2$ by simp
hence Smith-mxn H2-DR = Smith-2xn H2-DR
using $n H 2-D R^{\prime}$ unfolding Smith-mxn.psimps[OF H2-DR-dom] by auto
then show? ?thesis using is-SNF-Smith-2xn [OF H2-DR] m H2-DR unfolding

is-SNF-def by force

qed
qed
hence P3: P3 \in carrier-mat $(m-1)(m-1)$
and $S^{\prime}: S^{\prime} \in$ carrier-mat $(m-1)(n-1)$
and Q3: Q3 \in carrier-mat $(n-1)$ ($n-1$) using P3S'Q3 by (metis fst-conv snd-conv)+
have Smith-final: Smith-mxn $A=\left(P 3^{\prime} * P-H 2 * P 2^{\prime} * P 1^{\prime}, S, Q 1 * Q 2 * Q 3^{\prime}\right)$ proof -
have P1-def: P1 $=$ fst (Smith-mxn A2) and D1-def: D1 $=f s t$ (snd (Smith-mxn A2))
and Q1-def: Q1 $=$ snd (snd (Smith-mxn A2)) using P1D1Q1 by (metis fstI sndI) +
have P2-def: P2 $=f s t($ Smith-2xn $D)$ and F-def: $F=f s t(\operatorname{snd}(S m i t h-2 x n D))$
and Q2-def: Q2 $=$ snd $($ snd $($ Smith-2xn D) $)$ using P2FQ2 by (metis fstI sndI) +
have P-H2-def: P-H2 $=$ fst (reduce-column div-op H)
and H2-def: H2 $=$ snd (reduce-column div-op H)
using P-H2H2 by (metis fstI sndI)+
have H2-UL-def: H2-UL = fst (split-block H2 1 1)
and H2-UR-def: H2-UR $=$ fst (snd (split-block H2 1 1))
and H2-DL-def: H2-DL $=$ fst (snd (snd (split-block H2 11 1)))
and H2-DR-def: H2-DR $=$ snd (snd (snd (split-block H2 1 1)))
using split-H2 by (metis $f s t I$ sndI) +
have P3-def: P3 = fst (Smith-mxn H2-DR)
and S^{\prime}-def: $S^{\prime}=f s t($ snd (Smith-mxn H2-DR))
and Q3-def: Q3 $=($ snd $($ snd $($ Smith-mxn H2-DR $)))$ using $P 3 S^{\prime} Q 3$ by (metis fstI sndI)+
note $a u x=$ Smith-mxn.psimps $[O F A$-dom] Let-def split-beta
A1-def[symmetric] A2-def[symmetric] P1-def[symmetric] D1-def[symmetric] Q1-def[symmetric]

C-def[symmetric] D-def[symmetric] E-def[symmetric] P2-def[symmetric] Q2-def[symmetric]
F-def[symmetric] H-def[symmetric] P-H2-def[symmetric] H2-def[symmetric] H2-UL-def[symmetric]

H2-DL-def[symmetric] H2-UR-def[symmetric] H2-DR-def[symmetric] P3-def[symmetric] S^{\prime}-def[symmetric]

Q3-def[symmetric] P1'-def[symmetric] P2'-def[symmetric] P3'-def[symmetric] Q1-def[symmetric]

Q2-def[symmetric] Q3'-def[symmetric] S-def[symmetric]
show ?thesis by (rule prod3-intro, unfold aux, insert 1.prems, auto)
qed
have $P 1^{\prime}: P 1^{\prime} \in$ carrier-mat $m m$ unfolding $P 1^{\prime}$-def using $P 1 m$ by auto moreover have $P 2^{\prime}: P 2^{\prime} \in$ carrier-mat $m m$ unfolding $P 2^{\prime}$-def using P2 m A by auto
moreover have $P 3^{\prime}: P 3^{\prime} \in$ carrier-mat m manfolding $P 3^{\prime}$-def using $P 3$ m by auto
moreover have P-H2: P-H2 \in carrier-mat $m m$ using reduce-column $[O F H$ P-H2H2] m by simp
moreover have $S \in$ carrier-mat $m n$ unfolding S-def using $H A S^{\prime}$
by (auto, smt C One-nat-def Suc-pred $\langle C \in \operatorname{carrier-mat}(1+(m-1)) n\rangle$ carrier-matD carrier-matI
dim-col-mat(1) dim-row-mat(1) index-mat-four-block n neq0-conv plus-1-eq-Suc zero-order(3))
moreover have $Q 3^{\prime} \in$ carrier-mat $n n$ unfolding $Q 3^{\prime}$-def using $Q 3 n$ by auto ultimately show ?case using Smith-final Q1 Q2 by auto

qed

corollary Smith-mxn-pinduct-carrier: $\llbracket S m i t h-m x n-d o m ~ A ; A \in$ carrier-mat m $n \rrbracket$ \Longrightarrow
fst (Smith-mxn A) \in carrier-mat $m m$
$\wedge f s t($ snd $($ Smith-mxn A) $) \in$ carrier-mat $m n$
$\wedge \operatorname{snd}($ snd $($ Smith-mxn A) $) \in$ carrier-mat $n n$
using Smith-mxn-pinduct-carrier-ge-2 Smith-mxn-pinduct-carrier-less-2
by (meson linorder-not-le)
termination proof (relation measure $(\lambda A$. dim-row $A))$
fix A A1 A2 xb P1 y D1 Q1 C D Exf P2 yb Q2 F yc H xj P-H2 H2 xl xm ye xn yf xo $y g$
assume 1: $\neg($ dim-row $A=0 \vee \operatorname{dim}-\operatorname{col} A=0)$ and 2: dim-row $A \neq 1$
and 3: dim-row $A \neq 2$ and 4: dim-col $A \neq 1$ and 5: $\operatorname{dim}-\operatorname{col} A \neq 2$
and 6: A1 $=$ mat-of-row (Matrix.row A 0)
and $x a-d e f: A 2=$ mat-of-rows $($ dim-col $A)($ map $($ Matrix.row $A)[1 . .<$ dim-row A])
and $x b-d e f: x b=$ Smith-mxn A2 and P1-y-xb: $(P 1, y)=x b$
and D1-Q1-y: $(D 1, Q 1)=y$ and C-def: $C=A 1 * Q 1 @_{r} P 1 * A 2 * Q 1$
and D-def: $D=$ mat-of-rows (dim-col A) [Matrix.row C 0 , Matrix.row C 1]
and E-def: $E=$ mat-of-rows (dim-col $A)($ map $($ Matrix.row $C)[2 . .<d i m-r o w$ A])
and $x f: x f=$ Smith-2xn D and P2-yb-xf: $(P 2, y b)=x f$ and $F-Q 2-y b:(F, Q 2)$ $=y b$
and H-def: $H=P 2 * D * Q 2 @_{r} E * Q 2$ and $x j: x j=$ reduce-column div-op H
and P-H2-H2: $(P-H 2, H 2)=x j$ and $b 4: x l=$ split-block H2 11
and b1: $(x m, y e)=x l$ and $b 2:(x n, y f)=y e$ and $b 3:(x o, y g)=y f$
and A2-dom: Smith-mxn-dom A2
let $? m=$ dim-row A
let $? n=\operatorname{dim}-\operatorname{col} A$
have $m: 2<$? m and $n: 2<? n$ using 123456 by auto
have A1: A1 \in carrier-mat 1 (dim-col A) using 6 by auto
have A2: A2 \in carrier-mat (dim-row A 1) (dim-col A) using xa-def by auto
have fst (Smith-mxn A2) \in carrier-mat $(? m-1)(? m-1)$
$\wedge f s t($ snd $($ Smith-mxn AZ $)) \in$ carrier-mat $(? m-1) ? n$
$\wedge \operatorname{snd}($ snd $($ Smith-mxn A2) $) \in$ carrier-mat ?n ? n
by (rule Smith-mxn-pinduct-carrier[OF A2-dom A2])
hence P1: P1G carrier-mat (?m-1) (?m-1) and D1: D1 \in carrier-mat (?m-1)

```
?n
    and Q1:Q1 \in carrier-mat ?n ?n using P1-y-xb D1-Q1-y xa-def xb-def by
(metis fstI sndI)+
    have C:C\in carrier-mat ?m ?n unfolding C-def using A1 Q1 P1 A2 Q1
            by (smt 1 Suc-pred card-num-simps(30) carrier-append-rows mult-carrier-mat
neq0-conv plus-1-eq-Suc)
    have D:D carrier-mat 2 ?n unfolding D-def using C by auto
    have E: E \in carrier-mat (?m-2) ?n unfolding E-def using C m by auto
    have P2FQ2: (P2,F,Q2) = Smith-2xn D using F-Q2-yb P2-yb-xf xf by blast
    have P2: P2\incarrier-mat 2 2 and F:F\incarrier-mat 2 ?n and Q2: Q2 \in
carrier-mat ?n ?n
            using is-SNF-Smith-2xn[OF D] D P2FQ2 unfolding is-SNF-def by auto
    have H\incarrier-mat (2 + (?m-2)) ?n
            by (unfold H-def, rule carrier-append-rows, insert D Q2 P2 E, auto)
    hence H:H\incarrier-mat ?m ?n using m by auto
    have H2: H2 \in carrier-mat (dim-row H) (dim-col H)
            and P-H2: P-H2 \in carrier-mat (dim-row A) (dim-row A)
            using reduce-column[OF H xj[unfolded P-H2-H2[symmetric]]] m H by auto
    have dim-row yg<dim-row H2
            by (rule split-block4-decreases-dim-row, insert b1 b2 b3 b4 m n H H2, auto)
    also have ... = dim-row A using H2 H by auto
    finally show (yg,A)\in measure dim-row unfolding in-measure .
qed (auto)
lemma is-SNF-Smith-mxn-less-2:
    assumes A:A\incarrier-mat m n and mn: n\leq2 \vee m\leq2
    shows is-SNF A (Smith-mxn A)
proof -
    show ?thesis
    proof (cases dim-row A=0\vee dim-col A=0)
        case True
        have Smith-mxn A= (1m (dim-row A),A,1m (dim-col A))
            using Smith-mxn.simps True by auto
        thus ?thesis using A True unfolding is-SNF-def by auto
    next
        case False note 1 = False
        show ?thesis
        proof (cases dim-row A=1)
            case True
            have Smith-mxn A = (1m 1,Smith-1xn A)
            using Smith-mxn.simps True 1 by auto
            then show ?thesis using Smith-1xn-works by (metis True carrier-mat-triv
surj-pair)
    next
            case False note 2 = False
            then show ?thesis
            proof (cases dim-row A = 2)
            case True
```

```
            hence }\mp@subsup{A}{}{\prime}:A\in\mathrm{ carrier-mat 2 }n\mathrm{ using }A\mathrm{ by auto
            have Smith-mxn A = Smith-2xn A using Smith-mxn.simps True 1 2 by
auto
            then show ?thesis using is-SNF-Smith-2xn[OF A] A by auto
        next
            case False note 3 = False
            show ?thesis
            proof (cases dim-col A=1)
            case True
            hence A':A \in carrier-mat m 1 using A by auto
            have Smith-mxn A =(let (P,S)=Smith-nx1 A in (P,S,1m 1))
                using Smith-mxn.simps True 12 3 by auto
            then show ?thesis using Smith-nx1-works[OF A] A by (auto simp add:
case-prod-beta)
            next
                case False
                hence dim-col A=2 using 12 3 mn A by auto
                hence }\mp@subsup{A}{}{\prime}:A\in\mathrm{ carrier-mat m 2 using }A\mathrm{ by auto
                hence Smith-mxn A = Smith-nx2 A
                    using Smith-mxn.simps 123 False by auto
                    then show ?thesis using is-SNF-Smith-nx2[OF A] A by force
            qed
        qed
        qed
    qed
qed
lemma is-SNF-Smith-mxn-ge-2:
    assumes A:A\incarrier-mat m n and m:m>2 and n:n>2
    shows is-SNF A (Smith-mxn A)
    using A m n
proof (induct A arbitrary: m n rule: Smith-mxn.induct)
    case (1 A)
    note }A=1.\operatorname{prems(1)
    note m=1.prems(2)
    note n=1.prems(3)
    have A-dim-not0: \neg(dim-row A=0\vee dim-col A=0) and A-dim-row-not1:
dim-row }A\not=
    and A-dim-row-not2: dim-row }A\not=2\mathrm{ and }A\mathrm{ -dim-col-not1:dim-col }A\not=
    and A-dim-col-not2: dim-col A}\not=
    using A m n by auto
    note A-dim-intro = A-dim-not0 A-dim-row-not1 A-dim-row-not2 A-dim-col-not1
A-dim-col-not2
    define A1 where A1 = mat-of-row (Matrix.row A 0)
    define A2 where A2 = mat-of-rows (dim-col A) [Matrix.row A i.i}\leftarrow[1..<dim-row
A]]
    obtain P1 D1 Q1 where P1D1Q1: (P1,D1,Q1) = Smith-mxn A2 by (metis
prod-cases3)
```

define C where $C=(A 1 * Q 1) @_{r}(P 1 * A 2 * Q 1)$
define D where $D=$ mat-of-rows (dim-col A) [Matrix.row C 0, Matrix.row C 1]
define E where $E=$ mat-of-rows $($ dim-col $A)[$ Matrix.row C i. $i \leftarrow[2 . .<$ dim-row $A]$]
obtain P2 F Q2 where P2FQ2: (P2,F,Q2) $=$ Smith-2xn D by (metis prod-cases3)
define H where $H=(P 2 * D * Q 2) @_{r}(E * Q 2)$
obtain P-H2 H2 where P-H2H2: (P-H2, H2) $=$ reduce-column div-op H by (metis surj-pair)
obtain H2-UL H2-UR H2-DL H2-DR where split-H2: (H2-UL, H2-UR, H2-DL, $H 2-D R)=$ split-block H2 11
by (metis split-block-def)
obtain P3 $S^{\prime} Q 3$ where $P 3 S^{\prime} Q 3:\left(P 3, S^{\prime}, Q 3\right)=$ Smith-mxn H2-DR by (metis prod-cases3)
define S where $S=$ four-block-mat (Matrix.mat $11(\lambda(a, b)$. $H \$ \$(0,0)))\left(0_{m}\right.$ 1 (dim-col $A-1$)
($0_{m}($ dim-row $\left.A-1) 1\right) S^{\prime}$
define $P 1^{\prime}$ where $P 1^{\prime}=$ four-block-mat $\left(\begin{array}{ll}1_{m} & 1)\left(0_{m} 1(\text { dim-row } A-1)\right)\left(0_{m}, ~\right.\end{array}\right.$ (dim-row $A-1$ 1) $P 1$
define $P \mathcal{Z}^{\prime}$ where P 2 $^{\prime}=$ four-block-mat P2 $\left(0_{m} 2(\right.$ dim-row $\left.A-2)\right)\left(O_{m}(\right.$ dim-row A-2) 2) ($1_{m}($ dim-row $\left.A-2)\right)$
define $P 3^{\prime}$ where $P 3^{\prime}=$ four-block-mat $\left(\begin{array}{ll}1 & 1\end{array}\right)\left(\begin{array}{l}0_{m} 1(\text { dim-row } A-1)\end{array}\right)\left(0_{m}\right.$ (dim-row $A-1$) 1) P3
define $Q 3^{\prime}$ where $Q 3^{\prime}=$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(\operatorname{dim}-c o l A-1)\right)\left(0_{m}\right.$ (dim-col $A-1$) 1) $Q 3$
have Smith-final: Smith-mxn $A=\left(P 3^{\prime} * P-H 2 * P 2^{\prime} * P 1^{\prime}, S, Q 1 * Q 2 * Q 3^{\prime}\right)$ proof -
have P1-def: P1 = fst (Smith-mxn A2) and D1-def: D1 $=$ fst (snd (Smith-mxn A2))
and Q1-def: Q1 $=$ snd $($ snd $($ Smith-mxn A2) $)$ using P1D1Q1 by (metis fstI sndI) +
have P2-def: P2 $=$ fst $($ Smith-2xn $D)$ and F-def: $F=f s t($ snd $(S m i t h-2 x n ~ D))$
and Q2-def: Q2 $=$ snd (snd (Smith-2xn D)) using P2FQ2 by (metis fstI sndI) +
have P-H2-def: P-H2 $=$ fst (reduce-column div-op H)
and H2-def: H2 = snd (reduce-column div-op H)
using P-H2H2 by (metis fstI sndI) +
have H2-UL-def: H2-UL = fst (split-block H2 1 1)
and H2-UR-def: H2-UR = fst (snd (split-block H2 1 1))
and H2-DL-def: H2-DL $=$ fst (snd (snd (split-block H2 1 1)))
and H2-DR-def: H2-DR $=$ snd $($ snd $($ snd (split-block H2 1 1)))
using split-H2 by (metis fstI sndI)+
have $P 3-d e f: P 3=f s t(S m i t h-m x n ~ H 2-D R)$ and $S^{\prime}-d e f: S^{\prime}=f s t(s n d$ (Smith-mxn H2-DR))
and Q3-def: Q3 $=($ snd $($ snd $($ Smith-mxn H2-DR $)))$ using $P 3 S^{\prime} Q 3$ by (metis fstI sndI)+
note $a u x=$ Smith-mxn.simps $[o f ~ A]$ Let-def split-beta
A1-def[symmetric] A2-def[symmetric] P1-def[symmetric] D1-def[symmetric] Q1-def[symmetric]

```
            C-def[symmetric] D-def[symmetric] E-def[symmetric] P2-def[symmetric]
Q2-def[symmetric]
    F-def[symmetric] H-def[symmetric] P-H2-def[symmetric] H2-def[symmetric]
H2-UL-def[symmetric]
    H2-DL-def[symmetric] H2-UR-def[symmetric] H2-DR-def[symmetric] P3-def[symmetric]
S'-def[symmetric]
    Q3-def[symmetric] P1'-def[symmetric] P2'-def[symmetric] P3'-def[symmetric]
Q1-def[symmetric]
            Q2-def[symmetric] Q3'-def[symmetric] S-def[symmetric]
    show ?thesis by (rule prod3-intro, unfold aux, insert 1.prems, auto)
    qed
    show ?case
    proof (unfold Smith-final, rule is-SNF-intro)
    have A1[simp]: A1 \in carrier-mat 1 n unfolding A1-def using A by auto
        have A2[simp]: A2 \in carrier-mat (m-1) n unfolding A2-def using A by
auto
    have is-SNF-A2: is-SNF A2 (Smith-mxn A2)
    proof (cases n\leq2\veem-1\leq2)
            case True
            then show ?thesis using is-SNF-Smith-mxn-less-2[OF A2] by simp
    next
            case False
            hence n1: 2<n and m1: 2<m-1 by auto
            show ?thesis by (rule 1.hyps(1)[OF A-dim-intro A1-def A2-def A2 m1 n1])
    qed
    have P1[simp]: P1 \in carrier-mat (m-1) (m-1)
            and inv-P1: invertible-mat P1
            and Q1:Q1 \in carrier-mat n n and inv-Q1: invertible-mat Q1
            and SNF-P1A2Q1:Smith-normal-form-mat (P1*A2*Q1)
            using is-SNF-A2 P1D1Q1 A2 A n m unfolding is-SNF-def by auto
    have C[simp]:C\incarrier-mat m n unfolding C-def using P1 Q1 A1 A2 m
            by (smt 1(3) A-dim-not0 Suc-pred card-num-simps(30) carrier-append-rows
carrier-matD
                    carrier-mat-triv index-mult-mat(2,3) neq0-conv plus-1-eq-Suc)
    have D[simp]: D\incarrier-mat 2 n unfolding D-def using A m by auto
    have is-SNF-D: is-SNF D (Smith-2xn D) by (rule is-SNF-Smith-2xn[OF D])
    hence P2[simp]: P2 \in carrier-mat 2 2 and inv-P2: invertible-mat P2
            and Q2[simp]: Q2 \in carrier-mat n n and inv-Q2: invertible-mat Q2
            and F[simp]:F carrier-mat 2 n and F-P2DQ2: F = P2*D*Q2
            and SNF-F: Smith-normal-form-mat F
            using P2FQ2 D-def A unfolding is-SNF-def by auto
    have E[simp]: E\in carrier-mat (m-2) n unfolding E-def using A by auto
    have H-aux: H G carrier-mat (2 + (m-2)) n unfolding H-def
                    by (rule carrier-append-rows, insert P2 D Q2 E F-P2DQ2 F A m n
mult-carrier-mat, force)
    hence H[simp]: H\incarrier-mat m n using m by auto
    have H2[simp]: H2 \in carrier-mat m n using m H P-H2H2 A reduce-column
by blast
```

have $H 2-D R[\operatorname{simp}]: H 2-D R \in \operatorname{carrier-mat}(m-1)(n-1)$
by (rule split-block(4)[OF split-H2[symmetric]], insert H2 m $n A H$, auto, insert H2, blast +)
have $P 1^{\prime}[$ simp $]: P 1^{\prime} \in$ carrier-mat $m m$ unfolding $P 1^{\prime}-$ def using $P 1 m$ by auto
have $P 2^{\prime}[$ simp $]: P_{2} 2^{\prime} \in$ carrier-mat $m m$ unfolding $P^{2} \mathcal{Z}^{\prime}$-def using P2 m A m
by (metis (no-types, lifting) H H-aux carrier-matD carrier-mat-triv index-mat-four-block(2,3) index-one-mat(2,3))
have is-SNF-H2-DR: is-SNF H2-DR (Smith-mxn H2-DR)
proof (cases $2<m-1 \wedge 2<n-1$)
case True
hence $m 1$: $2<m-1$ and $n 1: 2<n-1$ by $\operatorname{simp}+$
show ?thesis
by (rule 1.hyps(2)[OF A-dim-intro A1-def A2-def P1D1Q1 - - C-def D-def E-def P2FQ2 - - H-def
P-H2H2 - split-H2 - - H2-DR m1 n1], auto)

