The Factorization Algorithm of Berlekamp and Zassenhaus *

Jose Divasón Sebastiaan Joosten René Thiemann
Akihisa Yamada

December 14, 2021

Abstract

We formalize the Berlekamp-Zassenhaus algorithm for factoring square-free integer polynomials in Isabelle/HOL. We further adapt an existing formalization of Yun's square-free factorization algorithm to integer polynomials, and thus provide an efficient and certified factorization algorithm for arbitrary univariate polynomials.

The algorithm first performs a factorization in the prime field $\mathrm{GF}(p)$ and then performs computations in the integer ring modulo p^{k}, where both p and k are determined at runtime. Since a natural modeling of these structures via dependent types is not possible in Isabelle/HOL, we formalize the whole algorithm using Isabelle's recent addition of local type definitions.

Through experiments we verify that our algorithm factors polynomials of degree 100 within seconds.

Contents

1 Introduction 3
2 Finite Rings and Fields 5
2.1 Finite Rings 5
2.2 Nontrivial Finite Rings 8
2.3 Finite Fields 10
3 Arithmetics via Records 13
3.1 Finite Fields 18
3.1.1 Transfer Relation 22
3.1.2 Transfer Rules 23
3.2 Matrix Operations in Fields 55
3.3 Interfacing UFD properties 71

[^0]3.3.1 Original part 71
3.3.2 Connecting to HOL/Divisibility 73
3.4 Preservation of Irreducibility 77
3.4.1 Back to divisibility 78
3.5 Results for GCDs etc 83
4 Unique Factorization Domain for Polynomials 90
5 Polynomials in Rings and Fields 111
5.1 Polynomials in Rings 111
5.2 Polynomials in a Finite Field 134
5.3 Transferring to class-based mod-ring 135
5.4 Karatsuba's Multiplication Algorithm for Polynomials 148
5.5 Record Based Version 152
5.5.1 Definitions 152
5.5.2 Properties 157
5.5.3 Over a Finite Field 171
5.6 Chinese Remainder Theorem for Polynomials 179
6 The Berlekamp Algorithm 184
6.1 Auxiliary lemmas 184
6.2 Previous Results 192
6.3 Definitions 202
6.4 Properties 203
7 Distinct Degree Factorization 253
8 A Combined Factorization Algorithm for Polynomials over GF(p) 276
8.1 Type Based Version 276
8.2 Record Based Version 279
9 Hensel Lifting 292
9.1 Properties about Factors 292
9.2 Hensel Lifting in a Type-Based Setting 332
9.3 Result is Unique 347
10 Reconstructing Factors of Integer Polynomials 362
10.1 Square-Free Polynomials over Finite Fields and Integers 362
10.2 Finding a Suitable Prime 366
10.3 Maximal Degree during Reconstruction 373
10.4 Mahler Measure 379
10.5 The Mignotte Bound 398
10.6 Iteration of Subsets of Factors 405
10.7 Reconstruction of Integer Factorization 419
11 The Polynomial Factorization Algorithm 439
11.1 Factoring Square-Free Integer Polynomials 439
11.2 A fast coprimality approximation 441
11.3 Factoring Arbitrary Integer Polynomials 460
11.4 Factoring Rational Polynomials 476

1 Introduction

Modern algorithms to factor integer polynomials - following Berlekamp and Zassenhaus - work via polynomial factorization over prime fields $\operatorname{GF}(p)$ and quotient rings $\mathbb{Z} / p^{k} \mathbb{Z}[2,3]$. Algorithm 1 illustrates the basic structure of such an algorithm. ${ }^{1}$

```
Algorithm 1: A modern factorization algorithm
    Input: Square-free integer polynomial \(f\).
    Output: Irreducible factors \(f_{1}, \ldots, f_{n}\) such that \(f=f_{1} \cdot \ldots \cdot f_{n}\).
    4 Choose a suitable prime \(p\) depending on \(f\).
    5 Factor \(f\) in \(\operatorname{GF}(p): f \equiv g_{1} \cdot \ldots \cdot g_{m}(\bmod p)\).
    6 Determine a suitable bound \(d\) on the degree, depending on
        \(g_{1}, \ldots, g_{m}\). Choose an exponent \(k\) such that every coefficient of a
        factor of a given multiple of \(f\) in \(\mathbb{Z}\) with degree at most \(d\) can be
        uniquely represent by a number below \(p^{k}\).
    7 From step 5 compute the unique factorization \(f \equiv h_{1} \cdot \ldots \cdot h_{m}\)
        \(\left(\bmod p^{k}\right)\) via the Hensel lifting.
    8 Construct a factorization \(f=f_{1} \cdot \ldots \cdot f_{n}\) over the integers where
        each \(f_{i}\) corresponds to the product of one or more \(h_{j}\).
```

In previous work on algebraic numbers [12], we implemented Algorithm 1 in Isabelle/HOL [11] as a function of type int poly \Rightarrow int poly list, where we chose Berlekamp's algorithm in step 5. However, the algorithm was available only as an oracle, and thus a validity check on the result factorization had to be performed.

In this work we fully formalize the correctness of our implementation.

Theorem 1 (Berlekamp-Zassenhaus' Algorithm)

```
assumes square_free ( \(f\) :: int poly)
    and degree \(f \neq 0\)
    and berlekamp_zassenhaus_factorization \(f=f s\)
shows \(f=\) prod_list fs
    and \(\forall f_{i} \in\) set fs. irreducible \(f_{i}\)
```

[^1]To obtain Theorem 1 we perform the following tasks.

- We introduce two formulations of $\mathrm{GF}(p)$ and $\mathbb{Z} / p^{k} \mathbb{Z}$. We first define a type to represent these domains, employing ideas from HOL multivariate analysis. This is essential for reusing many type-based algorithms from the Isabelle distribution and the AFP (archive of formal proofs). At some points in our developement, the type-based setting is still too restrictive. Hence we also introduce a second formulation which is locale-based.
- The prime p in step 4 must be chosen so that f remains square-free in $\mathrm{GF}(p)$. For the termination of the algorithm, we prove that such a prime always exists.
- We explain Berlekamp's algorithm that factors polynomials over prime fields, and formalize its correctness using the type-based representation. Since Isabelle's code generation does not work for the typebased representation of prime fields, we define an implementation of Berlekamp's algorithm which avoids type-based polynomial algorithms and type-based prime fields. The soundness of this implementation is proved via the transfer package [5]: we transform the type-based soundness statement of Berlekamp's algorithm into a statement which speaks solely about integer polynomials. Here, we crucially rely upon local type definitions [9] to eliminate the presence of the type for the prime field $\operatorname{GF}(p)$.
- For step 6 we need to find a bound on the coefficients of the factors of a polynomial. For this purpose, we formalize Mignotte's factor bound. During this formalization task we detected a bug in our previous oracle implementation, which computed improper bounds on the degrees of factors.
- We formalize the Hensel lifting. As for Berlekamp's algorithm, we first formalize basic operations in the type-based setting. Unfortunately, however, this result cannot be extended to the full Hensel lifting. Therefore, we model the Hensel lifting in a locale-based way so that modulo operation is explicitly applied on polynomials.
- For the reconstruction in step 8 we closely follow the description of Knuth [7, page 452]. Here, we use the same representation of polynomials over $\mathbb{Z} / p^{k} \mathbb{Z}$ as for the Hensel lifting.
- We adapt an existing square-free factorization algorithm from \mathbb{Q} to \mathbb{Z}. In combination with the previous results this leads to a factorization algorithm for arbitrary integer and rational polynomials.

To our knowledge, this is the first formalization of the Berlekamp-Zassenhaus algorithm. For instance, Barthe et al. report that there is no formalization of an efficient factorization algorithm over $\mathrm{GF}(p)$ available in $\mathrm{Coq}[1$, Section 6 , note 3 on formalization].

Some key theorems leading to the algorithm have already been formalized in Isabelle or other proof assistants. In ACL2, for instance, polynomials over a field are shown to be a unique factorization domain (UFD) [4]. A more general result, namely that polynomials over UFD are also UFD, was already developed in Isabelle/HOL for implementing algebraic numbers [12] and an independent development by Eberl is now available in the Isabelle distribution.

An Isabelle formalization of Hensel's lemma is provided by Kobayashi et al. [8], who defined the valuations of polynomials via Cauchy sequences, and used this setup to prove the lemma. Consequently, their result requires a 'valuation ring' as precondition in their formalization. While this extra precondition is theoretically met in our setting, we did not attempt to reuse their results, because the type of polynomials in their formalization (from HOL-Algebra) differs from the polynomials in our development (from HOL/Library). Instead, we formalize a direct proof for Hensel's lemma. Our formalizations are incomparable: On the one hand, Kobayashi et al. did not consider only integer polynomials as we do. On the other hand, we additionally formalize the quadratic Hensel lifting [13], extend the lifting from binary to n-ary factorizations, and prove a uniqueness result, which is required for proving the soundness of Theorem 1.

A Coq formalization of Hensel's lemma is also available, which is used for certifying integral roots and 'hardest-to-round computation' [10]. If one is interested in certifying a factorization, rather than a certified algorithm that performs it, it suffices to test that all the found factors are irreducible. Kirkels [6] formalized a sufficient criterion for this test in Coq: when a polynomial is irreducible modulo some prime, it is also irreducible in \mathbb{Z}. Both formalizations are in Coq, and we did not attempt to reuse them.

2 Finite Rings and Fields

We start by establishing some preliminary results about finite rings and finite fields

2.1 Finite Rings

theory Finite-Field
imports
HOL-Computational-Algebra.Primes
HOL-Number-Theory.Residues
HOL-Library.Cardinality

```
    Subresultants.Binary-Exponentiation
    Polynomial-Interpolation.Ring-Hom-Poly
begin
typedef ('a::finite) mod-ring ={0..<int CARD('a)} by auto
setup-lifting type-definition-mod-ring
lemma CARD-mod-ring[simp]: CARD('a mod-ring) = CARD('a::finite)
proof -
    have card {y.\existsx\in{0..<int CARD('a)}. (y::'a mod-ring) = Abs-mod-ring x} =
card {0..<int CARD('a)}
    proof (rule bij-betw-same-card)
        have inj-on Rep-mod-ring {y.\existsx\in{0..<int CARD('a)}. y = Abs-mod-ring x}
            by (meson Rep-mod-ring-inject inj-onI)
    moreover have Rep-mod-ring '{y.\existsx\in{0..<int CARD('a)}. (y::'a mod-ring)
= Abs-mod-ring x} = {0..<int CARD('a)}
    proof (auto simp add: image-def Rep-mod-ring-inject)
            fix xb show 0 \leq Rep-mod-ring (Abs-mod-ring xb)
            using Rep-mod-ring atLeastLessThan-iff by blast
            assume xb1: 0 \leq xb and xb2: xb < int CARD('a)
            thus Rep-mod-ring (Abs-mod-ring xb) < int CARD('a)
            by (metis Abs-mod-ring-inverse Rep-mod-ring atLeastLessThan-iff le-less-trans
linear)
            have xb: xb \in{0..<int CARD('a)} using xb1 xb2 by simp
            show \existsxa::'a mod-ring. ( \existsx\in{0..<int CARD('a)}. xa = Abs-mod-ring x) ^
xb = Rep-mod-ring xa
            by (rule exI[of - Abs-mod-ring xb], auto simp add: xb1 xb2, rule Abs-mod-ring-inverse[OF
xb, symmetric])
            qed
            ultimately show bij-betw Rep-mod-ring
                {y.\existsx\in{0..<int CARD('a)}. (y::'a mod-ring) = Abs-mod-ring x}
            {0..<int CARD('a)}
            by (simp add: bij-betw-def)
    qed
    thus ?thesis
            unfolding type-definition.univ[OF type-definition-mod-ring]
            unfolding image-def by auto
qed
instance mod-ring :: (finite) finite
proof (intro-classes)
    show finite (UNIV::'a mod-ring set)
    unfolding type-definition.univ[OF type-definition-mod-ring]
    using finite by simp
qed
```

instantiation mod-ring :: (finite) equal

begin

lift-definition equal-mod-ring :: 'a mod-ring $\Rightarrow{ }^{\prime} a$ mod-ring \Rightarrow bool is (=).
instance by (intro-classes, transfer, auto)
end
instantiation mod-ring :: (finite) comm-ring
begin
lift-definition plus-mod-ring :: 'a mod-ring $\Rightarrow{ }^{\prime}$ 'a mod-ring \Rightarrow 'a mod-ring is
$\lambda x y .(x+y) \bmod \operatorname{int}\left(C A R D\left({ }^{\prime} a\right)\right)$ by simp
lift-definition uminus-mod-ring :: 'a mod-ring \Rightarrow 'a mod-ring is
λx. if $x=0$ then 0 else int $\left(C A R D\left(^{\prime} a\right)\right)-x$ by simp
lift-definition minus-mod-ring :: 'a mod-ring $\Rightarrow{ }^{\prime}$ 'a mod-ring \Rightarrow 'a mod-ring is $\lambda x y .(x-y) \bmod \operatorname{int}\left(C A R D\left({ }^{\prime} a\right)\right)$ by simp
lift-definition times-mod-ring :: 'a mod-ring \Rightarrow 'a mod-ring $\Rightarrow{ }^{\prime} a$ mod-ring is $\lambda x y .(x * y) \bmod \operatorname{int}\left(C A R D\left({ }^{\prime} a\right)\right)$ by simp
lift-definition zero-mod-ring :: 'a mod-ring is 0 by simp

instance

by standard (transfer; auto simp add: mod-simps algebra-simps intro: mod-diff-cong)+
end
lift-definition to-int-mod-ring $::$ ' $a::$ finite mod-ring \Rightarrow int is $\lambda x . x$.
lift-definition of-int-mod-ring :: int $\Rightarrow{ }^{\prime} a::$ finite mod-ring is
$\lambda x . x$ mod int $\left(C A R D\left({ }^{\prime} a\right)\right)$ by simp
interpretation to-int-mod-ring-hom: inj-zero-hom to-int-mod-ring
by (unfold-locales; transfer, auto)
lemma int-nat-card $[$ simp $]$: int (nat $C A R D(' a:: f i n i t e))=C A R D(' a)$ by auto
interpretation of-int-mod-ring-hom: zero-hom of-int-mod-ring
by (unfold-locales, transfer, auto)
lemma of-int-mod-ring-to-int-mod-ring[simp]:
of-int-mod-ring (to-int-mod-ring $x)=x$ by (transfer, auto)
lemma to-int-mod-ring-of-int-mod-ring $[\operatorname{simp}]: 0 \leq x \Longrightarrow x<\operatorname{int} C A R D\left({ }^{\prime} a:: f\right.$ nite) \Longrightarrow
to-int-mod-ring (of-int-mod-ring x :: 'a mod-ring) $=x$
by (transfer, auto)

```
lemma range-to-int-mod-ring:
    range (to-int-mod-ring :: ('a :: finite mod-ring => int)) = {0 ..< CARD('a)}
    apply (intro equalityI subsetI)
    apply (elim rangeE, transfer, force)
    by (auto intro!: range-eqI to-int-mod-ring-of-int-mod-ring[symmetric])
```


2.2 Nontrivial Finite Rings

class nontriv $=$ assumes nontriv: $\operatorname{CARD}\left({ }^{\prime} a\right)>1$
subclass(in nontriv) finite by(intro-classes,insert nontriv, auto intro:card-ge-0-finite)
instantiation mod-ring :: (nontriv) comm-ring-1
begin
lift-definition one-mod-ring :: 'a mod-ring is 1 using nontriv[where ?' $a=$ ' $a]$ by auto
instance by (intro-classes; transfer, simp)
end
interpretation to-int-mod-ring-hom: inj-one-hom to-int-mod-ring
by (unfold-locales, transfer, simp)
lemma of-nat-of-int-mod-ring [code-unfold]:
of-nat $=o f-$-int-mod-ring o int
proof (rule ext, unfold o-def)
show of-nat $n=$ of-int-mod-ring (int n) for n
proof (induct n)
case (Suc n)
show ?case
by (simp only: of-nat-Suc Suc, transfer) (simp add: mod-simps)
qed simp
qed
lemma of-nat-card-eq- $0[$ simp $]:($ of-nat $(C A R D(' a:: n o n t r i v)) ~:: ~ ' a ~ m o d-r i n g) ~=~ 0 ~$
by (unfold of-nat-of-int-mod-ring, transfer, auto)
lemma of-int-of-int-mod-ring[code-unfold]: of-int $=$ of-int-mod-ring
proof (rule ext)
fix x :: int
obtain n1 n2 where $x: x=$ int $n 1$ - int n2 by (rule int-diff-cases)
show of-int $x=$ of-int-mod-ring x
unfolding x of-int-diff of-int-of-nat-eq of-nat-of-int-mod-ring o-def by (transfer, simp add: mod-diff-right-eq mod-diff-left-eq)
qed
unbundle lifting-syntax
lemma pcr-mod-ring-to-int-mod-ring: pcr-mod-ring $=\left(\begin{array}{ll}\lambda x & y . x=t o-i n t-m o d-r i n g ~\end{array}\right.$ y)
unfolding mod-ring.pcr-cr-eq unfolding cr-mod-ring-def to-int-mod-ring.rep-eq
lemma [transfer-rule]:
$((=)===>$ pcr-mod-ring $)(\lambda$ x. int $x \bmod$ int $(\operatorname{CARD}(' a::$ nontriv $)))($ of-nat $::$ nat \Rightarrow 'a mod-ring)
by (intro rel-funI, unfold pcr-mod-ring-to-int-mod-ring of-nat-of-int-mod-ring, transfer, auto)
lemma [transfer-rule]:
$((=)===>$ pcr-mod-ring $)\left(\lambda x . x \bmod\right.$ int $\left.\left(\operatorname{CARD}\left({ }^{\prime} a \operatorname{::~nontriv}\right)\right)\right)($ of-int $::$ int \Rightarrow 'a mod-ring)
by (intro rel-funI, unfold pcr-mod-ring-to-int-mod-ring of-int-of-int-mod-ring, transfer, auto)
lemma one-mod-card $[$ simp $]: 1 \bmod C A R D\left({ }^{\prime} a::\right.$ nontriv $)=1$
using mod-less nontriv by blast
lemma Suc-0-mod-card [simp]: Suc $0 \bmod C A R D(' a:: n o n t r i v)=1$
using one-mod-card by simp
lemma one-mod-card-int $[$ simp $]: 1 \bmod$ int $C A R D\left({ }^{\prime} a::\right.$ nontriv $)=1$
proof -
from nontriv $\left[\right.$ where $\left.?^{\prime} a=' a\right]$ have $\operatorname{int}(1 \bmod C A R D(' a:: n o n t r i v))=1$ by simp
then show ?thesis
using of-nat-mod [of $1 C A R D\left({ }^{\prime} a\right)$, where ?' $a=$ int $]$ by simp
qed
lemma pow-mod-ring-transfer[transfer-rule]:
(pcr-mod-ring $===>(=)===>$ pcr-mod-ring)
($\lambda a::$ int. $\lambda n . \widehat{a-n} \bmod C A R D(' a:: n o n t r i v))\left((\wedge)::^{\prime} a \bmod -\right.$ ring \Rightarrow nat \Rightarrow 'a mod-ring $)$
unfolding pcr-mod-ring-to-int-mod-ring
proof (intro rel-funI,simp)
fix $x::^{\prime} a$ mod-ring and n
show to-int-mod-ring $x^{\wedge} n \bmod \operatorname{int} C A R D(' a)=$ to-int-mod-ring $\left(x{ }^{\wedge} n\right)$
proof (induct n)
case 0
thus ?case by auto
next
case (Suc n)
have to-int-mod-ring $\left(x^{\wedge}\right.$ Suc $\left.n\right)=$ to-int-mod-ring $\left(x * x^{\wedge} n\right)$ by auto also have $\ldots=$ to-int-mod-ring $x *$ to-int-mod-ring $\left(x^{\wedge} n\right) \bmod C A R D(' a)$
unfolding to-int-mod-ring-def using times-mod-ring.rep-eq by auto also have $\ldots=$ to-int-mod-ring $x *\left(\right.$ to-int-mod-ring $\left.x{ }^{\wedge} n \bmod C A R D(' a)\right) \bmod$ CARD ('a)

```
            using Suc.hyps by auto
    also have ... = to-int-mod-ring x ^ Suc n mod int CARD('a)
            by (simp add: mod-simps)
        finally show ?case ..
    qed
qed
lemma dvd-mod-ring-transfer[transfer-rule]:
((pcr-mod-ring :: int => 'a :: nontriv mod-ring => bool) ===>
    (pcr-mod-ring :: int => 'a mod-ring => bool) ===> (=))
    (\lambdaij. \existsk\in{0..<int CARD('a)}.j=i*k mod int CARD('a)) (dvd)
proof (unfold pcr-mod-ring-to-int-mod-ring, intro rel-funI iffI)
    fix x y :: 'a mod-ring and ij
    assume i: i=to-int-mod-ring x and j:j=to-int-mod-ring y
    { assume x dvd y
        then obtain z where }y=x*z\mathrm{ by (elim dvdE, auto)
        then have j=i* to-int-mod-ring z mod CARD('a) by (unfold i j, transfer)
        with range-to-int-mod-ring
        show \existsk\in{0..<int CARD('a)}.j=i*k mod CARD('a) by auto
    }
    assume }\existsk\in{0..<int CARD('a)}.j=i*k mod CARD('a
    then obtain k where k: k}\in{0..<int CARD('a)} and dvd:j=i*k mo
CARD('a) by auto
    from k have to-int-mod-ring (of-int k :: 'a mod-ring) =k by (transfer, auto)
    also from dvd have j=i*\ldots mod CARD('a) by auto
    finally have }y=x*(of-int k :: ' a mod-ring) unfolding ij using k by (transfer,
auto)
    then show }x\mathrm{ dvd y by auto
qed
lemma Rep-mod-ring-mod[simp]: Rep-mod-ring ( \(a\) :: ' \(a\) :: nontriv mod-ring) mod \(C A R D(' a)=\) Rep-mod-ring a
using Rep-mod-ring[where ' \(a=\) ' \(a\) ] by auto
```


2.3 Finite Fields

When the domain is prime, the ring becomes a field
class prime-card $=$ assumes prime-card: prime $\left(\operatorname{CARD}\left({ }^{\prime} a\right)\right)$
begin
lemma prime-card-int: prime (int (CARD('a))) using prime-card by auto
subclass nontriv using prime-card prime-gt-1-nat by (intro-classes,auto)
end
instantiation mod-ring :: (prime-card) field
begin
definition inverse-mod-ring :: 'a mod-ring \Rightarrow 'a mod-ring where inverse-mod-ring $x=\left(\right.$ if $x=0$ then 0 else $x^{\wedge}\left(\right.$ nat $\left.\left.\left(C A R D\left({ }^{\prime} a\right)-2\right)\right)\right)$

```
definition divide-mod-ring :: 'a mod-ring => 'a mod-ring }=>\mathrm{ ' 'a mod-ring where
    divide-mod-ring x y = x* ((\lambdac. if c=0 then 0 else c^ (nat (CARD('a) - 2)))
y)
instance
proof
    fix a b c::'a mod-ring
    show inverse 0 = ( 0::'a mod-ring) by (simp add: inverse-mod-ring-def)
    show }a\mathrm{ div }b=a*\mathrm{ inverse b
        unfolding inverse-mod-ring-def by (transfer', simp add: divide-mod-ring-def)
    show }a\not=0\Longrightarrow\mathrm{ inverse }a*a=
    proof (unfold inverse-mod-ring-def, transfer)
        let ? p=CARD('a)
        fix }
        assume x: x\in{0..<int CARD('a)} and x0: x = 0
        have p0':0\leq?p by auto
        have }\neg\mathrm{ ? p dvd x
        using x x0 zdvd-imp-le by fastforce
    then have \negCARD('a) dvd nat |x|
        by simp
    with }x\mathrm{ have }\negCARD('a)dvd nat x
        by simp
    have rw: x^ nat (int (?p - 2))*x= x^ nat (?p - 1)
    proof -
        have p2:0\leqint (?p-2) using x by simp
        have card-rw: (CARD('a) - Suc 0) = nat (1 + int (CARD('a) - 2))
            using nat-eq-iff x x0 by auto
        have x^ nat (?p - 2)*x= x^ (Suc (nat (?p - 2))) by simp
        also have ... = x^(nat (?p - 1))
            using Suc-nat-eq-nat-zadd1[OF p2] card-rw by auto
        finally show ?thesis.
    qed
    have [int (nat x ^(CARD('a) - 1)) = int 1] (mod CARD('a))
        using fermat-theorem [OF prime-card «\neg CARD('a) dvd nat x>]
        by (simp only: cong-def cong-def of-nat-mod [symmetric])
    then have *: [x^ (CARD('a)-1)=1] (mod CARD('a))
        using }x\mathrm{ by auto
    have x^ (CARD('a) - 2) mod CARD('a) * x mod CARD('a)
        = (x^nat (CARD('a) - 2) * x) mod CARD('a) by (simp add: mod-simps)
    also have ... = (x^ nat (?p - 1) mod ?p) unfolding rw by simp
    also have ... = ( }\mp@subsup{x}{}{\wedge}(nat?p - 1) mod ?p) using p0' by (simp add: nat-diff-distrib'
    also have ... = 1
        using * by (simp add: cong-def)
    finally show (if x = 0 then 0 else x^nat (int (CARD('a) - 2)) mod CARD('a))
* x mod CARD('a) = 1
        using x0 by auto
    qed
qed
```

end
instantiation mod-ring :: (prime-card) \{normalization-euclidean-semiring, euclidean-ring\} begin
definition modulo-mod-ring :: 'a mod-ring \Rightarrow ' a mod-ring \Rightarrow 'a mod-ring where modulo-mod-ring $x y=$ (if $y=0$ then x else 0)
definition normalize-mod-ring $::$ ' a mod-ring \Rightarrow 'a mod-ring where normalize-mod-ring $x=($ if $x=0$ then 0 else 1)
definition unit-factor-mod-ring :: 'a mod-ring \Rightarrow ' a mod-ring where unit-factor-mod-ring
$x=x$
definition euclidean-size-mod-ring :: 'a mod-ring \Rightarrow nat where euclidean-size-mod-ring $x=($ if $x=0$ then 0 else 1)
instance
proof (intro-classes)
fix a :: 'a mod-ring show $a \neq 0 \Longrightarrow$ unit-factor a dvd 1
unfolding dvd-def unit-factor-mod-ring-def by (intro exI[of - inverse a], auto)
qed (auto simp: normalize-mod-ring-def unit-factor-mod-ring-def modulo-mod-ring-def euclidean-size-mod-ring-def field-simps)
end
instantiation mod-ring :: (prime-card) euclidean-ring-gcd
begin
definition gcd-mod-ring :: 'a mod-ring $\Rightarrow{ }^{\prime}$ 'a mod-ring \Rightarrow 'a mod-ring where
gcd-mod-ring $=$ Euclidean-Algorithm.gcd
definition lcm-mod-ring $::$ 'a mod-ring \Rightarrow 'a mod-ring \Rightarrow 'a mod-ring where lcm-mod-ring $=$ Euclidean-Algorithm.lcm
definition Gcd-mod-ring :: 'a mod-ring set \Rightarrow ' a mod-ring where Gcd-mod-ring
$=$ Euclidean-Algorithm.Gcd
definition Lcm-mod-ring :: 'a mod-ring set \Rightarrow 'a mod-ring where Lcm-mod-ring
= Euclidean-Algorithm.Lcm
instance by (intro-classes, auto simp: gcd-mod-ring-def lcm-mod-ring-def Gcd-mod-ring-def Lcm-mod-ring-def)
end
instantiation mod-ring :: (prime-card) unique-euclidean-ring
begin
definition $[$ simp $]$: division-segment-mod-ring (x :: 'a mod-ring $)=(1$:: 'a mod-ring $)$
instance by intro-classes (auto simp: euclidean-size-mod-ring-def split: if-splits)
end
instance mod-ring :: (prime-card) field-gcd
by intro-classes auto
lemma surj-of-nat-mod-ring: $\exists i . i<C A R D\left({ }^{\prime} a::\right.$ prime-card $) \wedge\left(x::{ }^{\prime} a \bmod -r i n g\right)$ $=o f$-nat i
by (rule exI[of - nat (to-int-mod-ring x)], unfold of-nat-of-int-mod-ring o-def, subst nat-0-le, transfer, simp, simp, transfer, auto)
lemma of-nat- 0 -mod-ring-dvd: assumes $x:$ of-nat $x=(0:: ' a::$ prime-card mod-ring $)$ shows $C A R D\left({ }^{\prime} a\right) d v d x$
proof -
let $? x=$ of-nat $x::$ int
from x have of-int-mod-ring ? $x=(0::$ 'a mod-ring) by (fold of-int-of-int-mod-ring, simp)
hence ? $x \bmod C A R D\left({ }^{\prime} a\right)=0$ by (transfer, auto)
hence x mod $C A R D\left({ }^{\prime} a\right)=0$ by presburger
thus ?thesis unfolding mod-eq-0-iff-dvd.
qed
end

3 Arithmetics via Records

We create a locale for rings and fields based on a record that includes all the necessary operations.

```
theory Arithmetic-Record-Based
imports
    HOL-Library.More-List
    HOL-Computational-Algebra.Euclidean-Algorithm
begin
datatype 'a arith-ops-record \(=\) Arith-Ops-Record
    (zero: 'a)
    (one : 'a)
    (plus : ' \(a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) )
    (times : ' \(\left.a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right)\)
    (minus : ' \(a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) )
    (uminus : \({ }^{\prime} a \Rightarrow{ }^{\prime} a\) )
    (divide : ' \(a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) )
    (inverse : \({ }^{\prime} a \Rightarrow{ }^{\prime} a\) )
    (modulo: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) )
    (normalize : ' \(a \Rightarrow\) ' \(a\) )
    (unit-factor : ' \(a \Rightarrow{ }^{\prime} a\) )
    (of-int: int \(\Rightarrow{ }^{\prime} a\) )
    (to-int: ' \(a \Rightarrow\) int)
    (DP : 'a \(a b\) bool)
```

hide-const (open)
zero
one

```
plus
times
minus
uminus
divide
inverse
modulo
normalize
unit-factor
of-int
to-int
DP
fun listprod-i :: 'i arith-ops-record }=>\mp@subsup{}{}{\prime}'i list => ' i where
    listprod-i ops (x # xs) = arith-ops-record.times ops x (listprod-i ops xs)
| listprod-i ops [] = arith-ops-record.one ops
locale arith-ops= fixes ops :: 'i arith-ops-record (structure)
begin
abbreviation (input) zero where zero \equiv arith-ops-record.zero ops
abbreviation (input) one where one \equiv arith-ops-record.one ops
abbreviation (input) plus where plus \equivarith-ops-record.plus ops
abbreviation (input) times where times \equiv arith-ops-record.times ops
abbreviation (input) minus where minus }\equiv\mathrm{ arith-ops-record.minus ops
abbreviation (input) uminus where uminus \equiv arith-ops-record.uminus ops
abbreviation (input) divide where divide }\equiv\mathrm{ arith-ops-record.divide ops
abbreviation (input) inverse where inverse \equiv arith-ops-record.inverse ops
abbreviation (input) modulo where modulo \equiv arith-ops-record.modulo ops
abbreviation (input) normalize where normalize }\equiv\mathrm{ arith-ops-record.normalize
ops
abbreviation (input) unit-factor where unit-factor \equiv arith-ops-record.unit-factor
ops
abbreviation (input) DP where DP \equiv arith-ops-record.DP ops
```

```
partial-function (tailrec) gcd-eucl-i :: 'i \({ }^{\prime} i \Rightarrow\) 'i where
    gcd-eucl-i a \(b=(\) if \(b=\) zero
        then normalize a else gcd-eucl-i \(b\) (modulo \(a b)\) )
partial-function (tailrec) euclid-ext-aux-i :: ' \(i \not{ }^{\prime} i \Rightarrow{ }^{\prime} i \Rightarrow{ }^{\prime} i \Rightarrow{ }^{\prime} i \Rightarrow{ }^{\prime} i \Rightarrow\left(^{\prime} i\right.\)
\(\left.\times{ }^{\prime} i\right) \times{ }^{\prime} i\) where
    euclid-ext-aux-i s's t't r'r=(
        if \(r=\) zero then let \(c=\) divide one (unit-factor \(\left.r^{\prime}\right)\) in ((times \(s^{\prime} c\), times \(\left.t^{\prime} c\right)\),
normalize \(r^{\prime}\) )
        else let \(q=\) divide \(r^{\prime} r\)
            in euclid-ext-aux-i \(s\left(\right.\) minus \(s^{\prime}(\) times \(q\) s) \() t\left(\right.\) minus \(t^{\prime}(\) times \(\left.q t)\right) r\)
(modulo \(\left.r^{\prime} r\right)\) )
```

```
abbreviation (input) euclid-ext-i :: '}i=>\mp@subsup{}{}{\prime}i=>('i\times\mp@subsup{}{}{\prime}i)\times'i\mathrm{ where
    euclid-ext-i \equiv euclid-ext-aux-i one zero zero one
end
declare arith-ops.gcd-eucl-i.simps[code]
declare arith-ops.euclid-ext-aux-i.simps[code]
unbundle lifting-syntax
locale ring-ops = arith-ops ops for ops :: 'i arith-ops-record +
    fixes }R::' i=>'a :: comm-ring-1 # boo
    assumes bi-unique[transfer-rule]: bi-unique R
    and right-total[transfer-rule]: right-total R
    and zero[transfer-rule]: R zero 0
    and one[transfer-rule]: R one 1
    and plus[transfer-rule]: (R===> R===> R) plus ( }+\mathrm{ )
    and minus[transfer-rule]:(R===> R===> R) minus (-)
    and uminus[transfer-rule]: (R===> R) uminus Groups.uminus
    and times[transfer-rule]:( }R===> R===> R) times ((*)
    and eq[transfer-rule]: (R===> R ===> (=)) (=) (=)
    and DPR[transfer-domain-rule]: Domainp R = DP
begin
lemma left-right-unique[transfer-rule]: left-unique R right-unique R
    using bi-unique unfolding bi-unique-def left-unique-def right-unique-def by auto
lemma listprod-i[transfer-rule]:(list-all2 R ===> R) (listprod-i ops) prod-list
proof (intro rel-funI, goal-cases)
    case (1 xs ys)
    thus ?case
    proof (induct xs ys rule: list-all2-induct)
        case (Cons x xs y ys)
        note [transfer-rule] = this
        show ?case by simp transfer-prover
    qed (simp add: one)
qed
end
locale idom-ops \(=\) ring-ops ops \(R\) for ops :: 'i arith-ops-record and
    R :: 'i > 'a :: idom }=>\mathrm{ bool
locale idom-divide-ops=idom-ops ops R for ops :: 'i arith-ops-record and
    R :: 'i # 'a :: idom-divide }=>\mathrm{ bool +
    assumes divide[transfer-rule]: (R===> R ===> R) divide Rings.divide
locale euclidean-semiring-ops=idom-ops ops R for ops :: 'i arith-ops-record and
    R :: 'i > ' }a:: {idom,normalization-euclidean-semiring} # bool +
    assumes modulo[transfer-rule]: ( }R===> R===> R) modulo (mod
        and normalize[transfer-rule]: (R===> R) normalize Rings.normalize
```

and unit-factor[transfer-rule]: $(R===>R)$ unit-factor Rings.unit-factor

begin

lemma gcd-eucl-i $[$ transfer-rule $]:(R===>R===>R)$ gcd-eucl-i Euclidean-Algorithm.gcd
proof (intro rel-funI, goal-cases)
case ($1 \times X$ y Y)
thus ?case
proof (induct X Y arbitrary: x y rule: Euclidean-Algorithm.gcd.induct)
case ($1 \times Y x y$)
note $[$ transfer-rule] $=1$ (2-)
note simps $=$ gcd-eucl-i.simps $[o f$ x $y]$ Euclidean-Algorithm.gcd.simps $[o f ~ X ~ Y]$
have eq: $(y=z e r o)=(Y=0)$ by transfer-prover
show ? case
proof (cases $Y=0$)
case True
hence $*: y=$ zero using eq by simp
have R (normalize x) (Rings.normalize X) by transfer-prover thus ?thesis unfolding simps unfolding True * by simp

next

case False
with $e q$ have $y z: y \neq$ zero by simp
have R (gcd-eucl-i y (modulo $x y)$) (Euclidean-Algorithm.gcd $Y(X \bmod Y))$
by (rule 1(1)[OF False], transfer-prover +)
thus ?thesis unfolding simps using False yz by simp
qed
qed
qed
end
locale euclidean-ring-ops $=$ euclidean-semiring-ops ops R for ops :: 'i arith-ops-record and
$R::$ ' $i \Rightarrow{ }^{\prime} a::\{$ idom,euclidean-ring-gcd $\} \Rightarrow$ bool +
assumes divide[transfer-rule]: $(R===>R===>R)$ divide (div)
begin
lemma euclid-ext-aux-i $[$ transfer-rule $]$:
($R===>R===>R===>R===>R===>R===>$ rel-prod (rel-prod
$R R) R$) euclid-ext-aux-i euclid-ext-aux
proof (intro rel-funI, goal-cases)
case (1 z Z a AbBcCxXyY)
thus ?case
proof (induct $Z A B C X$ arbitrary: $z a b c x y$ rule: euclid-ext-aux.induct)
case ($1 Z A B C X Y z a b c x y$)
note $[$ transfer-rule] $=1$ (2-)
note simps $=$ euclid-ext-aux-i.simps $[o f z a b c x y]$ euclid-ext-aux.simps[of $Z A$
BCXY]
have eq: $(y=$ zero $)=(Y=0)$ by transfer-prover
show ?case
proof (cases $Y=0$)
case True

```
    hence *: (y=zero) = True (Y=0) = True using eq by auto
    show ?thesis unfolding simps unfolding * if-True
        by transfer-prover
    next
    case False
    hence *: (y=zero) = False (Y=0) = False using eq by auto
    have XY:R (modulo x y) (X mod Y) by transfer-prover
        have YA: R (minus z (times (divide x y) a)) (Z-X div Y*A) by
transfer-prover
            have YC:R (minus b (times (divide x y) c)) ( }B-X\mathrm{ div }Y*C)\mathrm{ by
transfer-prover
            note [transfer-rule] = 1(1)[OF False refl 1(3) YA 1(5) YC 1(7) XY]
            show ?thesis unfolding simps * if-False Let-def by transfer-prover
        qed
    qed
qed
lemma euclid-ext-i [transfer-rule]:
    (R===> R ===> rel-prod (rel-prod R R) R) euclid-ext-i euclid-ext
    by transfer-prover
end
locale field-ops = idom-divide-ops ops R + euclidean-semiring-ops ops R for ops
:: 'i arith-ops-record and
    R :: 'i > 'a :: {field-gcd} % bool +
    assumes inverse[transfer-rule]:(R===> R) inverse Fields.inverse
lemma nth-default-rel[transfer-rule]:(S===> list-all2 S===> (=) ===> S)
nth-default nth-default
proof (intro rel-funI, clarify, goal-cases)
    case (1 x y xs ys - n)
    from 1(2) show ?case
    proof (induct arbitrary: n)
        case Nil
        thus ?case using 1(1) by simp
    next
        case (Cons x y xs ys n)
        thus ?case by (cases n, auto)
    qed
qed
lemma strip-while-rel[transfer-rule]:
\(((A===>(=))===>\) list-all2 \(A===>\) list-all2 \(A)\) strip-while strip-while unfolding strip-while-def[abs-def] by transfer-prover
lemma list-all2-last \([\) simp \(]\) : list-all2 \(A(x s @[x])(y s @[y]) \longleftrightarrow\) list-all2 A xs ys \(\wedge\)
```

```
\(A x y\)
proof (cases length \(x s=\) length \(y s\) )
    case True
    show ?thesis by (simp add: list-all2-append [OF True])
next
    case False
    note len \(=\) list-all2-length \(D[\) of \(A]\)
    from len [of xs ys] len [of xs @ \([x] y s\) @ \([y]\) False
    show ?thesis by auto
qed
```

end

3.1 Finite Fields

We provide four implementations for $G F(p)$ - the field with p elements for some prime p - one by int, one by integers, one by 32 -bit numbers and one 64 -bit implementation. Correctness of the implementations is proven by transfer rules to the type-based version of $G F(p)$.
theory Finite-Field-Record-Based
imports
Finite-Field
Arithmetic-Record-Based
Native-Word.Uint32
Native-Word.Uint64
Native-Word.Code-Target-Bits-Int
HOL-Library.Code-Target-Numeral
begin
definition mod-nonneg-pos :: integer \Rightarrow integer \Rightarrow integer where $x \geq 0 \Longrightarrow y>0 \Longrightarrow$ mod-nonneg-pos $x y=(x \bmod y)$
code-printing - FIXME illusion of partiality
constant mod-nonneg-pos \rightarrow
(SML) IntInf.mod/ (-,/ -)
and (Eval) IntInf.mod/ (-,/ -)
and (OCaml) Z.rem
and (Haskell) Prelude.mod/ (-)/ (-)
and $($ Scala $)!\left((k\right.$: BigInt $)=>(l:$ BigInt $\left.)=>/\left(k^{\prime} \% l\right)\right)$
definition mod-nonneg-pos-int :: int \Rightarrow int \Rightarrow int where
mod-nonneg-pos-int $x y=$ int-of-integer (mod-nonneg-pos (integer-of-int $x)$ (integer-of-int y))
lemma mod-nonneg-pos-int $[$ simp $]: x \geq 0 \Longrightarrow y>0 \Longrightarrow$ mod-nonneg-pos-int $x y$ $=(x \bmod y)$
unfolding mod-nonneg-pos-int-def using mod-nonneg-pos-def by simp

```
context
    fixes p :: int
begin
definition plus-p :: int }=>\mathrm{ int }=>\mathrm{ int where
    plus-p x y let z=x+y in if z\geqp then z-p else z
definition minus-p :: int }=>\mathrm{ int }=>\mathrm{ int where
```



```
definition uminus-p :: int }=>\mathrm{ int where
    uminus-p }x=(\mathrm{ if }x=0\mathrm{ then 0 else p - x)
definition mult-p :: int }=>\mathrm{ int }=>\mathrm{ int where
    mult-p x y = (mod-nonneg-pos-int (x*y) p)
fun power-p :: int }=>\mathrm{ nat }=>\mathrm{ int where
    power-p x n = (if n=0 then 1 else
        let (d,r) = Divides.divmod-nat n 2;
            rec = power-p (mult-p x x) d in
        if r}=0\mathrm{ then rec else mult-p rec x)
```

In experiments with Berlekamp-factorization (where the prime p is usually small), it turned out that taking the below implementation of inverse via exponentiation is faster than the one based on the extended Euclidean algorithm.

```
definition inverse- \(p::\) int \(\Rightarrow\) int where
    inverse- \(p x=(\) if \(x=0\) then 0 else power-p \(x(\operatorname{nat}(p-2)))\)
definition divide-p \(::\) int \(\Rightarrow\) int \(\Rightarrow\) int where
    divide-p \(x y=\) mult-p \(x\) (inverse-p \(y\) )
definition finite-field-ops-int :: int arith-ops-record where
    finite-field-ops-int \(\equiv\) Arith-Ops-Record
        0
        1
        plus-p
        mult-p
        minus-p
        uminus-p
        divide-p
        inverse-p
        ( \(\lambda x y\). if \(y=0\) then \(x\) else 0 )
        ( \(\lambda x\). if \(x=0\) then 0 else 1 )
        ( \(\lambda x \cdot x\) )
        ( \(\lambda x \cdot x\) )
        ( \(\lambda x . x\) )
        \((\lambda x .0 \leq x \wedge x<p)\)
```


end

context

fixes $p::$ uint32
begin
definition plus-p32 :: uint32 \Rightarrow uint32 \Rightarrow uint32 where

$$
\text { plus-p32 } x y \equiv \text { let } z=x+y \text { in if } z \geq p \text { then } z-p \text { else } z
$$

definition minus-p32 :: uint32 \Rightarrow uint32 \Rightarrow uint32 where

$$
\text { minus-p32 } x y \equiv \text { if } y \leq x \text { then } x-y \text { else }(x+p)-y
$$

definition uminus-p32 :: uint32 \Rightarrow uint32 where

$$
\text { uminus-p32 } x=(\text { if } x=0 \text { then } 0 \text { else } p-x)
$$

definition mult-p32 :: uint32 \Rightarrow uint32 \Rightarrow uint32 where

$$
\text { mult-p32 } x y=(x * y \bmod p)
$$

lemma int-of-uint32-shift: int-of-uint32 (drop-bit $k n)=($ int-of-uint32 n) div (2 ${ }^{\wedge} k$)
apply transfer
apply transfer
apply (simp add: take-bit-drop-bit min-def)
apply (simp add: drop-bit-eq-div)
done
lemma int-of-uint32-0-iff: int-of-uint32 $n=0 \longleftrightarrow n=0$
by (transfer, rule uint-0-iff)
lemma int-of-uint32-0: int-of-uint32 $0=0$ unfolding int-of-uint32-0-iff by simp
lemma int-of-uint32-ge-0: int-of-uint32 $n \geq 0$
by (transfer, auto)
lemma two-32: 2 ^LENGTH(32) $=(4294967296::$ int $)$ by simp
lemma int-of-uint32-plus: int-of-uint32 $(x+y)=($ int-of-uint32 $x+$ int-of-uint32 y) mod 4294967296
by (transfer, unfold uint-word-ariths two-32, rule refl)
lemma int-of-uint32-minus: int-of-uint32 $(x-y)=($ int-of-uint32 $x-$ int-of-uint32 y) $\bmod 4294967296$
by (transfer, unfold uint-word-ariths two-32, rule refl)
lemma int-of-uint32-mult: int-of-uint32 $(x * y)=($ int-of-uint32 $x *$ int-of-uint32 y) mod 4294967296
by (transfer, unfold uint-word-ariths two-32, rule refl)
lemma int-of-uint32-mod: int-of-uint32 $(x \bmod y)=($ int-of-uint32 x mod int-of-uint32 y)

```
    by (transfer, unfold uint-mod two-32, rule refl)
```

lemma int-of-uint32-inv: $0 \leq x \Longrightarrow x<4294967296 \Longrightarrow$ int-of-uint32 (uint32-of-int $x)=x$
by transfer (simp add: take-bit-int-eq-self unsigned-of-int)

context

includes bit-operations-syntax
begin
function power-p32 :: uint32 \Rightarrow uint32 \Rightarrow uint32 where
power-p32 $x n=($ if $n=0$ then 1 else let rec $=$ power-p32 $($ mult-p32 $x x)($ drop-bit $1 n)$ in if n AND $1=0$ then rec else mult-p32 rec x)
by pat-completeness auto

termination

proof -

\{
fix n :: uint32
assume $n \neq 0$
with int-of-uint32-ge-0[of n] int-of-uint32-0-iff[of n] have int-of-uint32 $n>0$
by auto
hence $0<$ int-of-uint32 n int-of-uint32 n div $2<$ int-of-uint32 n by auto
\} note $*=$ this
show ?thesis
by (relation measure $(\lambda(x, n)$. nat (int-of-uint32 $n)$), auto simp: int-of-uint32-shift
*)
qed
end
In experiments with Berlekamp-factorization (where the prime p is usually small), it turned out that taking the below implementation of inverse via exponentiation is faster than the one based on the extended Euclidean algorithm.

```
definition inverse-p32 :: uint32 => uint32 where
    inverse-p32 }x=(\mathrm{ if }x=0\mathrm{ then 0 else power-p32 }x(p-2)
definition divide-p32 :: uint32 }=>\mathrm{ uint32 }=>\mathrm{ uint32 where
    divide-p32 x y = mult-p32 x (inverse-p32 y)
definition finite-field-ops32 :: uint32 arith-ops-record where
    finite-field-ops32 \equiv Arith-Ops-Record
        O
        1
        plus-p32
        mult-p32
        minus-p32
```

```
    uminus-p32
    divide-p32
    inverse-p32
    ( }\lambdaxy\mathrm{ . if }y=0\mathrm{ then x else 0)
    (\lambda x. if x = 0 then 0 else 1)
    (\lambdax.x)
    uint32-of-int
    int-of-uint32
    (\lambdax.0\leqx\wedge x<p)
end
lemma shiftr-uint32-code [code-unfold]:drop-bit 1 x = (uint32-shiftr x 1)
    by (simp add: uint32-shiftr-def)
```


3.1.1 Transfer Relation

locale mod-ring-locale $=$
fixes $p::$ int and $t y::{ }^{\prime} a$:: nontriv itself
assumes $p: p=\mathrm{int} C A R D\left({ }^{\prime} a\right)$
begin
lemma nat- p : nat $p=C A R D\left({ }^{\prime} a\right)$ unfolding p by simp
lemma p 2: $p \geq 2$ unfolding p using nontriv $\left[\right.$ where $\left.{ }^{\prime} a={ }^{\prime} a\right]$ by auto
lemma p 2-ident: int $\left(\operatorname{CARD}\left(^{\prime} a\right)-2\right)=p-2$ using $p 2$ unfolding p by simp
definition mod-ring-rel $::$ int \Rightarrow 'a mod-ring \Rightarrow bool where
mod-ring-rel $x x^{\prime}=\left(x=\right.$ to-int-mod-ring $\left.x^{\prime}\right)$
lemma Domainp-mod-ring-rel [transfer-domain-rule]:
Domainp $($ mod-ring-rel $)=(\lambda v . v \in\{0 . .<p\})$
proof -
\{
fix v :: int
assume $*: 0 \leq v v<p$
have Domainp mod-ring-rel v
proof
show mod-ring-rel v (of-int-mod-ring v) unfolding mod-ring-rel-def using *
p by auto
qed
\} note $*=$ this
show ?thesis
by (intro ext iffI, insert range-to-int-mod-ring $\left[\right.$ where $\left.{ }^{\prime} a={ }^{\prime} a\right] *$, auto simp:
mod-ring-rel-def p)
qed
lemma bi-unique-mod-ring-rel [transfer-rule]:
bi-unique mod-ring-rel left-unique mod-ring-rel right-unique mod-ring-rel
unfolding mod-ring-rel-def bi-unique-def left-unique-def right-unique-def
lemma right-total-mod-ring-rel [transfer-rule]: right-total mod-ring-rel unfolding mod-ring-rel-def right-total-def by simp

3.1.2 Transfer Rules

lemma mod-ring-0[transfer-rule]: mod-ring-rel 00 unfolding mod-ring-rel-def by simp
lemma mod-ring-1[transfer-rule]: mod-ring-rel 11 unfolding mod-ring-rel-def by simp
lemma plus-p-mod-def: assumes $x: x \in\{0 . .<p\}$ and $y: y \in\{0 . .<p\}$
shows plus-p $p x y=((x+y) \bmod p)$
proof (cases $p \leq x+y$)
case False
thus ?thesis using $x y$ unfolding plus-p-def Let-def by auto
next
case True
from True $x y$ have $*: p>00 \leq x+y-p x+y-p<p$ by auto
from True have id: plus-p pxy=x+y-punfolding plus-p-def by auto
show ?thesis unfolding id using * using mod-pos-pos-trivial by fastforce
qed
lemma mod-ring-plus[transfer-rule]: (mod-ring-rel $===>$ mod-ring-rel $===>$ mod-ring-rel $)$
(plus-p p) (+)
proof -
\{
fix x y :: 'a mod-ring
have plus-p p (to-int-mod-ring $x)($ to-int-mod-ring $y)=$ to-int-mod-ring $(x+$
y)
by (transfer, subst plus-p-mod-def, auto, auto simp: p)
\} note $*=$ this
show ?thesis
by (intro rel-funI, auto simp: mod-ring-rel-def *)
qed
lemma minus-p-mod-def: assumes $x: x \in\{0 . .<p\}$ and $y: y \in\{0 . .<p\}$
shows minus-p $p x y=((x-y) \bmod p)$
proof (cases $x-y<0$)
case False
thus ?thesis using $x y$ unfolding minus-p-def Let-def by auto
next
case True
from True x y have $*: p>00 \leq x-y+p x-y+p<p$ by auto
from True have id: minus-p p $x y=x-y+p$ unfolding minus-p-def by auto

```
    show ?thesis unfolding id using * using mod-pos-pos-trivial by fastforce
qed
lemma mod-ring-minus[transfer-rule]:(mod-ring-rel ===> mod-ring-rel ===>
mod-ring-rel) (minus-p p) (-)
proof -
    {
    fix x y :: 'a mod-ring
    have minus-p p(to-int-mod-ring x) (to-int-mod-ring y) = to-int-mod-ring (x-
y)
    by (transfer, subst minus-p-mod-def, auto simp: p)
    } note * = this
    show ?thesis
    by (intro rel-funI, auto simp: mod-ring-rel-def *)
qed
```

lemma mod-ring-uminus[transfer-rule]: (mod-ring-rel $===>$ mod-ring-rel) (uminus-p
p) uminus
proof -
\{
fix x :: 'a mod-ring
have uminus-p p (to-int-mod-ring $x)=$ to-int-mod-ring (uminus $x)$
by (transfer, auto simp: uminus-p-def p)
\} note $*=$ this
show ?thesis
by (intro rel-funI, auto simp: mod-ring-rel-def *)
qed
lemma mod-ring-mult $[$ transfer-rule $]$: (mod-ring-rel $===>$ mod-ring-rel $===>$
mod-ring-rel) (mult-p p) ((*))
proof -
\{
fix x y :: 'a mod-ring
have mult-p p (to-int-mod-ring $x)($ to-int-mod-ring $y)=t o-i n t-m o d-r i n g ~(x *$
y)
by (transfer, auto simp: mult-p-def p)
\} note $*=$ this
show ?thesis
by (intro rel-funI, auto simp: mod-ring-rel-def *)
qed
lemma mod-ring-eq[transfer-rule]: (mod-ring-rel $===>$ mod-ring-rel $===>(=))$ (=) (=)
by (intro rel-funI, auto simp: mod-ring-rel-def)

```
lemma mod-ring-power[transfer-rule]: (mod-ring-rel \(===>(=)===>\) mod-ring-rel)
(power-p p) ( \()\)
proof (intro rel-funI, clarify, unfold binary-power[symmetric], goal-cases)
    fix \(x\) y \(n\)
    assume \(x y\) : mod-ring-rel \(x y\)
    from \(x y\) show mod-ring-rel (power-p p \(x\) n) (binary-power \(y n)\)
    proof (induct \(y n\) arbitrary: \(x\) rule: binary-power.induct)
        case ( \(1 x n y\) )
        note 1(2)[transfer-rule]
        show ?case
        proof (cases \(n=0\) )
            case True
            thus ?thesis by (simp add: mod-ring-1)
        next
            case False
            obtain \(d r\) where \(i d\) : Divides.divmod-nat \(n 2=(d, r)\) by force
            let ? int \(=\) power- \(p\) p \((\) mult- \(p\) p y y) d
            let ? gfp \(=\) binary-power \((x * x) d\)
            from False have id': ?thesis \(=\) (mod-ring-rel
                (if \(r=0\) then ?int else mult- \(p\) p ?int \(y\) )
                (if \(r=0\) then ?gfp else ?gfp \(* x)\) )
            unfolding power-p.simps[of--n] binary-power.simps[of - n] Let-def id split
by \(\operatorname{simp}\)
            have [transfer-rule]: mod-ring-rel ?int ?gfp
                by (rule 1 (1)[OF False refl id[symmetric]], transfer-prover)
            show ?thesis unfolding \(i d^{\prime}\) by transfer-prover
        qed
    qed
qed
declare power-p.simps[simp del]
lemma ring-finite-field-ops-int: ring-ops (finite-field-ops-int p) mod-ring-rel
    by (unfold-locales, auto simp:
    finite-field-ops-int-def
    bi-unique-mod-ring-rel
    right-total-mod-ring-rel
    mod-ring-plus
    mod-ring-minus
    mod-ring-uminus
    mod-ring-mult
    mod-ring-eq
    mod-ring-0
    mod-ring-1
    Domainp-mod-ring-rel)
end
locale prime-field \(=\) mod-ring-locale \(p\) ty for \(p\) and \(t y::\) ' \(a\) :: prime-card itself
begin
```

lemma prime: prime p unfolding p using prime-card $\left[\right.$ where ${ }^{\prime} a=$ ' $\left.a\right]$ by simp

```
lemma mod-ring-mod[transfer-rule]:
    (mod-ring-rel \(===>\) mod-ring-rel \(===>\) mod-ring-rel \()((\lambda x y\). if \(y=0\) then \(x\)
else 0)) (mod)
proof -
    \{
        fix \(x\) y :: 'a mod-ring
        have (if to-int-mod-ring \(y=0\) then to-int-mod-ring \(x\) else 0 ) \(=\) to-int-mod-ring
( \(x \bmod y\) )
            unfolding modulo-mod-ring-def by auto
    \} note \(*=\) this
    show ?thesis
        by (intro rel-funI, auto simp: mod-ring-rel-def \(*[\) symmetric \(]\) )
qed
lemma mod-ring-normalize[transfer-rule]: (mod-ring-rel \(===>\) mod-ring-rel \()((\lambda\)
\(x\). if \(x=0\) then 0 else 1)) normalize
proof -
    \{
        fix \(x\) :: 'a mod-ring
        have (if to-int-mod-ring \(x=0\) then 0 else 1\()=\) to-int-mod-ring (normalize \(x)\)
            unfolding normalize-mod-ring-def by auto
    \(\}\) note \(*=\) this
    show ?thesis
    by (intro rel-funI, auto simp: mod-ring-rel-def \(*[\) symmetric \(]\) )
qed
```

lemma mod-ring-unit-factor[transfer-rule]: (mod-ring-rel $===>$ mod-ring-rel $)(\lambda$
x. x) unit-factor
proof -
\{
fix x :: 'a mod-ring
have to-int-mod-ring $x=$ to-int-mod-ring (unit-factor x)
unfolding unit-factor-mod-ring-def by auto
\} note $*=$ this
show ?thesis
by (intro rel-funI, auto simp: mod-ring-rel-def $*[$ symmetric $]$)
qed
lemma mod-ring-inverse[transfer-rule]: (mod-ring-rel $===>$ mod-ring-rel) (inverse- p
p) inverse
proof (intro rel-funI)
fix $x y$

```
    assume [transfer-rule]: mod-ring-rel \(x y\)
    show mod-ring-rel (inverse-p \(p x\) ) (inverse \(y\) )
    unfolding inverse-p-def inverse-mod-ring-def
    apply (transfer-prover-start)
    apply (transfer-step)+
    apply (unfold p2-ident)
    apply (rule refl)
    done
qed
```

lemma mod-ring-divide[transfer-rule]: (mod-ring-rel $===>$ mod-ring-rel $===>$ mod-ring-rel)
(divide-p p) (/)
unfolding divide-p-def[abs-def] divide-mod-ring-def[abs-def] inverse-mod-ring-def[symmetric]
by transfer-prover
lemma mod-ring-rel-unsafe: assumes $x<C A R D$ (' $^{\prime}$)
shows mod-ring-rel (int x) (of-nat $x) 0<x \Longrightarrow$ of-nat $x \neq(0$:: 'a mod-ring)
proof -
have id: of-nat $x=($ of-int (int $x)::$ 'a mod-ring) by simp
show mod-ring-rel (int x) (of-nat $x) 0<x \Longrightarrow$ of-nat $x \neq(0::$ 'a mod-ring)
unfolding $i d$
unfolding mod-ring-rel-def
proof (auto simp add: assms of-int-of-int-mod-ring)
assume $0<x$ with assms
have of-int-mod-ring (int $x) \neq(0::$ 'a mod-ring $)$
by (metis (no-types) less-imp-of-nat-less less-irrefl of-nat-0-le-iff of-nat-0-less-iff
to-int-mod-ring-hom.hom-zero to-int-mod-ring-of-int-mod-ring)
thus of-int-mod-ring $($ int $x)=(0::$ 'a mod-ring $) \Longrightarrow$ False by blast
qed
qed
lemma finite-field-ops-int: field-ops (finite-field-ops-int p) mod-ring-rel
by (unfold-locales, auto simp:
finite-field-ops-int-def
bi-unique-mod-ring-rel
right-total-mod-ring-rel
mod-ring-divide
mod-ring-plus
mod-ring-minus
mod-ring-uminus
mod-ring-inverse
mod-ring-mod
mod-ring-unit-factor
mod-ring-normalize
mod-ring-mult
mod-ring-eq
mod-ring-0
mod-ring-1
Domainp-mod-ring-rel)
end
Once we have proven the soundness of the implementation, we do not care any longer that 'a mod-ring has been defined internally via lifting. Disabling the transfer-rules will hide the internal definition in further applications of transfer.
lifting-forget mod-ring.lifting
For soundness of the 32 -bit implementation, we mainly prove that this implementation implements the int-based implementation of the mod-ring.

```
context mod-ring-locale
begin
context fixes pp :: uint32
    assumes ppp: p=int-of-uint32 pp
    and small: p}\leq6553
begin
lemmas uint32-simps=
    int-of-uint32-0
    int-of-uint32-plus
    int-of-uint32-minus
    int-of-uint32-mult
```

definition urel32 :: uint32 \Rightarrow int \Rightarrow bool where urel32 $x y=(y=$ int-of-uint32
$x \wedge y<p)$
definition mod-ring-rel32 :: uint32 \Rightarrow 'a mod-ring \Rightarrow bool where
mod-ring-rel32 $x y=(\exists$ z. urel32 $x z \wedge$ mod-ring-rel $z y)$
lemma urel32-0: urel32 00 unfolding urel32-def using p2 by (simp, transfer, simp)
lemma urel32-1: urel32 11 unfolding urel32-def using p2 by (simp, transfer, simp)
lemma le-int-of-uint32: $(x \leq y)=($ int-of-uint32 $x \leq i n t-o f-u i n t 32 ~ y)$
by (transfer, simp add: word-le-def)
lemma urel32-plus: assumes urel32 x y urel32 $x^{\prime} y^{\prime}$
shows urel32 (plus-p32 pp $x x^{\prime}$) (plus-p p y y^{\prime})
proof -
let ? $x=$ int-of-uint32 x
let $? x^{\prime}=$ int-of-uint32 x^{\prime}
let $? p=$ int-of-uint32 $p p$

```
    from assms int-of-uint32-ge-0 have \(i d: y=? x y^{\prime}=? x^{\prime}\)
    and rel: \(0 \leq ? x ? x<p\)
        \(0 \leq ? x^{\prime} ? x^{\prime} \leq p\) unfolding urel32-def by auto
    have le: \(\left(p p \leq x+x^{\prime}\right)=\left(? p \leq ? x+? x^{\prime}\right)\) unfolding le-int-of-uint32
    using rel small by (auto simp: uint32-simps)
    show ?thesis
    proof (cases ? \(p \leq ? x+? x^{\prime}\) )
    case True
    hence True: \((? p \leq ? x+? x)=\operatorname{True}\) by simp
    show ?thesis unfolding id
        using small rel unfolding plus-p32-def plus-p-def Let-def urel32-def
        unfolding ppp le True if-True
        using True by (auto simp: uint32-simps)
    next
    case False
    hence False: \(\left(? p \leq ? x+? x^{\prime}\right)=\) False by simp
    show ?thesis unfolding id
        using small rel unfolding plus-p32-def plus-p-def Let-def urel32-def
        unfolding ppp le False if-False
        using False by (auto simp: uint32-simps)
    qed
qed
lemma urel32-minus: assumes urel32 \(x\) y urel32 \(x^{\prime} y^{\prime}\)
    shows urel32 (minus-p32 pp x \(x^{\prime}\) ) (minus-p p y \(y^{\prime}\) )
proof -
    let ? \(x=\) int-of-uint32 \(x\)
    let \(? x^{\prime}=\) int-of-uint32 \(x^{\prime}\)
    from assms int-of-uint32-ge-0 have id: \(y=? x y^{\prime}=? x^{\prime}\)
        and rel: \(0 \leq ? x ? x<p\)
            \(0 \leq ? x^{\prime} ? x^{\prime} \leq p\) unfolding urel32-def by auto
    have \(l e:\left(x^{\prime} \leq x\right)=\left(? x^{\prime} \leq ? x\right)\) unfolding le-int-of-uint32
        using rel small by (auto simp: uint32-simps)
    show ?thesis
    proof (cases ? \(x^{\prime} \leq ? x\) )
        case True
        hence True: \(\left(? x^{\prime} \leq ? x\right)=\) True by \(\operatorname{simp}\)
        show ?thesis unfolding id
            using small rel unfolding minus-p32-def minus-p-def Let-def urel32-def
            unfolding ppp le True if-True
            using True by (auto simp: uint32-simps)
    next
        case False
        hence False: \(\left(? x^{\prime} \leq ? x\right)=\) False by simp
        show ?thesis unfolding id
            using small rel unfolding minus-p32-def minus-p-def Let-def urel32-def
            unfolding ppp le False if-False
            using False by (auto simp: uint32-simps)
    qed
```


qed

lemma urel32-uminus: assumes urel32 $x y$
shows urel32 (uminus-p32 pp x) (uminus-p p y)
proof -
let $? x=$ int-of-uint32 x
from assms int-of-uint32-ge-0 have id: $y=? x$
and rel: $0 \leq ? x ? x<p$ unfolding urel32-def by auto
have le: $(x=0)=(? x=0)$ unfolding int-of-uint32-0-iff using rel small by (auto simp: uint32-simps)
show ?thesis
proof (cases ? $x=0$)
case True
hence True: $(? x=0)=$ True by simp
show ?thesis unfolding id
using small rel unfolding uminus-p32-def uminus-p-def Let-def urel32-def unfolding ppp le True if-True
using True by (auto simp: uint32-simps)
next

case False

hence False: $(? x=0)=$ False by simp
show ?thesis unfolding id
using small rel unfolding uminus-p32-def uminus-p-def Let-def urel32-def unfolding ppp le False if-False using False by (auto simp: uint32-simps)
qed
qed
lemma urel32-mult: assumes urel32 x y urel32 $x^{\prime} y^{\prime}$
shows urel32 (mult-p32 pp $x x^{\prime}$) (mult-p p y y^{\prime})
proof -
let $? x=$ int-of-uint32 x
let ${ }^{\prime} x^{\prime}=$ int-of-uint32 x^{\prime}
from assms int-of-uint32-ge-0 have id: $y=? x y^{\prime}=? x^{\prime}$
and rel: $0 \leq ? x ? x<p$
$0 \leq ? x^{\prime} ? x^{\prime}<p$ unfolding urel32-def by auto
from rel have ? $x * ? x^{\prime}<p * p$ by (metis mult-strict-mono')
also have $\ldots \leq 65536 * 65536$
by (rule mult-mono, insert p2 small, auto)
finally have $l e$: ? $x * ? x^{\prime}<4294967296$ by simp
show ?thesis unfolding id
using small rel unfolding mult-p32-def mult-p-def Let-def urel32-def unfolding $p p p$
by (auto simp: uint32-simps, unfold int-of-uint32-mod int-of-uint32-mult, subst mod-pos-pos-trivial[of - 4294967296], insert le, auto)
qed
lemma urel32-eq: assumes urel32 $x y$ urel32 $x^{\prime} y^{\prime}$

```
    shows (x=\mp@subsup{x}{}{\prime})=(y=\mp@subsup{y}{}{\prime})
proof -
    let ?x = int-of-uint32 }
    let ?x' = int-of-uint32 }\mp@subsup{x}{}{\prime
    from assms int-of-uint32-ge-0 have id: y =? }x\mp@subsup{y}{}{\prime}=?\mp@subsup{?}{}{\prime
        unfolding urel32-def by auto
    show ?thesis unfolding id by (transfer, transfer) rule
qed
lemma urel32-normalize:
assumes x:urel32 x y
shows urel32 (if x=0 then 0 else 1) (if y=0 then 0 else 1)
unfolding urel32-eq[OF x urel32-0] using urel32-0 urel32-1 by auto
lemma urel32-mod:
assumes x:urel32 x x' and y:urel32 y y'
shows urel32 (if y = 0 then x else 0) (if y'}=0\mathrm{ then }\mp@subsup{x}{}{\prime}\mathrm{ else 0)
    unfolding urel32-eq[OF y urel32-0] using urel32-0 x by auto
lemma urel32-power:urel32 x x' \Longrightarrowurel32 y (int y') \Longrightarrow urel32 (power-p32 pp
x y)(power-p p x' y')
including bit-operations-syntax proof (induct }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}\mathrm{ arbitrary: x y rule: power-p.induct[of
- p])
    case (1 x' y' x y)
    note }x=1\mathrm{ (2) note }y=1\mathrm{ (3)
    show ?case
    proof (cases y' = 0)
    case True
    hence y:y=0 using urel32-eq[OF y urel32-0] by auto
    show ?thesis unfolding y True by (simp add: power-p.simps urel32-1)
    next
    case False
    hence id: (y=0) = False ( }\mp@subsup{y}{}{\prime}=0)=\mathrm{ False using urel32-eq[OF y urel32-0]
by auto
    from y have <int y' = int-of-uint32 y>< int y'}<<p
        by (simp-all add: urel32-def)
    obtain d' r' where dr': Divides.divmod-nat y' 2 = ( d',r') by force
    from divmod-nat-def[of y' 2, unfolded dr']
    have }\mp@subsup{r}{}{\prime}:\mp@subsup{r}{}{\prime}=\mp@subsup{y}{}{\prime}\operatorname{mod}2\mathrm{ and }\mp@subsup{d}{}{\prime}:\mp@subsup{d}{}{\prime}=\mp@subsup{y}{}{\prime}\mathrm{ div 2 by auto
    have urel32 (y AND 1) r'
        using <int }\mp@subsup{y}{}{\prime}<p>\mathrm{ small
        apply (simp add: urel32-def and-one-eq r')
        apply (auto simp add: ppp and-one-eq)
    apply (simp add: of-nat-mod int-of-uint32.rep-eq modulo-uint32.rep-eq uint-mod
<int y' = int-of-uint32 y>)
            done
    from urel32-eq[OF this urel32-0]
    have rem: (y AND 1 = 0) = (r'=0) by simp
        have div: urel32 (drop-bit 1 y) (int d') unfolding d' using y unfolding
```