next

case False

hence $m-1 \leq 2 \vee n-1 \leq 2$ by auto
then show ?thesis using H2-DR is-SNF-Smith-mxn-less-2 by blast
qed
hence P3[simp]: P3 \in carrier-mat $(m-1)(m-1)$ and inv-P3: invertible-mat P3
and $Q 3[$ simp $]: Q 3 \in$ carrier-mat $(n-1)(n-1)$ and inv-Q3: invertible-mat $Q 3$
and $S^{\prime}[$ simp $]: S^{\prime} \in$ carrier-mat $(m-1)(n-1)$ and $S^{\prime}-P 3 H 2-D R Q 3: S^{\prime}=P 3$ * H2-DR * Q3
and SNF-S': Smith-normal-form-mat S^{\prime}
using $A m$ n n-DR $P 3 S^{\prime} Q 3$ unfolding $i s-S N F$-def by auto
have $P 3^{\prime}[$ simp $]: P 3^{\prime} \in$ carrier-mat $m m$ unfolding $P 3^{\prime}-$ def using $P 3 \mathrm{~m}$ by auto
have P-H2[simp]: P-H2 \in carrier-mat $m m$ using reduce-column[OF H P-H2H2] m by simp
have $S[$ simp $]: S \in$ carrier-mat m n unfolding S-def using $H A S^{\prime}$
by (smt A-dim-intro(1) One-nat-def Suc-pred carrier-matD carrier-matI dim-col-mat (1)
dim-row-mat(1) index-mat-four-block $(2,3)$ nat-neq-iff not-less-zero plus-1-eq-Suc)
have Q3'[simp]: Q3' \in carrier-mat $n n$ unfolding $Q 3^{\prime}$-def using $Q 3 n$ by auto
show P-final-carrier: P3' $* P$ - $\mathrm{H} 2 *$ P $^{\prime} * P 1^{\prime} \in \operatorname{carrier-mat~(dim-row~} A$) (dim-row A)
using P3' P-H2 P2' P1' A by (metis carrier-matD carrier-matI index-mult-mat(2,3))
show Q-final-carrier: $Q 1 * Q 2 * Q 3^{\prime} \in$ carrier-mat (dim-col A) (dim-col A)
using Q1 Q2 Q3' A by (metis carrier-matD carrier-matI index-mult-mat(2,3))
have inv-P1': invertible-mat $P 1^{\prime}$ unfolding $P 1^{\prime}$-def
by (rule invertible-mat-four-block-mat-lower-right $[O F-$ inv-P1], insert A P1, auto)
have inv-P2': invertible-mat P2 $^{\prime}$ unfolding $P 2^{2}$-def
by (rule invertible-mat-four-block-mat-lower-right-id[OF --- inv-P2], insert
have inv-P3': invertible-mat P3' unfolding P3'-def
by (rule invertible-mat-four-block-mat-lower-right $[O F-$ inv-P3], insert A P3, auto)
have inv-P-H2: invertible-mat P-H2 using reduce-column[OF H P-H2H2] m by simp
show invertible-mat $\left(P 3^{\prime} * P-H 2 * P 2^{\prime} * P 1^{\prime}\right)$ using inv-P1' inv-P2' inv-P3' inv-P-H2
by (meson P1' P2' P3' P-H2 invertible-mult-JNF mult-carrier-mat)
have inv-Q3': invertible-mat $Q 3^{\prime}$ unfolding $Q 3^{\prime}$-def
by (rule invertible-mat-four-block-mat-lower-right[OF - inv-Q3], insert A Q3, auto)
show invertible-mat ($Q 1 * Q 2 * Q 3^{\prime}$) using inv-Q1 inv-Q2 inv-Q3'
by (meson Q1 Q2 Q3' invertible-mult-JNF mult-carrier-mat)
have A-A1-A2: $A=A 1 @_{r}$ A2 unfolding append-cols-def
proof (rule eq-matI)
have A1-A2': A1 @ ${ }_{r}$ A2 \in carrier-mat $(1+(m-1)) n$ by (rule carrier-append-rows $[O F$ A1 A2])
hence A1-A2: A1 @ ${ }_{r}$ A2 \in carrier-mat $m n$ using m by simp thus dim-row $A=\operatorname{dim}$-row $\left(A 1 @_{r} A 2\right)$ and $\operatorname{dim}-c o l A=\operatorname{dim}-c o l\left(A 1 @_{r}\right.$
A2) using A by auto
fix $i j$ assume $i: i<\operatorname{dim}-r o w\left(A 1 @_{r} A 2\right)$ and $j: j<\operatorname{dim}-c o l\left(A 1 @_{r} A 2\right)$
show $A \$ \$(i, j)=\left(A 1 @_{r} A 2\right) \$ \(i, j)
proof (cases $i=0$)
case True
have $\left(A 1 @_{r} A 2\right) \$ \$(i, j)=\left(A 1 @_{r} A 2\right) \$ \$(0, j)$ using True by simp
also have $\ldots=$ four-block-mat A1 $\left(O_{m}(\right.$ dim-row A1) 0$)$ A2 (0_{m} (dim-row
A2) 0) $\$ \$(0, j)$
unfolding append-rows-def ..
also have $\ldots=A 1 \$ \$(0, j)$ using $A 1 A 1-A 2 j$ by auto
also have $\ldots=A \$ \$(0, j)$ unfolding $A 1$-def using $A 1-A 2 A$ i j by auto
finally show ?thesis using True by simp
next
case False
let ?xs $=($ map $($ Matrix.row $A)[1 . .<$ dim-row $A])$
have $\left(A_{1} @_{r} A 2\right) \$ \$(i, j)=$ four-block-mat A1 $\left(O_{m}(\right.$ dim-row A1) 0) A2 (0_{m} (dim-row A2) 0) $\$ \(i, j)
unfolding append-rows-def ..
also have $\ldots=A 2 \$ \$(i-1, j)$ using A1 A1-A2' A2 False $i j$ by auto
also have $\ldots=$ mat-of-rows (dim-col A) ?xs $\$ \$(i-1, j)$ by (simp add: A2-def)
also have $\ldots=$?..$x s!(i-1) \$ v j$ by (rule mat-of-rows-index, insert i False Ajm A1-A2, auto)
also have $\ldots=A \$ \(i, j) using False A A1-A2 $i j$ by auto
finally show ?thesis ..
qed
qed
have C-eq: $C=P 1^{\prime} * A * Q 1$
proof -
have aux: $\left(A 1 @_{r} A 2\right) * Q 1=\left((A 1 * Q 1) @_{r}(A 2 * Q 1)\right)$
by (rule append-rows-mult-right, insert A1 A2 Q1, auto)
have $P 1^{\prime} * A * Q 1=P 1^{\prime} *\left(A 1 @_{r} A 2\right) * Q 1$ using $A-A 1-A 2$ by simp also have $\ldots=P 1^{\prime} *\left(\left(A 1 @_{r} A 2\right) * Q 1\right)$ using $A A-A 1-A 2 P 1^{\prime} Q 1$ assoc-mult-mat by blast
also have $\ldots=P 1^{\prime} *\left((A 1 * Q 1) @_{r}(A 2 * Q 1)\right)$ by (simp add: aux)
also have $\ldots=(A 1 * Q 1) @_{r}(P 1 *(A 2 * Q 1))$
by (rule append-rows-mult-left-id, insert A1 Q1 A2 P1 P1'-def A, auto)
also have $\ldots=(A 1 * Q 1) @_{r}(P 1 * A 2 * Q 1)$ using A2 P1 Q1 by auto
finally show ?thesis unfolding C-def ..
qed
have $C-D-E: C=D @_{r} E$
proof -
let ? x s $=[$ Matrix.row C 0, Matrix.row C 1]
let ?ys $=($ map (Matrix.row C) $[0 . .<2])$
have xs-ys: ?xs $=$? ys by (simp add: upt-conv-Cons)
have D-rw: $D=$ mat-of-rows (dim-col C) (map (Matrix.row C) $[0 . .<2])$
unfolding D-def xs-ys using $A C$ by (metis carrier-mat $D(2)$)
have d1: dim-col $A=\operatorname{dim}$-col C using $A C$ by blast
have d2: dim-row $A=$ dim-row C using $A C$ by blast
show ?thesis unfolding D-rw E-def d1 d2 by (rule append-rows-split, insert $m C A d 2$, auto)
qed
have H-eq: $H=P 2^{\prime} * P 1^{\prime} * A * Q 1 * Q 2$
proof -
have aux: $\left((P 2 * D) @_{r} E\right)=P 2^{\prime} *\left(D @_{r} E\right)$
by (rule append-rows-mult-left-id2[symmetric, OF D E-P2], insert P2'-def
A, auto)
have $H=P 2 * D * Q 2 @_{r} E * Q 2$ by (simp add: H-def)
also have $\ldots=\left(P 2 * D @_{r} E\right) * Q 2$
by (rule append-rows-mult-right[symmetric, OF mult-carrier-mat[OF P2 D] E Q2])
also have $\ldots=P 2^{\prime} *\left(D @_{r} E\right) * Q 2$ by (simp add: aux)
also have $\ldots=P 2^{\prime} * C * Q 2$ unfolding $C-D-E$ by simp
also have $\ldots=P 2^{\prime} *\left(P 1^{\prime} * A * Q 1\right) * Q 2$ unfolding C-eq by simp
also have $\ldots=P 2^{\prime} * P 1^{\prime} * A * Q 1 * Q 2$
by $\left(s m t A P 1^{\prime} P 2^{\prime} Q 1\left\langle P 2^{\prime} * C * Q 2=P 2^{\prime} *\left(P 1^{\prime} * A * Q 1\right) * Q 2\right\rangle\right.$ assoc-mult-mat mult-carrier-mat)
finally show ?thesis .
qed
have $P-H 2-H-H 2: P-H 2 * H=H 2$ using reduce-column[OF H P-H2H2] m by auto
hence H2-eq: H2 $=P-H 2 * P 2^{\prime} * P 1^{\prime} * A * Q 1 * Q 2$ unfolding $H-e q$
by (smt P1' P1'-def P2' P2'-def P-H2 P-final-carrier Q1 Q2 Q-final-carrier assoc-mult-mat
carrier-matD carrier-mat-triv index-mult-mat(2,3))
have H2-as-four-block-mat: H2 = four-block-mat H2-UL H2-UR H2-DL H2-DR
using split-H2 by (metis (no-types, lifting) H2 P1' P1'-def Q3' Q3'-def
carrier-matD
index-mat-four-block(2) index-one-mat(2) split-block(5))
have H2-UL: H2-UL \in carrier-mat 11
by (rule split-block(1)[OF split-H2[symmetric], of m-1 n-1], insert H2 A m n, auto, insert H2, blast+)
have H2-UR: H2-UR \in carrier-mat $1(n-1)$
by (rule split-block(2)[OF split-H2[symmetric], of m-1], insert H2 A m n, auto, insert H2, blast+)
have H2-DL: H2-DL \in carrier-mat $(m-1) 1$
by (rule split-block(3)[OF split-H2[symmetric], of - $n-1]$, insert H2 A m n, auto, insert H2, blast+)
have H2-DR: H2-DR \in carrier-mat $(m-1)(n-1)$
by (rule split-block(4)[OF split-H2[symmetric], of - $n-1]$, insert H2 A m n, auto, insert H2, blast+)
have $H-i j-F-i j: H \$(i, j)=F \$ \(i, j) if $i: i<2$ and $j: j<n$ for $i j$
proof -
have $H \$ \$(i, j)=($ if $i<\operatorname{dim}$-row $(P 2 * D * Q 2)$ then $(P 2 * D * Q 2) \$ \(i, j) else $(E * Q 2) \$ \$(i-2, j))$
proof (unfold H-def, rule append-rows-nth)
show $P 2 * D * Q 2 \in$ carrier-mat $2 n$ using $F F-P 2 D Q 2$ by blast
show $E * Q 2 \in$ carrier-mat (m-2) n using E Q2 using mult-carrier-mat
by blast
qed (insert $m j i$, auto)
also have $\ldots=F \$ \(i, j) using $F F-P 2 D Q 2 i$ by auto
finally show ?thesis.
qed
have isDiagonal-F: isDiagonal-mat F
using is-SNF-D P2FQ2 unfolding is-SNF-def Smith-normal-form-mat-def
by auto
have $H-0 j-0$: $H \$ \$(0, j)=0$ if $j: j \in\{1 . .<n\}$ for j
proof -
have $H \$ \$(0, j)=F \$ \$(0, j)$ using $H-i j-F-i j j$ by auto
also have $\ldots=0$ using isDiagonal-F unfolding isDiagonal-mat-def using $F j$ by auto
finally show ?thesis .
qed
have $H 2-0 j$: H2 $\$ \$(0, j)=H \$ \$(0, j)$ if $j: j<n$ for j
by (rule reduce-column-preserves2[OF H P-H2H2 - - j], insert m, auto)
have $H 2-U R-0$: $H 2-U R=\left(0_{m} 1(n-1)\right)$
proof (rule eq-matI)
show dim-row H2-UR $=$ dim-row $\left(O_{m} 1(n-1)\right)$ and dim-col H2-UR $=$ dim-col $\left(0_{m} 1(n-1)\right)$
using H2-UR by auto
fix $i j$ assume $i: i<\operatorname{dim}$-row $\left(0_{m} 1(n-1)\right)$ and $j: j<\operatorname{dim}-c o l\left(0_{m} 1(n\right.$ - 1))
have $i 0$: $i=0$ using i by auto
have 1: $0<$ dim-row H2-UL + dim-row H2-DR using $i H 2-U L H 2-D R$ by auto
have 2: $j+1<$ dim-col H2-UL + dim-col H2-DR using j H2-UL H2-DR by
auto
have H2-UR $\$ \$(i, j)=H 2 \$ \$(0, j+1)$
unfolding i0 H2-as-four-block-mat using index-mat-four-block(1)[OF 1 2]
H2-UL by auto
also have $\ldots=H \$ \$(0, j+1)$ by (rule H2- $0 j$, insert j, auto)
also have $\ldots=0$ using $H-0 j-0 j$ by auto
finally show $H 2-U R \$ \$(i, j)=O_{m} 1(n-1) \$ \(i, j) using $i j$ by auto
qed
have H2-ULOO-H00: H2-UL $\$ \$(0,0)=H \$ \$(0,0)$
using H2-UL H2-as-four-block-mat H2-0j n by fastforce
have F00-dvd-Dij: $F \$ \$(0,0)$ dvd $D \$ \(i, j) if i : $i<2$ and $j: j<n$ for $i j$
by (rule S00-dvd-all-A[OF D P2 Q2 inv-P2 inv-Q2 F-P2DQ2 SNF-F i j])
have $D 10-d v d$-Eij: $D \$ \$(1,0) d v d E \$ \(i, j) if $i: i<m-2$ and $j: j<n$ for $i j$
proof -
have $D \$ \$(1,0)=C \$ \$(1,0)$
by (smt C C-D-E F F-P2DQ2 H H-def One-nat-def Suc-lessD add-diff-cancel-right' append-rows-def arith-special(3) carrier-matD index-mat-four-block index-mult-mat(2) lessI m n plus-1-eq-Suc)
also have $\ldots=(P 1 * A 2 * Q 1) \$ \$(0,0)$
by (smt 1(3) A1 A2 A-A1-A2 A-dim-not0 P1 Q1 Suc-eq-plus1 Suc-lessD add-diff-cancel-right' append-rows-def arith-special(3) card-num-simps(30) carrier-matD index-mat-four-block index-mult-mat $(2,3)$ less-not-reft2 local.C-def m neq0-conv)
also have ... dvd $(P 1 * A 2 * Q 1) \$ \$(i+1, j)$
by (rule SNF-first-divides-all[OF SNF-P1A2Q1--j], insert P1 A2 Q1 i A, auto)
also have $\ldots=C \$ \$(i+2, j)$ unfolding C-def using append-rows-nth
by (smt A A1 A2 A-A1-A2 P1 Q1 Suc-lessD add-Suc-right add-diff-cancel-left' append-rows-def arith-special(3) carrier-matD index-mat-four-block index-mult-mat(2,3) j
less-diff-conv not-add-less2 plus-1-eq-Suc that(1))
also have $\ldots=E \$ \(i, j)
by (smt C C-D-E D add-diff-cancel-right' append-rows-def carrier-matD index-mat-four-block $j i$
less-diff-conv not-add-less2)
finally show ?thesis .
qed
have F00-H00: $F \$ \$(0,0)=H \$ \$(0,0)$ using $H-i j-F-i j n$ by auto
have $F 00$-dvd-Eij: $F \$ \$(0,0)$ dvd $E \$ \(i, j) if $i: i<m-2$ and $j: j<n$ for $i j$
by (metis (no-types, lifting) A A-dim-not0 D10-dvd-Eij F00-dvd-Dij arith-special(3)
carrier-matD(2)
dvd-trans j lessI neq0-conv plus-1-eq-Suc i)
have F00-dvd-EQ2ij: $F \$ \$(0,0) d v d(E * Q 2) \$ \(i, j) if $i: i<m-2$ and $j: j<n$ for $i j$
using dvd-elements-mult-matrix-right[OF E Q2] F00-dvd-Eij ij by auto

```
    have H00-dvd-all: H$$(0,0) dvd H$$ (i,j) if i:i<m and j:j<n for ij
    proof (cases i<2)
    case True
    then show ?thesis by (metis F F00-H00 H-ij-F-ij SNF-F SNF-first-divides-all
j)
    next
    case False
    have F$$(0,0) dvd (E*Q2) $$ (i-2,j) by (rule F00-dvd-EQ2ij, insert False
i j, auto)
    moreover have H$$(i,j)=(E*Q2) $$ (i-2,j)
        by (smt C C-D-E D F F-P2DQ2 False H-def append-rows-def carrier-matD
i
                index-mat-four-block index-mult-mat(2) j)
        ultimately show ?thesis using FOO-HOO by simp
    qed
    have H-00-dvd-H-i0: H$$(0,0) dvd H$$(i,0) if i: i<m for i
    using HOO-dvd-all[OF i] n by auto
    have H2-DL-0: H2-DL = (0m}(m-1) 1)
    proof (rule eq-matI)
    show dim-row (H2-DL) = dim-row (Om}(m-1) 1)
        and dim-col (H2-DL) = dim-col (Om}(m-1) 1) using P3 H2-DL A by
auto
    fix ij assume i: i< dim-row (Om(m-1) 1) and j:j<dim-col (Om (m-
1) 1)
    have j0: j=0 using j by auto
    have (H2-DL) $$ (i,j)=H2 $$ (i+1,0)
        using H2-UR H2-UR-0 n j0 H2 H2-UL H2-as-four-block-mat i by auto
    also have ... = 0
    proof (cases i=0)
        case True
            have H2 $$ (1,0) = H$$ (1,0) by (rule reduce-column-preserves2[OF H
P-H2H2], insert m n, auto)
            also have \ldots=F$$(1,0) by (rule H-ij-F-ij, insert n, auto)
            also have ... = 0 using isDiagonal-F F n unfolding isDiagonal-mat-def
by auto
            finally show ?thesis by (simp add: True)
    next
            case False
            show ?thesis
            proof (rule reduce-column-works(1)[OF H P-H2H2])
                show H$$(0,0) dvd H$$(i+1,0) using H-00-dvd-H-i0 False i by
simp
                show }\forallj\in{1..<n}.H$$(0,j)=0 using H-0j-0 by aut
                show }i+1\in{2..<m} using i False by aut
        qed (insert m n id, auto)
    qed
```



```
    qed
    have P3'*H2 = four-block-mat H2-UL H2-UR (P3 * H2-DL) (P3 * H2-DR)
```

```
    proof -
        have P3'*H2 = four-block-mat
    (1m 1*H2-UL + 0m 1(dim-row A - 1)*H2-DL) (1m 1*H2-UR + Om 1
(dim-row A - 1) * H2-DR)
    (0m (dim-row A - 1) 1* H2-UL + P3 * H2-DL) (0m (dim-row A - 1) 1*
H2-UR + P3 * H2-DR)
unfolding P3'-def H2-as-four-block-mat
                    by (rule mult-four-block-mat[OF - - P3 H2-UL H2-UR H2-DL H2-DR],
insert A, auto)
    also have ... = four-block-mat H2-UL H2-UR (P3 * H2-DL) (P3 * H2-DR)
            by (rule cong-four-block-mat, insert H2-UL A m H2-DL H2-DR H2-UR P3,
```

auto)
finally show ?thesis .
qed
hence P3'-H2-as-four-block-mat: P3'*H2 = four-block-mat H2-UL $\left(0_{m} 1(n-1)\right)$ $\left(0_{m}(m-1) 1\right)(P 3 * H 2-D R)$
unfolding H2-UR-0 H2-DL-0 using P3 by auto
also have $\ldots * Q 3^{\prime}=S($ is ?lhs $=$? $r h s)$
proof -
have ?lhs $=$ four-block-mat H2-UL $\left(O_{m} 1(n-1)\right)\left(O_{m}(m-1)\right.$ 1) (P3* H2-DR)

* four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(n-1)\right)\left(0_{m}(n-1)\right.$ 1) Q3 unfolding $Q 3^{\prime}$-def using A by auto
also have ... =
four-block-mat $\left(H 2-U L * 1_{m} 1+\left(O_{m} 1(n-1)\right) * O_{m}(n-1)\right.$ 1) $\left(H 2-U L * O_{m}\right.$ $1(n-1)+(0 m 1(n-1)) * Q 3)$
$\left(0_{m}(m-1) 1 * 1_{m} 1+P 3 * H 2-D R * O_{m}(n-1) 1\right)\left(0_{m}(m-1) 1 * O_{m}\right.$ $1(n-1)+P 3 * H 2-D R * Q 3)$
by (rule mult-four-block-mat[OF H2-UL], insert P3 H2-DR Q3, auto)
also have $\ldots=$ four-block-mat H2-UL $\left(O_{m} 1(n-1)\right)\left(O_{m}(m-1) 1\right)(P 3 *$ $H 2-D R * Q 3)$
by (rule cong-four-block-mat, insert H2-UL A m H2-DL H2-DR H2-UR P3 Q3, auto)
also have $\ldots=$ four-block-mat $($ Matrix.mat $11(\lambda(a, b) . H \$ \$(0,0)))$
($\left.0_{m} 1(\operatorname{dim}-c o l A-1)\right)\left(O_{m}(\operatorname{dim}-r o w A-1) 1\right) S^{\prime}$
by (rule cong-four-block-mat, insert A $S^{\prime}-P 3 H 2-D R Q 3$ H2-UL00-H00 H2-UL, auto)
finally show ?thesis unfolding S-def by simp
qed
finally have $P 3^{\prime}-H 2-Q 3^{\prime}-S: P 3^{\prime} * H 2 * Q 3^{\prime}=S$.
have S-as-four-block-mat: $S=$ four-block-mat H2-UL $\left(0_{m} 1(n-1)\right)\left(O_{m}(m\right.$ - 1) 1) S^{\prime}
unfolding S-def by (rule cong-four-block-mat, insert A S'-P3H2-DRQ3 H2-UL00-H00 H2-UL, auto)
show $S=P 3^{\prime} * P-H 2 * P 2^{\prime} * P 1^{\prime} * A *\left(Q 1 * Q 2 * Q 3^{\prime}\right)$ using $P 3^{\prime}-H 2-Q 3^{\prime}-S$ unfolding H2-eq
by $(s m t P 1 ~ P 1 '-d e f ~ P 2 ' ~ P 2 '-d e f ~ P 3 ~ P 3 '-d e f ~ P-H 2 ~ Q 1 ~ Q 2 ~ Q 3 ' ~ Q 3 '-d e f ~ S ~$ Q-final-carrier P-final-carrier assoc-mult-mat carrier-matD carrier-mat-triv index-mat-four-block(2,3)
index-mult-mat(2,3))
have H00-dvd-all-H2: $H \$ \$(0,0)$ dvd H2 $\$ \(i, j) if $i: i<m$ and $j: j<n$ for $i j$ using dvd-elements-mult-matrix-left[OF H P-H2] H00-dvd-all i j P-H2-H-H2 by blast
hence H00-dvd-all-S: $H \$(0,0) d v d S \$ \(i, j) if $i: i<m$ and $j: j<n$ for $i j$ using dvd-elements-mult-matrix-left-right[OF H2 P3' Q3] P3'-H2-Q3'-S i j by auto
show Smith-normal-form-mat S
proof (rule Smith-normal-form-mat-intro)
show isDiagonal-mat S
proof (unfold isDiagonal-mat-def, rule +)
fix $i j$ assume $i \neq j \wedge i<$ dim-row $S \wedge j<$ dim-col S
hence $i j: i \neq j$ and $i: i<$ dim-row S and $j: j<\operatorname{dim}-c o l S$ by auto
have $i 2: i<$ dim-row H2-UL + dim-row S^{\prime} and $j 2: j<$ dim-col H2- $U L+$ dim-col S^{\prime}
using S-as-four-block-mat $i j$ by auto
have $S \$ \$(i, j)=$ (if $i<$ dim-row H2-UL then if $j<$ dim-col H2-UL then H2-UL $\$ \(i, j)
else $\left(0_{m} 1(n-1)\right) \$ \$(i, j-$ dim-col H2-UL) else if $j<d i m-c o l H 2-U L$
then $\left(O_{m}(m-1)\right.$ 1) $\$ \$(i-$ dim-row H2-UL, $j)$ else $S^{\prime} \$ \$(i-d i m-r o w$ H2-UL, j - dim-col H2-UL))
by (unfold S-as-four-block-mat, rule index-mat-four-block(1)[OF i2 j2])
also have $\ldots=0($ is ?lhs $=0)$
proof (cases $i=0 \vee j=0$)
case True
then show ?thesis unfolding S-def using ij ij S H2-UL by fastforce next
case False
have diag- S^{\prime} : isDiagonal-mat S^{\prime} using $S N F-S^{\prime}$ unfolding Smith-normal-form-mat-def by simp
have i-not- $0: i \neq 0$ and j-not- $0: j \neq 0$ using False by auto
hence ?lhs $=S^{\prime} \$ \$(i-$ dim-row H2-UL, $j-$ dim-col H2-UL) using $i j i j$ H2-UL by auto
also have $\ldots=0$ using diag- $S^{\prime} S^{\prime}$ H2-UL i-not-0 j-not-0 $i j$ unfolding isDiagonal-mat-def
by (smt S-as-four-block-mat add-diff-inverse-nat add-less-cancel-left carrier-matD i
index-mat-four-block $(2,3)$ j less-one)
finally show ?thesis .
qed
finally show $S \$ \$(i, j)=0$.
qed
show $\forall a . a+1<\min ($ dim-row $S)($ dim-col $S) \longrightarrow S \$ \$(a, a) d v d S \$ \$(a$ $+1, a+1)$
proof safe
fix i assume $i: i+1<\min ($ dim-row $S)(d i m-c o l S)$
show $S \$ \$(i, i) d v d S \$ \$(i+1, i+1)$
proof (cases $i=0$)
case True
have $S \$ \$(0,0)=H \$ \$(0,0)$ using H2-UL H2-UL00-H00 S-as-four-block-mat by auto
also have ... dvd $S \$ \$(1,1)$ using $H 00-d v d$-all-S i m n by auto
finally show? thesis using True by simp
next
case False
have $S \$ \$(i, i)=S^{\prime} \$ \$(i-1, i-1)$ using False S-def i by auto
also have ... dvd $S^{\prime} \$ \(i, i) using $S N F-S^{\prime} i S^{\prime} S$ unfolding Smith-normal-form-mat-def
by (smt False H2-UL S-as-four-block-mat add.commute add-diff-inverse-nat carrier-matD
index-mat-four-block(2,3) less-one min-less-iff-conj nat-add-left-cancel-less)
also have $\ldots=S \$ \$(i+1, i+1)$ using False S-def i by auto
finally show ?thesis.
qed
qed
qed
qed
qed

16.4 Soundness theorem

theorem is-SNF-Smith-mxn:
assumes $A: A \in$ carrier-mat $m n$
shows is-SNF A (Smith-mxn A)
using is-SNF-Smith-mxn-ge-2[OF A] is-SNF-Smith-mxn-less-2[OF A] by linarith
declare Smith-mxn.simps[code]
end
declare Smith-Impl.Smith-mxn.simps[code-unfold]
definition T-spec :: ('a::\{comm-ring-1\} $\left.\Rightarrow^{\prime} a \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a \times{ }^{\prime} a\right)\right) \Rightarrow$ bool
where T-spec $T=\left(\forall a b::^{\prime} a\right.$. let $(a 1, b 1, d)=T a b$ in

$$
a=a 1 * d \wedge b=b 1 * d \wedge \text { ideal-generated }\{a 1, b 1\}=\text { ideal-generated }
$$

\{1\})

```
definition \(D^{\prime}\)-spec :: ('a::\{comm-ring-1\} \(\left.\Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)\right) \Rightarrow\) bool
    where \(D^{\prime}\)-spec \(D^{\prime}=\left(\forall a b c::^{\prime} a\right.\). let \((p, q)=D^{\prime} a b c\) in
        ideal-generated \(\{a, b, c\}=\) ideal-generated \(\{1\}\)
        \(\longrightarrow\) ideal-generated \(\{p * a, p * b+q * c\}=\) ideal-generated \(\{1\}\) )
```

end

17 The Smith normal form algorithm in HOL Analysis

theory SNF-Algorithm-HOL-Analysis
imports
SNF-Algorithm
Admits-SNF-From-Diagonal-Iff-Bezout-Ring
begin

17.1 Transferring the result from JNF to HOL Anaylsis

definition Smith-mxn-HMA :: (('a::comm-ring-1^2) $\left.\Rightarrow\left(\left({ }^{\prime} a^{\wedge} 2\right) \times\left({ }^{\prime} a^{\wedge} 2{ }^{2} 2\right)\right)\right)$

where
Smith-mxn-HMA Smith-1x2 Smith-2x2 div-op $A=$
(let Smith-1x2-JNF $=\left(\lambda A^{\prime}\right.$. let $\left(S^{\prime}, Q^{\prime}\right)=$ Smith-1x2 (Mod-Type-Connect.to-hma ${ }_{v}$ (Matrix.row $\left.A^{\prime} 0\right)$)
in (mat-of-row (Mod-Type-Connect.from-hmav S^{\prime}),
Mod-Type-Connect.from-hma $\left.{ }_{m} Q^{\prime}\right)$);
Smith-2x2-JNF $=\left(\lambda A^{\prime}\right.$. let $\left(P^{\prime}, S^{\prime}, Q^{\prime}\right)=$ Smith-2x2 (Mod-Type-Connect.to-hma a_{m} A^{\prime})
in (Mod-Type-Connect.from-hma ${ }_{m} P^{\prime}$, Mod-Type-Connect.from-hma ${ }_{m}$
S^{\prime}, Mod-Type-Connect.from-hma $\left.a_{m} Q^{\prime}\right)$;
$(P, S, Q)=$ Smith-Impl.Smith-mxn Smith-1x2-JNF Smith-2x2-JNF div-op (Mod-Type-Connect.from-hma a_{m})
in (Mod-Type-Connect.to-hma ${ }_{m}$ P, Mod-Type-Connect.to-hma ${ }_{m}$ S, Mod-Type-Connect.to-hma ${ }_{m}$ Q)
)
definition is-SNF-HMA A $R=($ case R of $(P, S, Q) \Rightarrow$
invertible $P \wedge$ invertible Q
\wedge Smith-normal-form $S \wedge S=P * * A * * Q$)

17.2 Soundness in HOL Anaylsis

lemma is-SNF-Smith-mxn-HMA:
fixes $A::^{\prime} a::$ comm-ring- 1 ^ $n::$ mod-type ^' $m::$ mod-type
assumes $P S Q:(P, S, Q)=$ Smith-mxn-HMA Smith-1x2 Smith-2x2 div-op A
and SNF-1x2-works: $\forall A$. let $\left(S^{\prime}, Q\right)=$ Smith-1x2 A in $S^{\prime} \$ h 1=0 \wedge$ invertible
$Q \wedge S^{\prime}=A v * Q$
and SNF-2x2-works: $\forall A$. is-SNF-HMA A (Smith-2x2 A)
and d : is-div-op div-op
shows is-SNF-HMA A (P, S, Q)
proof -
let ?A $=$ Mod-Type-Connect.from-hma $a_{m} A$
define Smith-1x2-JNF where Smith-1x2-JNF $=\left(\lambda A^{\prime}\right.$. let $\left(S^{\prime}, Q^{\prime}\right)$
$=$ Smith-1x2 (Mod-Type-Connect.to-hma $\quad\left(\right.$ Matrix.row $\left.\left.A^{\prime} 0\right)\right)$
in (mat-of-row (Mod-Type-Connect.from-hmav S^{\prime}), Mod-Type-Connect.from-hma ${ }_{m}$ $\left.Q^{\prime}\right)$)
define Smith-2x2-JNF where Smith-2x2-JNF $=\left(\lambda A^{\prime}\right.$. let $\left(P^{\prime}, S^{\prime}, Q^{\prime}\right)=$ Smith-2x2
(Mod-Type-Connect.to-hma A_{m})
in (Mod-Type-Connect.from-hma ${ }_{m} P^{\prime}$, Mod-Type-Connect.from-hma ${ }_{m} S^{\prime}$, Mod-Type-Connect.from-hma a_{m} $\left.Q^{\prime}\right)$)
obtain $P^{\prime} S^{\prime} Q^{\prime}$ where $P^{\prime} S^{\prime} Q^{\prime}:\left(P^{\prime}, S^{\prime}, Q^{\prime}\right)=$ Smith-Impl.Smith-mxn Smith-1x2-JNF
Smith-2x2-JNF div-op?A
by (metis prod-cases3)
have $P S Q-P^{\prime} S^{\prime} Q^{\prime}:(P, S, Q)=$
(Mod-Type-Connect.to-hma ${ }_{m} P^{\prime}$, Mod-Type-Connect.to-hma ${ }_{m} S^{\prime}$, Mod-Type-Connect.to-hma ${ }_{m}$ $\left.Q^{\prime}\right)$
using $P S Q P^{\prime} S^{\prime} Q^{\prime}$ Smith-1x2-JNF-def Smith-2x2-JNF-def
unfolding Smith-mxn-HMA-def Let-def by (metis case-prod-conv)
have SNF-1x2-works': $\forall\left(A::^{\prime} a\right.$ mat $) \in$ carrier-mat 1 2. is-SNF A ($1 m$ 1, (Smith-1x2-JNF
A))
proof (rule+)
fix $A^{\prime}::^{\prime}$ a mat assume $A^{\prime}: A^{\prime} \in$ carrier-mat 12
let $?^{\prime} A^{\prime}=\left(\right.$ Mod-Type-Connect.to-hmav $\left(\right.$ Matrix.row $\left.\left.A^{\prime} 0\right)\right):^{\prime} a^{\wedge}{ }^{\text {^2 }}$
obtain S2 Q2 where $S^{\prime} Q^{\prime}:(S 2, Q 2)=$ Smith-1x2 ? A^{\prime}
by (metis surjective-pairing)
let ? S2 $=($ Mod-Type-Connect.from-hmav S2 $)$
let ? $S^{\prime}=$ mat-of-row ?S2
let ${ }^{2} Q^{\prime}=$ Mod-Type-Connect.from-hma a_{m} Q2
have [transfer-rule]: Mod-Type-Connect.HMA-V ?S2 S2
unfolding Mod-Type-Connect.HMA-V-def by auto
have [transfer-rule]: Mod-Type-Connect.HMA-M ?Q' Q2
unfolding Mod-Type-Connect.HMA-M-def by auto
have $[$ transfer-rule]: Mod-Type-Connect.HMA-I 1 (1::2)
unfolding Mod-Type-Connect.HMA-I-def by (simp add: to-nat-1)
have $c\left[\right.$ transfer-rule]: Mod-Type-Connect.HMA-V ((Matrix.row $\left.\left.A^{\prime} 0\right)\right) ? A^{\prime}$
unfolding Mod-Type-Connect.HMA-V-def
by (rule from-hma-to-hma $[$ symmetric $]$, insert A^{\prime}, auto simp add: Ma-
trix.row-def)
have *: Smith-1x2-JNF $A^{\prime}=\left(? S^{\prime}, ? Q^{\prime}\right)$ by (metis Smith-1x2-JNF-def $S^{\prime} Q^{\prime}$ case-prod-conv)
show is-SNF $A^{\prime}\left(1_{m} 1\right.$, Smith-1x2-JNF $\left.A^{\prime}\right)$ unfolding *
proof (rule is-SNF-intro)
let ?row- $A^{\prime}=\left(\right.$ Matrix.row $\left.A^{\prime} 0\right)$
have w: S2 $\$ h 1=0 \wedge$ invertible $Q 2 \wedge S 2=? A^{\prime} v * Q 2$
using $S N F-1 x 2$-works by (metis (mono-tags, lifting) $S^{\prime} Q^{\prime}$ fst-conv prod.case-eq-if snd-conv)
have ?S2 \$v $1=0$ using $w[$ untransferred $]$ by auto
thus Smith-normal-form-mat ? S^{\prime} unfolding Smith-normal-form-mat-def
isDiagonal-mat-def
by (auto simp add: less-2-cases-iff)
have $S_{2-Q 2-A: ~ S 2 ~}^{2}$ transpose $Q 2 * v$? A^{\prime} using w transpose-matrix-vector by auto
have S2-Q2-A': ?S2 $=$ transpose-mat ? $Q^{\prime} *_{v}\left(\left(\right.\right.$ Matrix.row $\left.\left.A^{\prime} 0\right)\right)$ using S2-Q2- A by transfer ${ }^{\prime}$
show $1_{m} 1 \in$ carrier-mat (dim-row $\left.A^{\prime}\right)\left(\right.$ dim-row $\left.A^{\prime}\right)$ using A^{\prime} by auto
show ? $Q^{\prime} \in$ carrier-mat (dim-col $\left.A^{\prime}\right)\left(\right.$ dim-col $\left.A^{\prime}\right)$ using A^{\prime} by auto
show invertible-mat ($1_{m} 1$) by auto
show invertible-mat ? Q^{\prime} using $w[$ untransferred $]$ by auto
have ? $S^{\prime}=A^{\prime} * ? Q^{\prime}$
proof (rule eq-matI)
show dim-row ? $S^{\prime}=$ dim-row $\left(A^{\prime} * ? Q^{\prime}\right)$ and dim-col ? $S^{\prime}=\operatorname{dim-col}\left(A^{\prime} *\right.$ $\left.? Q^{\prime}\right)$
using A^{\prime} by auto
fix $i j$ assume $i: i<\operatorname{dim}$-row $\left(A^{\prime} * ? Q^{\prime}\right)$ and $j: j<\operatorname{dim}-\operatorname{col}\left(A^{\prime} * ? Q^{\prime}\right)$
have? $S^{\prime} \$ \$(i, j)=? S^{\prime} \$ \$(0, j)$
by (metis A^{\prime} One-nat-def carrier-matD(1) i index-mult-mat(2) less-Suc0)
also have $\ldots=$? $S 2 \$ v j$ using j by auto
also have $\ldots=\left(\right.$ transpose-mat $? Q^{\prime} *_{v}$?row- A^{\prime}) $\$ v j$ unfolding S2-Q2- A^{\prime} by simp
also have $\ldots=$ Matrix.row (transpose-mat ? Q^{\prime}) $j \cdot$?row- A^{\prime}
by (rule index-mult-mat-vec, insert j, auto)
also have $\ldots=$ Matrix.col ? $Q^{\prime} j$ • ?row- A^{\prime} using j by auto
also have $\ldots=$? row- $A^{\prime} \cdot$ Matrix.col ? $Q^{\prime} j$
by (metis (no-types, lifting) Mod-Type-Connect.HMA-V-def Mod-Type-Connect.from-hma a_{m}-def
Mod-Type-Connect.from-hma ${ }_{v}$-def c col-def comm-scalar-prod dim-row-mat(1) vec-carrier)
also have $\ldots=\left(A^{\prime} * ? Q^{\prime}\right) \$ \$(0, j)$ using $A^{\prime} j$ by auto
finally show ? $S^{\prime} \$ \$(i, j)=\left(A^{\prime} * ? Q^{\prime}\right) \$ \(i, j) using $i j A^{\prime}$ by auto
qed
thus ? $S^{\prime}=1_{m} 1 * A^{\prime} * ? Q^{\prime}$ using A^{\prime} by auto
qed
qed
have SNF-2x2-works': $\forall\left(A::^{\prime}\right.$ a mat $) \in$ carrier-mat 2 2. is-SNF A (Smith-2x2-JNF A)
proof
fix $A^{\prime}::^{\prime} a$ mat assume $A^{\prime}: A^{\prime} \in$ carrier-mat 22
let ? $A^{\prime}=$ Mod-Type-Connect.to-hma $A_{m} A^{\prime}:^{\prime}$ ^2^2 $^{\text {®2 }}$
obtain P2 S2 Q2 where P2S2Q2: $\left(\right.$ P2, S2, Q2) $=$ Smith-2x2 ? A^{\prime}
by (metis prod-cases3)
let ? P2 $=$ Mod-Type-Connect.from-hma a_{m} P2
let ?S2 $=$ Mod-Type-Connect.from-hma a_{m} S2
let ? Q2 $=$ Mod-Type-Connect.from-hma ${ }_{m}$ Q2
have [transfer-rule]: Mod-Type-Connect.HMA-M ?Q2 Q2
and [transfer-rule]: Mod-Type-Connect.HMA-M ?P2 P2
and [transfer-rule]: Mod-Type-Connect.HMA-M ?S2 S2
and [transfer-rule]: Mod-Type-Connect.HMA-M $A^{\prime} ? A^{\prime}$
unfolding Mod-Type-Connect.HMA-M-def using A^{\prime} by auto
have is-SNF A^{\prime} (?P2,?S2,?Q2)
proof -
have P2: ?P2 \in carrier-mat (dim-row $\left.A^{\prime}\right)\left(\right.$ dim-row $\left.A^{\prime}\right)$ and

Q2: ? Q2 \in carrier-mat (dim-col $\left.A^{\prime}\right)\left(\right.$ dim-col $\left.A^{\prime}\right)$ using A^{\prime} by auto
have is-SNF-HMA ? $A^{\prime}(P 2, S 2, Q 2)$ using $S N F-2 x 2$-works by (simp add: P2S2Q2)
hence invertible P2 ^ invertible Q2 \wedge Smith-normal-form S2 \wedge S2 $=P 2{ }^{* *}$? A^{\prime} ** $Q 2$
unfolding is-SNF-HMA-def by auto
from this[untransferred] show ?thesis using P2 Q2 unfolding is-SNF-def by auto
qed
thus $i s-S N F A^{\prime}\left(\right.$ Smith-2x2-JNF $\left.A^{\prime}\right)$ using P2S2Q2 by (metis Smith-2x2-JNF-def case-prod-conv)
qed
interpret Smith-Impl Smith-1x2-JNF Smith-2x2-JNF div-op using SNF-2x2-works' SNF-1x2-works' d by (unfold-locales, auto)
have $A: ? A \in$ carrier-mat $C A R D(' m) C A R D(' n)$ by auto
have is-SNF ?A (Smith-Impl.Smith-mxn Smith-1x2-JNF Smith-2x2-JNF div-op ?A)
by (rule is-SNF-Smith-mxn[OF A])
hence inv- P^{\prime} : invertible-mat P^{\prime}
and Smith- S^{\prime} : Smith-normal-form-mat S^{\prime} and inv- Q^{\prime} : invertible-mat Q^{\prime}
and $S^{\prime}-P^{\prime} A Q^{\prime}: S^{\prime}=P^{\prime} * ? A * Q^{\prime}$
and $P^{\prime}: P^{\prime} \in$ carrier-mat (dim-row ?A) (dim-row ?A)
and $Q^{\prime}: Q^{\prime} \in$ carrier-mat (dim-col ?A) (dim-col ?A)
unfolding is-SNF-def $P^{\prime} S^{\prime} Q^{\prime}[$ symmetric $]$ by auto
have $S^{\prime}: S^{\prime} \in$ carrier-mat (dim-row ?A) (dim-col ?A) using $P^{\prime} Q^{\prime} S^{\prime}-P^{\prime} A Q^{\prime}$ by auto
have [transfer-rule]: Mod-Type-Connect.HMA-M $P^{\prime} P$
and [transfer-rule]: Mod-Type-Connect.HMA-M $S^{\prime} S$
and [transfer-rule]: Mod-Type-Connect.HMA-M $Q^{\prime} Q$
and [transfer-rule]: Mod-Type-Connect.HMA-M ?A A
unfolding Mod-Type-Connect.HMA-M-def using $P S Q-P^{\prime} S^{\prime} Q^{\prime}$
using from-hma-to-hma a_{m} [symmetric $] P^{\prime} A Q^{\prime} S^{\prime}$ by auto
have inv- Q : invertible Q using inv- Q^{\prime} by transfer
moreover have Smith-S: Smith-normal-form S using Smith- S^{\prime} by transfer
moreover have inv- P : invertible P using inv- P^{\prime} by transfer
moreover have $S=P * * A * * Q$ using $S^{\prime}-P^{\prime} A Q^{\prime}$ by transfer
thus ?thesis using inv- Q inv- P Smith-S unfolding is-SNF-HMA-def by auto qed
end

18 Elementary divisor rings

```
theory Elementary-Divisor-Rings
    imports
        SNF-Algorithm
        Rings2-Extended
begin
```

This theory contains the definition of elementary divisor rings and Hermite
rings, as well as the corresponding relation between both concepts. It also includes a complete characterization for elementary divisor rings, by means of an if and only if-statement.
The results presented here follows the article "Some remarks about elementary divisor rings" by Leonard Gillman and Melvin Henriksen.

18.1 Previous definitions and basic properties of Hermite ring

definition admits-triangular-reduction $A=$
$\left(\exists U::^{\prime} a::\right.$ comm-ring-1 mat. $U \in$ carrier-mat $($ dim-col $A)($ dim-col $A)$
\wedge invertible-mat $U \wedge$ lower-triangular $(A * U))$
class Hermite-ring $=$
assumes \forall ($A::^{\prime} a::$ comm-ring-1 mat) . admits-triangular-reduction A
lemma admits-triangular-reduction-intro:
assumes invertible-mat ($U::^{\prime} a::$ comm-ring-1 mat)
and $U \in$ carrier-mat (dim-col A) (dim-col A)
and lower-triangular $(A * U)$
shows admits-triangular-reduction A
using assms unfolding admits-triangular-reduction-def by auto
lemma OFCLASS-Hermite-ring-def:
OFCLASS ('a::comm-ring-1, Hermite-ring-class)
$\equiv\left(\bigwedge\left(A::^{\prime} a::\right.\right.$ comm-ring-1 mat). admits-triangular-reduction $\left.A\right)$
proof
fix $A::^{\prime} a$ mat
assume H : OFCLASS ('a::comm-ring-1, Hermite-ring-class $)$
have \forall A. admits-triangular-reduction ($A::^{\prime}$ 'a mat)
using conjunctionD2[OF H[unfolded Hermite-ring-class-def class.Hermite-ring-def]] by auto
thus admits-triangular-reduction A by auto
next
assume $i:\left(\bigwedge A::^{\prime}\right.$ a mat. admits-triangular-reduction $\left.A\right)$
show OFCLASS ('a, Hermite-ring-class)
proof
show $\forall A$::'a mat. admits-triangular-reduction A using i by auto
qed
qed
definition admits-diagonal-reduction::'a::comm-ring-1 mat \Rightarrow bool
where admits-diagonal-reduction $A=(\exists P Q . P \in$ carrier-mat (dim-row $A)$
$($ dim-row $A) \wedge$
$Q \in$ carrier-mat (dim-col $A)(d i m-c o l A)$
\wedge invertible-mat $P \wedge$ invertible-mat Q
\wedge Smith-normal-form-mat $(P * A * Q))$
lemma admits-diagonal-reduction-intro:
assumes $P \in$ carrier-mat (dim-row A) (dim-row $A)$
and $Q \in$ carrier-mat (dim-col $A)(d i m-c o l A)$
and invertible-mat P and invertible-mat Q
and Smith-normal-form-mat $(P * A * Q)$
shows admits-diagonal-reduction A using assms unfolding admits-diagonal-reduction-def by fast
lemma admits-diagonal-reduction-imp-exists-algorithm-is-SNF: assumes $A \in$ carrier-mat $m n$ and admits-diagonal-reduction A
shows \exists algorithm. is-SNF A (algorithm A)
using assms unfolding is-SNF-def admits-diagonal-reduction-def
by auto
lemma exists-algorithm-is-SNF-imp-admits-diagonal-reduction:
assumes $A \in$ carrier-mat $m n$
and \exists algorithm. is-SNF A (algorithm A)
shows admits-diagonal-reduction A
using assms unfolding is-SNF-def admits-diagonal-reduction-def
by auto
lemma admits-diagonal-reduction-eq-exists-algorithm-is-SNF:
assumes $A: A \in$ carrier-mat $m n$
shows admits-diagonal-reduction $A=(\exists$ algorithm. is-SNF $A($ algorithm $A))$
using admits-diagonal-reduction-imp-exists-algorithm-is-SNF[OF A]
using exists-algorithm-is-SNF-imp-admits-diagonal-reduction $[O F A]$
by auto
lemma admits-diagonal-reduction-imp-exists-algorithm-is-SNF-all:
 A)
shows $\left(\exists\right.$ algorithm. $\forall\left(A::^{\prime} a\right.$ mat $) \in$ carrier-mat m n. is-SNF $A($ algorithm $\left.A)\right)$
proof -
let ?algorithm $=\lambda A . \operatorname{SOME}(P, S, Q) . i s-S N F A(P, S, Q)$
show ?thesis
by (rule exI[of - ?algorithm]) (metis (no-types, lifting)
admits-diagonal-reduction-imp-exists-algorithm-is-SNF assms case-prod-beta prod.collapse someI)
qed
lemma exists-algorithm-is-SNF-imp-admits-diagonal-reduction-all:
assumes $\left(\exists\right.$ algorithm. $\forall\left(A::^{\prime} a\right.$ mat $) \in$ carrier-mat $m n$. is-SNF $A($ algorithm $\left.A)\right)$
shows $\left(\forall\left(A:::^{\prime} a::\right.\right.$ comm-ring-1 mat $) \in$ carrier-mat m n. admits-diagonal-reduction
A)
using assms exists-algorithm-is-SNF-imp-admits-diagonal-reduction by blast
lemma admits-diagonal-reduction-eq-exists-algorithm-is-SNF-all:

A)
$=\left(\exists\right.$ algorithm. $\forall\left(A::^{\prime} a\right.$ mat $) \in$ carrier-mat $m n$. is-SNF $A($ algorithm $\left.A)\right)$
using exists-algorithm-is-SNF-imp-admits-diagonal-reduction-all
using admits-diagonal-reduction-imp-exists-algorithm-is-SNF-all by auto

18.2 The class that represents elementary divisor rings

class elementary-divisor-ring $=$
assumes \forall (A::'a::comm-ring-1 mat). admits-diagonal-reduction A
lemma dim-row-mat-diag[simp]: dim-row (mat-diag $n f)=n$ and dim-col-mat-diag[simp]: dim-col $($ mat-diag $n f)=n$
using mat-diag-dim unfolding carrier-mat-def by auto+

18.3 Hermite ring implies Bézout ring

To prove this fact, we make use of the alternative definition for Bézout rings: each finitely generated ideal is principal

```
lemma Hermite-ring-imp-Bezout-ring:
    assumes H:OFCLASS('a::comm-ring-1, Hermite-ring-class)
    shows OFCLASS('a::comm-ring-1, bezout-ring-class)
proof (rule all-fin-gen-ideals-are-principal-imp-bezout,rule+)
    fix I::'a set assume fin: finitely-generated-ideal I
    obtain S where ig-S: ideal-generated S=I and fin-S: finite S
        using fin unfolding finitely-generated-ideal-def by auto
    obtain xs where set-xs: set xs =S and d: distinct xs
        using finite-distinct-list[OF fin-S] by blast
    hence length-eq-card:length xs = card S using distinct-card by force
    define }n\mathrm{ where n= card S
    define }A\mathrm{ where }A=\mathrm{ mat-of-rows n [vec-of-list xs]
    have }A[simp]:A\in\mathrm{ carrier-mat 1 n unfolding A-def using mat-of-rows-carrier
by auto
    have }\forall(A::'a::comm-ring-1 mat). admits-triangular-reduction A
        using H unfolding OFCLASS-Hermite-ring-def by auto
    from this obtain Q where inv-Q: invertible-mat Q and t-AQ:lower-triangular
(A*Q)
        and Q[simp]:Q carrier-mat n n
        unfolding admits-triangular-reduction-def using A by auto
    have }AQ[simp]:A*Q\in\mathrm{ carrier-mat 1 n using A Q by auto
    show principal-ideal I
    proof (cases xs=[])
    case True
```

```
    then show ?thesis
            by (metis empty-set ideal-generated-0 ideal-generated-empty ig-S princi-
pal-ideal-def set-xs)
    next
        case False
    have a: 0<dim-row A using A by auto
    have 0< length xs using False by auto
    hence b: 0<dim-col A using A n-def length-eq-card by auto
    have q0: 0 < dim-col Q by (metis A Q b carrier-matD(2))
    have n0: 0<n using <0< length xs` length-eq-card n-def by linarith
    define d where d=( }A*Q)$$(0,0
        let ?h = (\lambdax. THE i. xs ! i=x^i<n)
        let ?u = \lambdai. xs ! i
        have bij: bij-betw ?h (set xs) {0..<n}
        proof (rule bij-betw-imageI)
            show inj-on ?h (set xs)
            proof -
                have x=y if x:x\in set xs and y:y\in set xs
                    and xy:(THE i. xs ! i=x^i<n)=(THE i.xs!i=y^i<n)
for }x
                proof -
                    let ?i = (THE i. xs ! i= x^i< n)
                let ?j = (THE i. xs ! i= y^i<n)
                    obtain i where xs-i:xs!i=x\wedge i<n using x
                by (metis in-set-conv-nth length-eq-card n-def)
            from this have 1: xs !? i = x ^? i<n
                by (rule theI, insert d xs-i length-eq-card n-def nth-eq-iff-index-eq,
fastforce)
            obtain j where xs-j:xs ! j=y^j<n using y
                by (metis in-set-conv-nth length-eq-card n-def)
            from this have 2: xs !?j = y ^ ?j < n
                by (rule theI, insert d xs-j length-eq-card n-def nth-eq-iff-index-eq,
fastforce)
            show ?thesis using 1 2 d xy by argo
    qed
    thus ?thesis unfolding inj-on-def by auto
    qed
    show (\lambdax. THE i. xs ! i=x^i<n)' set xs = {0..<n}
    proof (auto)
        fix xa assume xa: xa & set xs
        let ?i=(THE i. xs ! i= xa^i<n)
        obtain i where xs-i:xs!i=xa\wedgei<n using xa
            by (metis in-set-conv-nth length-eq-card n-def)
            from this have 1:xs!? i = xa ^ ?i<n
                by (rule theI, insert d xs-i length-eq-card n-def nth-eq-iff-index-eq,
fastforce)
    thus (THE i. xs ! i= xa^i<n)<n by simp
    next
    fix }x\mathrm{ assume }x:x<
```

 have \(\exists x a \in\) set xs. \(x=(\) THE i. xs \(!i=x a \wedge i<n)\)
 by (rule bexI[of-xs!x], rule the-equality[symmetric], insert \(x d\))
 (auto simp add: length-eq-card \(n\)-def nth-eq-iff-index-eq)+
 thus \(x \in(\lambda x\).THE \(i\). \(x s!i=x \wedge i<n)\) 'set \(x s\) unfolding image-def
 by auto
qed
qed
have i : ideal-generated $\{d\}=$ ideal-generated S
proof -
have ideal-S-explicit: ideal-generated $S=\left\{y . \exists f .\left(\sum i \in S . f i * i\right)=y\right\}$
unfolding ideal-explicit2[OF fin-S] by simp
have ideal-generated $\{d\} \subseteq$ ideal-generated S
proof (rule ideal-generated-subset2, auto simp add: ideal-S-explicit)
have n : dim-vec $(\operatorname{col} Q 0)=n$ using Q-def by auto
have aux: Matrix.row A $0 \$ v i=x s!i$ if $i: i<n$ for i
proof -
have $i 2: i<d i m-\operatorname{col} A$
by (simp add: A-def i)
have Matrix.row A $0 \$ v i=A \$ \$(0, i)$ by (rule index-row(1), auto simp
add: $a b i 2$)
also have $\ldots=[v e c-o f-l i s t x s]!0 \$ v i$
unfolding A-def by (rule mat-of-rows-index, auto simp add: i)
also have $\ldots=x s!i$
by (simp add: vec-of-list-index)
finally show ?thesis .
qed
let ?f $=\lambda$. let $i=($ THE $i . x s!i=x \wedge i<n)$ in col $Q 0 \$ v i$
let $? g=(\lambda i$. xs ! $i * \operatorname{col} Q 0 \$ v i)$
have $d=(A * Q) \$ \$(0,0)$ unfolding d-def by simp
also have $\ldots=$ Matrix.row $A 0 \cdot \operatorname{col} Q 0$ by (rule index-mult-mat(1)[OF a
q0])
also have $\ldots=\left(\sum i=0 . .<\right.$ dim-vec $(\operatorname{col} Q 0)$. Matrix.row A $0 \$ v i * \operatorname{col} Q$
$0 \$ v i)$
unfolding scalar-prod-def by simp
also have $\ldots=\left(\sum i=0 . .<n\right.$. Matrix.row $\left.A 0 \$ v i * \operatorname{col} Q 0 \$ v i\right)$ unfolding
n by auto
also have $\ldots=\left(\sum i=0 . .<n . x s!i * \operatorname{col} Q 0 \$ v i\right)$
by (rule sum.cong, auto simp add: aux)
also have $\ldots=\left(\sum x \in\right.$ set $x s$. ? $\left.g(? h x)\right)$
by (rule sum.reindex-bij-betw[symmetric, OF bij])
also have $\ldots=\left(\sum x \in\right.$ set x s. ?f $\left.x * x\right)$
proof (rule sum.cong, auto simp add: Let-def)
fix x assume $x: x \in$ set $x s$
let $? i=($ THE $i . x s!i=x \wedge i<n)$
obtain i where $x s-i: x s!i=x \wedge i<n$
by (metis in-set-conv-nth x length-eq-card n-def)
from this have $x s!? i=x \wedge ? i<n$
by (rule theI, insert d xs-i length-eq-card n-def nth-eq-iff-index-eq, fastforce)
thus $x s!? i * \operatorname{col} Q 0 \$ v ? i=\operatorname{col} Q 0 \$ v ? i * x$ by auto qed
also have $\ldots=\left(\sum x \in S\right.$. ?f $\left.x * x\right)$ using set-xs by auto
finally show $\exists f .\left(\sum i \in S . f i * i\right)=d$ by auto
qed
moreover have ideal-generated $S \subseteq$ ideal-generated $\{d\}$
proof
fix x assume $x: x \in$ ideal-generated S thm Matrix.diag-mat-def
hence x-xs: $x \in$ ideal-generated (set xs) by (simp add: set-xs)
from this obtain f where $f:\left(\sum i \in(\right.$ set $\left.x s) . f i * i\right)=x$ using x ideal-explicit2 by auto
define B where $B=$ Matrix.vec $n(\lambda i . f(A \$ \$(0, i)))$
have $B: B \in$ carrier-vec n unfolding B-def by auto
have $\left(A *_{v} B\right) \$ v 0=$ Matrix.row $A 0 \cdot B$ by (rule index-mult-mat-vec $[O F$ a])
also have $\ldots=\operatorname{sum}(\lambda i . f(A \$ \$(0, i)) * A \$ \$(0, i))\{0 . .<n\}$
unfolding B-def Matrix.row-def scalar-prod-def by (rule sum.cong, auto simp add: A-def)
also have $\ldots=\operatorname{sum}(\lambda i . f i * i)($ set $x s)$
proof (rule sum.reindex-bij-betw)
have 1: inj-on $(\lambda x . A \$ \$(0, x))\{0 . .<n\}$
proof (unfold inj-on-def, auto)
fix $x y$ assume $x: x<n$ and $y: y<n$ and $x y: A \$ \$(0, x)=A \$ \$(0, y)$
have $A \$ \$(0, x)=[$ vec-of-list $x s]!0 \$ v x$
unfolding A-def by (rule mat-of-rows-index, insert $x y$, auto)
also have $\ldots=x s!x$ using x by (simp add: vec-of-list-index)
finally have $1: A \$ \$(0, x)=x s!x$.
have $A \$ \$(0, y)=[$ vec-of-list $x s]!0 \$ v y$
unfolding A-def by (rule mat-of-rows-index, insert $x y$, auto)
also have $\ldots=x s!y$ using y by (simp add: vec-of-list-index)
finally have 2: $A \$ \$(0, y)=x s!y$.
show $x=y$ using $12 x y d$ length-eq-card n-def nth-eq-iff-index-eq $x y$
by fastforce
qed
have 2: $A \$ \$(0, x a) \in$ set $x s$ if $x a: x a<n$ for $x a$
proof -
have $A \$ \$(0, x a)=[v e c$-of-list $x s]!0 \$ v x a$
unfolding A-def by (rule mat-of-rows-index, insert xa, auto)
also have $\ldots=x s!x a$ using $x a$ by (simp add: vec-of-list-index)
finally show ?thesis using $x a$ by (simp add: length-eq-card n-def)
qed
have 3: $x \in(\lambda x . A \$ \$(0, x))$ ' $\{0 . .<n\}$ if $x: x \in$ set $x s$ for x
proof -
obtain i where $x s: x s!i=x \wedge i<n$
by (metis in-set-conv-nth length-eq-card n-def x)
have $A \$ \$(0, i)=[v e c-o f-l i s t x s]!0 \$ v i$
unfolding A-def by (rule mat-of-rows-index, insert xs, auto)
also have $\ldots=x s!i$ using $x s$ by (simp add: vec-of-list-index)
finally show ?thesis using $x s$ unfolding image-def by auto
qed
show bij-betw $(\lambda x . A \$ \$(0, x))\{0 . .<n\}($ set $x s)$ using 123 unfolding bij-betw-def by auto
qed
finally have $A B 00-$ sum: $\left(A *_{v} B\right) \$ v 0=\operatorname{sum}(\lambda i . f i * i)$ (set $\left.x s\right)$ by auto
hence $A B-00-x$: $\left(A *_{v} B\right) \$ v 0=x$ using f by auto
obtain Q^{\prime} where $Q Q^{\prime}$: inverts-mat $Q Q^{\prime}$
and $Q^{\prime} Q$: inverts-mat $Q^{\prime} Q$ and $Q^{\prime}: Q^{\prime} \in$ carrier-mat $n n$
by (rule obtain-inverse-matrix $[O F Q$ inv- Q], auto)
have eq: $A=(A * Q) * Q^{\prime}$ using $Q Q^{\prime}$ unfolding inverts-mat-def
by (metis $A \quad Q Q^{\prime}$ assoc-mult-mat carrier-matD(1) right-mult-one-mat)
let $? g=\lambda i$. Matrix.row $(A * Q) 0 \$ v i *\left(\right.$ Matrix.row $\left.Q^{\prime} i \cdot B\right)$
have sum0: $\left(\sum i=1 . .<n\right.$. ?g $\left.i\right)=0$
proof (rule sum.neutral, rule)
fix x assume $x: x \in\{1 . .<n\}$
hence Matrix.row $(A * Q) 0 \$ v x=0$ using t - $A Q$ unfolding lower-triangular-def
by (auto, metis Q Suc-le-lessD a carrier-matD(2) index-mult-mat(2,3) index-row(1))
thus Matrix.row $(A * Q) 0 \$ v x *\left(\right.$ Matrix.row $\left.Q^{\prime} x \cdot B\right)=0$ by simp
qed
have set-rw: $\{0 . .<n\}-\{0\}=\{1 . .<n\}$
by (simp add: atLeast0LessThan atLeast1-lessThan-eq-remove0)
have mat-rw: $\left(A * Q * Q^{\prime}\right) *_{v} B=A * Q *_{v}\left(Q^{\prime} *_{v} B\right)$
by (rule assoc-mult-mat-vec, insert $Q Q^{\prime} B A Q$, auto)
from eq have $A *_{v} B=(A * Q) *_{v}\left(Q^{\prime} *_{v} B\right)$ using mat-rw by auto
from this have $\left(A *_{v} B\right) \$ v 0=\left(A * Q *_{v}\left(Q^{\prime} *_{v} B\right)\right) \$ v 0$ by auto
also have $\ldots=$ Matrix.row $(A * Q) 0 \cdot\left(Q^{\prime} *_{v} B\right)$
by (rule index-mult-mat-vec, insert a B-def n0, auto)
also have $\ldots=\left(\sum i=0 . .<n\right.$. ?g $\left.i\right)$ using Q^{\prime} by (auto simp add: scalar-prod-def)
also have $\ldots=$? $g 0+\left(\sum i \in\{0 . .<n\}-\{0\}\right.$. ?g $\left.i\right)$
by (metis (no-types, lifting) Q atLeastOLessThan carrier-matD(2) fi-nite-atLeastLessThan
lessThan-iff q0 sum.remove)
also have $\ldots=? g 0+\left(\sum i=1 . .<n\right.$. ?g $\left.i\right)$ using set-rw by simp
also have $\ldots=$? g 0 using sum0 by auto
also have $\ldots=d *\left(\right.$ Matrix.row $\left.Q^{\prime} 0 \cdot B\right)$ by (simp add: a d-def $q 0$)
finally show $x \in$ ideal-generated $\{d\}$ using $A B-00-x$ unfolding ideal-generated-singleton
using mult.commute by auto
qed
ultimately show ?thesis by auto
qed
thus principal-ideal I unfolding principal-ideal-def ig-S by blast
qed
qed