urel32-def using small
unfolding $p p p$
apply transfer
apply transfer
apply (auto simp add: drop-bit-Suc take-bit-int-eq-self)
done
note $I H=1(1)\left[\right.$ OF False refl $d r^{\prime}[$ symmetric $]$ urel32-mult $[$ OF $\left.x x] d i v\right]$
show ?thesis unfolding power-p.simps $[o f-y]$ power-p32.simps $[o f-y] d r^{\prime}$ id if-False rem
using IH urel32-mult $[$ OF IH $x]$ by (auto simp: Let-def)
qed
qed
lemma urel32-inverse: assumes x : urel32 $x x^{\prime}$ shows urel32 (inverse-p32 pp x) (inverse-p $p x^{\prime}$)
proof -
have p : urel32 (p p - 2) (int (nat ($p-2$))) using p2 small unfolding urel32-def
unfolding $p p p$
by (simp add: int-of-uint32.rep-eq minus-uint32.rep-eq uint-sub-if')
show ?thesis
unfolding inverse-p32-def inverse-p-def urel32-eq[OF x urel32-0] using urel32-0
urel32-power $[$ OF x p]
by auto
qed
lemma mod-ring-0-32: mod-ring-rel32 00
using urel32-0 mod-ring-0 unfolding mod-ring-rel32-def by blast
lemma mod-ring-1-32: mod-ring-rel32 11
using urel32-1 mod-ring-1 unfolding mod-ring-rel32-def by blast
lemma mod-ring-uminus32: (mod-ring-rel32 ===> mod-ring-rel32) (uminus-p32 $p p)$ uminus
using urel32-uminus mod-ring-uminus unfolding mod-ring-rel32-def rel-fun-def by blast
lemma mod-ring-plus32: (mod-ring-rel32 $===>$ mod-ring-rel32 $===>$ mod-ring-rel32 $)$ (plus-p32 pp) (+)
using urel32-plus mod-ring-plus unfolding mod-ring-rel32-def rel-fun-def by blast
lemma mod-ring-minus32: (mod-ring-rel32 $===>$ mod-ring-rel32 $===>$ mod-ring-rel32 $)$ (minus-p32 pp) (-)
using urel32-minus mod-ring-minus unfolding mod-ring-rel32-def rel-fun-def by blast
lemma mod-ring-mult32: (mod-ring-rel32 $===>$ mod-ring-rel32 $===>$ mod-ring-rel32 $)$ (mult-p32 pp) ((*))
using urel32-mult mod-ring-mult unfolding mod-ring-rel32-def rel-fun-def by blast

```
lemma mod-ring-eq32:(mod-ring-rel32 ===> mod-ring-rel32 ===> (=))(=)
(=)
    using urel32-eq mod-ring-eq unfolding mod-ring-rel32-def rel-fun-def by blast
lemma urel32-inj:urel32 }xy\Longrightarrow\mathrm{ urel32 }xz\Longrightarrowy=
    using urel32-eq[of x y x z] by auto
lemma urel32-inj':urel32 x z بurel32 y z \Longrightarrow x=y
    using urel32-eq[of x z y z] by auto
lemma bi-unique-mod-ring-rel32:
    bi-unique mod-ring-rel32 left-unique mod-ring-rel32 right-unique mod-ring-rel32
    using bi-unique-mod-ring-rel urel32-inj'
    unfolding mod-ring-rel32-def bi-unique-def left-unique-def right-unique-def
    by (auto simp: urel32-def)
lemma right-total-mod-ring-rel32: right-total mod-ring-rel32
    unfolding mod-ring-rel32-def right-total-def
proof
    fix y :: 'a mod-ring
    from right-total-mod-ring-rel[unfolded right-total-def,rule-format, of y]
    obtain z where zy: mod-ring-rel z y by auto
    hence zp: 0\leqzz<p}\mathrm{ unfolding mod-ring-rel-def p using range-to-int-mod-ring[where
'a='a] by auto
    hence urel32 (uint32-of-int z) z unfolding urel32-def using small unfolding
ppp
    by (auto simp: int-of-uint32-inv)
    with zy show \exists x z.urel32 x z ^ mod-ring-rel z y by blast
qed
lemma Domainp-mod-ring-rel32: Domainp mod-ring-rel32 = ( }\lambdax.0\leqx\wedgex
pp)
proof
    fix }
    show Domainp mod-ring-rel32 x = (0\leqx\wedgex<pp)
        unfolding Domainp.simps
        unfolding mod-ring-rel32-def
    proof
        let ?i = int-of-uint32
        assume *: 0 \leq x ^ x< pp
        hence 0}\leq\mathrm{ ? i }x\wedge\mathrm{ ? i }x<p\mathrm{ using small unfolding ppp
            by (transfer, auto simp: word-less-def)
    hence ?i }x\in{0..<p} by aut
    with Domainp-mod-ring-rel
    have Domainp mod-ring-rel (?i x) by auto
    from this[unfolded Domainp.simps]
```

```
    obtain b where b: mod-ring-rel (?i x) b by auto
    show \existsab. x=a^(\existsz. urel32 a z\wedge mod-ring-rel z b)
    proof (intro exI, rule conjI[OF refl], rule exI, rule conjI[OF - b])
            show urel32 x (?i x) unfolding urel32-def using small * unfolding ppp
                by (transfer, auto simp: word-less-def)
    qed
    next
    assume \existsab.x=a^(\existsz.urel32 a z\wedge mod-ring-rel z b)
    then obtain bz}\mathrm{ where xz:urel32 }xz\mathrm{ and zb: mod-ring-rel z b by auto
    hence Domainp mod-ring-rel z by auto
    with Domainp-mod-ring-rel have 0\leqzz<p}\mathrm{ by auto
    with xz show 0 \leq x ^ x< pp unfolding urel32-def using small unfolding
ppp
            by (transfer, auto simp: word-less-def)
        qed
qed
lemma ring-finite-field-ops32: ring-ops(finite-field-ops32 pp) mod-ring-rel32
    by (unfold-locales, auto simp:
    finite-field-ops32-def
    bi-unique-mod-ring-rel32
    right-total-mod-ring-rel32
    mod-ring-plus32
    mod-ring-minus32
    mod-ring-uminus32
    mod-ring-mult32
    mod-ring-eq32
    mod-ring-0-32
    mod-ring-1-32
    Domainp-mod-ring-rel32)
end
end
context prime-field
begin
context fixes pp :: uint32
    assumes *: p=int-of-uint32 pp p}\leq6553
begin
lemma mod-ring-normalize32: (mod-ring-rel32 \(===>\) mod-ring-rel32) ( \(\lambda\) x. if \(x\) \(=0\) then 0 else 1) normalize
using urel32-normalize[OF *] mod-ring-normalize unfolding mod-ring-rel32-def[OF
*] rel-fun-def by blast
lemma mod-ring-mod32: (mod-ring-rel32 \(===>\) mod-ring-rel32 \(===>\) mod-ring-rel32 \()\) \((\lambda x y\). if \(y=0\) then \(x\) else 0\()(\bmod )\)
using urel32-mod \([O F *]\) mod-ring-mod unfolding mod-ring-rel32-def[OF *]
rel-fun-def by blast
```

lemma mod-ring-unit-factor32: (mod-ring-rel32 $===>$ mod-ring-rel32) $(\lambda x . x)$ unit-factor
using mod-ring-unit-factor unfolding mod-ring-rel32-def[OF *] rel-fun-def by blast
lemma mod-ring-inverse32: (mod-ring-rel32 $===>$ mod-ring-rel32) (inverse-p32 pp) inverse
using urel32-inverse[OF *] mod-ring-inverse unfolding mod-ring-rel32-def[OF *] rel-fun-def by blast
lemma mod-ring-divide32: (mod-ring-rel32 $===>$ mod-ring-rel32 $===>$ mod-ring-rel32)
(divide-p32 pp) (/)
using mod-ring-inverse32 mod-ring-mult32[OF*]
unfolding divide-p32-def divide-mod-ring-def inverse-mod-ring-def [symmetric]
rel-fun-def by blast
lemma finite-field-ops32: field-ops (finite-field-ops32 pp) mod-ring-rel32
by (unfold-locales, insert ring-finite-field-ops32[OF *], auto simp:
ring-ops-def
finite-field-ops32-def
mod-ring-divide32
mod-ring-inverse32
mod-ring-mod32
mod-ring-normalize32)
end
end

```
context
    fixes p :: uint64
begin
definition plus-p64 :: uint64 }=>\mathrm{ uint64 }=>\mathrm{ uint64 where
    plus-p64 x y let z=x+y in if z\geqp then z-p else z
definition minus-p64 :: uint64 }=>\mathrm{ uint64 }=>\mathrm{ uint64 where
    minus-p64 x y if y \leqx then }x-y\mathrm{ else (x+p) - y
definition uminus-p64 :: uint64 }=>\mathrm{ uint64 where
    uminus-p64 }x=(\mathrm{ if }x=0\mathrm{ then 0 else p-x)
definition mult-p64 :: uint64 }=>\mathrm{ uint64 }=>\mathrm{ uint64 where
    mult-p64 x y = (x*y mod p)
lemma int-of-uint64-shift: int-of-uint64 (drop-bit k n)=(int-of-uint64 n) div (2
* k
    apply transfer
    apply transfer
    apply (simp add: take-bit-drop-bit min-def)
```

apply (simp add: drop-bit-eq-div)
done
lemma int-of-uint64-0-iff: int-of-uint64 $n=0 \longleftrightarrow n=0$
by (transfer, rule uint-0-iff)
lemma int-of-uint64-0: int-of-uint64 $0=0$ unfolding int-of-uint64-0-iff by simp
lemma int-of-uint64-ge-0: int-of-uint64 $n \geq 0$
by (transfer, auto)
lemma two-64: $2^{\wedge} \operatorname{LENGTH}(64)=(18446744073709551616$:: int $)$ by simp
lemma int-of-uint64-plus: int-of-uint64 $(x+y)=($ int-of-uint64 $x+$ int-of-uint64
y) mod 18446744073709551616
by (transfer, unfold uint-word-ariths two-64, rule refl)
lemma int-of-uint64-minus: int-of-uint64 $(x-y)=($ int-of-uint64 $x-$ int-of-uint64 y) $\bmod 18446744073709551616$
by (transfer, unfold uint-word-ariths two-64, rule refl)
lemma int-of-uint64-mult: int-of-uint64 $(x * y)=($ int-of-uint64 $x *$ int-of-uint64 y) $\bmod 18446744073709551616$
by (transfer, unfold uint-word-ariths two-64, rule refl)
lemma int-of-uint64-mod: int-of-uint64 $(x \bmod y)=($ int-of-uint64 $x \bmod$ int-of-uint64 y)
by (transfer, unfold uint-mod two-64, rule refl)
lemma int-of-uint64-inv: $0 \leq x \Longrightarrow x<18446744073709551616 \Longrightarrow$ int-of-uint64 (uint64-of-int $x)=x$
by transfer (simp add: take-bit-int-eq-self unsigned-of-int)
context
includes bit-operations-syntax
begin
function power-p64 :: uint64 \Rightarrow uint64 \Rightarrow uint64 where
power-p64 $\times n=($ if $n=0$ then 1 else let rec $=$ power-p64 $($ mult-p64 xx) $($ drop-bit 1 n$)$ in if $n A N D 1=0$ then rec else mult-p64 rec x)
by pat-completeness auto

termination

proof -

\{
fix $n::$ uint64
assume $n \neq 0$
with int-of-uint64-ge-0[of n] int-of-uint64-0-iff[of n] have int-of-uint64 $n>0$

```
by auto
    hence 0< int-of-uint64 n int-of-uint64 n div 2 < int-of-uint64 n by auto
    } note * = this
    show ?thesis
    by (relation measure ( }\lambda(x,n)\mathrm{ . nat (int-of-uint64 n)), auto simp: int-of-uint64-shift
*)
qed
end
```

In experiments with Berlekamp-factorization (where the prime p is usually small), it turned out that taking the below implementation of inverse via exponentiation is faster than the one based on the extended Euclidean algorithm.

```
definition inverse-p64 :: uint64 => uint64 where
    inverse-p64 }x=(\mathrm{ if }x=0\mathrm{ then 0 else power-p64 x (p - 2))
definition divide-p64 :: uint64 }=>\mathrm{ uint64 }=>\mathrm{ uint64 where
    divide-p64 x y = mult-p64 x (inverse-p64 y)
definition finite-field-ops64 :: uint64 arith-ops-record where
    finite-field-ops64 \equiv Arith-Ops-Record
        O
        1
        plus-p64
        mult-p64
        minus-p64
        uminus-p64
        divide-p64
        inverse-p64
        ( }\lambdaxy\mathrm{ . if }y=0\mathrm{ then x else 0)
        (\lambda x. if x=0 then 0 else 1)
        (\lambdax.x)
        uint64-of-int
        int-of-uint64
        (\lambdax.0\leqx^x<p)
end
```

lemma shiftr-uint64-code [code-unfold]: drop-bit $1 x=($ uint64-shiftr $x 1)$
by (simp add: uint64-shiftr-def)

For soundness of the 64 -bit implementation, we mainly prove that this implementation implements the int-based implementation of GF (p).
context mod-ring-locale
begin
context fixes $p p::$ uint 64
assumes $p p p: p=$ int-of-uint64 $p p$
and small: $p \leq 4294967295$

begin

lemmas uint64-simps $=$
int-of-uint64-0
int-of-uint64-plus
int-of-uint64-minus
int-of-uint64-mult
definition urel64 $::$ uint64 \Rightarrow int \Rightarrow bool where urel64 $x y=(y=$ int-of-uint64 $x \wedge y<p)$
definition mod-ring-rel64 :: uint64 \Rightarrow 'a mod-ring \Rightarrow bool where
mod-ring-rel64 $x y=(\exists$ z. urel64 $x z \wedge$ mod-ring-rel $z y)$
lemma urel64-0: urel64 00 unfolding urel64-def using p2 by (simp, transfer, simp)
lemma urel64-1: urel64 11 unfolding urel64-def using p2 by (simp, transfer, simp)
lemma le-int-of-uint64: $(x \leq y)=($ int-of-uint64 $x \leq i n t-o f-u i n t 64 y)$
by (transfer, simp add: word-le-def)
lemma urel64-plus: assumes urel64 x y urel64 $x^{\prime} y^{\prime}$
shows urel64 (plus-p64 pp $\left.x x^{\prime}\right)\left(\right.$ plus-p p y $\left.y^{\prime}\right)$
proof -
let $? x=$ int-of-uint64 x
let $? x^{\prime}=$ int-of-uint64 x^{\prime}
let $? p=$ int-of-uint64 $p p$
from assms int-of-uint64-ge-0 have id: $y=? x y^{\prime}=? x^{\prime}$ and rel: $0 \leq ? x ? x<p$
$0 \leq ? x^{\prime} ? x^{\prime} \leq p$ unfolding urel64-def by auto
have le: $\left(p p \leq x+x^{\prime}\right)=\left(? p \leq ? x+? x^{\prime}\right)$ unfolding le-int-of-uint64
using rel small by (auto simp: uint64-simps)
show ?thesis
proof (cases ? $\left.p \leq ? x+? x^{\prime}\right)$
case True
hence True: $\left(? p \leq ? x+? x^{\prime}\right)=$ True by simp
show ?thesis unfolding id
using small rel unfolding plus-p64-def plus-p-def Let-def urel64-def unfolding ppp le True if-True
using True by (auto simp: uint64-simps)
next
case False
hence False: $(? p \leq ? x+? x)=$ False by simp
show ?thesis unfolding id
using small rel unfolding plus-p64-def plus-p-def Let-def urel64-def
unfolding ppp le False if-False
using False by (auto simp: uint64-simps)
qed
qed
lemma urel64-minus: assumes urel64 x y urel64 $x^{\prime} y^{\prime}$
shows urel64 (minus-p64 pp x x^{\prime}) (minus-p p y y^{\prime})
proof -
let $? x=$ int-of-uint64 x
let ? $x^{\prime}=$ int-of-uint64 x^{\prime}
from assms int-of-uint64-ge-0 have id: $y=? x y^{\prime}=? x^{\prime}$
and rel: $0 \leq ? x ? x<p$
$0 \leq ? x^{\prime} ? x^{\prime} \leq p$ unfolding urel64-def by auto
have $l e:\left(x^{\prime} \leq x\right)=\left(? x^{\prime} \leq ? x\right)$ unfolding le-int-of-uint64
using rel small by (auto simp: uint64-simps)
show ?thesis
proof (cases ? $x^{\prime} \leq ? x$)
case True
hence True: $\left(? x^{\prime} \leq ? x\right)=$ True by simp
show ?thesis unfolding id
using small rel unfolding minus-p64-def minus-p-def Let-def urel64-def unfolding ppp le True if-True
using True by (auto simp: uint64-simps)
next
case False
hence False: $\left(? x^{\prime} \leq ? x\right)=$ False by simp
show ?thesis unfolding id
using small rel unfolding minus-p64-def minus-p-def Let-def urel64-def
unfolding ppp le False if-False
using False by (auto simp: uint64-simps)
qed
qed
lemma urel64-uminus: assumes urel64 $x y$
shows urel64 (uminus-p64 pp x) (uminus-p p y)
proof -
let $? x=$ int-of-uint64 x
from assms int-of-uint64-ge-0 have id: $y=? x$
and rel: $0 \leq ? x ? x<p$
unfolding urel64-def by auto
have le: $(x=0)=(? x=0)$ unfolding int-of-uint64-0-iff
using rel small by (auto simp: uint64-simps)
show ?thesis
proof (cases ? $x=0$)
case True
hence True: $(? x=0)=$ True by simp
show ?thesis unfolding id
using small rel unfolding uminus-p64-def uminus-p-def Let-def urel64-def unfolding ppp le True if-True
using True by (auto simp: uint64-simps)

```
    next
        case False
        hence False: }(?x=0)=\mathrm{ False by simp
        show ?thesis unfolding id
            using small rel unfolding uminus-p64-def uminus-p-def Let-def urel64-def
            unfolding ppp le False if-False
            using False by (auto simp: uint64-simps)
    qed
qed
lemma urel64-mult: assumes urel64 x y urel64 x' y'
    shows urel64 (mult-p64 pp x x') (mult-p p y y')
proof -
    let ?x = int-of-uint64 }
    let ? }\mp@subsup{x}{}{\prime}=\mathrm{ int-of-uint64 }\mp@subsup{x}{}{\prime
    from assms int-of-uint64-ge-0 have id:y=?x y' =? 'x
        and rel: 0\leq? ? ? x < p
            0}\leq?\mp@subsup{x}{}{\prime}?\mp@subsup{x}{}{\prime}<p\mathrm{ unfolding urel64-def by auto
    from rel have ? }x*?\mp@subsup{x}{}{\prime}<p*p\mathrm{ by (metis mult-strict-mono')
    also have .. \leq4294967296 *4294967296
        by (rule mult-mono, insert p2 small, auto)
    finally have le:?x*? ' ' < 18446744073709551616 by simp
    show ?thesis unfolding id
        using small rel unfolding mult-p64-def mult-p-def Let-def urel64-def
        unfolding ppp
    by (auto simp: uint64-simps, unfold int-of-uint64-mod int-of-uint64-mult,
        subst mod-pos-pos-trivial[of - 18446744073709551616], insert le, auto)
qed
lemma urel64-eq: assumes urel64 x y urel64 x' y'
    shows (x= x') = (y= y')
proof -
    let ?x = int-of-uint64 x
    let ? }\mp@subsup{x}{}{\prime}=\mathrm{ int-of-uint64 }\mp@subsup{x}{}{\prime
    from assms int-of-uint64-ge-0 have id: y =? }x\mathrm{ y'}=? ?\mp@subsup{x}{}{\prime
        unfolding urel64-def by auto
    show ?thesis unfolding id by (transfer, transfer) rule
qed
lemma urel64-normalize:
assumes x:urel64 x y
shows urel64 (if }x=0\mathrm{ then 0 else 1) (if y=0 then 0 else 1)
    unfolding urel64-eq[OF x urel64-0] using urel64-0 urel64-1 by auto
lemma urel64-mod:
assumes x:urel64 x x ' and y:urel64 y y'
shows urel64 (if }y=0\mathrm{ then x else 0) (if }\mp@subsup{y}{}{\prime}=0\mathrm{ then }\mp@subsup{x}{}{\prime}\mathrm{ else 0)
    unfolding urel64-eq[OF y urel64-0] using urel64-0 x by auto
```

```
lemma urel64-power: urel64 \(x x^{\prime} \Longrightarrow\) urel64 \(y\left(\right.\) int \(\left.y^{\prime}\right) \Longrightarrow\) urel64 (power-p64 pp
\(x y\) ) (power-p \(p x^{\prime} y^{\prime}\) )
including bit-operations-syntax proof (induct \(x^{\prime} y^{\prime}\) arbitrary: \(x\) y rule: power-p.induct[of
- \(p\) ])
case ( \(1 x^{\prime} y^{\prime} x y\) )
note \(x=1\) (2) note \(y=1\) (3)
show ?case
proof (cases \(y^{\prime}=0\) )
    case True
    hence \(y: y=0\) using urel64-eq[OF y urel64-0] by auto
    show ?thesis unfolding \(y\) True by (simp add: power-p.simps urel64-1)
next
    case False
    hence id: \((y=0)=\) False \(\left(y^{\prime}=0\right)=\) False using urel64-eq[OF y urel64-0]
by auto
    from \(y\) have \(\left\langle\right.\) int \(y^{\prime}=\) int-of-uint64 \(\left.y\right\rangle\left\langle\right.\) int \(\left.y^{\prime}<p\right\rangle\)
        by (simp-all add: urel64-def)
    obtain \(d^{\prime} r^{\prime}\) where \(d r^{\prime}\) : Divides.divmod-nat \(y^{\prime} 2=\left(d^{\prime}, r^{\prime}\right)\) by force
    from divmod-nat-def[of \(y^{\prime} 2\), unfolded \(\left.d r^{\prime}\right]\)
    have \(r^{\prime}: r^{\prime}=y^{\prime} \bmod 2\) and \(d^{\prime}: d^{\prime}=y^{\prime}\) div 2 by auto
    have urel64 (y AND 1) \(r^{\prime}\)
        using <int \(y^{\prime}<p\) 〉 small
        apply (simp add: urel64-def and-one-eq \(r^{\prime}\) )
        apply (auto simp add: ppp and-one-eq)
    apply (simp add: of-nat-mod int-of-uint64.rep-eq modulo-uint64.rep-eq uint-mod
<int \(y^{\prime}=\) int-of-uint64 \(\left.y>\right)\)
        done
    from urel64-eq[OF this urel64-0]
    have rem: \((y A N D 1=0)=\left(r^{\prime}=0\right)\) by simp
        have div: urel64 (drop-bit 1 y) (int \(d^{\prime}\) ) unfolding \(d^{\prime}\) using \(y\) unfolding
urel64-def using small
            unfolding \(p p p\)
            apply transfer
            apply transfer
            apply (auto simp add: drop-bit-Suc take-bit-int-eq-self)
            done
    note \(I H=1(1)\left[\right.\) OF False refl \(d r^{\prime}[\) symmetric \(]\) urel64-mult \([\) OF \(x\) x \(\left.x] d i v\right]\)
    show ?thesis unfolding power-p.simps[of - y \(]\) power-p64.simps \([o f--y] d r^{\prime}\)
id if-False rem
            using \(I H\) urel64-mult \([\) OF \(I H x]\) by (auto simp: Let-def)
        qed
qed
```

lemma urel64-inverse: assumes x : urel64 $x x^{\prime}$
shows urel64 (inverse-p64 pp x) (inverse-p $p x^{\prime}$)
proof -
have p : urel64 $(p p-2)(\operatorname{int}(\operatorname{nat}(p-2)))$ using $p 2$ small unfolding urel64-def
unfolding $p p p$

```
    by (simp add: int-of-uint64.rep-eq minus-uint64.rep-eq uint-sub-if')
    show ?thesis
    unfolding inverse-p64-def inverse-p-def urel64-eq[OF x urel64-0] using urel64-0
urel64-power [OF x p]
    by auto
qed
lemma mod-ring-0-64: mod-ring-rel64 0 0
    using urel64-0 mod-ring-0 unfolding mod-ring-rel64-def by blast
lemma mod-ring-1-64:mod-ring-rel64 11
    using urel64-1 mod-ring-1 unfolding mod-ring-rel64-def by blast
lemma mod-ring-uminus64:(mod-ring-rel64 ===> mod-ring-rel64)(uminus-p64
pp) uminus
    using urel64-uminus mod-ring-uminus unfolding mod-ring-rel64-def rel-fun-def
by blast
lemma mod-ring-plus64:(mod-ring-rel64 ===> mod-ring-rel64 ===> mod-ring-rel64)
(plus-p64 pp) (+)
    using urel64-plus mod-ring-plus unfolding mod-ring-rel64-def rel-fun-def by
blast
lemma mod-ring-minus64:(mod-ring-rel64 ===> mod-ring-rel64 ===> mod-ring-rel64)
(minus-p64 pp)(-)
    using urel64-minus mod-ring-minus unfolding mod-ring-rel64-def rel-fun-def by
blast
lemma mod-ring-mult64:(mod-ring-rel64 ===> mod-ring-rel64 ===> mod-ring-rel64)
(mult-p64 pp) ((*))
    using urel64-mult mod-ring-mult unfolding mod-ring-rel64-def rel-fun-def by
blast
lemma mod-ring-eq64:(mod-ring-rel64 ===> mod-ring-rel64 ===> (=)) (=)
(=)
    using urel64-eq mod-ring-eq unfolding mod-ring-rel64-def rel-fun-def by blast
lemma urel64-inj:urel64 }xy\Longrightarrow\mathrm{ urel64 }xz\Longrightarrowy=
    using urel64-eq[of x y x z] by auto
lemma urel64-inj':urel64 x z \Longrightarrowurel64 y z \Longrightarrow x=y
    using urel64-eq[of x zyz] by auto
lemma bi-unique-mod-ring-rel64:
    bi-unique mod-ring-rel64 left-unique mod-ring-rel64 right-unique mod-ring-rel64
    using bi-unique-mod-ring-rel urel64-inj'
    unfolding mod-ring-rel64-def bi-unique-def left-unique-def right-unique-def
    by (auto simp: urel64-def)
```

```
lemma right-total-mod-ring-rel64:right-total mod-ring-rel64
    unfolding mod-ring-rel64-def right-total-def
proof
    fix y :: 'a mod-ring
    from right-total-mod-ring-rel[unfolded right-total-def, rule-format, of y]
    obtain z where zy: mod-ring-rel z y by auto
    hence zp: 0\leqzz<p unfolding mod-ring-rel-def p using range-to-int-mod-ring[where
' }a='a]\mathrm{ by auto
    hence urel64 (uint64-of-int z) z unfolding urel64-def using small unfolding
ppp
    by (auto simp: int-of-uint64-inv)
    with zy show \exists x z.urel64 x z ^ mod-ring-rel z y by blast
qed
lemma Domainp-mod-ring-rel64: Domainp mod-ring-rel64 = ( }\lambdax.0\leqx\wedgex
pp)
proof
    fix }
    show Domainp mod-ring-rel64 x = (0\leqx\wedge x < pp)
        unfolding Domainp.simps
        unfolding mod-ring-rel64-def
    proof
        let ?i = int-of-uint64
        assume *: 0 \leq x ^ x< pp
        hence 0\leq ?i }x\wedge\mathrm{ ? i }x<p\mathrm{ using small unfolding ppp
            by (transfer, auto simp: word-less-def)
        hence ?i }x\in{0..<p} by aut
    with Domainp-mod-ring-rel
    have Domainp mod-ring-rel (?i x) by auto
    from this[unfolded Domainp.simps]
    obtain b}\mathrm{ where b: mod-ring-rel (?i x) b by auto
    show \existsab. x=a\wedge(\existsz. urel64 a z\wedge mod-ring-rel z b)
    proof (intro exI, rule conjI[OF refl], rule exI, rule conjI[OF - b])
            show urel64 x (?i x) unfolding urel64-def using small * unfolding ppp
                    by (transfer, auto simp: word-less-def)
        qed
    next
    assume \existsa b. x=a\wedge(\existsz. urel64 a z ^ mod-ring-rel z b)
    then obtain bz where xz: urel64 x z and zb: mod-ring-rel z b by auto
    hence Domainp mod-ring-rel z by auto
    with Domainp-mod-ring-rel have 0\leqzz<p}\mathrm{ by auto
    with }xz\mathrm{ show }0\leqx\wedgex<pp\mathrm{ unfolding urel64-def using small unfolding
ppp
        by (transfer, auto simp: word-less-def)
    qed
qed
lemma ring-finite-field-ops64: ring-ops (finite-field-ops64 pp) mod-ring-rel64
    by (unfold-locales, auto simp:
```

```
    finite-field-ops64-def
    bi-unique-mod-ring-rel64
    right-total-mod-ring-rel64
    mod-ring-plus64
    mod-ring-minus64
    mod-ring-uminus64
    mod-ring-mult64
    mod-ring-eq64
    mod-ring-0-64
    mod-ring-1-64
    Domainp-mod-ring-rel64)
end
end
context prime-field
begin
context fixes pp :: uint64
    assumes *: p = int-of-uint64 pp p \leq4294967295
begin
lemma mod-ring-normalize64:(mod-ring-rel64 ===> mod-ring-rel64) ( }\lambda\mathrm{ x. if x
=0 then 0 else 1) normalize
    using urel64-normalize[OF *] mod-ring-normalize unfolding mod-ring-rel64-def[OF
*] rel-fun-def by blast
lemma mod-ring-mod64:(mod-ring-rel64 ===> mod-ring-rel64 ===> mod-ring-rel64)
( }\lambdaxy.\mathrm{ if }y=0\mathrm{ then x else 0) (mod)
    using urel64-mod[OF *] mod-ring-mod unfolding mod-ring-rel64-def[OF *]
rel-fun-def by blast
lemma mod-ring-unit-factor64:(mod-ring-rel64 ===> mod-ring-rel64) ( }\lambdax.x
unit-factor
    using mod-ring-unit-factor unfolding mod-ring-rel64-def[OF *] rel-fun-def by
blast
lemma mod-ring-inverse64:(mod-ring-rel64 ===> mod-ring-rel64)(inverse-p64
pp) inverse
    using urel64-inverse[OF *] mod-ring-inverse unfolding mod-ring-rel64-def[OF
*] rel-fun-def by blast
lemma mod-ring-divide64:(mod-ring-rel64 ===> mod-ring-rel64 ===> mod-ring-rel64)
(divide-p64 pp) (/)
    using mod-ring-inverse64 mod-ring-mult64[OF *]
    unfolding divide-p64-def divide-mod-ring-def inverse-mod-ring-def [symmetric]
        rel-fun-def by blast
    lemma finite-field-ops64: field-ops (finite-field-ops64 pp) mod-ring-rel64
    by (unfold-locales, insert ring-finite-field-ops64[OF *], auto simp:
    ring-ops-def
```

```
    finite-field-ops64-def
    mod-ring-divide64
    mod-ring-inverse64
    mod-ring-mod64
    mod-ring-normalize64)
end
end
```


context

```
fixes \(p::\) integer
begin
definition plus- \(p\)-integer \(::\) integer \(\Rightarrow\) integer \(\Rightarrow\) integer where plus-p-integer \(x y \equiv\) let \(z=x+y\) in if \(z \geq p\) then \(z-p\) else \(z\)
definition minus-p-integer \(::\) integer \(\Rightarrow\) integer \(\Rightarrow\) integer where
minus- \(p\)-integer \(x y \equiv\) if \(y \leq x\) then \(x-y\) else \((x+p)-y\)
definition uminus-p-integer \(::\) integer \(\Rightarrow\) integer where uminus- \(p\)-integer \(x=(\) if \(x=0\) then 0 else \(p-x)\)
definition mult-p-integer \(::\) integer \(\Rightarrow\) integer \(\Rightarrow\) integer where mult-p-integer \(x y=(x * y \bmod p)\)
lemma int-of-integer-0-iff: int-of-integer \(n=0 \longleftrightarrow n=0\)
using integer-eqI by auto
lemma int-of-integer-0: int-of-integer \(0=0\) unfolding int-of-integer- 0 -iff by simp
lemma int-of-integer-plus: int-of-integer \((x+y)=(\) int-of-integer \(x+\) int-of-integer y) by \(\operatorname{simp}\)
```

lemma int-of-integer-minus: int-of-integer $(x-y)=($ int-of-integer $x-$ int-of-integer y)
by simp
lemma int-of-integer-mult: int-of-integer $(x * y)=($ int-of-integer $x *$ int-of-integer y) by simp
lemma int-of-integer-mod: int-of-integer $(x \bmod y)=($ int-of-integer x mod int-of-integer y) by simp
lemma int-of-integer-inv: int-of-integer (integer-of-int $x)=x$ by simp
lemma int-of-integer-shift: int-of-integer (drop-bit $k n)=($ int-of-integer $n)$ div (2

```
^k)
    by transfer (simp add: int-of-integer-pow shiftr-integer-conv-div-pow2)
context
    includes bit-operations-syntax
begin
function power-p-integer :: integer }=>\mathrm{ integer }=>\mathrm{ integer where
    power-p-integer x }n=(\mathrm{ if }n\leq0\mathrm{ then 1 else
        let rec = power-p-integer (mult-p-integer x x) (drop-bit 1 n) in
        if n AND 1 = 0 then rec else mult-p-integer rec x)
    by pat-completeness auto
termination
proof -
    {
        fix n :: integer
        assume }\neg(n\leq0
        hence }n>0\mathrm{ by auto
        hence int-of-integer n>0
            by (simp add: less-integer.rep-eq)
        hence 0< int-of-integer n int-of-integer n div 2 < int-of-integer n by auto
    } note }*=thi
    show ?thesis
    by (relation measure ( }\lambda(x,n).nat (int-of-integer n)), auto simp: * int-of-integer-shift
qed
end
In experiments with Berlekamp-factorization (where the prime \(p\) is usually small), it turned out that taking the below implementation of inverse via exponentiation is faster than the one based on the extended Euclidean algorithm.
definition inverse-p-integer \(::\) integer \(\Rightarrow\) integer where
inverse-p-integer \(x=(\) if \(x=0\) then 0 else power- \(p\)-integer \(x(p-2))\)
definition divide-p-integer \(::\) integer \(\Rightarrow\) integer \(\Rightarrow\) integer where
divide-p-integer \(x y=\) mult- \(p\)-integer \(x(\) inverse- \(p\)-integer \(y)\)
definition finite-field-ops-integer :: integer arith-ops-record where
finite-field-ops-integer \(\equiv\) Arith-Ops-Record
0
1
plus-p-integer
mult-p-integer
minus-p-integer
uminus-p-integer
divide-p-integer
```

inverse-p-integer
$(\lambda x y$. if $y=0$ then x else 0$)$
(λx. if $x=0$ then 0 else 1)
($\lambda x . x$)
integer-of-int
int-of-integer
$(\lambda x .0 \leq x \wedge x<p)$
end
lemma shiftr-integer-code [code-unfold]: drop-bit $1 x=($ integer-shiftr x 1)
unfolding shiftr-integer-code using integer-of-nat-1 by auto
For soundness of the integer implementation, we mainly prove that this implementation implements the int-based implementation of GF(p).

```
context mod-ring-locale
begin
context fixes pp :: integer
    assumes ppp: p= int-of-integer pp
begin
lemmas integer-simps =
    int-of-integer-0
    int-of-integer-plus
    int-of-integer-minus
    int-of-integer-mult
```

definition urel-integer :: integer \Rightarrow int \Rightarrow bool where urel-integer $x y=(y=$ int-of-integer $x \wedge y \geq 0 \wedge y<p)$
definition mod-ring-rel-integer :: integer \Rightarrow 'a mod-ring \Rightarrow bool where mod-ring-rel-integer $x y=(\exists$ z. urel-integer $x z \wedge$ mod-ring-rel $z y)$
lemma urel-integer-0: urel-integer 00 unfolding urel-integer-def using p2 by simp
lemma urel-integer-1: urel-integer 11 unfolding urel-integer-def using p2 by simp
lemma le-int-of-integer: $(x \leq y)=($ int-of-integer $x \leq i n t-o f-i n t e g e r ~ y)$
by (rule less-eq-integer.rep-eq)
lemma urel-integer-plus: assumes urel-integer $x y$ urel-integer $x^{\prime} y^{\prime}$
shows urel-integer (plus-p-integer pp $x x^{\prime}$) (plus-p p y y^{\prime})
proof -
let $? x=$ int-of-integer x
let $? x^{\prime}=$ int-of-integer x^{\prime}
let $? p=$ int-of-integer $p p$

```
    from assms have \(i d: y=? x y^{\prime}=? x^{\prime}\)
    and rel: \(0 \leq ? x ? x<p\)
        \(0 \leq ? x^{\prime} ? x^{\prime} \leq p\) unfolding urel-integer-def by auto
    have le: \(\left(p p \leq x+x^{\prime}\right)=(? p \leq ? x+? x)\) unfolding le-int-of-integer
    using rel by auto
    show ?thesis
    proof (cases ? \(p \leq ? x+? x^{\prime}\) )
        case True
        hence True: \((? p \leq ? x+? x)=\) True by simp
        show ?thesis unfolding id
            using rel unfolding plus-p-integer-def plus-p-def Let-def urel-integer-def
            unfolding ppp le True if-True
            using True by auto
    next
    case False
    hence False: \(\left(? p \leq ? x+? x^{\prime}\right)=\) False by simp
    show ?thesis unfolding id
        using rel unfolding plus-p-integer-def plus-p-def Let-def urel-integer-def
        unfolding ppp le False if-False
        using False by auto
    qed
qed
lemma urel-integer-minus: assumes urel-integer \(x\) y urel-integer \(x^{\prime} y^{\prime}\)
    shows urel-integer (minus-p-integer pp \(\left.x x^{\prime}\right)\left(\right.\) minus-p \(p\) y \(\left.y^{\prime}\right)\)
proof -
    let \(? x=\) int-of-integer \(x\)
    let \(? x^{\prime}=\) int-of-integer \(x^{\prime}\)
    from assms have id: \(y=? x y^{\prime}=? x^{\prime}\)
        and rel: \(0 \leq ? x ? x<p\)
            \(0 \leq ? x^{\prime} ? x^{\prime} \leq p\) unfolding urel-integer-def by auto
    have le: \(\left(x^{\prime} \leq x\right)=\left(? x^{\prime} \leq ? x\right)\) unfolding le-int-of-integer
        using rel by auto
    show ?thesis
    proof (cases ? \(x^{\prime} \leq ? x\) )
        case True
        hence True: \(\left(? x^{\prime} \leq ? x\right)=\) True by simp
        show ?thesis unfolding id
            using rel unfolding minus-p-integer-def minus-p-def Let-def urel-integer-def
            unfolding ppp le True if-True
            using True by auto
    next
        case False
        hence False: \(\left(? x^{\prime} \leq ? x\right)=\) False by simp
        show ?thesis unfolding id
            using rel unfolding minus-p-integer-def minus-p-def Let-def urel-integer-def
            unfolding ppp le False if-False
            using False by auto
    qed
```


qed

lemma urel-integer-uminus: assumes urel-integer x y
shows urel-integer (uminus-p-integer pp x) (uminus-p p y)
proof -
let $? x=$ int-of-integer x
from assms have id: $y=? x$
and rel: $0 \leq ? x ? x<p$
unfolding urel-integer-def by auto
have le: $(x=0)=(? x=0)$ unfolding int-of-integer-0-iff using rel by auto
show ?thesis
proof (cases ? $x=0$)
case True
hence True: $(? x=0)=$ True by simp
show ?thesis unfolding id
using rel unfolding uminus-p-integer-def uminus-p-def Let-def urel-integer-def
unfolding ppp le True if-True
using True by auto
next
case False
hence False: $(? x=0)=$ False by simp
show ?thesis unfolding id
using rel unfolding uminus-p-integer-def uminus-p-def Let-def urel-integer-def
unfolding ppp le False if-False
using False by auto
qed
qed
lemma $p p$-pos: int-of-integer $p p>0$
using $p p p$ nontriv[where ${ }^{\prime} a=' a$] unfolding p
by (simp add: less-integer.rep-eq)
lemma urel-integer-mult: assumes urel-integer x y urel-integer $x^{\prime} y^{\prime}$
shows urel-integer (mult-p-integer pp $\left.x x^{\prime}\right)\left(\begin{array}{ll}\text { mult-p } & p\end{array}\right.$ y $\left.y^{\prime}\right)$
proof -
let $? x=$ int-of-integer x
let $? x^{\prime}=$ int-of-integer x^{\prime}
from assms have $i d: y=? x y^{\prime}=? x^{\prime}$
and rel: $0 \leq ? x ? x<p$
$0 \leq ? x^{\prime} ? x^{\prime}<p$ unfolding urel-integer-def by auto
from $\operatorname{rel}(1,3)$ have $x x: 0 \leq ? x * ? x^{\prime}$ by simp
show ?thesis unfolding id
using rel unfolding mult-p-integer-def mult-p-def Let-def urel-integer-def unfolding ppp mod-nonneg-pos-int[OF xx pp-pos] using $x x$ pp-pos by simp
qed

```
lemma urel-integer-eq: assumes urel-integer x y urel-integer x' y'
    shows (x=x')=(y=\mp@subsup{y}{}{\prime})
proof -
    let ?x = int-of-integer x
    let ? }\mp@subsup{x}{}{\prime}=\mathrm{ int-of-integer }\mp@subsup{x}{}{\prime
    from assms have id: y =? }x\mp@subsup{y}{}{\prime}=?\mp@subsup{e}{}{\prime
        unfolding urel-integer-def by auto
    show ?thesis unfolding id integer-eq-iff ..
qed
lemma urel-integer-normalize:
assumes x: urel-integer x y
shows urel-integer (if x = 0 then 0 else 1) (if y=0 then 0 else 1)
    unfolding urel-integer-eq[OF x urel-integer-0] using urel-integer-0 urel-integer-1
by auto
lemma urel-integer-mod:
assumes x: urel-integer x x' and y: urel-integer y y'
shows urel-integer (if y=0 then x else 0) (if y'}=0\mathrm{ then }\mp@subsup{x}{}{\prime}\mathrm{ else 0)
    unfolding urel-integer-eq[OF y urel-integer-0] using urel-integer-0 x by auto
lemma urel-integer-power: urel-integer x }\mp@subsup{x}{}{\prime}\Longrightarrow\mathrm{ urel-integer y (int y') }\Longrightarrow\mathrm{ urel-integer
(power-p-integer pp x y) (power-p p x' y')
including bit-operations-syntax proof (induct x' y' arbitrary: x y rule: power-p.induct[of
- p])
case (1 x' y' x y)
note x=1(2) note y=1(3)
show ?case
proof (cases y'
    case True
    hence y:y=0 y'=0 using urel-integer-eq[OF y urel-integer-0] by auto
    show ?thesis unfolding y True by (simp add: power-p.simps urel-integer-1)
next
    case False
    hence id: (y\leq0) = False ( }\mp@subsup{y}{}{\prime}=0)=\mathrm{ False using False y
    by (auto simp add: urel-integer-def not-le) (metis of-int-integer-of of-int-of-nat-eq
of-nat-0-less-iff)
    obtain d' r' where dr': Divides.divmod-nat y' 2 = ( d', r') by force
    from divmod-nat-def[of y' 2, unfolded dr']
    have }\mp@subsup{r}{}{\prime}:\mp@subsup{r}{}{\prime}=\mp@subsup{y}{}{\prime}\operatorname{mod}2\mathrm{ and }\mp@subsup{d}{}{\prime}:\mp@subsup{d}{}{\prime}=\mp@subsup{y}{}{\prime}\mathrm{ div 2 by auto
    have aux: \bigwedge y'. int ( y' mod 2) = int y' mod 2 by presburger
    have urel-integer (y AND 1) r' unfolding r'using y unfolding urel-integer-def
        unfolding ppp
        apply (auto simp add: and-one-eq)
        apply (simp add: of-nat-mod)
        done
    from urel-integer-eq[OF this urel-integer-0]
```

```
    have rem: \((y A N D 1=0)=\left(r^{\prime}=0\right)\) by simp
    have div: urel-integer (drop-bit \(1 y\) ) (int \(d^{\prime}\) ) unfolding \(d^{\prime}\) using \(y\) unfolding
urel-integer-def
            unfolding ppp shiftr-integer-conv-div-pow2 by auto
    from \(i d\) have \(y^{\prime} \neq 0\) by auto
    note \(I H=1(1)[\) OF this refl dr'[symmetric \(]\) urel-integer-mult \([\) OF \(x x]\) div \(]\)
    show ?thesis unfolding power-p.simps \(\left[o f-y^{\prime}\right]\) power- \(p\)-integer.simps \([o f-y]\)
\(d r^{\prime}\) id if-False rem
            using \(I H\) urel-integer-mult \([O F I H x]\) by (auto simp: Let-def)
        qed
qed
```

lemma urel-integer-inverse: assumes x : urel-integer $x x^{\prime}$
shows urel-integer (inverse-p-integer pp x) (inverse-p $p x^{\prime}$)
proof -
have p : urel-integer ($p p-2$) (int (nat ($p-2)$)) using $p 2$ unfolding urel-integer-def
unfolding $p p p$
by auto
show ?thesis
unfolding inverse-p-integer-def inverse-p-def urel-integer-eq[OF x urel-integer-0]
using urel-integer-0 urel-integer-power[OF x p]
by auto
qed
lemma mod-ring-0--integer: mod-ring-rel-integer 00 using urel-integer-0 mod-ring-0 unfolding mod-ring-rel-integer-def by blast
lemma mod-ring-1--integer: mod-ring-rel-integer 11
using urel-integer-1 mod-ring-1 unfolding mod-ring-rel-integer-def by blast
lemma mod-ring-uminus-integer: (mod-ring-rel-integer $===>$ mod-ring-rel-integer) (uminus-p-integer pp) uminus
using urel-integer-uminus mod-ring-uminus unfolding mod-ring-rel-integer-def rel-fun-def by blast
lemma mod-ring-plus-integer: (mod-ring-rel-integer $===>$ mod-ring-rel-integer $===>$ mod-ring-rel-integer $)($ plus-p-integer pp) (+)
using urel-integer-plus mod-ring-plus unfolding mod-ring-rel-integer-def rel-fun-def by blast
lemma mod-ring-minus-integer: (mod-ring-rel-integer $===>$ mod-ring-rel-integer $===>$ mod-ring-rel-integer) (minus-p-integer pp) (-)
using urel-integer-minus mod-ring-minus unfolding mod-ring-rel-integer-def rel-fun-def
by blast
lemma mod-ring-mult-integer: (mod-ring-rel-integer $===>$ mod-ring-rel-integer $===>$ mod-ring-rel-integer) (mult-p-integer pp) ((*))
using urel-integer-mult mod-ring-mult unfolding mod-ring-rel-integer-def rel-fun-def
lemma mod-ring-eq-integer: (mod-ring-rel-integer $===>$ mod-ring-rel-integer $===>$ $(=))(=)(=)$
using urel-integer-eq mod-ring-eq unfolding mod-ring-rel-integer-def rel-fun-def by blast
lemma urel-integer-inj: urel-integer $x y \Longrightarrow$ urel-integer $x z \Longrightarrow y=z$ using urel-integer-eq[of $x y x z]$ by auto
lemma urel-integer-inj': urel-integer $x z \Longrightarrow$ urel-integer $y z \Longrightarrow x=y$
using urel-integer-eq[of $x z y z]$ by auto
lemma bi-unique-mod-ring-rel-integer:
bi-unique mod-ring-rel-integer left-unique mod-ring-rel-integer right-unique mod-ring-rel-integer using bi-unique-mod-ring-rel urel-integer-inj'
unfolding mod-ring-rel-integer-def bi-unique-def left-unique-def right-unique-def
by (auto simp: urel-integer-def)
lemma right-total-mod-ring-rel-integer: right-total mod-ring-rel-integer unfolding mod-ring-rel-integer-def right-total-def
proof
fix y :: 'a mod-ring
from right-total-mod-ring-rel[unfolded right-total-def, rule-format, of y]
obtain z where $z y$: mod-ring-rel $z y$ by auto
hence $z p: 0 \leq z z<p$ unfolding mod-ring-rel-def p using range-to-int-mod-ring[where ' $a=$ ' a] by auto
hence urel-integer (integer-of-int z) z unfolding urel-integer-def unfolding ppp
by auto
with $z y$ show $\exists x z$. urel-integer $x z \wedge$ mod-ring-rel $z y$ by blast
qed
lemma Domainp-mod-ring-rel-integer: Domainp mod-ring-rel-integer $=(\lambda x .0 \leq$ $x \wedge x<p p)$
proof
fix x
show Domainp mod-ring-rel-integer $x=(0 \leq x \wedge x<p p)$
unfolding Domainp.simps
unfolding mod-ring-rel-integer-def
proof
let $? i=$ int-of-integer
assume $*: 0 \leq x \wedge x<p p$
hence $0 \leq$? $i x \wedge$? $i x<p$ unfolding $p p p$
by (simp add: le-int-of-integer less-integer.rep-eq)
hence ? $i x \in\{0 . .<p\}$ by auto
with Domainp-mod-ring-rel
have Domainp mod-ring-rel (?i x) by auto
from this[unfolded Domainp.simps]

```
    obtain b where b: mod-ring-rel (?i x) b by auto
    show \existsab. x=a\wedge(\existsz. urel-integer a z ^ mod-ring-rel z b)
    proof (intro exI, rule conjI[OF refl], rule exI, rule conjI[OF - b])
        show urel-integer x (?i x) unfolding urel-integer-def using * unfolding ppp
        by (simp add:le-int-of-integer less-integer.rep-eq)
    qed
    next
    assume \existsab. x=a^(\existsz. urel-integer a z ^ mod-ring-rel z b)
    then obtain bz where xz: urel-integer x z and zb: mod-ring-rel z b by auto
    hence Domainp mod-ring-rel z by auto
    with Domainp-mod-ring-rel have 0\leqzz<p}\mathrm{ by auto
    with xz show 0}\leqx\wedgex<pp\mathrm{ unfolding urel-integer-def unfolding ppp
        by (simp add: le-int-of-integer less-integer.rep-eq)
    qed
qed
lemma ring-finite-field-ops-integer: ring-ops (finite-field-ops-integer pp) mod-ring-rel-integer
    by (unfold-locales, auto simp:
    finite-field-ops-integer-def
    bi-unique-mod-ring-rel-integer
    right-total-mod-ring-rel-integer
    mod-ring-plus-integer
    mod-ring-minus-integer
    mod-ring-uminus-integer
    mod-ring-mult-integer
    mod-ring-eq-integer
    mod-ring-0--integer
    mod-ring-1--integer
    Domainp-mod-ring-rel-integer)
end
end
context prime-field
begin
context fixes pp :: integer
    assumes *: p=int-of-integer pp
begin
lemma mod-ring-normalize-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer)
( }\lambdax\mathrm{ . if }x=0\mathrm{ then 0 else 1) normalize
    using urel-integer-normalize[OF *] mod-ring-normalize unfolding mod-ring-rel-integer-def[OF
*] rel-fun-def by blast
lemma mod-ring-mod-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer
===> mod-ring-rel-integer)}(\lambdaxy. if y=0 then x else 0) (mod
    using urel-integer-mod[OF *] mod-ring-mod unfolding mod-ring-rel-integer-def[OF
*] rel-fun-def by blast
lemma mod-ring-unit-factor-integer: (mod-ring-rel-integer ===>> mod-ring-rel-integer)
```

```
( \lambdax. x) unit-factor
    using mod-ring-unit-factor unfolding mod-ring-rel-integer-def[OF *] rel-fun-def
by blast
lemma mod-ring-inverse-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer)
(inverse-p-integer pp) inverse
    using urel-integer-inverse[OF *] mod-ring-inverse unfolding mod-ring-rel-integer-def[OF
*] rel-fun-def by blast
lemma mod-ring-divide-integer: (mod-ring-rel-integer ===> mod-ring-rel-integer
===> mod-ring-rel-integer) (divide-p-integer pp) (/)
    using mod-ring-inverse-integer mod-ring-mult-integer[OF *]
    unfolding divide-p-integer-def divide-mod-ring-def inverse-mod-ring-def[symmetric]
        rel-fun-def by blast
lemma finite-field-ops-integer: field-ops (finite-field-ops-integer pp) mod-ring-rel-integer
    by (unfold-locales, insert ring-finite-field-ops-integer[OF *], auto simp:
    ring-ops-def
    finite-field-ops-integer-def
    mod-ring-divide-integer
    mod-ring-inverse-integer
    mod-ring-mod-integer
    mod-ring-normalize-integer)
end
end
context prime-field
begin
thm
    finite-field-ops64
    finite-field-ops32
    finite-field-ops-integer
    finite-field-ops-int
end
context mod-ring-locale
begin
thm
    ring-finite-field-ops64
    ring-finite-field-ops32
    ring-finite-field-ops-integer
    ring-finite-field-ops-int
end
end
```


3.2 Matrix Operations in Fields

We use our record based description of a field to perform matrix operations.

```
theory Matrix-Record-Based
imports
    Jordan-Normal-Form.Gauss-Jordan-Elimination
    Jordan-Normal-Form.Gauss-Jordan-IArray-Impl
    Arithmetic-Record-Based
begin
```

definition mat-rel $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow\right.$ bool $) \Rightarrow{ }^{\prime} a$ mat \Rightarrow 'b mat \Rightarrow bool where
mat-rel $R A B \equiv$ dim-row $A=$ dim-row $B \wedge$ dim-col $A=\operatorname{dim}$-col $B \wedge$
$(\forall i j . i<$ dim-row $B \longrightarrow j<$ dim-col $B \longrightarrow R(A \$ \$(i, j))(B \$ \$(i, j)))$
lemma right-total-mat-rel: right-total $R \Longrightarrow$ right-total (mat-rel R)
unfolding right-total-def
proof
fix B
assume $\forall y . \exists x . R x y$
from choice [OF this] obtain f where $f: \Lambda x . R(f x) x$ by auto
show \exists A. mat-rel $R A B$
by (rule exI[of-map-mat fB], unfold mat-rel-def, auto simp: f)
qed
lemma left-unique-mat-rel: left-unique $R \Longrightarrow$ left-unique (mat-rel R)
unfolding left-unique-def mat-rel-def mat-eq-iff by (auto, blast)
lemma right-unique-mat-rel: right-unique $R \Longrightarrow$ right-unique (mat-rel R)
unfolding right-unique-def mat-rel-def mat-eq-iff by (auto, blast)
lemma bi-unique-mat-rel: bi-unique $R \Longrightarrow$ bi-unique (mat-rel R)
using left-unique-mat-rel[of R] right-unique-mat-rel[of R]
unfolding bi-unique-def left-unique-def right-unique-def by blast
lemma mat-rel-eq: $((R===>R===>(=)))(=)(=) \Longrightarrow$
$(($ mat-rel $R===>$ mat-rel $R===>(=)))(=)(=)$
unfolding mat-rel-def rel-fun-def mat-eq-iff by (auto, blast+)
definition vec-rel :: ('a $\Rightarrow{ }^{\prime} b \Rightarrow$ bool $) \Rightarrow{ }^{\prime} a$ vec \Rightarrow ' b vec \Rightarrow bool where
vec-rel $R A B \equiv \operatorname{dim}$-vec $A=\operatorname{dim-vec} B \wedge(\forall i . i<\operatorname{dim-vec} B \longrightarrow R(A \$ i)$
($B \$ i)$)
lemma right-total-vec-rel: right-total $R \Longrightarrow$ right-total (vec-rel R)
unfolding right-total-def
proof
fix B
assume $\forall y . \exists x . R x y$
from choice $[$ OF this] obtain f where $f: \Lambda x . R(f x) x$ by auto

```
    show \exists A. vec-rel R A B
    by (rule exI[of-map-vec f B], unfold vec-rel-def, auto simp: f)
qed
lemma left-unique-vec-rel: left-unique R}\Longrightarrow\mathrm{ left-unique (vec-rel R)
    unfolding left-unique-def vec-rel-def vec-eq-iff by auto
lemma right-unique-vec-rel: right-unique }R\Longrightarrow\mathrm{ right-unique (vec-rel R)
    unfolding right-unique-def vec-rel-def vec-eq-iff by auto
lemma bi-unique-vec-rel: bi-unique R \Longrightarrow bi-unique (vec-rel R)
    using left-unique-vec-rel[of R] right-unique-vec-rel[of R]
    unfolding bi-unique-def left-unique-def right-unique-def by blast
lemma vec-rel-eq: ((R===> R===> (=))) (=) (=)\Longrightarrow
    ((vec-rel R ===> vec-rel R===> (=))) (=) (=)
    unfolding vec-rel-def rel-fun-def vec-eq-iff by (auto, blast+)
lemma multrow-transfer[transfer-rule]: ((R===> R===> R)===> (=)===>
R
    ===> mat-rel R===> mat-rel R) mat-multrow-gen mat-multrow-gen
    unfolding mat-rel-def[abs-def] mat-multrow-gen-def[abs-def]
    by (intro rel-funI conjI allI impI eq-matI, auto simp: rel-fun-def)
lemma swap-rows-transfer:mat-rel R A B\Longrightarrowi<dim-row B\Longrightarrowj<dim-row
B\Longrightarrow
    mat-rel R (mat-swaprows i j A) (mat-swaprows i j B)
    unfolding mat-rel-def mat-swaprows-def
    by (intro rel-funI conjI allI impI eq-matI, auto)
lemma pivot-positions-gen-transfer: assumes [transfer-rule]: ( }R===>>===
(=)) (=) (=)
    shows
    (R===> mat-rel R===> (=)) pivot-positions-gen pivot-positions-gen
proof (intro rel-funI, goal-cases)
    case (1 ze ze' A A')
    note trans[transfer-rule] = 1
    from 1 have dim: dim-row }A=\mathrm{ dim-row ' '' dim-col }A=\mathrm{ dim-col }\mp@subsup{A}{}{\prime}\mathrm{ unfolding
mat-rel-def by auto
    obtain i j where id: i=0 j=0 and ij: i\leqdim-row A' j\leqdim-col A' by
auto
    have pivot-positions-main-gen ze A (dim-row A) (dim-col A) ij=
        pivot-positions-main-gen ze' A' (dim-row A') (dim-col A') ij
        using ij
    proof (induct i j rule: pivot-positions-main-gen.induct[of dim-row A' dim-col A'
A'ze}\mp@subsup{}{}{\prime}]
        case (1 i j)
        note simps[simp] = pivot-positions-main-gen.simps[of--- - i j]
```

```
    show ?case
    proof (cases i<dim-row A'^j<dim-col A')
        case False
        with dim show ?thesis by auto
    next
        case True
        hence ij: i<dim-row A' j<dim-col A' and j:Suc j\leqdim-col A' by auto
        note IH=1(1-2)[OF ij--j]
        from ij True trans have [transfer-rule]:R (A $$ (i,j)) (A'$$ (i,j))
            unfolding mat-rel-def by auto
        have eq:}(A$$(i,j)=ze)=(\mp@subsup{A}{}{\prime}$$(i,j)=ze') by transfer-prover
        show ?thesis
        proof (cases A'$$ (i,j)=ze')
        case True
        from ij have i\leq dim-row A' by auto
        note IH = IH(1)[OF True this]
        thus ?thesis using True ij dim eq by simp
        next
            case False
            from ij have Suc i\leq dim-row A' by auto
            note IH=IH(2)[OF False this]
            thus ?thesis using False ij dim eq by simp
        qed
        qed
    qed
    thus pivot-positions-gen ze A= pivot-positions-gen ze' A'
        unfolding pivot-positions-gen-def id.
qed
lemma set-pivot-positions-main-gen:
    set (pivot-positions-main-gen ze A nr nc i j)\subseteq{0 ..<nr} > {0 ..<nc}
proof (induct i j rule: pivot-positions-main-gen.induct[of nr nc A ze])
    case (1 ij)
    note [simp] = pivot-positions-main-gen.simps[of---ij]
    from 1 show ?case
        by (cases i<nr^j<nc, auto)
qed
lemma find-base-vectors-transfer: assumes [transfer-rule]: \((R===>R===>\) \((=))(=)(=)\)
shows \(((R===>R)===>R===>R===>\) mat-rel \(R\)
\(===>\) list-all2 (vec-rel \(R)\) ) find-base-vectors-gen find-base-vectors-gen
proof (intro rel-funI, goal-cases)
case ( 1 um um' ze ze' on on' \(A A^{\prime}\) )
note trans \([\) transfer-rule \(]=1\) pivot-positions-gen-transfer \([\) OF assms \(]\)
from 1 (4) have \(\operatorname{dim}\) : dim-row \(A=\) dim-row \(A^{\prime} \operatorname{dim}\)-col \(A=\operatorname{dim}\)-col \(A^{\prime}\) unfolding mat-rel-def by auto
have id: pivot-positions-gen ze \(A=\) pivot-positions-gen ze \({ }^{\prime} A^{\prime}\) by transfer-prover obtain \(x s\) where \(x s\) : map snd (pivot-positions-gen \(z e^{\prime} A^{\prime}\) ) \(=x s\) by auto
```

obtain $y s$ where $y s:\left[j \leftarrow\left[0 . .<\right.\right.$ dim-col $\left.A^{\prime}\right] . j \notin$ set $\left.x s\right]=y s$ by auto show list-all2 (vec-rel R) (find-base-vectors-gen um ze on A)
(find-base-vectors-gen $u m^{\prime} z e^{\prime} o n^{\prime} A^{\prime}$)
unfolding find-base-vectors-gen-def Let-def id xs list-all2-conv-all-nth length-map ys dim
proof (intro conjI[OF refl] allI impI)
fix i
assume $i: i<$ length $y s$
define y where $y=y s!i$
from i have $y: y<\operatorname{dim}$-col A^{\prime} unfolding y-def $y s[s y m m e t r i c]$ using nth-mem
by fastforce
let ?map $=$ map-of $\left(\right.$ map prod.swap $\left(\right.$ pivot-positions-gen ze $\left.\left.e^{\prime} A^{\prime}\right)\right)$
\{
fix i
assume $i: i<d i m-c o l A^{\prime}$
and neq: $i \neq y$
have R (case ?map i of None $\Rightarrow z e \mid$ Some $j \Rightarrow$ um $(A \$ \$(j, y)))$
(case ?map i of None $\Rightarrow z e^{\prime} \mid$ Some $\left.j \Rightarrow u m^{\prime}\left(A^{\prime} \$ \$(j, y)\right)\right)$
proof (cases ?map i)
case None
with trans(2) show ?thesis by auto
next
case (Some j)
from map-of-Some $D[O F$ this $]$ have $(j, i) \in$ set (pivot-positions-gen ze' A^{\prime})
by auto
from subsetD[OF set-pivot-positions-main-gen this[unfolded pivot-positions-gen-def]]
have $j: j<$ dim-row A^{\prime} by auto
with $\operatorname{trans}(4) y$ have [transfer-rule]: $R(A \$ \$(j, y))\left(A^{\prime} \$ \$(j, y)\right)$ unfolding mat-rel-def by auto
show ?thesis unfolding Some by (simp, transfer-prover)
qed
$\}$ note main $=$ this
show vec-rel R (map (non-pivot-base-gen um ze on A (pivot-positions-gen ze' $\left.\left.A^{\prime}\right)\right)$ ys ! i)
(map (non-pivot-base-gen $u m^{\prime} z e^{\prime}$ on' $A^{\prime}\left(\right.$ pivot-positions-gen ze $\left.\left.A^{\prime}\right)\right)$ ys !
i)
unfolding y-def[symmetric] nth-map[OF i]
unfolding non-pivot-base-gen-def Let-def dim vec-rel-def
by (intro conjI allI impI, force, insert main, auto simp: trans(3))
qed
qed
lemma eliminate-entries-gen-transfer: assumes $*[$ transfer-rule $]:(R===>R===>$ R) ad ad ${ }^{\prime}$
($R===>R===>R$) mul mul ${ }^{\prime}$
and vs: $\bigwedge j . j<$ dim-row $B^{\prime} \Longrightarrow R(v s j)\left(v s^{\prime} j\right)$
and $i: i<$ dim-row B^{\prime}
and B: mat-rel $R B B^{\prime}$

```
    shows mat-rel R
    (eliminate-entries-gen ad mul vs B i j)
    (eliminate-entries-gen ad' mul' vs' B' i j)
proof -
    note BB=B[unfolded mat-rel-def]
    show ?thesis unfolding mat-rel-def dim-eliminate-entries-gen
    proof (intro conjI impI allI)
    fix }\mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime
    assume ij': i' < dim-row B' }\mp@subsup{j}{}{\prime}<dim-col B'
    with }BB\mathrm{ have ij: i'< dim-row B j'<dim-col B by auto
    have [transfer-rule]: R (B$$ (i', j')) ( }\mp@subsup{B}{}{\prime}$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime}))\mathrm{ using BB ij' by auto
    have [transfer-rule]: R (B$$ (i, j')) ( }\mp@subsup{B}{}{\prime}$$(i,\mp@subsup{j}{}{\prime}))\mathrm{ using BB ij' i by auto
    have [transfer-rule]: R (vs i')(v\mp@subsup{s}{}{\prime}\mp@subsup{i}{}{\prime})\mathrm{ using ij'vs[of i] by auto}
    show }R\mathrm{ (eliminate-entries-gen ad mul vs B ij $$ (i', j'))
        (eliminate-entries-gen ad' mul'vs' B' i j $$ ( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\mathrm{ )
    unfolding eliminate-entries-gen-def index-mat(1)[OF ij] index-mat(1)[OF ij]
split
    by transfer-prover
    qed (insert BB,auto)
qed
context
    fixes ops :: 'i arith-ops-record (structure)
begin
private abbreviation (input) zero where zero \equivarith-ops-record.zero ops
private abbreviation (input) one where one \equivarith-ops-record.one ops
private abbreviation (input) plus where plus \equiv arith-ops-record.plus ops
private abbreviation (input) times where times \equiv arith-ops-record.times ops
private abbreviation (input) minus where minus \equiv arith-ops-record.minus ops
private abbreviation (input) uminus where uminus }\equiv\mathrm{ arith-ops-record.uminus
ops
private abbreviation (input) divide where divide }\equiv\mathrm{ arith-ops-record.divide ops
private abbreviation (input) inverse where inverse }\equiv\mathrm{ arith-ops-record.inverse
ops
private abbreviation (input) modulo where modulo \equiv arith-ops-record.modulo
ops
private abbreviation (input) normalize where normalize \equiv arith-ops-record.normalize
ops
definition eliminate-entries-gen-zero :: (' }a=>\mp@subsup{}{}{\prime}a=>\mp@subsup{}{}{\prime}a)=>('a=>\mp@subsup{}{}{\prime}a=>\mp@subsup{}{}{\prime}a)=>\mp@subsup{}{}{\prime}
(integer }=>\mp@subsup{}{}{\prime}a)=>'a mat => nat => nat => 'a mat where
    eliminate-entries-gen-zero minu time z v A IJ = mat (dim-row A) (dim-col A)
(\lambda (i,j).
    if v(\mathrm{ integer-of-nat i) }=z\wedgei\not=I then minu (A$$(i,j)) (time (v (integer-of-nat
i))(A $$ (I,j))) else A $$ (i,j))
definition eliminate-entries- \(i\) where eliminate-entries- \(i \equiv\) eliminate-entries-gen-zero minus times zero
definition multrow- \(i\) where multrow- \(i \equiv\) mat-multrow-gen times
```

```
lemma dim-eliminate-entries-gen-zero[simp]:
    dim-row (eliminate-entries-gen-zero mm tt zv B i as)=dim-row B
    dim-col(eliminate-entries-gen-zero mm tt zv B i as)=dim-col B
    unfolding eliminate-entries-gen-zero-def by auto
partial-function (tailrec) gauss-jordan-main-i :: nat => nat => 'i mat }=>\mathrm{ nat }
nat => ' i mat where
    [code]: gauss-jordan-main-i nr nc A i j = (
        if i<nr\wedgej<nc then let aij = A $$(i,j) in if aij = zero then
            (case [ i'. i'<- [Suc i ..<nr], A $$ (i',j) \not= zero]
                of [] => gauss-jordan-main-i nr nc A i (Suc j)
                \| ( i ^ { \prime } \# - ) \Rightarrow \text { gauss-jordan-main-i nr nc (swaprows i i } i ^ { \prime } A ) i j )
            else if aij = one then let
                v=(\lambdai. A $$(nat-of-integer i,j)) in
                    gauss-jordan-main-i nr nc
                (eliminate-entries-i v A i j) (Suc i) (Suc j)
            else let iaij = inverse aij;}\mp@subsup{A}{}{\prime}=\mathrm{ multrow-i i iaij A;
                v = ( \lambda i . A ' \$ \$ ~ ( n a t - o f - i n t e g e r ~ i , j ) )
                in gauss-jordan-main-i nr nc (eliminate-entries-iv A' i j) (Suc i) (Suc j)
        else A)
```