18.4 Elementary divisor ring implies Hermite ring

context
assumes SORT-CONSTRAINT('a::comm-ring-1)
begin
lemma triangularizable-m0:
assumes $A: A \in$ carrier-mat m 0
shows $\exists U . U \in$ carrier-mat $00 \wedge$ invertible-mat $U \wedge$ lower-triangular $(A * U)$
using A unfolding lower-triangular-def carrier-mat-def invertible-mat-def in-verts-mat-def
by auto (metis gr-implies-not0 index-one-mat(2) index-one-mat(3) right-mult-one-mat')
lemma triangularizable-0n:
assumes $A: A \in$ carrier-mat $0 n$
shows $\exists U . U \in$ carrier-mat $n n \wedge$ invertible-mat $U \wedge$ lower-triangular $(A * U)$
using A unfolding lower-triangular-def carrier-mat-def invertible-mat-def in-verts-mat-def
by auto (metis index-one-mat(2) index-one-mat(3) right-mult-one-mat')
lemma diagonal-imp-triangular-1x2:
assumes $A: A \in$ carrier-mat 12 and $d:$ admits-diagonal-reduction ($A::^{\prime} a$ mat)
shows admits-triangular-reduction A
proof -
obtain $P Q$ where $P: P \in$ carrier-mat (dim-row $A)(d i m-r o w ~ A)$
and $Q: Q \in$ carrier-mat (dim-col $A)(d i m-c o l ~ A)$
and inv-P: invertible-mat P and inv- Q : invertible-mat Q
and SNF: Smith-normal-form-mat $(P * A * Q)$
using d unfolding admits-diagonal-reduction-def by blast
have $(P * A * Q)=P *(A * Q)$ using $P Q$ assoc-mult-mat by blast
also have $\ldots=P \$ \$(0,0) \cdot m(A * Q)$ by (rule smult-mat-mat-one-element, insert $P A Q$, auto)
also have $\ldots=A *(P \$ \$(0,0) \cdot m Q)$ using Q by auto
finally have eq: $(P * A * Q)=A *(P \$ \$(0,0) \cdot m Q)$.
have inv: invertible-mat $(P \$ \$(0,0) \cdot m Q)$
proof -
have d : Determinant. det $P=P \$ \$(0,0)$ by (rule determinant-one-element, insert P A, auto)
from this have P-dvd-1: $P \$ \$(0,0) d v d 1$
using invertible-iff-is-unit-JNF[OF P] using inv-P by auto
have Q-dvd-1: Determinant.det Q dvd 1 using inv- Q invertible-iff-is-unit-JNF[OF
$Q]$ by simp
have Determinant.det $(P \$ \$(0,0) \cdot m Q)=P \$ \$(0,0) \wedge$ dim-col $Q *$ Determinant.det Q
unfolding det-smult by auto
also have ... dvd 1 using P-dvd-1 Q-dvd-1 unfolding is-unit-mult-iff by (metis dvdE dvd-mult-left one-dvd power-mult-distrib power-one)

```
    finally have det:(Determinant.det (P $$ (0,0) 官Q) dvd 1).
    have PQ:P$$(0,0)\cdotm}Q\in\mathrm{ carrier-mat 2 2 using A P Q by auto
    show ?thesis using invertible-iff-is-unit-JNF[OF PQ] det by auto
    qed
    moreover have lower-triangular ( }A*(P$$(0,0)\cdotm Q)) unfolding lower-triangular-def
using SNF eq
    unfolding Smith-normal-form-mat-def isDiagonal-mat-def by auto
    moreover have (P$$(0,0)\cdotm Q) \in carrier-mat (dim-col A) (dim-col A) using
PQ A by auto
    ultimately show ?thesis unfolding admits-triangular-reduction-def by auto
qed
lemma triangular-imp-diagonal-1x2:
assumes A:A\incarrier-mat 12 and t:admits-triangular-reduction (A::'a mat)
shows admits-diagonal-reduction A
proof -
    obtain U where U:U \in carrier-mat (dim-col A) (dim-col A)
    and inv-U: invertible-mat U and AU: lower-triangular (A*U)
    using t unfolding admits-triangular-reduction-def by blast
    have SNF-AU:Smith-normal-form-mat (A*U)
    using AU A unfolding Smith-normal-form-mat-def lower-triangular-def isDi-
agonal-mat-def by auto
    have }A*U=(1m 1)*A*U using A by aut
    hence SNF: Smith-normal-form-mat ((1m 1)*A*U) using SNF-AU by auto
    moreover have invertible-mat (1m 1)
    using invertible-mat-def inverts-mat-def by fastforce
    ultimately show ?thesis using inv-U unfolding admits-diagonal-reduction-def
    by (smt U assms(1) carrier-matD(1) one-carrier-mat)
qed
```

lemma triangular-eq-diagonal-1x2:
(\forall A carrier-mat 1 2. admits-triangular-reduction ($A::^{\prime} a$ mat) $)$
$=\left(\forall A \in\right.$ carrier-mat 1 2. admits-diagonal-reduction ($A::^{\prime}$ a mat) $)$
using triangular-imp-diagonal-1x2 diagonal-imp-triangular-1x2 by auto
lemma admits-triangular-mat-1x1:
assumes $A: A \in$ carrier-mat 11
shows admits-triangular-reduction ($A::^{\prime}$ a mat)
by (rule admits-triangular-reduction-intro[of $\left.1_{m} 1\right]$, insert A,
auto simp add: admits-triangular-reduction-def lower-triangular-def)
lemma admits-diagonal-mat-1x1:
assumes $A: A \in$ carrier-mat 11
shows admits-diagonal-reduction ($A::^{\prime}$ a mat)
by (rule admits-diagonal-reduction-intro[of ($1_{m} 1$) - ($1_{m} 1$)],
insert A, auto simp add: Smith-normal-form-mat-def isDiagonal-mat-def)

```
lemma admits-diagonal-imp-admits-triangular-1xn:
    assumes \(a\) : \(\forall A \in\) carrier-mat 1 2. admits-diagonal-reduction ( \(A::^{\prime} a\) mat)
    shows \(\forall A \in\) carrier-mat 1 n. admits-triangular-reduction (A::'a mat)
proof
    fix \(A::^{\prime} a\) mat assume \(A: A \in\) carrier-mat \(1 n\)
    have \(\exists U . U \in\) carrier-mat \((d i m-c o l A)(d i m-c o l ~ A)\)
        \(\wedge\) invertible-mat \(U \wedge\) lower-triangular \((A * U)\)
        using \(A\)
    proof (induct \(n\) arbitrary: A rule: less-induct)
        case (less n)
        note \(A=\) less.prems(1)
        show? case
        proof (cases \(n=0\) )
            case True
            then show ?thesis using triangularizable-m0 triangularizable-On less.prems
by auto
        next
            case False note nm-not- \(0=\) False
            from this have \(n\)-not- \(0: n \neq 0\) by auto
            show ?thesis
            proof (cases \(n>2\) )
            case False note \(n\)-less-2 \(=\) False
            show ?thesis using admits-triangular-mat-1x1 a diagonal-imp-triangular-1x2
                    unfolding admits-triangular-reduction-def
            by (metis (full-types) admits-triangular-mat-1x1 Suc-1 admits-triangular-reduction-def
                    less(2) less-Suc-eq less-one linorder-neqE-nat n-less-2 nm-not-0
triangular-eq-diagonal-1x2)
        next
            case True note \(n\)-ge-2 \(=\) True
            let ? \(B=\) mat-of-row (vec-last (Matrix.row A 0\()(n-1)\) )
            have \(\exists V . V \in\) carrier-mat (dim-col ?B) (dim-col ?B)
            \(\wedge\) invertible-mat \(V \wedge\) lower-triangular \((? B * V)\)
            proof (rule less.hyps)
                show \(n-1<n\) using \(n\)-not- 0 by auto
                    show mat-of-row (vec-last (Matrix.row A 0) \((n-1)) \in\) carrier-mat 1 ( \(n\)
\(-1)\)
                using \(A\) by simp
            qed
        from this obtain \(V\) where inv- \(V\) : invertible-mat \(V\) and \(B V\) : lower-triangular
\((? B * V)\)
            and \(V^{\prime}: V \in\) carrier-mat (dim-col ?B) (dim-col ?B)
            by fast
            have \(V: V \in\) carrier-mat \((n-1)(n-1)\) using \(V^{\prime}\) by auto
            have \(B V-0: \forall j \in\{1 . .<n-1\} .(? B * V) \$ \$(0, j)=0\)
                by (rule, rule lower-triangular-index \([O F B V]\), insert \(V\), auto)
```

define b where $b=(? B * V) \$ \$(0,0)$
define a where $a=A \$ \$(0,0)$
define $a b::^{\prime} a$ mat where $a b=$ Matrix.mat $12(\lambda(i, j)$. if $i=0 \wedge j=0$ then a else b)
have $a b[$ simp $]: a b \in$ carrier-mat 12 unfolding $a b-d e f$ by simp
hence admits-diagonal-reduction ab using a by auto
hence admits-triangular-reduction ab using diagonal-imp-triangular-1x2[OF $a b]$ by auto
from this obtain W where inv- W : invertible-mat W and $a b-W$: lower-triangular $(a b * W)$
and $W: W \in$ carrier-mat 22
unfolding admits-triangular-reduction-def using ab by auto
have id-n2-carrier $[\operatorname{simp}]: 1_{m}(n-2) \in$ carrier-mat $(n-2)(n-2)$ by auto
define U where $U=\left(\right.$ four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(n-1)\right)\left(O_{m}(n-1) 1\right)$ V) *
(four-block-mat W (0_{m} 2 (n-2)) ($0_{m}(n-2)$ 2) (1_{m} ($n-2)$))
let ?U1 = four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(n-1)\right)\left(0_{m}(n-1) 1\right) V$
let ? UZ $=$ four-block-mat $W\left(0_{m} 2(n-2)\right)\left(0_{m}(n-2)\right.$ 2) $\left(1_{m}(n-2)\right)$
have U1[simp]: ?U1 \in carrier-mat $n n$ using four-block-carrier-mat $[O F-V]$ nm-not-0
by fastforce
have U2[simp]: ?UZ \in carrier-mat n n using four-block-carrier-mat $[$ OF W id-n2-carrier]
by (metis True add-diff-inverse-nat less-imp-add-positive not-add-less1)
have $U[$ simp $]: U \in$ carrier-mat $n n$ unfolding U-def using $U 1$ U2 by auto moreover have inv- U : invertible-mat U
proof -
have invertible-mat ?U1
by (metis U1 V det-four-block-mat-lower-left-zero-col det-one inv-V invertible-iff-is-unit-JNF more-arith-simps(5) one-carrier-mat zero-carrier-mat)
moreover have invertible-mat ?U2
proof -
have Determinant.det? U2 $=$ Determinant.det W
by (rule det-four-block-mat-lower-right-id, insert less.prems W n-ge-2, auto)
also have ... dvd 1
using W inv- W invertible-iff-is-unit-JNF by auto
finally show ?thesis using invertible-iff-is-unit-JNF[OF U2] by auto
qed
ultimately show ?thesis
using U1 U2 U-def invertible-mult-JNF by blast
qed
moreover have lower-triangular $(A * U)$
proof -
let ? $A=$ Matrix.mat $1 n(\lambda(i, j)$. if $j=0$ then a else if $j=1$ then b else 0$)$
let ? $T=$ Matrix.mat $1 n(\lambda(i, j)$. if $j=0$ then $(a b * W) \$ \$(0,0)$ else 0$)$
have $A *$? $U 1=? A$

```
        proof (rule eq-matI)
    fix ij assume i: i<dim-row ?A and j:j<dim-col ?A
    have i0: i=0 using i by auto
    let ?f = \lambda i. A $$ (0,i)*
    (if i=0 then if j<1 then 1m
- 1)
    else if j<1 then Om
    have (A*?U1) $$ (i,j) = Matrix.row A i . col ?U1 j
        by (rule index-mult-mat, insert i j A V,auto)
    also have .. = (\sumi=0..<n. ?f i)
        using ij A V unfolding scalar-prod-def
        by auto (unfold index-one-mat, insert One-nat-def, presburger)
    also have ... = ?A $$ (i,j)
    proof (cases j=0)
        case True
    have rw0: sum ?f {1..<n} = 0 by (rule sum.neutral, insert True, auto)
    have set-rw: {0..<n} = insert 0 {1..<n} using n-ge-2 by auto
    hence sum ?f {0..<n}=?f 0+ sum ?f {1..<n} by auto
    also have ... = ?f 0 unfolding rw0 by simp
    also have ... = a using True unfolding a-def by simp
    also have ... = ?A $$(i,j) using True ij by auto
    finally show ?thesis.
    next
        case False note j-not-0 = False
            have rw-simp: Matrix.row (mat-of-row (vec-last (Matrix.row A 0) (n
- 1))) 0
                    =(vec-last (Matrix.row A 0) (n-1)) unfolding Matrix.row-def
by auto
    let ? g = \lambdai.A$$(0,i)*V$$(i-1,j-1)
    let ?h = \lambdai. A $$ (0,i+1)*V$$ (i,j-1)
    have f0:?f 0 = 0 using j-not-0 j by auto
    have set-rw2: (\lambdai.i+1) {0..<n-1}={1..<n}
        unfolding image-def using Suc-le-D by fastforce
    have set-rw: {0..<n} = insert 0 {1..<n} using n-ge-2 by auto
    hence sum ?f {0..<n} = ?f 0 + sum ?f {1..<n} by auto
    also have ... = sum ?f {1..<n} using f0 by simp
    also have ... = sum ?g {1..<n} by (rule sum.cong, insert j-not-0, auto)
    also have ... = sum?g ((\lambdai.i+1){{0..<n-1}) using set-rw2 by simp
    also have ... = sum (?g\circ(\lambdai.i+1)) {0..<n-1}
        by (rule sum.reindex, unfold inj-on-def, auto)
    also have ... = sum ?h {0..<n-1} by (rule sum.cong, auto)
    also have ... = Matrix.row ?B 0 col V (j-1) unfolding scalar-prod-def
    proof (rule sum.cong)
        fix x assume x: x }\in{0..<\mathrm{ dim-vec (col V (j - 1))}
        have Matrix.row ?B 0$vx=?B$$(0,x) by (rule index-row, insert
x V,auto)
    also have ... = (vec-last (Matrix.row A 0) (n-1)) $vx
```

```
        by (rule mat-of-row-index, insert \(x\), auto)
        also have \(\ldots=A \$ \$(0, x+1)\)
    by (smt Suc-less-eq V add.right-neutral add-Suc-right add-diff-cancel-right'
                add-diff-inverse-nat atLeastLessThan-iff carrier-matD(1)
carrier-matD(2)
    dim-col index-row(1) index-row(2) index-vec less.prems less-Suc0
n-not-0
                            plus-1-eq-Suc vec-last-def \(x\) )
            finally have Matrix.row? \(B \quad \$ v x=A \$ \$(0, x+1)\).
            moreover have col \(V(j-1) \$ v x=V \$ \$(x, j-1)\) using \(V j x\)
by auto
            ultimately show \(A \$ \$(0, x+1) * V \$ \$(x, j-1)\)
            \(=\) Matrix.row ? \(B 0 \$ v x * \operatorname{col} V(j-1) \$ v x\) by simp
            qed (insert \(V\) j-not-0, auto)
            also have \(\ldots=(? B * V) \$ \$(0, j-1)\)
                    by (rule index-mult-mat[symmetric], insert V j False, auto)
            also have \(\ldots=\) ? \(A \$ \$(i, j)\)
            by (cases \(j=1\), insert False V \(j\) i0 BV-0 b-def, auto simp add: Suc-leI)
            finally show ?thesis.
        qed
        finally show \((A *\) ? U1) \(\$ \$(i, j)=? A \$ \$(i, j)\).
        next
            show dim-row \((A *\) ? U1 \()=\) dim-row ? A using \(A\) by auto
            show dim-col \((A *\) ? U1 \()=\) dim-col ? A using U1 by auto
    qed
    also have ... * ? U2 = ?T
    proof -
        let ? A \(1.0=a b\)
    let ? B1.0 \(=\) Matrix.mat \(1(n-2)(\lambda(i, j) .0)\)
    let ?C1.0 \(=\) Matrix.mat \(02(\lambda(i, j) .0)\)
    let ? D1.0 \(=\) Matrix.mat \(0(n-2)(\lambda(i, j) .0)\)
    let ? B2.0 \(=\left(0_{m}\right.\) 2 \(\left.(n-2)\right)\)
    let ? \(C 2.0=\left(0_{m}(n-2)\right.\) 2 \()\)
    let ? D2.0 \(=1_{m}(n-2)\)
    have \(A\)-eq: ?A = four-block-mat ?A1.0 ?B1.0 ?C1.0 ?D1.0
        by (rule eq-matI, insert ab-def n-ge-2, auto)
    hence ?A * ?U2 = four-block-mat ?A1.0 ?B1.0 ?C1.0 ?D1.0 * ?U2 by
simp
    also have \(\ldots=\) four-block-mat (?A1.0 \(* W+\) ?B1.0 \(*\) ?C2.0 \()\)
        \((? A 1.0 * ? B 2.0+\) ?B1.0 * ?D2.0 \()(? C 1.0 * W+\) ?D1.0 * ?C2.0 \()\)
        (?C1.0 * ?B2.0 + ?D1.0 * ?D2.0)
        by (rule mult-four-block-mat, auto simp add: W ab-def)
    also have \(\ldots=\) four-block-mat (?A1.0 * W) (?B1.0) (?C1.0) (?D1.0)
        by (rule cong-four-block-mat, insert \(W\) ab-def, auto)
    also have \(\ldots=\) ? \(T\)
        by (rule eq-matI, insert \(W\) n-ge-2 ab-def ab-W, auto simp add:
lower-triangular-def)
```

```
                    finally show ?thesis.
                    qed
            finally have A*U =?T
                using assoc-mult-mat[OF - U1 U2] less.prems unfolding U-def by auto
                moreover have lower-triangular ?T unfolding lower-triangular-def by
simp
            ultimately show ?thesis by simp
        qed
        ultimately show ?thesis using A U by blast
        qed
    qed
qed
from this show admits-triangular-reduction A unfolding admits-triangular-reduction-def
by simp
qed
lemma admits-diagonal-imp-admits-triangular:
    assumes a:\forallA\incarrier-mat 1 2. admits-diagonal-reduction (A::'a mat)
    shows }\forall\mathrm{ A. admits-triangular-reduction (A::'a mat)
proof
    fix A::'a mat
    obtain m n where A: A \in carrier-mat m n by auto
    have \existsU.U\in carrier-mat n n^ invertible-mat U^ lower-triangular (A*U)
        using }
    proof (induct n arbitrary: m A rule: less-induct)
        case (less n)
        note A = less.prems(1)
        show ?case
    proof (cases n=0 \vee m=0)
        case True
            then show ?thesis using triangularizable-m0 triangularizable-On less.prems
by auto
    next
        case False note nm-not-0 = False
        from this have m-not-0: m\not=0 and n-not-0: n\not=0 by auto
        show ?thesis
        proof (cases m=1)
            case True note m1 = True
            show ?thesis using admits-diagonal-imp-admits-triangular-1xn A m1 a
                    unfolding admits-triangular-reduction-def by blast
        next
                case False note m-not-1 = False
                show ?thesis
                proof (cases n=1)
                    case True
                    thus ?thesis using invertible-mat-zero lower-triangular-def
                by (metis carrier-matD(2) det-one gr-implies-not0 invertible-iff-is-unit-JNF
less(2)
```


less-one one-carrier-mat right-mult-one-mat')

next
case False note n-not-1 = False
let ?first-row $=$ mat-of-row $($ Matrix.row A 0$)$
have first-row: ?first-row \in carrier-mat $1 n$ using less.prems by auto
have $m 1$: $m>1$ using m-not- 1 m-not-0 by linarith
have $n 1$: $n>1$ using n-not-1 n-not- 0 by linarith
obtain V where lt-first-row- V : lower-triangular (?first-row * V)
and inv- V : invertible-mat V and $V: V \in$ carrier-mat $n n$
using admits-diagonal-imp-admits-triangular-1xn a first-row
unfolding admits-triangular-reduction-def by blast
have $A V: A * V \in$ carrier-mat $m n$ using V less by auto
have dim-row- $A V$: dim-row $(A * V)=1+(m-1)$ using $m 1 A V$ by auto
have dim-col-AV: dim-col $(A * V)=1+(n-1)$ using $n 1 A V$ by fastforce
have reduced-first-row: Matrix.row (?first-row * V) $0=$ Matrix.row $(A *$
V) 0
by (rule mult-eq-first-row, insert first-row $m 1$ less.prems, auto)
obtain a zero $B C$ where split: split-block $(A * V) 11=(a$, zero, $B, C)$
using prod-cases4 by blast
have $a: a \in$ carrier-mat 11 and zero: zero \in carrier-mat $1(n-1)$ and
$B: B \in$ carrier-mat $(m-1) 1$ and $C: C \in$ carrier-mat $(m-1)(n-1)$
by (rule split-block[OF split dim-row-AV dim-col-AV])+
have $A V$-block: $A * V=$ four-block-mat a zero $B C$
by (rule split-block[OF split dim-row-AV dim-col-AV])
have $\exists W . W \in$ carrier-mat $(n-1)(n-1) \wedge$ invertible-mat $W \wedge$ lower-triangular $(C * W)$
by (rule less.hyps, insert $n 1 C$, auto)
from this obtain W where inv- W : invertible-mat W and $l t-C W$: lower-triangular $(C * W)$
and $W: W \in$ carrier-mat $(n-1)(n-1)$ by blast
let ?W2 = four-block-mat $\left(1_{m} 1\right)\left(0_{m} 1(n-1)\right)\left(0_{m}(n-1) 1\right) W$
have W2: ? W2 \in carrier-mat $n n$ using $V W$ dim-col-AV by auto
have Determinant.det ?W2 $=$ Determinant.det $\left(\begin{array}{ll}1 & 1\end{array}\right) *$ Determinant.det
W
by (rule det-four-block-mat-lower-left-zero-col[OF -- W], auto)
hence det-W2: Determinant.det ? W2 = Determinant.det W by auto
hence inv-W2: invertible-mat?W2
by (metis W four-block-carrier-mat inv-W invertible-iff-is-unit-JNF one-carrier-mat)
have inv-V-W2: invertible-mat (V * ? W2) using inv-W2 inv-V V W2 invertible-mult-JNF by blast
have lower-triangular $(A * V *$? W2 $)$
proof -
let ? $T=\left(\right.$ four-block-mat $\left.a\left(0_{m} 1(n-1)\right) B(C * W)\right)$
have zero-eq: zero $=0_{m} 1(n-1)$
proof (rule eq-matI)
show 1: dim-row zero $=$ dim-row $\left(0_{m} 1(n-1)\right)$ and 2: dim-col zero

$$
=\operatorname{dim}-\operatorname{col}\left(0_{m} 1(n-1)\right)
$$

using zero by auto
fix $i j$ assume $i: i<\operatorname{dim}$-row $\left(O_{m} 1(n-1)\right)$ and $j: j<\operatorname{dim}-c o l\left(O_{m}\right.$ $1(n-1))$
have $i 0$: $i=0$ using i by auto
have $0=$ Matrix.row (?first-row * V) $0 \$ v(j+1)$ using $l t$-first-row- $V j$ unfolding lower-triangular-def
by (metis Suc-eq-plus1 carrier-matD(2) index-mult-mat(2,3) index-row(1) less-diff-conv
mat-of-row-dim(1) zero zero-less-Suc zero-less-one-class.zero-less-one V 2)
also have $\ldots=$ Matrix.row $(A * V) 0 \$ v(j+1)$ by (simp add: reduced-first-row)
also have $\ldots=(A * V) \$ \$(i, j+1)$ using V dim-row- $A V i 0 j$ by auto
also have $\ldots=$ four-block-mat a zero $B C \$(i, j+1)$ by (simp add: AV-block)
also have $\ldots=$ (if $i<$ dim-row a then if $(j+1)<$ dim-col a
then a $\$ \$(i,(j+1))$ else zero $\$ \$(i,(j+1)-$ dim-col a) else if $(j+1)<$ dim-col a
then $B \$(i-$ dim-row $a,(j+1))$ else $C \$ \$(i-$ dim-row $a,(j+1)-$ dim-col a))
by (rule index-mat-four-block, insert a zero ij C, auto)
also have $\ldots=$ zero $\$ \$(i,(j+1)-$ dim-col a) using a zero i $j C$ by
auto
also have $\ldots=$ zero $\$ \(i, j) using $a i$ by auto
finally show zero $\$ \$(i, j)=0_{m} 1(n-1) \$ \(i, j) using $i j$ by auto qed
have rw1: $a *\left(1_{m} 1\right)+$ zero $*\left(0_{m}(n-1) 1\right)=a$ using a zero by auto
have rw2: $a *\left(0_{m} 1(n-1)\right)+$ zero $* W=0_{m} 1(n-1)$ using a zero
zero-eq W by auto
have $r w 3$: $B *\left(1_{m} 1\right)+C *\left(O_{m}(n-1) 1\right)=B$ using $B C$ by auto
have $r w 4: B *\left(0_{m} 1(n-1)\right)+C * W=C * W$ using $B C W$ by auto
have $A * V=$ four-block-mat a zero $B C$ by (rule AV-block)
also have $\ldots *$? W2 $=$ four-block-mat $\left(a *\left(1_{m} 1\right)+\right.$ zero $*\left(0_{m}(n-1)\right.$
1))
$\left(a *\left(O_{m} 1(n-1)\right)+\right.$ zero $\left.* W\right)\left(B *\left(1_{m} 1\right)+C *\left(O_{m}(n-1) 1\right)\right)$
$\left(B *\left(0_{m} 1(n-1)\right)+C * W\right)$ by (rule mult-four-block-mat[OF a zero B
$C]$, insert W, auto)
also have $\ldots=$? T using rw1 rw2 rw3 rw4 by simp
finally have $A V W 2: A * V * ? W 2=\ldots$.
moreover have lower-triangular ?T
using $l t$ - $C W$ unfolding lower-triangular-def using a zero $B C$ W
by (auto, metis (full-types) Suc-less-eq Suc-pred basic-trans-rules(19))
ultimately show ?thesis by simp
qed
then show ?thesis using inv-V-W2 V W2 less.prems
by (smt assoc-mult-mat mult-carrier-mat)
qed
qed
qed
qed
thus admits-triangular-reduction A using A unfolding admits-triangular-reduction-def
by simp
qed
corollary admits-diagonal-imp-admits-triangular':
assumes $a: \forall A$. admits-diagonal-reduction ($A::^{\prime}$ a mat)
shows \forall A. admits-triangular-reduction ($A::^{\prime}$ a mat)
using admits-diagonal-imp-admits-triangular assms by blast
lemma admits-triangular-reduction-1x2:
assumes $\forall A:: ' a$ mat. $A \in$ carrier-mat $12 \longrightarrow$ admits-triangular-reduction A
shows $\forall C$::'a mat. admits-triangular-reduction C
using admits-diagonal-imp-admits-triangular assms triangular-eq-diagonal-1x2
by auto
lemma Hermite-ring-OFCLASS:
assumes $\forall A \in$ carrier-mat 1 2. admits-triangular-reduction ($A::^{\prime}$ a mat)
shows OFCLASS(' a, Hermite-ring-class)
proof
show $\forall A$::'a mat. admits-triangular-reduction A
by (rule admits-diagonal-imp-admits-triangular[OF assms[unfolded triangu-
lar-eq-diagonal-1x2]])
qed
lemma Hermite-ring-OFCLASS':
assumes $\forall A \in$ carrier-mat 1 2.admits-diagonal-reduction ($A::^{\prime}{ }^{\prime}$ a mat)
shows OFCLASS(' a, Hermite-ring-class)
proof
show $\forall A::^{\prime}$ a mat. admits-triangular-reduction A
by (rule admits-diagonal-imp-admits-triangular[OF assms])
qed
lemma theorem3-part1:
assumes $T:\left(\forall a b::^{\prime} a\right.$. $\exists a 1$ b1 d. $a=a 1 * d \wedge b=b 1 * d$
\wedge ideal-generated $\{a 1, b 1\}=$ ideal-generated $\{1\})$
shows $\forall A::^{\prime}$ a mat. admits-triangular-reduction A
proof (rule admits-triangular-reduction-1x2, rule allI, rule impI)
fix $A::^{\prime} a$ mat
assume $A: A \in$ carrier-mat 12
let $? a=A \$ \$(0,0)$
let $? b=A \$ \$(0,1)$
obtain $a 1$ b1 d where $a: ? a=a 1 * d$ and $b: ? b=b 1 * d$
and i : ideal-generated $\{a 1, b 1\}=$ ideal-generated $\{1\}$
using T by blast
obtain $s t$ where $s a 1 t b 1: s * a 1+t * b 1=1$ using ideal-generated-pair-exists-pq1[OF
$i[$ simplified $]$ by blast
let ? $Q=$ Matrix.mat $22(\lambda(i, j)$. if $i=0 \wedge j=0$ then s else if $i=0 \wedge j=1$ then -b1 else
if $i=1 \wedge j=0$ then t else a1)
have $Q: ? Q \in$ carrier-mat 22 by auto
have det- Q : Determinant.det ? $Q=1$ unfolding det-2[OF $Q]$
using sa1tb1 by (simp add: mult.commute)
hence inv- Q : invertible-mat ? Q using invertible-iff-is-unit-JNF $[O F Q]$ by auto have lower- $A Q$: lower-triangular $(A *$? $Q)$
proof -
have Matrix.row A $0 \$ v \operatorname{Suc} 0 * a 1=$ Matrix.row A $0 \$ v 0 * b 1$ if $j 2: j<2$ and $j 0$: $0<j$ for j
by (metis A One-nat-def a b carrier-matD(1) carrier-matD(2) index-row(1) lessI
more-arith-simps(11) mult.commute numeral-2-eq-2 pos2)
thus ?thesis unfolding lower-triangular-def using A
by (auto simp add: scalar-prod-def sum-two-rw)
qed
show admits-triangular-reduction A
unfolding admits-triangular-reduction-def using lower- $A Q$ inv- $Q Q A$ by force

qed

lemma theorem3-part2:
assumes $1: \forall A::^{\prime} a$ mat. admits-triangular-reduction A
shows $\forall a b::^{\prime} a$. $\exists a 1$ b1 d. $a=a 1 * d \wedge b=b 1 * d \wedge$ ideal-generated $\{a 1, b 1\}=$ ideal-generated \{1\}
proof (rule allI)+
fix $a b::^{\prime} a$
let $? A=$ Matrix.mat $12(\lambda(i, j)$. if $i=0 \wedge j=0$ then a else $b)$
obtain Q where $A Q$: lower-triangular $(? A * Q)$ and inv- Q : invertible-mat Q
and $Q: Q \in$ carrier-mat 22
using 1 unfolding admits-triangular-reduction-def by fastforce
hence $[\operatorname{simp}]: \operatorname{dim}-\operatorname{col} Q=2$ and $[\operatorname{simp}]: \operatorname{dim}$-row $Q=2$ by auto
let ? $s=Q \$ \$(0,0)$
let ? $t=Q \$ \$(1,0)$
let ?a1 $=Q \$ \$(1,1)$
let $? b 1=-(Q \$ \$(0,1))$
let ? $d=(? A * Q) \$ \$(0,0)$
have $a b 1-b a 1: a * ? b 1=b * ? a 1$
proof -
have $(? A * Q) \$ \$(0,1)=\left(\sum i=0 . .<2\right.$. (if $i=0$ then a else $\left.b\right) * Q \$ \$(i, S u c$
0))
unfolding times-mat-def col-def scalar-prod-def by auto
also have $\ldots=\left(\sum i \in\{0,1\}\right.$. (if $i=0$ then a else $\left.b\right) * Q \$ \$(i$, Suc 0$\left.)\right)$
by (rule sum.cong, auto)
also have $\ldots=-a * ? b 1+b *$? a1 by auto
finally have $(? A * Q) \$ \$(0,1)=-a * ? b 1+b * ? a 1$ by simp
moreover have $(? A * Q) \$ \$(0,1)=0$ using $A Q$ unfolding lower-triangular-def

by auto

ultimately show ?thesis
by (metis add-left-cancel more-arith-simps(3) more-arith-simps(7))
qed
have $s a-t b-d: ? s * a+? t * b=? d$
proof -
have ? $d=\left(\sum i=0 . .<2\right.$. (if $i=0$ then a else $\left.\left.b\right) * Q \$ \$(i, 0)\right)$
unfolding times-mat-def col-def scalar-prod-def by auto
also have $\ldots=\left(\sum i \in\{0,1\}\right.$. (if $i=0$ then a else $\left.\left.b\right) * Q \$ \$(i, 0)\right)$ by (rule
sum.cong, auto)
also have $\ldots=? s * a+? t * b$ by auto
finally show? ?thesis by simp
qed
have det-Q-dvd-1: (Determinant.det Q dvd 1)
using invertible-iff-is-unit-JNF[OF $Q]$ inv- Q by auto
moreover have det- Q-eq: Determinant. $\operatorname{det} Q=? s * ? a 1+? t * ? b 1$ unfolding $\operatorname{det}-2[O F Q]$ by simp
ultimately have ? $s * ? a 1+? t * ? b 1$ dvd 1 by auto
from this obtain u where u-eq: ?s*? $a 1+? t * ? b 1=u$ and $u: u$ dvd 1 by auto
hence eq1: ? $s * ? a 1 * a+? t * ? b 1 * a=u * a$
by (metis ring-class.ring-distribs(2))
hence ? $s *$? $a 1 * a+$? $t * ? a 1 * b=u * a$
by (metis (no-types, lifting) ab1-ba1 mult.assoc mult.commute)
hence $a 1 d-u a: ? a 1 * ? d=u * a$
by (smt Groups.mult-ac(2) distrib-left more-arith-simps(11) sa-tb-d)
hence $b 1 d-u b$: ? $b 1 * ? d=u * b$
by (smt Groups.mult-ac(2) Groups.mult-ac(3) ab1-ba1 distrib-right sa-tb-d u-eq)
obtain inv-u where inv-u: inv-u*u=1 using u unfolding dvd-def
by (metis mult.commute)
hence inv-u-dvd-1: inv-u dvd 1 unfolding dvd-def by auto
have cond1: (inv-u*?b1)*?d = b using b1d-ub inv-u
by (metis (no-types, lifting) Groups.mult-ac(3) more-arith-simps(11) more-arith-simps(6))
have cond2: (inv-u*?a1)*?d = a using a1d-ua inv-u
by (metis (no-types, lifting) Groups.mult-ac(3) more-arith-simps(11) more-arith-simps(6))
have ideal-generated $\{$ inv- $u *$? a1, inv-u*?b1\} $=$ ideal-generated $\{? a 1, ? b 1\}$
by (rule ideal-generated-mult-unit2[OF inv-u-dvd-1])
also have $\ldots=$ UNIV using ideal-generated-pair-UNIV[OF u-eq u] by simp
finally have cond3: ideal-generated $\{i n v-u * ? a 1$, inv-u*?b1\} $=$ ideal-generated
$\{1\}$ by auto
show $\exists a 1$ b1 d. $a=a 1 * d \wedge b=b 1 * d \wedge$ ideal-generated $\{a 1, b 1\}=$ ideal-generated $\{1\}$
by (rule exI[of - inv-u*?a1], rule exI[of - inv-u*?b1], rule exI[of - ? d],
insert cond1 cond2 cond3, auto)
qed
theorem theorem3:
shows ($\forall A::^{\prime}$ a mat. admits-triangular-reduction A)

```
    =(\foralla b::'a.\exists a1 b1 d. a = a1*d ^b=b1*d ^ ideal-generated {a1,b1} =
ideal-generated {1})
    using theorem3-part1 theorem3-part2 by auto
end
```

context comm-ring-1
begin
lemma lemma4-prev:
assumes $a: a=a 1 * d$ and $b: b=b 1 * d$
and i : ideal-generated $\{a 1, b 1\}=$ ideal-generated $\{1\}$
shows ideal-generated $\{a, b\}=$ ideal-generated $\{d\}$
proof -
have 1: $\exists k . p *(a 1 * d)+q *(b 1 * d)=k * d$ for $p q$
by (metis (full-types) local.distrib-right local.mult.semigroup-axioms semigroup.assoc)
have ideal-generated $\{a, b\} \subseteq$ ideal-generated $\{d\}$
proof -
have ideal-generated $\{a, b\}=\{p * a+q * b \mid p q$. True $\}$ using ideal-generated-pair
by auto
also have $\ldots=\{p *(a 1 * d)+q *(b 1 * d) \mid p q$. True $\}$ using $a b$ by auto
also have $\ldots \subseteq\{k * d \mid k$. True $\}$ using 1 by auto
finally show ?thesis
by (simp add: a b local.dvd-ideal-generated-singleton' local.ideal-generated-subset2)
qed
moreover have ideal-generated $\{d\} \subseteq$ ideal-generated $\{a, b\}$
proof (rule ideal-generated-singleton-subset)
obtain $p q$ where $p * a 1+q * b 1=1$ using ideal-generated-pair-exists-UNIV i
by auto
hence $d=p *(a 1 * d)+q *(b 1 * d)$
by (metis local.mult-ac(3) local.ring-distribs(1) local.semiring-normalization-rules(12))
also have $\ldots \in\{p *(a 1 * d)+q *(b 1 * d) \mid p q$. True $\}$ by auto
also have $\ldots=$ ideal-generated $\{a, b\}$ unfolding ideal-generated-pair $a b$ by
auto
finally show $d \in$ ideal-generated $\{a, b\}$ by simp
qed (simp)
ultimately show?thesis by simp
qed
lemma lemma4:
assumes $a: a=a 1 * d$ and $b: b=b 1 * d$
and i : ideal-generated $\{a 1, b 1\}=$ ideal-generated $\{1\}$
and i2: ideal-generated $\{a, b\}=$ ideal-generated $\left\{d^{\prime}\right\}$
shows $\exists a 1^{\prime} b 1^{\prime} . a=a 1^{\prime} * d^{\prime} \wedge b=b 1^{\prime} * d^{\prime}$
\wedge ideal-generated $\left\{a 1^{\prime}, b 1^{\prime}\right\}=$ ideal-generated $\{1\}$
proof -
have i3: ideal-generated $\{a, b\}=$ ideal-generated $\{d\}$ using lemma4-prev assms by auto
have d - $d v d-d^{\prime}: d ~ d v d d^{\prime}$
by (metis a b i2 dvd-ideal-generated-singleton dvd-ideal-generated-singleton' dvd-triv-right ideal-generated-subset2)
have $d^{\prime}-d v d-d: d^{\prime} d v d d$
using $i 3$ i2 local.dvd-ideal-generated-singleton by auto
obtain k and l where $d: d=k * d^{\prime}$ and $d^{\prime}: d^{\prime}=l * d$
using $d-d v d-d^{\prime} d^{\prime}-d v d-d$ mult-ac unfolding $d v d-d e f$ by auto
obtain $s t$ where sa1-tb1: $s * a 1+t * b 1=1$
using i ideal-generated-pair-exists-UNIV[of a1 b1] by auto
let ? $a 1^{\prime}=k * l * t-t+a 1 * k$
let ?b1' $=s-k * l * s+b 1 * k$
have 1: ? $a 1^{\prime} * d^{\prime}=a$
by (metis a d d' add-ac(2) add-diff-cancel add-diff-eq mult-ac(2) ring-distribs(1,4)
semiring-normalization-rules(18))
have 2: ? $b 1^{\prime} * d^{\prime}=b$
by (metis (no-types, hide-lams) b d d' add-ac(2) add-diff-cancel add-diff-eq mult-ac(2) mult-ac(3)
ring-distribs(2,4) semiring-normalization-rules(18))
have $(s * l-b 1) * ? a 1^{\prime}+(t * l+a 1) * ? b 1^{\prime}=1$
proof -
have $a u x-r w 1: s * l * k * l * t=t * l * k * l * s$ and $a u x-r w 2: s * l * t=t * l$ * s
and $a u x-r w 3: b 1 * a 1 * k=a 1 * b 1 * k$ and $a u x-r w 4: t * l * b 1 * k=b 1 * k *$
$l * t$
and $a u x-r w 5: s * l * a 1 * k=a 1 * k * l * s$
using mult.commute mult.assoc by auto
note aux-rw = aux-rw1 aux-rw2 aux-rw3 aux-rw4 aux-rw5
have $(s * l-b 1) * ? a 1^{\prime}+(t * l+a 1) * ? b 1^{\prime}=s * l * ? a 1^{\prime}-b 1 * ? a 1^{\prime}+t * l * ? b 1^{\prime}+a 1 * ? b 1^{\prime}$
using local.add-ac(1) local.left-diff-distrib' local.ring-distribs(2) by auto
also have $\ldots=s * l * k * l * t-s * l * t+s * l * a 1 * k-b 1 * k * l * t+b 1$

* $t-b 1 * a 1 * k$
$+t * l * s-t * l * k * l * s+t * l * b 1 * k+a 1 * s-a 1 * k * l * s+a 1$
* $b 1$ * k
by (smt abel-semigroup.commute add.abel-semigroup-axioms diff-add-eq diff-diff-eq2 mult.semigroup-axioms ring-distribs(4) semiring-normalization-rules(34)
semigroup.assoc)
also have $\ldots=a 1 * s+b 1 * t$ unfolding aux-rw
by (smt add-ac(2) add-ac(3) add-minus-cancel ring-distribs(4) ring-normalization-rules(2))
also have $\ldots=1$ using sa1-tb1 mult.commute by auto
finally show? ?thesis by simp
qed
hence ideal-generated $\left\{? a 1^{\prime}, ? b 1^{\prime}\right\}=$ ideal-generated $\{1\}$
using ideal-generated-pair-exists-UNIV[of ?a1' ?b1] by auto
thus ?thesis using 12 by auto
lemma corollary5:
assumes $T: \forall a b . \exists a 1 b 1 d . a=a 1 * d \wedge b=b 1 * d$
\wedge ideal-generated $\{a 1, b 1\}=$ ideal-generated $\left\{1::^{\prime} a\right\}$
and $i 2$: ideal-generated $\{a, b, c\}=$ ideal-generated $\{d\}$
shows \exists a1 b1 c1. $a=a 1 * d \wedge b=b 1 * d \wedge c=c 1 * d$
\wedge ideal-generated $\{a 1, b 1, c 1\}=$ ideal-generated $\{1\}$
proof -
have $d a$: d dvd a using ideal-generated-singleton- $d v d[O F i 2]$ by auto
have $d b: d d v d b$ using ideal-generated-singleton-dvd[OF i2] by auto
have $d c$: d dvd c using ideal-generated-singleton-dvd[OF i2] by auto
from this obtain $c 1^{\prime}$ where $c: c=c 1^{\prime} * d$ using dvd-def mult-ac(2) by auto
obtain $a 1 b 1 d^{\prime}$ where $a: a=a 1 * d^{\prime}$ and $b: b=b 1 * d^{\prime}$
and i : ideal-generated $\{a 1, b 1\}=$ ideal-generated $\left\{1::^{\prime} a\right\}$ using T by blast
have i-ab- d^{\prime} : ideal-generated $\{a, b\}=$ ideal-generated $\left\{d^{\prime}\right\}$
by (simp add: a b i lemma4-prev)
have i2: ideal-generated $\left\{d^{\prime}, c\right\}=$ ideal-generated $\{d\}$
by (rule ideal-generated-triple-pair-rewrite $[O F$ i2 i-ab- $d\rceil$)
obtain $u v d p$ where $d^{\prime} 1: d^{\prime}=u * d p$ and $d^{\prime} 2: c=v * d p$
and xy: ideal-generated $\{u, v\}=$ ideal-generated $\{1\}$ using T by blast
have $\exists a 1^{\prime} b 1^{\prime} . d^{\prime}=a 1^{\prime} * d \wedge c=b 1^{\prime} * d \wedge$ ideal-generated $\left\{a 1^{\prime}, b 1^{\prime}\right\}=$ ideal-generated $\{1\}$
by (rule lemma4 $\left[\right.$ OF $d^{\prime} 1 d^{\prime} 2$ xy $\left.i 2\right]$)
from this obtain $a 1^{\prime} c 1$ where $d^{\prime}-a 1: d^{\prime}=a 1^{\prime} * d$ and $c: c=c 1 * d$
and i3: ideal-generated $\left\{a 1^{\prime}, c 1\right\}=$ ideal-generated $\{1\}$ by blast
have r1: $a=a 1 * a 1^{\prime} * d$ by (simp add: d^{\prime}-a1 a local.semiring-normalization-rules(18))
have $r 2: b=b 1 * a 1^{\prime} * d$ by (simp add: $d^{\prime}-a 1 b$ local.semiring-normalization-rules(18))
have $i 4$: ideal-generated $\left\{a 1 * a 1^{\prime}, b 1 * a 1^{\prime}, c 1\right\}=$ ideal-generated $\{1\}$
proof -
obtain $p q$ where $1: p * a 1^{\prime}+q * c 1=1$
using i3 unfolding ideal-generated-pair-exists-UNIV by auto
obtain $x y$ where 2: $x * a 1+y * b 1=p$ using ideal-generated-UNIV-obtain-pair[OF
i] by blast
have $1=(x * a 1+y * b 1) * a 1^{\prime}+q * c 1$ using 12 by auto
also have $\ldots=x * a 1 * a 1^{\prime}+y * b 1 * a 1^{\prime}+q * c 1$ by (simp add: local.ring-distribs(2))
finally have $1=x * a 1 * a 1^{\prime}+y * b 1 * a 1^{\prime}+q * c 1$.
hence $1 \in$ ideal-generated $\left\{a 1 * a 1^{\prime}, b 1 * a 1^{\prime}, c 1\right\}$
using ideal-explicit2[of $\left\{a 1 * a 1^{\prime}, b 1 * a 1^{\prime}\right.$, c1\}] sum-three-elements ${ }^{\prime}$
by (simp add: mult-assoc)
hence ideal-generated $\{1\} \subseteq$ ideal-generated $\left\{a 1 * a 1^{\prime}, b 1 * a 1^{\prime}, c 1\right\}$
by (rule ideal-generated-singleton-subset, auto)
thus ?thesis by auto
qed
show ?thesis using r1 r2 if c by auto
qed
end

context

assumes SORT-CONSTRAINT('a::comm-ring-1)
begin
lemma OFCLASS-elementary-divisor-ring-imp-class:
assumes OFCLASS ('a::comm-ring-1, elementary-divisor-ring-class)
shows class.elementary-divisor-ring TYPE ('a)
by (rule conjunctionD2[OF assms[unfolded elementary-divisor-ring-class-def]])
corollary Elementary-divisor-ring-imp-Hermite-ring:
assumes OFCLASS('a::comm-ring-1, elementary-divisor-ring-class)
shows OFCLASS('a::comm-ring-1, Hermite-ring-class)
proof
have $\forall A::^{\prime}$ a mat. admits-diagonal-reduction A
using OFCLASS-elementary-divisor-ring-imp-class[OF assms] unfolding class.elementary-divisor-ring-def by auto
thus $\forall A::^{\prime} a$ mat. admits-triangular-reduction A
using admits-diagonal-imp-admits-triangular by auto
qed
corollary Elementary-divisor-ring-imp-Bezout-ring:
assumes OFCLASS('a::comm-ring-1, elementary-divisor-ring-class)
shows OFCLASS('a::comm-ring-1, bezout-ring-class)
by (rule Hermite-ring-imp-Bezout-ring, rule Elementary-divisor-ring-imp-Hermite-ring [OF assms])