definition gauss-jordan-single-i :: 'i mat \Rightarrow ' i mat where
gauss-jordan-single-i $A \equiv$ gauss-jordan-main- $i($ dim-row $A)(d i m-c o l A) A 00$
definition find-base-vectors- i :: ' i mat \Rightarrow ' i vec list where
find-base-vectors-i $A \equiv$ find-base-vectors-gen uminus zero one A
end
context field-ops
begin
lemma right-total-poly-rel[transfer-rule]: right-total (mat-rel R)
using right-total-mat-rel[of R] right-total .
lemma bi-unique-poly-rel[transfer-rule]: bi-unique (mat-rel R)
using bi-unique-mat-rel $[$ of $R]$ bi-unique .
lemma eq-mat-rel[transfer-rule]: (mat-rel $R===>$ mat-rel $R===>(=))(=)$
(=)
by (rule mat-rel-eq[OF eq])
lemma multrow- $i[$ transfer-rule $]: ~((=)===>R===>$ mat-rel $R===>$ mat-rel
R)
(multrow-i ops) multrow
using multrow-transfer[of R] times unfolding multrow-i-def rel-fun-def by blast
lemma eliminate-entries-gen-zero[simp]:
assumes mat-rel $R A A^{\prime} I<$ dim-row A^{\prime} shows
eliminate-entries-gen-zero minus times zero v A I $J=$ eliminate-entries-gen minus times (v o integer-of-nat) A I J
unfolding eliminate-entries-gen-def eliminate-entries-gen-zero-def proof(standard,goal-cases) case ($1 i j$)
have $d 1: D P(A \$ \$(I, j))$ and d2:DP $(A \$ \$(i, j))$ using assms DPR 1
unfolding mat-rel-def dim-col-mat dim-row-mat by (metis Domainp.DomainI)+
have $e 1: \bigwedge x .\left(0::^{\prime} a\right) * x=0$ and $e 2: \wedge x . x-\left(0::^{\prime} a\right)=x$ by auto
from e1[untransferred, OF d1] e2[untransferred, OF d2] 1 show ?case by auto qed auto
lemma eliminate-entries- i : assumes
vs: $\Lambda j . j<$ dim-row $B^{\prime} \Longrightarrow R(v s($ integer-of-nat $j))\left(v s^{\prime} j\right)$
and $i: i<$ dim-row B^{\prime}
and B: mat-rel $R B B^{\prime}$
shows mat-rel R (eliminate-entries-i ops vs $B i j$) (eliminate-entries vs' $B^{\prime} i j$)
unfolding eliminate-entries-i-def eliminate-entries-gen-zero $[$ OF $\quad B i]$
by (rule eliminate-entries-gen-transfer, insert assms, auto simp: plus times minus)
lemma gauss-jordan-main-i:
$n r=$ dim-row $A^{\prime} \Longrightarrow n c=$ dim-col $A^{\prime} \Longrightarrow$ mat-rel $R A A^{\prime} \Longrightarrow i \leq n r \Longrightarrow j \leq$ $n c \Longrightarrow$
mat-rel R (gauss-jordan-main-i ops nr nc $A i j)$ (fst (gauss-jordan-main $A^{\prime} B^{\prime}$ $i j)$)
proof -
obtain P where $P: P=\left(A^{\prime}, i, j\right)$ by auto
let ?Rel $=$ measures $\left[\lambda\left(A^{\prime}:: ' a\right.\right.$ mat $\left., i, j\right) . n c-j, \lambda\left(A^{\prime}, i, j\right)$. if $A^{\prime} \$ \$(i, j)=0$ then 1 else 0]
have wf: wf ?Rel by simp
show $n r=$ dim-row $A^{\prime} \Longrightarrow n c=\operatorname{dim}$-col $A^{\prime} \Longrightarrow$ mat-rel $R A A^{\prime} \Longrightarrow i \leq n r \Longrightarrow$ $j \leq n c \Longrightarrow$
mat-rel R (gauss-jordan-main-i ops nr nc A ij) (fst (gauss-jordan-main $A^{\prime} B^{\prime}$ $i j)$)
using P
proof (induct P arbitrary: $A^{\prime} B^{\prime} A$ ij rule: wf-induct[OF wf])
case ($1 P A^{\prime} B^{\prime} A i j$)
note prems $=1(2-6)$
note $P=1$ (7)
note $A[$ transfer-rule $]=\operatorname{prems}(3)$
note $I H=1(1)[$ rule-format, $O F-\cdots-$ refl $]$
note simps $=$ gauss-jordan-main-code[of $A^{\prime} B^{\prime}$ i j, unfolded Let-def, folded $\operatorname{prems}(1-2)]$

```
        gauss-jordan-main-i.simps[of ops nr nc A i j] Let-def if-True if-False
    show ?case
    proof (cases i<nr^j<nc)
        case False
        hence id: (i<nr^j<nc)= False by simp
        show ?thesis unfolding simps id by simp transfer-prover
    next
    case True note ij'= this
    hence id: (i<nr^j<nc)=True \xyz. (if x=x then y else z)=y by
auto
    from True prems have ij [transfer-rule]:R (A $$ (i,j)) (A'$$ (i,j))
        unfolding mat-rel-def by auto
    from True prems have i:i<dim-row A' j<dim-col A' and i': i<nrj<
nc by auto
    {
        fix }
        assume i< dim-row A'
        with i True prems have R[transfer-rule]:R (A$$ (i,j)) (A'$$ (i,j))
            unfolding mat-rel-def by auto
        have}(A$$(i,j)=zero)=(\mp@subsup{A}{}{\prime}$$(i,j)=0) by transfer-prover
        note this R
    } note eq-gen = this
    have eq: (A$$ (i,j)=zero) =( (A'$$ (i,j)=0)
        (A$$ (i,j)=one)=(A'$$ (i,j)=1)
        by transfer-prover+
    show ?thesis
    proof (cases A' $$ (i,j)=0)
        case True
        hence eq: A $$ (i,j) = zero using eq by auto
        let ?is = [ i', 淮<-[Suc i ..<nr], A $$ (i',j)\not= zero]
        let ?is' = [ i'. . i'<-[Suc i ..<nr], A' $$ (i',j) \not=0]
        define xs where xs = [Suc i..<nr]
        have xs: set xs\subseteq{0 ..< dim-row A'} unfolding xs-def using prems by
auto
    hence id': ? is = ? is' unfolding xs-def[symmetric]
        by (induct xs, insert eq-gen, auto)
    show ?thesis
    proof (cases ? is')
        case Nil
        have ?thesis = (mat-rel R (gauss-jordan-main-i ops nr nc A i (Suc j))
            (fst (gauss-jordan-main A' B' i (Suc j))))
            unfolding True simps id eq unfolding Nil id'[unfolded Nil] by simp
        also have ...
            by (rule IH, insert i prems P, auto)
        finally show ?thesis.
    next
        case (Cons i' idx')
        from arg-cong[OF this, of set] i
        have }\mp@subsup{i}{}{\prime}:\mp@subsup{i}{}{\prime}<nr A'$$(\mp@subsup{i}{}{\prime},j)\not=0\mathrm{ by auto
```

with $i j^{\prime} \operatorname{prems}(1-2)$ have $*: i^{\prime}<$ dim-row $A^{\prime} i<d i m-r o w A^{\prime} j<d i m-c o l$ A^{\prime} by auto
have rel: $\left(\left(\right.\right.$ swaprows $\left.\left.i i^{\prime} A^{\prime}, i, j\right), P\right) \in$?Rel by (simp add: P True * i^{\prime})
have ?thesis $=\left(\right.$ mat-rel R (gauss-jordan-main-i ops nr nc (swaprows $i i^{\prime}$ A) $i j$)
($f s t$ (gauss-jordan-main (swaprows $i i^{\prime} A^{\prime}$) (swaprows $\left.\left.\left.i i^{\prime} B^{\prime}\right) i j\right)\right)$) unfolding True simps id eq Cons id'[unfolded Cons] by simp
also have ...
by (rule IH[OF rel - - swap-rows-transfer $]$, insert $i i^{\prime}$ prems P True, auto)
finally show?thesis.
qed
next
case False
from False eq have neq: $(A \$ \$(i, j)=$ zero $)=$ False $\left(A^{\prime} \$ \$(i, j)=0\right)=$ False by auto
\{
fix $B B^{\prime} i$
assume $B\left[\right.$ transfer-rule]: mat-rel $R B B^{\prime}$ and dim: dim-col $B^{\prime}=n c$ and $i: i<$ dim-row B^{\prime}
from dim i True have $j<$ dim-col B^{\prime} by simp
with $B i$ have $R(B \$ \$(i, j))\left(B^{\prime} \$ \$(i, j)\right)$
by (simp add: mat-rel-def)
$\}$ note vec-rel $=$ this
from prems have dim: dim-row $A=$ dim-row A^{\prime} unfolding mat-rel-def by auto
show ?thesis
proof (cases $\left.A^{\prime} \$ \$(i, j)=1\right)$
case True
from True eq have eq: $(A \$ \$(i, j)=$ one $)=\operatorname{True}\left(A^{\prime} \$ \$(i, j)=1\right)=$ True by auto
note rel $=$ vec-rel $[O F A]$
show ?thesis unfolding simps id neq eq
by (rule $I H[O F-$ - eliminate-entries-i $]$, insert rel prems ij i $P \operatorname{dim}$, auto)
next
case False
from False eq have eq: $(A \$ \$(i, j)=$ one $)=$ False $\left(A^{\prime} \$ \$(i, j)=1\right)=$
False by auto
show ?thesis unfolding simps id neq eq
proof (rule IH, goal-cases)
case 4
have A^{\prime} : mat-rel R (multrow- i ops $i($ inverse $(A \$ \$(i, j))) A$)
(multrow i (inverse-class.inverse $\left.\left(A^{\prime} \$ \$(i, j)\right)\right) A^{\prime}$) by transfer-prover
note $\mathrm{rel}=\mathrm{vec}-\mathrm{rel}\left[\begin{array}{ll}O F & A\end{array}\right]$
show ?case
by (rule eliminate-entries-i[OF - A $]$, insert rel prems i dim, auto)
qed (insert prems i P, auto)
qed

```
        qed
        qed
    qed
qed
lemma gauss-jordan-i[transfer-rule]:
    (mat-rel R===> mat-rel R)(gauss-jordan-single-i ops) gauss-jordan-single
proof (intro rel-funI)
    fix }A\mp@subsup{A}{}{\prime
    assume A: mat-rel R A A'
    show mat-rel R (gauss-jordan-single-i ops A) (gauss-jordan-single A')
            unfolding gauss-jordan-single-def gauss-jordan-single-i-def gauss-jordan-def
            by (rule gauss-jordan-main-i[OF - A], insert A, auto simp: mat-rel-def)
qed
lemma find-base-vectors-i[transfer-rule]:
    (mat-rel R ===> list-all2 (vec-rel R)) (find-base-vectors-i ops) find-base-vectors
    unfolding find-base-vectors-i-def[abs-def]
    using find-base-vectors-transfer[OF eq] uminus zero one
    unfolding rel-fun-def by blast
end
lemma list-of-vec-transfer[transfer-rule]: (vec-rel A ===> list-all2 A) list-of-vec
list-of-vec
    unfolding rel-fun-def vec-rel-def vec-eq-iff list-all2-conv-all-nth
    by auto
lemma IArray-sub'[simp]: i < IArray.length a \Longrightarrow IArray.sub' (a, integer-of-nat
i)=IArray.sub a i
    by auto
lift-definition eliminate-entries-i2 ::
```



```
integer }=>\mathrm{ 'a mat-impl is
    \lambda mminus ttimes v (nr,nc,a) i'.
    (nr,nc,let ai' = IArray.sub' (a, i') in (IArray.tabulate (integer-of-nat nr, \lambda i.let
ai = IArray.sub' (a,i) in
        if i= i' then ai else
        let vi'j=vi
        in if vi'j = z then ai
            else
                IArray.tabulate (integer-of-nat nc, \lambda j. mminus (IArray.sub' (ai, j))
(ttimes vi'j
            (IArray.sub' (ai', j))))
        ))
proof(goal-cases)
    case (1 z mm tt vec prod nat2)
    thus ?case by(cases prod;cases snd (snd prod);auto simp:Let-def)
```


qed

lemma eliminate-entries-gen-zero [simp]:
assumes $i<($ dim-row $A) j<(\operatorname{dim}-c o l A)$ shows
eliminate-entries-gen-zero mminus ttimes z v A I J \$\$ $(i, j)=$ (if $v($ integer-of-nat $i)=z \vee i=I$ then $A \$ \(i, j) else mminus $(A \$ \$(i, j))$
(ttimes $(v($ integer-of-nat $i))(A \$ \$(I, j))))$
using assms unfolding eliminate-entries-gen-zero-def by auto
lemma eliminate-entries-gen [simp]:
assumes $i<($ dim-row $A) j<($ dim-col $A)$ shows
eliminate-entries-gen mminus ttimes v A I J $\$ \$(i, j)=$
(if $i=I$ then $A \$ \(i, j) else mminus $(A \$ \$(i, j))($ ttimes $(v i)(A \$ \$(I, j))))$
using assms unfolding eliminate-entries-gen-def by auto
lemma dim-mat-impl [simp]:
dim-row $($ mat-impl $x)=$ dim-row-impl x
dim-col $($ mat-impl $x)=$ dim-col-impl x
by (cases Rep-mat-impl x;auto simp:mat-impl.rep-eq dim-row-def dim-col-def
dim-row-impl.rep-eq dim-col-impl.rep-eq)+
lemma dim-eliminate-entries-i2 [simp]:
dim-row-impl (eliminate-entries-i2 z mm tt $v \mathrm{~m} i)=$ dim-row-impl m
dim-col-impl (eliminate-entries-i2 z mm tt v mi) $=$ dim-col-impl m
by (transfer, auto)+
lemma tabulate-nth: $i<n \Longrightarrow$ IArray.tabulate (integer-of-nat n, f) !! $i=f$ (integer-of-nat i)
using of-fun-nth[of $i n$] by auto
lemma eliminate-entries-i2[code]:eliminate-entries-gen-zero mm tt zv (mat-impl m) $i j$
$=($ if $i<$ dim-row-impl m
then mat-impl (eliminate-entries-i2 z mm tt $v m$ (integer-of-nat i))
else (Code.abort (STR "index out of range in eliminate-entries")
(λ-. eliminate-entries-gen-zero $m m$ tt $z v($ mat-impl m) $i j))$)
proof (cases $i<$ dim-row-impl m)
case True
hence $i d:(i<$ dim-row-impl $m)=$ True by simp
show ?thesis unfolding id if-True
proof (standard;goal-cases)
case (1 i j)
have dims: $i<$ dim-row (mat-impl m) $j<$ dim-col (mat-impl m) using 1 by
(auto simp:eliminate-entries-i2.rep-eq)
then show ?case unfolding eliminate-entries-gen-zero [OF dims] using True proof (transfer, goal-cases)
case (1 i mjia v z mm tt)
obtain $n r n c M$ where m : $m=(n r, n c, M)$ by (cases m)

```
    note 1 = 1[unfolded m, simplified]
    have mk: \bigwedgef.mk-mat nr nc f (i,j)=f(i,j)
            \f.mk-mat nr nc f (ia,j) =f (ia,j)
            using 1 unfolding mk-mat-def mk-vec-def by auto
    note of-fun = of-fun-nth[OF 1(2)] of-fun-nth[OF 1 (3)] tabulate-nth[OF 1(2)]
tabulate-nth[OF 1(3)]
    let ?c1 = v(integer-of-nat i)=z
    show ?case
    proof (cases ?c1 \veei=ia)
        case True
        hence id: (if ?c1 \vee i= ia then x else y)=x
            (if integer-of-nat i= integer-of-nat ia then x else if ?c1 then x else y)}=
for x y
            by auto
    show ?thesis unfolding id m o-def Let-def split snd-conv mk of-fun by (auto
simp: 1)
    next
            case False
            hence id: ?c1 = False (integer-of-nat i= integer-of-nat ia)=False (False
\vee i=ia)= False
            by (auto simp add: integer-of-nat-eq-of-nat)
            show ?thesis unfolding m o-def Let-def split snd-conv mk of-fun id if-False
            by (auto simp: 1)
            qed
    qed
    qed (auto simp:eliminate-entries-i2.rep-eq)
qed auto
end
theory More-Missing-Multiset
    imports
        HOL-Combinatorics.Permutations
        Polynomial-Factorization.Missing-Multiset
begin
lemma rel-mset-free:
    assumes rel: rel-mset rel X Y and xs: mset xs =X
    shows \existsys. mset ys = Y ^ list-all2 rel xs ys
proof -
    from rel[unfolded rel-mset-def] obtain xs' ys'
            where xs': mset xs' = X and ys': mset ys'=Y and xsys': list-all2 rel xs' ys'
by auto
    from xs' xs have mset xs = mset xs' by auto
    from mset-eq-permutation[OF this]
    obtain f where perm: f permutes {..<length xs'} and xs': permute-list f xs' =
xs.
    then have [simp]: length xs' = length xs by auto
    from permute-list-nth[OF perm, unfolded xs'] have *: \bigwedgei. i< length xs \Longrightarrowxs
!i=xs'!fi by auto
```

```
note [simp] = list-all2-lengthD [OF xsys',symmetric}
note [simp] = atLeast0LessThan[symmetric]
note bij = permutes-bij[OF perm]
define ys where ys \equivmap (nth ys'\circf) [0..<length ys']
then have [simp]: length ys = length ys' by auto
have mset ys = mset (map (nth ys')(map f [0..<length ys}\)
    unfolding ys-def by auto
also have ... = image-mset (nth ys')(image-mset f (mset [0..<length ys }])
    by (simp add: multiset.map-comp)
also have (mset [0..<length ys }]\mathrm{ ) = mset-set {0..<length ys'}
    by (metis mset-sorted-list-of-multiset sorted-list-of-mset-set sorted-list-of-set-range)
```

 also have image-mset \(f(\ldots)=\) mset-set \((f\) ' \(\{. .<\) length ys' \(\})\)
 using subset-inj-on[OF bij-is-inj[OF bij]] by (subst image-mset-mset-set, auto)
 also have \(\ldots=\) mset \(\left[0 . .<\right.\) length ys \(\left.{ }^{\dagger}\right]\) using perm by (simp add: permutes-image)
 also have image-mset (nth ys') ... = mset ys' by (fold mset-map, unfold map-nth,
 auto)
finally have mset $y s=Y$ using $y s^{\prime}$ by auto
moreover have list-all2 rel xs ys
proof (rule list-all2-all-nthI)
fix i assume $i: i<$ length xs
with $*$ have $x s!i=x s^{\prime}!f i$ by auto
also from i permutes-in-image[OF perm]
have rel $\left(x s^{\prime}!f i\right)\left(y s^{\prime}!f i\right)$ by (intro list-all2-nth $D\left[O F\right.$ xsys $\left.{ }^{\prime}\right]$, auto)
finally show rel (xs ! i) (ys ! i) unfolding ys-def using i by simp
qed simp
ultimately show ?thesis by auto
qed
lemma rel-mset-split:
assumes rel: rel-mset rel $(X 1+X 2) Y$
shows $\exists Y 1$ Y2. $Y=Y 1+Y 2 \wedge$ rel-mset rel X1 Y1 \wedge rel-mset rel X2 Y2
proof-
obtain $x s 1$ where $x s 1$: mset $x s 1=X 1$ using ex-mset by auto
obtain $x s 2$ where $x s 2$: mset $x s 2=X 2$ using ex-mset by auto
from $x s 1$ xs2 have $\operatorname{mset}(x s 1$ @ xs2) $=X 1+X 2$ by auto
from rel-mset-free[OF rel this] obtain ys where ys: mset ys = Y list-all2 rel (xs1 @ xs2) ys by auto
then obtain ys1 ys2
where ys12: ys =ys1 @ ys2
and xs1ys1: list-all2 rel xs1 ys1
and xs2ys2: list-all2 rel xs2 ys2
using list-all2-append1 by blast
from ys12 ys have $Y=$ mset ys $1+m s e t$ ys2 by auto
moreover from xs1 xs1ys1 have rel-mset rel X1 (mset ys1) unfolding rel-mset-def
by auto
moreover from xs2 xs2ys2 have rel-mset rel X2 (mset ys2) unfolding rel-mset-def by auto
ultimately show ?thesis by (subst exI[of - mset ys1], subst exI[of - mset

```
ys2],auto)
qed
lemma rel-mset-OO:
    assumes AB: rel-mset RAB and BC: rel-mset S B C
    shows rel-mset (ROOS) A C
proof-
    from AB obtain as bs where A-as: A= mset as and B-bs:B=mset bs and
as-bs: list-all2 R as bs
        by (auto simp: rel-mset-def)
    from rel-mset-free[OF BC] B-bs obtain cs where C-cs:C=mset cs and bs-cs:
list-all2 S bs cs
    by auto
    from list-all2-trans[OF - as-bs bs-cs, of R OO S] A-as C-cs
    show ?thesis by (auto simp: rel-mset-def)
qed
lemma ex-mset-zip-right:
    assumes length xs = length ys mset ys' = mset ys
```



```
using assms
proof (induct xs ys arbitrary: ys' rule: list-induct2)
    case Nil
    thus ?case
        by auto
next
    case (Cons x xs y ys ys')
    obtain j where j-len: j< length ys' and nth-j:ys' ! j = y
    by (metis Cons.prems in-set-conv-nth list.set-intros(1) mset-eq-setD)
    define ysa where ysa= take j ys' @ drop (Suc j) ys'
    have mset ys' = {#y#} + mset ysa
        unfolding ysa-def using j-len nth-j
    by (metis Cons-nth-drop-Suc union-mset-add-mset-right add-mset-remove-trivial
add-diff-cancel-left'
            append-take-drop-id mset.simps(2) mset-append)
    hence ms-y: mset ysa= mset ys
    by (simp add: Cons.prems)
    then obtain xsa where
    len-a: length ysa = length xsa and ms-a:mset (zip xsa ysa) =mset (zip xs ys)
    using Cons.hyps(2) by blast
    define xs' where xs' = take j xsa @ x # drop j xsa
    have ys': ys' = take j ysa @ y # drop j ysa
    using ms-y j-len nth-j Cons.prems ysa-def
    by (metis append-eq-append-conv append-take-drop-id diff-Suc-Suc Cons-nth-drop-Suc
length-Cons
            length-drop size-mset)
```

```
    have j-len': j \leq length ysa
        using j-len ys' ysa-def
    by (metis add-Suc-right append-take-drop-id length-Cons length-append less-eq-Suc-le
not-less)
    have length ys' = length xs'
        unfolding xs'-def using Cons.prems len-a ms-y
    by (metis add-Suc-right append-take-drop-id length-Cons length-append mset-eq-length)
    moreover have mset (zipx\mp@subsup{s}{}{\prime}y\mp@subsup{s}{}{\prime})=mset (zip (x#xs)(y#ys))
        unfolding ys' xs'-def
        apply (rule HOL.trans[OF mset-zip-take-Cons-drop-twice])
        using j-len' by (auto simp: len-a ms-a)
    ultimately show ?case
        by blast
qed
lemma list-all2-reorder-right-invariance:
    assumes rel: list-all2 R xs ys and ms-y:mset ys' = mset ys
    shows \existsxs'. list-all2 R xs' ys'}^\wedge mset xs' = mset xs
proof -
    have len: length xs = length ys
        using rel list-all2-conv-all-nth by auto
    obtain xs' where
        len': length xs' = length ys' and ms-xy:mset (zip xs' ys') = mset (zip xs ys)
        using len ms-y by (metis ex-mset-zip-right)
    have list-all2 R xs' ys'
        using assms(1) len' ms-xy unfolding list-all2-iff by (blast dest: mset-eq-setD)
    moreover have mset xs' = mset xs
        using len len' ms-xy map-fst-zip mset-map by metis
    ultimately show ?thesis
        by blast
qed
lemma rel-mset-via-perm: rel-mset rel (mset xs) (mset ys) \longleftrightarrow(\existszs. mset xs =
mset zs ^ list-all2 rel zs ys)
proof (unfold rel-mset-def, intro iffI, goal-cases)
    case 1
    then obtain zs ws where zs: mset zs = mset xs and ws: mset ws = mset ys
and zsws: list-all2 rel zs ws by auto
    note list-all2-reorder-right-invariance[OF zsws ws[symmetric], unfolded zs]
    then show ?case by (auto dest: sym)
next
    case 2
    from this show ?case by force
qed
end
theory Unique-Factorization
    imports
    Polynomial-Interpolation.Ring-Hom-Poly
```

```
    Polynomial-Factorization.Polynomial-Divisibility
    HOL-Combinatorics.Permutations
    HOL-Computational-Algebra.Euclidean-Algorithm
    Containers.Containers-Auxiliary
    More-Missing-Multiset
    HOL-Algebra.Divisibility
begin
hide-const(open)
    Divisibility.prime
    Divisibility.irreducible
hide-fact(open)
    Divisibility.irreducible-def
    Divisibility.irreducibleI
    Divisibility.irreducibleD
    Divisibility.irreducibleE
hide-const (open) Rings.coprime
lemma irreducible-uminus [simp]:
    fixes a::'a::idom
    shows irreducible (-a)\longleftrightarrow <rreducible a
    using irreducible-mult-unit-left[of -1::'a] by auto
context comm-monoid-mult begin
    definition coprime :: ' }a=>\mathrm{ ' }a=>\mathrm{ bool
    where coprime-def': coprime p q\equiv\forallr.rdvd p\longrightarrowrdvd q\longrightarrowr dvd 1
    lemma coprimeI:
    assumes \r.rdvd p\Longrightarrowrdvd q\Longrightarrowrdvd 1
    shows coprime p q using assms by (auto simp: coprime-def')
    lemma coprimeE:
    assumes coprime p q
        and (\bigwedger.r dvd p\Longrightarrowrdvd q\Longrightarrowrdvd 1) \Longrightarrow thesis
    shows thesis using assms by (auto simp: coprime-def')
    lemma coprime-commute [ac-simps]:
    coprime p q\longleftrightarrow coprime q p
    by (auto simp add: coprime-def}\mp@subsup{}{}{\prime}
    lemma not-coprime-iff-common-factor:
    \neg \text { coprime p q «(ヨr.rdvd p^rdvd q^ᄀrdvd 1)}
    by (auto simp add: coprime-def}\mp@subsup{}{}{\prime}
end
```

```
lemma (in algebraic-semidom) coprime-iff-coprime [simp, code]:
    coprime = Rings.coprime
    by (simp add: fun-eq-iff coprime-def coprime-def')
lemma (in comm-semiring-1) coprime-0 [simp]:
    coprime p 0 \longleftrightarrow p dvd 1 coprime 0 p \longleftrightarrow p dvd 1
    by (auto intro: coprimeI elim: coprimeE dest:dvd-trans)
```

lemma $d v d$-rewrites: $d v d . d v d((*))=(d v d)$ by (unfold dvd.dvd-def dvd-def, rule)

3.3 Interfacing UFD properties

hide-const (open) Divisibility.irreducible
context comm-monoid-mult-isom begin
lemma coprime-hom[simp]: coprime (hom x) $y^{\prime} \longleftrightarrow$ coprime x (Hilbert-Choice.inv hom y^{\prime})
proof-
show ?thesis by (unfold coprime-def', fold ball-UNIV, subst surj[symmetric], simp)
qed
lemma coprime-inv-hom[simp]: coprime (Hilbert-Choice.inv hom x^{\prime}) $y \longleftrightarrow$ co-
prime x^{\prime} (hom y)
proof-
interpret inv: comm-monoid-mult-isom Hilbert-Choice.inv hom..
show ?thesis by simp
qed
end

3.3.1 Original part

lemma dvd-dvd-imp-smult:
fixes $p q$:: ' a :: idom poly
assumes $p q: p d v d q$ and $q p: q d v d p$ shows $\exists c . p=$ smult $c q$
proof (cases $p=0$)
case True then show ?thesis by auto
next
case False
from $q p$ obtain r where $r: p=q * r$ by (elim dvdE, auto)
with False $q p$ have $r 0: r \neq 0$ and $q 0: q \neq 0$ by auto
with divides-degree[OF pq] divides-degree[OF qp] False
have degree $p=$ degree q by auto
with r degree-mult-eq[OF q0 r0] have degree $r=0$ by auto
from degree- 0 -id[OF this] obtain c where $r=[: c:]$ by metis
from r [unfolded this] show ?thesis by auto
qed

```
lemma dvd-const
    assumes pq:(p::'a::semidom poly) dvd q and q0:q\not=0 and degq: degree q=0
    shows degree p=0
proof-
    from dvdE[OF pq] obtain r where *: q = p*r.
    with q0 have p\not=0 r\not=0 by auto
    from degree-mult-eq[OF this] degq* show degree p=0 by auto
qed
context Rings.dvd begin
    abbreviation ddvd (infix ddvd 40) where x ddvd y\equivx dvd y ^ y dvd x
    lemma ddvd-sym[sym]: }x\mathrm{ ddvd }y\Longrightarrowyddvd x by aut
end
context comm-monoid-mult begin
    lemma ddvd-trans[trans]: x ddvd y }\Longrightarrowy\mathrm{ ddvd z }\Longrightarrowxddvd z using dvd-tran
by auto
    lemma ddvd-transp: transp (ddvd) by (intro transpI, fact ddvd-trans)
end
context comm-semiring-1 begin
definition mset-factors where mset-factors F p\equiv
    F\not={#}}\wedge(\forallf.f\in#F\longrightarrow\mathrm{ irreducible f)}\wedgep=\mathrm{ prod-mset }
lemma mset-factorsI[intro!]:
    assumes }\f.f\in#F\Longrightarrow\mathrm{ irreducible f and F}\not={#}\mathrm{ and prod-mset F = p
    shows mset-factors F p
    unfolding mset-factors-def using assms by auto
lemma mset-factorsD:
    assumes mset-factors F p
    shows }f\in#F\Longrightarrow\mathrm{ irreducible f and F}\not={#}\mathrm{ and prod-mset F = p
    using assms[unfolded mset-factors-def] by auto
lemma mset-factorsE[elim]:
    assumes mset-factors Fp
        and (\bigwedgef.f\in#F\Longrightarrow irreducible f)\LongrightarrowF\not={#}\Longrightarrow prod-mset F=p\Longrightarrow
thesis
    shows thesis
    using assms[unfolded mset-factors-def] by auto
lemma mset-factors-imp-not-is-unit:
    assumes mset-factors F p
    shows \neg pdvd 1
proof(cases F)
    case empty with assms show ?thesis by auto
next
```

```
    case (add f F)
    with assms have }\negfdvd 1p=f*\operatorname{prod-mset F by (auto intro!: irreducible-not-unit)
    then show ?thesis by auto
qed
```

definition primitive-poly where primitive-poly $f \equiv \forall d .(\forall i . d$ dvd coeff $f i) \longrightarrow$ d dvd 1
end
lemma(in semidom) mset-factors-imp-nonzero:
assumes mset-factors $F p$
shows $p \neq 0$
proof
assume $p=0$
moreover from assms have prod-mset $F=p$ by auto
ultimately obtain f where $f \in \# F f=0$ by auto
with assms show False by auto
qed
class $u f d=i d o m+$
assumes mset-factors-exist: $\bigwedge x . x \neq 0 \Longrightarrow \neg x d v d 1 \Longrightarrow \exists F$. mset-factors $F x$ and mset-factors-unique: $\wedge x F G$. mset-factors $F x \Longrightarrow$ mset-factors $G x \Longrightarrow$ rel-mset (ddvd) FG

3.3.2 Connecting to HOL/Divisibility

context comm-semiring-1 begin
abbreviation $m k$-monoid $\equiv($ carrier $=U N I V-\{0\}$, mult $=(*)$, one $=1)$
lemma carrier- $0[$ simp $]: x \in$ carrier mk-monoid $\longleftrightarrow x \neq 0$ by auto
lemmas mk-monoid-simps $=$ carrier- 0 monoid.simps
abbreviation irred where irred \equiv Divisibility.irreducible mk-monoid abbreviation factor where factor \equiv Divisibility.factor mk-monoid abbreviation factors where factors \equiv Divisibility.factors mk-monoid abbreviation properfactor where properfactor \equiv Divisibility.properfactor mk-monoid
lemma factors: factors fs $y \longleftrightarrow$ prod-list fs $=y \wedge$ Ball (set fs) irred proof -
have prod-list fs $=$ foldr (*) fs 1 by (induct fs, auto)
thus ?thesis unfolding factors-def by auto
qed
lemma factor: factor $x y \longleftrightarrow(\exists z \cdot z \neq 0 \wedge x * z=y)$ unfolding factor-def by auto

lemma properfactor-nz:

shows $(y:: ' a) \neq 0 \Longrightarrow$ properfactor $x y \longleftrightarrow x d v d y \wedge \neg y d v d x$
by (auto simp: properfactor-def factor-def dvd-def)
lemma mem-Units[simp]: $y \in$ Units mk-monoid $\longleftrightarrow y$ dvd 1
unfolding dvd-def Units-def by (auto simp: ac-simps)
end
context idom begin
lemma irred- $0\left[\right.$ simp]: irred ($0::^{\prime} a$) by (unfold Divisibility.irreducible-def, auto simp: factor properfactor-def)
lemma factor-idom[simp]: factor $\left(x:^{\prime}{ }^{\prime} a\right) y \longleftrightarrow$ (if $y=0$ then $x=0$ else x dvd y)
by (cases $y=0$; auto intro: exI $[$ of -1$]$ elim: dvdE simp: factor)
lemma associated-connect $[s i m p]:\left(\sim_{m k-m o n o i d}\right)=(d d v d)$ by (intro ext, unfold associated-def, auto)
lemma essentially-equal-connect [simp]:
essentially-equal mk-monoid fs $g s \longleftrightarrow$ rel-mset (ddvd) (mset fs) (mset gs)
by (auto simp: essentially-equal-def rel-mset-via-perm)
lemma irred-idom-nz:
assumes $x 0:\left(x::^{\prime} a\right) \neq 0$
shows irred $x \longleftrightarrow$ irreducible x
using $x 0$ by (auto simp: irreducible-altdef Divisibility.irreducible-def properfac-tor-nz)
lemma dvd-dvd-imp-unit-mult:
assumes $x y: x d v d y$ and $y x: y d v d x$
shows $\exists z . z d v d 1 \wedge y=x * z$
proof (cases $x=0$)
case True with $x y$ show ?thesis by (auto intro: exI[of - 1])
next
case $x 0$: False
from $x y$ obtain z where $z: y=x * z$ by (elim dvdE, auto)
from $y x$ obtain w where $w: x=y * w$ by (elim dvdE, auto)
from $z w$ have $x *(z * w)=x$ by (auto simp: ac-simps)
then have $z * w=1$ using $x 0$ by auto
with z show ?thesis by (auto intro: exI $[o f-z]$)
qed
lemma irred-inner-nz:
assumes $x 0: x \neq 0$
shows $(\forall b . b$ dvd $x \longrightarrow \neg x d v d b \longrightarrow b d v d 1) \longleftrightarrow(\forall a b . x=a * b \longrightarrow a$
dvd $1 \vee b$ dvd 1) (is ?l \longleftrightarrow ? r)

```
proof (intro iffI allI impI)
    assume \(l\) : ?l
    fix \(a b\)
    assume \(x a b: x=a * b\)
    then have \(a x: a d v d x\) and \(b x: b d v d x\) by auto
    \{ assume a1: \(\neg\) a dvd 1
        with \(l\) ax have \(x a: x d v d a\) by auto
        from dvd-dvd-imp-unit-mult \([O F a x x a]\) obtain \(z\) where \(z 1: z d v d 1\) and \(x a z\) :
\(x=a * z\) by auto
            from xab \(x 0\) have \(a \neq 0\) by auto
            with \(x a b\) xaz have \(b=z\) by auto
            with \(z 1\) have \(b\) dvd 1 by auto
    \}
    then show \(a d v d 1 \vee b d v d 1\) by auto
next
    assume \(r\) : ? \(r\)
    fix \(b\) assume \(b x: b d v d x\) and \(x b: \neg x d v d b\)
    then obtain \(a\) where \(x a b: x=a * b\) by (elim dvdE, auto simp: ac-simps)
    with \(r\) consider \(a d v d 1 \mid b d v d 1\) by auto
    then show \(b\) dvd 1
    proof (cases)
        case 2 then show ?thesis by auto
    next
        case 1
        then obtain \(c\) where \(a c 1: a * c=1\) by (elim dvdE, auto)
        from xab have \(x * c=b *(a * c)\) by (auto simp: ac-simps)
        with ac1 have \(x * c=b\) by auto
        then have \(x\) dvd \(b\) by auto
        with \(x b\) show ?thesis by auto
    qed
qed
lemma irred-idom[simp]: irred \(x \longleftrightarrow x=0 \vee\) irreducible \(x\)
by (cases \(x=0\); simp add: irred-idom-nz irred-inner-nz irreducible-def)
lemma assumes \(x \neq 0\) and factors fs \(x\) and \(f \in\) set \(f s\) shows \(f \neq 0\)
    using assms by (auto simp: factors)
lemma factors-as-mset-factors:
    assumes \(x 0: x \neq 0\) and \(x 1: x \neq 1\)
    shows factors \(f s x \longleftrightarrow\) mset-factors (mset fs) \(x\) using assms
    by (auto simp: factors prod-mset-prod-list)
```

end
context ufd begin
interpretation comm-monoid-cancel: comm-monoid-cancel mk-monoid::'a monoid apply (unfold-locales)

```
    apply simp-all
    using mult-left-cancel
    apply (auto simp: ac-simps)
    done
    lemma factors-exist:
    assumes a\not=0
    and }\negadvd 
    shows \existsfs. set fs\subseteqUNIV - {0}^ factors fs a
proof-
    from mset-factors-exist[OF assms]
    obtain F where mset-factors F a by auto
    also from ex-mset obtain fs where F=mset fs by metis
    finally have fs: mset-factors (mset fs) a.
    then have factors fs a using assms by (subst factors-as-mset-factors, auto)
    moreover have set fs \subseteqUNIV - {0} using fs by (auto elim!: mset-factorsE)
    ultimately show ?thesis by auto
qed
    lemma factors-unique:
    assumes fs: factors fs a
        and gs: factors gs a
        and a0:a\not=0
        and a1: ᄀ a dvd 1
    shows rel-mset (ddvd) (mset fs) (mset gs)
proof-
    from a1 have a\not=1 by auto
    with a0 fs gs have mset-factors (mset fs) a mset-factors (mset gs) a by (unfold
factors-as-mset-factors)
    from mset-factors-unique[OF this] show ?thesis.
qed
    lemma factorial-monoid: factorial-monoid (mk-monoid :: 'a monoid)
    by (unfold-locales; auto simp add: factors-exist factors-unique)
end
lemma (in idom) factorial-monoid-imp-ufd:
    assumes factorial-monoid (mk-monoid :: 'a monoid)
    shows class.ufd ((*):: ' }a=>-)1(+)0(-)uminu
proof (unfold-locales)
    interpret factorial-monoid mk-monoid :: 'a monoid by (fact assms)
    {
        fix }x\mathrm{ assume }x:x\not=0\negxdvd 
        note * = factors-exist[simplified,OF this]
            with x show \existsF. mset-factors F x by (subst(asm) factors-as-mset-factors,
auto)
    }
    fix x FG assume FG: mset-factors F x mset-factors G x
    with mset-factors-imp-not-is-unit have x1: \negx dvd 1 by auto
```

```
    from \(F G(1)\) have \(x 0: x \neq 0\) by (rule mset-factors-imp-nonzero)
    obtain \(f s\) gs where \(f_{s g s}: F=\) mset \(f_{s} G=\) mset gs using ex-mset by metis
    note \(F G=F G[\) unfolded this]
    then have \(0: 0 \notin\) set fs \(0 \notin\) set gs by (auto elim!: mset-factorsE)
    from \(x 1\) have \(x \neq 1\) by auto
    note \(F G[\) folded factors-as-mset-factors[OF x0 this]]
    from factors-unique[OF this, simplified, OF x0 x1, folded fsgs] 0
    show rel-mset (ddvd) FG by auto
qed
```


3.4 Preservation of Irreducibility

locale comm-semiring-1-hom $=$ comm-monoid-mult-hom hom + zero-hom hom for hom ::' a :: comm-semiring-1 $\Rightarrow^{\prime} b::$ comm-semiring-1
locale irreducibility-hom $=$ comm-semiring-1-hom + assumes irreducible-imp-irreducible-hom: irreducible a \Longrightarrow irreducible (hom a) begin
lemma hom-mset-factors: assumes F : mset-factors $F p$ shows mset-factors (image-mset hom F) (hom p)
proof (unfold mset-factors-def, intro conjI allI impI)
from F show hom $p=$ prod-mset (image-mset hom F) image-mset hom $F \neq$ $\{\#\}$ by (auto simp: hom-distribs) fix f^{\prime} assume $f^{\prime} \in \#$ image-mset hom F then obtain f where $f: f \in \# F$ and $f^{\prime} f: f^{\prime}=\operatorname{hom} f$ by auto with F irreducible-imp-irreducible-hom show irreducible f^{\prime} unfolding $f^{\prime} f$ by
auto
qed
end
locale unit-preserving-hom $=$ comm-semiring-1-hom +
assumes is-unit-hom-if: $\bigwedge x$. hom x dvd $1 \Longrightarrow x$ dvd 1
begin
lemma is-unit-hom-iff[simp]: hom x dvd $1 \longleftrightarrow x$ dvd 1 using is-unit-hom-if hom-dvd by force
lemma irreducible-hom-imp-irreducible:
assumes irr: irreducible (hom a) shows irreducible a
proof (intro irreducibleI)
from irr show $a \neq 0$ by auto
from irr show $\neg a d v d 1$ by (auto dest: irreducible-not-unit)
fix $b c$ assume $a=b * c$
then have hom $a=$ hom $b *$ hom c by (simp add: hom-distribs)
with irr have hom b dvd $1 \vee$ hom c dvd 1 by (auto dest: irreducibleD)
then show $b d v d 1 \vee c$ dvd 1 by simp
qed
end

```
locale factor-preserving-hom \(=\) unit-preserving-hom + irreducibility-hom
begin
    lemma irreducible-hom[simp]: irreducible (hom a) \(\longleftrightarrow\) irreducible a
    using irreducible-hom-imp-irreducible irreducible-imp-irreducible-hom by metis
end
lemma factor-preserving-hom-comp:
    assumes \(f\) : factor-preserving-hom \(f\) and \(g\) : factor-preserving-hom \(g\)
    shows factor-preserving-hom ( \(f \circ g\) )
proof-
    interpret \(f\) : factor-preserving-hom \(f\) by (rule \(f\) )
    interpret \(g\) : factor-preserving-hom \(g\) by (rule \(g\) )
    show ?thesis by (unfold-locales, auto simp: hom-distribs)
qed
context comm-semiring-isom begin
    sublocale unit-preserving-hom by (unfold-locales, auto)
    sublocale factor-preserving-hom
    proof (standard)
        fix \(a::^{\prime} a\)
        assume irreducible a
    note \(a=\) this[unfolded irreducible-def]
    show irreducible (hom a)
    proof (rule ccontr)
        assume \(\neg\) irreducible (hom a)
        from this[unfolded Factorial-Ring.irreducible-def,simplified] a
            obtain \(h b\) hc where eq: hom \(a=h b * h c\) and \(n u\) : \(\neg h b d v d 1 \neg h c\) dvd 1
by auto
            from \(b i j\) obtain \(b\) where \(h b: h b=h o m b\) by (elim bij-pointE)
            from bij obtain \(c\) where \(h c: h c=h o m ~ c\) by (elim bij-pointE)
            from eq[unfolded \(h b\) hc, folded hom-mult] have \(a=b * c\) by auto
            with \(n u h b\) hc have \(a=b * c \neg b d v d 1 \neg c\) dvd 1 by auto
            with \(a\) show False by auto
        qed
    qed
end
```


3.4.1 Back to divisibility

lemma(in comm-semiring-1) mset-factors-mult:
assumes F : mset-factors $F a$
and G : mset-factors $G b$
shows mset-factors $(F+G)(a * b)$
proof (intro mset-factorsI)
fix f assume $f \in \# F+G$
then consider $f \in \# F \mid f \in \# G$ by auto
then show irreducible f by (cases, insert $F G$, auto)
qed (insert $F G$, auto)
lemma(in ufd) dvd-imp-subset-factors:
assumes $a b: a d v d b$
and F : mset-factors $F a$
and G : mset-factors $G b$
shows $\exists G^{\prime} . G^{\prime} \subseteq \# G \wedge$ rel-mset (ddvd) $F G^{\prime}$
proof-
from $F G$ have $a 0: a \neq 0$ and $b 0: b \neq 0$ by (simp-all add: mset-factors-imp-nonzero)
from $a b$ obtain c where $c: b=a * c$ by (elim dvdE, auto)
with $b 0$ have $c 0: c \neq 0$ by auto
show ?thesis
proof (cases c dvd 1)
case True
show ?thesis
proof (cases F)
case empty with F show ?thesis by auto
next
case ($a d d f F^{\prime}$)
with F
have $a: f *$ prod-mset $F^{\prime}=a$
and $F^{\prime}: \wedge f . f \in \# F^{\prime} \Longrightarrow$ irreducible f
and irrf: irreducible f by auto
from irrf have $f 0: f \neq 0$ and $f 1: \neg f$ dvd 1 by (auto dest: irre-
ducible-not-unit)
from $a c$ have $(f * c) *$ prod-mset $F^{\prime}=b$ by (auto simp: ac-simps)
moreover \{
have irreducible $(f * c)$ using True irrf by (subst irreducible-mult-unit-right) with F^{\prime} irrf have $\bigwedge f^{\prime} . f^{\prime} \in \# F^{\prime}+\{\# f * c \#\} \Longrightarrow$ irreducible f^{\prime} by
auto
\}
ultimately have mset-factors $\left(F^{\prime}+\{\# f * c \#\}\right) b$ by (intro mset-factors I, auto)
from mset-factors-unique $[O F$ this $G]$
have $F^{\prime} G$: rel-mset (ddvd) $\left(F^{\prime}+\{\# f * c \#\}\right) G$.
from True add have $F F^{\prime}$: rel-mset (ddvd) $F\left(F^{\prime}+\{\# f * c \#\}\right)$
by (auto simp add: multiset.rel-refl intro!: rel-mset-Plus)
have rel-mset (ddvd) FG
$\operatorname{apply}\left(\right.$ rule transp $D\left[\right.$ OF multiset.rel-transp $[O F$ transpI $\left.\left.] F F^{\prime} F^{\prime} G\right]\right)$
using ddvd-trans.
then show ?thesis by auto

qed

next
case False
from mset-factors-exist[OF c0 this] obtain H where H : mset-factors H c
by auto
from c mset-factors-mult $[O F F H]$ have mset-factors $(F+H) b$ by auto note mset-factors-unique $[$ OF this $G]$
from rel-mset-split[OF this] obtain G1 G2
where $G=G 1+G 2$ rel-mset ($d d v d$) F G1 rel-mset (ddvd) H G2 by auto then show ?thesis by (intro exI[of-G1], auto)

```
    qed
qed
lemma(in idom) irreducible-factor-singleton:
    assumes a: irreducible a
    shows mset-factors F a\longleftrightarrowF={#a#}
proof(cases F)
    case empty with mset-factorsD show ?thesis by auto
next
    case (add f F')
    show ?thesis
    proof
        assume F: mset-factors F a
        from add mset-factorsD[OF F] have *: a=f* prod-mset F' by auto
        then have fa: fdvd a by auto
        from * a have f0:f}\not=0\mathrm{ by auto
        from add have f}\in#F\mathrm{ by auto
        with F}\mathrm{ have f: irreducible f by auto
        from add have }\mp@subsup{F}{}{\prime}\subseteq#F\mathrm{ by auto
        then have unitemp: prod-mset F' dvd 1\Longrightarrow 寅={#}
        proof(induct F')
            case empty then show ?case by auto
        next
            case (add f F')
                from add have f\in#F by (simp add: mset-subset-eq-insertD)
            with F irreducible-not-unit have }\negf\mathrm{ dvd 1 by auto
            then have }\neg(\mathrm{ prod-mset F}\mp@subsup{F}{}{\prime}*f)dvd 1 by sim
            with add show ?case by auto
        qed
        show F}={#a#
        proof(cases a dvd f)
            case True
            then obtain r where f=a*r by (elim dvdE,auto)
            with * have f}=(r*\mathrm{ prod-mset F}\mp@subsup{F}{}{\prime})*f\mathrm{ by (auto simp: ac-simps)
            with f0 have r* prod-mset F'=1 by auto
            then have prod-mset F' dvd 1 by (metis dvd-triv-right)
            with unitemp * add show ?thesis by auto
        next
            case False with fa a f show ?thesis by (auto simp: irreducible-altdef)
        qed
    qed (insert a, auto)
qed
```

lemma(in ufd) irreducible-dvd-imp-factor:
assumes $a b: a d v d b$
and a : irreducible a
and G : mset-factors $G b$
shows $\exists g \in \# G$. a ddvd g

```
proof-
    from a have mset-factors {#a#} a by auto
    from dvd-imp-subset-factors[OF ab this G]
    obtain G' where G'G: G'\subseteq#G and rel:rel-mset (ddvd) {#a#} G' by auto
    with rel-mset-size size-1-singleton-mset size-single
    obtain g}\mathrm{ where gG':G'={#g#} by fastforce
    from rel[unfolded this rel-mset-def]
    have a ddvd g}\mathrm{ by auto
    with }g\mp@subsup{G}{}{\prime}\mp@subsup{G}{}{\prime}G\mathrm{ show ?thesis by auto
qed
lemma(in idom) prod-mset-remove-units:
    prod-mset F ddvd prod-mset {#f\in# F.\negf dvd 1#}
proof(induct F)
    case (add fF) then show ?case by (cases f=0, auto)
qed auto
lemma(in comm-semiring-1) mset-factors-imp-dvd:
    assumes mset-factors Fx}\mathrm{ and }f\in#F\mathrm{ shows }fdvd
    using assms by (simp add: dvd-prod-mset mset-factors-def)
lemma(in ufd) prime-elem-iff-irreducible[iff]:
    prime-elem }x\longleftrightarrow\mathrm{ irreducible }
proof (intro iffI, fact prime-elem-imp-irreducible, rule prime-elemI)
    assume r: irreducible x
    then show x0: x\not=0 and x1:\neg x dvd 1 by (auto dest:irreducible-not-unit)
    from irreducible-factor-singleton[OF r]
    have *: mset-factors {#x#} x by auto
    fix ab
    assume x dvd a*b
    then obtain c where abxc: a*b=x*c by (elim dvdE, auto)
    show x dvd a\veex dvd b
    proof(cases c=0 \ a = 0 \vee b=0)
        case True with abxc show ?thesis by auto
    next
        case False
        then have a0:a\not=0 and b0:b\not=0 and c0:c\not=0 by auto
        from x0 c0 have xc0: x* c\not=0 by auto
    from x1 have xc1: \negx*c dvd 1 by auto
    show ?thesis
    proof (cases a dvd 1 \vee b dvd 1)
        case False
        then have a1: ᄀ a dvd 1 and b1: ᄀ b dvd 1 by auto
        from mset-factors-exist[OF a0 a1]
        obtain F where Fa: mset-factors F a by auto
        then have F0:F\not={#} by auto
        from mset-factors-exist[OF b0 b1]
        obtain G where Gb: mset-factors G b by auto
        then have G0:G\not={#} by auto
```

```
    from mset-factors-mult[OF Fa Gb]
    have FGxc:mset-factors (F+G)(x*c) by (simp add: abxc)
    show ?thesis
    proof (cases c dvd 1)
        case True
        from r irreducible-mult-unit-right[OF this] have irreducible (x*c) by simp
        note irreducible-factor-singleton[OF this] FGxc
        with FO G0 have False by (cases F; cases G; auto)
        then show ?thesis by auto
    next
    case False
    from mset-factors-exist[OF c0 this] obtain H where mset-factors H c by
auto
    with * have xHxc: mset-factors (add-mset x H) (x*c) by force
    note rel = mset-factors-unique[OF this FGxc]
    obtain hs where mset hs =H using ex-mset by auto
    then have mset (x#hs) =add-mset x H by auto
    from rel-mset-free[OF rel this]
    obtain jjs where jjsGH: mset jjs =F +G and rel: list-all2 (ddvd) (x #
hs) jjs by auto
    then obtain j js where jjs: jjs = j # js by (cases jjs,auto)
    with rel have xj: x ddvd j by auto
    from jjs jjsGH have j:j\in set-mset (F+G) by (intro union-single-eq-member,
auto)
    from j consider j\in#F|j\in#G by auto
    then show ?thesis
    proof(cases)
        case 1
        with Fa have j dvd a by (auto intro: mset-factors-imp-dvd)
        with xj dvd-trans have x dvd a by auto
        then show ?thesis by auto
    next
        case 2
        with Gb have j dvd b by (auto intro: mset-factors-imp-dvd)
        with xj dvd-trans have x dvd b by auto
        then show ?thesis by auto
        qed
    qed
    next
        case True
        then consider a dvd 1|bdvd 1 by auto
        then show ?thesis
        proof(cases)
        case 1
        then obtain d where ad: a*d=1 by (elim dvdE, auto)
        from abxc have }x*(c*d)=a*b*d by (auto simp: ac-simps
        also have ... =a*d*b by (auto simp: ac-simps)
        finally have }xdvdb\mathrm{ by (intro dvdI, auto simp: ad)
        then show ?thesis by auto
```

```
        next
            case 2
            then obtain d}\mathrm{ where bd: b*d=1 by (elim dvdE, auto)
            from abxc have x*(c*d) =a*b*d by (auto simp: ac-simps)
            also have ... = (b*d)*a by (auto simp: ac-simps)
            finally have }x\mathrm{ dvd a by (intro dvdI, auto simp:bd)
            then show ?thesis by auto
        qed
    qed
    qed
qed
```


3.5 Results for GCDs etc.

lemma prod-list-remove1: (x :: 'b :: comm-monoid-mult) \in set $x s \Longrightarrow$ prod-list (remove1 x xs) $* x=$ prod-list $x s$
by (induct xs, auto simp: ac-simps)

```
class comm-monoid-gcd = gcd + comm-semiring-1 +
    assumes gcd-dvd1[iff]: gcd a b dvd a
        and gcd-dvd2[iff]: gcd a b dvd b
    and gcd-greatest: c dvd a\Longrightarrowc dvd b\Longrightarrowcdvd gcd a b
begin
```

 lemma gcd-0-0[simp]: gcd \(00=0\)
 using gcd-greatest [OF dvd-0-right dvd-0-right, of 0\(]\) by auto
 lemma gcd-zero-iff [simp]: gcd $a b=0 \longleftrightarrow a=0 \wedge b=0$
proof
assume $g c d$ a $b=0$
from $g c d$-dvd1 [of a b, unfolded this] gcd-dvd2[of a b, unfolded this]
show $a=0 \wedge b=0$ by auto
qed auto
lemma gcd-zero-iff' '[simp]: $0=$ gcd $a b \longleftrightarrow a=0 \wedge b=0$
using gcd-zero-iff by metis
lemma dvd-gcd-0-iff[simp]:
shows x dvd gcd $0 a \longleftrightarrow x$ dvd a (is ? $g 1$)
and x dvd gcd a $0 \longleftrightarrow x$ dvd a (is ?g2)
proof-
have a dvd gcd a 0 a dvd gcd 0 a by (auto intro: gcd-greatest)
with dvd-refl show ? g1 ?g2 by (auto dest: dvd-trans)
qed
lemma gcd-dvd-1[simp]: gcd a bdvd $1 \longleftrightarrow$ coprime a b
using dvd-trans[OF gcd-greatest[of - a b], of - 1]
by (cases $a=0 \wedge b=0$) (auto intro!: coprimeI elim: coprimeE)

```
    lemma dvd-imp-gcd-dvd-gcd: b dvd c\Longrightarrowgcd a b dvd gcd a c
    by (meson gcd-dvd1 gcd-dvd2 gcd-greatest dvd-trans)
    definition listgcd :: ' }a\mathrm{ list }=>\mp@subsup{}{}{\prime}a\mathrm{ where
    listgcd xs = foldr gcd xs 0
    lemma listgcd-simps[simp]: listgcd [] = 0 listgcd (x# xs) = gcd x (listgcd xs)
    by (auto simp: listgcd-def)
    lemma listgcd: x fet xs \Longrightarrow listgcd xs dvd x
proof (induct xs)
    case (Cons y ys)
    show ?case
    proof (cases x = y)
        case False
        with Cons have dvd: listgcd ys dvd x by auto
        thus ?thesis unfolding listgcd-simps using dvd-trans by blast
    next
        case True
        thus ?thesis unfolding listgcd-simps using dvd-trans by blast
    qed
qed simp
lemma listgcd-greatest: (\bigwedge x. x \in set xs \Longrightarrowy dvd x)\Longrightarrowy dvd listgcd xs
    by (induct xs arbitrary:y, auto intro: gcd-greatest)
end
```


context Rings.dvd begin

```
definition is-gcd \(x a b \equiv x\) dvd \(a \wedge x d v d b \wedge(\forall y . y d v d a \longrightarrow y d v d b \longrightarrow y\) dvd \(x\) )
definition some-gcd \(a b \equiv S O M E x . \operatorname{is-gcd} x a b\)
lemma is-gcdI[intro!]:
assumes \(x\) dvd \(a x d v d b \bigwedge y . y d v d a \Longrightarrow y d v d b \Longrightarrow y d v d x\)
shows is-gcd \(x\) a by (insert assms, auto simp: is-gcd-def)
lemma is-gcdE[elim!]:
assumes \(i s-g c d x a b\)
and \(x\) dvd \(a \Longrightarrow x\) dvd \(b \Longrightarrow(\bigwedge y . y\) dvd \(a \Longrightarrow y d v d b \Longrightarrow y d v d x) \Longrightarrow\)
thesis
shows thesis by (insert assms, auto simp: is-gcd-def)
lemma is-gcd-some-gcdI:
assumes \(\exists x\). is-gcd \(x a b\) shows \(i s-g c d(s o m e-g c d a b) a b\)
```

```
    by (unfold some-gcd-def, rule someI-ex[OF assms])
end
```

context comm-semiring-1 begin
lemma some-gcd-0[intro!]: is-gcd (some-gcd a 0) a 0 is-gcd (some-gcd 0 b) 0 b by (auto intro!: is-gcd-some-gcdI intro: exI $[o f-a]$ exI $[o f-b]$)
lemma some-gcd-0-dvd[intro!]:
some-gcd a 0 dvd a some-gcd 0 b dvd b using some-gcd-0 by auto
lemma dvd-some-gcd- 0 [intro!]:
a dvd some-gcd a 0 b dvd some-gcd 0 b using some-gcd- $0[$ of a] some-gcd-O[of b] by auto
end
context idom begin
lemma is-gcd-connect:
assumes $a \neq 0 b \neq 0$ shows isgcd mk-monoid x a $b \longleftrightarrow i s-g c d x$ a b
using assms by (force simp: isgcd-def)
lemma some-gcd-connect:
assumes $a \neq 0$ and $b \neq 0$ shows somegcd mk-monoid $a b=$ some-gcd $a b$
using assms by (auto intro!: arg-cong[of- - Eps] simp: is-gcd-connect some-gcd-def somegcd-def)
end
context comm-monoid-gcd
begin
lemma is-gcd-gcd: is-gcd (gcd a b) a b using gcd-greatest by auto
lemma is-gcd-some-gcd: is-gcd (some-gcd a b) a b by (insert is-gcd-gcd, auto intro!: is-gcd-some-gcdI)
lemma gcd-dvd-some-gcd: gcd a b dvd some-gcd a busing is-gcd-some-gcd by auto
lemma some-gcd-dvd-gcd: some-gcd a b dvd gcd a b using is-gcd-some-gcd by (auto intro: gcd-greatest)
lemma some-gcd-ddvd-gcd: some-gcd abddvd gcd abby (auto intro: gcd-dvd-some-gcd some-gcd-dvd-gcd)
lemma some-gcd-dvd: some-gcd abdvd $d \longleftrightarrow$ gcd a b dvd d d dvd some-gcd a b
$\longleftrightarrow d$ dvd gcd a b
using some-gcd-ddvd-gcd[of a b] by (auto dest:dvd-trans)
end
class $i d o m-g c d=$ comm-monoid-gcd $+i d o m$
begin
interpretation raw: comm-monoid-cancel mk-monoid :: 'a monoid by (unfold-locales, auto intro: mult-commute mult-assoc)
interpretation raw: gcd-condition-monoid mk-monoid :: 'a monoid by (unfold-locales, auto simp: is-gcd-connect intro!: exI[of - gcd - -] dest: gcd-greatest)
lemma gcd-mult-ddvd:
$d * g c d$ a b ddvd gcd $(d * a)(d * b)$
proof (cases $d=0$)
case True then show ?thesis by auto
next
case d0: False
show ?thesis
proof (cases $a=0 \vee b=0$)
case False
note some-gcd-ddvd-gcd[of a b]
with $d 0$ have $d *$ gcd a bddvd $d *$ some-gcd $a b$ by auto
also have $d *$ some-gcd a bddvd some-gcd $(d * a)(d * b)$
using False d0 raw.gcd-mult by (simp add: some-gcd-connect)
also note some-gcd-ddvd-gcd
finally show ?thesis.
next
case True
with d0 show ?thesis
apply (elim disjE)
apply (rule ddvd-trans[of $-d * b]$; force)
apply (rule ddvd-trans $[o f-d * a]$; force)
done
qed
qed
lemma gcd-greatest-mult: assumes cad: c dvd $a * d$ and $c b d: c d v d b * d$ shows $c d v d$ gcd $a b * d$
proof -
from gcd-greatest[OF assms] have $c: c$ dvd $g c d(d * a)(d * b)$ by (auto simp: ac-simps)
note gcd-mult-ddvd[of d a b]
then have $g c d(d * a)(d * b) d v d g c d a b * d$ by (auto simp: ac-simps)
from dvd-trans $[O F$ c this] show ?thesis.
qed
lemma listgcd-greatest-mult: $(\bigwedge x:: ' a . x \in \operatorname{set} x s \Longrightarrow y d v d x * z) \Longrightarrow y d v d$ listgcd xs * z
proof (induct $x s$)
case (Cons x xs)
from Cons have y dvd $x * z y$ dvd listgcd $x s * z$ by auto
thus ?case unfolding listgcd-simps by (rule gcd-greatest-mult)

```
qed (simp)
```

 lemma dvd-factor-mult-gcd:
 assumes \(d v d: k d v d p * q k d v d p * r\)
 and \(q 0: q \neq 0\) and \(r 0: r \neq 0\)
 shows \(k d v d p * g c d q r\)
 proof -
from dvd gcd-greatest[of $k p * q p * r]$
have k dvd $g c d(p * q)(p * r)$ by simp
also from $g c d-m u l t-d d v d\left[\begin{array}{lll}o f & p & q\end{array}\right]$
have $\ldots d v d(p * g c d q r)$ by auto
finally show? ?thesis.
qed
lemma coprime-mult-cross-dvd:
assumes coprime: coprime $p q$ and $e q: p^{\prime} * p=q^{\prime} * q$
shows $p d v d q^{\prime}$ (is ? $g 1$) and $q d v d p^{\prime}$ (is ? $\left.g 2\right)$
proof (atomize(full), cases $p=0 \vee q=0$)
case True
then show ? $11 \wedge$? g2
proof
assume p0: $p=0$ with coprime have q dvd 1 by auto
with eq p0 show ?thesis by auto
next
assume $q 0: q=0$ with coprime have p dvd 1 by auto
with eq q0 show ?thesis by auto
qed
next
case False
\{
fix $p q r p^{\prime} q^{\prime}::{ }^{\prime} a$
assume cop: coprime $p q$ and $e q: p^{\prime} * p=q^{\prime} * q$ and $p: p \neq 0$ and $q: q \neq 0$
and $r: r d v d p r d v d q$
let ? $g c d=\operatorname{gcd} q p$
from $e q$ have $p^{\prime} * p d v d q^{\prime} * q$ by auto
hence $d 1: p$ dvd $q^{\prime} * q$ by (rule dvd-mult-right)
have d2: p dvd $q^{\prime} * p$ by auto
from dvd-factor-mult-gcd[OF d1 d2 q p] have 1: p dvd q^{\prime} *?gcd.
from $q p$ have 2: ? gcd dvd q by auto
from $q p$ have 3: ? gcd $d v d p$ by auto
from cop[unfolded coprime-def', rule-format, OF 3 2] have ?gcd dvd 1 .
from 1 dvd-mult-unit-iff [OF this] have $p d v d q^{\prime}$ by auto
\} note main $=$ this
from main[OF coprime eq,of 1] False coprime coprime-commute main[OF -
eq[symmetric], of 1]
show ? $11 \wedge$? g2 by auto
qed
end

```
subclass (in ring-gcd) idom-gcd by (unfold-locales, auto)
lemma coprime-rewrites: comm-monoid-mult.coprime ((*)) 1 = coprime
    apply (intro ext)
    apply (subst comm-monoid-mult.coprime-def')
    apply (unfold-locales)
    apply (unfold dvd-rewrites)
    apply (fold coprime-def') ..
locale gcd-condition =
    fixes ty :: ' }a\mathrm{ :: idom itself
    assumes gcd-exists: \bigwedgea b :: 'a. \existsx. is-gcd x a b
begin
    sublocale idom-gcd (*) 1 :: 'a (+) 0 (-) uminus some-gcd
        rewrites dvd.dvd ((*)) = (dvd)
            and comm-monoid-mult.coprime ((*)) 1 = Unique-Factorization.coprime
        proof-
        have is-gcd (some-gcd a b) ab for ab :: 'a by (intro is-gcd-some-gcdI gcd-exists)
        from this[unfolded is-gcd-def]
        show class.idom-gcd (*) (1:: 'a)(+)0(-)uminus some-gcd by (unfold-locales,
auto simp:dvd-rewrites)
    qed (simp-all add: dvd-rewrites coprime-rewrites)
end
instance semiring-gcd \subseteqcomm-monoid-gcd by (intro-classes, auto)
lemma listgcd-connect: listgcd = gcd-list
proof (intro ext)
    fix xs :: 'a list
    show listgcd xs = gcd-list xs by(induct xs, auto)
qed
interpretation some-gcd: gcd-condition TYPE(' }a::ufd
proof(unfold-locales, intro exI)
    interpret factorial-monoid mk-monoid :: 'a monoid by (fact factorial-monoid)
    note d = dvd.dvd-def some-gcd-def carrier-0
    fix ab :: 'a
    show is-gcd (some-gcd a b) a b
    proof (cases a=0\veeb=0)
        case True
        thus ?thesis using some-gcd-0 by auto
    next
        case False
        with gcdof-exists[of a b]
    show ?thesis by (auto intro!: is-gcd-some-gcdI simp add: is-gcd-connect some-gcd-connect)
    qed
qed
```

lemma some-gcd-listgcd-dvd-listgcd: some-gcd.listgcd xs dvd listgcd xs by (induct xs, auto simp:some-gcd-dvd intro:dvd-imp-gcd-dvd-gcd)
lemma listgcd-dvd-some-gcd-listgcd: listgcd xs dvd some-gcd.listgcd xs by (induct xs, auto simp:some-gcd-dvd intro:dvd-imp-gcd-dvd-gcd)

context factorial-ring-gcd begin

Do not declare the following as subclass, to avoid conflict in field \subseteq gcd-condition vs. factorial-ring-gcd \subseteq gcd-condition.
sublocale as-ufd: ufd
proof (unfold-locales, goal-cases)
case (1 x)
from prime-factorization-exists $[O F\langle x \neq 0\rangle]$
obtain F where $f: \bigwedge f . f \in \# F \Longrightarrow$ prime-elem f and $F x$: normalize (prod-mset F) $=$ normalize x by auto
from associatedE2[OF Fx] obtain u where u : is-unit $u x=u *$ prod-mset F by blast
from $\langle\neg$ is-unit $x\rangle F x$ have $F \neq\{\#\}$ by auto
then obtain $g G$ where $F: F=$ add-mset $g G$ by (cases F, auto)
then have $g \in \# F$ by auto
with $f[O F$ this $]$ prime-elem-iff-irreducible irreducible-mult-unit-left[OF unit-factor-is-unit[OF $\langle x \neq 0\rangle]]$
have g : irreducible $(u * g)$ using $u(1)$
by (subst irreducible-mult-unit-left) simp-all
show ?case
proof (intro exI conjI mset-factorsI)
show prod-mset $(a d d-m s e t(u * g) G)=x$
using $\langle x \neq 0\rangle$ by (simp add: F ac-simps u)
fix f assume $f \in \#$ add-mset $(u * g) G$
with $f[$ unfolded $F] g$ prime-elem-iff-irreducible
show irreducible f by auto
qed auto
next
case (2 x F G)
note transp $D[$ OF multiset.rel-transp[OF ddvd-transp],trans]
obtain $f s$ where F : $F=$ mset f_{s} by (metis ex-mset)
have list-all2 (ddvd) fs (map normalize f_{s}) by (intro list-all2-all-nthI, auto)
then have $F H$: rel-mset (ddvd) F (image-mset normalize F) by (unfold rel-mset-def F, force)
also
have $F G$: image-mset normalize $F=$ image-mset normalize G
proof (intro prime-factorization-unique ${ }^{\prime \prime}$)
from 2 have $x F: x=$ prod-mset F and $x G: x=$ prod-mset G by auto
from $x F$ have normalize $x=$ normalize (prod-mset (image-mset normalize F)) by (simp add: normalize-prod-mset-normalize)
with $x G$ have $n F G: \ldots=$ normalize (prod-mset (image-mset normalize G)) by (simp-all add: normalize-prod-mset-normalize)

```
    then show normalize (\i\in#image-mset normalize F.i)=
                                    normalize (\Pii\in#image-mset normalize G. i) by auto
    next
    from 2 prime-elem-iff-irreducible have f\in#F\Longrightarrow prime-elem fg\in#G\Longrightarrow
prime-elem g}\mathrm{ for fg
        by (auto intro: prime-elemI)
    then show Multiset.Ball (image-mset normalize F) prime
        Multiset.Ball (image-mset normalize G) prime by auto
    qed
    also
        obtain gs where G:G=mset gs by (metis ex-mset)
        have list-all2 ((ddvd) -1-1) gs (map normalize gs) by (intro list-all2-all-nthI,
auto)
    then have rel-mset (ddvd) (image-mset normalize G)G
        by (subst multiset.rel-flip[symmetric], unfold rel-mset-def G, force)
    finally show ?case.
qed
end
instance int :: ufd by (intro class.ufd.of-class.intro as-ufd.ufd-axioms)
instance int :: idom-gcd by (intro-classes, auto)
instance field \subsetequfd by (intro-classes, auto simp:dvd-field-iff)
end
```


4 Unique Factorization Domain for Polynomials

In this theory we prove that the polynomials over a unique factorization domain (UFD) form a UFD.
theory Unique-Factorization-Poly imports
Unique-Factorization
Polynomial-Factorization.Missing-Polynomial-Factorial
Subresultants.More-Homomorphisms
HOL-Computational-Algebra.Field-as-Ring
begin
hide-const (open) module.smult
hide-const (open) Divisibility.irreducible
instantiation fract :: (idom) \{normalization-euclidean-semiring, euclidean-ring\} begin
definition [simp]: normalize-fract \equiv (normalize-field :: 'a fract \Rightarrow-)
definition $[$ simp $]$: unit-factor-fract $=($ unit-factor-field $::$ 'a fract \Rightarrow-)
definition $[$ simp $]$: euclidean-size-fract $=($ euclidean-size-field $::$ 'a fract $\Rightarrow-)$

```
definition [simp]: modulo-fract =(mod-field :: 'a fract }=>\mathrm{ -)
instance by standard (simp-all add: dvd-field-iff divide-simps)
end
instantiation fract :: (idom) euclidean-ring-gcd
begin
definition gcd-fract :: 'a fract }=>\mp@subsup{}{}{\prime}'a fract => 'a fract where
    gcd-fract \equiv Euclidean-Algorithm.gcd
definition lcm-fract :: 'a fract => 'a fract => 'a fract where
    lcm-fract \equivEuclidean-Algorithm.lcm
definition Gcd-fract :: 'a fract set }=>\mathrm{ ''a fract where
    Gcd-fract \equiv Euclidean-Algorithm.Gcd
definition Lcm-fract :: 'a fract set }=>\mp@subsup{|}{}{\prime}a\mathrm{ fract where
    Lcm-fract \equiv Euclidean-Algorithm.Lcm
instance
    by (standard, simp-all add: gcd-fract-def lcm-fract-def Gcd-fract-def Lcm-fract-def)
end
instantiation fract :: (idom) unique-euclidean-ring
begin
definition [simp]: division-segment-fract (x :: 'a fract) = (1 ::'a fract)
instance by standard (auto split: if-splits)
end
instance fract :: (idom) field-gcd by standard auto
definition divides-ff :: 'a::idom fract }=>\mp@subsup{}{}{\prime}'a fract => boo
    where divides-ff x y \equiv\existsr.y=x* to-fract r
lemma ff-list-pairs:
    \exists xs. }X=map(\lambda(x,y). Fraction-Field.Fract x y) xs ^ O# snd'set xs
proof (induct X)
    case (Cons a X)
    from Cons(1) obtain xs where X:X = map ( }\lambda(x,y).\mathrm{ Fraction-Field.Fract x
y) xs and xs: 0 & snd' set xs
    by auto
    obtain x y where a: a= Fraction-Field.Fract x y and y: y\not=0 by (cases a,
auto)
    show ?case unfolding X a using xs y
        by (intro exI[of - (x,y) # xs], auto)
```

lemma divides-ff-to-fract[simp]: divides-ff $($ to-fract $x)$ (to-fract $y) \longleftrightarrow x$ dvd y unfolding divides-ff-def dvd-def
by (simp add: to-fract-def eq-fract(1) mult.commute)

lemma

shows divides-ff-mult-cancel-left[simp]: divides-ff $(z * x)(z * y) \longleftrightarrow z=0 \vee$ divides-ff x y
and divides-ff-mult-cancel-right[simp]: divides-ff $(x * z)(y * z) \longleftrightarrow z=0 \vee$ divides-ff $x y$
unfolding divides-ff-def by auto
definition gcd-ff-list :: 'a::ufd fract list \Rightarrow 'a fract \Rightarrow bool where
gcd-ff-list $X g=($
$(\forall x \in$ set X. divides-ff $g x) \wedge$
$(\forall d .(\forall x \in \operatorname{set} X$. divides-ff $d x) \longrightarrow$ divides-ff $d g))$
lemma gcd-ff-list-exists: \exists g. gcd-ff-list (X :: 'a::ufd fract list) g proof -
interpret some-gcd: idom-gcd (*) 1 :: 'a(+) $0(-)$ uminus some-gcd
rewrites dvd.dvd $((*))=(d v d)$ by (unfold-locales, auto simp: dvd-rewrites)
from ff-list-pairs [of $X]$ obtain $x s$ where $X: X=\operatorname{map}(\lambda(x, y)$. Fraction-Field.Fract $x y) x s$
and $x s: 0 \notin$ snd ' set xs by auto
define r where $r \equiv$ prod-list (map snd $x s$)
have $r: r \neq 0$ unfolding r-def prod-list-zero-iff using $x s$ by auto
define $y s$ where $y s \equiv \operatorname{map}(\lambda(x, y) . x * \operatorname{prod}-l i s t($ remove1 $y($ map snd $x s))) x s$ \{
fix i
assume $i<$ length X
hence $i: i<$ length $x s$ unfolding X by auto
obtain $x y$ where $x s i: x s!i=(x, y)$ by force
with i have $(x, y) \in$ set $x s$ unfolding set-conv-nth by force
hence y-mem: $y \in$ set (map snd xs) by force
with $x s$ have $y: y \neq 0$ by force
from i have $i d 1: y s!i=x *$ prod-list (remove1 y (map snd $x s$)) unfolding
ys-def using xsi by auto
from i xsi have $i d 2: X!i=$ Fraction-Field.Fract $x y$ unfolding X by auto
have $l p$: prod-list (remove1 y (map snd $x s)$) $* y=r$ unfolding r-def
by (rule prod-list-remove1[OF y-mem])
have ys $!i \in$ set ys using i unfolding ys-def by auto
moreover have to-fract (ys!i)=to-fract r $*(X!i)$
unfolding id1 id2 to-fract-def mult-fract
by (subst eq-fract(1), force, force simp: y, simp add: lp)
ultimately have ys $!i \in$ set ys to-fract (ys $!i)=$ to-fract $r *(X!i)$.
\} note $y s=t h i s$
define G where $G \equiv$ some-gcd.listgcd ys
define g where $g \equiv$ to-fract $G *$ Fraction-Field.Fract $1 r$

```
    have len: length X = length ys unfolding X ys-def by auto
    show ?thesis
    proof (rule exI[of - g], unfold gcd-ff-list-def, intro ballI conjI impI allI)
    fix }
    assume x f set X
    then obtain i where i:i< length X and x:x=X!i unfolding set-conv-nth
by auto
    from ys[OF i] have id: to-fract (ys!i)= to-fract r *x
        and ysi:ys!i\in set ys unfolding }x\mathrm{ by auto
    from some-gcd.listgcd[OF ysi] have G dvd ys!i unfolding G-def .
    then obtain d}\mathrm{ where ysi:ys!i=G*d unfolding dvd-def by auto
    have to-fract d* (to-fract G* Fraction-Field.Fract 1 r) =x* (to-fract r *
Fraction-Field.Fract 1 r)
            using id[unfolded ysi]
            by (simp add: ac-simps)
            also have ... = x using r unfolding to-fract-def by (simp add: eq-fract
One-fract-def)
    finally have to-fract d*(to-fract G* Fraction-Field.Fract 1r)=x by simp
    thus divides-ff g x unfolding divides-ff-def g-def
            by (intro exI[of-d], auto)
    next
    fix d
    assume }\forallx\in\mathrm{ set X. divides-ff d x
    hence Ball ((\lambda x. to-fract r*x)' set X) (divides-ff (to-fract r * d)) by simp
    also have ( }\lambdax\mathrm{ . to-fract r*x)' set X = to-fract'set ys
        unfolding set-conv-nth using ys len by force
    finally have dvd: Ball (set ys) ( }\lambda\mathrm{ y. divides-ff (to-fract r * d) (to-fract y)) by
auto
    obtain nd dd where d: d= Fraction-Field.Fract nd dd and dd: dd }\not=0\mathrm{ by
(cases d, auto)
    {
        fix y
        assume y \in set ys
        hence divides-ff (to-fract r*d) (to-fract y) using dvd by auto
        from this[unfolded divides-ff-def d to-fract-def mult-fract]
        obtain ra where Fraction-Field.Fract y 1 = Fraction-Field.Fract (r*nd*
ra) dd by auto
    hence }y*dd=ra*(r*nd) by (simp add: eq-fract dd
    hence r* nd dvd y*dd by auto
    }
    hence r*nd dvd some-gcd.listgcd ys *dd by (rule some-gcd.listgcd-greatest-mult)
    hence divides-ff (to-fract r * d) (to-fract G) unfolding to-fract-def d mult-fract
        G-def divides-ff-def by (auto simp add: eq-fract dd dvd-def)
    also have to-fract G = to-fract r*g unfolding g-def using r
            by (auto simp: to-fract-def eq-fract)
    finally show divides-ff dg using r by simp
    qed
qed
```

definition some-gcd-ff-list :: ' a :: ufd fract list \Rightarrow ' a fract where some-gcd-ff-list $x s=(S O M E$ g. gcd-ff-list $x s$ g)
lemma some-gcd-ff-list: gcd-ff-list xs (some-gcd-ff-list xs) unfolding some-gcd-ff-list-def using gcd-ff-list-exists[of xs] by (rule someI-ex)
lemma some-gcd-ff-list-divides: $x \in$ set $x s \Longrightarrow$ divides-ff (some-gcd-ff-list $x s$) x using some-gcd-ff-list[of xs] unfolding gcd-ff-list-def by auto
lemma some-gcd-ff-list-greatest: $(\forall x \in$ set xs. divides-ff $d x) \Longrightarrow$ divides-ff d (some-gcd-ff-list xs)
using some-gcd-ff-list[of xs] unfolding gcd-ff-list-def by auto
lemma divides-ff-refl[simp]: divides-ff $x x$ unfolding divides-ff-def by (rule exI[of - 1], auto simp: to-fract-def One-fract-def)
lemma divides-ff-trans:
divides-ff $x y \Longrightarrow$ divides-ff $y z \Longrightarrow$ divides-ff $x z$
unfolding divides-ff-def
by (auto simp del: to-fract-hom.hom-mult simp add: to-fract-hom.hom-mult[symmetric])
lemma divides-ff-mult-right: $a \neq 0 \Longrightarrow$ divides-ff $(x *$ inverse $a) y \Longrightarrow$ divides-ff $x(a * y)$
unfolding divides-ff-def divide-inverse[symmetric] by auto
definition eq-dff :: 'a :: ufd fract \Rightarrow 'a fract \Rightarrow bool (infix $=d f f 50$) where $x=$ dff $y \longleftrightarrow$ divides-ff $x y \wedge$ divides-ff $y x$
lemma eq-dffI[intro]: divides-ff $x y \Longrightarrow$ divides-fff $y x \Longrightarrow x=d f f y$ unfolding eq-dff-def by auto
lemma eq-dff-reff[simp]: $x=d f f x$ by (intro eq-dffI, auto)
lemma eq-dff-sym: $x=d f f y \Longrightarrow y=d f f x$ unfolding eq-dff-def by auto
lemma eq-dff-trans[trans]: $x=d f f y \Longrightarrow y=d f f z \Longrightarrow x=d f f z$ unfolding eq-dff-def using divides-ff-trans by auto
lemma eq-dff-cancel-right[simp]: $x * y=d f f x * z \longleftrightarrow x=0 \vee y=d f f z$ unfolding eq-dff-def by auto
lemma eq-dff-mult-right-trans[trans]: $x=d f f y * z \Longrightarrow z=d f f u \Longrightarrow x=d f f y * u$ using eq-dff-trans by force
lemma some-gcd-ff-list-smult: $a \neq 0 \Longrightarrow$ some-gcd-ff-list (map $((*) a)$ xs $)=$ dff a * some-gcd-ff-list xs

```
proof
    let ?g = some-gcd-ff-list (map ((*)a)xs)
    show divides-ff (a* some-gcd-ff-list xs) ?g
        by (rule some-gcd-ff-list-greatest, insert some-gcd-ff-list-divides[of - xs], auto
simp: divides-ff-def)
    assume a: a\not=0
    show divides-ff ?g (a* some-gcd-ff-list xs)
    proof (rule divides-ff-mult-right[OF a some-gcd-ff-list-greatest], intro ballI)
        fix }
        assume x: x f set xs
        have divides-ff (?g*inverse a) x = divides-ff (inverse a * ?g) (inverse a*(a
* x))
            using a by (simp add: field-simps)
        also have ... using ax by (auto intro: some-gcd-ff-list-divides)
        finally show divides-ff (?g * inverse a) x .
    qed
qed
definition content-ff :: 'a::ufd fract poly }=>\mp@subsup{'}{}{\prime}a\mathrm{ fract where
    content-ff p = some-gcd-ff-list (coeffs p)
lemma content-ff-iff: divides-ff }x\mathrm{ (content-ff p) 山( 
x c)(is ?l = ?r)
proof
    assume ?l
    from divides-ff-trans[OF this, unfolded content-ff-def, OF some-gcd-ff-list-divides]
show ?r ..
next
    assume ?r
    thus ?l unfolding content-ff-def by (intro some-gcd-ff-list-greatest, auto)
qed
lemma content-ff-divides-ff: x set (coeffs p)\Longrightarrow divides-ff (content-ff p)x
    unfolding content-ff-def by (rule some-gcd-ff-list-divides)
lemma content-ff-0[simp]: content-ff 0 = 0
    using content-ff-iff[of 0 0] by (auto simp: divides-ff-def)
lemma content-ff-0-iff[simp]:( content-ff p=0)=(p=0)
proof (cases p=0)
    case False
    define a where a \equiv last (coeffs p)
    define xs where xs \equivcoeffs p
    from False
    have mem: a fet (coeffs p) and a: a\not=0
    unfolding a-def last-coeffs-eq-coeff-degree[OF False] coeffs-def by auto
    from content-ff-divides-ff[OF mem] have divides-ff (content-ff p) a .
    with a have content-ff p\not=0 unfolding divides-ff-def by auto
    with False show ?thesis by auto
```

lemma content-ff-eq-dff-nonzero: content-ff $p=d f f x \Longrightarrow x \neq 0 \Longrightarrow p \neq 0$
using divides-ff-def eq-dff-def by force
lemma content-ff-smult: content-ff (smult ($a::^{\prime} a::{ }^{\prime} u f d$ fract) p) $=$ dff $a *$ content-ff
p
proof (cases $a=0$)
case False note $a=$ this
have id: coeffs (smult a p) $=$ map $((*)$ a) (coeffs p)
unfolding coeffs-smult using a by (simp add: Polynomial.coeffs-smult)
show ?thesis unfolding content-ff-def id using some-gcd-ff-list-smult $[O F a]$.
qed simp
definition normalize-content-ff
where normalize-content-ff ($p::^{\prime} a:: u f d$ fract poly) \equiv smult (inverse (content-ff
p)) p
lemma smult-normalize-content-ff: smult $($ content-ff $p)($ normalize-content-ff $p)=$
p
unfolding normalize-content-ff-def
by (cases $p=0$, auto)
lemma content-ff-normalize-content-ff-1: assumes $p 0: p \neq 0$
shows content-ff (normalize-content-ff p) $=$ dff 1
proof -
have content-ff $p=$ content-ff $($ smult (content-ff $p)$ (normalize-content-ff $p)$)
unfolding smult-normalize-content-ff ..
also have $\ldots=$ dff content-ff $p *$ content-ff (normalize-content-ff p) by (rule
content-ff-smult)
finally show ?thesis unfolding eq-dff-def divides-ff-def using $p 0$ by auto
qed
lemma content-ff-to-fract: assumes set (coeffs p) \subseteq range to-fract
shows content-ff $p \in$ range to-fract
proof -
have divides-ff 1 (content-ff p) using assms
unfolding content-ff-iff unfolding divides-ff-def[abs-def] by auto
thus ?thesis unfolding divides-ff-def by auto
qed
lemma content-ff-map-poly-to-fract: content-ff (map-poly to-fract (p :: 'a :: ufd
poly) $) \in$ range to-fract
by (rule content-ff-to-fract, subst coeffs-map-poly, auto)
lemma range-coeffs-to-fract: assumes set (coeffs p) \subseteq range to-fract
shows $\exists m$. coeff $p i=$ to-fract m
proof -
from assms(1) to-fract-0 have coeff $p i \in$ range to-fract using range-coeff [of
$p]$
by auto (metis contra-subsetD to-fract-hom.hom-zero insertE range-eqI) thus ?thesis by auto
qed
lemma divides-ff-coeff: assumes set (coeffs $p) \subseteq$ range to-fract and divides-ff
(to-fract n) (coeff pi)
shows $\exists m$. coeff $p i=$ to-fract $n *$ to-fract m
proof -
from range-coeffs-to-fract[OF assms(1)] obtain k where pi: coeff pi=to-fract
k by auto from assms(2)[unfolded this] have $n d v d k$ by simp then obtain j where k : $k=n * j$ unfolding Rings.dvd-def by auto show ?thesis unfolding pi k by auto
qed
definition inv-embed $::$ ' a :: ufd fract \Rightarrow ' a where inv-embed $=$ the-inv to-fract
lemma inv-embed [simp]: inv-embed (to-fract $x)=x$ unfolding inv-embed-def
by (rule the-inv-f-f, auto simp: inj-on-def)
lemma inv-embed- $0[$ simp $]$: inv-embed $0=0$ unfolding to-fract- $0[$ symmetric $]$ inv-embed by simp

```
lemma range-to-fract-embed-poly: assumes set (coeffs p)\subseteq range to-fract
    shows p= map-poly to-fract (map-poly inv-embed p)
proof -
    have p= map-poly (to-fract o inv-embed) p
        by (rule sym, rule map-poly-idI, insert assms, auto)
    also have ... = map-poly to-fract (map-poly inv-embed p)
        by (subst map-poly-map-poly, auto)
    finally show ?thesis.
qed
lemma content-ff-to-fract-coeffs-to-fract: assumes content-ff p f range to-fract
    shows set (coeffs p)\subseteq range to-fract
proof
    fix }
    assume x set (coeffs p)
    from content-ff-divides-ff[OF this] assms[unfolded eq-dff-def] show }x\in\mathrm{ range
to-fract
    unfolding divides-ff-def by (auto simp del: to-fract-hom.hom-mult simp: to-fract-hom.hom-mult[symmetric]
```

qed
lemma content-ff-1-coeffs-to-fract: assumes content-ff $p=d f f 1$
shows set (coeffs p) \subseteq range to-fract
proof
fix x
assume $x \in$ set (coeffs p)
from content-ff-divides-ff[OF this] assms[unfolded eq-dff-def] show $x \in$ range to-fract
unfolding divides-ff-def by (auto simp del: to-fract-hom.hom-mult simp: to-fract-hom.hom-mult[symmetric] qed
lemma gauss-lemma:
fixes $p q::{ }^{\prime} a$:: ufd fract poly
shows content-ff $(p * q)=d f f$ content-ff $p *$ content-ff q
proof (cases $p=0 \vee q=0$)
case False
hence $p: p \neq 0$ and $q: q \neq 0$ by auto
let $? c=$ content-ff :: 'a fract poly \Rightarrow 'a fract
\{
fix p : : 'a fract poly
assume cp1: ?c $p=d f f 1$ and $c q 1: ? c \quad q=d f f 1$
define $i p$ where $i p \equiv$ map-poly inv-embed p
define $i q$ where $i q \equiv$ map-poly inv-embed q
interpret map-poly-hom: map-poly-comm-ring-hom to-fract..
from content-ff-1-coeffs-to-fract[OF cp1] have cp: set (coeffs p) \subseteq range to-fract
from content-ff-1-coeffs-to-fract[OF cq1] have $c q$: set (coeffs q) \subseteq range to-fract
have $i p: p=$ map-poly to-fract ip unfolding ip-def by (rule range-to-fract-embed-poly[OF cp])
have $i q: q=$ map-poly to-fract $i q$ unfolding $i q$-def
by (rule range-to-fract-embed-poly[OF cq])
have $c p q 0$: ? $c(p * q) \neq 0$
unfolding content-ff-0-iff using cp1 cq1 content-ff-eq-dff-nonzero $[o f-1]$ by auto
have cpq: set $($ coeffs $(p * q)) \subseteq$ range to-fract unfolding $i p ~ i q$
unfolding map-poly-hom.hom-mult[symmetric] to-fract-hom.coeffs-map-poly-hom
by auto
have ctnt: ?c $(p * q) \in$ range to-fract using content-ff-to-fract[OF cpq].
then obtain $c p q$ where $i d: ? c(p * q)=$ to-fract $c p q$ by auto
have dvd: divides-ff $1(? c(p * q))$ using ctnt unfolding divides-ff-def by auto
from $c p q 0[u n f o l d e d i d]$ have $c p q 0: c p q \neq 0$ unfolding to-fract-def Zero-fract-def
by auto
hence $c p q M: c p q \in$ carrier $m k$-monoid by auto
have ?c $(p * q)=d f f 1$
proof (rule ccontr)
assume \neg ? $c(p * q)=d f f 1$
with dvd have \neg divides-ff $(? c(p * q)) 1$
unfolding eq-dff-def by auto
from this[unfolded id divides-ff-def] have cpq: $\bigwedge r . c p q * r \neq 1$
by (auto simp: to-fract-def One-fract-def eq-fract)
then have cpq1: $\neg c p q$ dvd 1 by (auto elim:dvdE simp:ac-simps)
from mset-factors-exist[OF cpq0 cpq1]
obtain F where F : mset-factors $F c p q$ by auto
have $F \neq\{\#\}$ using F by auto
then obtain f where $f: f \in \# F$ by auto
with F have irrf: irreducible f and $f 0: f \neq 0$ by (auto dest: mset-factors D)
from irrf have $p f$: prime-elem f by simp
note $*=$ this[unfolded prime-elem-def]
from $*$ have no-unit: $\neg f$ dvd 1 by auto
from $* f 0$ have prime: $\bigwedge a b . f d v d a * b \Longrightarrow f d v d a \vee f d v d b$ unfolding dvd-def by force
let ? $f=$ to-fract f
from $F f$
have fdvd: $f d v d ~ c p q$ by (auto intro:mset-factors-imp-dvd)
hence divides-ff ?f (to-fract cpq) by simp
from divides-ff-trans[OF this, folded id, OF content-ff-divides-ff]
have $d v d: \wedge z . z \in \operatorname{set}(\operatorname{coeff} s(p * q)) \Longrightarrow$ divides-ff ?f z.
\{
fix p :: 'a fract poly
assume $c p$: ?c $p=d f f 1$
let ? $P=\lambda i$. \neg divides-ff ?f (coeff $p i$)
\{
assume $\forall c \in \operatorname{set}(\operatorname{coeffs} p$). divides-ff ?f c
hence n : divides-ff ?f (?c p) unfolding content-ff-iff by auto
from divides-ff-trans[OF this] cp[unfolded eq-dff-def] have divides-ff ?f 1 by auto
also have $1=$ to-fract 1 by simp
finally have f dvd 1 by (unfold divides-ff-to-fract)
hence False using no-unit unfolding dvd-def by (auto simp: ac-simps)
\}
then obtain $c p$ where $c p: c p \in \operatorname{set}(\operatorname{coeff} s p)$ and $n c p: \neg$ divides-ff ?f $c p$ by auto
hence $c p \in$ range (coeff p) unfolding range-coeff by auto
with ncp have $\exists i$. ?P i by auto
from LeastI-ex[OF this] not-less-Least[of - ? P]
have $\exists i$. ?P $i \wedge(\forall j . j<i \longrightarrow$ divides-ff ?f $($ coeff $p j))$ by blast
$\}$ note cont $=$ this
from cont[OF cp1] obtain r where
$r: \neg$ divides-ff ?f (coeff $p r$) and $r^{\prime}: \wedge i . i<r \Longrightarrow$ divides-ff ?f (coeff $\left.p i\right)$
by auto
have $\forall i . \exists k . i<r \longrightarrow$ coeff $p i=$?f $*$ to-fract k using divides-ff-coeff[OF cp r \quad l by blast
from choice $\left[O F\right.$ this] obtain $r r$ where $r^{\prime}: \bigwedge i . i<r \Longrightarrow$ coeff $p i=$?f $*$ to-fract (rr i) by blast
let $? r=$ coeff $p r$
from cont[$O F c q 1]$ obtain s where $s: \neg$ divides-ff ?f (coeff $q s)$ and $s^{\prime}: \bigwedge i . i<s \Longrightarrow$ divides-ff ?f (coeff $\left.q i\right)$ by auto
have $\forall i . \exists k . i<s \longrightarrow$ coeff $q i=$?f $*$ to-fract k using divides-ff-coeff[OF $\left.c q s^{\prime}\right]$ by blast
from choice $\left[O F\right.$ this] obtain $s s$ where $s^{\prime}: \bigwedge i . i<s \Longrightarrow$ coeff $q i=? f *$
to-fract (ss i) by blast
from range-coeffs-to-fract $[O F c p]$ have $\forall i . \exists m$. coeff $p i=$ to-fract m..
from choice $[O F$ this $]$ obtain $p i$ where $p i$: Λi. coeff $p i=$ to-fract ($p i i$) by blast
from range-coeffs-to-fract[OF $c q]$ have $\forall i . \exists m$. coeff $q i=$ to-fract $m .$.
from choice $[O F$ this] obtain $q i$ where $q i$: $\bigwedge i$. coeff $q i=$ to-fract ($q i i$ i) by blast
let ? $s=$ coeff $q s$
let $? g=\lambda i$. coeff $p i *$ coeff $q(r+s-i)$
define a where $a=\left(\sum i \in\{. .<r\}\right.$. $\left.(r r i * q i(r+s-i))\right)$
define b where $b=\left(\sum i \in\{\right.$ Suc r..r $+s\}$. pi $\left.i *(s s(r+s-i))\right)$
have coeff $(p * q)(r+s)=\left(\sum i \leq r+s\right.$. ?g $\left.i\right)$ unfolding coeff-mult ..
also have $\{. . r+s\}=\{. .<r\} \cup\{r . . r+s\}$ by auto
also have $\left(\sum i \in\{. .<r\} \cup\{r . . r+s\} . ? g i\right)$
$=\left(\sum i \in\{. .<r\} . ? g i\right)+\left(\sum i \in\{r . . r+s\}\right.$. ? $\left.g i\right)$
by (rule sum.union-disjoint, auto)
also have $\left(\sum i \in\{. .<r\}\right.$. ?g $\left.i\right)=\left(\sum i \in\{. .<r\}\right.$. ?f $*($ to-fract $($ rr $i) *$ to-fract $(q i(r+s-i))))$
by (rule sum.cong $[$ OF refl $]$, insert r^{\prime} qi, auto)
also have $\ldots=$ to-fract $(f * a)$ by (simp add: a-def sum-distrib-left)
also have $\left(\sum i \in\{r . . r+s\} . ? g i\right)=? g r+\left(\sum i \in\{\right.$ Suc r..r $+s\}$. ? $\left.g i\right)$
by (subst sum.remove $[o f-r]$, auto intro: sum.cong)
also have $\left(\sum i \in\{S u c\right.$ r..r $+s\}$. ?g $\left.i\right)=\left(\sum i \in\{\right.$ Suc r..r $+s\}$. ?f $*$ (to-fract $($ pi $i) *$ to-fract $(s s(r+s-i)))$)
by (rule sum.cong $[$ OF refl $]$, insert s^{\prime} pi, auto)
also have $\ldots=$ to-fract $(f * b)$ by (simp add: sum-distrib-left b-def)
finally have cpq: coeff $(p * q)(r+s)=$ to-fract $(f *(a+b))+? r * ? s$ by (simp add: field-simps)
\{
fix i
from dvd[of coeff $(p * q) i]$ have divides-ff ?f (coeff $(p * q) i)$ using range-coeff[of $p * q]$ by (cases coeff $(p * q) i=0$, auto simp: divides-ff-def)
\}
from this[of $r+s$, unfolded cpq] have divides-ff ?f (to-fract $(f *(a+b)+$ $p i r * q i s)$)
unfolding pi qi by simp
from this[unfolded divides-ff-to-fract] have f dvd pir * qi s
by (metis dvd-add-times-triv-left-iff mult.commute)
from prime $[O F$ this] have $f d v d$ pi $r \vee f d v d q i s$ by auto
with $r s$ show False unfolding pi qi by auto
qed
$\}$ note main $=$ this
define n where $n \equiv$ normalize-content-ff :: 'a fract poly \Rightarrow 'a fract poly
let $? s=\lambda p$. smult (content-ff p) ($n p$)
have ?c $(p * q)=$?c (?s $p *$?s q) unfolding smult-normalize-content-ff n-def by simp
also have ?s $p *$?s $q=$ smult $(? c \quad p * ? c q)(n p * n q)$ by (simp add: mult.commute)

```
    also have ?c (...) =dff (?c p * ?c q)*?c (n p * n q) by (rule content-ff-smult)
    also have ?c (n p*nq)=dff 1 unfolding n-def
    by (rule main, insert p q, auto simp: content-ff-normalize-content-ff-1)
    finally show ?thesis by simp
qed auto
abbreviation (input) content-ff-ff p \equivcontent-ff (map-poly to-fract p)
lemma factorization-to-fract:
    assumes q:q\not=0 and factor: map-poly to-fract ( }p::' 'a :: ufd poly) = q*
    shows \exists \mp@subsup{q}{}{\prime}\mp@subsup{r}{}{\prime}c.c\not=0\wedgeq= smult c (map-poly to-fract q')}
        r= smult (inverse c) (map-poly to-fract r') ^
        content-ff-ff q}\mp@subsup{q}{}{\prime}=dff 1\wedgep=\mp@subsup{q}{}{\prime}*\mp@subsup{r}{}{\prime
proof -
    let ?c = content-ff
    let ?p = map-poly to-fract p
    interpret map-poly-inj-comm-ring-hom to-fract :: ' }a=\mathrm{ -..
    define cq where cq\equiv normalize-content-ff q
    define cr where cr \equiv smult (content-ff q) r
    define q' where }\mp@subsup{q}{}{\prime}\equiv\mathrm{ map-poly inv-embed cq
    define }\mp@subsup{r}{}{\prime}\mathrm{ where }\mp@subsup{r}{}{\prime}\equiv\mathrm{ map-poly inv-embed cr
    from content-ff-map-poly-to-fract have cp-ff:?c ?p \in range to-fract by auto
    from smult-normalize-content-ff [of q] have cqs:q = smult (content-ff q) cq un-
folding cq-def ..
    from content-ff-normalize-content-ff-1[OF q] have c-cq: content-ff cq =dff 1
unfolding cq-def .
    from content-ff-1-coeffs-to-fract[OF this] have cq-ff: set (coeffs cq) \subseteq range
to-fract.
    have factor: ?p = cq* cr unfolding factor cr-def using cqs
    by (metis mult-smult-left mult-smult-right)
    from gauss-lemma[of cq cr] have cp: ?c ?p = dff ?c cq * ?c cr unfolding factor
    with }c-cq\mathrm{ have ?c ? p = dff ?c cr
    by (metis eq-dff-mult-right-trans mult.commute mult.right-neutral)
    with cp-ff have ?c cr \in range to-fract
    by (metis divides-ff-def to-fract-hom.hom-mult eq-dff-def image-iff range-eqI)
    from content-ff-to-fract-coeffs-to-fract[OF this] have cr-ff: set (coeffs cr)\subseteq range
to-fract by auto
    have cq:cq = map-poly to-fract q' unfolding q'-def
        by (rule range-to-fract-embed-poly[OF cq-ff])
    have cr:cr = map-poly to-fract r' unfolding r'-def
    by (rule range-to-fract-embed-poly[OF cr-ff])
    from factor[unfolded cq cr]
    have p:p=\mp@subsup{q}{}{\prime}*\mp@subsup{r}{}{\prime}}\mathbf{by}(\mathrm{ simp add: injectivity)
    from c-cq have ctnt: content-ff-ff q' =dff 1 using cq q'-def by force
    from cqs have idq: q = smult (?c q) (map-poly to-fract q') unfolding cq.
    with q have cq: ?c q}\not=0\mathrm{ by auto
    have r= smult (inverse (?c q)) cr unfolding cr-def using cq by auto
    also have cr = map-poly to-fract r' by (rule cr)
```

```
    finally have idr:r = smult (inverse (?c q)) (map-poly to-fract r') by auto
    from cq p ctnt idq idr show ?thesis by blast
qed
lemma irreducible-PM-M-PFM:
    assumes irr: irreducible p
    shows degree p=0^ irreducible (coeff p 0) \vee
    degree }p\not=0\wedge irreducible (map-poly to-fract p)^content-ff-ff p=dff 1
proof -
    interpret map-poly-inj-idom-hom to-fract..
    from irr[unfolded irreducible-altdef]
    have p0:p\not=0 and irr: }\neg\textrm{p}dvd 1\bigwedgeb.b dvd p\Longrightarrow\negp dvd b\Longrightarrowb dvd 1 by
auto
    show ?thesis
    proof (cases degree p=0)
        case True
        from degree0-coeffs[OF True] obtain a where p:p=[:a:] by auto
        note irr = irr[unfolded p]
        from p p0 have a0:a\not=0 by auto
        moreover have }\neg\mathrm{ a dvd 1 using irr(1) by simp
        moreover {
            fix b
            assume b dvd a \neg a dvd b
            hence [:b:] dvd [:a:] \neg [:a:] dvd [:b:] unfolding const-poly-dvd .
            from irr(2)[OF this] have b dvd 1 unfolding const-poly-dvd-1 .
        }
        ultimately have irreducible a unfolding irreducible-altdef by auto
        with True show ?thesis unfolding p by auto
    next
        case False
        let ?E = map-poly to-fract
        let ?p = ?E p
        have dp: degree ? }p\not=0\mathrm{ using False by simp
        from p0 have p':?p}\not=0\mathrm{ by simp
        moreover have \neg ?p dvd 1
            proof
            assume ?p dvd 1 then obtain q}\mathrm{ where id: ?p * q=1 unfolding dvd-def
by auto
            have deg: degree (?p * q) = degree ?p + degree q
                    by (rule degree-mult-eq, insert id, auto)
            from arg-cong[OF id, of degree, unfolded deg] dp show False by auto
        qed
    moreover {
        fix q
        assume q dvd ?p and ndvd: ᄀ ?p dvd q
        then obtain r where fact: ? p = q*r unfolding dvd-def by auto
        with p' have q0: q}\not=0\mathrm{ by auto
        from factorization-to-fract[OF this fact] obtain q' r'c where *: c\not=0 q=
smult c (?E q')
```

```
    r=smult (inverse c)(?E r') content-ff-ff q' =dff 1
    p=\mp@subsup{q}{}{\prime}*\mp@subsup{r}{}{\prime}}\mathrm{ by auto
    hence }\mp@subsup{q}{}{\prime}dvdp\mathrm{ unfolding dvd-def by auto
    note irr = irr(2)[OF this]
    have }\negp\mathrm{ dvd q'
    proof
        assume pdvd q}\mp@subsup{}{}{\prime
        then obtain u where q}\mp@subsup{q}{}{\prime}:\mp@subsup{q}{}{\prime}=p*u\mathrm{ unfolding dvd-def by auto
        from arg-cong[OF this, of \lambda x. smult c (?E x), unfolded *(2)[symmetric]]
        have q=? p * smult c (?E u) by simp
        hence ?p dvd q unfolding dvd-def by blast
        with ndvd show False ..
    qed
    from irr[OF this] have q' dvd 1.
    from divides-degree[OF this] have degree q'}=0\mathrm{ by auto
    from degree0-coeffs[OF this] obtain }\mp@subsup{a}{}{\prime}\mathrm{ where }\mp@subsup{q}{}{\prime}=[:\mp@subsup{a}{}{\prime}:] by aut
    from *(2)[unfolded this] obtain a where q: q= [:a:]
        by (simp add: to-fract-hom.map-poly-pCons-hom)
    with q0 have a: a\not=0 by auto
    have q dvd 1 unfolding q const-poly-dvd-1 using a unfolding dvd-def
    by (intro exI[of - inverse a], auto)
    }
    ultimately have irr-p': irreducible ?p unfolding irreducible-altdef by auto
    let ?c = content-ff
    have ?c ?p \in range to-fract
    by (rule content-ff-to-fract, unfold to-fract-hom.coeffs-map-poly-hom, auto)
    then obtain c where cp:?c ?p = to-fract c by auto
    from p}\mp@subsup{p}{}{\prime}cp\mathrm{ have }c:c\not=0\mathrm{ by auto
    have ?c ?p = dff 1 unfolding cp
    proof (rule ccontr)
    define cp where cp= normalize-content-ff ?p
    from smult-normalize-content-ff[of ?p] have cps:?p = smult (to-fract c) cp
unfolding cp-def cp ..
    from content-ff-normalize-content-ff-1[OF p] have c-cp:content-ff cp =dff 1
unfolding cp-def .
            from range-to-fract-embed-poly[OF content-ff-1-coeffs-to-fract[OF c-cp]] ob-
tain cp' where cp=?E cp' by auto
    from cps[unfolded this] have p=smult c cp' by (simp add: injectivity)
    hence dvd:[:c:] dvd p unfolding dvd-def by auto
    have }\negp\mathrm{ dvd [:c:] using divides-degree[of p [:c:]] c False by auto
    from irr(2)[OF dvd this] have c dvd 1 by simp
    assume \neg to-fract c =dff 1
    from this[unfolded eq-dff-def One-fract-def to-fract-def[symmetric] divides-ff-def
to-fract-mult]
    have c1:\r.1\not=c*r by (auto simp: ac-simps simp del: to-fract-hom.hom-mult
simp: to-fract-hom.hom-mult[symmetric])
            with 〈c dvd 1〉 show False unfolding dvd-def by blast
    qed
    with False irr-p' show ?thesis by auto
```

```
    qed
qed
lemma irreducible-M-PM:
    fixes p :: 'a :: ufd poly assumes 0: degree p = 0 and irr: irreducible (coeff p 0)
    shows irreducible p
proof (cases p=0)
    case True
    thus ?thesis using assms by auto
next
    case False
    from degree0-coeffs[OF 0] obtain a where p: p=[:a:] by auto
    with False have a0: a\not=0 by auto
    from p irr have irreducible a by auto
    from this[unfolded irreducible-altdef]
    have a1: ᄀ a dvd 1 and irr: \bigwedge b. b dvd a \Longrightarrow ᄀa dvd b\Longrightarrowb dvd 1 by auto
    {
        fix b
        assume *: b dvd [:a:] ᄀ [:a:] dvd b
        from divides-degree[OF this(1)] a0 have degree b=0 by auto
        from degree0-coeffs[OF this] obtain bb where b:b=[:bb:] by auto
        from * irr[of bb] have b dvd 1 unfolding b const-poly-dvd by auto
    }
    with a0 a1 show ?thesis by (auto simp: irreducible-altdef p)
qed
lemma primitive-irreducible-imp-degree:
    primitive (p::'a::{semiring-gcd,idom} poly) \Longrightarrow irreducible p degree p>0
    by (unfold irreducible-primitive-connect[symmetric], auto)
lemma irreducible-degree-field:
    fixes p :: 'a :: field poly assumes irreducible p
    shows degree p>0
proof-
    {
        assume degree p=0
        from degree0-coeffs[OF this] assms obtain a where p:p=[:a:] and a: a\not=0
by auto
    hence 1=p*[:inverse a:] by auto
    hence pdvd 1 ..
    hence p\inUnits mk-monoid by simp
    with assms have False unfolding irreducible-def by auto
    } then show ?thesis by auto
qed
lemma irreducible-PFM-PM: assumes
    irr: irreducible (map-poly to-fract p) and ct:content-ff-ff p =dff 1
    shows irreducible p
proof -
```

let $? E=$ map-poly to-fract
let $? p=$? $E p$
from ct have $p 0: p \neq 0$ by (auto simp: eq-dff-def divides-ff-def) moreover
from irreducible-degree-field $[O F$ irr $]$ have deg: degree $p \neq 0$ by simp
from irr[unfolded irreducible-altdef]
have irr: $\bigwedge b . b d v d ? p \Longrightarrow \neg ? p$ dvd $b \Longrightarrow b d v d 1$ by auto
have $\neg p$ dvd 1 using deg divides-degree[of $p 1]$ by auto
moreover \{
fix q :: 'a poly
assume $d v d: q d v d p$ and $n d v d: \neg p d v d q$
from dvd obtain r where $p q r: p=q * r$..
from arg-cong $[O F$ this, of ? $E]$ have $p q r^{\prime}: ? p=? E q *$?E r by simp
from $p 0$ pqr have $q: q \neq 0$ and $r: r \neq 0$ by auto
have $d p$: degree $p=$ degree $q+$ degree r unfolding $p q r$
by (subst degree-mult-eq, insert q r, auto)
from eq-dff-trans[OF eq-dff-sym[OF gauss-lemma[of ?E q ?E r, folded pqr $\left.{ }^{\prime}\right]$ ct] have ct: content-ff $(? E q) *$ content-ff $(? E r)=d f f 1$.
from content-ff-map-poly-to-fract obtain $c q$ where $c q$: content-ff $(? E q)=$ to-fract $c q$ by auto
from content-ff-map-poly-to-fract obtain cr where cr: content-ff (?E r) $=$ to-fract cr by auto
note $c t[u n f o l d e d ~ c q ~ c r ~ t o-f r a c t-m u l t ~ e q-d f f-d e f ~ d i v i d e s-f f-d e f] ~] ~$
from this[folded hom-distribs]
obtain c where $c: c q * c r * c=1$ by (auto simp del: to-fract-hom.hom-mult simp: to-fract-hom.hom-mult[symmetric])
hence one: $1=c q *(c * c r) 1=c r *(c * c q)$ by (auto simp: ac-simps)
\{
assume $*$: degree $q \neq 0 \wedge$ degree $r \neq 0$
with $d p$ have degree $q<$ degree p by auto
hence degree (? $\mathrm{E} q$) < degree (?E p) by simp
hence ndvd: ᄀ?p dvd ?E q using divides-degree[of ?p ?E q] q by auto
have ? E q dvd ? p unfolding $p q r^{\prime}$ by auto
from $\operatorname{irr}[O F$ this ndvd $]$ have ? E q dvd 1 .
from divides-degree $[O F$ this] $*$ have False by auto
\}
hence degree $q=0 \vee$ degree $r=0$ by blast
then have $q d v d 1$
proof
assume degree $q=0$
from degree0-coeffs[OF this] q obtain a where $q: q=[: a:]$ and $a: a \neq 0$ by auto
hence id: set (coeffs $(? E q))=\{$ to-fract a $\}$ by auto
have divides-ff (to-fract a) (content-ff (?E q)) unfolding content-ff-iff id by auto
from this[unfolded cq divides-ff-def, folded hom-distribs]
obtain $r r$ where $c q$: $c q=a * r r$ by (auto simp del: to-fract-hom.hom-mult simp: to-fract-hom.hom-mult[symmetric])
with one(1) have $1=a *(r r * c * c r)$ by (auto simp: ac-simps)

```
        hence a dvd 1 ..
        thus ?thesis by (simp add: q)
    next
        assume degree r=0
        from degree0-coeffs[OF this] r obtain a where r:r=[:a:] and a:a\not=0 by
auto
    hence id: set (coeffs (?E r)) = {to-fract a} by auto
    have divides-ff (to-fract a) (content-ff (?E r)) unfolding content-ff-iff id by
auto
    note this[unfolded cr divides-ff-def to-fract-mult]
    note this[folded hom-distribs]
    then obtain rr where cr:cr=a*rr by (auto simp del: to-fract-hom.hom-mult
simp: to-fract-hom.hom-mult[symmetric])
            with one(2) have one: 1 =a*(rr*c* cq) by (auto simp: ac-simps)
            from arg-cong[OF pqr[unfolded r], of \lambda p. p* [:rr*c*cq:]]
            have p*[:rr*c*cq:] = q*[:a*(rr*c*cq):] by (simp add: ac-simps)
            also have ... = q unfolding one[symmetric] by auto
            finally obtain r where q=p*r by blast
            hence p dvd q..
            with ndvd show ?thesis by auto
        qed
    }
    ultimately show ?thesis by (auto simp:irreducible-altdef)
qed
lemma irreducible-cases: irreducible p}
    degree p=0^ irreducible (coeff p 0) \vee
    degree p\not=0\wedge irreducible (map-poly to-fract p)^ content-ff-ff p =dff 1
    using irreducible-PM-M-PFM irreducible-M-PM irreducible-PFM-PM
    by blast
lemma dvd-PM-iff: p dvd q\longleftrightarrow divides-ff (content-ff-ff p) (content-ff-ff q)}
    map-poly to-fract p dvd map-poly to-fract q
proof -
    interpret map-poly-inj-idom-hom to-fract..
    let ?E = map-poly to-fract
    show ?thesis (is ?l = ?r)
    proof
    assume pdvd q
    then obtain r where qpr: q=p*r ..
    from arg-cong[OF this, of ?E]
    have dvd: ?E p dvd ?E q by auto
    from content-ff-map-poly-to-fract obtain cq where cq: content-ff-ff q = to-fract
cq by auto
    from content-ff-map-poly-to-fract obtain cp where cp: content-ff-ff p = to-fract
cp by auto
    from content-ff-map-poly-to-fract obtain cr where cr: content-ff-ff r = to-fract
cr by auto
    from gauss-lemma[of ?E p ?E r, folded hom-distribs qpr, unfolded cq cp cr]
```

```
    have divides-ff (content-ff-ff p) (content-ff-ff q) unfolding cq cp eq-dff-def
            by (metis divides-ff-def divides-ff-trans)
    with dvd show ?r by blast
next
    assume ?r
    show ?l
    proof (cases q=0)
        case True
        with 〈?r〉 show ?l by auto
    next
        case False note q= this
    hence q': ?E q}\not=0\mathrm{ by auto
        from \langle?r\rangle obtain rr where qpr: ?E q=?E p*rr unfolding dvd-def by
auto
        with q have p: p\not=0 and Ep: ?E p\not=0 and rr: rr \not=0 by auto
        from gauss-lemma[of ?E p rr, folded qpr]
        have ct: content-ff-ff q=dff content-ff-ff p * content-ff rr
            by auto
        from content-ff-map-poly-to-fract[of p] obtain cp where cp: content-ff-ff p
= to-fract cp by auto
    from content-ff-map-poly-to-fract[of q] obtain cq where cq: content-ff-ff q =
to-fract cq by auto
    from 〈?r〉[unfolded cp cq] have divides-ff (to-fract cp) (to-fract cq) ..
    with ct[unfolded cp cq eq-dff-def] have content-ff rr \in range to-fract
            by (metis (no-types, lifting) Ep content-ff-0-iff cp divides-ff-def
            divides-ff-trans mult.commute mult-right-cancel range-eqI)
    from range-to-fract-embed-poly[OF content-ff-to-fract-coeffs-to-fract[OF this]]
obtain r
            where rr: rr =?E r by auto
            from qpr[unfolded rr, folded hom-distribs]
            have q}=p*r\mathrm{ by (rule injectivity)
            thus p dvd q..
            qed
    qed
qed
lemma factorial-monoid-poly: factorial-monoid (mk-monoid :: 'a :: ufd poly monoid)
proof (fold factorial-condition-one, intro conjI)
    interpret M: factorial-monoid mk-monoid :: 'a monoid by (fact factorial-monoid)
    interpret PFM: factorial-monoid mk-monoid :: 'a fract poly monoid
        by (rule as-ufd.factorial-monoid)
    interpret PM: comm-monoid-cancel mk-monoid :: 'a poly monoid by (unfold-locales,
auto)
    let ?E = map-poly to-fract
    show divisor-chain-condition-monoid (mk-monoid::'a poly monoid)
    proof (unfold-locales, unfold mk-monoid-simps)
        let ?rel' = {(x::'a poly, y). x\not=0\wedge y = 0^ properfactor x y}
        let ?rel'"}={(x::'a,y).x\not=0\wedgey\not=0\wedge properfactor x y
        let ?relPM = {(x,y). x\not=0\wedge y\not=0\wedge x dvd y^\negy dvd (x :: 'a poly)}
```

```
    let ?relM = {(x,y). x\not=0^y\not=0\wedgex dvd y^\negy dvd (x::'a)}
    have id: ?rel' = ?relPM using properfactor-nz by auto
    have id': ?rel"\prime = ?relM using properfactor-nz by auto
    have wf ?rel" using M.division-wellfounded by auto
    hence wfM: wf ? relM using id' by auto
    let ?c = \lambda p. inv-embed (content-ff-ff p)
    let ?f = \lambda p. (degree p, ?c p)
    note wf = wf-inv-image[OF wf-lex-prod[OF wf-less wfM], of ?f]
    show wf ?rel' unfolding id
    proof (rule wf-subset[OF wf], clarify)
    fix p q :: 'a poly
    assume p: p\not=0 and q: q\not=0 and dvd: p dvd q and ndvd: \neg q dvd p
    from dvd obtain r where qpr: q=p*r..
    from degree-mult-eq[of p r, folded qpr] q qpr have r: r}\not=
        and deg: degree q= degree p+degree r by auto
    show (p,q)\ininv-image ({(x,y). x<y}<*lex*> ?relM) ?f
    proof (cases degree p= degree q)
        case False
        with deg have degree p< degree q by auto
        thus ?thesis by auto
    next
        case True
        with deg have degree r=0 by simp
        from degree0-coeffs[OF this] r obtain a where ra: r= [:a:] and a:a\not=0
by auto
            from arg-cong[OF qpr, of \lambda p. ?E p * [:inverse (to-fract a):]] a
            have ?E p=?E q*[:inverse (to-fract a):]
                by (auto simp: ac-simps ra)
            hence ?E q dvd ?E p ..
            with ndvd dvd-PM-iff have ndvd: ᄀ divides-ff (content-ff-ff q) (content-ff-ff
p) by auto
            from content-ff-map-poly-to-fract obtain cq where cq: content-ff-ff q =
                to-fract cq by auto
            from content-ff-map-poly-to-fract obtain cp where cp: content-ff-ff p =
to-fract cp by auto
            from ndvd[unfolded cp cq] have ndvd: \neg cq dvd cp by simp
            from iffD1[OF dvd-PM-iff,OF dvd,unfolded cq cp]
            have dvd: cp dvd cq by simp
            have c-p: ?c p = cp unfolding cp by simp
            have c-q: ?c q=cqu unfolding cq by simp
            from q cq have cq0: cq\not=0 by auto
            from }pcp\mathrm{ have cp0:cp}\not=0\mathrm{ by auto
            from ndvd cq0 cp0 dvd have (?c p, ?c q) \in ?relM unfolding c-p c-q by
auto
            with True show ?thesis by auto
            qed
    qed
qed
show primeness-condition-monoid (mk-monoid::'a poly monoid)
```

```
    proof (unfold-locales, unfold mk-monoid-simps)
```

 fix \(p\) :: 'a poly
 assume \(p: p \neq 0\) and irred \(p\)
 then have irr: irreducible \(p\) by auto
 from \(p\) have \(p^{\prime}\) : ? E \(p \neq 0\) by auto
 from irreducible-PM-M-PFM[OF irr] have choice: degree \(p=0 \wedge\) irred (coeff
 p0)
\vee degree $p \neq 0 \wedge$ irred $($? $E p) \wedge$ content-ff-ff $p=d f f 1$ by auto
show Divisibility.prime $m k$-monoid p
proof (rule Divisibility.primeI, unfold mk-monoid-simps mem-Units)
show $\neg p d v d 1$
proof
assume $p d v d 1$
from divides-degree $[O F$ this] have $d p$: degree $p=0$ by auto
from degree 0 -coeffs $[$ OF this] p obtain a where $p: p=[: a:]$ and $a: a \neq 0$
by auto
with choice have irr: irreducible a by auto
from $\langle p$ dvd 1$\rangle[$ unfolded p] have a dvd 1 by auto
with irr show False unfolding irreducible-def by auto
qed
fix q r :: 'a poly
assume $q: q \neq 0$ and $r: r \neq 0$ and factor $p(q * r)$
from this[unfolded factor-idom] have $p d v d q * r$ by auto
from iffD1 $[O F$ dvd-PM-iff this $]$ have dvd-ct: divides-ff (content-ff-ff p)
(content-ff $(? E(q * r)))$
and dvd-E: ? $E p d v d$? $E q *$? $E r$ by auto
from gauss-lemma[of ?E q ?E r] divides-ff-trans[OF dvd-ct, of content-ff-ff q

* content-ff-ff r]
have dvd-ct: divides-ff (content-ff-ff p) (content-ff-ff $q *$ content-ff-ff r)
unfolding eq-dff-def by auto
from choice
have $p d v d q \vee p d v d r$
proof
assume degree $p \neq 0 \wedge$ irred (?E $p) \wedge$ content-ff-ff $p=$ dff 1
hence deg: degree $p \neq 0$ and irr: irred (?E p) and ct: content-ff-ff $p=$ dff
1 by auto
from PFM.irreducible-prime $[O F$ irr $]$ p have prime: Divisibility.prime
$m k$-monoid (?E p) by auto
from $q r$ have $E q: ? E q \in$ carrier $m k$-monoid and $E r: ? E r \in$ carrier
$m k$-monoid
and $q^{\prime}: ? E q \neq 0$ and $r^{\prime}: ? E r \neq 0$ and $q r^{\prime}: ? E q * ? E r \neq 0$ by auto
from PFM.prime-divides[OF Eq Er prime] $q^{\prime} r^{\prime} q r^{\prime} d v d-E$
have $d v d-E$: ?E $p d v d$? $E q \vee$?E $p d v d$?E r by simp
from $c t$ have $c t$: divides-ff (content-ff-ff p) 1 unfolding eq-dff-def by auto
moreover have $\wedge q$. divides-ff 1 (content-ff-ff q) using content-ff-map-poly-to-fract
unfolding divides-ff-def by auto
from divides-ff-trans[OF ct this] have $c t: \wedge q$. divides-ff (content-ff-ff p)
(content-ff-ff q).
with dvd-E show ?thesis using $d v d-P M$-iff by blast
next
assume degree $p=0 \wedge$ irred (coeff $p 0)$
hence deg: degree $p=0$ and irr: irred (coeff $p 0$) by auto
from degree 0 -coeffs $[O F$ deg] p obtain a where $p: p=[: a:]$ and $a: a \neq 0$ by auto
with irr have irr: irred a and $a M: a \in$ carrier mk-monoid by auto
from M.irreducible-prime $[O F$ irr $a M]$ have prime: Divisibility.prime mk-monoid a.
from content-ff-map-poly-to-fract obtain $c q$ where $c q$: content-ff-ff $q=$ to-fract $c q$ by auto
from content-ff-map-poly-to-fract obtain $c p$ where $c p$: content-ff-ff $p=$ to-fract $c p$ by auto
from content-ff-map-poly-to-fract obtain $c r$ where $c r$: content-ff-ff $r=$ to-fract cr by auto
have divides-ff (to-fract a) (content-ff-ff p) unfolding p content-ff-iff using a by auto
from divides-ff-trans[OF this[unfolded cp] dvd-ct[unfolded $c p$ cq cr]]
have divides-ff (to-fract a) (to-fract $(c q * c r)$) by simp
hence $d v d:$ a dvd $c q * c r$ by (auto simp add: divides-ff-def simp del: to-fract-hom.hom-mult simp: to-fract-hom.hom-mult[symmetric])
from content-ff-divides-ff [of to-fract a ?E p] have divides-ff (to-fract cp) (to-fract a)
using $c p$ a p by auto
hence $c p a$: $c p d v d$ a by simp
from $a q r c q$ cr have $a M: a \in$ carrier mk-monoid and $q M: c q \in$ carrier $m k$-monoid and $r M: c r \in$ carrier mk-monoid
and $q^{\prime}: c q \neq 0$ and $r^{\prime}: c r \neq 0$ and $q r^{\prime}: c q * c r \neq 0$
by auto
from M.prime-divides[OF $q M r M$ prime $] q^{\prime} r^{\prime} q r^{\prime} d v d$
have $a d v d c q \vee a d v d$ cr by simp
with dvd-trans[OF cpa] have dvd: cp dvd $c q \vee c p$ dvd $c r$ by auto
have $\bigwedge q$. ? $E p *($ smult $($ inverse $($ to-fract $a)) q)=q$ unfolding p using a by (auto simp: one-poly-def)
hence Edvd: $\bigwedge q$. ?E p dvd q unfolding dvd-def by metis
from dvd Edvd show ?thesis apply (subst(1 2) dvd-PM-iff) unfolding $c p$ $c q c r$ by auto
qed
thus factor $p q \vee$ factor $p r$ unfolding factor-idom using $p q r$ by auto
qed
qed
qed
instance poly :: (ufd) ufd
by (intro class.ufd.of-class.intro factorial-monoid-imp-ufd factorial-monoid-poly)
lemma primitive-iff-some-content-dvd-1:
fixes f :: ' a :: ufd poly
shows primitive $f \longleftrightarrow$ some-gcd.listgcd (coeffs f) dvd 1 (is $-\longleftrightarrow$?c dvd 1)

```
proof(intro iffI primitiveI)
    fix }
    assume (\y.y\in\operatorname{set (coeffs f) \Longrightarrowxdvd y)}
    from some-gcd.listgcd-greatest[of coeffs f,OF this]
    have x dvd ?c by simp
    also assume ?c dvd 1
    finally show }x\mathrm{ dvd 1.
next
    assume primitive f
    from primitiveD[OF this some-gcd.listgcd[of - coeffs f]]
    show ?c dvd 1 by auto
qed
end
```


5 Polynomials in Rings and Fields

5.1 Polynomials in Rings

We use a locale to work with polynomials in some integer-modulo ring.

```
theory Poly-Mod
    imports
    HOL-Computational-Algebra.Primes
    Polynomial-Factorization.Square-Free-Factorization
    Unique-Factorization-Poly
begin
locale poly-mod \(=\) fixes \(m::\) int
begin
definition \(M::\) int \(\Rightarrow\) int where \(M x=x \bmod m\)
lemma \(M-0[\) simp \(]: M 0=0\)
    by (auto simp add: M-def)
lemma \(M-M[\) simp \(]: M(M x)=M x\)
    by (auto simp add: M-def)
lemma \(M\)-plus \([\) simp \(]: M(M x+y)=M(x+y) M(x+M y)=M(x+y)\)
    by (auto simp add: M-def mod-simps)
lemma \(M\)-minus \([\operatorname{simp}]: M(M x-y)=M(x-y) M(x-M y)=M(x-y)\)
    by (auto simp add: M-def mod-simps)
lemma \(M\)-times \([\operatorname{simp}]: M(M x * y)=M(x * y) M(x * M y)=M(x * y)\)
    by (auto simp add: M-def mod-simps)
lemma \(M\)-sum: \(M(\operatorname{sum}(\lambda x . M(f x)) A)=M(\operatorname{sum} f A)\)
proof (induct \(A\) rule: infinite-finite-induct)
```

```
    case (insert x A)
    from insert(1-2) have M(\sumx\ininsert x A.M (fx))=M(fx+M((\sumx\inA.
M(fx)))) by simp
    also have M ((\sumx\inA.M (fx))) = M ((\sumx\inA.f x)) using insert by simp
    finally show ?case using insert by simp
qed auto
definition inv-M :: int }=>\mathrm{ int where
    inv-M=( }\lambda\mathrm{ x. if }x+x\leqm\mathrm{ then }x\mathrm{ else }x-m
lemma M-inv-M-id[simp]:M(inv-Mx)=Mx
    unfolding inv-M-def M-def by simp
definition Mp :: int poly }=>\mathrm{ int poly where Mp = map-poly M
lemma Mp-0[simp]: Mp 0 = 0 unfolding Mp-def by auto
lemma Mp-coeff: coeff (Mp f) i=M (coeff fi) unfolding Mp-def
    by (simp add:M-def coeff-map-poly)
abbreviation eq-m :: int poly }=>\mathrm{ int poly }=>\mathrm{ bool (infixl =m 50) where
    f=mg \equiv(Mpf=Mpg)
notation eq-m(infixl =m 50)
abbreviation degree-m :: int poly }=>\mathrm{ nat where
    degree-mf \equivdegree (Mp f)
lemma mult-Mp[simp]: Mp (Mpf*g) =Mp(f*g)Mp(f*Mpg)=Mp(f*
g)
proof -
    {
        fix fg
        have Mp}(Mpf*g)=Mp(f*g
        unfolding poly-eq-iff Mp-coeff unfolding coeff-mult Mp-coeff
        proof
            fix n
            show M (\sumi\leqn.M (coeff fi)* coeff g (n-i))=M(\sumi\leqn.coeff fi*
coeff g}(n-i)
            by (subst M-sum[symmetric], rule sym, subst M-sum[symmetric], unfold
M-times, simp)
        qed
    }
    from this[offg] this[of gf] show Mp (Mpf*g) = Mp(f*g)Mp(f*Mpg)
= Mp (f*g)
    by (auto simp: ac-simps)
qed
```

lemma plus-Mp[simp]: $M p(M p f+g)=M p(f+g) M p(f+M p g)=M p(f+$ g)
unfolding poly-eq-iff Mp-coeff unfolding coeff-mult Mp-coeff by (auto simp add: Mp-coeff)
lemma minus- $M p[s i m p]: M p(M p f-g)=M p(f-g) M p(f-M p g)=M p(f$ $-g$)
unfolding poly-eq-iff Mp-coeff unfolding coeff-mult Mp-coeff by (auto simp add: Mp-coeff)
lemma $M p$-smult $[$ simp $]: M p($ smult $(M a) f)=M p($ smult a f) $M p($ smult a $(M p$ f) $)=M p$ (smult a f)
unfolding Mp-def smult-as-map-poly
by (rule poly-eqI, auto simp: coeff-map-poly)+
lemma $M p-M p[s i m p]: M p(M p f)=M p f$ unfolding $M p-d e f$
by (intro poly-eqI, auto simp: coeff-map-poly)
lemma $M p$-smult-m- $0[$ simp $]: M p($ smult $m f)=0$
by (intro poly-eqI, auto simp: Mp-coeff, auto simp: M-def)
definition $d v d m::$ int poly \Rightarrow int poly \Rightarrow bool (infix $d v d m$ 50) where
$f d v d m g=(\exists h . g=m f * h)$
notation $d v d m$ (infix $d v d m$ 50)
lemma $d v d m E$:
assumes $f g: f d v d m g$
and main: $\bigwedge h . g=m f * h \Longrightarrow M p h=h \Longrightarrow$ thesis
shows thesis

proof-

from $f g$ obtain h where $g=m f * h$ by (auto simp: dvdm-def)
then have $g=m f * M p h$ by auto
from main $[O F$ this $]$ show thesis by auto
qed
lemma $M p-d v d m[s i m p]: M p f d v d m g \longleftrightarrow f d v d m g$ and $d v d m-M p[s i m p]: f d v d m \quad M p g \longleftrightarrow f d v d m g$ by (auto simp: dvdm-def)
definition irreducible-m
where irreducible-m $f=(\neg f=m 0 \wedge \neg f d v d m 1 \wedge(\forall a b . f=m a * b \longrightarrow a$ $d v d m 1 \vee b d v d m 1))$
definition irreducible $_{d}-m::$ int poly \Rightarrow bool where $_{\text {irreducible }}^{d}$ - $m f \equiv$
degree-m $f>0 \wedge$
$(\forall g h$. degree- $m g<$ degree- $m f \longrightarrow$ degree- $m h<$ degree- $m f \longrightarrow \neg f=m g *$ h)
definition prime-elem-m
where prime-elem-m $f \equiv \neg f=m 0 \wedge \neg f d v d m 1 \wedge(\forall g h . f d v d m g * h \longrightarrow f$ $d v d m g \vee f d v d m h)$
lemma degree-m-le-degree [intro!]: degree-m $f \leq \operatorname{degree} f$
by (simp add: Mp-def degree-map-poly-le)
lemma irreducible $_{d}-m I$
assumes $f 0$: degree- $m f>0$
and main: $\bigwedge g h . M p g=g \Longrightarrow M p h=h \Longrightarrow$ degree $g>0 \Longrightarrow$ degree $g<$ degree- $m f \Longrightarrow$ degree $h>0 \Longrightarrow$ degree $h<$ degree- $m f \Longrightarrow f=m g * h \Longrightarrow$ False shows irreducible $_{d}-m f$
proof (unfold irreducible d_{d}-m-def, intro conjI allI impI f0 notI)
fix $g h$
assume deg: degree-m $g<$ degree- $m f$ degree- $m h<\operatorname{degree}-m f$ and $f=m g * h$
then have $f: f=m M p g * M p h$ by simp
have degree-m $f \leq$ degree-m $g+$ degree- $m h$
unfolding f using degree-mult-le order.trans by blast
with main $[o f ~ M p g M p h] \operatorname{deg} f$ show False by auto
qed
lemma irreducible $_{d}-m E$:
assumes irreducible $_{d}-m f$
and degree-m $f>0 \Longrightarrow(\bigwedge g h$. degree-m $g<$ degree- $m f \Longrightarrow$ degree- $m h<$
degree- $m f \Longrightarrow \neg f=m g * h) \Longrightarrow$ thesis
shows thesis
using assms by (unfold irreducible $d_{d}-m$-def, auto)
lemma irreducible $_{d}-m D$:
assumes irreducible $_{d}-m f$
shows degree-m $f>0$ and $\bigwedge g h$. degree-m $g<$ degree- $m f \Longrightarrow$ degree- $m h<$ degree- $m f \Longrightarrow \neg f=m g * h$
using assms by (auto elim: irreducible ${ }_{d}-m E$)
definition square-free-m :: int poly \Rightarrow bool where

$$
\text { square-free-m } f=(\neg f=m 0 \wedge(\forall g . \text { degree- } m g \neq 0 \longrightarrow \neg(g * g d v d m f)))
$$

definition coprime- m :: int poly \Rightarrow int poly \Rightarrow bool where coprime-mfg$=(\forall h . h d v d m f \longrightarrow h d v d m g \longrightarrow h d v d m 1)$
lemma Mp-square-free-m[simp]: square-free-m (Mpf) $=$ square-free-m f unfolding square-free-m-def $d v d m$-def by simp
lemma square-free-m-cong: square-free-m $f \Longrightarrow M p f=M p g \Longrightarrow$ square-free-m g
unfolding square-free-m-def dvdm-def by simp
lemma $M p$-prod-mset $[$ simp $]: M p($ prod-mset $($ image-mset $M p b))=M p($ prod-mset b)

```
proof (induct b)
```

```
    case (add x b)
    have Mp (prod-mset (image-mset Mp ({#x#}+b))) = Mp (Mp x * prod-mset
(image-mset Mp b)) by simp
    also have ... = Mp (Mpx*Mp (prod-mset (image-mset Mp b))) by simp
    also have ... = Mp (Mpx*Mp (prod-mset b)) unfolding add by simp
    finally show ?case by simp
qed simp
lemma Mp-prod-list: Mp (prod-list (map Mp b)) =Mp(prod-list b)
proof (induct b)
    case (Cons b xs)
    have Mp (prod-list (map Mp (b # xs))) = Mp (Mpb* prod-list (map Mp xs))
by simp
    also have \ldots. = Mp (Mpb*Mp(prod-list (map Mp xs))) by simp
    also have ... = Mp (Mp b*Mp (prod-list xs)) unfolding Cons by simp
    finally show ?case by simp
qed simp
    Polynomial evaluation modulo
definition M-poly p x \equivM(poly p x)
lemma M-poly-Mp[simp]: M-poly (Mp p) = M-poly p
proof(intro ext, induct p)
    case 0 show ?case by auto
next
    case IH:(pCons a p)
    from IH(1) have M-poly (Mp (pCons a p)) x = M (a+M(x*M-poly (Mp p)
x))
        by (simp add: M-poly-def Mp-def)
    also note IH(2)[of x]
    finally show ?case by (simp add:M-poly-def)
qed
lemma Mp-lift-modulus: assumes f=mg
    shows poly-mod.eq-m (m*k) (smult kf) (smult kg)
    using assms unfolding poly-eq-iff poly-mod.Mp-coeff coeff-smult
    unfolding poly-mod.M-def by simp
lemma Mp-ident-product: n>0\LongrightarrowMpf=f\Longrightarrow poly-mod.Mp (m*n)f=f
    unfolding poly-eq-iff poly-mod.Mp-coeff poly-mod.M-def
    by (auto simp add: zmod-zmult2-eq) (metis mod-div-trivial mod-0)
lemma Mp-shrink-modulus: assumes poly-mod.eq-m (m*k)fgk\not=0
    shows f=mg
proof -
    from assms have a: \n. coeff f n mod (m*k)= coeff g n mod (m*k)
    unfolding poly-eq-iff poly-mod.Mp-coeff unfolding poly-mod.M-def by auto
    show ?thesis unfolding poly-eq-iff poly-mod.Mp-coeff unfolding poly-mod.M-def
    proof
```

```
    fix n
    show coeff f n mod m= coeff g n mod m using a[of n] <k\not=0\rangle
        by (metis mod-mult-right-eq mult.commute mult-cancel-left mult-mod-right)
    qed
qed
```