18.5 Characterization of Elementary divisor rings

lemma necessity- D^{\prime} :
assumes edr: ($\forall\left(A::^{\prime} a \operatorname{mat}\right)$. admits-diagonal-reduction $\left.A\right)$
shows $\forall a b c::^{\prime} a$. ideal-generated $\{a, b, c\}=$ ideal-generated $\{1\}$
$\longrightarrow(\exists p$. ideal-generated $\{p * a, p * b+q * c\}=$ ideal-generated $\{1\})$
proof $(($ rule allI $)+$, rule impI $)$
fix $a b c::^{\prime} a$
assume i : ideal-generated $\{a, b, c\}=$ ideal-generated $\{1\}$
define A where $A=$ Matrix.mat 2 2 $(\lambda(i, j)$. if $i=0 \wedge j=0$ then a else
if $i=0 \wedge j=1$ then b else if $i=1 \wedge j=0$ then 0 else c)
have $A: A \in$ carrier-mat 22 unfolding A-def by auto
obtain $P Q$ where $P: P \in$ carrier-mat (dim-row A) (dim-row A)
and $Q: Q \in$ carrier-mat (dim-col $A)(d i m-c o l A)$
and inv-P: invertible-mat P and inv- Q : invertible-mat Q
and SNF-PAQ: Smith-normal-form-mat $(P * A * Q)$
using edr unfolding admits-diagonal-reduction-def by blast
have [simp]: dim-row $P=2$ and $[$ simp $]$: dim-col $P=2$ and [simp]: dim-row Q $=2$
and $[\operatorname{simp}]: \operatorname{dim}-\operatorname{col} Q=2$ and $[\operatorname{simp}]: \operatorname{dim}-\operatorname{col} A=2$ and $[\operatorname{simp}]: \operatorname{dim}-$ row A $=2$
using $A P Q$ by auto
define u where $u=(P * A * Q) \$ \$(0,0)$
define p where $p=P \$ \$(0,0)$
define q where $q=P \$ \$(0,1)$
define x where $x=Q \$ \$(0,0)$
define y where $y=Q \$ \$(1,0)$
have $e q$: $p * a * x+p * b * y+q * c * y=u$
proof -
have rw1: $\left(\sum i a=0 . .<2 . P \$ \$(0, i a) * A \$ \$(i a, x)\right) * Q \$ \$(x, 0)$
$=\left(\sum i a \in\{0,1\} . P \$ \$(0, i a) * A \$ \$(i a, x)\right) * Q \$ \$(x, 0)$
for x by (unfold sum-distrib-right, rule sum.cong, auto)
have $u=\left(\sum i=0 . .<2 .\left(\sum i a=0 . .<2 . P \$ \$(0, i a) * A \$ \$(i a, i)\right) * Q \$ \$(i\right.$, 0))
unfolding u-def p-def q-def x-def y-def
unfolding times-mat-def scalar-prod-def by auto
also have $\ldots=\left(\sum i \in\{0,1\} .\left(\sum i a \in\{0,1\} . P \$ \$(0, i a) * A \$ \$(i a, i)\right) * Q\right.$
\$\$ (i, 0))
by (rule sum.cong[OF - rw1], auto)
also have...$=p * a * x+p * b * y+q * c * y$
unfolding u-def p-def q-def x-def y-def A-def
using ring-class.ring-distribs(2) by auto
finally show ?thesis ..
qed
have $u-d v d-1$: $u d v d 1$
proof (rule ideal-generated-dvd2[OF $i])$
define D where $D=(P * A * Q)$
obtain P^{\prime} where $P^{\prime}[$ simp $]: P^{\prime} \in$ carrier-mat 22 and inv- P : inverts-mat P^{\prime}
P
using inv-P obtain-inverse-matrix $[$ OF P inv- $P]$
by (metis \langle dim-row $A=2$)
obtain Q^{\prime} where $[$ simp $]: Q^{\prime} \in$ carrier-mat 22 and inv- Q : inverts-mat $Q Q^{\prime}$ using inv- Q obtain-inverse-matrix $[O F Q$ inv- $Q]$
by (metis $\langle d i m-c o l ~ A=2 〉)$
have $D[$ simp $]: D \in$ carrier-mat 22 unfolding D-def by auto
have $e: P^{\prime} * D * Q^{\prime}=A$ unfolding D-def by (rule inv- $P^{\prime} P A Q Q^{\prime}[O F-$ - inv- P inv- Q], auto)
have $[$ simp $]:\left(P^{\prime} * D\right) \in$ carrier-mat 22 using $D P^{\prime}$ mult-carrier-mat by blast
have D-01: $D \$ \$(0,1)=0$
using D-def SNF-PAQ unfolding Smith-normal-form-mat-def isDiago-nal-mat-def by force
have D-10: $D \$ \$(1,0)=0$
using D-def SNF-PAQ unfolding Smith-normal-form-mat-def isDiago-nal-mat-def by force
have $D \$ \$(0,0)$ dvd $D \$ \$(1,1)$
using D-def SNF-PAQ unfolding Smith-normal-form-mat-def by auto
from this obtain k where $D 11: D \$ \$(1,1)=D \$ \$(0,0) * k$ unfolding
dvd-def by blast
have $P^{\prime} D-00:\left(P^{\prime} * D\right) \$ \$(0,0)=P^{\prime} \$ \$(0,0) * D \$ \$(0,0)$
using mat-mult2-00[of $\left.P^{\prime} D\right] D-10$ by auto
have $P^{\prime} D-01$: $\left(P^{\prime} * D\right) \$ \$(0,1)=P^{\prime} \$ \$(0,1) * D \$ \$(1,1)$
using mat-mult2-01[of $\left.P^{\prime} D\right] D-01$ by auto
have $P^{\prime} D-10:\left(P^{\prime} * D\right) \$ \$(1,0)=P^{\prime} \$ \$(1,0) * D \$ \$(0,0)$
using mat-mult2-10[of $\left.P^{\prime} D\right] D-10$ by auto
have $P^{\prime} D-11:\left(P^{\prime} * D\right) \$ \$(1,1)=P^{\prime} \$ \$(1,1) * D \$ \$(1,1)$
using mat-mult2-11[of $\left.P^{\prime} D\right] D-01$ by auto
have $a=\left(P^{\prime} * D * Q^{\prime}\right) \$(0,0)$ using $e A$-def by auto
also have $\ldots=\left(P^{\prime} * D\right) \$ \$(0,0) * Q^{\prime} \$ \$(0,0)+\left(P^{\prime} * D\right) \$ \$(0,1) * Q^{\prime} \$ \$$ $(1,0)$
by (rule mat-mult2-00, auto)
also have $\ldots=P^{\prime} \$ \$(0,0) * D \$ \$(0,0) * Q^{\prime} \$ \$(0,0)$

$$
+P^{\prime} \$ \$(0,1) *(D \$ \$(0,0) * k) * Q^{\prime} \$ \$(1,0) \text { unfolding } P^{\prime} D-00 P^{\prime} D-01
$$

D11..
also have $\ldots=D \$ \$(0,0) *\left(P^{\prime} \$ \$(0,0) * Q^{\prime} \$ \$(0,0)\right.$ $\left.+P^{\prime} \$ \$(0,1) * k * Q^{\prime} \$ \$(1,0)\right)$ by (simp add: distrib-left)
finally have u-dvd-a: u dvd a unfolding u-def D-def dvd-def by auto
have $b=\left(P^{\prime} * D * Q^{\prime}\right) \$ \$(0,1)$ using $e A$-def by auto
also have $\ldots=\left(P^{\prime} * D\right) \$ \$(0,0) * Q^{\prime} \$ \$(0,1)+\left(P^{\prime} * D\right) \$ \$(0,1) * Q^{\prime} \$ \$$ $(1,1)$
by (rule mat-mult2-01, auto)
also have $\ldots=P^{\prime} \$ \$(0,0) * D \$ \$(0,0) * Q^{\prime} \$ \$(0,1)+$
$P^{\prime} \$ \$(0,1) *(D \$ \$(0,0) * k) * Q^{\prime} \$ \$(1,1)$
unfolding $P^{\prime} D-00 P^{\prime} D-01$ D11 ..
also have $\ldots=D \$ \$(0,0) *\left(P^{\prime} \$ \$(0,0) * Q^{\prime} \$ \$(0,1)+\right.$
$\left.P^{\prime} \$ \$(0,1) * k * Q^{\prime} \$ \$(1,1)\right)$ by (simp add: distrib-left)
finally have u-dvd-b: u dvd b unfolding u-def D-def dvd-def by auto
have $c=\left(P^{\prime} * D * Q^{\prime}\right) \$ \$(1,1)$ using $e A$-def by auto
also have $\ldots=\left(P^{\prime} * D\right) \$ \$(1,0) * Q^{\prime} \$ \$(0,1)+\left(P^{\prime} * D\right) \$ \$(1,1) * Q^{\prime} \$ \$$ $(1,1)$
by (rule mat-mult2-11, auto)
also have $\ldots=P^{\prime} \$ \$(1,0) * D \$ \$(0,0) * Q^{\prime} \$ \$(0,1)$
$+P^{\prime} \$ \$(1,1) *(D \$ \$(0,0) * k) * Q^{\prime} \$ \$(1,1)$ unfolding $P^{\prime} D-11 P^{\prime} D-10$ D11 ..
also have $\ldots=D \$ \$(0,0) *\left(P^{\prime} \$ \$(1,0) * Q^{\prime} \$ \$(0,1)\right.$ $\left.+P^{\prime} \$ \$(1,1) * k * Q^{\prime} \$ \$(1,1)\right)$ by (simp add: distrib-left)
finally have u-dvd-c: u dvd c unfolding u-def D-def dvd-def by auto
show $\forall x \in\{a, b, c\}$. u dvd x using u-dvd- $a u$-dvd- $b u$-dvd-c by auto
qed (simp)
have ideal-generated $\{p * a, p * b+q * c\}=$ ideal-generated $\{1\}$
by (metis (no-types, lifting) eq add.assoc ideal-generated-1 ideal-generated-pair-UNIV
mult.commute semiring-normalization-rules(34) u-dvd-1)
from this show $\exists p q$. ideal-generated $\{p * a, p * b+q * c\}=$ ideal-generated

```
{1}
    by auto
qed
lemma necessity:
    assumes ( }\forall(A::'a mat). admits-diagonal-reduction A)
    shows ( }\forall\mathrm{ (A::'a mat). admits-triangular-reduction A)
and }\forallabc::'a. ideal-generated{a,b,c}=ideal-generated{1
    \longrightarrow ( \exists p q . i d e a l - g e n e r a t e d ~ \{ p * a , p * b + q * c \} = i d e a l - g e n e r a t e d ~ \{ 1 \} )
    using necessity-D' admits-diagonal-imp-admits-triangular assms
    by blast+
```

In the article, the authors change the notation and assume $(a, b, c)=(1)$. However, we have to provide here the complete prove. To to this, I obtained a D matrix such that $A^{\prime}=A * D$ and D is a diagonal matrix with d in the diagonal. Proving that D is left and right commutative, I can follow the reasoning in the article

```
lemma sufficiency:
    assumes hermite-ring: ( \(\forall\left(A::^{\prime} a\right.\) mat \()\). admits-triangular-reduction \(\left.A\right)\)
    and \(D^{\prime}: \forall a b c:: ' a\). ideal-generated \(\{a, b, c\}=\) ideal-generated \(\{1\}\)
    \(\longrightarrow(\exists p\). ideal-generated \(\{p * a, p * b+q * c\}=\) ideal-generated \(\{1\})\)
    shows ( \(\forall\) (A::'a mat). admits-diagonal-reduction \(A\) )
proof -
    have admits-1x2: \(\forall\left(A::^{\prime} a\right.\) mat \() \in\) carrier-mat 1 2. admits-diagonal-reduction \(A\)
        using hermite-ring triangular-eq-diagonal-1x2 by blast
    have admits-2x2: \(\forall(A:: ' a\) mat \() \in\) carrier-mat 2 2. admits-diagonal-reduction \(A\)
    proof
        fix \(B::^{\prime} a\) mat assume \(B: B \in\) carrier-mat 22
        obtain \(U\) where \(B U\) : lower-triangular \((B * U)\) and inv- \(U\) : invertible-mat \(U\)
            and \(U: U \in\) carrier-mat 22
            using hermite-ring unfolding admits-triangular-reduction-def using \(B\) by
fastforce
    define \(A\) where \(A=B * U\)
    define \(a\) where \(a=A \$ \$(0,0)\)
    define \(b\) where \(b=A \$ \$(1,0)\)
    define \(c\) where \(c=A \$ \$(1,1)\)
    have \(A: A \in\) carrier-mat 22 using \(U B A\)-def by auto
    have \(A\)-01: \(A \$ \$(0,1)=0\) using \(B U U B\) unfolding lower-triangular-def \(A\)-def
by auto
    obtain \(d::^{\prime} a\) where \(i\) : ideal-generated \(\{a, b, c\}=\) ideal-generated \(\{d\}\)
    proof -
    have OFCLASS ('a, bezout-ring-class) by (rule Hermite-ring-imp-Bezout-ring,
                insert OFCLASS-Hermite-ring-def \([\) where ? ' \(a=\) 'a] hermite-ring, auto)
    hence class.bezout-ring (*) (1::'a) (+) \(0(-)\) uminus
        using OFCLASS-bezout-ring-imp-class-bezout-ring[where ?' \(a=\) ' \(a]\) by auto
        hence ( \(\forall I:: ' a::\) comm-ring-1 set. finitely-generated-ideal \(I \longrightarrow\) principal-ideal
I)
```

using bezout-ring-iff-fin-gen-principal-ideal2 by auto
moreover have finitely-generated-ideal (ideal-generated $\{a, b, c\}$)
unfolding finitely-generated-ideal-def
using ideal-ideal-generated by force
ultimately have principal-ideal (ideal-generated $\{a, b, c\}$) by auto thus ?thesis using that unfolding principal-ideal-def by auto
qed
have d - $d v d-a: d d v d$ and d - $d v d-b: d d v d b$ and $d-d v d-c: d d v d c$
using i ideal-generated-singleton-dvd by blast+
obtain a1 b1 c1 where a1: $a=a 1 * d$ and $b 1: b=b 1 * d$ and $c 1: c=c 1 * d$ and i2: ideal-generated $\{a 1, b 1, c 1\}=$ ideal-generated $\{1\}$
proof -
have $T: \forall a b . \exists a 1$ b1 d. $a=a 1 * d \wedge b=b 1 * d$
\wedge ideal-generated $\{a 1, b 1\}=$ ideal-generated $\left\{1::^{\prime} a\right\}$
by (rule theorem3-part2[OF hermite-ring])
from this obtain $a 1^{\prime} b 1^{\prime} d^{\prime}$ where 1: $a=a 1^{\prime} * d^{\prime}$ and $2: b=b 1^{\prime} * d^{\prime}$ and 3: ideal-generated $\left\{a 1^{\prime}, b 1^{\prime}\right\}=$ ideal-generated $\left\{1::^{\prime} a\right\}$ by blast
have $\exists a 1$ b1 c1. $a=a 1 * d \wedge b=b 1 * d \wedge c=c 1 * d$
\wedge ideal-generated $\{a 1, b 1, c 1\}=$ ideal-generated $\{1\}$
by (rule corollary $5[O F T i]$)
from this show ?thesis using that by auto
qed
define D where $D=d \cdot{ }_{m}\left(1_{m}\right.$ 2)
define A^{\prime} where $A^{\prime}=$ Matrix.mat 2 2 $(\lambda(i, j)$. if $i=0 \wedge j=0$ then a1 else if $i=1 \wedge j=0$ then b1 else if $i=0 \wedge j=1$ then 0 else c1)
have $D: D \in$ carrier-mat 22 and $A^{\prime}: A^{\prime} \in$ carrier-mat 22 unfolding A^{\prime}-def D-def by auto
have $A-A^{\prime} D: A=A^{\prime} * D$
by (rule eq-matI, insert $D A^{\prime} A$ a1 b1 c1 A-01 sum-two-rw a-def b-def c-def, unfold scalar-prod-def Matrix.row-def col-def D-def A^{\prime}-def, auto simp add: sum-two-rw less-Suc-eq numerals(2))
have $1 \in$ ideal-generated $\{a 1, b 1, c 1\}$ using $i 2$ by (simp add: ideal-generated-in)
from this obtain f where $d:\left(\sum i \in\{a 1, b 1, c 1\} . f i * i\right)=1$
using ideal-explicit2[of $\{a 1, b 1, c 1\}$] by auto
from this obtain x y z where $x * a 1+y * b 1+z * c 1=1$
using sum-three-elements[of-a1 b1 c1] by metis
hence $x a 1-y b 1-z c 1-d v d-1: x * a 1+y * b 1+z * c 1$ dvd 1 by auto
obtain $p q$ where $i 3$: ideal-generated $\{p * a 1, p * b 1+q * c 1\}=$ ideal-generated $\{1\}$ using $D^{\prime} i 2$ by blast
have ideal-generated $\{p, q\}=U N I V$
proof -
obtain $X Y$ where $e: X * p * a 1+Y *(p * b 1+q * c 1)=1$
by (metis i3 ideal-generated-1 ideal-generated-pair-exists-UNIV mult.assoc)
have $X * p * a 1+Y *(p * b 1+q * c 1)=X * p * a 1+Y * p * b 1+Y * q * c 1$
by (simp add: add.assoc mult.assoc semiring-normalization-rules(34))
also have $\ldots=(X * a 1+Y * b 1) * p+(Y * c 1) * q$
by (simp add: mult.commute ring-class.ring-distribs)

```
            finally have ( }X*a1+Y*b1)*p+Y*c1*q=1 using e by sim
            from this show ?thesis by (rule ideal-generated-pair-UNIV, simp)
    qed
    from this obtain uv where pu-qv-1: p*u - q*v=1
            by (metis Groups.mult-ac(2) diff-minus-eq-add ideal-generated-1
            ideal-generated-pair-exists-UNIV mult-minus-left)
    let ?P = Matrix.mat 2 2 }(\lambda(i,j). if i=0\wedgej=0 then p els
                        if }i=1\wedgej=0\mathrm{ then q else
                        if i=0^j=1 then v else u)
have \(P: ? P \in\) carrier-mat 2 2 by auto
have Determinant.det ?P = 1 using \(p u-q v-1\) unfolding det- \(2[O F P]\) by (simp add: mult.commute)
hence inv-P: invertible-mat?P
by (metis (no-types, lifting) P dvd-refl invertible-iff-is-unit-JNF)
define \(S 1\) where \(S 1=A^{\prime} *\) ? P
have \(S 1: S 1 \in\) carrier-mat 22 using \(A^{\prime} P\) S1-def mult-carrier-mat by blast
have S1-00: \(S 1 \$ \$(0,0)=p * a 1\) and S1-01: \(S 1 \$ \$(1,0)=p * b 1+q * c 1\)
unfolding S1-def times-mat-def scalar-prod-def using \(A^{\prime} P B U U B\)
unfolding \(A^{\prime}\)-def upper-triangular-def
by (auto, unfold sum-two-rw, auto simp add: \(A^{\prime}\)-def \(a\)-def b-def c-def)
obtain \(q 00\) and \(q 01\) where \(q 00-q 01: p * a 1 * q 00+(p * b 1+q * c 1) * q 01=1\) using
i3
by (metis ideal-generated-1 ideal-generated-pair-exists-pq1 mult.commute)
define \(q 10\) where \(q 10=-(p * b 1+q * c 1)\)
define \(q 11\) where \(q 11=p * a 1\)
have \(q 10-q 11: p * a 1 * q 10+(p * b 1+q * c 1) * q 11=0\) unfolding \(q 10-\) def \(q 11\)-def
by (auto simp add: Rings.ring-distribs(1) Rings.ring-distribs(4) semiring-normalization-rules(7))
let \(? Q=\) Matrix.mat \(22(\lambda(i, j)\). if \(i=0 \wedge j=0\) then q00 else
if \(i=1 \wedge j=0\) then q10 else
if \(i=0 \wedge j=1\) then q01 else q11)
have \(Q: ? Q \in\) carrier-mat 22 by auto
have Determinant. det ? \(Q=1\) using \(q 00-q 01\) unfolding det- \(2[O F Q]\) unfolding q10-def q11-def
by (auto, metis (no-types, lifting) add-uminus-conv-diff diff-minus-eq-add more-arith-simps (7)
more-arith-simps(9) mult.commute)
hence inv- \(Q\) : invertible-mat ? \(Q\) by (smt \(Q\) dvd-refl invertible-iff-is-unit-JNF)
define \(S 2\) where \(S 2=? Q * S 1\)
have S2: S2 \(\in\) carrier-mat 22 using \(A^{\prime} P\) S2-def S1 \(Q\) mult-carrier-mat by blast
have S2-00: S2 \(\$ \$(0,0)=1\) unfolding mat-mult2-00[OF Q S1 S2-def] using q00-q01
unfolding S1-00 S1-01 by (simp add: mult.commute)
have S2-10: S2 \(\$ \$(1,0)=0\) unfolding mat-mult2-10[OF Q S1 S2-def] using q10-q11 unfolding S1-00 S1-01 by (simp add: Groups.mult-ac(2))
let ? P1 \(=(\) addrow-mat \(2(-(S 2 \$ \$(0,1))) 01)\)
have P1: ?P1 \(\in\) carrier-mat 22 by auto
```

have inv-P1: invertible-mat ?P1
by (metis addrow-mat-carrier arithmetic-simps(78) det-addrow-mat dvd-def invertible-iff-is-unit-JNF numeral-One zero-neq-numeral)
define $S 3$ where $S 3=S 2 *$?P1
have $P 1-P-A^{\prime}: A^{\prime} * ? P * ? P 1 \in$ carrier-mat 22 using P1 $P A^{\prime}$ mult-carrier-mat by auto
have S3: S3 \in carrier-mat 22 using P1 S2 S3-def mult-carrier-mat by blast have S3-00: S3 $\$ \$(0,0)=1$ using S2-00 unfolding mat-mult2-00[OF S2 P1 S3-def] by auto
moreover have S3-01: S3 $\$ \$(0,1)=0$ using S2-00 unfolding mat-mult2-01[OF S2 P1 S3-def] by auto
moreover have S3-10: S3 $\$ \$(1,0)=0$ using S2-10 unfolding mat-mult2-10[OF S2 P1 S3-def] by auto
ultimately have $S N F-S 3$: Smith-normal-form-mat $S 3$
using S3 unfolding Smith-normal-form-mat-def isDiagonal-mat-def
using less-2-cases by auto
hence SNF-S3-D: Smith-normal-form-mat (S3*D)
using D-def S3 SNF-preserved-multiples-identity by blast
have $S 3 * D=? Q * A^{\prime} * ? P * ? P 1 * D$ using $S 1$-def S2-def S3-def
by (smt $A^{\prime} P Q$ S1 addrow-mat-carrier assoc-mult-mat)
also have $\ldots=? Q * A^{\prime} * ? P *(? P 1 * D)$
by (meson $A^{\prime} D$ addrow-mat-carrier assoc-mult-mat mat-carrier mult-carrier-mat)
also have $\ldots=? Q * A^{\prime} * ? P *(D * ? P 1)$
using commute-multiples-identity $[O F P 1]$ unfolding D-def by auto
also have $\ldots=? Q * A^{\prime} *(? P *(D * ? P 1))$
by (smt $A^{\prime} D$ assoc-mult-mat carrier-matD(1) carrier-matD(2) mat-carrier times-mat-def)
also have $\ldots=? Q * A^{\prime} *(D *(? P * ? P 1))$
by (smt D D-def P P1 assoc-mult-mat commute-multiples-identity)
also have $\ldots=? Q *\left(A^{\prime} * D\right) *(? P * ? P 1)$
by (smt $A^{\prime} D$ assoc-mult-mat carrier-matD(1) carrier-matD(2) mat-carrier times-mat-def)
also have $\ldots=? Q * A *(? P * ? P 1)$ unfolding $A-A^{\prime} D$ by auto
also have $\ldots=? Q * B *(U *(? P * ? P 1))$ unfolding A-def
by (smt B U assoc-mult-mat carrier-matD(1) carrier-matD(2) mat-carrier times-mat-def)
finally have $S 3-D-r w: S 3 * D=? Q * B *(U *(? P * ? P 1))$.
show admits-diagonal-reduction B
proof (rule admits-diagonal-reduction-intro $[O F-$ - inv- $Q]$)
show $(U *(? P * ? P 1)) \in$ carrier-mat $($ dim-col $B)($ dim-col $B)$ using $B U$ by auto
show ? $Q \in$ carrier-mat (dim-row B) (dim-row $B)$ using $Q B$ by auto
show invertible-mat $(U *(? P * ? P 1))$
by (metis (no-types, lifting) P1 U carrier-matD(1) carrier-matD(2) inv-P inv-P1 inv- U
invertible-mult-JNF mat-carrier times-mat-def)
show Smith-normal-form-mat (?Q $* B *(U *(? P * ? P 1))$) using SNF-S3-D
S3-D-rw by simp
qed

qed

obtain Smith-1x2 where Smith-1x2: $\forall\left(A::^{\prime} a\right.$ mat $) \in$ carrier-mat 1 2. is-SNF A (Smith-1x2 A)
using admits-diagonal-reduction-imp-exists-algorithm-is-SNF-all[OF admits-1x2] by auto
from this obtain Smith-1x2'
where Smith-1x2': $\forall\left(A::^{\prime a}\right.$ mat $) \in$ carrier-mat 1 2. is-SNF $A\left(1_{m} 1\right.$, Smith-1x2' A)
using Smith-1xn-two-matrices-all[OF Smith-1x2] by auto
obtain Smith-2x2 where Smith-2x2: $\forall\left(A::^{\prime}\right.$ a mat $) \in$ carrier-mat 2 2. is-SNF A (Smith-2x2 A)
using admits-diagonal-reduction-imp-exists-algorithm-is-SNF-all[OF admits-2x2] by auto
have d : is-div-op ($\lambda a b$. (SOME $k . k * b=a)$) using div-op-SOME by auto
interpret Smith-Impl Smith-1x2' Smith-2x2 ($\lambda a b$. (SOME $k . k * b=a)$)
using Smith-1x2' Smith-2x2 d by (unfold-locales, auto)
show ?thesis using is-SNF-Smith-mxn
by (meson admits-diagonal-reduction-eq-exists-algorithm-is-SNF carrier-mat-triv) qed

18.6 Final theorem

theorem edr-characterization:
$\left(\forall\left(A::^{\prime} a\right.\right.$ mat $)$. admits-diagonal-reduction $\left.A\right)=\left(\left(\forall\left(A::^{\prime} a\right.\right.\right.$ mat $)$. admits-triangular-reduction A)
$\wedge(\forall a b c:: ' a$. ideal-generated $\{a, b, c\}=$ ideal-generated $\{1\}$
$\longrightarrow(\exists p$ q. ideal-generated $\{p * a, p * b+q * c\}=$ ideal-generated \{1\})))
using necessity sufficiency by blast
corollary OFCLASS-edr-characterization:
OFCLASS (' a, elementary-divisor-ring-class $) \equiv($ OFCLASS (' a, Hermite-ring-class $)$
$\& \& \&(\forall a b c:: ' a$. ideal-generated $\{a, b, c\}=$ ideal-generated $\{1\}$
$\longrightarrow(\exists p$. ideal-generated $\{p * a, p * b+q * c\}=$ ideal-generated $\{1\}))$) (is ?lhs \equiv ?rhs)

proof

assume 1: OFCLASS ('a, elementary-divisor-ring-class)
hence admits-diagonal: $\forall A:: ' a$ mat. admits-diagonal-reduction A
using conjunctionD2[OF 1[unfolded elementary-divisor-ring-class-def]]
unfolding class.elementary-divisor-ring-def by auto
have $\forall A::$ 'a mat. admits-triangular-reduction A by (simp add: admits-diagonal necessity(1))
hence OFCLASS-Hermite: OFCLASS(' a, Hermite-ring-class) by (intro-classes, simp)
moreover have $\forall a b c:: ' a$. ideal-generated $\{a, b, c\}=$ ideal-generated $\{1\}$
$\longrightarrow(\exists p$. ideal-generated $\{p * a, p * b+q * c\}=$ ideal-generated
\{1\})
using admits-diagonal necessity(2) by blast
ultimately show OFCLASS ('a, Hermite-ring-class) \&\&\&
$\forall a b c::^{\prime} a$. ideal-generated $\{a, b, c\}=$ ideal-generated $\{1\}$
$\longrightarrow(\exists p$. ideal-generated $\{p * a, p * b+q * c\}=$ ideal-generated $\{1\})$
by auto
next
assume 1: OFCLASS (' a, Hermite-ring-class $) \& \& \&$
$\forall a b c:: ' a$. ideal-generated $\{a, b, c\}=$ ideal-generated $\{1\} \longrightarrow$
$(\exists p q$. ideal-generated $\{p * a, p * b+q * c\}=$ ideal-generated $\{1\})$
have H : OFCLASS ('a, Hermite-ring-class)
and 2: $\forall a b c:: ' a$. ideal-generated $\{a, b, c\}=$ ideal-generated $\{1\} \longrightarrow$
$(\exists p$. ideal-generated $\{p * a, p * b+q * c\}=$ ideal-generated $\{1\})$
using conjunctionD1[OF 1] conjunctionD2[OF 1] by auto
have $\forall A$::'a mat. admits-triangular-reduction A
using H unfolding OFCLASS-Hermite-ring-def by auto
hence a : $\forall A:: ' a$ mat. admits-diagonal-reduction A using 2 sufficiency by blast
show OFCLASS('a, elementary-divisor-ring-class) by (intro-classes, simp add:
a)
qed
corollary edr-characterization-class:
class.elementary-divisor-ring TYPE ('a)
$=($ class.Hermite-ring TYPE ('a)
$\wedge\left(\forall a b c::^{\prime} a\right.$. ideal-generated $\{a, b, c\}=$ ideal-generated $\{1\}$
$\longrightarrow(\exists p$. ideal-generated $\{p * a, p * b+q * c\}=$ ideal-generated $\{1\}))$) (is ?lhs $=(? H$
$\left.\wedge ? D^{\prime}\right)$)
proof
assume 1: ?lhs
hence admits-diagonal: $\forall A:: ' a$ mat. admits-diagonal-reduction A unfolding class.elementary-divisor-ring-def.
have admits-triangular: $\forall A::^{\prime}$ a mat. admits-triangular-reduction A using 1 necessity(1) unfolding class.elementary-divisor-ring-def by blast
hence ?H unfolding class.Hermite-ring-def by auto
moreover have ? D^{\prime} using admits-diagonal necessity(2) by blast
ultimately show (? $H \wedge ? D^{\prime}$) by simp
next
assume $H D^{\prime}:\left(? H \wedge ? D^{\prime}\right)$
hence admits-triangular: $\forall A::^{\prime}$ a mat. admits-triangular-reduction A unfolding class.Hermite-ring-def by auto
hence admits-diagonal: $\forall A:: ' a$ mat. admits-diagonal-reduction A using edr-characterization $H D^{\prime}$ by auto
thus ?lhs unfolding class.elementary-divisor-ring-def by auto
qed
corollary edr-iff-T-D':
shows class.elementary-divisor-ring $\operatorname{TYPE}\left({ }^{\prime} a\right)=($
$\left(\forall a b::^{\prime} a\right.$. $\exists a 1$ b1 d. $a=a 1 * d \wedge b=b 1 * d \wedge$ ideal-generated $\{a 1, b 1\}=$ ideal-generated \{1\})

```
    \wedge (\forallabc::'a. ideal-generated{a,b,c} = ideal-generated {1}
        \longrightarrow ( \exists p \text { q. ideal-generated \{p*a,p*b+q*c\} = ideal-generated \{1\}))}
    )}(\mathrm{ is ?lhs = (?T ^ ?D')}
proof
    assume 1:?lhs
    hence }\forallA::'a mat. admits-triangular-reduction A
            unfolding class.elementary-divisor-ring-def using necessity(1) by blast
    hence ?T using theorem3-part2 by simp
    moreover have ? D' using 1 unfolding edr-characterization-class by auto
    ultimately show (?T ^ ?D') by simp
next
    assume TD':(?T ^ ?D')
    hence class.Hermite-ring TYPE('a)
            unfolding class.Hermite-ring-def using theorem3-part1 TD' by auto
    thus ?lhs using edr-characterization-class TD' by auto
qed
end
end
```