lemma degree-m-le: degree-m $f \leq$ degree f unfolding $M p$-def by (rule degree-map-poly-le)
lemma degree-m-eq: coeff $f($ degree $f) \bmod m \neq 0 \Longrightarrow m>1 \Longrightarrow$ degree- $m f=$ degree f
using degree-m-le[of f] unfolding $M p$-def
by (auto intro: degree-map-poly simp: Mp-def poly-mod.M-def)
lemma degree-m-mult-le:
assumes eq: $f=m g * h$
shows degree-m $f \leq$ degree- $m g+$ degree- $m h$
proof -
have degree-m $f=$ degree-m $(M p g * M p h)$ using eq by simp
also have $\ldots \leq$ degree $(M p g * M p h)$ by (rule degree-m-le)
also have $\ldots \leq$ degree- $m g+$ degree- $m h$ by (rule degree-mult-le)
finally show? ?thesis by auto
qed
lemma degree-m-smult-le: degree-m (smult cf) $\leq \operatorname{degree-m~} f$
by (metis Mp-0 coeff-0 degree-le degree-m-le degree-smult-eq poly-mod.Mp-smult(2) smult-eq-0-iff)
lemma irreducible-m-Mp[simp]: irreducible-m $(M p f) \longleftrightarrow$ irreducible-m f by (simp add: irreducible-m-def)
lemma eq-m-irreducible-m: $f=m g \Longrightarrow$ irreducible- $m f \longleftrightarrow$ irreducible-m g using irreducible-m-Mp by metis
definition mset-factors-m where mset-factors-m $F p \equiv$ $F \neq\{\#\} \wedge(\forall f . f \in \# F \longrightarrow$ irreducible-m $f) \wedge p=m$ prod-mset F
end
declare poly-mod.M-def[code]
declare poly-mod.Mp-def [code]
declare poly-mod.inv-M-def[code]
definition Irr-Mon :: ' a :: comm-semiring-1 poly set
where Irr-Mon $=\{x$. irreducible $x \wedge$ monic $x\}$
definition factorization :: ' a :: comm-semiring-1 poly set $\Rightarrow{ }^{\prime} a$ poly $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right.$ poly multiset) \Rightarrow bool where
factorization Factors f cfs $\equiv($ case cfs of $(c, f s) \Rightarrow f=($ smult $c($ prod-mset $f s)) \wedge$

```
(set-mset fs \subseteq Factors))
```

definition unique-factorization :: ' a :: comm-semiring-1 poly set $\Rightarrow{ }^{\prime} a$ poly $\Rightarrow ~^{\prime} a$
\times 'a poly multiset) \Rightarrow bool where
unique-factorization Factors $f c f s=($ Collect $($ factorization Factors $f)=\{c f s\})$
lemma irreducible-multD:
assumes l : irreducible $(a * b)$
shows a dvd $1 \wedge$ irreducible $b \vee b$ dvd $1 \wedge$ irreducible a
proof -
from l have a dvd $1 \vee b$ dvd 1 by auto
then show ?thesis
proof (elim disjE)
assume a: a dvd 1
with l have irreducible b
unfolding irreducible-def
by (meson is-unit-mult-iff mult.left-commute mult-not-zero)
with a show ?thesis by auto
next
assume $a: b d v d 1$
with l have irreducible a
unfolding irreducible-def
by (meson is-unit-mult-iff mult-not-zero semiring-normalization-rules(16))
with a show ?thesis by auto
qed
qed
lemma irreducible-dvd-prod-mset:
fixes $p::$ ' a :: field poly
assumes irr: irreducible p and $d v d: p$ dvd prod-mset as
shows $\exists a \in \#$ as. p dvd a
proof -
from $\operatorname{irr}[$ unfolded irreducible-def] have deg: degree $p \neq 0$ by auto
hence $p 1: \neg p$ dvd 1 unfolding dvd-def
by (metis degree-1 nonzero-mult-div-cancel-left div-poly-less linorder-neqE-nat
mult-not-zero not-less0 zero-neq-one)
from $d v d$ show ?thesis
proof (induct as)
case ($a d d$ a as)
hence prod-mset (add-mset a as) $=a *$ prod-mset as by auto
from add(2)[unfolded this] add(1) irr
show ?case by auto
qed (insert p1, auto)
qed
lemma monic-factorization-unique-mset:
fixes $P:: ' a:: f i e l d$ poly multiset
assumes eq: prod-mset $P=$ prod-mset Q
and P : set-mset $P \subseteq\{q$. irreducible $q \wedge$ monic $q\}$
and Q : set-mset $Q \subseteq\{q$. irreducible $q \wedge$ monic $q\}$
shows $P=Q$
proof -
\{
fix $P Q$:: 'a poly multiset
assume id: prod-mset $P=$ prod-mset Q
and P : set-mset $P \subseteq\{q$. irreducible $q \wedge$ monic $q\}$
and Q : set-mset $Q \subseteq\{q$. irreducible $q \wedge$ monic $q\}$
hence $P \subseteq \# Q$
proof (induct P arbitrary: Q)
case (add x P Q^{\prime})
from $a d d(3)$ have irr: irreducible x and mon: monic x by auto
have $\exists a \in \# Q^{\prime} . x d v d a$
proof (rule irreducible-dvd-prod-mset[OF irr])
show x dvd prod-mset Q^{\prime} unfolding add(2)[symmetric] by simp
qed
then obtain $y Q$ where $Q^{\prime}: Q^{\prime}=a d d-m s e t y ~ Q a n d x y$: x dvd y by (meson mset-add)
from $\operatorname{add}(4) Q^{\prime}$ have irr $^{\prime}$: irreducible y and mon $^{\prime}$: monic y by auto
have $x=y$ using irr irr' xy mon mon'
by (metis irreducibleD' irreducible-not-unit poly-dvd-antisym)
hence $Q^{\prime}: Q^{\prime}=Q+\{\# x \#\}$ using Q^{\prime} by auto
from mon have $x 0: x \neq 0$ by auto
from \arg-cong $\left[O F\right.$ add(2)[unfolded $\left.Q^{\prime}\right]$, of $\lambda z . z$ div $\left.x\right]$
have eq: prod-mset $P=$ prod-mset Q using $x 0$ by auto
from add (3-4)[unfolded Q^{\prime}]
have set-mset $P \subseteq\{q$. irreducible $q \wedge$ monic $q\}$ set-mset $Q \subseteq\{q$. irreducible $q \wedge$ monic $q\}$
by auto
from add (1)[OF eq this] show ?case unfolding Q^{\prime} by auto
qed auto
\}
from this[OF eq $P Q]$ this $[$ OF eq[symmetric $] Q P]$
show ?thesis by auto
qed
lemma exactly-one-monic-factorization:
assumes mon: monic ($f::$ 'a :: field poly)
shows $\exists!$ fs. $f=$ prod-mset $f s \wedge$ set-mset $f s \subseteq\{q$. irreducible $q \wedge$ monic $q\}$
proof -
from monic-irreducible-factorization[OF mon]
obtain $g s g$ where fin: finite $g s$ and $f: f=\left(\prod a \in g s . a^{\wedge}\right.$ Suc ($\left.g a\right)$)
and gs: gs $\subseteq\{q$. irreducible $q \wedge$ monic $q\}$
by blast
from f in
have $\exists f$ s. set-mset $f s \subseteq g s \wedge$ prod-mset $f s=\left(\prod a \in g s . a{ }^{\wedge} S u c(g a)\right)$
proof (induct gs)
case (insert a gs)
from $\operatorname{insert}(3)$ obtain $f s$ where $*:$ set-mset $f s \subseteq g s$ prod-mset $f s=\left(\prod a \in g s\right.$. $\left.a^{\wedge} \operatorname{Suc}(g a)\right)$ by auto
let $? f s=f s+$ replicate-mset $(S u c(g a)) a$
show ?case
proof (rule exI[of-fs + replicate-mset (Suc ($g a)$) a], intro conjI)
show set-mset ?fs \subseteq insert a gs using $*(1)$ by auto
show prod-mset ?fs $=\left(\prod a \in\right.$ insert a gs. $\left.a^{\wedge} S u c(g a)\right)$
by (subst prod.insert[OF insert(1-2)], auto simp: *(2))
qed
qed simp
then obtain $f s$ where set-mset $f s \subseteq g s$ prod-mset $f s=\left(\prod a \in g s . a{ }^{\wedge} S u c(g a)\right)$ by auto
with gs f have ex: $\exists f$ s. $f=$ prod-mset $f s \wedge$ set-mset $f s \subseteq\{q$. irreducible $q \wedge$ monic q \}
by (intro exI[of-fs], auto)
thus ?thesis using monic-factorization-unique-mset by blast
qed
lemma monic-prod-mset:
fixes as :: ' a :: idom poly multiset
assumes $\wedge a . a \in$ set-mset as \Longrightarrow monic a
shows monic (prod-mset as) using assms
by (induct as, auto intro: monic-mult)
lemma exactly-one-factorization:
assumes $f: f \neq(0::$ ' $a::$ field poly $)$
shows \exists ! cfs. factorization Irr-Mon f cfs
proof -
let $? a=$ coeff $f($ degree $f)$
let $? b=$ inverse $? a$
let $? g=$ smult $? b f$
define g where $g=? g$
from f have $a: ? a \neq 0 ? b \neq 0$ by (auto simp: field-simps)
hence monic g unfolding g-def by simp
note ex1 = exactly-one-monic-factorization[OF this, folded Irr-Mon-def]
then obtain $f s$ where $g: g=$ prod-mset $f s$ set-mset $f s \subseteq$ Irr-Mon by auto
let $? c f s=(? a, f s)$
have cfs: factorization Irr-Mon f ?cfs unfolding factorization-def split $g(1)$ [symmetric]
using $g(2)$ unfolding g-def by (simp add: a field-simps)
show ?thesis
proof (rule, rule $c f s$)
fix $d g s$
assume fact: factorization Irr-Mon f dgs
obtain $d g s$ where $d g s$: $d g s=(d, g s)$ by force
from fact[unfolded factorization-def dgs split]
have $f d$: $f=$ smult d (prod-mset gs) and gs: set-mset gs \subseteq Irr-Mon by auto
have monic (prod-mset gs) by (rule monic-prod-mset, insert gs[unfolded Irr-Mon-def], auto)
hence $d: d=? a$ unfolding $f d$ by auto

```
    from arg-cong[OF fd, of \lambda x. smult ?b x, unfolded d g-def[symmetric]]
    have g= prod-mset gs using a by (simp add: field-simps)
    with ex1 g gs have gs = fs by auto
    thus dgs =?cfs unfolding dgs d by auto
    qed
qed
lemma mod-ident-iff: m>0\Longrightarrow(x :: int) mod m=x\longleftrightarrow m}\in{0{0..<m
    by (metis Divides.pos-mod-bound Divides.pos-mod-sign atLeastLessThan-iff mod-pos-pos-trivial)
declare prod-mset-prod-list[simp]
lemma mult-1-is-id[simp]: (*) (1 :: 'a :: ring-1) = id by auto
context poly-mod
begin
lemma degree-m-eq-monic: monic }f\Longrightarrowm>1\Longrightarrowdegree-m f=degree f
    by (rule degree-m-eq) auto
lemma monic-degree-m-lift: assumes monic f k>1m>1
    shows monic (poly-mod.Mp (m*k) f)
proof -
    have deg: degree (poly-mod.Mp (m*k)f) = degree f
            by (rule poly-mod.degree-m-eq-monic[of f m * k], insert assms, auto simp:
less-1-mult)
    show ?thesis unfolding poly-mod.Mp-coeff deg assms poly-mod.M-def using
assms(2-)
    by (simp add: less-1-mult)
qed
end
locale poly-mod-2 = poly-mod m for m+
    assumes m1:m>1
begin
lemma M-1[simp]: M 1 = 1 unfolding M-def using m1
    by auto
lemma Mp-1[simp]: Mp 1 = 1 unfolding Mp-def by simp
lemma monic-degree-m[simp]: monic f}\Longrightarrow\mathrm{ degree-m f}=\mathrm{ degree }
    using degree-m-eq-monic[of f] using m1 by auto
lemma monic-Mp: monic f \Longrightarrow monic (Mp f)
    by (auto simp: Mp-coeff)
```

```
lemma Mp-0-smult-sdiv-poly: assumes \(M p f=0\)
    shows smult \(m\) (sdiv-poly \(f m\) ) \(=f\)
proof (intro poly-eqI, unfold Mp-coeff coeff-smult sdiv-poly-def, subst coeff-map-poly,
force)
    fix \(n\)
    from assms have coeff ( \(M p f\) ) \(n=0\) by simp
    hence 0 : coeff \(f n \bmod m=0\) unfolding \(M p\)-coeff \(M\)-def.
    thus \(m *\) (coeff \(f n\) div \(m)=\) coeff \(f n\) by auto
qed
lemma Mp-product-modulus: \(m^{\prime}=m * k \Longrightarrow k>0 \Longrightarrow M p\left(\right.\) poly-mod.Mp \(\left.m^{\prime} f\right)\)
\(=M p f\)
    by (intro poly-eqI, unfold poly-mod.Mp-coeff poly-mod.M-def, auto simp: mod-mod-cancel)
lemma inv-M-rev: assumes bnd: \(2 *\) abs \(c<m\)
    shows inv-M \((M c)=c\)
proof (cases \(c \geq 0\) )
    case True
    with bnd show ?thesis unfolding \(M\)-def inv-M-def by auto
next
    case False
    have 2: \(\bigwedge v::\) int. \(2 * v=v+v\) by auto
    from False have \(c: c<0\) by auto
    from bnd \(c\) have \(c+m>0 c+m<m\) by auto
    with \(c\) have \(c m: c \bmod m=c+m\)
    by (metis le-less mod-add-self2 mod-pos-pos-trivial)
    from \(c\) bnd have \(2 *(c \bmod m)>m\) unfolding \(c m\) by auto
    with bnd \(c\) show ?thesis unfolding \(M\)-def inv-M-def cm by auto
qed
end
lemma (in poly-mod) degree-m-eq-prime:
    assumes \(f 0: M p f \neq 0\)
    and deg: degree-m \(f=\) degree \(f\)
    and eq: \(f=m g * h\)
    and \(p\) : prime \(m\)
    shows degree-m \(f=\) degree-m \(g+\) degree- \(m h\)
proof -
    interpret poly-mod-2 \(m\) using prime-ge-2-int \([O F\) p] unfolding poly-mod-2-def
by \(\operatorname{simp}\)
    from f0 eq have \(M p(M p g * M p h) \neq 0\) by auto
    hence \(M p g * M p h \neq 0\) using \(M p-0\) by (cases \(M p g * M p h\), auto)
    hence \(g 0: M p g \neq 0\) and \(h 0: M p h \neq 0\) by auto
    have degree \((M p(g * h))=\) degree-m \((M p g * M p h)\) by simp
    also have \(\ldots=\operatorname{degree}(M p g * M p h)\)
    proof (rule degree-m-eq[OF-m1], rule)
    have id: \(\wedge\) g. coeff \((M p g)(\) degree \((M p g)) \bmod m=\operatorname{coeff}(M p g)(\) degree \((M p\)
```

g))
unfolding M-def[symmetric] Mp-coeff by simp
from p have p^{\prime} : prime m unfolding prime-int-nat-transfer unfolding prime-nat-iff by auto
assume coeff $(M p g * M p h)($ degree $(M p g * M p h)) \bmod m=0$
from this[unfolded coeff-degree-mult]
have coeff $(M p g)($ degree $(M p g))$ mod $m=0 \vee$ coeff $(M p h)($ degree $(M p h))$
mod $m=0$
unfolding dvd-eq-mod-eq-0[symmetric] using m1 prime-dvd-mult-int[OF p]
by auto
with $g 0$ h0 show False unfolding id by auto
qed
also have $\ldots=$ degree $(M p g)+$ degree $(M p h)$
by (rule degree-mult-eq[OF g0 h0])
finally show ?thesis using eq by simp
qed
lemma monic-smult-add-small: assumes $f=0 \vee$ degree $f<$ degree g and mon: monic g
shows monic $(g+$ smult $q f)$
proof (cases $f=0$)
case True
thus ?thesis using mon by auto
next
case False
with assms have degree $f<$ degree g by auto
hence degree (smult $q f$) < degree g by (meson degree-smult-le not-less or-der-trans)
thus ?thesis using mon using coeff-eq-0 degree-add-eq-left by fastforce qed
context poly-mod
begin
definition factorization-m :: int poly \Rightarrow (int \times int poly multiset $) \Rightarrow$ bool where factorization-m $f c f s \equiv($ case cfs of $(c, f s) \Rightarrow f=m$ (smult c (prod-mset fs)) \wedge $\left(\forall f \in\right.$ set-mset fs. irreducible ${ }_{d}-m f \wedge$ monic (Mpf)))
definition $M f::$ int \times int poly multiset \Rightarrow int \times int poly multiset where
$M f c f s \equiv$ case cfs of $(c, f s) \Rightarrow(M c$, image-mset $M p f s)$
lemma $M f-M f[s i m p]: M f(M f x)=M f x$
proof (cases x, auto simp: Mf-def, goal-cases)
case (1 cfs)
show ?case by (induct fs, auto)
qed
definition equivalent-fact- m :: int \times int poly multiset \Rightarrow int \times int poly multiset \Rightarrow bool where

$$
\text { equivalent-fact-m cfs dgs }=(M f c f s=M f d g s)
$$

definition unique-factorization-m :: int poly \Rightarrow (int \times int poly multiset $) \Rightarrow$ bool where
unique-factorization-m $f c f s=(M f$ 'Collect (factorization-m $f)=\{M f c f s\})$
lemma $M p$-irreducible $d_{d}-m[$ simp $]$: $_{\text {irreducible }_{d}-m(M p f)}=$ irreducible $_{d}-m f$ unfolding irreducible $_{d}-m$-def dvdm-def by simp
lemma Mf-factorization-m[simp]: factorization-m $f(M f c f s)=$ factorization-m f $c f s$
unfolding factorization-m-def Mf-def
proof (cases cfs, simp, goal-cases)
case (1 c fs)
have $M p($ smult $c($ prod-mset $f s))=M p(s m u l t(M c)(M p($ prod-mset $f s)))$ by simp
also have $\ldots=M p(\operatorname{smult}(M c)(M p($ prod-mset $($ image-mset $M p f s))))$
unfolding Mp-prod-mset by simp
also have $\ldots=M p($ smult $(M c)($ prod-mset $($ image-mset $M p f s)))$ unfolding Mp-smult ..
finally show ?case by auto
qed
lemma unique-factorization-m-imp-factorization: assumes unique-factorization-m $f c f s$ shows factorization-m f cfs proof -
from assms[unfolded unique-factorization-m-def] obtain dfs where
fact: factorization-m $f d f s$ and $i d: M f c f s=M f d f s$ by blast
from fact have factorization-m $f(M f d f s)$ by simp
from this[folded id] show ?thesis by simp
qed
lemma unique-factorization-m-alt-def: unique-factorization-m f cfs $=($ factorization- m $f c f s$
$\wedge(\forall$ dgs. factorization-m f dgs $\longrightarrow M f d g s=M f c f s))$
using unique-factorization-m-imp-factorization[of f cfs]
unfolding unique-factorization-m-def by auto
end
context poly-mod-2
begin
lemma factorization-m-lead-coeff: assumes factorization-m $f(c, f s)$
shows lead-coeff $(M p f)=M c$
proof -
note $*=$ assms[unfolded factorization-m-def split]
have monic (prod-mset (image-mset Mp fs)) by (rule monic-prod-mset, insert *,

```
auto)
    hence monic (Mp (prod-mset (image-mset Mp fs))) by (rule monic-Mp)
    from this[unfolded Mp-prod-mset] have monic: monic (Mp (prod-mset fs)) by
simp
    from * have lead-coeff (Mp f) = lead-coeff (Mp (smult c (prod-mset fs))) by
simp
    also have Mp(smult c(prod-mset fs)) = Mp (smult (Mc) (Mp (prod-mset fs)))
by simp
    finally show ?thesis
    using monic «smult c (prod-mset fs) =m smult (Mc) (Mp (prod-mset fs))>
            by (metis M-M M-def Mp-0 Mp-coeff lead-coeff-smult m1 mult-cancel-left2
poly-mod.degree-m-eq smult-eq-0-iff)
qed
lemma factorization-m-smult: assumes factorization-m f (c,fs)
    shows factorization-m (smult df) (c*d,fs)
proof -
    note * = assms[unfolded factorization-m-def split]
    from * have f:Mpf=Mp (smult c (prod-mset fs)) by simp
    have Mp (smult df) = Mp (smult d (Mpf)) by simp
    also have ... = Mp (smult (c*d) (prod-mset fs)) unfolding f by (simp add:
ac-simps)
    finally show ?thesis using assms
    unfolding factorization-m-def split by auto
qed
lemma factorization-m-prod: assumes factorization-m f (c,fs) factorization-m g
(d,gs)
    shows factorization-m (f*g)(c*d,fs+gs)
proof -
    note * = assms[unfolded factorization-m-def split]
    have Mp (f*g) = Mp (Mpf*Mpg) by simp
    also have Mpf=Mp (smult c (prod-mset fs)) using * by simp
    also have Mpg=Mp (smult d (prod-mset gs)) using * by simp
    finally have Mp (f*g)=Mp(smult (c*d)(prod-mset (fs+gs))) unfolding
mult-Mp
    by (simp add: ac-simps)
    with * show ?thesis unfolding factorization-m-def split by auto
qed
lemma Mp-factorization-m[simp]: factorization-m (Mp f) cfs = factorization-m f
cfs
    unfolding factorization-m-def by simp
lemma Mp-unique-factorization-m[simp]:
    unique-factorization-m (Mpf)cfs=unique-factorization-m f cfs
    unfolding unique-factorization-m-alt-def by simp
lemma unique-factorization-m-cong: unique-factorization-m fcfs \LongrightarrowMpf=Mp
```

 \(\Longrightarrow\) unique-factorization-m g cfs
 unfolding Mp-unique-factorization-m[of \(f\), symmetric] by simp
 lemma unique-factorization-mI: assumes factorization-m $f(c, f s)$
and $\wedge d g s$. factorization-m $f(d, g s) \Longrightarrow M f(d, g s)=M f(c, f s)$
shows unique-factorization-m $f(c, f s)$
unfolding unique-factorization-m-alt-def
by (intro conjI[OF assms(1)] allI impI, insert assms(2), auto)
lemma unique-factorization-m-smult: assumes uf: unique-factorization-m $f(c, f s)$
and $d: M(d i * d)=1$
shows unique-factorization-m (smult $d f)(c * d, f s)$
proof (rule unique-factorization-mI[OF factorization-m-smult $]$)
show factorization-m $f(c, f s)$ using uf[unfolded unique-factorization-m-alt-def]
by auto
fix e gs
assume fact: factorization-m (smult d f) (e,gs)
from factorization-m-smult $[$ OF this, of di]
have factorization-m (Mp (smult di (smult df))) ($e * d i$, gs) by simp
also have $M p$ (smult di (smult $d f)$) $=M p(s m u l t(M(d i * d)) f)$ by simp
also have $\ldots=M p f$ unfolding d by simp
finally have fact: factorization-m $f(e * d i, g s)$ by simp
with uf[unfolded unique-factorization-m-alt-def] have eq: Mf $(e * d i, g s)=M f$ $(c, f s)$ by blast
from eq[unfolded Mf-def] have $M(e * d i)=M c$ by simp
from \arg-cong[OF this, of $\lambda x . M(x * d)]$
have $M(e * M(d i * d))=M(c * d)$ by (simp add: ac-simps)
from this[unfolded d] have $e: M e=M(c * d)$ by simp with $e q$
show $M f(e, g s)=M f(c * d, f s)$ unfolding Mf-def split by simp
qed
lemma unique-factorization-m-smultD: assumes uf: unique-factorization-m (smult $d f)(c, f s)$
and $d: M(d i * d)=1$
shows unique-factorization-m $f(c * d i, f s)$
proof -
from d have $d^{\prime}: M(d * d i)=1$ by (simp add: ac-simps)
show ?thesis
proof (rule unique-factorization-m-cong[OF unique-factorization-m-smult[OF uf $\left.d^{\dagger}\right]$],
rule poly-eqI, unfold Mp-coeff coeff-smult)
fix n
have $M(d i *(d *$ coeff $f n))=M(M(d i * d) *$ coeff $f n)$ by (auto simp: ac-simps)
from this[unfolded d] show $M(d i *(d *$ coeff $f n))=M($ coeff $f n)$ by simp qed
qed
lemma degree-m-eq-lead-coeff: degree-m $f=$ degree $f \Longrightarrow$ lead-coeff $(M p f)=M$ (lead-coeff f)
by (simp add: Mp-coeff)
lemma unique-factorization-m-zero: assumes unique-factorization-m $f(c, f s)$ shows $M c \neq 0$
proof
assume $c: M c=0$
from unique-factorization-m-imp-factorization[OF assms]
have $M p f=M p(s m u l t(M c)(p r o d-m s e t ~ f s))$ unfolding factorization-m-def split
by simp
from this[unfolded c] have $f: M p f=0$ by simp
have factorization-m $f(0,\{\#\})$
unfolding factorization-m-def split f by auto
moreover have $M f(0,\{\#\})=(0,\{\#\})$ unfolding Mf-def by auto
ultimately have fact1: $(0,\{\#\}) \in M f$ 'Collect (factorization- $m f$) by force
define $g::$ int poly where $g=[: 0,1:]$
have $m p g: M p g=[: 0,1:]$ unfolding $M p$-def
by (auto simp: g-def)
\{
fix $g h$
assume $*$: degree $(M p g)=0$ degree $(M p h)=0[: 0,1:]=M p(g * h)$
from \arg-cong $[O F *(3)$, of degree $]$ have $1=$ degree-m $(M p g * M p h)$ by simp
also have $\ldots \leq$ degree ($M p g * M p h$) by (rule degree-m-le)
also have $\ldots \leq$ degree $(M p g)+$ degree $(M p h)$ by (rule degree-mult-le)
also have $\ldots \leq 0$ using $*$ by simp
finally have False by simp
\} note $i r r=$ this
have factorization-m $f(0,\{\# g \#\})$
unfolding factorization-m-def split using irr
by (auto simp: irreducible $d_{d}-m$-def f mpg)
moreover have $M f(0,\{\# g \#\})=(0,\{\# g \#\})$ unfolding Mf-def by (auto simp: mpg, simp add: g-def)
ultimately have fact2: $(0,\{\# g \#\}) \in M f$ 'Collect (factorization-m f) by force
note $[$ simp $]=$ assms[unfolded unique-factorization-m-def]
from fact1 [simplified, folded fact2[simplified]] show False by auto
qed
end
context poly-mod
begin
lemma $d v d m$-smult: assumes $f d v d m g$
shows f dvdm smult c g
proof -

```
    from assms[unfolded dvdm-def] obtain h where g: g=mf*h by auto
    show ?thesis unfolding dvdm-def
    proof (intro exI[of - smult c h])
    have Mp (smult c g) = Mp (smult c (Mp g)) by simp
    also have Mpg=Mp(f*h) using g by simp
    finally show Mp (smult c g) = Mp (f* smult ch) by simp
    qed
qed
lemma dvdm-factor: assumes f dvdm g
    shows f dvdm g*h
proof -
    from assms[unfolded dvdm-def] obtain k where g: g=m f*k by auto
    show ?thesis unfolding dvdm-def
    proof (intro exI[of - h*k])
        have Mp (g*h)=Mp(Mpg*h) by simp
        also have Mpg=Mp(f*k) using g by simp
        finally show Mp (g*h) = Mp (f* (h*k)) by (simp add: ac-simps)
    qed
qed
lemma square-free-m-smultD: assumes square-free-m (smult c f)
    shows square-free-m f
    unfolding square-free-m-def
proof (intro conjI allI impI)
    fix g
    assume degree-m g\not=0
    with assms[unfolded square-free-m-def] have }\negg*gdvdm smult c f by aut
    thus }\negg*gdvdmf\mathrm{ using dvdm-smult[of g*gfc] by blast
next
    from assms[unfolded square-free-m-def] have \neg smult cf=m 0 by simp
    thus \negf=m 0
        by (metis Mp-smult(2) smult-0-right)
qed
lemma square-free-m-smultI: assumes sf: square-free-m f
    and inv: M (ci*c)=1
    shows square-free-m (smult c f)
proof -
    have square-free-m (smult ci (smult c f))
    proof (rule square-free-m-cong[OF sf], rule poly-eqI, unfold Mp-coeff coeff-smult)
        fix n
            have M(ci*(c* coeff f n)) =M(M(ci*c)* coeff f n) by (simp add:
ac-simps)
            from this[unfolded inv] show M (coeff f n) =M(ci*(c* coeff f n)) by simp
    qed
    from square-free-m-smultD[OF this] show ?thesis.
qed
```

```
lemma square-free-m-factor: assumes square-free-m (f*g)
    shows square-free-m f square-free-m g
proof -
    {
        fix fg
        assume sf: square-free-m (f*g)
        have square-free-m f
            unfolding square-free-m-def
        proof (intro conjI allI impI)
            fix h
            assume degree-m h\not=0
            with sf[unfolded square-free-m-def] have}\negh*h dvdmf*g by aut
            thus }\negh*hdvdmf\mathrm{ using dvdm-factor[of h*hfg] by blast
        next
            from sf[unfolded square-free-m-def] have }\negf*g=m 0 by sim
            thus \negf=m0
                by (metis mult.commute mult-zero-right poly-mod.mult-Mp(2))
        qed
    }
    from this[of fg] this[of g f] assms
    show square-free-m f square-free-m g by (auto simp: ac-simps)
qed
end
context poly-mod-2
begin
lemma Mp-ident-iff: Mp f=f\longleftrightarrow(\foralln. coeff f n \in{0 ..<m})
proof -
    have m0: m>0 using m1 by simp
    show ?thesis unfolding poly-eq-iff Mp-coeff M-def mod-ident-iff[OF m0] by simp
qed
lemma Mp-ident-iff': Mp f=f\longleftrightarrow(set (coeffs f)\subseteq{0 ..<m})
proof -
    have 0:0}\in{0..<m} using m1 by aut
    have ran: }(\foralln.\mathrm{ coeff f n { {0..<m}) « range (coeff f) }\subseteq{0..<m} by blas
    show ?thesis unfolding Mp-ident-iff ran using range-coeff[of f] 0 by auto
qed
end
lemma Mp-Mp-pow-is-Mp: n = 0\Longrightarrowp>1\Longrightarrow poly-mod.Mp p(poly-mod.Mp
(p`n)f)
    = poly-mod.Mp pf
    using poly-mod-2.Mp-product-modulus poly-mod-2-def by(subst power-eq-if, auto)
lemma M-M-pow-is-M: n = 0\Longrightarrowp>1\Longrightarrow poly-mod.M p (poly-mod.M (p^n)
```

```
f)
    = poly-mod.M pf using Mp-Mp-pow-is-Mp[of n p [:f:]]
    by (metis coeff-pCons-0 poly-mod.Mp-coeff)
definition inverse-mod :: int }=>\mathrm{ int }=>\mathrm{ int where
    inverse-mod x m = fst (bezout-coefficients x m)
lemma inverse-mod:
    (inverse-mod x m*x) mod m=1
    if coprime x m m>1
proof -
    from bezout-coefficients [of x m inverse-mod x m snd (bezout-coefficients x m)]
    have inverse-mod x m*x+ snd (bezout-coefficients x m)*m=gcd x m
        by (simp add: inverse-mod-def)
    with that have inverse-mod x m*x + snd (bezout-coefficients x m)*m=1
        by simp
    then have (inverse-mod x m*x + snd (bezout-coefficients x m)*m) mod m=
1 mod m
        by simp
    with \langlem> 1\rangle show ?thesis
        by simp
qed
lemma inverse-mod-pow:
    (inverse-mod x ( }\mp@subsup{p}{}{\wedge}n)*x)\operatorname{mod}(\mp@subsup{p}{}{\wedge}n)=
    if coprime x p p>1n\not=0
    using that by (auto intro: inverse-mod)
lemma (in poly-mod) inverse-mod-coprime:
    assumes p: prime m
    and cop: coprime x m shows M (inverse-mod x m*x)=1
    unfolding M-def using inverse-mod-pow[OF cop, of 1] p
    by (auto simp: prime-int-iff)
lemma (in poly-mod) inverse-mod-coprime-exp:
    assumes m:m= \^n and p: prime p
    and n: n\not=0 and cop: coprime x p
    shows M(inverse-mod x m*x)=1
    unfolding M-def unfolding m using inverse-mod-pow[OF cop - n] p
    by (auto simp: prime-int-iff)
locale poly-mod-prime = poly-mod p for p :: int +
    assumes prime: prime p
begin
sublocale poly-mod-2 p using prime unfolding poly-mod-2-def
    using prime-gt-1-int by force
lemma square-free-m-prod-imp-coprime-m: assumes sf: square-free-m (A*B)
```

```
    shows coprime-m A B
    unfolding coprime-m-def
proof (intro allI impI)
    fix }
    assume dvd: h dvdm A h dvdm B
    then obtain ha hb where *: Mp A=Mp(h*ha) Mp B=Mp(h*hb)
    unfolding dvdm-def by auto
    have AB:Mp(A*B)=Mp(MpA*MpB) by simp
    from this[unfolded *, simplified]
    have eq: Mp (A*B) = Mp (h*h* (ha*hb)) by (simp add: ac-simps)
    hence dvd-hh: (h*h)dvdm (A*B) unfolding dvdm-def by auto
    {
    assume degree-m h\not=0
    from sf[unfolded square-free-m-def,THEN conjunct2, rule-format, OF this]
    have }\negh*hdvdm A*B
    with dvd-hh have False by simp
}
hence degree (Mph)=0 by auto
then obtain c where hc:Mph=[:c:] by (rule degree-eq-zeroE)
{
    assume c=0
    hence Mph=0 unfolding hc by auto
    with *(1) have Mp A=0
        by (metis Mp-0 mult-zero-left poly-mod.mult-Mp(1))
    with sf[unfolded square-free-m-def,THEN conjunct1] have False
        by (simp add: AB)
    }
hence c0:c\not=0 by auto
with arg-cong[OF hc[symmetric], of \lambda f. coeff f 0, unfolded Mp-coeff M-def] m1
have c\geq0 c< p by auto
with c0 have c-props:c>0 c<p by auto
with prime have prime p by simp
with c-props have coprime p c
    by (auto intro: prime-imp-coprime dest: zdvd-not-zless)
then have coprime c p
    by (simp add: ac-simps)
from inverse-mod-coprime[OF prime this]
obtain d}\mathrm{ where d:M(c*d)=1 by (auto simp: ac-simps)
show h dvdm 1 unfolding dvdm-def
proof (intro exI[of - [:d:]])
    have Mp (h*[:d:])=Mp(Mph*[:d:]) by simp
    also have ... = Mp ([:c*d :]) unfolding hc by (auto simp: ac-simps)
    also have ... = [:M (c*d) :] unfolding Mp-def
        by (metis (no-types) M-0 map-poly-pCons Mp-0 Mp-def d zero-neq-one)
    also have ... = 1 unfolding d by simp
    finally show Mp 1 = Mp (h*[:d:]) by simp
    qed
qed
```

```
lemma coprime-exp-mod: coprime lu p\Longrightarrown\not=0\Longrightarrowlu mod p^n\not=0
    using prime by fastforce
end
context poly-mod
begin
definition Dp :: int poly }=>\mathrm{ int poly where
    Dpf= map-poly (\lambda a. a div m)f
lemma Dp-Mp-eq: f=Mpf+ smult m(Dpf)
    by (rule poly-eqI, auto simp: Mp-coeff M-def Dp-def coeff-map-poly)
lemma dvd-imp-dvdm:
    assumes a dvd b shows a dvdm b
    by (metis assms dvd-def dvdm-def)
lemma dvdm-add:
    assumes a: u dvdm a
    and b: u dvdm b
    shows }u\mathrm{ dvdm (a+b)
proof -
    obtain }\mp@subsup{a}{}{\prime}\mathrm{ where a: a=m u*a' using a unfolding dvdm-def by auto
    obtain }\mp@subsup{b}{}{\prime}\mathrm{ where b: b=mu*b' using b unfolding dvdm-def by auto
    have Mp (a+b) = Mp (u*\mp@subsup{a}{}{\prime}+u*\mp@subsup{b}{}{\prime})\mathrm{ using a b}
        by (metis poly-mod.plus-Mp(1) poly-mod.plus-Mp(2))
    also have ... = Mp(u* (a'+ b})
        by (simp add: distrib-left)
    finally show ?thesis unfolding dvdm-def by auto
qed
lemma monic-dvdm-constant:
    assumes uk:u dvdm [:k:]
    and u1: monic u and u2: degree u>0
    shows k mod m=0
proof -
    have d1:degree-m [:k:] = degree [:k:]
        by (metis degree-pCons-0 le-zero-eq poly-mod.degree-m-le)
    obtain h where h:Mp [:k:] = Mp (u*h)
            using uk unfolding dvdm-def by auto
    have d2: degree-m [:k:] = degree-m (u*h) using h by metis
    have d3: degree (map-poly M (u* map-poly M h)) = degree ( }u*\mathrm{ map-poly M h)
        by (rule degree-map-poly)
            (metis coeff-degree-mult leading-coeff-0-iff mult.right-neutral M-M Mp-coeff
Mp-def u1)
    thus ?thesis using assms d1 d2 d3
```

```
    by (auto, metis M-def map-poly-pCons degree-mult-right-le h leD map-poly-0
    mult-poly-0-right pCons-eq-0-iff M-0 Mp-def mult-Mp(2))
qed
lemma div-mod-imp-dvdm:
    assumes \existsqr. b=q*a+ Polynomial.smult mr
    shows a dvdm b
proof -
    from assms obtain qr where b:b=a*q+ smult m r
        by (metis mult.commute)
    have a: Mp (Polynomial.smult m r)=0 by auto
    show ?thesis
    proof (unfold dvdm-def, rule exI[of-q])
        have Mp (a*q+ smult mr) = Mp (a*q+Mp (smult mr))
            using plus-Mp(2)[of a*q smult m r] by auto
        also have ... = Mp (a*q) by auto
        finally show eq-mb(a*q) using b by auto
    qed
qed
lemma lead-coeff-monic-mult:
    fixes p :: 'a :: {comm-semiring-1,semiring-no-zero-divisors} poly
    assumes monic p shows lead-coeff ( }p*q)=\mathrm{ lead-coeff q
    using assms by (simp add: lead-coeff-mult)
lemma degree-m-mult-eq:
    assumes p:monic p and q: lead-coeff q mod m\not=0 and m1:m>1
    shows degree (Mp (p*q)) = degree p+degree q
proof-
    have lead-coeff ( }p*q)\mathrm{ mod m}\not=
        using q p by (auto simp: lead-coeff-monic-mult)
    with m1 show ?thesis
        by (auto simp: degree-m-eq intro!: degree-mult-eq)
qed
lemma dvdm-imp-degree-le:
    assumes pq: pdvdm q and p: monic p and q0:Mp q\not=0 and m1:m>1
    shows degree p\leq degree q
proof-
    from q0
    have q: lead-coeff (Mp q) mod m}=
    by (metis Mp-Mp Mp-coeff leading-coeff-neq-0 M-def)
    from pq obtain r where Mpq:Mpq=Mp(p*Mpr) by (auto elim: dvdmE)
    with p q have lead-coeff (Mpr) mod m\not=0
    by (metis Mp-Mp Mp-coeff leading-coeff-0-iff mult-poly-0-right M-def)
    from degree-m-mult-eq[OF p this m1] Mpq
    have degree p\leqdegree-m q by simp
    thus ?thesis using degree-m-le le-trans by blast
qed
```

```
lemma dvdm-uminus [simp]:
    pdvdm -q\longleftrightarrowp dvdm q
    by (metis add.inverse-inverse dvdm-smult smult-1-left smult-minus-left)
```

```
lemma Mp-const-poly: Mp [:a:] = [:a mod m:]
    by (simp add: Mp-def M-def Polynomial.map-poly-pCons)
lemma dvdm-imp-div-mod:
    assumes u dvdm g
    shows }\existsqr.g=q*u+\mathrm{ smult mr
proof -
    obtain q where q:Mp g=Mp(u*q)
        using assms unfolding dvdm-def by fast
    have (u*q) = Mp (u*q)+ smult m (Dp (u*q))
        by (simp add: poly-mod.Dp-Mp-eq[of u*q])
    hence uq:Mp}(u*q)=(u*q)- smult m (Dp (u*q)
        by auto
    have g:g=Mpg+ smult m (Dp g)
        by (simp add: poly-mod.Dp-Mp-eq[of g])
    also have ... = poly-mod.Mp m (u*q) + smult m (Dp g) using q by simp
    also have ... =u*q- smult m(Dp(u*q))+ smult m (Dp g)
        unfolding uq by auto
    also have ... =u*q+ smult m (-Dp (u*q)) + smult m (Dp g) by auto
    also have ... =u*q+ smult m(-Dp (u*q) + Dp g)
        unfolding smult-add-right by auto
    also have ... = q*u+ smult m (-Dp (u*q) + Dp g) by auto
    finally show ?thesis by auto
qed
corollary div-mod-iff-dvdm:
    shows a dvdm b = (\existsqr. b=q*a+ Polynomial.smult m r)
    using div-mod-imp-dvdm dvdm-imp-div-mod by blast
lemma dvdmE':
    assumes pdvdm q and }\bigwedger.q=m p*Mpr\Longrightarrow thesi
    shows thesis
    using assms by (auto simp:dvdm-def)
end
context poly-mod-2
begin
lemma factorization-m-mem-dvdm: assumes fact: factorization-m f (c,fs)
    and mem: Mp g\in# image-mset Mp fs
shows g dvdm f
proof -
```

```
    from fact have factorization-m f (Mf (c,fs)) by auto
    then obtain l where f: factorization-m f (l, image-mset Mp fs) by (auto simp:
Mf-def)
    from multi-member-split[OF mem] obtain ls where
    fs: image-mset Mp fs = {# Mpg#} + ls by auto
    from f[unfolded fs split factorization-m-def] show g dvdm f
    unfolding dvdm-def
    by (intro exI[of - smult l (prod-mset ls)], auto simp del: Mp-smult
        simp add:Mp-smult(2)[of - Mp g* prod-mset ls, symmetric], simp)
qed
lemma dvdm-degree: monic }u\Longrightarrowudvdmf\LongrightarrowMpf\not=0\Longrightarrow\mathrm{ degree }u\leq\mathrm{ degree
f
    using dvdm-imp-degree-le m1 by blast
end
lemma (in poly-mod-prime) pl-dvdm-imp-p-dvdm:
    assumes l0:l\not=0
    and pl-dvdm: poly-mod.dvdm (p^l) a b
    shows a dvdm b
proof -
    from l0 have l-gt-0:l>0 by auto
    with m1 interpret pl: poly-mod-2 p`l by (unfold-locales,auto)
    from l-gt-0 have p-rw: p* p^ (l-1) = p^l
        by (cases l) simp-all
    obtain qr where b: b=q*a+smult ( p^l)r using pl.dvdm-imp-div-mod[OF
pl-dvdm] by auto
    have smult (p^l)r= smult p (smult ( p^ (l-1)) r) unfolding smult-smult
p-rw ..
    hence b2: b=q*a+ smult p (smult ( }\mp@subsup{p}{}{`}(l-1))r)\mathrm{ using b by auto
    show ?thesis
        by (rule div-mod-imp-dvdm, rule exI[of-q],
            rule exI[of-(smult ( }\mp@subsup{p}{}{`}(l-1)) r)], auto simp add: b2)
qed
end
```


5.2 Polynomials in a Finite Field

We connect polynomials in a prime field with integer polynomials modulo some prime.

```
theory Poly-Mod-Finite-Field
    imports
    Finite-Field
    Polynomial-Interpolation.Ring-Hom-Poly
    HOL-Types-To-Sets.Types-To-Sets
    More-Missing-Multiset
    Poly-Mod
```


begin

```
declare rel-mset-Zero[transfer-rule]
lemma mset-transfer[transfer-rule]: (list-all2 rel \(===>\) rel-mset rel) mset mset
proof (intro rel-funI)
    show list-all2 rel xs ys \(\Longrightarrow\) rel-mset rel (mset \(x s\) ) (mset ys) for \(x s\) ys
    proof (induct xs arbitrary: ys)
        case Nil
        then show? case by auto
    next
        case IH: (Cons x xs )
    then show ?case by (auto dest!:msed-rel-invL simp: list-all2-Cons1 intro!:rel-mset-Plus)
    qed
qed
```

abbreviation to-int-poly :: ' a :: finite mod-ring poly \Rightarrow int poly where to-int-poly \equiv map-poly to-int-mod-ring
interpretation to-int-poly-hom: map-poly-inj-zero-hom to-int-mod-ring ..
lemma irreducible $_{d}$-def- 0 :
fixes $f:: ' a$:: \{comm-semiring-1,semiring-no-zero-divisors $\}$ poly
shows irreducible $_{d} f=($ degree $f \neq 0 \wedge$
$(\forall g h$. degree $g \neq 0 \longrightarrow$ degree $h \neq 0 \longrightarrow f \neq g * h))$
proof-
have degree $g \neq 0 \Longrightarrow g \neq 0$ for $g::$ 'a poly by auto
note $1=$ degree-mult-eq[OF this this, simplified $]$
then show ?thesis by (force elim!: irreducible e_{d})
qed

5.3 Transferring to class-based mod-ring

locale poly-mod-type $=$ poly-mod m
for m and $t y::{ }^{\prime} a$:: nontriv itself +
assumes $m: m=C A R D\left({ }^{\prime} a\right)$
begin
lemma $m 1: m>1$ using nontriv $\left[\right.$ where $\left.{ }^{\prime} a=' a\right]$ by (auto simp:m)
sublocale poly-mod-2 using $m 1$ by unfold-locales
definition $M P$-Rel $::$ int poly $\Rightarrow{ }^{\prime} a$ mod-ring poly \Rightarrow bool
where $M P$-Rel $f f^{\prime} \equiv\left(M p f=\right.$ to-int-poly $\left.f^{\prime}\right)$
definition M-Rel $::$ int \Rightarrow 'a mod-ring \Rightarrow bool
where M-Rel $x x^{\prime} \equiv\left(M x=\right.$ to-int-mod-ring $\left.x^{\prime}\right)$

```
definition MF-Rel \equivrel-prod M-Rel (rel-mset MP-Rel)
lemma to-int-mod-ring-plus: to-int-mod-ring ((x :: 'a mod-ring) + y) = M (to-int-mod-ring
x + to-int-mod-ring y)
    unfolding M-def using m by (transfer, auto)
lemma to-int-mod-ring-times: to-int-mod-ring ((x :: 'a mod-ring) * y) = M (to-int-mod-ring
x* to-int-mod-ring y)
    unfolding M-def using m by (transfer, auto)
lemma degree-MP-Rel [transfer-rule]:(MP-Rel ===> (=)) degree-m degree
    unfolding MP-Rel-def rel-fun-def
    by (auto intro!: degree-map-poly)
lemma eq-M-Rel[transfer-rule]: (M-Rel ===> M-Rel ===> (=)) (\lambdaxy.M x=
M y)(=)
    unfolding M-Rel-def rel-fun-def by auto
interpretation to-int-mod-ring-hom: map-poly-inj-zero-hom to-int-mod-ring..
lemma eq-MP-Rel[transfer-rule]: (MP-Rel ===> MP-Rel ===>> (=)) (=m) (=)
    unfolding MP-Rel-def rel-fun-def by auto
lemma eq-Mf-Rel[transfer-rule]:(MF-Rel ===> MF-Rel ===> (=)) (\lambda x y.Mf
x=Mf y)(=)
proof (intro rel-funI, goal-cases)
    case (1 cfs Cfs dgs Dgs)
    obtain cfs where cfs:cfs=(c,fs) by force
    obtain C Fs where Cfs:Cfs = (C,Fs) by force
    obtain d gs where dgs: dgs = (d,gs) by force
    obtain D Gs where Dgs: Dgs = (D,Gs) by force
    note pairs = cfs Cfs dgs Dgs
    from 1[unfolded pairs MF-Rel-def rel-prod.simps]
    have *[transfer-rule]:M-Rel c C M-Rel d D rel-mset MP-Rel fs Fs rel-mset MP-Rel
gs Gs
        by auto
    have eq1: (Mc=Md) = (C=D) by transfer-prover
    from *(3)[unfolded rel-mset-def] obtain fs' Fs'' where fs-eq: mset fs' }=fs mse
Fs'}=F
    and rel-f: list-all2 MP-Rel fs' Fs' by auto
    from *(4)[unfolded rel-mset-def] obtain gs' Gs' where gs-eq: mset gs' = gs mset
Gs' = Gs
    and rel-g: list-all2 MP-Rel gs' Gs' by auto
    have eq2: (image-mset Mp fs = image-mset Mp gs) = (Fs=Gs)
        using *(3-4)
    proof (induct fs arbitrary: Fs gs Gs)
    case (empty Fs gs Gs)
    from empty(1) have Fs:Fs={#} unfolding rel-mset-def by auto
```

```
    with empty show ?case by (cases gs; cases Gs; auto simp: rel-mset-def)
next
    case (add ffs Fs' gs' Gs')
    note [transfer-rule] = add(3)
    from msed-rel-invL[OF add(2)]
    obtain Fs F where Fs':Fs' = Fs + {#F#} and rel[transfer-rule]:
        MP-Rel f F rel-mset MP-Rel fs Fs by auto
    note IH=add(1)[OF rel(2)]
    {
        from add(3)[unfolded rel-mset-def] obtain gs Gs where id: mset gs = gs'
mset Gs = Gs'
                and rel: list-all2 MP-Rel gs Gs by auto
    have Mpf\in# image-mset Mp g\mp@subsup{s}{}{\prime}}\longleftrightarrow\longleftrightarrowF\in#G\mp@subsup{s}{}{\prime
    proof -
            have ?thesis =((Mpf\inMp'set gs) = (F\in set Gs )}
            unfolding id[symmetric] by simp
        also have ... using rel
        proof (induct gs Gs rule: list-all2-induct)
            case (Cons g gs G Gs)
            note [transfer-rule] = Cons(1-2)
            have id: (Mp g=Mpf)=(F=G) by (transfer, auto)
            show ?case using id Cons(3) by auto
            qed auto
            finally show ?thesis by simp
        qed
    } note id = this
    show ?case
    proof (cases Mpf\in# image-mset Mp gs')
        case False
    have Mpf\in# image-mset Mp}(fs+{#f#})\mathrm{ by auto
    with False have F: image-mset Mp (fs + {#f#}) # image-mset Mp gs' by
metis
    with False[unfolded id] show ?thesis unfolding Fs' by auto
    next
        case True
        then obtain g}\mathrm{ where fg:Mpf=Mpg}\mathrm{ and g: g|# gs' by auto
        from g obtain gs where gs':g\mp@subsup{s}{}{\prime}=add-mset g gs by (rule mset-add)
        from msed-rel-invL[OF add(3)[unfolded gs']]
            obtain Gs G where Gs': Gs' = Gs+{#G #} and gG[transfer-rule]:
MP-Rel g G and
            gsGs: rel-mset MP-Rel gs Gs by auto
        have FG:F=G by (transfer, simp add: fg)
        note IH = IH[OF gsGs]
        show ?thesis unfolding gs' Fs' Gs' by (simp add: fg IH FG)
    qed
    qed
    show (Mf cfs = Mf dgs) = (Cfs=Dgs) unfolding pairs Mf-def split
    by (simp add: eq1 eq2)
qed
```

```
lemmas coeff-map-poly-of-int = coeff-map-poly[of of-int, OF of-int-0]
lemma plus-MP-Rel[transfer-rule]: (MP-Rel ===> MP-Rel ===>> MP-Rel) (+)
(+)
    unfolding MP-Rel-def
proof (intro rel-funI, goal-cases)
    case (1 xfyg)
    have Mp (x+y) = Mp (Mpx+Mpy) by simp
    also have ... = Mp (map-poly to-int-mod-ring f + map-poly to-int-mod-ring g)
unfolding 1 ..
    also have ... = map-poly to-int-mod-ring (f+g) unfolding poly-eq-iff Mp-coeff
        by (auto simp: to-int-mod-ring-plus)
    finally show ?case .
qed
lemma times-MP-Rel[transfer-rule]:(MP-Rel ===> MP-Rel ===> MP-Rel)
((*)) ((*))
    unfolding MP-Rel-def
proof (intro rel-funI, goal-cases)
    case (1 xfyg)
    have Mp(x*y) = Mp (Mpx*Mpy) by simp
    also have ... = Mp (map-poly to-int-mod-ring f * map-poly to-int-mod-ring g)
unfolding 1 ..
    also have ... = map-poly to-int-mod-ring (f*g)
    proof -
        { fix n :: nat
            define }A\mathrm{ where }A={..n
            have finite }A\mathrm{ unfolding }A\mathrm{ -def by auto
            then have M (\sumi\leqn. to-int-mod-ring (coeff fi)* to-int-mod-ring (coeff g
(n-i)))=
                to-int-mod-ring (\sumi\leqn. coeff fi* coeff g ( }n-i)
            unfolding A-def[symmetric]
            proof (induct A)
            case (insert a A)
            have ?case = ?case (is (?l = ?r) = -) by simp
            have ?r = to-int-mod-ring (coeff f a* coeff g ( }n-a)+(\sumi\inA.coeff f
* coeff g (n-i)))
            using insert(1-2) by auto
            note r = this[unfolded to-int-mod-ring-plus to-int-mod-ring-times]
            from insert(1-2) have ?l = M (to-int-mod-ring (coeff f a)* to-int-mod-ring
(coeff g(n-a))
            +M(\sumi\inA. to-int-mod-ring (coeff fi)* to-int-mod-ring (coeff g (n -
i))))
            by simp
            also have M (\sumi\inA. to-int-mod-ring (coeff fi)* to-int-mod-ring (coeff g
(n-i)))=to-int-mod-ring (\sumi\inA.coeff fi*coeff g (n-i))
            unfolding insert ..
```

```
            finally
            show ?case unfolding r by simp
        qed auto
    }
        then show ?thesis by (auto intro!:poly-eqI simp: coeff-mult Mp-coeff)
    qed
    finally show ?case .
qed
lemma smult-MP-Rel[transfer-rule]:(M-Rel ===> MP-Rel ===> MP-Rel) smult
smult
    unfolding MP-Rel-def M-Rel-def
proof (intro rel-funI, goal-cases)
    case (1 x x f}f\mp@subsup{f}{}{\prime}
    thus ?case unfolding poly-eq-iff coeff Mp-coeff
        coeff-smult M-def
    proof (intro allI, goal-cases)
        case (1 n)
        have}x*\mathrm{ coeff }fn\operatorname{mod}m=(x\operatorname{mod}m)*(coeff f n mod m) mod m
            by (simp add: mod-simps)
        also have ... = to-int-mod-ring }\mp@subsup{x}{}{\prime}*(to-int-mod-ring (coeff f' n)) mod m
            using 1 by auto
        also have ... = to-int-mod-ring ( }\mp@subsup{x}{}{\prime}*\mathrm{ coeff f' n)
            unfolding to-int-mod-ring-times M-def by simp
        finally show ?case by auto
    qed
qed
lemma one-M-Rel[transfer-rule]:M-Rel 1 1
    unfolding M-Rel-def M-def
    unfolding m by auto
lemma one-MP-Rel[transfer-rule]:MP-Rel 1 1
    unfolding MP-Rel-def poly-eq-iff Mp-coeff M-def
    unfolding }m\mathrm{ by auto
lemma zero-M-Rel[transfer-rule]:M-Rel 0 0
    unfolding M-Rel-def M-def
    unfolding m by auto
lemma zero-MP-Rel[transfer-rule]:MP-Rel 0 0
    unfolding MP-Rel-def poly-eq-iff Mp-coeff M-def
    unfolding m by auto
lemma listprod-MP-Rel[transfer-rule]:(list-all2 MP-Rel ===> MP-Rel) prod-list
prod-list
proof (intro rel-funI, goal-cases)
    case (1 xs ys)
    thus ?case
```

```
    proof (induct xs ys rule: list-all2-induct)
    case (Cons x xs y ys)
    note [transfer-rule] = this
    show ?case by simp transfer-prover
    qed (simp add: one-MP-Rel)
qed
lemma prod-mset-MP-Rel[transfer-rule]:(rel-mset MP-Rel ===> MP-Rel) prod-mset
prod-mset
proof (intro rel-funI, goal-cases)
    case (1 xs ys)
    have (MP-Rel ===> MP-Rel ===> MP-Rel) ((*)) ((*)) MP-Rel 1 1 by trans-
fer-prover+
    from 1 this show ?case
    proof (induct xs ys rule: rel-mset-induct)
        case (add R x xs y ys)
        note [transfer-rule] = this
        show ?case by simp transfer-prover
    qed (simp add: one-MP-Rel)
qed
lemma right-unique-MP-Rel[transfer-rule]: right-unique MP-Rel
    unfolding right-unique-def MP-Rel-def by auto
lemma M-to-int-mod-ring: M (to-int-mod-ring (x :: 'a mod-ring)) = to-int-mod-ring
x
    unfolding M-def unfolding m by (transfer, auto)
lemma Mp-to-int-poly: Mp (to-int-poly (f :: 'a mod-ring poly)) = to-int-poly f
    by (auto simp: poly-eq-iff Mp-coeff M-to-int-mod-ring)
lemma right-total-M-Rel[transfer-rule]: right-total M-Rel
    unfolding right-total-def M-Rel-def using M-to-int-mod-ring by blast
lemma left-total-M-Rel[transfer-rule]: left-total M-Rel
    unfolding left-total-def M-Rel-def[abs-def]
proof
    fix }
    show \exists x' :: 'a mod-ring. M x = to-int-mod-ring x' unfolding M-def unfolding
m
    by (rule exI[of - of-int x], transfer, simp)
qed
lemma bi-total-M-Rel[transfer-rule]: bi-total M-Rel
    using right-total-M-Rel left-total-M-Rel by (metis bi-totalI)
lemma right-total-MP-Rel[transfer-rule]: right-total MP-Rel
    unfolding right-total-def MP-Rel-def
proof
```

```
    fix f :: 'a mod-ring poly
    show \existsx. Mp x = to-int-poly f
    by (intro exI[of - to-int-poly f], simp add: Mp-to-int-poly)
qed
lemma to-int-mod-ring-of-int-M: to-int-mod-ring (of-int x :: 'a mod-ring) = M x
unfolding M-def
    unfolding m by transfer auto
lemma Mp-f-representative: Mp f = to-int-poly (map-poly of-int f :: 'a mod-ring
poly)
    unfolding Mp-def by (auto intro: poly-eqI simp: coeff-map-poly to-int-mod-ring-of-int-M)
lemma left-total-MP-Rel[transfer-rule]: left-total MP-Rel
    unfolding left-total-def MP-Rel-def[abs-def] using Mp-f-representative by blast
lemma bi-total-MP-Rel[transfer-rule]: bi-total MP-Rel
    using right-total-MP-Rel left-total-MP-Rel by (metis bi-totalI)
lemma bi-total-MF-Rel[transfer-rule]: bi-total MF-Rel
    unfolding MF-Rel-def[abs-def]
    by (intro prod.bi-total-rel multiset.bi-total-rel bi-total-MP-Rel bi-total-M-Rel)
lemma right-total-MF-Rel[transfer-rule]: right-total MF-Rel
    using bi-total-MF-Rel unfolding bi-total-alt-def by auto
lemma left-total-MF-Rel[transfer-rule]:left-total MF-Rel
    using bi-total-MF-Rel unfolding bi-total-alt-def by auto
lemma domain-RT-rel[transfer-domain-rule]: Domainp MP-Rel = ( \lambdaf.True)
proof
    fix f :: int poly
    show Domainp MP-Rel f = True unfolding MP-Rel-def[abs-def] Domainp.simps
    by (auto simp: Mp-f-representative)
qed
lemma mem-MP-Rel[transfer-rule]:(MP-Rel ===> rel-set MP-Rel ===> (=))
(\lambdaxY.\existsy\inY. eq-m x y) (\epsilon)
proof (intro rel-funI iffI)
    fix x y X Y assume xy:MP-Rel x y and XY: rel-set MP-Rel X Y
    { assume \exists}\mp@subsup{x}{}{\prime}\inX.x=m\mp@subsup{x}{}{\prime
    then obtain \mp@subsup{x}{}{\prime}}\mathrm{ where }\mp@subsup{x}{}{\prime}X:\mp@subsup{x}{}{\prime}\inX\mathrm{ and }x\mp@subsup{x}{}{\prime}:x=m \mp@subsup{x}{}{\prime}\mathrm{ by auto
    with xy have \mp@subsup{x}{}{\prime}y:MP-Rel \mp@subsup{x}{}{\prime}y\mathrm{ by (auto simp:MP-Rel-def)}
    from rel-setD1[OF XY 㐌X] obtain }\mp@subsup{y}{}{\prime}\mathrm{ where MP-Rel x' }\mp@subsup{y}{}{\prime}\mathrm{ and }\mp@subsup{y}{}{\prime}\inY\mathrm{ by
auto
    with }\mp@subsup{x}{}{\prime}
    show }y\inY\mathrm{ by (auto simp:MP-Rel-def)
    }
    assume y\inY
```

from rel-setD2[OF XY this] obtain x^{\prime} where $x^{\prime} X: x^{\prime} \in X$ and $x^{\prime} y: M P$-Rel x^{\prime} y by auto
from $x y x^{\prime} y$ have $x=m x^{\prime}$ by (auto simp: MP-Rel-def)
with $x^{\prime} X$ show $\exists x^{\prime} \in X . x=m x^{\prime}$ by auto
qed
lemma conversep-MP-Rel-OO-MP-Rel [simp]: MP-Rel ${ }^{-1-1}$ OO MP-Rel $=(=)$ using Mp-to-int-poly by (intro ext, auto simp: OO-def MP-Rel-def)
lemma MP-Rel-OO-conversep-MP-Rel [simp]: MP-Rel OO MP-Rel ${ }^{-1-1}=e q-m$ by (intro ext, auto simp: OO-def MP-Rel-def Mp-f-representative)
lemma conversep-MP-Rel-OO-eq-m [simp]: $M P-$ Rel $^{-1-1} O O$ eq-m $=M P-$ Rel $^{-1-1}$ by (intro ext, auto simp: OO-def MP-Rel-def)
lemma eq-m-OO-MP-Rel [simp]: eq-m OO MP-Rel $=M P-R e l$
by (intro ext, auto simp: OO-def MP-Rel-def)
lemma eq-mset-MP-Rel [transfer-rule]: (rel-mset MP-Rel $===>$ rel-mset $M P$-Rel $===>(=))($ rel-mset eq-m) $(=)$
proof (intro rel-funI iffI)
fix $A B X Y$
assume $A X$: rel-mset $M P$-Rel $A X$ and $B Y$: rel-mset MP-Rel B Y \{
assume $A B$: rel-mset eq-m $A B$
from $A X$ have rel-mset $M P-$ Rel $^{-1-1} X A$ by (simp add: multiset.rel-flip)
note rel-mset- $O O[O F$ this $A B]$
note rel-mset- $O O[O F$ this $B Y]$
then show $X=Y$ by (simp add: multiset.rel-eq)
\}
assume $X=Y$
with $B Y$ have rel-mset $M P-R e l^{-1-1} X B$ by (simp add: multiset.rel-flip)
from rel-mset- $O O[O F A X$ this]
show rel-mset eq-m $A B$ by simp
qed
lemma dvd-MP-Rel[transfer-rule]: $(M P-R e l===>M P-R e l===>(=))(d v d m)$ (dvd)
unfolding $d v d m$-def[abs-def] dvd-def[abs-def]
by transfer-prover
lemma irreducible-MP-Rel [transfer-rule]: (MP-Rel $===>(=)$) irreducible-m irreducible
unfolding irreducible-m-def irreducible-def
by transfer-prover
lemma irreducible $_{d}-M P$-Rel $[$ transfer-rule $]:(M P-R e l===>(=))$ irreducible $_{d}-m$ irreducible $_{d}$
unfolding irreducible $_{d}-m$-def[abs-def] irreducible $_{d}-d e f[a b s-d e f]$
by transfer-prover
lemma UNIV-M-Rel[transfer-rule]: rel-set M-Rel $\{0 . .<m\}$ UNIV
unfolding rel-set-def M-Rel-def[abs-def] M-def
by (auto simp: M-def m, goal-cases, metis to-int-mod-ring-of-int-mod-ring, (transfer, auto)+)
lemma coeff-MP-Rel [transfer-rule]: (MP-Rel $===>(=)===>$ M-Rel) coeff coeff
unfolding rel-fun-def M-Rel-def MP-Rel-def Mp-coeff [symmetric] by auto
lemma $M-1-1: M 1=1$ unfolding M-def unfolding m by simp
lemma square-free-MP-Rel [transfer-rule]: (MP-Rel $===>(=))$ square-free-m square-free unfolding square-free-m-def[abs-def] square-free-def[abs-def]
by (transfer-prover-start, transfer-step + , auto)
lemma mset-factors-m-MP-Rel [transfer-rule]: (rel-mset MP-Rel $===>$ MP-Rel $===>(=))$ mset-factors-m mset-factors
unfolding mset-factors-def mset-factors-m-def
by (transfer-prover-start, transfer-step + , auto dest:eq-m-irreducible-m)
lemma coprime-MP-Rel $[$ transfer-rule $]:(M P-$ Rel $===>M P-$ Rel $===>(=))$ co-prime-m coprime
unfolding coprime-m-def[abs-def] coprime-def' $[a b s-d e f]$
by (transfer-prover-start, transfer-step + , auto)
lemma prime-elem-MP-Rel [transfer-rule]: (MP-Rel $===>(=)$ prime-elem-m prime-elem
unfolding prime-elem-m-def prime-elem-def by transfer-prover
end
context poly-mod-2 begin
lemma non-empty: $\{0 . .<m\} \neq\{ \}$ using $m 1$ by auto
lemma type-to-set:
assumes type-def: $\exists($ Rep $:: ' b \Rightarrow$ int $)$ Abs. type-definition Rep Abs $\{0$.. $<m$:: int $\}$
shows class.nontriv ($\left.\operatorname{TYPE}\left({ }^{\prime} b\right)\right)$ (is ? a) and $m=$ int $C A R D\left({ }^{\prime} b\right)$ (is ?b) proof -
from type-def obtain rep $::$ ' $b \Rightarrow$ int and $a b s::$ int \Rightarrow ' b where t : type-definition rep abs $\{0 . .<m\}$ by auto
have card (UNIV :: 'b set) = card $\{0 . .<m\}$ using t by (rule type-definition.card)
also have $\ldots=m$ using $m 1$ by auto
finally show ?b ..
then show ?a unfolding class.nontriv-def using m1 by auto
qed
end
locale poly-mod-prime-type $=$ poly-mod-type m ty for m :: int and
ty :: 'a :: prime-card itself
begin
lemma factorization-MP-Rel [transfer-rule]:
(MP-Rel $===>M F$-Rel $===>(=)$) factorization-m (factorization Irr-Mon)
unfolding rel-fun-def
proof (intro allI impI, goal-cases)
case ($1 \mathrm{f} F \mathrm{cfs} \mathrm{Cfs}$)
note $[$ transfer-rule $]=1(1)$
obtain $c f s$ where $c f s$: $c f s=(c, f s)$ by force
obtain C Fs where $C f s$: $C f s=(C, F s)$ by force
from 1 (2)[unfolded rel-prod.simps cfs Cfs MF-Rel-def]
have $\operatorname{tr}[$ transfer-rule]: M-Rel c C rel-mset MP-Rel fs Fs by auto
have eq: $(f=m$ smult $c($ prod-mset $f s)=(F=$ smult $C($ prod-mset $F s)))$
by transfer-prover
have set-mset Fs \subseteq Irr-Mon $=\left(\forall x \in \#\right.$ Fs. irreducible $_{d} x \wedge$ monic $\left.x\right)$ unfolding
Irr-Mon-def by auto
also have $\ldots=\left(\forall f \in \# f s\right.$. $_{\text {irreducible }}^{d} \boldsymbol{- m} f \wedge$ monic $\left.(M p f)\right)$
proof (rule sym, transfer-prover-start, transfer-step+)
\{
fix f
assume $f \in \# f s$
have monic $(M p f) \longleftrightarrow M($ coeff $f($ degree-m $f))=M 1$
unfolding Mp-coeff[symmetric] by simp
\}
thus $\left(\forall f \in \# f\right.$ s. irreducible ${ }_{d}-m f \wedge$ monic $\left.(M p f)\right)=$ $\left(\forall x \in \# f s\right.$. irreducible $e_{d}-m x \wedge M($ coeff $x($ degree-m $\left.x))=M 1\right)$ by auto
qed
finally
show factorization-m f cfs $=$ factorization Irr-Mon F Cfs unfolding cfs Cfs factorization-m-def factorization-def split eq by simp
qed
lemma unique-factorization-MP-Rel [transfer-rule]: $(M P-R e l===>M F-R e l===>$ (=))
unique-factorization-m (unique-factorization Irr-Mon)
unfolding rel-fun-def
proof (intro allI impI, goal-cases)
case (1 f Fcfs Cfs)
note $[$ transfer-rule $]=1(1,2)$
let ?F $=$ factorization Irr-Mon F
let $? f=$ factorization-m f
let $? R=$ Collect $? F$
let $? L=M f$ ' Collect ?f
note X-to-x $=$ right-total-MF-Rel[unfolded right-total-def, rule-format]

```
{
    fix }
    assume X\in?R
    hence F: ?F X by simp
    from X-to-x[of X] obtain x where rel[transfer-rule]:MF-Rel x X by blast
    from F[untransferred] have Mf x \in?L by blast
    with rel have }\existsx.Mfx\in?L\wedgeMF-Rel x X by blas
    } note R-to-L = this
    show unique-factorization-m f cfs = unique-factorization Irr-Mon F Cfs unfold-
ing
    unique-factorization-m-def unique-factorization-def
    proof -
    have fF: ?F Cfs = ?f cfs by transfer simp
    have (?L = {Mfcfs}) =(?L\subseteq{Mfcfs}\wedgeMfcfs\in?L) by blast
    also have ?L\subseteq{Mfcfs} = (\foralldfs. ?f dfs \longrightarrowMfdfs = Mf cfs) by blast
    also have \ldots. = (\forally.?Fy\longrightarrowy=Cfs) (is ?left = ?right)
    proof (rule; intro allI impI)
            fix Dfs
            assume *:?left and F:?F Dfs
            from X-to-x[of Dfs] obtain dfs where [transfer-rule]: MF-Rel dfs Dfs by
auto
            from F[untransferred] have f: ?f dfs .
            from *[rule-format,OF f] have eq:Mf dfs =Mf cfs by simp
    have (Mf dfs=Mfcfs)=(Dfs=Cfs) by (transfer-prover-start, transfer-step +,
simp)
            thus Dfs = Cfs using eq by simp
    next
            fix dfs
            assume *: ?right and f:?f dfs
            from left-total-MF-Rel obtain Dfs where
                rel[transfer-rule]: MF-Rel dfs Dfs unfolding left-total-def by blast
            have ?F Dfs by (transfer, rule f)
            from *[rule-format, OF this] have eq: Dfs = Cfs .
    have (Mfdfs=Mfcfs)=(Dfs=Cfs) by (transfer-prover-start, transfer-step +,
simp)
            thus Mfdfs=Mfcfs using eq by simp
    qed
    also have Mf cfs }\in\mathrm{ ? L = ( }\exists\mathrm{ dfs. ?f dfs }\wedge Mf cfs =Mf dfs) by aut
    also have ... = ?F Cfs unfolding fF
    proof
            assume }\existsdfs\mathrm{ . ?f dfs }\wedgeMfcfs=Mfdf
            then obtain dfs where f: ?f dfs and id:Mf dfs = Mf cfs by auto
            from f have ?f (Mf dfs) by simp
            from this[unfolded id] show ?f cfs by simp
    qed blast
    finally show (?L = {Mfcfs}) =(?R={Cfs}) by auto
    qed
qed
```

end

context begin

private lemma 1: poly-mod-type TYPE(' $a::$ nontriv) $m=\left(m=\right.$ int $\left.C A R D\left({ }^{\prime} a\right)\right)$
and 2: class.nontriv TYPE ('a) $=\left(C A R D\left({ }^{\prime} a\right) \geq 2\right)$
unfolding poly-mod-type-def class.prime-card-def class.nontriv-def poly-mod-prime-type-def
by auto
private lemma 3: poly-mod-prime-type TYPE ('b) $m=(m=$ int $C A R D(' b))$
and 4: class.prime-card TYPE ('b $::$ prime-card $)=$ prime CARD('b $::$ prime-card $)$
unfolding poly-mod-type-def class.prime-card-def class.nontriv-def poly-mod-prime-type-def by auto
lemmas poly-mod-type-simps $=1234$
end
lemma remove-duplicate-premise: $(P R O P P \Longrightarrow P R O P P \Longrightarrow P R O P Q) \equiv(P R O P$ $P \Longrightarrow P R O P Q)($ is ?l $\equiv ? r)$
proof (intro Pure.equal-intr-rule)
assume $p: P R O P$ and $p p q: P R O P ? l$
from $p p q[O F \quad p \quad p]$ show $P R O P Q$.
next
assume $p: P R O P$ and $p q$: $P R O P$? r
from $p q[O F p]$ show $P R O P Q$.
qed
context poly-mod-prime begin
lemma type-to-set:
assumes type-def: $\exists($ Rep $:: ' b \Rightarrow$ int) Abs. type-definition Rep Abs $\{0$.. $<p::$ int $\}$
shows class.prime-card ($\left.\operatorname{TYPE}\left({ }^{\prime} b\right)\right)($ is ?a) and $p=\operatorname{int} C A R D(' b)(i s ? b)$
proof -
from prime have $p 2: p \geq 2$ by (rule prime-ge-2-int)
from type-def obtain rep $::$ ' $b \Rightarrow$ int and $a b s::$ int \Rightarrow ' b where t : type-definition rep abs $\{0 . .<p\}$ by auto
have $\operatorname{card}(U N I V:: ' b$ set $)=\operatorname{card}\{0 . .<p\}$ using t by (rule type-definition.card)
also have $\ldots=p$ using $p 2$ by auto
finally show ?b ..
then show ?a unfolding class.prime-card-def using prime p2 by auto
qed
end
lemmas (in poly-mod-type) prime-elem-m-dvdm-multD $=$ prime-elem-dvd-multD [where ' $a=$ ' a mod-ring poly,untransferred]
lemmas (in poly-mod-2) prime-elem-m-dvdm-multD $=$ poly-mod-type.prime-elem-m-dvdm-multD
[unfolded poly-mod-type-simps, internalize-sort ' a :: nontriv, OF type-to-set, un-
folded remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemmas(in poly-mod-prime-type) degree-m-mult-eq $=$ degree-mult-eq
[where ' $a=$ 'a mod-ring, untransferred]
lemmas(in poly-mod-prime) degree-m-mult-eq = poly-mod-prime-type.degree-m-mult-eq
[unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,
unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemma(in poly-mod-prime) irreducible ${ }_{d}$-lifting:
assumes $n: n \neq 0$
and deg: poly-mod.degree-m $\left(p^{\wedge} n\right) f=$ degree-m f
and irr: irreducible $_{d}-m f$
shows poly-mod.irreducible $d_{d}-m(p$ n) f
proof -
interpret q : poly-mod-2 p へ n unfolding poly-mod-2-def using $n m 1$ by auto
show q.irreducible $e_{d}-m f$
proof (rule q.irreducible ${ }_{d}-m I$)
from deg irr show q. degree-m $f>0$ by (auto elim: irreducible $_{d}-m E$)
then have p deg- f : degree-m $f \neq 0$ by (simp add: deg)
note $p M p-M p=M p-M p-p o w-i s-M p[O F n m 1]$
fix $g h$
assume deg-g: degree $g<q$.degree-m f and deg-h: degree $h<q$.degree-m f and eq: q.eq-mf $(g * h)$
from $e q$ have $p-f: f=m(g * h)$ using $p M p-M p$ by metis
have $\neg g=m 0$ and $\neg h=m 0$
apply (metis degree-0 mult-zero-left Mp-0 p-f pdeg-f poly-mod.mult-Mp(1))
by (metis degree-0 mult-eq-0-iff Mp-0 mult-Mp(2) p-f pdeg-f)
note $[$ simp $]=$ degree-m-mult-eq $[$ OF this $]$
from degree-m-le[of g] deg-g
have 2: degree-m $g<$ degree-m f by (fold deg, auto)
from degree-m-le[of $h]$ deg-h
have 3: degree-m $h<$ degree-m f by (fold deg, auto)
from irreducible $_{d}-m D(2)[O F$ irr 2 3] $p-f$
show False by auto
qed
qed
lemmas (in poly-mod-prime-type) mset-factors-exist $=$ mset-factors-exist $[$ where ' $a=$ 'a mod-ring poly,untransferred]
lemmas (in poly-mod-prime) mset-factors-exist $=$ poly-mod-prime-type.mset-factors-exist [unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,
unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemmas (in poly-mod-prime-type) mset-factors-unique $=$
mset-factors-unique[where ' $a=$ ' a mod-ring poly,untransferred]
lemmas (in poly-mod-prime) mset-factors-unique $=$ poly-mod-prime-type.mset-factors-unique
[unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemmas (in poly-mod-prime-type) prime-elem-iff-irreducible $=$ prime-elem-iff-irreducible[where ' $a=$ ' a mod-ring poly,untransferred]
lemmas (in poly-mod-prime) prime-elem-iff-irreducible $[$ simp $]=$ poly-mod-prime-type.prime-elem-iff-irreducible
[unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,
unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemmas (in poly-mod-prime-type) irreducible-connect $=$
irreducible-connect-field[where ${ }^{\prime} a={ }^{\prime} a$ mod-ring, untransferred]
lemmas (in poly-mod-prime) irreducible-connect $[$ simp $]=$ poly-mod-prime-type.irreducible-connect
[unfolded poly-mod-type-simps, internalize-sort ' a :: prime-card, OF type-to-set,
unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemmas (in poly-mod-prime-type) irreducible-degree $=$
irreducible-degree-field[where ' $a=$ ' a mod-ring, untransferred]
lemmas (in poly-mod-prime) irreducible-degree $=$ poly-mod-prime-type.irreducible-degree
[unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set,
unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
end

5.4 Karatsuba's Multiplication Algorithm for Polynomials

```
theory Karatsuba-Multiplication
imports
    Polynomial-Interpolation.Missing-Polynomial
begin
lemma karatsuba-main-step: fixes f :: 'a :: comm-ring-1 poly
    assumes f:f= monom-mult nf1+f0 and g:g= monom-mult n g1 +g0
    shows
    monom-mult (n+n)(f1*g1) + (monom-mult n (f1*g1 - (f1 - f0) *(g1
-g0)+f0*g0) + f0*g0) =f*g
    unfolding assms
    by (auto simp: field-simps mult-monom monom-mult-def)
lemma karatsuba-single-sided: fixes f :: ' a :: comm-ring-1 poly
    assumes f}=\mathrm{ monom-mult n f1 + f0
    shows monom-mult n (f1*g)+f0*g=f*g
    unfolding assms by (auto simp: field-simps mult-monom monom-mult-def)
definition split-at :: nat => 'a list }=>\mp@subsup{|}{}{\prime}a\mathrm{ list }\times 'a list wher
    [code del]: split-at n xs = (take n xs,drop n xs)
lemma split-at-code[code]:
```

```
split-at \(n[]=([],[])\)
    split-at \(n(x \# x s)=(\) if \(n=0\) then \(([], x \# x s)\) else case split-at \((n-1)\) xs of
(bef, aft)
    \(\Rightarrow(x \#\) bef, aft \())\)
```

unfolding split-at-def by (force, cases n, auto)
fun coeffs-minus :: 'a :: ab-group-add list \Rightarrow ' a list \Rightarrow 'a list where
coeffs-minus $(x \# x s)(y \# y s)=((x-y) \#$ coeffs-minus $x s$ ys $)$
\mid coeffs-minus xs [] =xs
| coeffs-minus [] ys = map uminus ys
The following constant determines at which size we will switch to the standard multiplication algorithm.
definition karatsuba-lower-bound where [termination-simp]: karatsuba-lower-bound $=(7::$ nat $)$
fun karatsuba-main :: 'a :: comm-ring-1 list \Rightarrow nat $\Rightarrow{ }^{\prime}$ a list \Rightarrow nat \Rightarrow 'a poly where
karatsuba-main f $n g m=($ if $n \leq k a r a t s u b a-l o w e r-b o u n d ~ \vee m \leq k a r a t s u b a-l o w e r-b o u n d ~$ then

```
let \(\mathrm{ff}=\) poly-of-list \(f\) in foldr \((\lambda a p . s m u l t ~ a f f+p C o n s ~ 0 p) g 0\)
```

else let $n 2=n$ div 2 in
if $m>n 2$ then (case split-at n2 f of
$(f 0, f 1) \Rightarrow$ case split-at n2 g of
$(g 0, g 1) \Rightarrow$ let
$p 1=$ karatsuba-main f1 $(n-n 2) g 1(m-n 2)$;
p2 $=$ karatsuba-main (coeffs-minus f1 f0) n2 (coeffs-minus g1 g0) n2;
p3 $=$ karatsuba-main f0 n2 g0 n2
in monom-mult $(n 2+n 2) p 1+($ monom-mult n2 $(p 1-p 2+p 3)+p 3))$
else case split-at n2 f of
$(f 0, f 1) \Rightarrow$ let
$p 1=$ karatsuba-main f1 $(n-n 2) g m ;$
p2 $=$ karatsuba-main f0 n2 g m
in monom-mult n2 $p 1+p 2$)
declare karatsuba-main.simps[simp del]
lemma poly-of-list-split-at: assumes split-at $n f=(f 0, f 1)$
shows poly-of-list $f=$ monom-mult n (poly-of-list f1) + poly-of-list f0
proof -
from assms have id: f1 = drop nff0=take $n f$ unfolding split-at-def by auto
show ?thesis unfolding id
proof (rule poly-eqI)
fix i
show coeff (poly-of-list f) $i=$
coeff (monom-mult $n($ poly-of-list $($ drop $n f))+$ poly-of-list $($ take $n f)) i$
unfolding monom-mult-def coeff-monom-mult coeff-add poly-of-list-def co-
eff-Poly
by (cases $n \leq i$; cases $i \geq$ length f, auto simp: n th-default- nth n th-default-beyond)
qed
qed
lemma coeffs-minus: poly-of-list (coeffs-minus f1 f0) $=$ poly-of-list f1 - poly-of-list fo
proof (rule poly-eqI, unfold poly-of-list-def coeff-diff coeff-Poly)
fix i
show nth-default 0 (coeffs-minus f1 f0) $i=$ nth-default $0 f 1 i-n t h$-default 0 f0 i
proof (induct f1 f0 arbitrary: i rule: coeffs-minus.induct)
case (1 x xs y ys)
thus ?case by (cases i, auto)
next
case ($3 x x s$)
thus ?case unfolding coeffs-minus.simps
by (subst nth-default-map-eq[of uminus 0 0], auto)
qed auto
qed
lemma karatsuba-main: karatsuba-main f n $g m=$ poly-of-list $f *$ poly-of-list g
proof (induct n arbitrary: $f g$ m rule: less-induct)
case (less $n f g m$)
note $\operatorname{simp}[\operatorname{simp}]=$ karatsuba-main.simps $[$ of f $n \mathrm{~g} \mathrm{~m}]$
show ?case (is ?lhs $=$? rhs)
proof (cases $(n \leq k a r a t s u b a-l o w e r-b o u n d \vee m \leq k a r a t s u b a-l o w e r-b o u n d)=$ False)
case False
hence $l h s: ?$? $h s=$ foldr $(\lambda a p$. smult $a($ poly-of-list $f)+p C o n s 0 p) g 0$ by simp
have rhs: ? r hs $=$ poly-of-list $g *$ poly-of-list f by simp
also have $\ldots=$ foldr $(\lambda a p$. smult a (poly-of-list $f)+p$ Cons $0 p)($ strip-while ((=)0) g) 0
unfolding times-poly-def fold-coeffs-def poly-of-list-impl ..
also have $\ldots=$? lhs unfolding lhs
proof (induct g)
case (Cons x xs)
have $\forall x \in$ set xs. $x=0 \Longrightarrow$ foldr $(\lambda a p$. smult $a($ Poly $f)+p C o n s 0 p)$ ss 0 $=0$
by (induct xs, auto)
thus ?case using Cons by (auto simp: cCons-def Cons)
qed auto
finally show? ?thesis by simp
next
case True
let ? $n 2=n$ div 2
have ? n2 $<n n-$? n2 $<n$ using True unfolding karatsuba-lower-bound-def
by auto
note $I H=$ less $[$ OF this(1)] less[OF this(2)]
obtain $f 1$ f0 where f : split-at ? $n 2 f=(f 0, f 1)$ by force
obtain $g 1 g 0$ where g : split-at ? $n 2$ g $g=(g 0, g 1)$ by force

```
    note fsplit = poly-of-list-split-at[OF f]
    note gsplit = poly-of-list-split-at[OF g]
    show ?lhs = ?rhs unfolding simp Let-def f g split IH True if-False coeffs-minus
        karatsuba-single-sided[OF fsplit] karatsuba-main-step[OF fsplit gsplit] by auto
    qed
qed
```

definition karatsuba-mult-poly :: ' a :: comm-ring-1 poly \Rightarrow ' a poly \Rightarrow ' a poly where karatsuba-mult-poly f $g=$ (let ff $=$ coeffs $f ; g g=$ coeffs $g ; n=$ length ff; $m=$ length gg
in (if $n \leq k a r a t s u b a-l o w e r-b o u n d \vee m \leq k a r a t s u b a-l o w e r-b o u n d$ then if $n \leq m$ then foldr ($\lambda a p$. smult $a g+p$ Cons $0 p$) ff 0
else foldr (λ a p. smult a $f+p$ Cons $0 p$) gg 0
else if $n \leq m$
then karatsuba-main gg mff n
else karatsuba-main ff $n g g m)$)
lemma karatsuba-mult-poly: karatsuba-mult-poly $f g=f * g$
proof -
note $d=$ karatsuba-mult-poly-def Let-def
let ?len $=$ length $($ coeffs $f) \leq$ length (coeffs $g)$
show ?thesis (is ?lhs $=$?rhs)
proof (cases length (coeffs f) \leq karatsuba-lower-bound \vee length (coeffs g) \leq
karatsuba-lower-bound)
case True note outer $=$ this
show ?thesis
proof (cases ?len)
case True
with outer have ?lhs $=$ foldr $(\lambda a p$. smult $a g+p$ Cons $0 p)($ coeffs $f) 0$
unfolding d by auto
also have $\ldots=$?rhs unfolding times-poly-def fold-coeffs-def by auto finally show ?thesis .

next

case False
with outer have ?lhs $=$ foldr $(\lambda a p$. smult $a f+p$ Cons $0 p)($ coeffs $g) 0$ unfolding d by auto also have $\ldots=g * f$ unfolding times-poly-def fold-coeffs-def by auto also have $\ldots=$? rhs by simp finally show ?thesis.
qed
next
case False note outer $=$ this
show ?thesis
proof (cases ?len)
case True
with outer have ?lhs = karatsuba-main (coeffs g) (length (coeffs g)) (coeffs
$f)($ length (coeffs f))
unfolding d by auto

```
        also have \ldots.. = g*f unfolding karatsuba-main by auto
        also have ... = ?rhs by auto
        finally show ?thesis.
        next
            case False
            with outer have ?lhs = karatsuba-main (coeffs f) (length (coeffs f)) (coeffs
g)(length (coeffs g))
            unfolding d by auto
            also have ... = ?rhs unfolding karatsuba-main by auto
            finally show ?thesis.
        qed
    qed
qed
lemma karatsuba-mult-poly-code-unfold[code-unfold]:(*) = karatsuba-mult-poly
    by (intro ext, unfold karatsuba-mult-poly, auto)
```

The following declaration will resolve a race-conflict between $(*)=$ karat-suba-mult-poly and monom $\left(1:: ?^{\prime} a\right)$? $n * ? f=$ monom-mult ? n ?f
?f * monom ($1:: ?^{\prime} a$) ?n = monom-mult ?n ?f.
lemmas karatsuba-monom-mult-code-unfold $[$ code-unfold $]=$ monom-mult-unfold[where $f=f::$ ' $a::$ comm-ring-1 poly for f, unfolded karat-suba-mult-poly-code-unfold]
end

5.5 Record Based Version

We provide an implementation for polynomials which may be parametrized by the ring- or field-operations. These don't have to be type-based!

5.5.1 Definitions

theory Polynomial-Record-Based imports
Arithmetic-Record-Based
Karatsuba-Multiplication
begin
context
fixes ops :: 'i arith-ops-record (structure)
begin
private abbreviation (input) zero where zero \equiv arith-ops-record.zero ops
private abbreviation (input) one where one \equiv arith-ops-record.one ops
private abbreviation (input) plus where plus \equiv arith-ops-record.plus ops
private abbreviation (input) times where times \equiv arith-ops-record.times ops
private abbreviation (input) minus where minus \equiv arith-ops-record.minus ops
private abbreviation (input) uminus where uminus \equiv arith-ops-record.uminus ops
private abbreviation (input) divide where divide \equiv arith-ops-record.divide ops private abbreviation (input) inverse where inverse \equiv arith-ops-record.inverse ops
private abbreviation (input) modulo where modulo \equiv arith-ops-record.modulo ops private abbreviation (input) normalize where normalize \equiv arith-ops-record.normalize ops
private abbreviation (input) unit-factor where unit-factor \equiv arith-ops-record.unit-factor ops private abbreviation (input) $D P$ where $D P \equiv$ arith-ops-record.DP ops
definition is-poly :: 'i list \Rightarrow bool where
is-poly $x s \longleftrightarrow$ list-all DP xs \wedge no-trailing (HOL.eq zero) xs
definition c Cons- i :: ' $i \Rightarrow$ 'i list \Rightarrow 'i list
where
cCons- $i x x s=($ if $x s=[] \wedge x=$ zero then [] else $x \# x s)$
fun plus-poly- $i::$ ' i list \Rightarrow ' i list \Rightarrow ' i list where
plus-poly- $i(x \# x s)(y \# y s)=c$ Cons- $i($ plus $x y)(p l u s-p o l y-i x s ~ y s)$
plus-poly-i xs [] =xs
| plus-poly-i [] ys = ys
definition uminus-poly-i :: 'i list \Rightarrow ' i list where
[code-unfold]: uminus-poly- $i=$ map uminus

```
fun minus-poly- \(i\) :: 'i list \(\Rightarrow\) ' \(i\) list \(\Rightarrow\) ' \(i\) list where
    minus-poly- \(i(x \# x s)(y \# y s)=c\) Cons- \(i(\) minus \(x y)(\) minus-poly-i \(x s y s)\)
\(\mid\) minus-poly-i \(x s[]=x s\)
| minus-poly-i [] ys =uminus-poly-i ys
```

```
abbreviation (input) zero-poly-i :: 'i list where
    zero-poly-i \equiv []
definition one-poly-i :: 'i list where
    [code-unfold]: one-poly-i = [one]
definition smult-i :: ' i =' 'i list # 'i list where
    smult-i a pp = (if a = zero then [] else strip-while ((=) zero) (map (times a) pp))
definition sdiv-i :: ' i list }=>\mp@subsup{}{}{\prime}'i=>'i list where
    sdiv-i pp a = (strip-while ((=) zero) (map ( }\lambda\mathrm{ c. divide c a) pp))
definition poly-of-list-i :: 'i list # 'i list where
    poly-of-list-i = strip-while ((=) zero)
fun coeffs-minus-i :: 'i list }=>\mathrm{ 'i list }=>\mathrm{ ' 'i list where
    coeffs-minus-i (x # xs) (y # ys) = (minus x y # coeffs-minus-i xs ys)
```

```
| coeffs-minus-i xs [] = xs
| coeffs-minus-i [] ys = map uminus ys
definition monom-mult-i :: nat }=>\mp@subsup{}{}{\prime}i\mathrm{ list }=>\mp@subsup{}{}{\prime}'i list where
    monom-mult-i nxs = (if xs = [] then xs else replicate nzero @ xs)
fun karatsuba-main-i :: 'i list }=>\mathrm{ nat }=>\mp@subsup{}{}{\prime}i\mathrm{ list }=>\mathrm{ nat }=>\mp@subsup{}{}{\prime}'i list where
    karatsuba-main-ifng m= (if n\leqkaratsuba-lower-bound \vee m\leqkaratsuba-lower-bound
then
    let ff = poly-of-list-i f in foldr (\lambdaa p. plus-poly-i (smult-i a ff) (cCons-i zero p))
g zero-poly-i
        else let n2 = n div 2 in
        if m> n2 then (case split-at n2 f of
        (f0,f1) => case split-at n2 g of
        (g0,g1) => let
            p1 = karatsuba-main-i f1 ( n - n2) g1 (m - n2);
            p2 = karatsuba-main-i (coeffs-minus-i f1 f0) n2 (coeffs-minus-i g1 g0) n2;
            p3 = karatsuba-main-i f0 n2 g0 n2
            in plus-poly-i (monom-mult-i (n2 + n2) p1)
                    (plus-poly-i (monom-mult-i n2 (plus-poly-i (minus-poly-i p1 p2) p3)) p3))
        else case split-at n2 f of
        (f0,f1) => let
            p1 = karatsuba-main-i f1 (n-n2) g m;
            p2 = karatsuba-main-i f0 n2 g m
            in plus-poly-i (monom-mult-i n2 p1) p2)
definition times-poly-i :: 'i list }=>\mathrm{ ' ' list }=>\mathrm{ ' 'i list where
    times-poly-i f g \equiv(let n= length f; m= length g
    in (if n\leq karatsuba-lower-bound \veem\leqkaratsuba-lower-bound then if n}\leq
then
            foldr (\lambdaa p. plus-poly-i (smult-i a g) (cCons-i zero p)) f zero-poly-i else
            foldr (\lambdaa p. plus-poly-i (smult-i a f) (cCons-i zero p)) g zero-poly-i else
            if n}\leqm\mathrm{ then karatsuba-main-i g m f n else karatsuba-main-i f n g m))
definition coeff-i :: 'i list }=>\mathrm{ nat }=>\mp@subsup{}{}{\prime}i\mathrm{ where
    coeff-i= nth-default zero
definition degree-i :: 'i list }=>\mathrm{ nat where
    degree-i pp \equiv length pp - 1
definition lead-coeff-i :: 'i list => 'i where
    lead-coeff-i pp =(case pp of [] # zero | - = last pp)
definition monic-i :: 'i list => bool where
    monic-i pp = (lead-coeff-i pp=one)
fun minus-poly-rev-list-i :: 'i list }=>\mathrm{ 'i list }=>\mathrm{ 'i list where
    minus-poly-rev-list-i (x # xs) (y # ys) = (minus x y) # (minus-poly-rev-list-i xs
ys)
```

```
| minus-poly-rev-list-i xs [] = xs
| minus-poly-rev-list-i [] (y # ys) = []
fun divmod-poly-one-main-i :: 'i list }=>\mathrm{ 'i list }=>\mathrm{ ' 'i list
    # nat }=>\mathrm{ 'i list }\times 'i list where
    divmod-poly-one-main-i q rd (Suc n) = (let
        a=hdr;
        qqq = cCons-i a q;
        rr = tl (if a = zero then r else minus-poly-rev-list-ir (map (times a)d))
        in divmod-poly-one-main-i qqq rr d n)
| divmod-poly-one-main-i q r d 0 = (q,r)
fun mod-poly-one-main-i :: 'i list }=>\mp@subsup{}{}{\prime}i\mathrm{ list
    nat }=>\mathrm{ 'i list where
    mod-poly-one-main-i r d (Suc n)=(let
        a=hdr;
        rr = tl (if a = zero then r else minus-poly-rev-list-ir (map (times a)d))
        in mod-poly-one-main-i rr d n)
| mod-poly-one-main-i r d 0 = r
definition pdivmod-monic-i :: 'i list }=>\mathrm{ ' ' list }=>\mathrm{ ' 'i list }\times 'i list where
    pdivmod-monic-i cf cg \equivcase
    divmod-poly-one-main-i [] (rev cf) (rev cg) (1 + length cf - length cg)
    of (q,r)}=>(\mathrm{ poly-of-list-i q, poly-of-list-i (rev r))
```



```
'i list where
    dupe-monic-i D H S T U = (case pdivmod-monic-i (times-poly-i T U) D of (Q,R)
=>
    (plus-poly-i (times-poly-i S U) (times-poly-i H Q), R))
definition of-int-poly-i :: int poly }=>\mp@subsup{}{}{\prime}i\mathrm{ list where
    of-int-poly-i i = map (arith-ops-record.of-int ops)(coeffs f)
definition to-int-poly-i :: 'i list }=>\mathrm{ int poly where
    to-int-poly-i }f=\mathrm{ poly-of-list (map (arith-ops-record.to-int ops) f)
definition dupe-monic-i-int :: int poly }=>\mathrm{ int poly }=>\mathrm{ int poly }=>\mathrm{ int poly }=>\mathrm{ int
poly }=>\mathrm{ int poly }\times\mathrm{ int poly where
    dupe-monic-i-int D H ST=(let
    d=of-int-poly-i D;
    h=of-int-poly-i H;
    s=of-int-poly-i S;
    t=of-int-poly-i T
    in (\lambda U. case dupe-monic-i d h st (of-int-poly-i U) of
        (D}\mp@subsup{}{}{\prime},\mp@subsup{H}{}{\prime})=>(to-int-poly-i D', to-int-poly-i H'))
```

definition div-field-poly- i :: 'i list \Rightarrow ' i list \Rightarrow ' i list where
div-field-poly-i cf cg $=($
if $c g=[]$ then zero-poly- i
else let ilc $=$ inverse (last cg); ch $=$ map (times ilc) cg;
$q=f$ st (divmod-poly-one-main- $i[]$ (rev cf) (rev ch) $(1+$ length $c f$

- length $c g$))

$$
\text { in poly-of-list-i }((\operatorname{map}(\text { times ilc }) q)))
$$

definition mod-field-poly-i :: 'i list \Rightarrow ' i list \Rightarrow 'i list where mod-field-poly-i cf cg $=$ (
if $c g=[]$ then $c f$
else let ilc $=$ inverse (last cg); ch $=$ map (times ilc) $c g$;
$r=$ mod-poly-one-main- $i($ rev cf $)($ rev ch $)(1+$ length $c f-$ length
cg)

$$
\text { in poly-of-list- } i \text { (rev r)) }
$$

definition normalize-poly- i :: ' i list \Rightarrow ' i list where
normalize-poly-i $x s=$ smult- $i($ inverse $($ unit-factor $($ lead-coeff-i $x s)))$ xs
definition unit-factor-poly-i :: 'i list \Rightarrow ' i list where
unit-factor-poly-i $x s=c$ Cons- $i($ unit-factor $($ lead-coeff-i $x s))[]$
fun pderiv-main- $i::$ ' $i \Rightarrow$ 'i list \Rightarrow 'i list where
pderiv-main-if($x \# x s$) $=$ cCons- $i($ times $f x)($ pderiv-main-i $($ plus f one) $x s)$
| pderiv-main-if [] = []
definition pderiv- i :: ' i list \Rightarrow ' i list where
pderiv-i $x s=$ pderiv-main- i one ($t l x s$)
definition $d v d-p o l y-i::$ ' list \Rightarrow ' i list \Rightarrow bool where
$d v d-p o l y-i$ xs ys $=(\exists$ zs. is-poly zs $\wedge y s=$ times-poly-i $x s$ zs $)$
definition irreducible-i :: 'i list \Rightarrow bool where
irreducible-i $x s=($ degree- $i x s \neq 0 \wedge$
$(\forall q$ r. is-poly $q \longrightarrow$ is-poly $r \longrightarrow$ degree- $i q<$ degree- $i x s \longrightarrow$ degree- $i r<$ degree- i
xs
$\longrightarrow x s \neq$ times-poly-i q r))
definition poly-ops :: 'i list arith-ops-record where
poly-ops \equiv Arith-Ops-Record
zero-poly-i
one-poly-i
plus-poly-i
times-poly- i
minus-poly-i
uminus-poly-i
div-field-poly-i
(λ-. []) — not defined
mod-field-poly-i
normalize-poly- i
unit-factor-poly-i
(λ i. if $i=0$ then [] else [arith-ops-record.of-int ops $i]$)
(λ-. 0) - not defined
is-poly
definition gcd-poly- i :: 'i list \Rightarrow ' i list \Rightarrow 'i list where gcd-poly-i $=$ arith-ops.gcd-eucl-i poly-ops
definition euclid-ext-poly- $i::$ ' i list \Rightarrow ' i list $\Rightarrow(' i$ list \times ' i list $) \times$ ' i list where euclid-ext-poly- $i=$ arith-ops.euclid-ext-i poly-ops
definition separable-i $::$ ' i list \Rightarrow bool where
separable-i $x s \equiv$ gcd-poly-i $x s$ (pderiv- $i x s)=$ one-poly- i
end

5.5.2 Properties

definition pdivmod-monic :: 'a::comm-ring-1 poly $\Rightarrow{ }^{\prime}$ a poly \Rightarrow 'a poly \times 'a poly where
pdivmod-monic f $g \equiv$ let cg $=$ coeffs g; cf $=$ coeffs f;
$(q, r)=$ divmod-poly-one-main-list []$($ rev cf) (rev cg) $(1+$ length $c f-$ length cg)
in (poly-of-list q, poly-of-list (rev r))
lemma coeffs-smult': coeffs (smult a $p)=($ if $a=0$ then [] else strip-while $((=) 0)$ (map (Groups.times a) (coeffs p)))
by (simp add: coeffs-map-poly smult-conv-map-poly)
lemma coeffs-sdiv: coeffs (sdiv-poly pa) $=($ strip-while $((=) 0)(\operatorname{map}(\lambda x . x$ div a) (coeffs p)))
unfolding sdiv-poly-def by (rule coeffs-map-poly)
lifting-forget poly.lifting
context ring-ops
begin
definition poly-rel $::$ 'i list \Rightarrow 'a poly \Rightarrow bool where
poly-rel $x x^{\prime} \longleftrightarrow$ list-all2 $R x$ (coeffs x^{\prime})
lemma right-total-poly-rel[transfer-rule]:
right-total poly-rel
using list.right-total-rel[of R] right-total unfolding poly-rel-def right-total-def by auto
lemma poly-rel-inj: poly-rel $x y \Longrightarrow$ poly-rel $x z \Longrightarrow y=z$
using list.bi-unique-rel[OF bi-unique] unfolding poly-rel-def coeffs-eq-iff bi-unique-def by auto
lemma bi-unique-poly-rel[transfer-rule]: bi-unique poly-rel
using list.bi-unique-rel[OF bi-unique] unfolding poly-rel-def bi-unique-def co-effs-eq-iff by auto
lemma Domainp-is-poly [transfer-domain-rule]:
Domainp poly-rel $=$ is-poly ops
unfolding poly-rel-def [abs-def] is-poly-def [abs-def]
proof (intro ext iffI, unfold Domainp-iff)
note $D P R=$ fun-cong [OF list.Domainp-rel [of R, unfolded $D P R$], unfolded Domainp-iff]
let ?no-trailing $=$ no-trailing (HOL.eq zero)
fix $x s$
have no-trailing: no-trailing (HOL.eq 0) $x s^{\prime} \longleftrightarrow$?no-trailing xs
if list-all2 R xs $x s^{\prime}$ for $x s^{\prime}$
proof (cases xs rule: rev-cases)
case Nil
with that show ?thesis
by simp
next
case (snoc ys y)
with that have $x s^{\prime} \neq[]$
by auto
then obtain $y s^{\prime} y^{\prime}$ where $x s^{\prime}=y s^{\prime} @[y]$
by (cases xs ${ }^{\prime}$ rule: rev-cases) simp-all
with that snoc show ?thesis
by simp (meson bi-unique bi-unique-def zero)
qed
let $? D P R=$ arith-ops-record. $D P$ ops
\{
assume $\exists x^{\prime}$. list-all2 R xs (coeffs x^{\prime})
then obtain $x s^{\prime}$ where $*$: list-all2 R xs (coeffs xs') by auto
with $D P R$ [of $x s$] have list-all ? DPR xs by auto
then show list-all ? DPR xs \wedge ? no-trailing xs
using no-trailing $[O F *]$ by simp
\}
\{
assume list-all ?DPR xs \wedge ?no-trailing xs
with $D P R[$ of $x s]$ obtain $x s^{\prime}$ where $*$: list-all2 $R x s x s^{\prime}$ and ?no-trailing $x s$ by auto
from no-trailing $[O F *]$ this(2) have no-trailing (HOL.eq 0) $x s^{\prime}$ by simp
hence coeffs (poly-of-list $x s^{\prime}$) $=x s^{\prime}$ unfolding poly-of-list-impl by auto with $*$ show $\exists x^{\prime}$. list-all2 R xs (coeffs x^{\prime}) by metis
\}
qed
lemma poly-rel-zero[transfer-rule]: poly-rel zero-poly-i 0
unfolding poly-rel-def by auto
lemma poly-rel-one[transfer-rule]: poly-rel (one-poly-i ops) 1 unfolding poly-rel-def one-poly-i-def by (simp add: one)
lemma poly-rel-cCons[transfer-rule]: $(R===>$ list-all2 $R===>$ list-all2 $R)$ (cCons-i ops) cCons
unfolding c Cons-i-def[abs-def] cCons-def[abs-def]
by transfer-prover
lemma poly-rel-pCons[transfer-rule]: $(R===>$ poly-rel $===>$ poly-rel $)(c \operatorname{Cons}-i$ ops) p Cons
unfolding rel-fun-def poly-rel-def coeffs-pCons-eq-cCons cCons-def[symmetric] using poly-rel-cCons[unfolded rel-fun-def] by auto
lemma poly-rel-eq[transfer-rule]: (poly-rel $===>$ poly-rel $===>(=))(=)(=)$ unfolding poly-rel-def[abs-def] coeffs-eq-iff[abs-def] rel-fun-def
by (metis bi-unique bi-uniqueDl bi-uniqueDr list.bi-unique-rel)
lemma poly-rel-plus[transfer-rule]: (poly-rel $===>$ poly-rel $===>$ poly-rel $)($ plus-poly- i ops) (+)
proof (intro rel-funI)
fix $x 1$ y1 $x 2 y 2$
assume poly-rel $x 1$ x2 and poly-rel y1 y2
thus poly-rel (plus-poly-i ops x1 y1) (x2 + y2)
unfolding poly-rel-def coeffs-eq-iff coeffs-plus-eq-plus-coeffs
proof (induct x1 y1 arbitrary: x2 y2 rule: plus-poly-i.induct)
case (1 x1 xs1 y1 ys1 X2 Y2)
from 1(2) obtain $x 2$ xs2 where X2: coeffs X2 $=x 2$ \# coeffs xs2
by (cases X2, auto simp: cCons-def split: if-splits)
from 1 (3) obtain y2 ys2 where Y2: coeffs Y2 = y2 \# coeffs ys2 by (cases Y2, auto simp: cCons-def split: if-splits)
from 1(2) 1(3) have [transfer-rule]: R x1 x2 R y1 y2
and *: list-all2 R xs1 (coeffs xs2) list-all2 R ys1 (coeffs ys2) unfolding X2
Y2 by auto
note $[$ transfer-rule $]=1(1)[$ OF *]
show ?case unfolding X2 Y2 by simp transfer-prover
next
case (2 xs1 xs2 ys2)
thus ?case by (cases coeffs xs2, auto)
next
case (3 xs2 y1 ys1 Y2)
thus ?case by (cases Y2, auto simp: cCons-def)
qed
lemma poly-rel-uminus[transfer-rule]: (poly-rel $===>$ poly-rel) (uminus-poly-i ops)
Groups.uminus
proof (intro rel-funI)
fix $x y$
assume poly-rel $x y$
hence [transfer-rule]: list-all2 $R x$ (coeffs y) unfolding poly-rel-def .
show poly-rel (uminus-poly-i ops x) ($-y$)
unfolding poly-rel-def coeffs-uminus uminus-poly-i-def by transfer-prover
qed

```
lemma poly-rel-minus[transfer-rule]: (poly-rel \(===>\) poly-rel \(===>\) poly-rel) (minus-poly- \(i\)
ops) (-)
proof (intro rel-funI)
    fix \(x 1\) y1 \(x 2\) y2
    assume poly-rel x1 x2 and poly-rel y1 y2
    thus poly-rel (minus-poly-i ops x1 y1) (x2 - y2)
        unfolding diff-conv-add-uminus
        unfolding poly-rel-def coeffs-eq-iff coeffs-plus-eq-plus-coeffs coeffs-uminus
    proof (induct x1 y1 arbitrary: x2 y2 rule: minus-poly-i.induct)
        case ( 1 x1 xs1 y1 ys1 X2 Y2)
        from 1(2) obtain \(x 2\) xs2 where \(X 2\) : coeffs \(X 2=x 2 \#\) coeffs xs2
            by (cases X2, auto simp: cCons-def split: if-splits)
    from 1 (3) obtain y2 ys2 where Y2: coeffs Y2 \(=y^{2} \#\) coeffs ys2
            by (cases Y2, auto simp: cCons-def split: if-splits)
    from 1 (2) 1 (3) have [transfer-rule]: \(R\) x1 x2 \(R\) y1 y2
            and *: list-all2 \(R\) xs1 (coeffs xs2) list-all2 \(R\) ys1 (coeffs ys2) unfolding X2
Y2 by auto
    note \([\) transfer-rule \(]=1(1)[\) OF *]
    show ?case unfolding X2 Y2 by simp transfer-prover
    next
        case (2 xs1 xs2 ys2)
        thus ?case by (cases coeffs xs2, auto)
    next
        case (3 xs2 y1 ys1 Y2)
        from 3(1) have id0: coeffs ys1 \(=\) coeffs 0 by (cases ys1, auto)
    have id1: minus-poly-i ops [] (xs2 \# y1) \(=\) uminus-poly-i ops \((x s 2 \# y 1)\) by
simp
    from 3(2) have [transfer-rule]: poly-rel (xs2 \# y1) Y2 unfolding poly-rel-def
by \(\operatorname{simp}\)
    show ?case unfolding id0 id1 coeffs-uminus[symmetric] coeffs-plus-eq-plus-coeffs[symmetric]
        poly-rel-def[symmetric] by simp transfer-prover
    qed
qed
```

```
lemma poly-rel-smult \([\) transfer-rule \(]:(R===>\) poly-rel \(===>\) poly-rel \()\) (smult- \(i\)
ops) smult
    unfolding rel-fun-def poly-rel-def coeffs-smult' smult-i-def
proof (intro allI impI, goal-cases)
    case ( \(1 x y\) xs \(y s\) )
    note \([\) transfer-rule \(]=1\)
    show ?case by transfer-prover
qed
lemma poly-rel-coeffs[transfer-rule]: (poly-rel \(===>\) list-all2 \(R)(\lambda x . x)\) coeffs
    unfolding rel-fun-def poly-rel-def by auto
lemma poly-rel-poly-of-list[transfer-rule]: (list-all2 \(R===>\) poly-rel) (poly-of-list- \(i\)
ops) poly-of-list
    unfolding rel-fun-def poly-of-list-i-def poly-rel-def poly-of-list-impl
proof (intro allI impI, goal-cases)
    case (1 \(x\) y)
    note \([\) transfer-rule \(]=\) this
    show ?case by transfer-prover
qed
lemma poly-rel-monom-mult \([\) transfer-rule \(]\) :
    \(((=)===>\) poly-rel \(===>\) poly-rel) (monom-mult-i ops) monom-mult
    unfolding rel-fun-def monom-mult-i-def poly-rel-def monom-mult-code Let-def
proof (auto, goal-cases)
    case (1 x xs y)
    show ? case by (induct \(x\), auto simp: 1(3) zero)
qed
declare karatsuba-main-i.simps[simp del]
lemma list-rel-coeffs-minus- \(i\) : assumes list-all2 \(R\) x1 x2 list-all2 \(R\) y1 y2
    shows list-all2 \(R\) (coeffs-minus-i ops x1 y1) (coeffs-minus x2 y2)
proof -
    note simps \(=\) coeffs-minus-i.simps coeffs-minus.simps
    show ?thesis using assms
    proof (induct x1 y1 arbitrary: x2 y2 rule: coeffs-minus-i.induct)
        case ( 1 x xs y ys)
    from \(1(2-)\) obtain \(Y Y s\) where \(y 2: y 2=Y \# Y s\) unfolding list-all2-conv-all-nth
by (cases y2, auto)
    with 1(2-) have \(y: R y\) list-all2 \(R\) ys \(Y s\) by auto
    from 1(2-) obtain \(X X s\) where x2: x2 \(=X \# X s\) unfolding list-all2-conv-all-nth
by (cases x2, auto)
            with \(1(2-)\) have \(x: R x X\) list-all2 \(R x s X s\) by auto
            from 1 (1) [OF \(x(2) y(2)] x(1) y(1)\)
    show ?case unfolding \(x 2\) y2 simps using minus[unfolded rel-fun-def] by auto
    next
```

case (3y ys)
from 3 have $x 2: x 2=[]$ by auto
from 3 obtain $Y Y s$ where $y 2: y 2=Y \# Y s$ unfolding list-all2-conv-all-nth by (cases y2, auto)
obtain $y 1$ where $y 1: y \# y s=y 1$ by auto
show ? case unfolding y2 simps x2 unfolding y2[symmetric] list-all2-map2 list-all2-map1
using 3(2) unfolding y1 using uminus[unfolded rel-fun-def]
unfolding list-all2-conv-all-nth by auto
qed auto
qed
lemma poly-rel-karatsuba-main: list-all2 R x1 x2 \Longrightarrow list-all2 R y1 y2 \Longrightarrow
poly-rel (karatsuba-main-i ops x1 n y1 m) (karatsuba-main x2 n y2 m)
proof (induct n arbitrary: x1 y1 x2 y2 m rule: less-induct)
case (less nfg FGm)
note simp $[\operatorname{simp}]=$ karatsuba-main.simps $[$ of F n G m] karatsuba-main-i.simps $[$ of ops $f n g m$]
note $I H=\operatorname{less}(1)$
note $\operatorname{rel}[$ transfer-rule $]=\operatorname{less}(2-3)$
show ?case (is poly-rel ?lhs ?rhs)
proof (cases ($n \leq k a r a t s u b a-l o w e r-b o u n d \vee m \leq k a r a t s u b a-l o w e r-b o u n d)=$ False)
case False
from False
have lhs: ?lhs = foldr (λ a p. plus-poly-i ops (smult-i ops a (poly-of-list-i ops f)) (cCons-i ops zero p)) g [] by simp
from False have rhs: ?rhs $=$ foldr $(\lambda a p$. smult $a($ poly-of-list $F)+p C o n s ~ 0$
p) $G 0$ by simp
show ?thesis unfolding lhs rhs by transfer-prover
next
case True note $*=$ this
let ? $n 2=n$ div 2
have ? n2 $<n n-$? n2 $<n$ using True unfolding karatsuba-lower-bound-def by auto
note $I H=I H[$ OF this(1) $] I H[$ OF this(2)]
obtain $f 1$ f0 where f : split-at ? n2 $f=(f 0, f 1)$ by force
obtain $g 1 g 0$ where g : split-at ? n2 $g=(g 0, g 1)$ by force
obtain F1 F0 where F: split-at ?n2 $F=(F 0, F 1)$ by force
obtain G1 G0 where G : split-at ?n2 $G=(G 0, G 1)$ by force
from rel f F have relf[transfer-rule]: list-all2 R f0 F0 list-all2 R f1 F1
unfolding split-at-def by auto
from rel $g G$ have relg[transfer-rule]: list-all2 R g0 G0 list-all2 R g1 G1
unfolding split-at-def by auto
show ?thesis
proof (cases ?n2 $<m$)
case True
obtain p1 P1 where p1: p1 = karatsuba-main-i ops f1 $(n-n$ div 2) $g 1(m$ - n div 2)

P1 = karatsuba-main F1 ($n-n$ div 2) G1 ($m-n$ div 2) by auto
obtain p2 P2 where p2: p2 = karatsuba-main-i ops (coeffs-minus-i ops f1 f0) (n div 2)
(coeffs-minus-i ops g1 g0) (n div 2)
P2 $=$ karatsuba-main (coeffs-minus F1 F0) (n div 2)
(coeffs-minus G1 G0) (n div 2) by auto
obtain $p 3$ P3 where $p 3: p 3=$ karatsuba-main-i ops f0 (n div 2) g0 (n div 2)

P3 = karatsuba-main F0 (n div 2) G0 (n div 2) by auto
from $*$ True have lhs: ?lhs $=$ plus-poly-i ops (monom-mult-i ops (n div $2+$ n div 2) p1)
(plus-poly-i ops
(monom-mult-i ops (n div 2)
(plus-poly-i ops (minus-poly-i ops p1 p2) p3)) p3)
unfolding simp Let-def $f g$ split p1 p2 p3 by auto
have [transfer-rule]: poly-rel p1 P1 using $I H$ (2)[OF relf(2) relg(2)] unfolding p1.
have [transfer-rule]: poly-rel p3 P3 using $I H(1)[O F$ relf(1) relg(1)] unfolding p3.
have [transfer-rule]: poly-rel p2 P2 unfolding p2
by (rule IH(1)[OF list-rel-coeffs-minus-i list-rel-coeffs-minus-i], insert relf relg)
from $\operatorname{True} *$ have rhs: ?rhs = monom-mult (n div $2+n$ div 2) $P 1+$ (monom-mult (n div 2) (P1 - P2 + P3) + P3)
unfolding simp Let-def F G split p1 p2 p3 by auto
show ?thesis unfolding lhs rhs by transfer-prover

next

case False
obtain p1 P1 where p1: p1 = karatsuba-main-i ops f1 $(n-n$ div 2) $g m$ P1 = karatsuba-main F1 $(n-n$ div 2) $G m$ by auto
obtain p2 P2 where p2: p2 = karatsuba-main-i ops f0 (n div 2) $g m$ P2 = karatsuba-main F0 (n div 2) Gm by auto
from * False have lhs: ?lhs = plus-poly-i ops (monom-mult-i ops (n div 2) p1) $p 2$
unfolding simp Let-def f split p1 p2 by auto
from $*$ False have rhs: ? rhs $=$ monom-mult (n div 2) $P 1+P 2$
unfolding simp Let-def F split p1 p2 by auto
have [transfer-rule]: poly-rel p1 P1 using $I H$ (2)[OF relf(2) rel(2)] unfolding p1.
have [transfer-rule]: poly-rel p2 P2 using $I H(1)[O F \operatorname{relf}(1) \operatorname{rel}(2)]$ unfolding p2.
show ?thesis unfolding lhs rhs by transfer-prover qed
qed
qed
lemma poly-rel-times[transfer-rule]: (poly-rel $===>$ poly-rel $===>$ poly-rel) (times-poly- i ops) $((*))$

```
proof (intro rel-funI)
    fix x1 y1 x2 y2
    assume x12[transfer-rule]: poly-rel x1 x2 and y12 [transfer-rule]: poly-rel y1 y2
    hence X12[transfer-rule]: list-all2 R x1 (coeffs x2) and Y12[transfer-rule]: list-all2
R y1 (coeffs y2)
    unfolding poly-rel-def by auto
    hence len: length (coeffs x2) = length x1 length (coeffs y2) = length y1
    unfolding list-all2-conv-all-nth by auto
    let ?cond1 = length x1 \leq karatsuba-lower-bound \vee length y1 \leq karatsuba-lower-bound
    let ?cond2 = length x1 \leq length y1
    note d = karatsuba-mult-poly[symmetric] karatsuba-mult-poly-def Let-def
        times-poly-i-def len if-True if-False
    consider (TT) ?cond1 = True ?cond2 = True | (TF) ?cond1 = True ?cond2
= False
        | (FT)?cond1 = False ?cond2 = True | (FF)?cond1 = False?cond2 = False
by auto
    thus poly-rel (times-poly-i ops x1 y1) (x2 * y2)
    proof (cases)
        case TT
        show ?thesis unfolding d TT
            unfolding poly-rel-def coeffs-eq-iff times-poly-def times-poly-i-def fold-coeffs-def
                by transfer-prover
    next
        case TF
        show ?thesis unfolding d TF
        unfolding poly-rel-def coeffs-eq-iff times-poly-def times-poly-i-def fold-coeffs-def
            by transfer-prover
    next
        case FT
        show ?thesis unfolding d FT
            by (rule poly-rel-karatsuba-main[OF Y12 X12])
    next
        case FF
        show ?thesis unfolding d FF
            by (rule poly-rel-karatsuba-main[OF X12 Y12])
    qed
qed
lemma poly-rel-coeff[transfer-rule]:(poly-rel ===> (=) ===>> R)(coeff-i ops)
coeff
    unfolding poly-rel-def rel-fun-def coeff-i-def nth-default-coeffs-eq[symmetric]
proof (intro allI impI, clarify)
    fix x y n
    assume [transfer-rule]: list-all2 R x (coeffs y)
    show R (nth-default zero x n) (nth-default 0 (coeffs y) n) by transfer-prover
qed
```

lemma poly-rel-degree[transfer-rule]: (poly-rel $===>(=))$ degree-i degree unfolding poly-rel-def rel-fun-def degree-i-def degree-eq-length-coeffs by (simp add: list-all2-lengthD)

```
lemma lead-coeff-i-def': lead-coeff-i ops \(x=(\) coeff-i ops) \(x(\) degree-i \(x)\)
    unfolding lead-coeff-i-def degree-i-def coeff-i-def
proof (cases x, auto, goal-cases)
    case ( 1 a xs)
    hence \(i d\) : last \(x s=\) last ( \(a \# x s\) ) by auto
    show ?case unfolding id by (subst last-conv-nth-default, auto)
qed
lemma poly-rel-lead-coeff[transfer-rule]: (poly-rel \(===>R\) ) (lead-coeff-i ops) lead-coeff
    unfolding lead-coeff-i-def' \([\) abs-def] by transfer-prover
lemma poly-rel-minus-poly-rev-list[transfer-rule]:
    (list-all2 \(R===>\) list-all2 \(R===>\) list-all2 \(R\) ) (minus-poly-rev-list-i ops) mi-
nus-poly-rev-list
proof (intro rel-funI, goal-cases)
    case (1 x1 x2 y1 y2)
    thus? case
    proof (induct x1 y1 arbitrary: x2 y2 rule: minus-poly-rev-list-i.induct)
        case ( 1 x1 xs1 y1 ys1 X2 Y2)
        from 1(2) obtain \(x 2\) xs2 where X2: X2 \(=x 2\) \# xs2 by (cases X2, auto)
        from 1(3) obtain y2 ys2 where Y2: Y2 = y2 \# ys2 by (cases Y2, auto)
        from 1 (2) 1 (3) have [transfer-rule]: \(R x 1 x 2 R y 1 y 2\)
            and *: list-all2 \(R\) xs1 xs2 list-all2 \(R\) ys1 ys2 unfolding \(X 2\) Y2 by auto
        note \([\) transfer-rule \(]=1(1)[O F *]\)
        show ?case unfolding X2 Y2 by (simp, intro conjI, transfer-prover + )
    next
        case (2 xs1 xs2 ys2)
        thus ?case by (cases xs2, auto)
    next
        case (3 xs2 y1 ys1 Y2)
        thus ?case by (cases Y2, auto)
    qed
qed
```

lemma divmod-poly-one-main- i : assumes len: $n \leq l e n g t h ~ Y$ and rel: list-all2 R
x X list-all2 R y Y
list-all2 $R z Z$ and $n: n=N$
shows rel-prod (list-all2 R) (list-all2 R) (divmod-poly-one-main-i ops x y z n)
(divmod-poly-one-main-list X Y Z N)
using len rel unfolding n
proof (induct N arbitrary: $x X$ y $Y z Z$)

```
case (Suc n x X y Y z Z)
from Suc(2,4) have [transfer-rule]: R (hd y) (hd Y) by (cases y; cases Y,auto)
note [transfer-rule] = Suc(3-5)
have id:?case = (rel-prod (list-all2 R) (list-all2 R)
    (divmod-poly-one-main-i ops (cCons-i ops (hd y) x)
        (tl (if hd y = zero then y else minus-poly-rev-list-i ops y (map (times (hd y))
z))) z n)
    (divmod-poly-one-main-list (cCons (hd Y) X)
                            (tl (if hd Y = 0 then Y else minus-poly-rev-list Y (map ((*) (hd Y)) Z))) Z
n))
    by (simp add: Let-def)
    show ?case unfolding id
    proof (rule Suc(1), goal-cases)
    case 1
    show ?case using Suc(2) by simp
    qed (transfer-prover+)
qed simp
lemma mod-poly-one-main- \(i\) : assumes len: \(n \leq l e n g t h ~ X\) and rel: list-all2 \(R x X\)
list-all2 R y Y
    and n: n=N
shows list-all2 R (mod-poly-one-main-i ops x y n)
    (mod-poly-one-main-list X Y N)
    using len rel unfolding n
proof (induct N arbitrary: x X y Y)
    case (Suc n y YzZ)
    from Suc(2,3) have [transfer-rule]: R (hd y) (hd Y) by (cases y; cases Y, auto)
    note [transfer-rule] = Suc(3-4)
    have id: ?case = (list-all2 R
        (mod-poly-one-main-i ops
            (tl (if hd y = zero then y else minus-poly-rev-list-i ops y (map (times (hd y))
z))) z n)
            (mod-poly-one-main-list
                (tl (if hd Y = 0 then Y else minus-poly-rev-list Y (map ((*) (hd Y)) Z))) Z
n))
            by (simp add: Let-def)
    show ?case unfolding id
    proof (rule Suc(1), goal-cases)
        case 1
        show ?case using Suc(2) by simp
    qed (transfer-prover+)
qed simp
lemma poly-rel-dvd[transfer-rule]: (poly-rel ===> poly-rel ===> (=)) (dvd-poly-i
ops) (dvd)
    unfolding dvd-poly-i-def[abs-def] dvd-def[abs-def]
```

```
    by (transfer-prover-start, transfer-step+, auto)
lemma poly-rel-monic[transfer-rule]:(poly-rel ===> (=)) (monic-i ops) monic
    unfolding monic-i-def lead-coeff-i-def' by transfer-prover
lemma poly-rel-pdivmod-monic: assumes mon: monic Y
    and x:poly-rel x X and y:poly-rel y Y
    shows rel-prod poly-rel poly-rel (pdivmod-monic-i ops x y) (pdivmod-monic X Y)
proof -
    note [transfer-rule] = x y
    note listall = this[unfolded poly-rel-def]
    note defs = pdivmod-monic-def pdivmod-monic-i-def Let-def
    from mon obtain k where len: length (coeffs Y)=Suc k unfolding poly-rel-def
list-all2-iff
        by (cases coeffs Y, auto)
    have [transfer-rule]:
        rel-prod (list-all2 R) (list-all2 R)
            (divmod-poly-one-main-i ops [] (rev x) (rev y) (1 + length x - length y))
            (divmod-poly-one-main-list [] (rev (coeffs X)) (rev (coeffs Y)) (1 + length
(coeffs X) - length (coeffs Y)))
    by (rule divmod-poly-one-main-i, insert x y listall, auto, auto simp: poly-rel-def
list-all2-iff len)
    show ?thesis unfolding defs by transfer-prover
qed
lemma ring-ops-poly: ring-ops (poly-ops ops) poly-rel
    by (unfold-locales, auto simp: poly-ops-def
    bi-unique-poly-rel
    right-total-poly-rel
    poly-rel-times
    poly-rel-zero
    poly-rel-one
    poly-rel-minus
    poly-rel-uminus
    poly-rel-plus
    poly-rel-eq
    Domainp-is-poly)
end
context idom-ops
begin
```

lemma poly-rel-pderiv $[$ transfer-rule $]:$ (poly-rel $===>$ poly-rel) (pderiv-i ops) pderiv
proof (intro rel-funI, unfold poly-rel-def coeffs-pderiv-code pderiv-i-def pderiv-coeffs-def)
fix $x s x^{\prime}$
assume list-all2 R xs (coeffs xs ${ }^{\prime}$)
then obtain ys ys' y y^{\prime} where $i d: t l x s=y s t l\left(\right.$ coeffs $\left.x s^{\prime}\right)=y s^{\prime}$ one $=y 1=$
y^{\prime} and

```
    R: list-all2 R ys ys ' R y y'
    by (cases xs; cases coeffs xs'; auto simp: one)
    show list-all2 R (pderiv-main-i ops one (tl xs))
        (pderiv-coeffs-code 1 (tl (coeffs xs')))
        unfolding id using R
    proof (induct ys ys' arbitrary: y y' rule: list-all2-induct)
    case (Cons x xs x' xs' y y')
    note [transfer-rule] = Cons(1,2,4)
    have R (plus y one) ( y'}+1)\mathrm{ by transfer-prover
    note [transfer-rule] = Cons(3)[OF this]
    show ?case by (simp, transfer-prover)
    qed simp
qed
lemma poly-rel-irreducible[transfer-rule]:(poly-rel ===> (=)) (irreducible-i ops)
irreducibled
    unfolding irreducible-i-def[abs-def] irreducible d
    by (transfer-prover-start, transfer-step +, auto)
lemma idom-ops-poly: idom-ops (poly-ops ops) poly-rel
    using ring-ops-poly unfolding ring-ops-def idom-ops-def by auto
end
context idom-divide-ops
begin
lemma poly-rel-sdiv[transfer-rule]: (poly-rel ===>> R===> poly-rel) (sdiv-i ops)
sdiv-poly
    unfolding rel-fun-def poly-rel-def coeffs-sdiv sdiv-i-def
proof (intro allI impI, goal-cases)
    case (1 x y xs ys)
    note [transfer-rule] = 1
    show ?case by transfer-prover
qed
end
context field-ops
begin
lemma poly-rel-div[transfer-rule]: (poly-rel ===> poly-rel ===> poly-rel)
    (div-field-poly-i ops) (div)
proof (intro rel-funI, goal-cases)
    case (1 x X y Y)
    note [transfer-rule] = this
    note listall = this[unfolded poly-rel-def]
    note defs = div-field-poly-impl div-field-poly-impl-def div-field-poly-i-def Let-def
    show ?case
    proof (cases y = [])
        case True
```

with 1(2) have nil: coeffs $Y=[]$ unfolding poly-rel-def by auto show ?thesis unfolding defs True nil poly-rel-def by auto
next
case False
from append-butlast-last-id[OF False] obtain ys yl where $y: y=y s @[y l]$ by metis
from False listall have coeffs $Y \neq[]$ by auto
from append-butlast-last-id[OF this] obtain $Y s Y l$ where Y : coeffs $Y=Y s$
@ [Yl] by metis
from listall have [transfer-rule]: R yl $Y l$ by (simp add: y Y)
have id: last (coeffs Y) $=$ Yl last $(y)=y l$
$\wedge t e .($ if $y=[]$ then t else $e)=e$
$\bigwedge t e .($ if coeffs $Y=[]$ then t else $e)=e$ unfolding $y Y$ by auto have [transfer-rule]: (rel-prod (list-all2 R) (list-all2 R))
(divmod-poly-one-main-i ops [] (rev x) (rev (map (times (inverse yl)) y))
$(1+$ length $x-$ length $y))$
(divmod-poly-one-main-list [] (rev (coeffs X))
$($ rev $(\operatorname{map}((*)($ Fields.inverse Yl)) $($ coeffs $Y)))$
$(1+$ length $($ coeffs $X)$ length $($ coeffs $Y)))$
proof (rule divmod-poly-one-main-i, goal-cases)
case 5
from listall show ?case by (simp add: list-all2-lengthD)
next
case 1
from listall show ?case by (simp add: list-all2-lengthD Y)
qed transfer-prover +
show ?thesis unfolding defs id by transfer-prover
qed
qed
lemma poly-rel-mod[transfer-rule]: (poly-rel $===>$ poly-rel $===>$ poly-rel $)$
(mod-field-poly-i ops) (mod)
proof (intro rel-funI, goal-cases)
case ($1 x \times$ y Y)
note $[$ transfer-rule $]=$ this
note listall $=$ this[unfolded poly-rel-def]
note defs $=$ mod-poly-code mod-field-poly-i-def Let-def
show ?case
proof (cases $y=[]$)
case True
with 1(2) have nil: coeffs $Y=[]$ unfolding poly-rel-def by auto
show ?thesis unfolding defs True nil poly-rel-def by (simp add: listall)
next
case False
from append-butlast-last-id $[$ OF False $]$ obtain $y s y l$ where $y: y=y s @[y l]$ by metis
from False listall have coeffs $Y \neq[]$ by auto
from append-butlast-last-id[OF this] obtain $Y s Y l$ where $Y:$ coeffs $Y=Y s$
have id: last (coeffs $Y)=$ Yl last $(y)=y l$
$\wedge t e$. (if $y=[]$ then t else $e)=e$
$\wedge t e .($ if coeffs $Y=[]$ then t else $e)=e$ unfolding $y Y$ by auto
have [transfer-rule]: list-all2 R
(mod-poly-one-main-i ops (rev x) (rev (map (times (inverse yl)) y))
$(1+$ length $x-$ length $y))$
(mod-poly-one-main-list (rev (coeffs X))
(rev (map ($*$) (Fields.inverse Yl)) (coeffs Y)))
$(1+$ length $($ coeffs $X)-$ length $($ coeffs $Y)))$
proof (rule mod-poly-one-main-i, goal-cases)
case 4
from listall show ?case by (simp add: list-all2-lengthD)
next
case 1
from listall show ?case by (simp add: list-all2-lengthD Y)
qed transfer-prover +
show ?thesis unfolding defs id by transfer-prover
qed
qed
lemma poly-rel-normalize [transfer-rule]: (poly-rel $===>$ poly-rel)
(normalize-poly-i ops) Rings.normalize
unfolding normalize-poly-old-def normalize-poly-i-def lead-coeff-i-def'
by transfer-prover
lemma poly-rel-unit-factor $[$ transfer-rule $]$: (poly-rel $===>$ poly-rel $)$
(unit-factor-poly-i ops) Rings.unit-factor
unfolding unit-factor-poly-def unit-factor-poly-i-def lead-coeff-i-def'
unfolding monom-0 by transfer-prover
lemma idom-divide-ops-poly: idom-divide-ops (poly-ops ops) poly-rel
proof -
interpret poly: idom-ops poly-ops ops poly-rel by (rule idom-ops-poly)
show ?thesis
by (unfold-locales, simp add: poly-rel-div poly-ops-def)
qed
lemma euclidean-ring-ops-poly: euclidean-ring-ops (poly-ops ops) poly-rel
proof -
interpret poly: idom-ops poly-ops ops poly-rel by (rule idom-ops-poly)
have id: arith-ops-record.normalize (poly-ops ops) = normalize-poly-i ops
arith-ops-record.unit-factor (poly-ops ops) $=$ unit-factor-poly-i ops
unfolding poly-ops-def by simp-all
show ?thesis
by (unfold-locales, simp add: poly-rel-mod poly-ops-def, unfold id,
simp add: poly-rel-normalize, insert poly-rel-div poly-rel-unit-factor, auto simp: poly-ops-def)
qed
lemma poly-rel-gcd $[$ transfer-rule $]:($ poly-rel $===>$ poly-rel $===>$ poly-rel $)($ gcd-poly- i ops) $g c d$ proof -
interpret poly: euclidean-ring-ops poly-ops ops poly-rel by (rule euclidean-ring-ops-poly) show ?thesis using poly.gcd-eucl-i unfolding gcd-poly-i-def gcd-eucl.
qed
lemma poly-rel-euclid-ext [transfer-rule]: (poly-rel $===>$ poly-rel $===>$ rel-prod (rel-prod poly-rel poly-rel) poly-rel) (euclid-ext-poly-i ops) euclid-ext proof -
interpret poly: euclidean-ring-ops poly-ops ops poly-rel by (rule euclidean-ring-ops-poly) show ?thesis using poly.euclid-ext-i unfolding euclid-ext-poly-i-def .

qed

end

```
context ring-ops
begin
notepad
begin
    fix xs x ys y
    assume [transfer-rule]: poly-rel xs x poly-rel ys y
    have }x*y=y*x\mathrm{ by simp
    from this[untransferred]
    have times-poly-i ops xs ys = times-poly-i ops ys xs .
end
end
end
```