19 Executable Smith normal form algorithm over Euclidean domains

theory SNF-Algorithm-Euclidean-Domain imports
Diagonal-To-Smith
Echelon-Form.Examples-Echelon-Form-Abstract
Elementary-Divisor-Rings
Diagonal-To-Smith-JNF
Mod-Type-Connect
Show.Show-Instances
Jordan-Normal-Form.Show-Matrix
Show.Show-Poly
begin

This provides an executable implementation of the verified general algorithm, provinding executable operations over a Euclidean domain.

```
lemma zero-less-one-type2: (0::2)}<
proof -
    have Mod-Type.from-nat 0 = (0::2) by (simp add: from-nat-0)
    moreover have Mod-Type.from-nat 1 = (1::2) using from-nat-1 by blast
    moreover have (Mod-Type.from-nat 0::2) < Mod-Type.from-nat 1 by (rule
from-nat-mono, auto)
    ultimately show ?thesis by simp
qed
```


19.1 Previous code equations

```
definition to-hmam-row A i
    = (vec-lambda ( }\lambdaj. A $$ (Mod-Type.to-nat i,Mod-Type.to-nat j)))
```

lemma bezout-matrix-row-code [code abstract]:
vec-nth (to-hma ${ }_{m}$-row A i) =
(λj. A $\$ \$($ Mod-Type.to-nat i, Mod-Type.to-nat $j)$)
unfolding to-hma - -row-def by auto
lemma [code abstract]: vec-nth (Mod-Type-Connect.to-hma $\left.A_{m} A\right)=$ to-hma a_{m}-row
A
unfolding Mod-Type-Connect.to-hma ${ }_{m}$-def unfolding to-hma a_{m}-row-def[abs-def]
by auto

19.2 An executable algorithm to transform 2×2 matrices into its Smith normal form in HOL Analysis

subclass (in euclidean-ring-gcd) bezout-ring-div proof qed

```
context
    fixes bezout::('a::euclidean-ring-gcd => ' ' }=>(\mp@subsup{}{}{\prime}a\times\mp@subsup{}{}{\prime}a\times' 'a\times' a\times' a))
    assumes ib: is-bezout-ext bezout
begin
lemma normalize-bezout-gcd:
    assumes b: (p,q,u,v,d)= bezout a b
    shows normalize d = gcd a b
proof -
    let ?gcd = (\lambdaa b. case bezout a b of (x,xa,u,v,gcd') =>gcd')
    have is-gcd: is-gcd ?gcd by (simp add: ib is-gcd-is-bezout-ext)
    have (?gcd a b) = d using b by (metis case-prod-conv)
    moreover have normalize (?gcd a b) = normalize (gcd a b)
    proof (rule associatedI)
        show (?gcd a b) dvd (gcd a b) using is-gcd is-gcd-def by fastforce
        show (gcd a b) dvd (?gcd a b) by (metis (no-types) gcd-dvd1 gcd-dvd2 is-gcd
is-gcd-def)
    qed
    ultimately show ?thesis by auto
qed
end
```

lemma bezout-matrix-works-transpose1:
assumes ib: is-bezout-ext bezout
and a-not- $b: a \neq b$

```
shows (A**transpose (bezout-matrix (transpose A) a b i bezout)) $ i $ a
    = snd (snd (snd (snd (bezout (A$ i$ a)(A$ i$b)))))
proof -
    have (A**transpose (bezout-matrix (transpose A) a b i bezout)) $h i $h a
        = transpose ( }A**\mathrm{ transpose (bezout-matrix (transpose A) a b i bezout)) $h a $hi
        by (simp add: transpose-code transpose-row-code)
    also have ... = ((bezout-matrix (transpose A) a b i bezout) ** (transpose A)) $h
a $h i
    by (simp add: matrix-transpose-mul)
    also have ... = snd (snd (snd (snd (bezout ((transpose A) $ a $ i) ((transpose
A) $b $i)))))
    by (rule bezout-matrix-works1[OF ib a-not-b])
    also have ... = snd (snd (snd (snd (bezout (A$ i $ a) (A $ i $ b)))))
    by (simp add: transpose-code transpose-row-code)
    finally show ?thesis.
qed
lemma invertible-bezout-matrix-transpose:
    fixes A::'a::{bezout-ring-div} `'cols::{finite,wellorder} ^'rows
    assumes ib: is-bezout-ext bezout
    and a-less-b: a<b
    and aj: A $h i $ha\not=0
shows invertible (transpose (bezout-matrix (transpose A) a b i bezout))
proof -
    have Determinants.det (bezout-matrix (transpose A) a b i bezout)=1
        by (rule det-bezout-matrix[OF ib a-less-b], insert aj, auto simp add: trans-
pose-def)
    hence Determinants.det (transpose (bezout-matrix (transpose A) a b i bezout))
= 1 by simp
    thus ?thesis by (simp add: invertible-iff-is-unit)
qed
```


\Rightarrow

where diagonalize-2x2-aux $(P, A, Q)=$
(
let
$a=A \$ h 0 \$ h 0 ;$
$b=A \$ h 0 \$ h 1$;
$c=A \$ h 1 \$ h 0 ;$
$d=A \$ h 1 \$ h 1$ in
if $a \neq 0 \wedge \neg a$ dvd b then let bezout-mat $=$ transpose (bezout-matrix (transpose
A) 010 euclid-ext2) in
diagonalize-2x2-aux ($P, A * *$ bezout-mat, $Q * *$ bezout-mat) else
if $a \neq 0 \wedge \neg a d v d c$ then let bezout-mat $=$ bezout-matrix A 010 euclid-ext2
in diagonalize-2x2-aux (bezout-mat**P,bezout-mat**A, Q) else - We can
divide an get zeros

$$
\begin{aligned}
& \text { let } Q^{\prime}=\text { column-add (Finite-Cartesian-Product.mat 1) } 10\left(-\left(\begin{array}{l}
\text { div a })
\end{array}\right)\right. \text {; } \\
& P^{\prime}=\text { row-add }\left(\text { Finite-Cartesian-Product.mat 1) } 1 0 \left(-\left(\begin{array}{l}
\text { c div a })) \text { in } \\
\left(P^{\prime} * * P, P^{\prime} * * A * * Q^{\prime}, Q * * Q^{\prime}\right)
\end{array}\right.\right.\right. \\
& \text {) by auto }
\end{aligned}
$$

termination

proof-
have ib: is-bezout-ext euclid-ext2 by (simp add: is-bezout-ext-euclid-ext2)
have euclidean-size ((bezout-matrix A 010 euclid-ext2 ** A) \$h 0 \$h 0) $<$ euclidean-size (A \$h 0 \$h 0)
if a-not-dvd-c: $\neg A \$ h 0 \$ h 0 d v d A \$ h 1 \$ h 0$ and a-not0: $A \$ h 0 \$ h 0 \neq 0$ for $A::^{\prime} a^{-2} 2$ へ2
proof-
let ? $a=\left(\begin{array}{l}A \$ h 0 \$ h 0) \text { let } ? c=\left(\begin{array}{l}A\end{array} \text { h } 1 \$ h 0\right) ~\end{array}\right.$
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=$ euclid-ext2 ?a ?c by (metis prod-cases5)
have (bezout-matrix A 010 euclid-ext2 ** A) \$h $0 \$ h 0=d$
by (metis bezout-matrix-works1 ib one-neq-zero pquvd prod.sel(2))
hence normalize ((bezout-matrix A 010 euclid-ext2 ** A) \$h 0 \$h 0) = normalize d by auto
also have..$=$ gcd ? a ?c by (rule normalize-bezout-gcd[OF ib pquvd])
finally have euclidean-size ((bezout-matrix A 010 euclid-ext2 ** A) \$h $0 \$ h$ 0)
$=$ euclidean-size (gcd ?a ? c) by (metis euclidean-size-normalize)
also have ... < euclidean-size ?a by (rule euclidean-size-gcd-less1[OF a-not0 $a-n o t-d v d-c])$
finally show ?thesis .
qed
moreover have euclidean-size ($(A * *$ transpose (bezout-matrix (transpose A) 0 10 euclid-ext2)) \$h 0 \$h 0)
< euclidean-size (A \$h $0 \$ h 0$)
if a-not-dvd-b: ᄀ $A \$ h 0 \$ h 0 d v d A \$ h 0 \$ h 1$ and a-not0: $A \$ h 0 \$ h 0 \neq 0$ for $A::^{\prime} a^{\text {- } 2 へ 2 ~}$
proof-
let $? a=\left(\begin{array}{l}A\end{array}\right.$ h $\left.0 \$ h 0\right)$ let $? b=\left(\begin{array}{l}A \$ h 0 \$ h 1\end{array}\right)$
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=$ euclid-ext2 ?a ?b by (metis prod-cases5)
have (A ** transpose (bezout-matrix (transpose A) 010 euclid-ext2)) \$h $0 \$ h$ $0=d$
by (metis bezout-matrix-works-transpose1 ib pquvd prod.sel(2) zero-neq-one)
hence normalize ($(A * *$ transpose (bezout-matrix (transpose A) 010 eu-clid-ext2)) $\$ 40 \$ h 0)=$ normalize d by auto
also have..$=$ gcd ? a ? b by (rule normalize-bezout-gcd $[$ OF ib pquvd])
finally have euclidean-size ($(A * *$ transpose (bezout-matrix (transpose $A) 01$ 0 euclid-ext2)) \$h $0 \$ h 0$)
$=$ euclidean-size (gcd?a?b) by (metis euclidean-size-normalize)
also have ... < euclidean-size ?a by (rule euclidean-size-gcd-less1[OF a-not0

```
a-not-dvd-b])
    finally show ?thesis .
    qed
    ultimately show ?thesis
        by (relation Wellfounded.measure ( }\lambda(P,A,Q).\mathrm{ euclidean-size (A $h 0 $h 0)),
auto)
qed
lemma diagonalize-2x2-aux-works:
    assumes }A=P**A\mathrm{ -input ** Q
    and invertible P and invertible Q
    and ( }\mp@subsup{P}{}{\prime},D,\mp@subsup{Q}{}{\prime})=\mathrm{ diagonalize-2x2-aux ( }P,A,Q
    and A $h 0 $h 0}=
    shows D= P'** A-input ** }\mp@subsup{Q}{}{\prime}\wedge invertible P P'^ invertible Q Q ^ isDiagonal D
    using assms
proof (induct (P,A,Q) arbitrary: P A Q rule:diagonalize-2x2-aux.induct)
    case (1 P A Q)
    let ?a=A$h 0 $h 0
    let ?b = A $h 0 $h 1
    let ?c=A $h 1 $h 0
    let ?d = A $h 1 $h 1
    have a-not-0:?a \not=0 using 1.prems by blast
    have ib: is-bezout-ext euclid-ext2 by (simp add: is-bezout-ext-euclid-ext2)
    have one-not-zero: }1\not=(0::2)\mathrm{ by auto
    show ?case
    proof (cases \neg?a dvd?b)
    case True
    let ?bezout-mat-right = transpose (bezout-matrix (transpose A) 0 1 0 euclid-ext2)
    have ( }\mp@subsup{P}{}{\prime},D,\mp@subsup{Q}{}{\prime})=\mathrm{ diagonalize-2x2-aux ( }P,A,Q)\mathrm{ using 1.prems by blast
    also have ... = diagonalize-2x2-aux ( }P,A**\mathrm{ ?bezout-mat-right, Q ** ?bezout-mat-right)
        using True a-not-0 by (auto simp add: Let-def)
    finally have eq:( }\mp@subsup{P}{}{\prime},D,\mp@subsup{Q}{}{\prime})=\ldots
    show ?thesis
    proof (rule 1.hyps(1)[OF - - - - - - eq])
        have invertible ?bezout-mat-right
        by (rule invertible-bezout-matrix-transpose[OF ib zero-less-one-type2 a-not-0])
        thus invertible ( }Q**\mathrm{ ?bezout-mat-right)
            using 1.prems invertible-mult by blast
        show A ** ?bezout-mat-right = P** A-input ** (Q ** ?bezout-mat-right)
            by (simp add: 1.prems matrix-mul-assoc)
        show (A **?bezout-mat-right) $h 0 $h 0}=
            by (metis (no-types, lifting) a-not-0 bezout-matrix-works-transpose1 be-
zout-matrix-not-zero
                bezout-matrix-works1 is-bezout-ext-euclid-ext2 one-neq-zero transpose-code
transpose-row-code)
    qed (insert True a-not-0 1.prems, blast+)
    next
    case False note a-dvd-b = False
```

```
    show ?thesis
    proof (cases ᄀ ?a dvd ?c)
        case True
        let ?bezout-mat =(bezout-matrix A 0 1 0 euclid-ext2)
        have ( }\mp@subsup{P}{}{\prime},D,\mp@subsup{Q}{}{\prime})=\mathrm{ diagonalize-2x2-aux ( }P,A,Q)\mathrm{ using 1.prems by blast
        also have ... = diagonalize-2x2-aux (?bezout-mat**P, ?bezout-mat ** A,Q)
        using True a-dvd-b a-not-0 by (auto simp add: Let-def)
        finally have eq: ( }\mp@subsup{P}{}{\prime},D,\mp@subsup{Q}{}{\prime})=\ldots
        show ?thesis
        proof (rule 1.hyps(2)[OF - - - - - - eq])
            have invertible?bezout-mat
            by (rule invertible-bezout-matrix[OF ib zero-less-one-type2 a-not-0])
            thus invertible (?bezout-mat ** P)
            using 1.prems invertible-mult by blast
            show ?bezout-mat ** A = (?bezout-mat ** P) ** A-input ** Q
                by (simp add: 1.prems matrix-mul-assoc)
            show (?bezout-mat ** A) $h 0 $h 0 F=0
            by (simp add: a-not-0 bezout-matrix-not-zero is-bezout-ext-euclid-ext2)
        qed (insert True a-not-0 a-dvd-b 1.prems, blast+)
        next
        case False
        hence a-dvd-c: ?a dvd ?c by simp
        let ?Q' = column-add (Finite-Cartesian-Product.mat 1) 1 0 (- (?b div
?a))::'a^2^2
    let ?P' = (row-add (Finite-Cartesian-Product.mat 1) 10(- (?c div ?a)))::'a^2^2
    have eq: ( }\mp@subsup{P}{}{\prime},D,\mp@subsup{Q}{}{\prime})=(?\mp@subsup{P}{}{\prime}**P,?\mp@subsup{P}{}{\prime}**A**?\mp@subsup{Q}{}{\prime},Q**?Q'
            using 1.prems a-dvd-b a-dvd-c a-not-0 by (auto simp add: Let-def)
    have d: isDiagonal (?P'**A**?Q')
    proof -
        {
        fix a b::2 assume a-not-b:a\not=b
        have (?P'** A ** ?Q') $h a $hb=0
        proof (cases (a,b)=(0,1))
            case True
            hence a0: a = 0 and b1: b=1 by auto
            have (?P'** A **?Q') $h a $hb=(?P'** (A**?Q')) $h a $hb
            by (simp add: matrix-mul-assoc)
            also have ... = (A**?Q') $h a $hb unfolding row-add-mat-1
                    by (smt True a-not-b prod.sel(2) row-add-def vec-lambda-beta)
            also have ... = 0 unfolding column-add-mat-1 a0 b1
                    by (smt Groups.mult-ac(2) a-dvd-b ab-group-add-class.ab-left-minus
add-0-left
                                add-diff-cancel-left' add-uminus-conv-diff column-add-code-nth
column-add-row-def
            comm-semiring-class.distrib dvd-div-mult-self vec-lambda-beta)
    finally show ?thesis.
    next
        case False
        hence a1:a=1 and b0:b=0
```

```
                    by (metis (no-types, hide-lams) False a-not-b exhaust-2 zero-neq-one)+
            have (?P'** A ** ?Q') $h a $hb=(?P'** A) $h a $hb
                    unfolding a1 b0 column-add-mat-1
                    by (simp add: column-add-code-nth column-add-row-def)
            also have ... = 0 unfolding row-add-mat-1 a1 b0
                    by (simp add: a-dvd-c row-add-def)
            finally show ?thesis.
        qed}
        thus ?thesis unfolding isDiagonal-def by auto
        qed
        have inv-P': invertible ?P' by (rule invertible-row-add[OF one-not-zero])
        have inv-Q': invertible ?Q' by (rule invertible-column-add[OF one-not-zero])
        have invertible (?P'**P) using 1.prems(2) inv-P' invertible-mult by blast
        moreover have invertible (Q**?Q') using 1.prems(3) inv- Q' invertible-mult
by blast
        moreover have D= P' ** A-input ** Q'
            by (metis (no-types,lifting) 1.prems(1) Pair-inject eq matrix-mul-assoc)
            ultimately show ?thesis using eq d by auto
    qed
    qed
qed
definition diagonalize-2x2 A =
    (if A $h 0 $h 0 = 0 then
        if A $h 0 $h 1 = 0 then
            let A' = interchange-columns A 0 1;
                    Q' = interchange-columns (Finite-Cartesian-Product.mat 1) 01 in
            diagonalize-2x2-aux (Finite-Cartesian-Product.mat 1, A', Q')
        else
            if A $h 1 $h 0}\not=0\mathrm{ then
                    let A'= interchange-rows A 0 1;
                            P'= interchange-rows(Finite-Cartesian-Product.mat 1) 01 in
                                diagonalize-2x2-aux ( }\mp@subsup{P}{}{\prime},\mp@subsup{A}{}{\prime},\mathrm{ Finite-Cartesian-Product.mat 1)
            else (Finite-Cartesian-Product.mat 1,A,Finite-Cartesian-Product.mat 1)
    else diagonalize-2x2-aux (Finite-Cartesian-Product.mat 1,A,Finite-Cartesian-Product.mat
1)
)
lemma diagonalize-2x2-works:
    assumes PDQ:(P,D,Q)= diagonalize-2x2 A
    shows}D=P**A**Q\wedge invertible P\wedge invertible Q\wedge isDiagonal D
proof -
    let ?a=A$h 0 $h 0
    let ?b = A $h 0 $h 1
    let ?c=A $h 1 $ho
    let ?d = A $h 1 $h 1
    show ?thesis
```

```
    proof (cases ?a }=0\mathrm{ )
```

 case False
 hence eq: \((P, D, Q)=\) diagonalize-2x2-aux (Finite-Cartesian-Product.mat 1,A,Finite-Cartesian-Product.mat
 1) using \(P D Q\) unfolding diagonalize-2x2-def by auto
 show ?thesis
by (rule diagonalize-2x2-aux-works[OF -- eq False], auto simp add: invert-
ible-mat-1)
next
case True note $a 0=$ True
show ?thesis
proof (cases $? b \neq 0$)
case True
let $? A^{\prime}=$ interchange-columns A 01
let ? $Q^{\prime}=($ interchange-columns (Finite-Cartesian-Product.mat 1) 0 1)::'a^2^2
have eq: $(P, D, Q)=$ diagonalize-2x2-aux (Finite-Cartesian-Product.mat 1,
$\left.? A^{\prime}, ? Q^{\prime}\right)$
using $P D Q$ a0 True unfolding diagonalize-2x2-def by (auto simp add:
Let-def)
show ?thesis
proof (rule diagonalize-2x2-aux-works[OF --eq-])
show? $A^{\prime} \$ h 0 \$ h 0 \neq 0$
by (simp add: True interchange-columns-code interchange-columns-code-nth)
show invertible? Q^{\prime} by (simp add: invertible-interchange-columns)
show ? $A^{\prime}=$ Finite-Cartesian-Product.mat $1 * * A * * ? Q^{\prime}$
by (simp add: interchange-columns-mat-1)
qed (auto simp add: invertible-mat-1)
next
case False note $b 0=$ False
show ?thesis
proof (cases ?c $\neq 0$)
case True
let ${ }^{2} A^{\prime}=$ interchange-rows $A 01$
let $? P^{\prime}=($ interchange-rows $($ Finite-Cartesian-Product.mat 1) 0 1)::'a^2^2
have eq: $(P, D, Q)=$ diagonalize-2x2-aux (? $P^{\prime}, ? A^{\prime}$, Finite-Cartesian-Product.mat
2) using \(P D Q\) a0 b0 True unfolding diagonalize-2x2-def by (auto simp add:

Let-def)
show ?thesis
proof (rule diagonalize-2x2-aux-works[OF --eq -])
show? $A^{\prime} \$ h 0 \$ h 0 \neq 0$
by (simp add: True interchange-columns-code interchange-columns-code-nth)
show invertible? ? ${ }^{\prime}$ by (simp add: invertible-interchange-rows)
show $? A^{\prime}=? P^{\prime} * * A * *$ Finite-Cartesian-Product.mat 1
by (simp add: interchange-rows-mat-1)
qed (auto simp add: invertible-mat-1)
next
case False
have eq: $(P, D, Q)=($ Finite-Cartesian-Product.mat 1, A,Finite-Cartesian-Product.mat

```
1)
            using PDQ a0 b0 True False unfolding diagonalize-2x2-def by (auto simp
add: Let-def)
            have isDiagonal A unfolding isDiagonal-def using a0 b0 True False
                by (metis (full-types) exhaust-2 one-neq-zero)
            thus ?thesis using invertible-mat-1 eq by auto
            qed
        qed
    qed
qed
definition diagonalize-2x2-JNF (A::'a::euclidean-ring-gcd mat)
    =(let (P,D,Q) = diagonalize-2x2 (Mod-Type-Connect.to-hmam A::'a^2^2) in
    (Mod-Type-Connect.from-hma m P,Mod-Type-Connect.from-hmam D,Mod-Type-Connect.from-hma m
Q))
lemma diagonalize-2x2-JNF-works:
    assumes A: A carrier-mat 2 2
    and PDQ:(P,D,Q) = diagonalize-2x2-JNF A
    shows D=P*A*Q\wedge invertible-mat }P\wedge\mathrm{ invertible-mat Q \ isDiagonal-mat
D\wedgeP\incarrier-mat 2 2
    \wedgeQ\incarrier-mat 2 2 ^ D E carrier-mat 2 2
proof -
    let ?A = (Mod-Type-Connect.to-hmam A::'a^2^2)
    have A[transfer-rule]: Mod-Type-Connect.HMA-M A ?A
        using A unfolding Mod-Type-Connect.HMA-M-def by auto
    obtain P-HMA D-HMA Q-HMA where PDQ-HMA: (P-HMA,D-HMA,Q-HMA)
= diagonalize-2x2 ?A
        by (metis prod-cases3)
    have P:P = Mod-Type-Connect.from-hma m}P\mathrm{ -HMA and Q:Q =Mod-Type-Connect.from-hmam
Q-HMA
    and D: D = Mod-Type-Connect.from-hmam D-HMA
    using PDQ-HMA PDQ unfolding diagonalize-2x2-JNF-def
    by (metis prod.simps(1) split-conv)+
    have [transfer-rule]: Mod-Type-Connect.HMA-M P P-HMA
        unfolding Mod-Type-Connect.HMA-M-def using P by auto
    have [transfer-rule]: Mod-Type-Connect.HMA-M Q Q-HMA
        unfolding Mod-Type-Connect.HMA-M-def using Q by auto
    have [transfer-rule]: Mod-Type-Connect.HMA-M D D-HMA
        unfolding Mod-Type-Connect.HMA-M-def using D by auto
    have r: D-HMA = P-HMA ** ?A ** Q-HMA ^ invertible P-HMA ^ invertible
Q-HMA ^ isDiagonal D-HMA
    by (rule diagonalize-2x2-works[OF PDQ-HMA])
    have D=P*A*Q^ invertible-mat P}\wedge\mathrm{ invertible-mat }Q\wedge\mathrm{ isDiagonal-mat
D
```

using r by (transfer, rule)
thus ?thesis using $P Q D$ by auto qed

```
definition Smith-2x2-eucl \(A=\) (
    let \((P, D, Q)=\) diagonalize-2x2 \(A\);
        \(\left(P^{\prime}, S, Q^{\prime}\right)=\) diagonal-to-Smith- \(P Q D\) euclid-ext2
    in \(\left.\left(P^{\prime} * * P, S, Q * * Q^{\prime}\right)\right)\)
```

lemma Smith-2x2-eucl-works:
assumes $P B Q:(P, S, Q)=$ Smith-2x2-eucl A
shows $S=P * * A * * Q \wedge$ invertible $P \wedge$ invertible $Q \wedge$ Smith-normal-form S
proof -
have ib: is-bezout-ext euclid-ext2 by (simp add: is-bezout-ext-euclid-ext2)
obtain P1 D Q1 where P1DQ1: $(P 1, D, Q 1)=$ diagonalize-2x2 A by (metis
prod-cases3)
obtain P2 S^{\prime} Q2 where P2SQ2:(P2, $\left.S^{\prime}, Q 2\right)=$ diagonal-to-Smith- $P Q D$ eu-
clid-ext2
by (metis prod-cases3)
have $P: P=P 2$ ** $P 1$ and $S: S=S^{\prime}$ and $Q: Q=Q 1 * * Q 2$
by (metis (mono-tags, lifting) PBQ Pair-inject Smith-2x2-eucl-def P1DQ1
P2SQ2 old.prod.case)+
have 1: $D=P 1$ ** $A * * Q 1 \wedge$ invertible $P 1 \wedge$ invertible $Q 1 \wedge$ isDiagonal D
by (rule diagonalize-2x2-works[OF P1DQ1])
have 2: $S^{\prime}=P 2$ ** $D * *$ Q2 \wedge invertible P2 \wedge invertible $Q 2 \wedge$ Smith-normal-form
S^{\prime}
by (rule diagonal-to-Smith- $P Q^{\prime}[O F-$ ib P2SQ2], insert 1, auto)
show ?thesis using $12 P S Q$ by (simp add: 2 invertible-mult matrix-mul-assoc)
qed