5.5.3 Over a Finite Field

theory Poly-Mod-Finite-Field-Record-Based
imports
Poly-Mod-Finite-Field
Finite-Field-Record-Based
Polynomial-Record-Based
begin
locale arith-ops-record $=$ arith-ops ops + poly-mod m for ops $::$ ' i arith-ops-record
and $m::$ int
begin
definition M-rel- $i::$ ' $i \Rightarrow$ int \Rightarrow bool where
M-rel-i $f F=($ arith-ops-record.to-int ops $f=M F)$
definition Mp-rel-i :: 'i list \Rightarrow int poly \Rightarrow bool where
Mp-rel-i f $F=($ map (arith-ops-record.to-int ops) $f=\operatorname{coeffs}(M p F))$
lemma Mp-rel-i-Mp[simp]: Mp-rel-i $f(M p F)=$ Mp-rel-if F unfolding Mp-rel-i-def by auto
lemma Mp-rel-i-Mp-to-int-poly-i: Mp-rel-i $f F \Longrightarrow M p(t o-i n t-p o l y-i$ ops $f)=$ to-int-poly-i ops f
unfolding Mp-rel-i-def to-int-poly-i-def by simp

end

locale mod-ring-gen $=$ ring-ops ff-ops R for ff-ops :: 'i arith-ops-record and $R::{ }^{\prime} i \Rightarrow$ ' a :: nontriv mod-ring \Rightarrow bool +
fixes $p::$ int
assumes $p: p=\operatorname{int} C A R D\left({ }^{\prime} a\right)$
and of-int: $0 \leq x \Longrightarrow x<p \Longrightarrow R$ (arith-ops-record.of-int ff-ops x) (of-int x)
and to-int: $R y z \Longrightarrow$ arith-ops-record.to-int ff-ops $y=$ to-int-mod-ring z
and to-int': $0 \leq$ arith-ops-record.to-int ff-ops $y \Longrightarrow$ arith-ops-record.to-int ff-ops
$y<p \Longrightarrow$
$R y$ (of-int (arith-ops-record.to-int ff-ops y))
begin
lemma nat-p: nat $p=C A R D\left({ }^{\prime} a\right)$ unfolding p by simp
sublocale poly-mod-type p TYPE('a)
by (unfold-locales, rule p)
lemma coeffs-to-int-poly: coeffs (to-int-poly (x :: 'a mod-ring poly)) $=$ map to-int-mod-ring (coeffs x)
by (rule coeffs-map-poly, auto)
lemma coeffs-of-int-poly: coeffs (of-int-poly (Mp x) :: 'a mod-ring poly) $=$ map of-int (coeffs (Mp x))
apply (rule coeffs-map-poly)
by (metis M-0 M-M Mp-coeff leading-coeff-0-iff of-int-hom.hom-zero to-int-mod-ring-of-int-M)
lemma to-int-poly-i: assumes poly-rel fg shows to-int-poly-i ff-ops $f=$ to-int-poly g
proof -
have $*$: map (arith-ops-record.to-int ff-ops) $f=$ coeffs (to-int-poly g)
unfolding coeffs-to-int-poly
by (rule nth-equalityI, insert assms, auto simp: list-all2-conv-all-nth poly-rel-def to-int)
show ?thesis unfolding coeffs-eq-iff to-int-poly-i-def poly-of-list-def coeffs-Poly * strip-while-coeffs..
qed
lemma poly-rel-of-int-poly: assumes id: $f^{\prime}=o f-i n t-p o l y-i f f-o p s(M p f) f^{\prime \prime}=$ of-int-poly ($M p f$)
shows poly-rel $f^{\prime} f^{\prime \prime}$ unfolding id poly-rel-def
unfolding list-all2-conv-all-nth coeffs-of-int-poly of-int-poly-i-def length-map
by (rule conjI[OF refl], intro allI impI, simp add: nth-coeffs-coeff Mp-coeff M-def,
rule of-int,
insert p, auto)
sublocale arith-ops-record ff-ops p.
lemma Mp-rel-iI: poly-rel f1 f2 $\Longrightarrow M P$-Rel f3 f2 \Longrightarrow Mp-rel-i f1 f3 unfolding Mp-rel-i-def MP-Rel-def poly-rel-def by (auto simp add: list-all2-conv-all-nth to-int intro: nth-equalityI)
lemma M-rel-iI: R f1 f2 $\Longrightarrow M$-Rel f3 f2 \Longrightarrow M-rel-i f1 f3
unfolding M-rel-i-def M-Rel-def by (simp add: to-int)
lemma M-rel-iI': assumes R f1 f2
shows M-rel-i f1 (arith-ops-record.to-int ff-ops f1)
by (rule M-rel-iI[OF assms], simp add: to-int[OF assms] M-Rel-def M-to-int-mod-ring)
lemma Mp-rel-iI': assumes poly-rel f1 f2
shows Mp-rel-i f1 (to-int-poly-i ff-ops f1)
proof (rule Mp-rel-iI[OF assms], unfold to-int-poly-i[OF assms])
show MP-Rel (to-int-poly f2) f2 unfolding MP-Rel-def by (simp add: Mp-to-int-poly)
qed

```
lemma M-rel-iD: assumes M-rel-i f1 f3
    shows
        R f1 (of-int (M f3))
        M-Rel f3 (of-int (M f3))
proof -
    show M-Rel f3 (of-int (M f3))
            using M-Rel-def to-int-mod-ring-of-int-M by auto
    from assms show R f1 (of-int (Mf3))
        unfolding M-rel-i-def
                by (metis int-one-le-iff-zero-less leD linear m1 poly-mod.M-def pos-mod-conj
to-int')
qed
lemma Mp-rel-iD: assumes Mp-rel-i f1 f3
    shows
        poly-rel f1 (of-int-poly (Mp f3))
        MP-Rel f3 (of-int-poly (Mp f3))
proof -
    show Rel: MP-Rel f3 (of-int-poly (Mp f3))
        using MP-Rel-def Mp-Mp Mp-f-representative by auto
    let ?ti = arith-ops-record.to-int ff-ops
```

```
    from assms[unfolded Mp-rel-i-def] have
        *: coeffs (Mp f3) = map ?ti f1 by auto
    {
        fix }
        assume x < set f1
    hence ?ti x fet (map ?ti f1) by auto
    from this[folded *] have ?ti }x\in\mathrm{ range M
    by (metis (no-types, lifting) MP-Rel-def M-to-int-mod-ring Rel coeffs-to-int-poly
ex-map-conv range-eqI)
    hence ?ti }x\geq0\mathrm{ ?ti }x<p\mathrm{ unfolding M-def using m1 by auto
    hence R x (of-int (?ti x))
        by (rule to-int')
    }
    thus poly-rel f1 (of-int-poly (Mp f3)) using *
    unfolding poly-rel-def coeffs-of-int-poly
    by (auto simp: list-all2-map2 list-all2-same)
qed
end
locale prime-field-gen = field-ops ff-ops R + mod-ring-gen ff-ops R p for ff-ops ::
'i arith-ops-record and
    R ::' }i=\mp@subsup{|}{}{\prime}a\mathrm{ :: prime-card mod-ring }=>\mathrm{ bool and p :: int
begin
sublocale poly-mod-prime-type p TYPE('a)
    by (unfold-locales, rule p)
end
lemma (in mod-ring-locale) mod-ring-rel-of-int:
    0\leqx\Longrightarrowx<p\Longrightarrow mod-ring-rel x (of-int x)
    unfolding mod-ring-rel-def
    by (transfer, auto simp: p)
context prime-field
begin
lemma prime-field-finite-field-ops-int: prime-field-gen (finite-field-ops-int p) mod-ring-rel
p
proof -
    interpret field-ops finite-field-ops-int p mod-ring-rel by (rule finite-field-ops-int)
    show ?thesis
        by (unfold-locales, rule p,
        auto simp: finite-field-ops-int-def p mod-ring-rel-def of-int-of-int-mod-ring)
qed
lemma prime-field-finite-field-ops-integer: prime-field-gen (finite-field-ops-integer
(integer-of-int p)) mod-ring-rel-integer p
```

```
proof -
    interpret field-ops finite-field-ops-integer (integer-of-int p) mod-ring-rel-integer
by (rule finite-field-ops-integer, simp)
    have pp: p = int-of-integer (integer-of-int p) by auto
    interpret int: prime-field-gen finite-field-ops-int p mod-ring-rel
        by (rule prime-field-finite-field-ops-int)
    show ?thesis
        by (unfold-locales, rule p, auto simp: finite-field-ops-integer-def
            mod-ring-rel-integer-def[OF pp] urel-integer-def[OF pp] mod-ring-rel-of-int
            int.to-int[symmetric] finite-field-ops-int-def)
qed
lemma prime-field-finite-field-ops32: assumes small: p\leq65535
    shows prime-field-gen (finite-field-ops32 (uint32-of-int p)) mod-ring-rel32 p
proof -
    let ?pp = uint32-of-int p
    have ppp: p=int-of-uint32 ?pp
        by (subst int-of-uint32-inv, insert small p2, auto)
    note * = ppp small
    interpret field-ops finite-field-ops32 ?pp mod-ring-rel32
        by (rule finite-field-ops32, insert *)
    interpret int: prime-field-gen finite-field-ops-int p mod-ring-rel
        by (rule prime-field-finite-field-ops-int)
    show ?thesis
    proof (unfold-locales, rule p, auto simp: finite-field-ops32-def)
        fix }
        assume x: 0 \leq x x < p
            from int.of-int[OF this] have mod-ring-rel x (of-int x) by (simp add: fi-
nite-field-ops-int-def)
    thus mod-ring-rel32 (uint32-of-int x) (of-int x) unfolding mod-ring-rel32-def[OF
*]
            by (intro exI[of - x], auto simp: urel32-def[OF *], subst int-of-uint32-inv,
insert * x, auto)
    next
        fix }y
        assume mod-ring-rel32 y z
        from this[unfolded mod-ring-rel32-def[OF *]] obtain x where yx: urel32 y x
and xz:mod-ring-rel xz by auto
            from int.to-int[OF xz] have zx: to-int-mod-ring z = x by (simp add: fi-
nite-field-ops-int-def)
            show int-of-uint32 }y=\mathrm{ to-int-mod-ring z unfolding zx using yx unfolding
urel32-def[OF *] by simp
    next
        fix }
        show 0\leq int-of-uint32 y \Longrightarrow int-of-uint32 y < p mod-ring-rel32 y (of-int
(int-of-uint32 y))
            unfolding mod-ring-rel32-def[OF *] urel32-def[OF *]
            by (intro exI[of - int-of-uint32 y], auto simp: mod-ring-rel-of-int)
    qed
```


qed

lemma prime-field-finite-field-ops64: assumes small: $p \leq 4294967295$
shows prime-field-gen (finite-field-ops64 (uint64-of-int p)) mod-ring-rel64 p
proof -
let $? p p=$ uint64-of-int p
have ppp: $p=$ int-of-uint64 ?pp
by (subst int-of-uint64-inv, insert small p2, auto)
note $*=p p p$ small
interpret field-ops finite-field-ops64 ?pp mod-ring-rel64
by (rule finite-field-ops64, insert *)
interpret int: prime-field-gen finite-field-ops-int p mod-ring-rel
by (rule prime-field-finite-field-ops-int)
show ?thesis
proof (unfold-locales, rule p, auto simp: finite-field-ops64-def)
fix x
assume $x: 0 \leq x x<p$
from int.of-int $[O F$ this $]$ have mod-ring-rel x (of-int x) by (simp add: fi-nite-field-ops-int-def)
thus mod-ring-rel64 (uint64-of-int x) (of-int x) unfolding mod-ring-rel64-def[OF *]
by (intro exI[of - x], auto simp: urel64-def[OF *], subst int-of-uint64-inv, insert * x, auto)

next

fix $y z$
assume mod-ring-rel64 y z
from this[unfolded mod-ring-rel64-def[OF *]] obtain x where $y x$: urel64 $y x$ and $x z$: mod-ring-rel $x z$ by auto
from int.to-int $\left[\begin{array}{ll}O F & x z]\end{array}\right.$ have $z x$: to-int-mod-ring $z=x$ by (simp add: f_{i} -nite-field-ops-int-def)
show int-of-uint64 $y=$ to-int-mod-ring z unfolding $z x$ using $y x$ unfolding urel64-def $[O F *]$ by simp
next
fix y
show $0 \leq$ int-of-uint64 $y \Longrightarrow$ int-of-uint64 $y<p \Longrightarrow$ mod-ring-rel64 y (of-int (int-of-uint64 y))
unfolding mod-ring-rel64-def[OF *] urel64-def[OF *]
by (intro exI[of-int-of-uint64 y], auto simp: mod-ring-rel-of-int)
qed
qed
end
context mod-ring-locale
begin
lemma mod-ring-finite-field-ops-int: mod-ring-gen (finite-field-ops-int p) mod-ring-rel p
proof -
interpret ring-ops finite-field-ops-int p mod-ring-rel by (rule ring-finite-field-ops-int) show ?thesis

```
    by (unfold-locales, rule p,
    auto simp: finite-field-ops-int-def p mod-ring-rel-def of-int-of-int-mod-ring)
qed
```

lemma mod-ring-finite-field-ops-integer: mod-ring-gen (finite-field-ops-integer (integer-of-int p)) mod-ring-rel-integer p
proof -
interpret ring-ops finite-field-ops-integer (integer-of-int p) mod-ring-rel-integer
by (rule ring-finite-field-ops-integer, simp)
have $p p: p=$ int-of-integer (integer-of-int p) by auto
interpret int: mod-ring-gen finite-field-ops-int p mod-ring-rel
by (rule mod-ring-finite-field-ops-int)
show ?thesis
by (unfold-locales, rule p, auto simp: finite-field-ops-integer-def
mod-ring-rel-integer-def[OF pp] urel-integer-def[OF pp] mod-ring-rel-of-int
int.to-int[symmetric] finite-field-ops-int-def)
qed
lemma mod-ring-finite-field-ops32: assumes small: $p \leq 65535$
shows mod-ring-gen (finite-field-ops32 (uint32-of-int p)) mod-ring-rel32 p
proof -
let $? p p=$ uint32-of-int p
have $p p p: p=$ int-of-uint32 ?pp
by (subst int-of-uint32-inv, insert small p2, auto)
note $*=$ ppp small
interpret ring-ops finite-field-ops32 ?pp mod-ring-rel32
by (rule ring-finite-field-ops32, insert *)
interpret int: mod-ring-gen finite-field-ops-int p mod-ring-rel
by (rule mod-ring-finite-field-ops-int)
show ?thesis
proof (unfold-locales, rule p, auto simp: finite-field-ops32-def)
fix x
assume $x: 0 \leq x x<p$
from int.of-int $[O F$ this $]$ have mod-ring-rel x (of-int x) by (simp add: fi-
nite-field-ops-int-def)
thus mod-ring-rel32 (uint32-of-int x) (of-int x) unfolding mod-ring-rel32-def[OF
*]
by (intro exI[of - x], auto simp: urel32-def[OF *], subst int-of-uint32-inv,
insert $* x$, auto)
next
fix $y z$
assume mod-ring-rel32 y z
from this[unfolded mod-ring-rel32-def[OF *]] obtain x where $y x$: urel32 y x
and $x z$: mod-ring-rel $x z$ by auto
from int.to-int $[$ OF $x z]$ have $z x$: to-int-mod-ring $z=x$ by (simp add: fi-
nite-field-ops-int-def)
show int-of-uint32 $y=$ to-int-mod-ring z unfolding $z x$ using $y x$ unfolding
urel32-def $[O F *]$ by simp

```
    next
    fix y
    show 0\leqint-of-uint32 y \Longrightarrow int-of-uint32 y < p mod-ring-rel32 y (of-int
(int-of-uint32 y))
            unfolding mod-ring-rel32-def[OF *] urel32-def[OF *]
            by (intro exI[of - int-of-uint32 y], auto simp: mod-ring-rel-of-int)
    qed
qed
lemma mod-ring-finite-field-ops64: assumes small: p\leq4294967295
    shows mod-ring-gen (finite-field-ops64 (uint64-of-int p)) mod-ring-rel64 p
proof -
    let ?pp=uint64-of-int p
    have ppp: p = int-of-uint64 ?pp
            by (subst int-of-uint64-inv, insert small p2, auto)
    note * = ppp small
    interpret ring-ops finite-field-ops64 ?pp mod-ring-rel64
        by (rule ring-finite-field-ops64, insert *)
    interpret int: mod-ring-gen finite-field-ops-int p mod-ring-rel
    by (rule mod-ring-finite-field-ops-int)
    show ?thesis
    proof (unfold-locales, rule p, auto simp: finite-field-ops64-def)
            fix }
            assume x: 0 \leq x x<p
            from int.of-int[OF this] have mod-ring-rel x (of-int x) by (simp add: fi-
nite-field-ops-int-def)
    thus mod-ring-rel64 (uint64-of-int x) (of-int x) unfolding mod-ring-rel64-def[OF
*]
            by (intro exI[of - x], auto simp: urel64-def[OF *], subst int-of-uint64-inv,
insert * x, auto)
    next
            fix }y
            assume mod-ring-rel64 y z
            from this[unfolded mod-ring-rel64-def[OF *]] obtain x where yx: urel64 y x
and xz: mod-ring-rel x z by auto
            from int.to-int[OF xz] have zx: to-int-mod-ring z =x by (simp add: fi-
nite-field-ops-int-def)
            show int-of-uint64 y = to-int-mod-ring z unfolding zx using yx unfolding
                urel64-def[OF *] by simp
    next
            fix y
            show 0\leq int-of-uint64 y \Longrightarrow int-of-uint64 y<p\Longrightarrow mod-ring-rel64 y (of-int
(int-of-uint64 y))
            unfolding mod-ring-rel64-def[OF *] urel64-def[OF *]
            by (intro exI[of - int-of-uint64 y], auto simp: mod-ring-rel-of-int)
        qed
qed
end
```

end

5.6 Chinese Remainder Theorem for Polynomials

We prove the Chinese Remainder Theorem, and strengthen it by showing uniqueness

```
theory Chinese-Remainder-Poly
imports
    HOL-Number-Theory.Residues
    Polynomial-Factorization.Polynomial-Divisibility
    Polynomial-Interpolation.Missing-Polynomial
```

begin
lemma cong-add-poly:
$\left[\left(a::^{\prime} b::\{\right.\right.$ field $-g c d\}$ poly $\left.)=b\right](\bmod m) \Longrightarrow[c=d](\bmod m) \Longrightarrow[a+c=b+d]$
(mod m)
by (fact cong-add)
lemma cong-mult-poly:
$[(a:: ' b::\{$ field $-g c d\}$ poly $)=b](\bmod m) \Longrightarrow[c=d](\bmod m) \Longrightarrow[a * c=b * d]$
(mod m)
by (fact cong-mult)
lemma cong-mult-self-poly: $\left[\left(a::^{\prime} b::\{f i e l d-g c d\}\right.\right.$ poly $\left.) * m=0\right](\bmod m)$
by (fact cong-mult-self-right)
lemma cong-scalar2-poly: $\left[\left(a::^{\prime} b::\{\right.\right.$ field-gcd $\}$ poly $\left.)=b\right](\bmod m) \Longrightarrow[k * a=k *$
b] (mod m)
by (fact cong-scalar-left)
lemma cong-sum-poly:
$(\bigwedge x . x \in A \Longrightarrow[((f x):: ' b::\{$ field- $g c d\}$ poly $)=g x](\bmod m)) \Longrightarrow$
$\left[\left(\sum x \in A . f x\right)=\left(\sum x \in A . g x\right)\right](\bmod m)$
by (rule cong-sum)
lemma cong-iff-lin-poly: $([(a:: ' b::\{$ field-gcd $\}$ poly $)=b](\bmod m))=(\exists k . b=a+$
$m * k$)
using cong-diff-iff-cong-0 [of bam] by (auto simp add: cong-0-iff dvd-def alge-
bra-simps dest: cong-sym)
lemma cong-solve-poly: $\left(a::^{\prime} b::\{\right.$ field-gcd $\}$ poly $) \neq 0 \Longrightarrow \exists x .[a * x=$ gcd $a n]$
(mod n)
proof (cases $n=0$)
case True
note $n 0=$ True
show ?thesis
proof (cases monic a)
case True
have n : normalize $a=a$ by (rule normalize-monic[OF True])

```
        show ?thesis
        by (rule exI[of - 1], auto simp add: n0 n cong-def)
    next
    case False
    show ?thesis
    by (auto simp add: True cong-def normalize-poly-old-def map-div-is-smult-inverse)
        (metis mult.right-neutral mult-smult-right)
    qed
next
    case False
    note n-not-0 = False
    show ?thesis
    using bezout-coefficients-fst-snd [of a n, symmetric]
    by (auto simp add: cong-iff-lin-poly mult.commute [of a] mult.commute [of n])
qed
lemma cong-solve-coprime-poly:
assumes coprime-an:coprime (a::'b::{field-gcd} poly) n
shows }\existsx.[a*x=1](\operatorname{mod}n
proof (cases a=0)
    case True
    show ?thesis unfolding cong-def
        using True coprime-an by auto
next
    case False
    show ?thesis
        using coprime-an cong-solve-poly[OF False, of n]
        unfolding cong-def
        by presburger
qed
lemma cong-dvd-modulus-poly:
        [x=y] (\operatorname{mod}m)\Longrightarrown dvd m\Longrightarrow[x=y] (mod n) for x y :: 'b::{field-gcd} poly
    by (auto simp add: cong-iff-lin-poly elim!: dvdE)
lemma chinese-remainder-aux-poly:
    fixes A :: 'a set
        and m :: 'a व 'b::{field-gcd} poly
    assumes fin: finite A
    and cop: }\foralli\inA.(\forallj\inA.i\not=j\longrightarrow\mathrm{ coprime (mi) (mj))
    shows \existsb. (\foralli\inA.[bi=1] (mod mi)^[bi=0](mod (\prodj\inA-{i}.m
j)))
proof (rule finite-set-choice, rule fin, rule ballI)
    fix i
    assume i:A
    with cop have coprime (\prodj\inA-{i}.mj) (mi)
        by (auto intro: prod-coprime-left)
    then have \existsx.[(\prodj\inA-{i}.mj)*x=1](mod mi)
```

```
    by (elim cong-solve-coprime-poly)
    then obtain x where [(\prodj\inA-{i}.mj)*x=1](\operatorname{mod}mi)
    by auto
    moreover have [(\prodj\inA-{i}.mj)*x=0]
    (mod}(\prodj\inA-{i}.mj)
    by (subst mult.commute, rule cong-mult-self-poly)
    ultimately show }\existsa.[a=1](\operatorname{mod}mi)\wedge[a=0
        (mod prod m (A-{i}))
    by blast
qed
lemma chinese-remainder-poly:
    fixes A :: 'a set
        and m :: 'a = 'b::{field-gcd} poly
        and u::' }a=>\mathrm{ 'b poly
    assumes fin: finite }
        and cop: }\foralli\inA.(\forallj\inA.i\not=j\longrightarrow coprime (mi) (mj)
    shows \existsx.(\foralli\inA.[x=ui](\operatorname{mod}mi))
proof -
    from chinese-remainder-aux-poly [OF fin cop] obtain b where
        bprop: \foralli\inA.[b i=1] (mod mi)^
            [bi=0](mod}(\prodj\inA-{i}.mj)
    by blast
    let ? }x=\sumi\inA.(ui)*(bi
    show ?thesis
    proof (rule exI, clarify)
        fix }
        assume a:i:A
        show [?x = u i] (mod mi)
        proof -
            from fin a have ?x = (\sumj\in{i}.uj*bj)+
                    (\sumj\inA-{i}.uj*bj)
                by (subst sum.union-disjoint [symmetric], auto intro: sum.cong)
            then have [?x = ui*bi+(\sumj\inA-{i}.uj*bj)](\operatorname{modmi})
                unfolding cong-def
            by auto
            also have [u i*bi+(\sumj\inA-{i}.uj*bj)=
                        ui*1+(\sumj\inA-{i}.uj*0)] (mod mi)
            apply (rule cong-add-poly)
            apply (rule cong-scalar2-poly)
            using bprop a apply blast
            apply (rule cong-sum)
            apply (rule cong-scalar2-poly)
            using bprop apply auto
            apply (rule cong-dvd-modulus-poly)
            apply (drule (1) bspec)
            apply (erule conjE)
```

```
                    apply assumption
                    apply rule
                    using fin a apply auto
                    done
            thus ?thesis
        by (metis (no-types, lifting) a add.right-neutral fin mult-cancel-left1 mult-cancel-right1
            sum.not-neutral-contains-not-neutral sum.remove)
        qed
    qed
qed
```

lemma cong-trans-poly:

$$
[(a:: ' b::\{\text { field-gcd }\} \text { poly })=b](\bmod m) \Longrightarrow[b=c](\bmod m) \Longrightarrow[a=c](\bmod
$$ m)

by (fact cong-trans)
lemma cong-mod-poly: $(n:: ' b::\{f i e l d-g c d\}$ poly $) ~ \sim=0 \Longrightarrow[a \bmod n=a](\bmod n)$ by auto
lemma cong-sym-poly: $[(a:: ' b::\{$ field-gcd $\}$ poly $)=b](\bmod m) \Longrightarrow[b=a](\bmod m)$
by (fact cong-sym)
lemma cong-1-poly: $[(a:: ' b::\{$ field-gcd $\}$ poly $)=b](\bmod 1)$
by (fact cong-1)
lemma coprime-cong-mult-poly:
assumes $[(a:: ' b::\{f i e l d-g c d\}$ poly $)=b](\bmod m)$ and $[a=b](\bmod n)$ and coprime $m n$
shows $[a=b](\bmod m * n)$
using divides-mult assms
by (metis (no-types, opaque-lifting) cong-dvd-modulus-poly cong-iff-lin-poly dvd-mult2 dvd-refl minus-add-cancel mult.right-neutral)
lemma coprime-cong-prod-poly:
$(\forall i \in A .(\forall j \in A . i \neq j \longrightarrow$ coprime $(m i)(m j))) \Longrightarrow$
$(\forall i \in A .[(x:: ' b::\{$ field-gcd $\}$ poly $)=y](\bmod m i)) \Longrightarrow$
$[x=y]\left(\bmod \left(\prod i \in A . m i\right)\right)$
apply (induct A rule: infinite-finite-induct)
apply auto
apply (metis coprime-cong-mult-poly prod-coprime-right)
done
lemma cong-less-modulus-unique-poly:
$\left[\left(x::{ }^{\prime} b::\{\right.\right.$ field-gcd $\}$ poly $\left.)=y\right]($ mod $m) \Longrightarrow$ degree $x<$ degree $m \Longrightarrow$ degree $y<$ degree $m \Longrightarrow x=y$

```
    by (simp add: cong-def mod-poly-less)
lemma chinese-remainder-unique-poly:
    fixes }A:: 'a se
        and m :: 'a = 'b::{{field-gcd} poly
    and u::' }a=>\mathrm{ 'b poly
    assumes nz:}\foralli\inA.(mi)\not=
        and cop: }\foralli\inA.(\forallj\inA.i\not=j\longrightarrow\mathrm{ coprime (mi) (mj))
    and not-constant: 0 < degree (prod m A)
    shows }\exists\mathrm{ !x. degree }x<(\sumi\inA.degree (mi))\wedge(\foralli\inA.[x=u i] (mod mi))
proof -
    from not-constant have fin: finite A
    by (metis degree-1 gr-implies-not0 prod.infinite)
    from chinese-remainder-poly [OF fin cop]
    obtain }y\mathrm{ where one: ( }\foralli\inA.[y=ui](\operatorname{mod}mi)
        by blast
    let ?}x=y\operatorname{mod}(\prodi\inA.mi
    have degree-prod-sum: degree (prod m A) = (\sumi\inA. degree (mi))
    by (rule degree-prod-eq-sum-degree[OF nz])
    from fin nz have prodnz: (\prodi\inA. (mi)) \not=0
        by auto
    have less: degree ?}x<(\sumi\inA.degree (m i)
        unfolding degree-prod-sum[symmetric]
        using degree-mod-less[OF prodnz, of y]
        using not-constant
        by auto
    have cong: }\foralli\inA.[?x=ui](\operatorname{mod}mi
        apply auto
        apply (rule cong-trans-poly)
        prefer 2
        using one apply auto
        apply (rule cong-dvd-modulus-poly)
        apply (rule cong-mod-poly)
        using prodnz apply auto
        apply rule
        apply (rule fin)
        apply assumption
        done
    have unique: }\forallz\mathrm{ . degree z< (\i,A. degree (mi)) ^
        (\foralli\inA.[z=ui] (mod mi))\longrightarrowz=?x
proof (clarify)
    fix z::'b poly
    assume zless: degree z< (\sumi\inA. degree (mi))
    assume zcong: (\foralli\inA.[z=ui] (modmi))
    have deg1: degree z<degree (prod m A)
        using degree-prod-sum zless by simp
```

```
    have deg2: degree ?x < degree (prod m A)
    by (metis deg1 degree-0 degree-mod-less gr0I gr-implies-not0)
    have }\foralli\inA.[?x=z](\operatorname{mod}mi
        apply clarify
        apply (rule cong-trans-poly)
        using cong apply (erule bspec)
        apply (rule cong-sym-poly)
        using zcong by auto
    with fin cop have [?x = z] (mod }(\prodi\inA.mi)
    by (intro coprime-cong-prod-poly) auto
    with zless show z=?x
    apply (intro cong-less-modulus-unique-poly)
    apply (erule cong-sym-poly)
    apply (auto simp add: deg1 deg2)
    done
qed
from less cong unique show ?thesis by blast
qed
end
```


6 The Berlekamp Algorithm

theory Berlekamp-Type-Based
imports
Jordan-Normal-Form.Matrix-Kernel
Jordan-Normal-Form.Gauss-Jordan-Elimination
Jordan-Normal-Form.Missing-VectorSpace
Polynomial-Factorization.Square-Free-Factorization
Polynomial-Factorization.Missing-Multiset
Finite-Field
Chinese-Remainder-Poly
Poly-Mod-Finite-Field
HOL-Computational-Algebra.Field-as-Ring
begin

hide-const (open) up-ring.coeff up-ring.monom Modules.module subspace
Modules.module-hom

6.1 Auxiliary lemmas

context

fixes $g::{ }^{\prime} b \Rightarrow{ }^{\prime} a::$ comm-monoid-mult
begin
lemma prod-list-map-filter: prod-list (map g(filter fxs)) * prod-list (map g (filter $(\lambda x . \neg f x) x s)$)
$=$ prod-list $($ map g xs $)$
by (induct xs, auto simp: ac-simps)

```
lemma prod-list-map-partition:
    assumes List.partition fxs = (ys,zs)
    shows prod-list (map g xs) = prod-list (map g ys) * prod-list (map g zs)
    using assms by (subst prod-list-map-filter[symmetric, of - f], auto simp: o-def)
end
lemma coprime-id-is-unit:
    fixes a::'b::semiring-gcd
    shows coprime a a \longleftrightarrow is-unit a
    using dvd-unit-imp-unit by auto
lemma dim-vec-of-list[simp]: dim-vec (vec-of-list x) = length x
    by (transfer, auto)
lemma length-list-of-vec[simp]: length (list-of-vec A) = dim-vec A
    by (transfer', auto)
lemma list-of-vec-vec-of-list[simp]:list-of-vec (vec-of-list a)=a
proof -
    {
    fix aa :: 'a list
    have map (\lambdan. if n < length aa then aa! n else undef-vec ( }n-l\mathrm{ length aa))
[0..<length aa]
    = map ((!) aa) [0..<length aa]
    by simp
    hence map ( }\lambdan\mathrm{ . if }n<length aa then aa! n else undef-vec ( n - length aa))
[0..<length aa] = aa
    by (simp add: map-nth)
    }
    thus ?thesis by (transfer, simp add: mk-vec-def)
qed
context
assumes SORT-CONSTRAINT('a::finite)
begin
lemma inj-Poly-list-of-vec': inj-on (Poly ○ list-of-vec) {v. dim-vec v = n}
proof (rule comp-inj-on)
    show inj-on list-of-vec {v. dim-vec v=n}
    by (auto simp add: inj-on-def, transfer, auto simp add: mk-vec-def)
    show inj-on Poly (list-of-vec ' {v. dim-vec v = n})
    proof (auto simp add: inj-on-def)
    fix x y::'c vec assume n=dim-vec x and dim-xy:dim-vec y = dim-vec }
    and Poly-eq: Poly (list-of-vec x) = Poly (list-of-vec y)
    note [simp del] = nth-list-of-vec
    show list-of-vec x = list-of-vec y
    proof (rule nth-equalityI, auto simp: dim-xy)
        have length-eq: length (list-of-vec x ) = length (list-of-vec y)
```

```
            using dim-xy by (transfer, auto)
            fix }i\mathrm{ assume }i<dim-vec 
            thus list-of-vec x ! i = list-of-vec y !i using Poly-eq unfolding poly-eq-iff
coeff-Poly-eq
            using dim-xy unfolding nth-default-def by (auto, presburger)
            qed
    qed
qed
corollary inj-Poly-list-of-vec: inj-on (Poly ○ list-of-vec) (carrier-vec n)
    using inj-Poly-list-of-vec' unfolding carrier-vec-def .
lemma list-of-vec-rw-map: list-of-vec m=map (\lambdan.m $ n) [0..<dim-vec m]
    by (transfer, auto simp add: mk-vec-def)
lemma degree-Poly':
assumes xs: xs \not= []
shows degree (Poly xs) < length xs
using xs
by (induct xs, auto intro: Poly.simps(1))
lemma vec-of-list-list-of-vec[simp]:vec-of-list (list-of-vec a)=a
by (transfer, auto simp add: mk-vec-def)
lemma row-mat-of-rows-list:
assumes b: b<length A
and nc: }\foralli.i<length A\longrightarrow length (A!i)=n
shows (row (mat-of-rows-list nc A) b) = vec-of-list (A!b)
proof (auto simp add: vec-eq-iff)
    show dim-col (mat-of-rows-list nc A) = length (A!b)
    unfolding mat-of-rows-list-def using b nc by auto
    fix i assume i:i< length ( }A!b
    show row (mat-of-rows-list nc A) b $ i = vec-of-list (A!b)$i
            using ibnc
            unfolding mat-of-rows-list-def row-def
            by (transfer, auto simp add: mk-vec-def mk-mat-def)
qed
lemma degree-Poly-list-of-vec:
assumes n: x\in carrier-vec n
and n0: n>0
shows degree (Poly (list-of-vec x))}<
proof -
    have x-dim: dim-vec }x=n\mathrm{ using }n\mathrm{ by auto
    have l: (list-of-vec x)}\not=[
    by (auto simp add: list-of-vec-rw-map vec-of-dim-0[symmetric] n0 n x-dim)
    have degree (Poly (list-of-vec x)) < length (list-of-vec x) by (rule degree-Poly'[OF
l])
    also have ... = n using x-dim by auto
```

```
    finally show ?thesis.
qed
lemma list-of-vec-nth:
    assumes i:i<dim-vec x
    shows list-of-vec x!i=x$i
    using i
    by (transfer, auto simp add: mk-vec-def)
lemma coeff-Poly-list-of-vec-nth':
assumes i:i< dim-vec x
shows coeff (Poly (list-of-vec x)) i=x $ i
using i
by (auto simp add: list-of-vec-nth nth-default-def)
lemma list-of-vec-row-nth:
assumes x: x<dim-col A
shows list-of-vec (row A i)!x=A$$(i,x)
using x unfolding row-def by (transfer', auto simp add: mk-vec-def)
lemma coeff-Poly-list-of-vec-nth:
assumes x: x<dim-col A
shows coeff (Poly (list-of-vec (row A i))) x = A $$ (i, x)
proof -
    have coeff (Poly (list-of-vec (row A i))) x = nth-default 0 (list-of-vec (row A
i)) x
    unfolding coeff-Poly-eq by simp
    also have ... = A $$(i,x) using x list-of-vec-row-nth
    unfolding nth-default-def by (auto simp del: nth-list-of-vec)
    finally show ?thesis .
qed
lemma inj-on-list-of-vec: inj-on list-of-vec (carrier-vec n)
    unfolding inj-on-def unfolding list-of-vec-rw-map by auto
lemma vec-of-list-carrier[simp]: vec-of-list x carrier-vec (length x)
    unfolding carrier-vec-def by simp
lemma card-carrier-vec: card (carrier-vec n:: 'b::finite vec set) = CARD('b) ^ n
proof -
    let ?A = UNIV::'b set
    let ?B}={xs. set xs \subseteq?A ^ length xs = n
    let ?C = (carrier-vec n:: 'b::finite vec set)
    have card? C = card ?B
    proof -
    have bij-betw (list-of-vec) ?C ?B
    proof (unfold bij-betw-def, auto)
        show inj-on list-of-vec (carrier-vec n) by (rule inj-on-list-of-vec)
        fix x::'b list
```

```
        assume n: n = length x
        thus }x\inlist-of-vec' carrier-vec (length x)
            unfolding image-def
        by auto (rule bexI[of - vec-of-list x], auto)
        qed
        thus ?thesis using bij-betw-same-card by blast
    qed
    also have ... = card ?A ^n
    by (rule card-lists-length-eq, simp)
    finally show ?thesis.
qed
lemma finite-carrier-vec[simp]: finite (carrier-vec n:: 'b::finite vec set)
    by (rule card-ge-0-finite, unfold card-carrier-vec, auto)
lemma row-echelon-form-dim0-row:
assumes A\incarrier-mat 0 n
shows row-echelon-form A
using assms
unfolding row-echelon-form-def pivot-fun-def Let-def by auto
lemma row-echelon-form-dim0-col:
assumes A\in carrier-mat n 0
shows row-echelon-form A
using assms
unfolding row-echelon-form-def pivot-fun-def Let-def by auto
lemma row-echelon-form-one-dim0[simp]: row-echelon-form (1m 0)
    unfolding row-echelon-form-def pivot-fun-def Let-def by auto
lemma Poly-list-of-vec-0[simp]: Poly (list-of-vec ( }0vv0))=[:0:
    by (simp add: poly-eq-iff nth-default-def)
lemma monic-normalize:
assumes ( }p:: 'b :: {field,euclidean-ring-gcd} poly) \not=0 shows monic (normalize
p)
by (simp add: assms normalize-poly-old-def)
lemma exists-factorization-prod-list:
fixes P::'b::field poly list
assumes degree (prod-list P) > 0
    and }\bigwedgeu.u\in set P\Longrightarrow degree u>0^ monic 
    and square-free (prod-list P)
shows }\exists\mathrm{ Q. prod-list }Q=\mathrm{ prod-list }P\wedge\mathrm{ length }P\leq\mathrm{ length }
    \wedge(\forallu.u\in set Q\longrightarrow irreducible u ^ monic u)
using assms
```

```
proof (induct P)
    case Nil
    thus ?case by auto
next
    case (Cons x P)
    have sf-P: square-free (prod-list P)
    by (metis Cons.prems(3) dvd-triv-left prod-list.Cons mult.commute square-free-factor)
    have deg-x: degree x>0 using Cons.prems by auto
    have distinct-P: distinct P
    by (meson Cons.prems(2) Cons.prems(3) distinct.simps(2) square-free-prod-list-distinct)
    have }\exists\mathrm{ A. finite }A\wedgex=\prodA\wedgeA\subseteq{q. irreducible q\wedge monic q
    proof (rule monic-square-free-irreducible-factorization)
            show monic x by (simp add:Cons.prems(2))
            show square-free x
                by (metis Cons.prems(3) dvd-triv-left prod-list.Cons square-free-factor)
    qed
    from this obtain }A\mathrm{ where fin-A: finite }
    and }xA:x=\prod
    and A:A\subseteq{q. irreducible }\mp@subsup{\mp@code{d}}{}{q}\wedge\mathrm{ monic q}
    by auto
    obtain }\mp@subsup{A}{}{\prime}\mathrm{ where s: set }\mp@subsup{A}{}{\prime}=A\mathrm{ and length- }\mp@subsup{A}{}{\prime}\mathrm{ : length }\mp@subsup{A}{}{\prime}=\operatorname{card}
            using 〈finite A〉 distinct-card finite-distinct-list by force
    have }A\mathrm{ -not-empty: }A\not={}\mathrm{ using }xA\mathrm{ deg-x by auto
    have }x\mathrm{ -prod-list- }\mp@subsup{A}{}{\prime}:x=\mathrm{ prod-list }\mp@subsup{A}{}{\prime
    proof -
        have }x=\PiA\mathrm{ using }xA\mathrm{ by simp
        also have ... = prod id A by simp
        also have ... = prod id (set A') unfolding s by simp
        also have ... = prod-list (map id A')
            by (rule prod.distinct-set-conv-list, simp add: card-distinct length-A' s)
    also have ... = prod-list A' by auto
    finally show ?thesis.
qed
show ?case
proof (cases P= [])
    case True
    show ?thesis
    proof (rule exI[of - A'], auto simp add: True)
        show prod-list }\mp@subsup{A}{}{\prime}=x\mathrm{ using }x\mathrm{ -prod-list- }\mp@subsup{A}{}{\prime}\mathrm{ by simp
        show Suc 0 \leq length A' using A-not-empty using s length-A'
            by (simp add: Suc-leI card-gt-O-iff fin-A)
        show }\u.u\in\mathrm{ set }\mp@subsup{A}{}{\prime}\Longrightarrow\mathrm{ irreducible u using s A by auto
        show }\bigwedgeu.u\in\operatorname{set}\mp@subsup{A}{}{\prime}\Longrightarrow\mathrm{ monic u using s A by auto
    qed
next
    case False
    have hyp: \existsQ. prod-list Q = prod-list P
    ^ length P}\leq\mathrm{ length }Q\wedge(\forallu.u\in\mathrm{ set }Q\longrightarrow\mathrm{ irreducible }u\wedge monic u
    proof (rule Cons.hyps[OF - sf-P])
```

```
    have set-P: set P}\not={}\mathrm{ using False by auto
    have prod-list P = prod-list (map id P) by simp
    also have ... = prod id (set P)
        using prod.distinct-set-conv-list[OF distinct-P, of id] by simp
    also have ... = \(set P) by simp
    finally have prod-list P = \ (set P).
    hence degree (prod-list P) = degree ( }\Pi(\mathrm{ set P)) by simp
    also have ... = degree (prod id (set P)) by simp
    also have ... = (\sumi\in(set P). degree (id i))
    proof (rule degree-prod-eq-sum-degree)
    show }\foralli\inset P. id i\not=0 using Cons.prems(2) by force
    qed
    also have ... > 0
    by (metis Cons.prems(2) List.finite-set set-P gr0I id-apply insert-iff list.set(2)
sum-pos)
    finally show degree (prod-list P) >0 by simp
    show }\u.u\in\mathrm{ set }P\Longrightarrow\mathrm{ degree }u>0\wedge\mathrm{ monic u using Cons.prems by auto
qed
from this obtain Q where QP: prod-list Q = prod-list P and length-PQ: length
P}\leq\mathrm{ length Q
    and monic-irr-Q:( }\forallu.u\in\mathrm{ set }Q\longrightarrow\mathrm{ irreducible }u\wedge\mathrm{ monic u) by blast
    show ?thesis
    proof (rule exI[of - A' @ Q], auto simp add: monic-irr-Q)
        show prod-list A'* prod-list Q =x* prod-list P unfolding QP x-prod-list-A'
by auto
    have length }\mp@subsup{A}{}{\prime}\not=0\mathrm{ using A-not-empty using s length- }\mp@subsup{A}{}{\prime}\mathrm{ by auto
    thus Suc (length P)\leq length }\mp@subsup{A}{}{\prime}+\mathrm{ length }Q\mathrm{ using }QP\mathrm{ length- }PQ\mathrm{ by linarith
    show }\u.u\in\mathrm{ set }\mp@subsup{A}{}{\prime}\Longrightarrow\mathrm{ irreducible }u\mathrm{ using }sA\mathrm{ by auto
    show }\bigwedgeu.u\in\mathrm{ set }\mp@subsup{A}{}{\prime}\Longrightarrow\mathrm{ monic u using s A by auto
    qed
qed
qed
lemma normalize-eq-imp-smult:
    fixes p :: 'b :: {euclidean-ring-gcd} poly
    assumes n: normalize p= normalize q
    shows \existsc.c\not=0\wedgeq= smult c p
proof(cases p=0)
    case True with n show ?thesis by (auto intro:exI[of - 1])
next
    case p0: False
    have degree-eq: degree p = degree q using n degree-normalize by metis
    hence q0: q}\not=0\mathrm{ using p0 n by auto
    have p-dvd-q: p dvd q using n by (simp add: associatedD1)
    from p-dvd-q obtain k where q: q=k*p unfolding dvd-def by (auto simp:
ac-simps)
    with q0 have k\not=0 by auto
    then have degree k=0
        using degree-eq degree-mult-eq p0 q by fastforce
```

```
    then obtain c where k: k=[:c:] by (metis degree-0-id)
    with }\langlek\not=0\rangle\mathrm{ have }c\not=0\mathrm{ by auto
    have q= smult c p unfolding qk by simp
    with }\langlec\not=0\rangle\mathrm{ show ?thesis by auto
qed
lemma prod-list-normalize:
    fixes P :: 'b :: {idom-divide,normalization-semidom-multiplicative} poly list
    shows normalize (prod-list P) = prod-list (map normalize P)
proof (induct P)
    case Nil
    show ?case by auto
next
    case (Cons p P)
    have normalize (prod-list (p# P)) = normalize p * normalize (prod-list P)
        using normalize-mult by auto
    also have ... = normalize p * prod-list (map normalize P) using Cons.hyps by
auto
    also have ... = prod-list (normalize p # (map normalize P)) by auto
    also have ... = prod-list (map normalize ( }p#P)\mathrm{ ) by auto
    finally show ?case .
qed
lemma prod-list-dvd-prod-list-subset:
fixes A::'b::comm-monoid-mult list
assumes dA: distinct A
    and dB: distinct B
    and s: set A\subseteq set B
shows prod-list A dvd prod-list B
proof -
    have prod-list A = prod-list (map id A) by auto
    also have ... = prod id (set A)
        by (rule prod.distinct-set-conv-list[symmetric, OF dA])
    also have ... dvd prod id (set B)
    by (rule prod-dvd-prod-subset[OF-s], auto)
    also have ... = prod-list (map id B)
        by (rule prod.distinct-set-conv-list[OF dB])
    also have ... = prod-list B by simp
    finally show ?thesis .
qed
end
lemma gcd-monic-constant:
    gcd fg}\in{1,f}\mathrm{ if monic f and degree g=0
        for fg :: 'a :: {field-gcd} poly
proof (cases g=0)
    case True
```

```
    moreover from <monic f> have normalize f =f
        by (rule normalize-monic)
    ultimately show ?thesis
        by simp
next
    case False
    with «degree g=0` have is-unit g
        by simp
    then have Rings.coprime fg
    by (rule is-unit-right-imp-coprime)
then show ?thesis
    by simp
qed
lemma distinct-find-base-vectors:
fixes A::'a::field mat
assumes ref: row-echelon-form A
    and A:A\incarrier-mat nr nc
shows distinct (find-base-vectors A)
proof -
    note non-pivot-base = non-pivot-base[OF ref A]
    let ?pp = set (pivot-positions A)
    from A have dim: dim-row }A=nr dim-col A=nc by aut
    {
        fix }j\mp@subsup{j}{}{\prime
        assume j:j<ncj\not\insnd'??pp and j': j'<nc j'\not\in snd '?pp and neq: j'\not=j
        from non-pivot-base(2)[OF j] non-pivot-base(4)[OF j' j neq]
    have non-pivot-base A (pivot-positions A) j\not= non-pivot-base A (pivot-positions
A) j' by auto
    }
    hence inj:inj-on (non-pivot-base A (pivot-positions A))
    (set [j\leftarrow[0..<nc].j\not\in snd'?pp]) unfolding inj-on-def by auto
    thus ?thesis unfolding find-base-vectors-def Let-def unfolding distinct-map
dim by auto
qed
lemma length-find-base-vectors:
fixes A::'a::field mat
assumes ref: row-echelon-form A
    and A:A\in carrier-mat nr nc
shows length (find-base-vectors A) = card (set (find-base-vectors A))
using distinct-card[OF distinct-find-base-vectors[OF ref A]] by auto
```


6.2 Previous Results

definition power-poly-f-mod :: 'a::field poly $\Rightarrow{ }^{\prime}$ 'a poly \Rightarrow nat \Rightarrow ' a poly where power-poly-f-mod modulus $=\left(\lambda a n, a^{\wedge} n\right.$ mod modulus $)$
lemma power-poly-f-mod-binary: power-poly-f-mod man $=($ if $n=0$ then $1 \bmod$

```
m
    else let (d,r) = Divides.divmod-nat n 2;
        rec = power-poly-f-mod m ((a*a) mod m)d in
        if r =0 then rec else (rec *a) mod m)
    for m a :: 'a :: {field-gcd} poly
proof -
    note d}=\mathrm{ power-poly-f-mod-def
    show ?thesis
    proof (cases n=0)
        case True
        thus ?thesis unfolding d by simp
    next
        case False
        obtain q r where div: Divides.divmod-nat n 2 = (q,r) by force
        hence n:n=2*q+r and r:r=0\veer=1 unfolding divmod-nat-def by
auto
    have id: a^ (2*q)=(a*a)^q
            by (simp add: power-mult-distrib semiring-normalization-rules)
    show ?thesis
    proof (cases r=0)
            case True
            show ?thesis
                    using power-mod [of a*a m q]
            by (auto simp add: divmod-nat-def Let-def True n d div id)
        next
            case False
            with r have r:r=1 by simp
            show ?thesis
                by (auto simp add: d r div Let-def mod-simps)
                (simp add: n r mod-simps ac-simps power-mult-distrib power-mult power2-eq-square)
        qed
    qed
qed
fun power-polys where
    power-polys mul-p u curr-p (Suc i) = curr-p #
            power-polys mul-p u((curr-p * mul-p) mod u) i
| power-polys mul-p u curr-p 0 = []
context
assumes SORT-CONSTRAINT('a::prime-card)
begin
lemma fermat-theorem-mod-ring [simp]:
    fixes a::'a mod-ring
    shows a ^CARD('a)=a
proof (cases a=0)
    case True
```

```
    then show ?thesis by auto
next
    case False
    then show ?thesis
    proof transfer
        fix }
    assume }a\in{0..<\mathrm{ int CARD('a)} and a}=
    then have a:1\leqaa< int CARD('a)
        by simp-all
    then have [simp]: a mod int CARD('a)=a
        by simp
    from a have ᄀ int CARD('a) dvd a
        by (auto simp add: zdvd-not-zless)
        then have \negCARD('a) dvd nat |a|
        by simp
    with a have }\negCARD('a)dvd nat a
        by simp
    with prime-card have [nat a ^ (CARD('a) - 1) = 1] (mod CARD('a))
        by (rule fermat-theorem)
    with a have int (nat a ^ (CARD('a) - 1) mod CARD('a)) = 1
        by (simp add: cong-def)
    with a have a ^ (CARD('a) - 1) mod CARD ('a) = 1
        by (simp add: of-nat-mod)
    then have a*(a^(CARD('a) - 1) mod int CARD('a))=a
        by simp
    then have (a* (a^(CARD('a) - 1) mod int CARD('a))) mod int CARD('a)
= a mod int CARD('a)
            by (simp only:)
    then show a ^}CARD('a) mod int CARD('a)=
        by (simp add: mod-simps semiring-normalization-rules(27))
    qed
qed
```

lemma mod-eq-dvd-iff-poly: ((x::'a mod-ring poly) $\bmod n=y \bmod n)=(n d v d x$ $-y$)
proof
assume $H: x \bmod n=y \bmod n$
hence $x \bmod n-y \bmod n=0$ by simp
hence $(x \bmod n-y \bmod n) \bmod n=0$ by simp
hence $(x-y) \bmod n=0$ by (simp add: mod-diff-eq)
thus n dvd $x-y$ by (simp add: dvd-eq-mod-eq-0)
next
assume $H: n d v d x-y$
then obtain k where k : $x-y=n * k$ unfolding dvd-def by blast
hence $x=n * k+y$ using diff-eq-eq by blast
hence $x \bmod n=(n * k+y) \bmod n$ by simp
thus $x \bmod n=y \bmod n$ by (simp add: mod-add-left-eq)
qed

```
lemma cong-gcd-eq-poly:
    gcd \(a m=g c d b m\) if \(\left[\left(a::^{\prime} a \bmod -r i n g\right.\right.\) poly \(\left.)=b\right](\bmod m)\)
    using that by (simp add: cong-def) (metis gcd-mod-left mod-by-0)
lemma coprime-h-c-poly:
fixes \(h::^{\prime} a\) mod-ring poly
assumes \(c 1 \neq c 2\)
shows coprime ( \(h-[: c 1:])(h-[: c 2:])\)
proof (intro coprimeI)
    fix \(d\) assume \(d d v d h-[: c 1:]\)
    and \(d d v d h-[: c 2:]\)
    hence \(h \bmod d=[: c 1:] \bmod d\) and \(h \bmod d=[: c \mathcal{L}:] \bmod d\)
        using mod-eq-dvd-iff-poly by simp+
    hence [:c1:] mod \(d=[: c 2:] \bmod d\) by simp
    hence \(d d v d[: c 2-c 1:]\)
        by (metis (no-types) mod-eq-dvd-iff-poly diff-pCons right-minus-eq)
    thus is-unit d
    by (metis (no-types) assms dvd-trans is-unit-monom-0 monom-0 right-minus-eq)
qed
```

lemma coprime-h-c-poly2:
fixes $h:$:'a mod-ring poly
assumes coprime ($h-[: c 1:])(h-[: c 2:])$
and $\neg i s$-unit ($h-[: c 1:]$)
shows $c 1 \neq c 2$
using assms coprime-id-is-unit by blast
lemma degree-minus-eq-right:
fixes $p:: ' b:: a b-g r o u p-a d d ~ p o l y$
shows degree $q<$ degree $p \Longrightarrow$ degree $(p-q)=$ degree p
using degree-add-eq-left $[o f-q$ p] degree-minus by auto
lemma coprime-prod:
fixes $A::$ 'a mod-ring set and $g::^{\prime} a$ mod-ring \Rightarrow 'a mod-ring poly
assumes $\forall x \in A$. coprime ($g a)(g x)$
shows coprime $(g a)(\operatorname{prod}(\lambda x . g x) A)$
proof -
have f : finite A by simp
show ?thesis
using f using assms
proof (induct A)
case (insert x A)
have $\left(\prod c \in\right.$ insert x A. $\left.g c\right)=(g x) *\left(\prod c \in A . g c\right)$
by (simp add: insert.hyps(2))
with insert.prems show ?case
by (auto simp: insert.hyps(3) prod-coprime-right)
qed auto
qed
lemma coprime-prod2:
fixes $A:: ' b::$ semiring-gcd set
assumes $\forall x \in A$. coprime $(a)(x)$ and f : finite A
shows coprime $(a)(\operatorname{prod}(\lambda x . x) A)$
using f using assms
proof (induct A)
case (insert x A)
have $\left(\prod c \in\right.$ insert x A. $\left.c\right)=(x) *\left(\prod c \in A . c\right)$
by (simp add: insert.hyps)
with insert.prems show ?case
by (simp add: insert.hyps prod-coprime-right)
qed auto

```
lemma divides-prod:
    fixes \(g::^{\prime}\) a mod-ring \(\Rightarrow\) 'a mod-ring poly
    assumes \(\forall c 1 c \mathcal{2} . c 1 \in A \wedge c \mathcal{Z} \in A \wedge c 1 \neq c \mathcal{Z} \longrightarrow\) coprime \((g c 1)(g c \mathcal{L})\)
    assumes \(\forall c \in A . g c d v d f\)
    shows \(\left(\prod c \in A . g c\right) d v d f\)
proof -
    have finite-A: finite \(A\) using finite \([o f ~ A]\).
    thus ?thesis using assms
    proof (induct A)
        case (insert x A)
        have \(\left(\prod c \in\right.\) insert \(x\) A. \(\left.g c\right)=g x *\left(\prod c \in A . g c\right)\)
            by ( simp add: insert.hyps(2))
        also have ... dvd \(f\)
        proof (rule divides-mult)
            show \(g x\) dvd \(f\) using insert.prems by auto
            show prod \(g A d v d f\) using insert.hyps(3) insert.prems by auto
            from insert show Rings.coprime \((g x)(\operatorname{prod} g A)\)
                by (auto intro: prod-coprime-right)
            qed
            finally show ?case .
            qed auto
qed
```

```
lemma poly-monom-identity-mod-p:
    monom (1::'a mod-ring) \(\left(\operatorname{CARD}\left(^{\prime} a\right)\right)-\) monom \(11=\operatorname{prod}(\lambda x .[: 0,1:]-[: x:])\)
(UNIV::'a mod-ring set)
    (is ?lhs =? ? rhs )
proof -
```

```
let ?f=(\lambdax::'a mod-ring. [:0,1:] - [:x:])
have ?rhs dvd?lhs
proof (rule divides-prod)
    {
    fix a::'a mod-ring
    have poly?lhs a = 0
        by (simp add: poly-monom)
    hence ([:0,1:] - [:a:]) dvd?lhs
        using poly-eq-0-iff-dvd by fastforce
    }
    thus \forallx\inUNIV::'a mod-ring set. [:0, 1:] - [:x:] dvd monom 1 CARD('a) -
monom 11 by fast
    show }\forallc1c2.c1\inUNIV ^c\mathcal{Z}\inUNIV \wedge c1 \not= (c\mathcal{Z :: 'a mod-ring )}
coprime ([:0, 1:] - [:c1:]) ([:0, 1:] - [:c2:])
    by (auto dest!: coprime-h-c-poly[of - [:0,1:]])
qed
from this obtain g}\mathrm{ where g:?lhs = ?rhs *g using dvdE by blast
have degree-lhs-card: degree?lhs = CARD('a)
proof -
    have degree (monom (1::'a mod-ring) 1) = 1 by (simp add: degree-monom-eq)
    moreover have d-c: degree (monom (1::'a mod-ring) CARD('a)) = CARD('a)
        by (simp add: degree-monom-eq)
    ultimately have degree (monom (1::'a mod-ring) 1) < degree (monom (1::'a
mod-ring) CARD('a))
            using prime-card unfolding prime-nat-iff by auto
    hence degree ?lhs = degree (monom (1::'a mod-ring) CARD('a))
            by (rule degree-minus-eq-right)
    thus ?thesis unfolding d-c.
qed
have degree-rhs-card: degree ?rhs = CARD('a)
proof -
    have degree (prod ?f UNIV) =sum (degree o ?f) UNIV
            ^coeff (prod ?f UNIV) (sum (degree o ?f) UNIV) = 1
            by (rule degree-prod-sum-monic, auto)
    moreover have sum (degree o ?f) UNIV = CARD('a) by auto
    ultimately show ?thesis by presburger
qed
have monic-lhs: monic ?lhs using degree-lhs-card by auto
have monic-rhs: monic ?rhs by (rule monic-prod, simp)
have degree-eq: degree ?rhs = degree ?lhs unfolding degree-lhs-card degree-rhs-card
have g-not-0:g\not=0 using g monic-lhs by auto
have degree-g0: degree g=0
proof -
    have degree (?rhs * g) = degree ?rhs + degree g
        by (rule degree-monic-mult[OF monic-rhs g-not-0])
    thus ?thesis using degree-eq g by simp
qed
have monic-g: monic g using monic-factor g monic-lhs monic-rhs by auto
```

```
    have g=1 using monic-degree-O[OF monic-g] degree-g0 by simp
    thus ?thesis using g}\mathrm{ by auto
qed
```

lemma poly-identity-mod-p:
$v^{\wedge}\left(C A R D\left({ }^{\prime} a\right)\right)-v=\operatorname{prod}(\lambda x . v-[: x:])\left(U N I V::^{\prime} a \bmod -r i n g\right.$ set $)$
proof -
have id: monom $11 \circ_{p} v=v[: 0,1:] \circ_{p} v=v$ unfolding pcompose-def
apply (auto)
by (simp add: fold-coeffs-def)
have id2: monom $1\left(C A R D\left({ }^{\prime} a\right)\right) \circ_{p} v=v^{\wedge}\left(C A R D\left(^{\prime} a\right)\right)$ by (metis id(1) pcom-
pose-hom.hom-power x-pow- n)
show ?thesis using arg-cong[OF poly-monom-identity-mod-p, of $\left.\lambda f . f \circ_{p} v\right]$
unfolding pcompose-hom.hom-minus pcompose-hom.hom-prod id pcompose-const
id2 .
qed

```
lemma coprime-gcd:
    fixes \(h::\) 'a mod-ring poly
    assumes Rings.coprime ( \(h-[: c 1:]\) ) ( \(h-[: c 2:]\) )
    shows Rings.coprime (gcd \(f(h-[: c 1:]))(g c d f(h-[: c 2:]))\)
    using assms coprime-divisors by blast
lemma divides-prod-gcd:
    fixes \(h::^{\prime} a\) mod-ring poly
    assumes \(\forall c 1 c 2 . c 1 \in A \wedge c \mathcal{Z} \in A \wedge c 1 \neq c \mathcal{Z} \longrightarrow\) coprime \((h-[: c 1:])(h-[: c \mathcal{2}:])\)
    shows \(\left(\prod c \in A . g c d f(h-[: c:])\right) d v d f\)
proof -
    have finite-A: finite \(A\) using finite \([o f ~ A]\).
    thus ?thesis using assms
    proof (induct \(A\) )
        case (insert \(x\) A)
        have \(\left(\prod c \in\right.\) insert \(x\) A. gcd \(\left.f(h-[: c:])\right)=(\operatorname{gcd} f(h-[: x:])) *\left(\prod c \in A . g c d\right.\)
\(f(h-[: c:]))\)
        by (simp add: insert.hyps(2))
        also have ... \(d v d f\)
        proof (rule divides-mult)
            show \(\operatorname{gcd} f(h-[: x:]) d v d f\) by simp
            show ( \(\left.\prod c \in A . g c d f(h-[: c:])\right) d v d f\) using insert.hyps(3) insert.prems by
auto
        show Rings.coprime \((\operatorname{gcd} f(h-[: x:]))\left(\prod c \in A . \operatorname{gcd} f(h-[: c:])\right)\)
            by (rule prod-coprime-right)
```

(metis Berlekamp-Type-Based.coprime-h-c-poly coprime-gcd coprime-iff-coprime insert.hyps(2))
qed
finally show? case.
qed auto
qed
lemma monic-prod-gcd:
assumes f : finite A and $f 0:(f:: ' b::\{$ field-gcd $\}$ poly $) \neq 0$
shows monic $\left(\prod c \in A . \ln d f(h-[: c:])\right)$
using f
proof (induct A)
case (insert x A)
have rw: (Пceinsert x A. gcd f(h-[:c:]))
$=(\operatorname{gcd} f(h-[: x:])) *\left(\prod c \in A . \operatorname{gcd} f(h-[: c:])\right)$
by (simp add: insert.hyps)
show ?case
proof (unfold rw, rule monic-mult)
show monic (gcd $f(h-[: x:]))$
using poly-gcd-monic[of f] f0
using insert.prems insert-iff by blast
show monic ($\left.\prod c \in A . \operatorname{gcd} f(h-[: c:])\right)$
using insert.hyps(3) insert.prems by blast
qed
qed auto
lemma coprime-not-unit-not-dvd:
fixes $a:: ' b::$ semiring-gcd
assumes $a d v d b$
and coprime $b c$
and \neg is-unit a
shows $\neg a d v d c$
using assms coprime-divisors coprime-id-is-unit by fastforce
lemma divides-prod2:
fixes $A:: ' b::$ semiring-gcd set
assumes f : finite A
and $\forall a \in A$. a dvd c
and $\forall a 1$ a2. $a 1 \in A \wedge a 2 \in A \wedge a 1 \neq a 2 \longrightarrow$ coprime a1 a2
shows $\prod A d v d c$
using assms
proof (induct A)
case (insert $x A$)
have $\Pi(\operatorname{insert} x A)=x * \prod A$ by (simp add: insert.hyps(1) insert.hyps(2))
also have ... dvd c
proof (rule divides-mult)
show $x d v d c$ by (simp add: insert.prems)
show $\prod A d v d c$ using insert by auto
from insert show Rings.coprime $x\left(\prod A\right)$

```
        by (auto intro: prod-coprime-right)
    qed
    finally show ?case .
qed auto
lemma coprime-polynomial-factorization:
    fixes a1 :: 'b :: { field-gcd} poly
    assumes irr: as \subseteq{q. irreducible q ^ monic q}
    and finite as and a1:a1 \in as and a2:a2 \in as and a1-not-a2: a1 f=a2
    shows coprime a1 a2
proof (rule ccontr)
    assume not-coprime: ᄀ coprime a1 a2
    let ?b=gcd a1 a2
    have b-dvd-a1: ?b dvd a1 and b-dvd-a2: ?b dvd a2 by simp+
    have irr-a1: irreducible a1 using a1 irr by blast
    have irr-a2: irreducible a2 using a2 irr by blast
    have a2-not0: a2 \not=0 using a2 irr by auto
    have degree-a1: degree a1 \not=0 using irr-a1 by auto
    have degree-a2: degree a2 }=0\mathrm{ using irr-a2 by auto
    have not-a2-dvd-a1: ᄀ a2 dvd a1
    proof (rule ccontr, simp)
        assume a2-dvd-a1: a2 dvd a1
        from this obtain }k\mathrm{ where k: a1 =a2 * k unfolding dvd-def by auto
    have k-not0: k\not=0 using degree-a1 k by auto
    show False
    proof (cases degree a2 = degree a1)
            case False
            have degree a2 < degree a1
                    using False a2-dvd-a1 degree-a1 divides-degree
            by fastforce
        hence }\neg\mathrm{ irreducible a1
            using degree-a2 a2-dvd-a1 degree-a2
        by (metis degree-a1 irreducible }\mp@subsup{|}{d}{}\mathrm{ (2) irreducible e-multD irreducible-connect-field
k neq0-conv)
            thus False using irr-a1 by contradiction
        next
            case True
            have degree a1 = degree a2 + degree k
                    unfolding k using degree-mult-eq[OF a2-not0 k-not0] by simp
            hence degree k=0 using True by simp
            hence k=1 using monic-factor a1 a2 irr k monic-degree-0 by auto
            hence a1 = a2 using k by simp
            thus False using a1-not-a2 by contradiction
        qed
    qed
    have b-not0:?b \not=0 by (simp add: a2-not0)
    have degree-b: degree ?b > 0
    using not-coprime[simplified] b-not0 is-unit-gcd is-unit-iff-degree by blast
```

```
    have degree ?b < degree a2
    by (meson b-dvd-a1 b-dvd-a2 irreducibleD' dvd-trans gcd-dvd-1 irr-a2 not-a2-dvd-a1
not-coprime)
```



```
    by (metis degree-smult-eq irreducible d
    thus False using irr-a2 by auto
qed
theorem Berlekamp-gcd-step:
fixes f::'a mod-ring poly and h::'a mod-ring poly
assumes hq-mod-f: [h` (CARD('a))=h] (mod f) and monic-f:monic f and sf-f:
square-free f
shows f= prod (\lambdac.gcd f(h- [:c:])) (UNIV::'a mod-ring set) (is ?lhs = ?rhs)
proof (cases f=0)
    case True
    thus ?thesis using coeff-0 monic-f zero-neq-one by auto
    next
    case False note f-not-0 = False
    show ?thesis
    proof (rule poly-dvd-antisym)
    show ?rhs dvd f
            using coprime-h-c-poly by (intro divides-prod-gcd, auto)
    have monic ?rhs by (rule monic-prod-gcd[OF - f-not-0], simp)
    thus coeff f(degree f) = coeff ?rhs (degree ?rhs)
            using monic-f by auto
    next
    show f dvd ?rhs
    proof -
        let ? p = CARD('a)
        obtain P where finite-P: finite P
        and f-desc-square-free: f= (\proda\inP.a)
        and P:P\subseteq{q. irreducible q}\wedge monic q
            using monic-square-free-irreducible-factorization[OF monic-f sf-f] by auto
    have f-dvd-hqh: f dvd ( }h^\mathrm{ ? ?p - h) using hq-mod-f unfolding cong-def
            using mod-eq-dvd-iff-poly by blast
    also have hq-h-rw: ... = prod (\lambdac. h- [:c:]) (UNIV::'a mod-ring set)
                by (rule poly-identity-mod-p)
    finally have f-dvd-hc: f dvd prod (\lambdac. h-[:c:]) (UNIV::'a mod-ring set) by
simp
    have f}=\prodP\mathrm{ using f-desc-square-free by simp
    also have ... dvd?rhs
    proof (rule divides-prod2[OF finite-P])
        show }\foralla1 a2. a1 \inP\wedge a2 \inP\wedge a1 =a2 \longrightarrow coprime a1 a2
            using coprime-polynomial-factorization[OF P finite-P] by simp
        show }\foralla\inP.advd (\prodc\inUNIV.gcd f(h-[:c:]))
        proof
            fix fi assume fi-P: fi \inP
                show fi dvd ?rhs
```

proof (rule dvd-prod, auto)
show $f i d v d f$ using f-desc-square-free f - P
using dvd-prod-eqI finite- P by blast
hence $f i d v d\left(h^{\wedge} ? p-h\right)$ using dvd-trans f-dvd-hqh by auto
also have $\ldots=\operatorname{prod}(\lambda c . h-[: c:])$ (UNIV::'a mod-ring set)
unfolding $h q-h-r w$ by simp
finally have fi-dvd-prod-hc: fi dvd prod ($\lambda c . h-[: c:]$) (UNIV ::' a mod-ring set) .
have irr-fi: irreducible ($f i$) using $f i-P P$ by blast
have f i-not-unit: $\neg i s$-unit fi using irr-fi by (simp add: irreducible $_{d} D(1)$ poly-dvd-1)
have f-dvd-hc: $\exists c \in U N I V::{ }^{\prime} a$ mod-ring set. $f i d v d(h-[: c:])$
by (rule irreducible-dvd-prod[OF - fi-dvd-prod-hc], simp add: irr-fi)
thus $\exists c$. $f i d v d h-[: c:]$ by simp
qed
qed
qed
finally show $f d v d$? rhs .
qed
qed
qed

6.3 Definitions

definition berlekamp-mat :: 'a mod-ring poly \Rightarrow 'a mod-ring mat where
berlekamp-mat $u=($ let $n=$ degree u;
mul-p $=$ power-poly-f-mod $u[: 0,1:]\left(C A R D\left({ }^{\prime} a\right)\right)$;
xks $=$ power-polys mul-p u 1 n
in
mat-of-rows-list $n($ map $(\lambda$ cs. let coeffs-cs $=($ coeffs cs $)$;
$k=n-$ length (coeffs cs)
in (coeffs cs) @ replicate $k 0$) xks))
definition berlekamp-resulting-mat :: ('a mod-ring) poly $\Rightarrow{ }^{\prime}$ 'a mod-ring mat where berlekamp-resulting-mat $u=$ (let $Q=$ berlekamp-mat u;
$n=$ dim-row Q;
$Q I=$ mat $n n(\lambda(i, j)$. if $i=j$ then $Q \$ \$(i, j)-1$ else $Q \$ \$(i, j))$
in (gauss-jordan-single (transpose-mat QI)))
definition berlekamp-basis :: 'a mod-ring poly \Rightarrow 'a mod-ring poly list where
berlekamp-basis $u=($ map (Poly o list-of-vec) (find-base-vectors (berlekamp-resulting-mat
u)))
lemma berlekamp-basis-code[code]: berlekamp-basis $u=$
(map (poly-of-list o list-of-vec) (find-base-vectors (berlekamp-resulting-mat u)))
unfolding berlekamp-basis-def poly-of-list-def ..
primrec berlekamp-factorization-main $::$ nat \Rightarrow 'a mod-ring poly list \Rightarrow 'a mod-ring
poly list \Rightarrow nat $\Rightarrow{ }^{\prime}$ 'a mod-ring poly list where
berlekamp-factorization-main i divs $(v \# v s) n=($ if $v=1$ then berlekamp-factorization-main i divs vs n else
if length divs $=n$ then divs else
let facts $=\left[w . u \leftarrow\right.$ divs, $s \leftarrow\left[0 . .<\operatorname{CARD}\left({ }^{\prime} a\right)\right], w \leftarrow[g c d u(v-[: o f-i n t$ $s:])], w \neq 1] ;$
(lin, nonlin $)=$ List.partition $(\lambda q$. degree $q=i)$ facts
in lin @ berlekamp-factorization-main i nonlin vs ($n-$ length lin))
| berlekamp-factorization-main i divs [] $n=$ divs
definition berlekamp-monic-factorization $::$ nat $\Rightarrow{ }^{\prime}$ 'a mod-ring poly $\Rightarrow{ }^{\prime}$ a mod-ring poly list where
berlekamp-monic-factorization $d f=($ let
vs $=$ berlekamp-basis f;
$n=$ length $v s ;$
fs $=$ berlekamp-factorization-main $d[f]$ vs n
in $f s$)