19.3 An executable algorithm to transform 2×2 matrices into its Smith normal form in JNF

```
definition Smith-2x2-JNF-eucl A = (
    let (P,D,Q) = diagonalize-2x2-JNF A;
        ( }\mp@subsup{P}{}{\prime},S,Q')=\mathrm{ diagonal-to-Smith-PQ-JNF D euclid-ext2
    in ( }\mp@subsup{P}{}{\prime}*P,S,Q*\mp@subsup{Q}{}{\prime})
lemma Smith-2x2-JNF-eucl-works:
    assumes A: A carrier-mat 2 2
        and PBQ:(P,S,Q) = Smith-2x2-JNF-eucl A
    shows is-SNF A (P,S,Q)
proof -
    have ib: is-bezout-ext euclid-ext2 by (simp add: is-bezout-ext-euclid-ext2)
    obtain P1 D Q1 where P1DQ1: (P1,D,Q1) = diagonalize-2x2-JNF A by (metis
prod-cases3)
```

obtain P2 S^{\prime} Q2 where P2SQ2: $\left(P 2, S^{\prime}, Q 2\right)=$ diagonal-to-Smith- $P Q-J N F D$ euclid-ext2
by (metis prod-cases3)
have $P: P=P 2 * P 1$ and $S: S=S^{\prime}$ and $Q: Q=Q 1 * Q 2$
by (metis (mono-tags, lifting) PBQ Pair-inject Smith-2x2-JNF-eucl-def P1DQ1 P2SQ2 old.prod.case)+
have 1: $D=P 1 * A * Q 1 \wedge$ invertible-mat $P 1 \wedge$ invertible-mat $Q 1 \wedge$ isDiago-nal-mat D
$\wedge P 1 \in$ carrier-mat $22 \wedge$ Q1 \in carrier-mat $22 \wedge D \in$ carrier-mat 22
by (rule diagonalize-2x2-JNF-works[OF A P1DQ1])
have 2: $S^{\prime}=P 2 * D * Q 2 \wedge$ invertible-mat P2 \wedge invertible-mat $Q 2 \wedge$ Smith-normal-form-mat S^{\prime}
$\wedge P 2 \in$ carrier-mat $22 \wedge S^{\prime} \in$ carrier-mat $22 \wedge$ Q2 \in carrier-mat 22
by (rule diagonal-to-Smith-PQ-JNF[OF-ib-P2SQ2], insert 1, auto)
show ?thesis
proof (rule is-SNF-intro)
have dim- $Q: Q \in$ carrier-mat 22 using $Q 12$ by auto
have P1AQ1: $(P 1 * A * Q 1) \in$ carrier-mat 22 using $12 A$ by auto
have $r w 1:(P 1 * A * Q 1) * Q 2=(P 1 * A *(Q 1 * Q 2))$
by (meson 12 A assoc-mult-mat mult-carrier-mat)
have rw2: $(P 1 * A * Q)=P 1 *(A * Q)$ by (rule assoc-mult-mat[OF - A
dim- Q], insert 1, auto)
show invertible-mat Q using $12 Q$ invertible-mult-JNF by blast
show invertible-mat P using $12 P$ invertible-mult-JNF by blast
have $P 2 * D * Q 2=P 2 *(P 1 * A * Q 1) * Q 2$ using 12 by auto
also have $\ldots=P 2 *((P 1 * A * Q 1) * Q 2)$ using 12 by auto
also have $\ldots=P 2 *(P 1 * A *(Q 1 * Q 2))$ unfolding $r w 1$ by simp
also have $\ldots=P 2 *(P 1 * A * Q)$ using Q by auto
also have $\ldots=P 2 *(P 1 *(A * Q))$ unfolding rw2 by simp
also have $\ldots=P 2 * P 1 *(A * Q)$ by (rule assoc-mult-mat[symmetric], insert $12 A Q$, auto)
also have $\ldots=P *(A * Q)$ unfolding P by simp
also have $\ldots=P * A * Q$ by (rule assoc-mult-mat[symmetric], insert $12 A Q P$, auto)
finally show $S=P * A * Q$ using $12 S$ by auto qed (insert $12 P Q A S$, auto)
qed

19.4 An executable algorithm to transform 1×2 matrices into its Smith normal form

```
definition Smith-1x2-eucl (A::'a::euclidean-ring-gcd^2^1) \(=(\)
    if \(A \$ h 0 \$ h 0=0 \wedge A \$ h 0 \$ h 1 \neq 0\) then
    let \(Q=\) interchange-columns (Finite-Cartesian-Product.mat 1) 0 1;
            \(A^{\prime}=\) interchange-columns \(A 01\) in \(\left(A^{\prime}, Q\right)\)
    else
    if \(A \$ h 0 \$ h 0 \neq 0 \wedge A \$ h 0 \$ h 1 \neq 0\) then
                            let bezout-matrix-right \(=\) transpose \((\) bezout-matrix \((\) transpose A) 010 eu-
clid-ext2)
```

```
        in (A** bezout-matrix-right, bezout-matrix-right)
    else (A, Finite-Cartesian-Product.mat 1)
    )
lemma Smith-1x2-eucl-works:
    assumes SQ:(S,Q)=Smith-1x2-eucl A
    shows S=A** Q^ invertible Q\wedgeS$h 0 $h 1=0
proof (cases A $h 0 $h 0=0^A$h 0$h1\not=0)
    case True
    have Q:Q = interchange-columns (Finite-Cartesian-Product.mat 1) 01
        and S:S = interchange-columns A 0 1
        using SQ True unfolding Smith-1x2-eucl-def by (auto simp add: Let-def)
    have S$h 0$h 1=0 by (simp add: S True interchange-columns-code inter-
change-columns-code-nth)
    moreover have invertible Q using Q invertible-interchange-columns by blast
    moreover have S=A**Q by (simp add: Q S interchange-columns-mat-1)
    ultimately show ?thesis by simp
next
    case False note A00-A01 = False
    show ?thesis
    proof (cases A $h 0 $h 0 f 0^A$h 0 $h 1 = 0)
        case True
        have ib: is-bezout-ext euclid-ext2 by (simp add: is-bezout-ext-euclid-ext2)
            let ?bezout-matrix-right = transpose (bezout-matrix (transpose A) 0 1 0 eu-
clid-ext2)
    have Q: Q = ?bezout-matrix-right and S:S=A**?bezout-matrix-right
            using SQ True A00-A01 unfolding Smith-1x2-eucl-def by (auto simp add:
Let-def)
    have invertible Q unfolding Q
            by (rule invertible-bezout-matrix-transpose[OF ib zero-less-one-type2], insert
True, auto)
    moreover have S $h 0 $h 1=0
    by (smt Finite-Cartesian-Product.transpose-transpose S True bezout-matrix-works2
ib
                matrix-transpose-mul rel-simps(92) transpose-code transpose-row-code)
    moreover have S=A**Q unfolding S Q by simp
    ultimately show ?thesis by simp
    next
    case False
    have Q:Q=(Finite-Cartesian-Product.mat 1) and S:S=A
        using SQ False A00-A01 unfolding Smith-1x2-eucl-def by (auto simp add:
Let-def)
    show ?thesis using False A00-A01 S Q invertible-mat-1 by auto
    qed
qed
```

definition bezout-matrix-JNF :: 'a::comm-ring-1 mat \Rightarrow nat \Rightarrow nat \Rightarrow nat $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a \times{ }^{\prime} a \times{ }^{\prime} a \times{ }^{\prime} a\right)\right) \Rightarrow{ }^{\prime} a$ mat

where

bezout-matrix-JNF A a bjbezout = Matrix.mat (dim-row A) $($ dim-row $A)(\lambda(x, y)$.

```
(let
    \((p, q, u, v, d)=\) bezout \((A \$ \$(a, j))(A \$ \$(b, j))\)
    in
    if \(x=a \wedge y=a\) then \(p\) else
    if \(x=a \wedge y=b\) then \(q\) else
    if \(x=b \wedge y=a\) then \(u\) else
    if \(x=b \wedge y=b\) then \(v\) else
    if \(x=y\) then 1 else 0 ))
```

```
definition Smith-1x2-eucl-JNF (A::'a::euclidean-ring-gcd mat) \(=(\)
    if \(A \$ \$(0,0)=0 \wedge A \$ \$(0,1) \neq 0\) then
    let \(Q=\) swaprows-mat 201 ;
        \(A^{\prime}=\) swapcols \(01 A\)
        in \(\left(A^{\prime}, Q\right)\)
    else
        if \(A \$ \$(0,0) \neq 0 \wedge A \$ \$(0,1) \neq 0\) then
                let bezout-matrix-right \(=\) transpose-mat (bezout-matrix-JNF (transpose-mat
A) 010 euclid-ext2)
            in ( \(A *\) bezout-matrix-right, bezout-matrix-right)
    else ( \(A, 1_{m}\) 2)
)
```

lemma Smith-1x2-eucl-JNF-works:
assumes $A: A \in$ carrier-mat 12
and $S Q:(S, Q)=$ Smith-1x2-eucl-JNF A
shows is-SNF A ($1_{m} 1$, (Smith-1x2-eucl-JNF A))
proof -
have i : $0<$ dim-row A and $j: 1<\operatorname{dim}$-col A using A by auto
have ib: is-bezout-ext euclid-ext2 by (simp add: is-bezout-ext-euclid-ext2)
show ?thesis
proof $($ cases $A \$ \$(0,0)=0 \wedge A \$ \$(0,1) \neq 0)$
case True
have $Q: Q=$ swaprows-mat 201
and $S: S=$ swapcols $01 A$
using SQ True unfolding Smith-1x2-eucl-JNF-def by (auto simp add: Let-def)
have $S 01$: $S \$ \$(0,1)=0$ unfolding S using index-mat-swapcols j i True by simp
have dim-S: $S \in$ carrier-mat 12 using $S A$ by auto
moreover have dim- $Q: Q \in$ carrier-mat 22 using $S Q$ by auto
moreover have invertible-mat Q
proof -
have Determinant.det (swaprows-mat 20 1) $=-1$ by (rule det-swaprows-mat,
auto)
also have ... dvd 1 by simp
finally show ?thesis using Q dim- Q invertible-iff-is-unit-JNF by blast qed
moreover have $S=A * Q$ unfolding $S Q$ using A by (simp add: swapcols-mat)
moreover have Smith-normal-form-mat S unfolding Smith-normal-form-mat-def
isDiagonal-mat-def
using S01 dim-S less-2-cases by fastforce
ultimately show ?thesis using $S Q S Q A$ unfolding is-SNF-def by auto next
case False note A00-A01 = False
show ?thesis
proof $($ cases $A \$ \$(0,0) \neq 0 \wedge A \$ \$(0,1) \neq 0)$
case True
have ib: is-bezout-ext euclid-ext2 by (simp add: is-bezout-ext-euclid-ext2)
let ? $B M=\left(\text { bezout-matrix-JNF } A^{T} 010 \text { euclid-ext2 }\right)^{T}$
have $Q: Q=? B M$ and $S: S=A * ? B M$
using SQ True A00-A01 unfolding Smith-1x2-eucl-JNF-def by (auto simp add: Let-def)
let $? a=A \$ \$(0,0)$ let $? b=A \$ \$(0$, Suc 0$)$
obtain $p q u v d$ where pquvd: $(p, q, u, v, d)=$ euclid-ext2 ?a ? b by (metis prod-cases5)
have $d: p * ? a+q * ? b=d$ and $u: u=-? b$ div d and $v: v=? a$ div d using pquvd unfolding euclid-ext2-def using bezout-coefficients-fst-snd by blast+
have $d a: d d v d ? a$ and $d b: d d v d ? b$ and $g c d-a b: d=g c d ? a ? b$
by (metis euclid-ext2-def gcd-dvd1 gcd-dvd2 pquvd prod.sel(2))+
have dim-S: $S \in$ carrier-mat 12 using $S A$ by (simp add: bezout-matrix-JNF-def) moreover have dim- $Q: Q \in$ carrier-mat 22 using A by (simp add:
bezout-matrix-JNF-def)
have invertible-mat Q
proof -
have Determinant.det ? $B M=? B M \$ \$(0,0) * ? B M \$ \$(1,1)-? B M \$ \$$
$(0,1) * ? B M \$ \$(1,0)$
by (rule det-2, insert A, auto simp add: bezout-matrix-JNF-def)
also have $\ldots=p * v-u * q$
by (insert $i j$ pquvd, auto simp add: bezout-matrix-JNF-def, metis split-conv)
also have $\ldots=(p * ? a)$ div $d-(q *(-? b))$ div d unfolding $v u$
by (simp add: da db div-mult-swap mult.commute)
also have $\ldots=(p * ? a+q * ? b)$ div d
by (metis (no-types, lifting) da db diff-minus-eq-add div-diff dvd-minus-iff dvd-trans
dvd-triv-right more-arith-simps(8))
also have $\ldots=1$ unfolding d using True $d a$ by fastforce
finally show ?thesis unfolding Q
by (metis (full-types) Determinant.det-def Q carrier-matI invertible-iff-is-unit-JNF

```
not-is-unit-0 one-dvd)
```

qed
moreover have S - $A Q$: $S=A * Q$ unfolding $S Q$ by simp
moreover have $S 01: S \$(0,1)=0$
proof -
have $Q 01: Q \$ \$(0,1)=u$
proof -
have ?BM $\$ \$(0,1)=\left(\right.$ bezout-matrix-JNF $A^{T} 010$ euclid-ext2) $\$ \$(1,0)$ using $Q \operatorname{dim-Q}$ by auto
also have $\ldots=(\lambda(x:: n a t, y:: n a t)$.
let $(p, q, u, v, d)=$ euclid-ext2 $\left(A^{T} \$ \$(0,0)\right)\left(A^{T} \$ \$(1,0)\right)$ in if $x=0$
$\wedge y=0$ then p else if $x=0 \wedge y=1$ then q else if $x=1 \wedge y=0$ then u else if $x=1 \wedge$
$y=1$ then v
else if $x=y$ then 1 else 0$)(1,0)$
unfolding bezout-matrix-JNF-def by (rule index-mat(1), insert A, auto)
also have ... $=u$ using pquvd unfolding split-beta Let-def
by (auto, metis A One-nat-def carrier-matD(2) fst-conv i index-transpose-mat(1)

```
j rel-simps(51) snd-conv)
```

finally show ?thesis unfolding Q by auto
qed
have $Q 11: Q \$(1,1)=v$
proof -
have ?BM $\$ \$(1,1)=\left(\right.$ bezout-matrix-JNF $A^{T} 010$ euclid-ext2) $\$ \$(1,1)$ using Q dim- Q by auto
also have $\ldots=(\lambda(x:: n a t, y:: n a t)$.
let $(p, q, u, v, d)=$ euclid-ext2 $\left(A^{T} \$ \$(0,0)\right)\left(A^{T} \$ \$(1,0)\right)$ in if $x=0$
$\wedge y=0$ then p
else if $x=0 \wedge y=1$ then q else if $x=1 \wedge y=0$ then u else if $x=1 \wedge$
$y=1$ then v
else if $x=y$ then 1 else 0$)(1,1)$
unfolding bezout-matrix-JNF-def by (rule index-mat(1), insert A, auto)
also have $\ldots=v$ using pquvd unfolding split-beta Let-def
by (auto, metis A One-nat-def carrier-matD(2) fst-conv i index-transpose-mat(1)

$$
j \text { rel-simps(51) snd-conv) }
$$

finally show ?thesis unfolding Q by auto qed
have $S \$ \$(0,1)=$ Matrix.row $A 0 \cdot \operatorname{col} Q 1$ using index-mult-mat $Q S$ dim- $S i$ by auto
also have $\ldots=\left(\sum i=0 . .<2\right.$. Matrix.row $\left.A 0 \$ v i * Q \$ \$(i, 1)\right)$
unfolding scalar-prod-def using dim-S dim- Q by auto
also have $\ldots=\left(\sum i \in\{0,1\}\right.$. Matrix.row $\left.A 0 \$ v i * Q \$ \$(i, 1)\right)$ by (rule sum.cong, auto)
also have $\ldots=$ Matrix.row $A 0 \$ v 0 * Q \$ \$(0,1)+$ Matrix.row A $0 \$ v 1$

* $Q \$(1,1)$
using sum-two-elements by auto
also have $\ldots=? a * u+? b * v$ unfolding $Q 01$ Q11 using i index-row(1) j
A by auto
also have $\ldots=0$ unfolding $u v$

```
    by (smt Groups.mult-ac(2) Groups.mult-ac(3) add.right-inverse add-uminus-conv-diff
da db
            diff-minus-eq-add dvd-div-mult-self dvd-neg-div minus-mult-left)
            finally show ?thesis .
    qed
    moreover have Smith-normal-form-mat S
        using less-2-cases S01 dim-S unfolding Smith-normal-form-mat-def isDi-
agonal-mat-def
            by fastforce
            ultimately show ?thesis using S Q A SQ unfolding is-SNF-def be-
zout-matrix-JNF-def by force
    next
            case False
            have Q:Q=1m 2 and S:S=A
            using SQ False A00-A01 unfolding Smith-1x2-eucl-JNF-def by (auto simp
add: Let-def)
            have is-SNF A (1m 1, A, 1m 2)
            by (rule is-SNF-intro, insert A False A00-A01 S Q A less-2-cases,
                unfold Smith-normal-form-mat-def isDiagonal-mat-def, fastforce+)
            thus ?thesis using SQ S Q by auto
    qed
qed
qed
```


19.5 The final executable algorithm to transform any matrix into its Smith normal form

global-interpretation Smith-ED: Smith-Impl Smith-1x2-eucl-JNF Smith-2x2-JNF-eucl (div)

```
    defines Smith-ED-1xn-aux = Smith-ED.Smith-1xn-aux
    and Smith-ED-nx1 = Smith-ED.Smith-nx1
    and Smith-ED-1xn = Smith-ED.Smith-1xn
    and Smith-ED-2xn = Smith-ED.Smith-2xn
    and Smith-ED-nx2 = Smith-ED.Smith-nx2
    and Smith-ED-mxn = Smith-ED.Smith-mxn
proof
    show }\forall(A::'a mat)\incarrier-mat 1 2. is-SNF A (1m 1, Smith-1x2-eucl-JNF A) 
        using Smith-1x2-eucl-JNF-works prod.collapse by blast
    show }\forallA\incarrier-mat 2 2. is-SNF A (Smith-2x2-JNF-eucl A)
        by (simp add: Smith-2x2-JNF-eucl-def Smith-2x2-JNF-eucl-works split-beta)
    show is-div-op ((div)::'a }\mp@subsup{|}{}{\prime}a\mp@subsup{|}{}{\prime}a::euclidean-ring-gcd) 
        by (unfold is-div-op-def, simp)
qed
```


20 A certified checker based on an external algorithm to compute Smith normal form

theory Smith-Certified
imports
SNF-Algorithm-Euclidean-Domain
begin

This (unspecified) function takes as input the matrix A and returns five matrices $\left(P, S, Q, P^{\prime}, Q^{\prime}\right)$, which must satisfy $S=P A Q, S$ is in Smith normal form, P^{\prime} and Q^{\prime} are the inverse matrices of P and Q respectively

The matrices are given in terms of lists for the sake of simplicity when connecting the function to external solvers, like Mathematica or Sage.

consts external-SNF ::

int list list \Rightarrow int list list \times int list list \times int list list \times int list list \times int list list
We implement the checker by means of the following definition. The checker is implemented in the JNF representation of matrices to make use of the Strassen matrix multiplication algorithm. In case that the certification fails, then the verified Smith normal form algorithm is executed. Thus, we will always get a verified result.

```
definition checker-SNF \(A=(\)
    let \(A^{\prime}=\) mat-to-list \(A ; m=\) dim-row \(A ; n=\operatorname{dim}\)-col \(A\) in
        case external-SNF \(A^{\prime}\) of ( \(P\)-ext, \(S\)-ext, \(Q\)-ext,\(P^{\prime}\)-ext, \(Q^{\prime}\)-ext \() \Rightarrow\) let
        \(P=\) mat-of-rows-list \(m P\)-ext;
        \(S=\) mat-of-rows-list \(m S\)-ext;
        \(Q=\) mat-of-rows-list \(m\)-ext;
        \(P^{\prime}=\) mat-of-rows-list \(m P^{\prime}\)-ext;
        \(Q^{\prime}=\) mat-of-rows-list \(m Q^{\prime}\)-ext in
            (if dim-row \(P=m \wedge\) dim-col \(P=m\)
                            \(\wedge\) dim-row \(S=m \wedge\) dim-col \(S=n\)
                            \(\wedge\) dim-row \(Q=n \wedge\) dim-col \(Q=n\)
                        \(\wedge\) dim-row \(P^{\prime}=m \wedge\) dim-col \(P^{\prime}=m\)
                        \(\wedge\) dim-row \(Q^{\prime}=n \wedge\) dim-col \(Q^{\prime}=n\)
                        \(\wedge P * P^{\prime}=1_{m} m \wedge Q * Q^{\prime}=1_{m} n\)
                        \(\wedge\) Smith-normal-form-mat \(S \wedge(S=P * A * Q)\) then
        \((P, S, Q)\) else Code.abort (STR "Certification failed") \((\lambda\)-. Smith-ED-mxn A))
)
theorem checker-SNF-soudness:
    assumes \(A: A \in\) carrier-mat \(m n\)
    and \(c\) : checker-SNF \(A=(P, S, Q)\)
```

shows is-SNF $A(P, S, Q)$
proof -
let ?ext $=$ external-SNF $($ mat-to-list $A)$
obtain P-ext S-ext Q-ext P^{\prime}-ext Q^{\prime}-ext where ext: ?ext $=\left(P\right.$-ext,S-ext,Q-ext,P^{\prime}-ext, Q^{\prime}-ext $)$
by (cases ?ext, auto)
let ?case-external $=$ let
$P=$ mat-of-rows-list $m P$-ext;
$S=$ mat-of-rows-list $m S$-ext;
$Q=$ mat-of-rows-list n Q-ext;
$P^{\prime}=$ mat-of-rows-list $m P^{\prime}$-ext;
$Q^{\prime}=$ mat-of-rows-list $n Q^{\prime}$-ext in
(dim-row $P=m \wedge$ dim-col $P=m$
\wedge dim-row $S=m \wedge$ dim-col $S=n$
\wedge dim-row $Q=n \wedge$ dim-col $Q=n$
\wedge dim-row $P^{\prime}=m \wedge$ dim-col $P^{\prime}=m$
\wedge dim-row $Q^{\prime}=n \wedge$ dim-col $Q^{\prime}=n$
$\wedge P * P^{\prime}=1_{m} m \wedge Q * Q^{\prime}=1_{m} n$
\wedge Smith-normal-form-mat $S \wedge(S=P * A * Q))$
show ?thesis
proof (cases ?case-external)
case True
define P^{\prime} where $P^{\prime}=$ mat-of-rows-list $m P^{\prime}$-ext
define Q^{\prime} where $Q^{\prime}=$ mat-of-rows-list $m Q^{\prime}$-ext
have S - $P A Q: S=P * A * Q$
and $S N F-S$: Smith-normal-form-mat S and $P P^{\prime}-1: P * P^{\prime}=1_{m} m$ and
$Q Q^{\prime}-1: Q * Q^{\prime}=1_{m} n$
and $s m-P$: square-mat P and $s m-Q$: square-mat Q
using ext True c A
unfolding checker-SNF-def Let-def mat-of-rows-list-def P^{\prime}-def Q^{\prime}-def
by (auto split: if-splits)
have inv-P: invertible-mat P
proof (unfold invertible-mat-def, rule conjI, rule sm- P, unfold inverts-mat-def, rule exI[of - P], rule conjI)
show $*: P * P^{\prime}=1_{m}($ dim-row $P)$
by (metis $P P^{\prime}-1$ True index-mult-mat(2))
show $P^{\prime} * P=1_{m}\left(\right.$ dim-row $\left.P^{\prime}\right)$
proof (rule mat-mult-left-right-inverse)
show $P \in$ carrier-mat (dim-row $\left.P^{\prime}\right)\left(\right.$ dim-row $\left.P^{\prime}\right)$
by (metis * P^{\prime}-def $P P^{\prime}-1$ True carrier-mat-triv index-one-mat(2) sm- P
square-mat.elims(2))
show $P^{\prime} \in$ carrier-mat (dim-row $\left.P^{\prime}\right)\left(\right.$ dim-row $\left.P^{\prime}\right)$
by (metis P^{\prime}-def True carrier-mat-triv)
show $P * P^{\prime}=1_{m}\left(\right.$ dim-row $\left.P^{\prime}\right)$
by (metis P^{\prime}-def $P P^{\prime}-1$ True)
qed
qed
have inv- Q : invertible-mat Q
proof (unfold invertible-mat-def, rule conjI, rule sm- Q, unfold inverts-mat-def, rule exI[of- $\left.Q^{\prime}\right]$, rule conjI)
show $*: Q * Q^{\prime}=1_{m}($ dim-row $Q)$
by (metis $Q Q^{\prime}-1$ True index-mult-mat(2))
show $Q^{\prime} * Q=1_{m}$ (dim-row $\left.Q^{\prime}\right)$
proof (rule mat-mult-left-right-inverse)
show 1: $Q \in$ carrier-mat (dim-row Q^{\prime}) (dim-row $\left.Q^{\prime}\right)$
by (metis Q^{\prime}-def $Q Q^{\prime}-1$ True carrier-mat-triv dim-row-mat(1) in-dex-mult-mat(2) mat-of-rows-list-def sm- Q square-mat.simps)
thus $Q^{\prime} \in$ carrier-mat (dim-row Q^{\prime}) (dim-row Q^{\prime})
by (metis $*$ carrier-matD (1) carrier-mat-triv index-mult-mat(3) in-dex-one-mat(3))
show $Q * Q^{\prime}=1_{m}\left(\right.$ dim-row $\left.Q^{\prime}\right)$ using * 1 by auto
qed
qed
have $P \in$ carrier-mat $m m$
by (metis $P P^{\prime}-1$ True carrier-matI index-mult-mat(2) sm-P square-mat.simps)
moreover have $Q \in$ carrier-mat $n n$
by (metis $Q Q^{\prime}-1$ True carrier-matI index-mult-mat(2) sm- Q square-mat.simps)
ultimately show ?thesis unfolding is-SNF-def using inv-P inv-Q SNF-S $S-P A Q A$ by auto
next
case False
hence checker-SNF $A=$ Smith-ED-mxn A
using ext False c A
unfolding checker-SNF-def Let-def Code.abort-def
by (smt carrier-matD case-prod-conv dim-col-mat(1) mat-of-rows-list-def)
then show ?thesis using Smith-ED.is-SNF-Smith-mxn[OF A] c unfolding is-SNF-def
by auto
qed
qed
end