6.4 Properties

lemma power-polys-works:
fixes $u:: ' b::$ unique-euclidean-semiring
assumes $i: i<n$ and $c: c u r r-p=c u r r-p \bmod u$
shows power-polys mult-p u curr-p $n!i=$ curr- $p * \operatorname{mult}-p{ }^{\wedge} i \bmod u$
using $i c$
proof (induct n arbitrary: curr-p i)
case 0 thus? case by simp
next
case (Suc n)
have p-rw: power-polys mult-p u curr-p (Suc n)!i
$=($ curr-p \# power-polys mult-p $u($ curr-p $* \operatorname{mult}-\mathrm{p} \bmod u) n)!i$
by simp
show ?case
proof (cases $i=0$)
case True
show ?thesis using Suc.prems unfolding p-rw True by auto
next
case False note i-not- $0=$ False
show ?thesis
proof (cases $i<n$)
case True note i-less-n $=$ True
have power-polys mult-p u curr-p (Suc n) ! $i=$ power-polys mult-p u (curr-p

* mult- p mod $u) n!(i-1)$
unfolding $p-r w$ using nth-Cons-pos False by auto
also have $\ldots=($ curr- $p *$ mult- $p \bmod u) *$ mult- p ^ $(i-1) \bmod u$
by (rule Suc.hyps) (auto simp add: i-less-n less-imp-diff-less)
also have $\ldots=$ curr- $p *$ mult- $p^{\wedge} i \bmod u$
using False by (cases i) (simp-all add: algebra-simps mod-simps)
finally show ?thesis.

```
    next
            case False
            hence i-n: i=n using Suc.prems by auto
                            have power-polys mult-p u curr-p (Suc n)!i= power-polys mult-p u (curr-p
* mult-p mod u) n! (n - 1)
                            unfolding p-rw using nth-Cons-pos i-n i-not-0 by auto
                            also have ... =(curr-p * mult-p mod u)* mult-p^ (n-1) mod u
    proof (rule Suc.hyps)
            show n-1<n using i-n i-not-0 by linarith
            show curr-p * mult-p mod u = curr-p * mult-p mod u mod u by simp
    qed
    also have ... = curr-p * mult-p ^ i mod u
            using i-n [symmetric] i-not-0 by (cases i) (simp-all add: algebra-simps
mod-simps)
            finally show ?thesis .
        qed
    qed
qed
```

lemma length-power-polys[simp]: length (power-polys mult-p u curr-p n) $=n$
by (induct n arbitrary: curr- p, auto)

```
lemma Poly-berlekamp-mat:
assumes \(k\) : \(k<\) degree \(u\)
shows Poly (list-of-vec (row (berlekamp-mat u) k)) \(=[: 0,1:] \uparrow\left(C A R D\left({ }^{\prime} a\right) * k\right) \bmod\)
\(u\)
proof -
    let ?map \(=(\) map \((\lambda c s\). coeffs \(c s\) @ replicate (degree \(u\) - length (coeffs cs)) 0)
                            (power-polys (power-poly-f-mod u [:0, 1:] (nat (int CARD('a)))) u 1
( degree u)))
    have row (berlekamp-mat u) \(k=\) row (mat-of-rows-list (degree u) ?map) \(k\)
        by (simp add: berlekamp-mat-def Let-def)
    also have...\(=\) vec-of-list (?map!k)
    proof-
        \{
            fix \(i\) assume \(i\) : \(i<\) degree \(u\)
            let ? \(c=\) power-polys (power-poly-f-mod \(u[: 0,1:] \operatorname{CARD}\left({ }^{\prime} a\right)\) ) u 1 (degree u)!
\(i\)
            let ?coeffs \(-c=(\) coeffs ? \(c)\)
            have ?c \(=1 *([: 0,1:] ~ へ A R D(' a) \bmod u) \uparrow i \bmod u\)
            proof (unfold power-poly-f-mod-def, rule power-polys-works \([O F i])\)
            show \(1=1\) mod \(u\) using \(k\) mod-poly-less by force
            qed
            also have \(\ldots=[: 0,1:] \wedge\left(\operatorname{CARD}\left({ }^{\prime} a\right) * i\right) \bmod u\) by (simp add: power-mod
power-mult)
```

```
        finally have c-rw: ?c = [:0, 1:]^ (CARD('a) * i) mod u .
    have length ?coeffs-c \leq degree u
    proof -
    show ?thesis
    proof (cases ?c = 0)
        case True thus?thesis by auto
        next
        case False
    have length ?coeffs-c = degree (?c) + 1 by (rule length-coeffs[OF False])
    also have ... = degree ([:0, 1:] ^ (CARD('a)*i) mod u)+1 using c-rw
by simp
            also have ... \leq degree u
                by (metis One-nat-def add.right-neutral add-Suc-right c-rw calculation
coeffs-def degree-0
                    degree-mod-less discrete gr-implies-not0 k list.size(3) one-neq-zero)
            finally show ?thesis .
            qed
            qed
        then have length ?coeffs-c + (degree u - length ?coeffs-c) = degree u by auto
        }
        with k show ?thesis by (intro row-mat-of-rows-list, auto)
    qed
    finally have row-rw: row (berlekamp-mat u)k=vec-of-list (?map !k).
    have Poly (list-of-vec (row (berlekamp-mat u) k)) = Poly (list-of-vec (vec-of-list
(?map!k))
    unfolding row-rw ..
    also have ... = Poly (?map!k) by simp
    also have ... = [:0,1:]`(CARD('a)*k) mod u
    proof -
    let ?cs = (power-polys (power-poly-f-mod u [:0, 1:] (nat (int CARD('a)))) u 1
(degree u))!k
    let ?c = coeffs ?cs @ replicate (degree u - length (coeffs ?cs)) 0
    have map-k-c: ?map!k=?c by (rule nth-map, simp add: k)
    have (Poly (?map!k)) = Poly (coeffs ?cs) unfolding map-k-c Poly-append-replicate-0
    also have ... = ?cs by simp
    also have ... = power-polys ([:0, 1:] ^ CARD('a) mod u) u 1 (degree u)!k
        by (simp add: power-poly-f-mod-def)
    also have ... = 1* ([:0,1:]` (CARD('a)) mod u)^ k mod u
    proof (rule power-polys-works[OF k])
            show 1 = 1 mod u using k mod-poly-less by force
    qed
    also have ... = ([:0,1:]`(CARD('a)) mod u)^ k mod u by auto
            also have ... = [:0,1:]`(CARD('a)*k) mod u by (simp add: power-mod
power-mult)
    finally show ?thesis .
    qed
    finally show ?thesis .
qed
```

```
corollary Poly-berlekamp-cong-mat:
assumes }k\mathrm{ : }k<\mathrm{ degree u
shows [Poly (list-of-vec (row (berlekamp-mat u) k)) = [:0,1:]`(CARD('a)*k)]
(mod u)
using Poly-berlekamp-mat[OF k] unfolding cong-def by auto
lemma mat-of-rows-list-dim[simp]:
    mat-of-rows-list n vs }\in\mathrm{ carrier-mat (length vs) n
    dim-row (mat-of-rows-list n vs) = length vs
    dim-col (mat-of-rows-list n vs) =n
    unfolding mat-of-rows-list-def by auto
lemma berlekamp-mat-closed[simp]:
    berlekamp-mat u G carrier-mat (degree u) (degree u)
    dim-row (berlekamp-mat u) = degree u
    dim-col (berlekamp-mat u) = degree u
unfolding carrier-mat-def berlekamp-mat-def Let-def by auto
lemma vec-of-list-coeffs-nth:
assumes i:i\in{..degree h} and h-not0: h\not=0
shows vec-of-list (coeffs h) $i= coeff hi
proof -
    have vec-of-list (map (coeff h) [0..<degree h] @ [coeff h (degree h)]) $i=coeff
hi
            using i
            by (transfer', auto simp add: mk-vec-def)
                (metis (no-types, lifting) Cons-eq-append-conv coeffs-def coeffs-nth degree-0
            diff-zero length-upt less-eq-nat.simps(1) list.simps(8) list.simps(9) map-append
                nth-Cons-0 upt-Suc upt-eq-Nil-conv)
    thus vec-of-list (coeffs h) $i= coeff hi
    using i h-not0
    unfolding coeffs-def by simp
qed
lemma poly-mod-sum:
fixes \(x\) y \(z::\) ' \(b:: f i e l d\) poly
assumes \(f\) : finite \(A\)
shows sum \(f A \bmod z=\operatorname{sum}(\lambda i . f i \bmod z) A\)
using \(f\)
by (induct, auto simp add: poly-mod-add-left)
lemma prime-not-dvd-fact:
assumes \(k n\) : \(k<n\) and prime- \(n\) : prime \(n\)
shows \(\neg n\) dvd fact \(k\)
```

```
using kn
proof (induct k)
    case 0
    thus ?case using prime-n unfolding prime-nat-iff by auto
next
    case (Suc k)
    show ?case
    proof (rule ccontr, unfold not-not)
    assume n dvd fact (Suc k)
    also have ... = Suc k*\prod{1..k} unfolding fact-Suc unfolding fact-prod by
simp
    finally have n dvd Suc k* \{1..k} .
    hence n dvd Suc k\veen dvd \prod{1..k} using prime-dvd-mult-eq-nat[OF prime-n]
by blast
    moreover have \negn dvd Suc k by (simp add: Suc.prems(1) nat-dvd-not-less)
    moreover hence }\negn\mathrm{ dvd \{1..k} using Suc.hyps Suc.prems
            using Suc-lessD fact-prod[of k] by (metis of-nat-id)
    ultimately show False by simp
    qed
qed
```

lemma dvd-choose-prime:
assumes $k n: k<n$ and $k: k \neq 0$ and $n: n \neq 0$ and prime- n : prime n
shows n dvd (n choose k)
proof -
have n dvd (fact n) by (simp add: fact-num-eq-if n)
moreover have $\neg n d v d($ fact $k *$ fact $(n-k))$
proof (rule ccontr, simp)
assume n dvd fact $k *$ fact $(n-k)$
hence n dvd fact $k \vee n$ dvd fact $(n-k)$ using prime-dvd-mult-eq-nat[OF
prime-n] by simp
moreover have $\neg n d v d($ fact $k)$ by (rule prime-not-dvd-fact $[O F$ kn prime- $n]$)
moreover have $\neg n$ dvd fact $(n-k)$ using prime-not-dvd-fact[OF - prime- $n]$
$k n k$ by simp
ultimately show False by simp
qed
moreover have (fact $n:: n a t)=$ fact $k *$ fact $(n-k) *(n$ choose $k)$
using binomial-fact-lemma kn by auto
ultimately show ?thesis using prime-n
by (auto simp add: prime-dvd-mult-iff)
qed
lemma add-power-poly-mod-ring:
fixes x :: 'a mod-ring poly
shows $(x+y){ }^{\wedge} C A R D\left({ }^{\prime} a\right)=x^{\wedge} C A R D\left({ }^{\prime} a\right)+y{ }^{\wedge} C A R D\left({ }^{\prime} a\right)$
proof -

```
let ?A={0..CARD('a)}
let ?f = \lambdak. of-nat (CARD('a) choose k)* x^ k* y^ (CARD('a) - k)
have A-rw: ?A = insert CARD('a) (insert 0 (?A - {0} - {CARD('a)}))
    by fastforce
    have sum0: sum ?f (?A - {0} - {CARD('a)}) = 0
    proof (rule sum.neutral, rule)
    fix xa assume xa: xa \in {0..CARD('a)}-{0} - {CARD('a)}
    have card-dvd-choose: CARD('a) dvd (CARD('a) choose xa)
    proof (rule dvd-choose-prime)
        show }xa<CARD('a) using xa by sim
        show }xa\not=0\mathrm{ using xa by simp
        show CARD('a)\not=0 by simp
        show prime CARD('a) by (rule prime-card)
    qed
    hence rw0: of-int (CARD('a) choose xa) = (0 :: 'a mod-ring)
        by transfer simp
    have of-nat (CARD('a) choose xa) = [:of-int (CARD('a) choose xa) :: 'a
mod-ring:]
    by (simp add: of-nat-poly)
    also have ... = [:0:] using rw0 by simp
    finally show of-nat (CARD('a) choose xa)* x^xa* y^(CARD('a) - xa)
= 0 by auto
    qed
    have (x+y)^CARD('a)
    = (\sumk=0..CARD('a). of-nat (CARD('a) choose k)* x^ k*y^ (CARD('a)
-k))
            unfolding binomial-ring by (rule sum.cong, auto)
    also have ... = sum?f (insert CARD('a) (insert 0 (?A - {0} - {CARD('a)})))
            using A-rw by simp
    also have ... = ?f 0 + ?f CARD('a) + sum ?f (?A - {0} - {CARD('a)}) by
auto
    also have ... = x`CARD('a) + y`CARD('a) unfolding sum0 by auto
    finally show ?thesis.
qed
lemma power-poly-sum-mod-ring:
fixes \(f:: ' b \Rightarrow\) 'a mod-ring poly
assumes \(f\) : finite \(A\)
shows \((\operatorname{sum} f A)^{\wedge} C A R D\left({ }^{\prime} a\right)=\operatorname{sum}\left(\lambda i .(f i){ }^{\wedge} C A R D\left({ }^{\prime} a\right)\right) A\)
using \(f\) by (induct, auto simp add: add-power-poly-mod-ring)
lemma poly-power-card-as-sum-of-monoms:
fixes \(h\) :: 'a mod-ring poly
shows \(h^{\wedge} C A R D\left({ }^{\prime} a\right)=\left(\sum i \leq\right.\) degree \(h\). monom \((\) coeff \(\left.h i)\left(C A R D\left({ }^{\prime} a\right) * i\right)\right)\)
proof -
have \(h{ }^{\wedge} C A R D\left({ }^{\prime} a\right)=\left(\sum i \leq\right.\) degree \(h\). monom \((\) coeff \(\left.h i) i\right){ }^{\wedge} C A R D\left({ }^{\prime} a\right)\)
by (simp add: poly-as-sum-of-monoms)
```

```
    also have ... = (\sumi\leqdegree h. (monom (coeff hi) i) ^ CARD('a))
    by (simp add: power-poly-sum-mod-ring)
    also have ... = (\sumi\leqdegree h. monom (coeff h i) (CARD('a)*i))
    proof (rule sum.cong, rule)
    fix }x\mathrm{ assume x: x f {..degree h}
    show monom (coeff h x) x ^ CARD('a) = monom (coeff hx) (CARD('a)*x)
        by (unfold poly-eq-iff, auto simp add: monom-power)
    qed
    finally show ?thesis .
qed
```

lemma degree-Poly-berlekamp-le:
assumes $i: i<$ degree u
shows degree (Poly (list-of-vec (row (berlekamp-mat u) i))) < degree u
by (metis Poly-berlekamp-mat degree-0 degree-mod-less gr-implies-not0 i linorder-neqE-nat)
lemma monom-card-pow-mod-sum-berlekamp:
assumes i : $i<$ degree u
shows monom $1\left(C A R D\left({ }^{\prime} a\right) * i\right) \bmod u=\left(\sum j<\right.$ degree u. monom $(($ berlekamp-mat
u) $\$ \$(i, j)) j$)
proof -
let $? p=$ Poly $($ list-of-vec (row $($ berlekamp-mat u) $i))$
have degree-not-0: degree $u \neq 0$ using i by simp
hence set-rw: $\{$..degree $u-1\}=\{. .<$ degree $u\}$ by auto
have degree-le: degree ? $p<$ degree u
by (rule degree-Poly-berlekamp-le [OF i])
hence degree-le2: degree ? $p \leq$ degree $u-1$ by auto
have monom $1\left(C A R D\left({ }^{\prime} a\right) * i\right) \bmod u=[: 0,1:] ~ へ\left(C A R D\left({ }^{\prime} a\right) * i\right) \bmod u$
using x-as-monom x-pow-n by metis
also have $\ldots=? p$
unfolding Poly-berlekamp-mat $[$ OF i] by simp
also have $\ldots=\left(\sum i \leq\right.$ degree $u-1 . \operatorname{monom}($ coeff ?p $\left.i) i\right)$
using degree-le2 poly-as-sum-of-monoms' by fastforce
also have $\ldots=\left(\sum i<\right.$ degree u. monom (coeff ?p i) i) using set-rw by auto
also have $\ldots=\left(\sum j<\right.$ degree u. monom ($($ berlekamp-mat $\left.u) \$ \$(i, j)\right) j$)
proof (rule sum.cong, rule)
fix x assume $x: x \in\{. .<$ degree $u\}$
have coeff ?p $x=$ berlekamp-mat $u \$ \(i, x)
proof (rule coeff-Poly-list-of-vec-nth)
show $x<$ dim-col (berlekamp-mat u) using x by auto
qed
thus monom (coeff ?p x) $x=$ monom (berlekamp-mat $u \$ \$(i, x)) x$
by (simp add: poly-eq-iff)
qed
finally show? ?thesis.
lemma col-scalar-prod-as-sum:
assumes dim-vec $v=$ dim-row A
shows col $A j \cdot v=\left(\sum i=0 . .<\right.$ dim-vec $\left.v . A \$ \$(i, j) * v \$ i\right)$
using assms
unfolding col-def scalar-prod-def
by transfer' (rule sum.cong, transfer', auto simp add: mk-vec-def mk-mat-def)
lemma row-transpose-scalar-prod-as-sum:
assumes $j: j<\operatorname{dim}$-col A and dim-v: dim-vec $v=\operatorname{dim}$-row A
shows row (transpose-mat $A) j \cdot v=\left(\sum i=0 . .<\right.$ dim-vec $\left.v . A \$ \$(i, j) * v \$ i\right)$
proof -
have row (transpose-mat A) $j \cdot v=\operatorname{col} A j \cdot v$ using j row-transpose by auto
also have $\ldots=\left(\sum i=0 . .<\right.$ dim-vec $\left.v . A \$ \$(i, j) * v \$ i\right)$
by (rule col-scalar-prod-as-sum [OF dim-v])
finally show ?thesis .
qed
lemma poly-as-sum-eq-monoms:
assumes ss-eq: $\left(\sum i<n\right.$. monom $\left.(f i) i\right)=\left(\sum i<n\right.$. monom $\left.(g i) i\right)$
and a-less-n: $a<n$
shows $f a=g a$
proof -
let $? f=\lambda i$. if $i=a$ then $f i$ else 0
let $? g=\lambda i$. if $i=a$ then $g i$ else 0
have sum-f-0: sum ?f $(\{. .<n\}-\{a\})=0$ by (rule sum.neutral, auto)
have coeff ($\sum i<n$. monom ($f i$) i) $a=$ coeff $\left(\sum i<n . \operatorname{monom}(g i) i\right) a$ using ss-eq unfolding poly-eq-iff by simp
hence $\left(\sum i<n\right.$. coeff (monom $\left.\left.(f i) i\right) a\right)=\left(\sum i<n\right.$.coeff $\left.(\operatorname{monom}(g i) i) a\right)$ by (simp add: coeff-sum)
hence $1:\left(\sum i<n\right.$. if $i=a$ then $f i$ else 0$)=\left(\sum i<n\right.$. if $i=a$ then g i else 0$)$ unfolding coeff-monom by auto
have set-rw: $\{. .<n\}=($ insert $a(\{. .<n\}-\{a\}))$ using a-less- n by auto
have $\left(\sum i<n\right.$. if $i=a$ then $f i$ else 0$)=\operatorname{sum}$?f $($ insert $a(\{. .<n\}-\{a\}))$
using set-rw by auto
also have $\ldots=$?f $a+$ sum ?f $(\{. .<n\}-\{a\})$
by (simp add: sum.insert-remove)
also have $\ldots=$?f a using sum-f-0 by simp
finally have 2: $\left(\sum i<n\right.$. if $i=a$ then $f i$ else 0$)=$?f a.
have sum? $\{$... $<n\}=$ sum ? g (insert $a(\{. .<n\}-\{a\}))$
using set-rw by auto
also have $\ldots=$? $g a+$ sum ? $g(\{. .<n\}-\{a\})$
by (simp add: sum.insert-remove)
also have $\ldots=$? g a using sum-f-0 by simp
finally have 3: $\left(\sum i<n\right.$. if $i=a$ then g i else 0$)=$? $g a$.
show ?thesis using 123 by auto qed

```
lemma dim-vec-of-list-h:
assumes degree h< degree u
shows dim-vec (vec-of-list ((coeffs h) @ replicate (degree u - length (coeffs h)) 0))
= degree u
proof -
    have length (coeffs h) \leq degree u
        by (metis Suc-leI assms coeffs-0-eq-Nil degree-0 length-coeffs-degree
            list.size(3) not-le-imp-less order.asym)
    thus ?thesis by simp
qed
```

lemma vec-of-list-coeffs-nth':
assumes $i: i \in\{$..degree $h\}$ and h-not0: $h \neq 0$
assumes degree $h<$ degree u
shows vec-of-list ((coeffs h) @ replicate (degree u - length (coeffs h)) 0) \$i=
coeff $h i$
using assms
by (transfer ${ }^{\prime}$, auto simp add: mk-vec-def coeffs-nth length-coeffs-degree nth-append)
lemma vec-of-list-coeffs-replicate-nth-0:
assumes $i: i \in\{. .<$ degree $u\}$
shows vec-of-list (coeffs 0 @ replicate (degree u - length (coeffs 0)) 0) $\$ i=$ coeff
0 i
using assms
by (transfer', auto simp add: mk-vec-def)
lemma vec-of-list-coeffs-replicate-nth:
assumes $i: i \in\{. .<$ degree $u\}$
assumes degree $h<$ degree u
shows vec-of-list ((coeffs h) @ replicate (degree $u-$ length (coeffs h)) 0) \$i=
coeff $h i$
proof (cases $h=0$)
case True
thus ?thesis using vec-of-list-coeffs-replicate-nth-0 i by auto
next
case False note h-not0 $=$ False
show ?thesis
proof (cases $i \in\{$..degree $h\}$)
case True thus ?thesis using assms vec-of-list-coeffs-nth' h-not0 by simp

```
    next
        case False
    have c0: coeff hi=0 using False le-degree by auto
    thus ?thesis
        using assms False h-not0
        by (transfer', auto simp add: mk-vec-def length-coeffs-degree nth-append c0)
    qed
qed
```

```
lemma equation-13:
    fixes }u
    defines H:H\equivvec-of-list ((coeffs h) @ replicate (degree u - length (coeffs h))
0)
    assumes deg-le: degree h< degree u
    shows [h`CARD('a)=h] (mod u)\longleftrightarrow(transpose-mat (berlekamp-mat u)) *v H
= H
    (is ?lhs=?rhs)
proof -
    have f: finite {..degree u} by auto
    have [simp]: dim-vec H = degree u unfolding H using dim-vec-of-list-h deg-le
by simp
    let ?B = (berlekamp-mat u)
    let ?f = \lambdai. (transpose-mat ?B *v H)$ i
    show ?thesis
    proof
    assume rhs: ?rhs
    have dimv-h-dimr-B: dim-vec H=dim-row ?B
        by (metis berlekamp-mat-closed(2) berlekamp-mat-closed(3)
            dim-mult-mat-vec index-transpose-mat(2) rhs)
    have degree-h-less-dim-H: degree h<dim-vec H by (auto simp add: deg-le)
    have set-rw: {..degree u-1}={..<degree u} using deg-le by auto
    have degree }h\leq\mathrm{ degree }u-1\mathrm{ using deg-le by simp
    hence }h=(\sumj\leq\mathrm{ degree u-1.monom (coeff hj) j) using poly-as-sum-of-monoms'
by fastforce
    also have ... = (\sumj<degree u. monom (coeff hj)j) using set-rw by simp
        also have ... = (\sumj<degree u. monom (?f j) j)
        proof (rule sum.cong, rule+)
            fix j assume i: j\in{..<degree u}
            have (coeff h j)= ?f j
                using rhs vec-of-list-coeffs-replicate-nth[OF i deg-le]
                    unfolding H by presburger
    thus monom (coeff h j) j= monom (?f j) j
                by simp
        qed
        also have ... = (\sumj<degree u. monom (row (transpose-mat ?B) j | H) j)
            by (rule sum.cong, auto)
```

also have $\ldots=\left(\sum j<\right.$ degree u. monom $\left(\sum i=0 . .<\right.$ dim-vec H. ? $B \$ \$(i, j) *$ $H \$ i) j$)
proof (rule sum.cong, rule)
fix x assume $x: x \in\{. .<$ degree $u\}$
show monom (row (transpose-mat ? B) $x \cdot H$) $x=$
monom $\left(\sum i=0 . .<\right.$ dim-vec H. ? $\left.B \$ \$(i, x) * H \$ i\right) x$
proof (unfold monom-eq-iff, rule row-transpose-scalar-prod-as-sum [OF -dimv-h-dimr-B])
show $x<$ dim-col ? B using x deg-le by auto
qed
qed
also have $\ldots=\left(\sum j<\right.$ degree $u . \sum i=0 . .<$ dim-vec $H . \operatorname{monom}(? B \$ \$(i, j) *$ $H \$$ i) j)
by (auto simp add: monom-sum)
also have $\ldots=\left(\sum i=0 . .<\right.$ dim-vec $H . \sum j<$ degree u. monom $(? B \$ \$(i, j) *$ H \$ i) j)
by (rule sum.swap)
also have $\ldots=\left(\sum i=0 . .<\right.$ dim-vec $H . \sum j<$ degree u. monom $(H \$ i) 0 *$ monom (?B $\$ \$(i, j)) j$)
proof (rule sum.cong, rule, rule sum.cong, rule)
fix $x x a$
show monom $(? B \$ \$(x, x a) * H \$ x) x a=\operatorname{monom}(H \$ x) 0 *$ monom (?B \$\$ $(x, x a)) x a$
by (simp add: mult-monom)
qed
also have $\ldots=\left(\sum i=0 . .<\right.$ dim-vec $H .($ monom $(H \$ i) 0) *\left(\sum j<\right.$ degree u. monom (?B $\$ \$(i, j)) j$)
by (rule sum.cong, auto simp: sum-distrib-left)
also have $\ldots=\left(\sum i=0 . .<\operatorname{dim}-v e c h .(\right.$ monom $(H \$ i) 0) *($ monom 1 $\left.\left.\left(C A R D\left({ }^{\prime} a\right) * i\right) \bmod u\right)\right)$
proof (rule sum.cong, rule)
fix x assume $x: x \in\{0 . .<$ dim-vec $H\}$
have $\left(\sum j<\right.$ degree u. monom $\left.(? B \$ \$(x, j)) j\right)=\left(\right.$ monom $1\left(C A R D\left({ }^{\prime} a\right) * x\right)$ mod u)
proof (rule monom-card-pow-mod-sum-berlekamp[symmetric])
show $x<$ degree u using x dimv-h-dimr- B by auto
qed
thus monom $(H \$ x) 0 *\left(\sum j<\right.$ degree u. monom $\left.(? B \$ \$(x, j)) j\right)=$
monom $(H \$ x) 0 *\left(\right.$ monom $1\left(C A R D\left({ }^{\prime} a\right) * x\right)$ mod $\left.u\right)$ by presburger
qed
also have $\ldots=\left(\sum i=0 . .<\right.$ dim-vec $H . \operatorname{monom}(H \$ i)\left(C A R D\left({ }^{\prime} a\right) * i\right) \bmod$ u)
proof (rule sum.cong, rule)
fix x
have h-rw: monom $(H \$ x) 0$ mod $u=$ monom $(H \$ x) 0$
by (metis deg-le degree-pCons-eq-if gr-implies-not-zero
linorder-neqE-nat mod-poly-less monom-0)
have monom $(H \$ x)\left(C A R D\left({ }^{\prime} a\right) * x\right)=\operatorname{monom}(H \$ x) 0 *$ monom 1 $\left(C A R D\left({ }^{\prime} a\right) * x\right)$
unfolding mult-monom by simp
also have $\ldots=\operatorname{smult}(H \$ x)\left(\right.$ monom $\left.1\left(C A R D\left({ }^{\prime} a\right) * x\right)\right)$
by (simp add: monom-0)
also have ... mod $u=$ Polynomial.smult (H \$) (monom 1 (CARD ('a) * x) $\bmod u)$
using mod-smult-left by auto
also have $\ldots=\operatorname{monom}(H \$ x) 0 *\left(\operatorname{monom} 1\left(C A R D\left({ }^{\prime} a\right) * x\right) \bmod u\right)$ by (simp add: monom-0)
finally show monom $(H \$ x) 0 *\left(\right.$ monom $\left.1\left(C A R D\left({ }^{\prime} a\right) * x\right) \bmod u\right)$
$=\operatorname{monom}(H \$ x)\left(C A R D\left({ }^{\prime} a\right) * x\right) \bmod u .$.
qed
also have $\ldots=\left(\sum i=0 . .<\operatorname{dim}\right.$-vec $\left.H . \operatorname{monom}(H \$ i)\left(C A R D\left({ }^{\prime} a\right) * i\right)\right) \bmod$
by (simp add: poly-mod-sum)
also have $\ldots=\left(\sum i=0 . .<\right.$ dim-vec H. monom $\left.(\operatorname{coeff} h i)\left(\operatorname{CARD}\left({ }^{\prime} a\right) * i\right)\right)$
$\bmod u$
proof (rule arg-cong[of - λx. x mod u], rule sum.cong, rule)
fix x assume $x: x \in\{0 . .<$ dim-vec $H\}$
have $H \$ x=($ coeff $h x)$
proof (unfold H, rule vec-of-list-coeffs-replicate-nth $[O F-d e g-l e])$
show $x \in\{. .<$ degree $u\}$ using x by auto
qed
thus monom $(H \$ x)\left(C A R D\left({ }^{\prime} a\right) * x\right)=\operatorname{monom}(\operatorname{coeff} h x)\left(C A R D\left({ }^{\prime} a\right) * x\right)$
by simp
qed
also have $\ldots=\left(\sum i \leq\right.$ degree h. monom $($ coeff $\left.h i)\left(C A R D\left({ }^{\prime} a\right) * i\right)\right) \bmod u$
proof (rule arg-cong[of - - $\lambda x . x \bmod u])$
let ? $f=\lambda i$. monom (coeff $h i)\left(C A R D\left({ }^{\prime} a\right) * i\right)$
have ss0: $\left(\sum i=\right.$ degree $h+1 . .<$ dim-vec H. ?f $\left.i\right)=0$
by (rule sum.neutral, simp add: coeff-eq-0)
have set-rw: $\{0 . .<$ dim-vec $H\}=\{0 .$. degree $h\} \cup\{$ degree $h+1 . .<$ dim-vec H\}
using degree-h-less-dim- H by auto
have $\left(\sum i=0 . .<\right.$ dim-vec H. ?f $\left.i\right)=\left(\sum i=0 .\right.$. degree h. ?f $\left.i\right)+\left(\sum i=\right.$ degree $h+1$.. $<$ dim-vec H. ?f $i)$
unfolding set-rw by (rule sum.union-disjoint, auto)
also have $\ldots=\left(\sum i=0 .\right.$. degree h. ?f $\left.i\right)$ unfolding ss0 by auto
finally show $\left(\sum i=0 . .<\right.$ dim-vec H. ?f $\left.i\right)=\left(\sum i \leq\right.$ degree h. ?f $\left.i\right)$
by (simp add: atLeast0AtMost)
qed
also have $\ldots=h^{`} C A R D\left({ }^{\prime} a\right) \bmod u$
using poly-power-card-as-sum-of-monoms by auto
finally show? ?hs
unfolding cong-def
using deg-le
by (simp add: mod-poly-less)
next
assume lhs: ?lhs
have deg-le': degree $h \leq$ degree $u-1$ using deg-le by auto
have set-rw: $\{. .<$ degree $u\}=\{$..degree $u-1\}$ using deg-le by auto
hence $\left(\sum i<\right.$ degree u. monom $($ coeff $\left.h i) i\right)=\left(\sum i \leq\right.$ degree $u-1$. monom (coeff $h i$) i) by simp
also have $\ldots=\left(\sum i \leq\right.$ degree h. monom $($ coeff $\left.h i) i\right)$
unfolding poly-as-sum-of-monoms
using poly-as-sum-of-monoms ${ }^{\prime}$ deg-le' by auto
also have $\ldots=\left(\sum i \leq\right.$ degree h. monom $($ coeff $\left.h i) i\right) \bmod u$
by (simp add: deg-le mod-poly-less poly-as-sum-of-monoms)
also have $\ldots=\left(\sum i \leq\right.$ degree h. monom $($ coeff $\left.h i)(C A R D(' a) * i)\right) \bmod u$ using lhs
unfolding cong-def poly-as-sum-of-monoms poly-power-card-as-sum-of-monoms
by auto
also have $\ldots=\left(\sum i \leq\right.$ degree h. monom $($ coeff $\left.h i) 0 * \operatorname{monom} 1\left(C A R D\left({ }^{\prime} a\right) * i\right)\right)$ mod u
by (rule arg-cong[of - λx. x mod u], rule sum.cong, simp-all add: mult-monom)
also have $\ldots=\left(\sum i \leq\right.$ degree $h . \operatorname{monom}($ coeff $h i) 0 * \operatorname{monom} 1\left(\operatorname{CARD}\left({ }^{\prime} a\right) * i\right)$ mod u)
by (simp add: poly-mod-sum)
also have $\ldots=\left(\sum i \leq\right.$ degree h. monom $($ coeff $h i) 0 *\left(\right.$ monom $1\left(C A R D\left({ }^{\prime} a\right) * i\right)$ mod u))
proof (rule sum.cong, rule)
fix x assume $x: x \in\{$..degree $h\}$
have h-rw: monom (coeff $h x$) 0 mod $u=$ monom (coeff $h x) 0$
by (metis deg-le degree-pCons-eq-if gr-implies-not-zero
linorder-neqE-nat mod-poly-less monom-0)
have monom (coeff $h x) 0 * \operatorname{monom} 1\left(\operatorname{CARD}\left({ }^{\prime} a\right) * x\right)=\operatorname{smult}(\operatorname{coeff} h x)$ (monom 1 (CARD ('a) * x))
by (simp add: monom-0)
also have $. . . \bmod u=$ Polynomial.smult (coeff $h x)($ monom 1 (CARD ('a)

* $x) \bmod u$)
using mod-smult-left by auto
also have $\ldots=$ monom (coeff $h x) 0 *($ monom $1(C A R D(' a) * x) \bmod u)$ by (simp add: monom-0)
finally show monom (coeff $h x) 0 *$ monom $1\left(C A R D\left({ }^{\prime} a\right) * x\right) \bmod u$
$=$ monom $($ coeff $h x) 0 *($ monom $1(C A R D(' a) * x) \bmod u)$.
qed
also have $\ldots=\left(\sum i \leq\right.$ degree h. monom (coeff $\left.h i\right) 0 *\left(\sum j<\right.$ degree u. monom (?B \$\$ $(i, j)) j$)
proof (rule sum.cong, rule)
fix x assume $x: x \in\{$..degree $h\}$
have $\left(\right.$ monom $\left.1\left(C A R D\left({ }^{\prime} a\right) * x\right) \bmod u\right)=\left(\sum j<\right.$ degree u. monom $(? B \$ \$(x$, j)) j)
proof (rule monom-card-pow-mod-sum-berlekamp)
show $\quad x<$ degree u using x deg-le by auto
qed
thus monom $(\operatorname{coeff} h x) 0 *\left(\operatorname{monom} 1\left(C A R D\left({ }^{\prime} a\right) * x\right) \bmod u\right)=$ monom (coeff $h x) 0 *\left(\sum j<\right.$ degree u. monom $\left.(? B \$ \$(x, j)) j\right)$ by simp qed
also have $\ldots=\left(\sum i<\right.$ degree u. monom $($ coeff $h i) 0 *\left(\sum j<\right.$ degree u. monom

```
(?B $$ (i,j)) j))
    proof -
    let ?f=\lambdai. monom (coeff h i) 0* (\sumj<degree u. monom (?B $$ (i,j)) j)
    have ss0: (\sumi=degree h+1 ..< degree u. ?f i)=0
            by (rule sum.neutral, simp add: coeff-eq-0)
    have set-rw: {0..<degree u}={0..degree h} \cup{degree h+1..<degree u} using
deg-le by auto
    have (\sumi=0..<degree u. ?f i)=(\sumi=0..degree h. ?f i) +(\sum i=degree h+1
..< degree u.?f i)
    unfolding set-rw by (rule sum.union-disjoint, auto)
    also have ... = (\sumi=0..degree h. ?f i) using ss0 by simp
    finally show ?thesis
        by (simp add: atLeast0AtMost atLeast0LessThan)
    qed
    also have ... = (\sumi<degree u. ( \sumj<degree u. monom (coeff hi) 0* monom
(?B $$ (i,j)) j))
    by (simp add: sum-distrib-left)
    also have ... = (\sumi<degree u. (\sumj<degree u.monom (coeff hi*?B$$(i,j))
j))
    by (simp add: mult-monom)
    also have ... = (\sumj<degree u. (\sumi<degree u. monom (coeff hi* ?B $$ (i,j))
j))
    using sum.swap by auto
    also have ... = (\sumj<degree u. monom (\sumi<degree u. (coeff hi*?B$$(i,
j))) j)
    by (simp add: monom-sum)
    finally have ss-rw: (\sumi<degree u. monom (coeff h i) i)
    =(\sumj<degree u. monom (\sumi<degree u. coeff h i* ?B $$ (i,j)) j).
    have coeff-eq-sum: }\foralli.i<\mathrm{ degree }u\longrightarrow\mathrm{ coeff h i=( \j<degree u. coeff hj*
?B $$ (j,i))
    using poly-as-sum-eq-monoms[OF ss-rw] by fast
    have coeff-eq-sum': }\foralli.i<\mathrm{ degree }u\longrightarrowH$i=(\sumj<\mathrm{ degree u.H$j*?B$$
(j,i))
    proof (rule+)
    fix i assume i:i< degree u
    have H$i= coeff hi by (simp add: H deg-le i vec-of-list-coeffs-replicate-nth)
    also have ... = (\sumj<degree u. coeff hj* ?B $$(j,i)) using coeff-eq-sum i
by blast
```



```
        by (rule sum.cong, auto simp add: H deg-le vec-of-list-coeffs-replicate-nth)
    finally show H$ i=(\sumj<degree u.H$j*?B $$ (j,i)).
qed
show (transpose-mat (?B)) *v H=H
proof (rule eq-vecI)
    fix i
    show dim-vec (transpose-mat ? B *v H)=dim-vec (H) by auto
    assume i: i<dim-vec (H)
    have (transpose-mat ?B *v H)$ i= row (transpose-mat ?B) i}\cdotH\mathrm{ using }i\mathrm{ by
simp
```

```
    also have ... = (\sumj=0..<dim-vec H. ?B $$ (j,i)*H$j)
    proof (rule row-transpose-scalar-prod-as-sum)
    show }i<dim-col ?B using i by sim
    show dim-vec H}=\mathrm{ dim-row ?B by simp
    qed
    also have ... = (\sumj<degree u.H $j*?B$$ (j,i)) by (rule sum.cong, auto)
    also have \ldots. = H$ i using coeff-eq-sum'[rule-format, symmetric, of i] i by
simp
    finally show (transpose-mat ?B *v H)$i=H$i.
    qed
qed
qed
end
context
assumes SORT-CONSTRAINT('a::prime-card)
begin
lemma exists-s-factor-dvd-h-s:
fixes fi::'a mod-ring poly
assumes finite-P: finite P
    and f-desc-square-free: f}=(\proda\inP.a
    and P:P\subseteq{q. irreducible q\wedge monic q}
    and fi-P: fi\inP
    and h:h\in{v.[v`(CARD('a))=v] (\operatorname{mod}f)}
    shows }\existss.fidvd(h-[:s:]
proof -
    let ?p = CARD('a)
            have f-dvd-hqh: f dvd ( }h`\mathrm{ ` ?p - h) using h unfolding cong-def
            using mod-eq-dvd-iff-poly by blast
            also have hq-h-rw: ... = prod (\lambdac. h- [:c:]) (UNIV ::'a mod-ring set)
            by (rule poly-identity-mod-p)
            finally have f-dvd-hc: f dvd prod (\lambdac. h- [:c:]) (UNIV::'a mod-ring set) by
simp
            have fi dvd f}\mathrm{ using f-desc-square-free fi-P
                using dvd-prod-eqI finite-P by blast
            hence fi dvd ( }h`\mathrm{ ? ?p - h) using dvd-trans f-dvd-hqh by auto
            also have ... = prod (\lambdac. h-[:c:]) (UNIV::'a mod-ring set) unfolding
hq-h-rw by simp
            finally have fi-dvd-prod-hc: fi dvd prod (\lambdac. h- [:c:]) (UNIV::'a mod-ring
set).
            have irr-fi: irreducible fi using fi-P P by blast
            have fi-not-unit: \neg is-unit fi using irr-fi by (simp add: irreducible }\mp@subsup{|}{d}{}D(1
poly-dvd-1)
            show ?thesis using irreducible-dvd-prod[OF - fi-dvd-prod-hc] irr-fi by auto
qed
```

```
corollary exists-unique-s-factor-dvd-h-s:
    fixes fi::'a mod-ring poly
    assumes finite-P: finite P
        and f-desc-square-free: f=(\proda\inP.a)
        and P:P\subseteq{q. irreducible q}\wedge\mathrm{ monic q}
        and fi-P: fi\inP
        and h:h\in{v.[v`(CARD('a))=v] (mod f)}
        shows }\exists!s.fidvd (h-[:s:]
proof -
    obtain c where fi-dvd: fi dvd (h-[:c:]) using assms exists-s-factor-dvd-h-s by
blast
    have irr-fi: irreducible fi using fi-P P by blast
    have fi-not-unit: ᄀ is-unit fi
        by (simp add: irr-fi irreducible e}D(1) poly-dvd-1
    show ?thesis
    proof (rule ex1I[of-c], auto simp add: fi-dvd)
        fix c2 assume fi-dvd-hc2: fi dvd h- [:c2:]
        have *: fi dvd (h-[:c:])* (h-[:c2:]) using fi-dvd by auto
        hence fi dvd (h-[:c:])\vee fi dvd (h-[:c2:])
            using irr-fi by auto
    thus c2 = c
            using coprime-h-c-poly coprime-not-unit-not-dvd fi-dvd fi-dvd-hc2 fi-not-unit
by blast
    qed
qed
```

lemma exists-two-distint: $\exists a b::^{\prime} a$ mod-ring. $a \neq b$
by (rule exI[of - 0], rule exI[of - 1], auto)
lemma coprime-cong-mult-factorization-poly:
fixes $f:::^{\prime} b::\{$ field $\}$ poly
and $a b p::{ }^{\prime} c::\{$ field-gcd $\}$ poly
assumes finite- P : finite P
and $P: P \subseteq\{q$. irreducible $q\}$
and $p: \forall p \in P .[a=b](\bmod p)$
and coprime- $P: \forall p 1$ p2. $p 1 \in P \wedge p 2 \in P \wedge p 1 \neq p 2 \longrightarrow$ coprime $p 1 p 2$
shows $[a=b]\left(\bmod \left(\prod a \in P . a\right)\right)$
using finite-P P p coprime- P
proof (induct P)
case empty
thus ? case by simp
next
case (insert p P)
have $a b-\bmod -p P:[a=b]\left(\bmod \left(p * \prod P\right)\right)$
proof (rule coprime-cong-mult-poly)

```
    show [a=b] (mod p) using insert.prems by auto
    show [a=b] ( }\operatorname{mod}\P)\mathrm{ using insert.prems insert.hyps by auto
    from insert show Rings.coprime p (\PiP)
    by (auto intro: prod-coprime-right)
    qed
    thus ?case by (simp add: insert.hyps(1) insert.hyps(2))
qed
end
```


context

assumes SORT-CONSTRAINT('a::prime-card)
begin
lemma W-eq-berlekamp-mat:
fixes u::'a mod-ring poly
shows $\left\{v .\left[v^{\wedge} C A R D(' a)=v\right](\bmod u) \wedge\right.$ degree $v<$ degree $\left.u\right\}$
$=\{h$. let $H=$ vec-of-list $(($ coeffs $h) @$ replicate (degree $u-$ length $($ coeffs $h)) 0)$
in
(transpose-mat (berlekamp-mat u)) $*_{v} H=H \wedge$ degree $h<$ degree $\left.u\right\}$
using equation-13 by (auto simp add: Let-def)
lemma transpose-minus-1:
assumes dim-row $Q=\operatorname{dim}$-col Q
shows transpose-mat $\left(Q-\left(1_{m}(\right.\right.$ dim-row $\left.\left.Q)\right)\right)=\left(\right.$ transpose-mat $Q-\left(1_{m}\right.$
(dim-row Q))
using assms
unfolding mat-eq-iff by auto
lemma system-iff:
fixes v::'b:::comm-ring-1 vec
assumes $s q$ - Q : dim-row $Q=\operatorname{dim}$-col Q and v : dim-row $Q=\operatorname{dim}$-vec v
shows (transpose-mat $\left.Q *_{v} v=v\right) \longleftrightarrow\left(\left(\right.\right.$ transpose-mat $Q-1_{m}($ dim-row $\left.Q)\right) *_{v}$
$v=0_{v}($ dim-vec $\left.v)\right)$
proof -
have $t 1$:transpose-mat $Q *_{v} v-v=0_{v}($ dim-vec $v) \Longrightarrow($ transpose-mat Q -
$1_{m}($ dim-row $\left.Q)\right) *_{v} v=0_{v}($ dim-vec $v)$
by (subst minus-mult-distrib-mat-vec, insert sq-Q[symmetric] v, auto)
have $t 2$:(transpose-mat $Q-1_{m}($ dim-row $\left.Q)\right) *_{v} v=o_{v}($ dim-vec $v) \Longrightarrow$ trans-
pose-mat $Q * v v-v=0_{v}($ dim-vec $v)$
by (subst (asm) minus-mult-distrib-mat-vec, insert sq-Q[symmetric] v, auto)
have transpose-mat $Q *_{v} v-v=v-v \Longrightarrow$ transpose-mat $Q *_{v} v=v$
proof -
assume a1: transpose-mat $Q *_{v} v-v=v-v$
have f2: transpose-mat $Q *_{v} v \in$ carrier-vec (dim-vec v)
by (metis dim-mult-mat-vec index-transpose-mat(2) sq-Q v carrier-vec-dim-vec)
then have $f 3: 0_{v}($ dim-vec $v)+$ transpose-mat $Q *_{v} v=\operatorname{transpose}-m a t ~ Q *_{v} v$

```
        by (meson left-zero-vec)
    have \(f_{4}: O_{v}(\) dim-vec \(v)=\) transpose-mat \(Q *_{v} v-v\)
    using a1 by auto
    have f5: - \(v \in\) carrier-vec (dim-vec \(v\) )
    by \(\operatorname{simp}\)
    then have f6: \(-v+\) transpose-mat \(Q *_{v} v=v-v\)
        using f2 a1 using comm-add-vec minus-add-uminus-vec by fastforce
    have \(v-v=-v+v\) by auto
    then have transpose-mat \(Q *_{v} v=\) transpose-mat \(Q *_{v} v-v+v\)
        using f6 f4 f3 f2 by (metis (no-types, lifting) a1 assoc-add-vec comm-add-vec
f5 carrier-vec-dim-vec)
    then show ?thesis
        using a1 by auto
    qed
    hence (transpose-mat \(\left.Q *_{v} v=v\right)=\left(\left(\right.\right.\) transpose-mat \(\left.\left.Q *_{v} v\right)-v=v-v\right)\) by
auto
    also have \(\ldots=\left(\left(\right.\right.\) transpose-mat \(\left.Q *_{v} v\right)-v=O_{v}(\) dim-vec \(\left.v)\right)\) by auto
    also have \(\ldots=\left(\left(\right.\right.\) transpose-mat \(Q-1_{m}(\) dim-row \(\left.Q)\right) *_{v} v=O_{v}(\) dim-vec \(\left.v)\right)\)
        using t1 t2 by auto
    finally show ?thesis.
qed
lemma system-if-mat-kernel:
assumes \(s q\) - \(Q\) : dim-row \(Q=\operatorname{dim-col} Q\) and \(v\) : dim-row \(Q=\operatorname{dim-vec} v\)
shows (transpose-mat \(\left.Q *_{v} v=v\right) \longleftrightarrow v \in\) mat-kernel (transpose-mat ( \(Q-\left(1_{m}\right.\) (dim-row \(Q)\) )))
proof -
have (transpose-mat \(\left.Q *_{v} v=v\right)=\left(\left(\right.\right.\) transpose-mat \(Q-1_{m}(\) dim-row \(\left.Q)\right) *_{v} v\) \(\left.=0_{v}(\operatorname{dim}-v e c v)\right)\)
using assms system-iff by blast
also have \(\ldots=\left(v \in\right.\) mat-kernel (transpose-mat \(\left(Q-\left(1_{m}(\right.\right.\) dim-row \(\left.\left.\left.\left.Q)\right)\right)\right)\right)\)
unfolding mat-kernel-def unfolding transpose-minus-1[OF sq-Q] unfolding \(v\) by auto
finally show ?thesis .
qed
```

lemma degree-u-mod-irreducible ${ }_{d}$-factor-0:
fixes v and $u::^{\prime}$ a mod-ring poly
defines $W: W \equiv\left\{v .\left[v^{\wedge} C A R D(' a)=v\right](\bmod u)\right\}$
assumes $v: v \in W$
and finite- U : finite U and u - $U: u=\prod U$ and U-irr-monic: $U \subseteq\{q$. irreducible $q \wedge$ monic $q\}$
and $f i-U: f i \in U$
shows degree $(v \bmod f i)=0$
proof -
have deg-fi: degree $f i>0$
using U-irr-monic
using f - U irreducible ${ }_{d} D[$ of $f i]$ by auto
have $f i d v d u$
using u - U U-irr-monic finite- U dvd-prod-eqI fi- U by blast
moreover have $u d v d\left(v^{\wedge} C A R D\left(^{\prime} a\right)-v\right)$
using v unfolding W cong-def
by (simp add: mod-eq-dvd-iff-poly)
ultimately have $f i d v d\left(v^{\wedge} C A R D\left({ }^{\prime} a\right)-v\right)$
by (rule dvd-trans)
then have $f i$-dvd-prod-vc: $f i$ dvd prod ($\lambda c . v-[: c:])$ (UNIV ::'a mod-ring set)
by (simp add: poly-identity-mod-p)
have irr- f : irreducible $f i$ using $f i$ - U U-irr-monic by blast
have f-not-unit: \neg is-unit $f i$
using irr-fi
by (auto simp: poly-dvd-1)
have $f i-d v d-v c: \exists c . f i d v d v-[: c:]$
using irreducible-dvd-prod $[O F-f$-dvd-prod-vc] irr- f by auto
from this obtain a where $f i d v d v-[: a:]$ by blast
hence $v \bmod f i=[: a:] \bmod f$ using mod-eq-dvd-iff-poly by blast
also have $\ldots=[: a:]$ by (simp add: deg-fi mod-poly-less)
finally show ?thesis by simp
qed
definition poly-abelian-monoid
$=$ (carrier $=$ UNIV $::^{\prime}$ a mod-ring poly set, monoid.mult $=((*))$, one $=1$, zero
$=0$, add $=(+)$, module.smult $=$ smult $)$
interpretation vector-space-poly: vectorspace class-ring poly-abelian-monoid
rewrites [simp]: $\mathbf{0}_{\text {poly-abelian-monoid }}=0$
and $[$ simp $]$: $\mathbf{1}_{\text {poly-abelian-monoid }}=1$
and $[$ simp $]:\left(\oplus_{\text {poly-abelian-monoid }}\right)=(+)$
and $[$ simp $]:\left(\otimes_{\text {poly-abelian-monoid }}\right)=(*)$
and [simp]: carrier poly-abelian-monoid $=$ UNIV
and $[$ simp $]:\left(\odot_{\text {poly-abelian-monoid }}\right)=$ smult
apply unfold-locales
apply (auto simp: poly-abelian-monoid-def class-field-def smult-add-left smult-add-right Units-def)
by (metis add.commute add.right-inverse)
lemma subspace-Berlekamp:
assumes f : degree $f \neq 0$
shows subspace (class-ring :: 'a mod-ring ring)
$\left\{v .\left[v^{\wedge}\left(C A R D\left({ }^{\prime} a\right)\right)=v\right](\bmod f) \wedge(\right.$ degree $v<$ degree $\left.f)\right\}$ poly-abelian-monoid
proof -
\{ fix $v::$ 'a mod-ring poly and $w::$ 'a mod-ring poly
assume $a 1: v^{\wedge} \operatorname{card}\left(U N I V::^{\prime} a\right.$ set $) \bmod f=v \bmod f$

```
    assume w ^card (UNIV::'a set) mod f = w mod f
    then have (v^card (UNIV::'a set) + w^ card (UNIV ::'a set)) mod f= (v
+w) mod}
            using a1 by (meson mod-add-cong)
    then have (v+w)^card (UNIV::'a set) mod f= (v+w) mod f
        by (simp add: add-power-poly-mod-ring)
    } note r=this
    thus ?thesis using }
    by (unfold-locales, auto simp: zero-power mod-smult-left smult-power cong-def
degree-add-less)
qed
lemma berlekamp-resulting-mat-closed[simp]:
    berlekamp-resulting-mat u\incarrier-mat (degree u) (degree u)
    dim-row (berlekamp-resulting-mat u)= degree u
    dim-col (berlekamp-resulting-mat u) = degree u
proof -
    let ?A=(transpose-mat (mat (degree u) (degree u)
                                    (\lambda(i,j). if i=j then berlekamp-mat u $$ (i,j) - 1 else berlekamp-mat
u $$(i,j))))
    let ?G=(gauss-jordan-single ?A)
    have ?G \incarrier-mat (degree u) (degree u)
        by (rule gauss-jordan-single(2)[of ?A], auto)
    thus
        berlekamp-resulting-mat u \in carrier-mat (degree u) (degree u)
        dim-row (berlekamp-resulting-mat u) = degree u
        dim-col (berlekamp-resulting-mat u) = degree u
        unfolding berlekamp-resulting-mat-def Let-def by auto
qed
```

lemma berlekamp-resulting-mat-basis:
kernel.basis (degree u) (berlekamp-resulting-mat u) (set (find-base-vectors (berlekamp-resulting-mat u)))
proof (rule find-base-vectors(3))
show berlekamp-resulting-mat $u \in$ carrier-mat (degree u) (degree u) by simp
let ? $A=($ transpose-mat (mat (degree u) (degree u)
$(\lambda(i, j)$. if $i=j$ then berlekamp-mat $u \$ \$(i, j)-1$ else berlekamp-mat u
$\$ \$(i, j)))$)
have row-echelon-form (gauss-jordan-single ?A)
by (rule gauss-jordan-single(3)[of ? A], auto)
thus row-echelon-form (berlekamp-resulting-mat u)
unfolding berlekamp-resulting-mat-def Let-def by auto
qed
lemma set-berlekamp-basis-eq: (set (berlekamp-basis u))
$=(\text { Poly } \circ \text { list-of-vec })^{`}($ set $($ find-base-vectors $($ berlekamp-resulting-mat $u)))$
by (auto simp add: image-def o-def berlekamp-basis-def)
lemma berlekamp-resulting-mat-constant:
assumes deg-u: degree $u=0$
shows berlekamp-resulting-mat $u=1_{m} 0$
by (unfold mat-eq-iff, auto simp add: deg-u)

context

fixes $u:: ' a::$ prime-card mod-ring poly
begin
lemma set-berlekamp-basis-constant:
assumes deg-u: degree $u=0$
shows set (berlekamp-basis u) $=\{ \}$
proof -
have one-carrier: $1_{m} 0 \in$ carrier-mat 00 by auto
have m : mat-kernel $\left(1_{m} 0\right)=\left\{\left(0_{v} 0\right)::\right.$ 'a mod-ring vec $\}$ unfolding mat-kernel-def
by auto
have r : row-echelon-form ($1_{m} 0::$ 'a mod-ring mat)
unfolding row-echelon-form-def pivot-fun-def Let-def by auto
have set (find-base-vectors $\left.\left(1_{m} 0\right)\right) \subseteq\left\{0_{v} 0\right.$:: 'a mod-ring vec $\}$
using find-base-vectors $(1)[O F$ r one-carrier $]$ unfolding m.
hence set (find-base-vectors $\left(1_{m} 0\right)::$ 'a mod-ring vec list) $=\{ \}$
using find-base-vectors(2)[OF r one-carrier]
using subset-singletonD by fastforce
thus ?thesis
unfolding set-berlekamp-basis-eq unfolding berlekamp-resulting-mat-constant[OF
deg-u] by auto
qed
lemma row-echelon-form-berlekamp-resulting-mat: row-echelon-form (berlekamp-resulting-mat u)
by (rule gauss-jordan-single(3), auto simp add: berlekamp-resulting-mat-def Let-def)
lemma mat-kernel-berlekamp-resulting-mat-degree-0:
assumes d : degree $u=0$
shows mat-kernel (berlekamp-resulting-mat $u)=\left\{\begin{array}{ll}O_{v} & 0\end{array}\right\}$
by (auto simp add: mat-kernel-def mult-mat-vec-def d)
lemma in-mat-kernel-berlekamp-resulting-mat:
assumes x : transpose-mat (berlekamp-mat u) $*_{v} x=x$
and x-dim: $x \in$ carrier-vec (degree u)
shows $x \in$ mat-kernel (berlekamp-resulting-mat u)
proof -
let ?QI=(mat(dim-row $($ berlekamp-mat $u))($ dim-row $($ berlekamp-mat $u))$
$(\lambda(i, j)$. if $i=j$ then berlekamp-mat $u \$ \$(i, j)-1$ else berlekamp-mat u \$\$ $(i, j))$)
have $*$: (transpose-mat (berlekamp-mat $u)-1_{m}($ degree $\left.u)\right)=$ transpose-mat ?QI by auto
have (transpose-mat (berlekamp-mat $u)-1_{m}($ dim-row (berlekamp-mat $\left.\left.u)\right)\right) *_{v}$ $x=0_{v}($ dim-vec $x)$
using system-iff [of berlekamp-mat $u x] x$-dim x by auto
hence transpose-mat ? $Q I *_{v} x=O_{v}$ (degree u) using x-dim $*$ by auto
hence berlekamp-resulting-mat $u *_{v} x=O_{v}$ (degree u)
unfolding berlekamp-resulting-mat-def Let-def
using gauss-jordan-single(1)[of transpose-mat ?QI degree u degree u - $x]$-dim by auto
thus?thesis by (auto simp add: mat-kernel-def x-dim)
qed
private abbreviation $V \equiv$ kernel.VK (degree u) (berlekamp-resulting-mat u)
private abbreviation $W \equiv$ vector-space-poly.vs
$\left\{v .\left[v^{\wedge}\left(C A R D\left({ }^{\prime} a\right)\right)=v\right](\bmod u) \wedge(\right.$ degree $v<$ degree $\left.u)\right\}$
interpretation V : vectorspace class-ring V
proof -
interpret k : kernel (degree u) (degree u) (berlekamp-resulting-mat u)
by (unfold-locales; auto)
show vectorspace class-ring V by intro-locales
qed
lemma linear-Poly-list-of-vec:
shows (Poly \circ list-of-vec) \in module-hom class-ring V (vector-space-poly.vs $\{v$. $\left.\left.\left[v^{\wedge}\left(C A R D\left({ }^{\prime} a\right)\right)=v\right](\bmod u)\right\}\right)$
proof (auto simp add: LinearCombinations.module-hom-def Matrix.module-vec-def)
fix m1 m2:: 'a mod-ring vec
assume m1: m1 \in mat-kernel (berlekamp-resulting-mat u)
and m2: m2 \in mat-kernel (berlekamp-resulting-mat u)
have m1-rw: list-of-vec $m 1=\operatorname{map}(\lambda n . m 1 \$ n)[0 . .<$ dim-vec $m 1]$
by (transfer, auto simp add: mk-vec-def)
have m2-rw: list-of-vec m2 $=\operatorname{map}(\lambda n . m 2 \$ n)[0 . .<$ dim-vec m2]
by (transfer, auto simp add: mk-vec-def)
have $m 1 \in$ carrier-vec (degree u) by (rule mat-kernelD (1)[OF - m1], auto)
moreover have $m 2 \in$ carrier-vec (degree u) by (rule mat-kernelD (1)[OF-m2], auto)
ultimately have dim-eq: dim-vec $m 1=$ dim-vec m2 by auto
show Poly (list-of-vec (m1 + m2)) = Poly (list-of-vec m1) + Poly (list-of-vec m2)
unfolding poly-eq-iff m1-rw m2-rw plus-vec-def
using dim-eq
by (transfer', auto simp add: mk-vec-def nth-default-def)
next
fix $r m$ assume $m: m \in$ mat-kernel (berlekamp-resulting-mat u)
show Poly $($ list-of-vec $(r \cdot v m))=$ smult $r($ Poly $($ list-of-vec $m))$
unfolding poly-eq-iff list-of-vec-rw-map[of m] smult-vec-def by (transfer ${ }^{\prime}$, auto simp add: mk-vec-def nth-default-def)
next
fix x assume $x: x \in$ mat-kernel (berlekamp-resulting-mat u)
show [Poly (list-of-vec $x)^{\wedge} C A R D(' a)=$ Poly (list-of-vec $\left.\left.x\right)\right](\bmod u)$
proof (cases degree $u=0$)
case True
have mat-kernel (berlekamp-resulting-mat $u)=\left\{\begin{array}{ll}0_{v} & 0\end{array}\right\}$
by (rule mat-kernel-berlekamp-resulting-mat-degree- 0 [OF True])
hence $x-0: x=O_{v} 0$ using x by blast
show ?thesis by (auto simp add: zero-power x-0 cong-def)

next

case False note deg-u=False
show ?thesis
proof -
let ? $Q I=($ mat $($ degree $u)($ degree $u)$
($\lambda(i, j)$. if $i=j$ then berlekamp-mat $u \$ \$(i, j)-1$ else berlekamp-mat $u \$ \$$ $(i, j)))$
let ? $H=$ vec-of-list (coeffs (Poly (list-of-vec $x)$) @ replicate (degree u - length (coeffs (Poly (list-of-vec x)))) 0)
have x-dim: dim-vec $x=$ degree u using x unfolding mat-kernel-def by auto
hence x-carrier $[$ simp $]: x \in$ carrier-vec (degree u) by (metis carrier-vec-dim-vec)
have x-kernel: berlekamp-resulting-mat $u *_{v} x=0_{v}$ (degree u)
using x unfolding mat-kernel-def by auto
have t-QI-x-0: (transpose-mat ?QI) $*_{v} x=O_{v}$ (degree u)
using gauss-jordan-single(1)[of (transpose-mat ?QI) degree u degree u gauss-jordan-single (transpose-mat ?QI) x]
using x-kernel unfolding berlekamp-resulting-mat-def Let-def by auto
have l : (list-of-vec $x) \neq[]$
by (auto simp add: list-of-vec-rw-map vec-of-dim- 0 [symmetric] deg-u x-dim)
have deg-le: degree (Poly (list-of-vec $x)$) < degree u
using degree-Poly-list-of-vec
using x-carrier deg- u by blast
show [Poly (list-of-vec $x){ }^{\wedge}$ CARD $\left({ }^{\prime} a\right)=$ Poly $($ list-of-vec $\left.x)\right](\bmod u)$
proof (unfold equation-13[OF deg-le])
have $Q R$-rw: ? $Q I=$ berlekamp-mat $u-1_{m}($ dim-row $($ berlekamp-mat $u))$
by auto
have dim-row (berlekamp-mat u) = dim-vec ?H
by (auto, metis le-add-diff-inverse length-list-of-vec length-strip-while-le x-dim)
moreover have ? $H \in$ mat-kernel (transpose-mat (berlekamp-mat $u-1_{m}$ (dim-row (berlekamp-mat u))))
proof -
have $H x: ? H=x$
proof (unfold vec-eq-iff, auto)
let ? $H^{\prime}=$ vec-of-list (strip-while $((=) 0)($ list-of-vec $x)$
@ replicate (degree u - length (strip-while $((=) 0)($ list-of-vec $x))) 0$)
show length (strip-while ((=) 0) (list-of-vec x))
$+($ degree u - length $($ strip-while $((=) 0)($ list-of-vec $x)))=$ dim-vec x
by (metis le-add-diff-inverse length-list-of-vec length-strip-while-le x-dim)
fix i assume $i: i<\operatorname{dim}$-vec x
have ? $H \$ i=$ coeff $($ Poly $($ list-of-vec $x)) i$ proof (rule vec-of-list-coeffs-replicate-nth[OF - deg-le])
show $i \in\{. .<$ degree $u\}$ using x-dim i by (auto, linarith)
qed
also have $\ldots=x \$ i$ by (rule coeff-Poly-list-of-vec-nth' $[$ OF $i]$)
finally show ? $H^{\prime} \$ i=x \$ i$ by auto
qed
have ?H \in carrier-vec (degree u) using deg-le dim-vec-of-list-h Hx by
moreover have transpose-mat (berlekamp-mat $u-1_{m}($ degree $\left.u)\right) *_{v}$? H $=0_{v}($ degree $u)$
using $t-Q I-x-0 H x Q R$-rw by auto
ultimately show ?thesis
by (auto simp add: mat-kernel-def)

qed

ultimately show transpose-mat (berlekamp-mat $u) *_{v}$? $H=? H$
using system-if-mat-kernel[of berlekamp-mat u ?H]
by auto
qed
qed
qed
qed
lemma linear-Poly-list-of-vec':
assumes degree $u>0$
shows (Poly \circ list-of-vec) \in module-hom R V W
proof (auto simp add: LinearCombinations.module-hom-def Matrix.module-vec-def)
fix $m 1$ m2:: 'a mod-ring vec
assume m1: m1 \in mat-kernel (berlekamp-resulting-mat u)
and m2: m2 \in mat-kernel (berlekamp-resulting-mat u)
have m1-rw: list-of-vec $m 1=\operatorname{map}(\lambda n . m 1 \$ n)[0 . .<$ dim-vec m1]
by (transfer, auto simp add: mk-vec-def)
have m2-rw: list-of-vec m2 $=\operatorname{map}(\lambda n . \operatorname{m2} \$ n)[0 . .<d i m-v e c ~ m 2]$
by (transfer, auto simp add: mk-vec-def)
have $m 1 \in$ carrier-vec (degree u) by (rule mat-kernelD (1) [OF - m1], auto)
moreover have m2 \in carrier-vec (degree u) by (rule mat-kernelD (1) [OF - m2], auto)
ultimately have dim-eq: dim-vec $m 1=$ dim-vec m2 by auto
show Poly (list-of-vec (m1 + m2)) = Poly (list-of-vec m1) + Poly (list-of-vec m2)
unfolding poly-eq-iff m1-rw m2-rw plus-vec-def
using dim-eq
by (transfer', auto simp add: mk-vec-def nth-default-def)
next
fix $r m$ assume $m: m \in$ mat-kernel (berlekamp-resulting-mat u)

```
    show Poly (list-of-vec (r fv m)) = smult r (Poly (list-of-vec m))
    unfolding poly-eq-iff list-of-vec-rw-map[of m] smult-vec-def
    by (transfer', auto simp add: mk-vec-def nth-default-def)
next
    fix }x\mathrm{ assume }x:x\in\mathrm{ mat-kernel (berlekamp-resulting-mat u)
    show [Poly (list-of-vec x) ^CARD('a) = Poly (list-of-vec x)] (mod u)
    proof (cases degree u=0)
    case True
    have mat-kernel (berlekamp-resulting-mat u)={{\begin{array}{ll}{0}&{0}\end{array}}
        by (rule mat-kernel-berlekamp-resulting-mat-degree-0[OF True])
    hence }x-0:x=\mp@subsup{0}{v}{}0\mathrm{ using }x\mathrm{ by blast
    show ?thesis by (auto simp add:zero-power x-0 cong-def)
next
    case False note deg-u = False
    show ?thesis
    proof -
            let ?QI=(mat (degree u) (degree u)
            (\lambda(i,j). if i=j then berlekamp-mat u $$ (i,j) - 1 else berlekamp-mat u $$
(i,j)))
    let ?H=vec-of-list (coeffs (Poly (list-of-vec x)) @ replicate (degree u - length
(coeffs (Poly (list-of-vec x)))) 0)
    have x-dim: dim-vec }x=\mathrm{ degree }u\mathrm{ using x unfolding mat-kernel-def by auto
    hence x-carrier[simp]:x\in carrier-vec (degree u) by (metis carrier-vec-dim-vec)
    have x-kernel: berlekamp-resulting-mat }u\mp@subsup{*}{v}{}x=\mp@subsup{0}{v}{}\mathrm{ (degree u)
            using x unfolding mat-kernel-def by auto
    have t-QI-x-0:(transpose-mat?QI) *v}x=0v(\mathrm{ degree u)
                using gauss-jordan-single(1)[of (transpose-mat ?QI) degree u degree u
gauss-jordan-single (transpose-mat ?QI) x]
            using x-kernel unfolding berlekamp-resulting-mat-def Let-def by auto
    have l: (list-of-vec }x\mathrm{ ) }\not=[
            by (auto simp add: list-of-vec-rw-map vec-of-dim-O[symmetric] deg-u x-dim)
    have deg-le: degree (Poly (list-of-vec x)) < degree u
            using degree-Poly-list-of-vec
            using x-carrier deg-u by blast
    show [Poly (list-of-vec x) ^ CARD('a) = Poly (list-of-vec x)] (mod u)
    proof (unfold equation-13[OF deg-le])
            have QR-rw:?QI = berlekamp-mat u - 1m (dim-row (berlekamp-mat u))
by auto
            have dim-row (berlekamp-mat u) = dim-vec ?H
                    by (auto, metis le-add-diff-inverse length-list-of-vec length-strip-while-le
x-dim)
            moreover have ?H \in mat-kernel (transpose-mat (berlekamp-mat u - 1m
(dim-row (berlekamp-mat u))))
    proof -
                have Hx:?H=x
                proof (unfold vec-eq-iff, auto)
                    let ?H'=vec-of-list (strip-while ((=) 0) (list-of-vec x)
                    @ replicate (degree u - length (strip-while ((=) 0) (list-of-vec x))) 0)
                    show length (strip-while ((=) 0) (list-of-vec x))
```

```
            + (degree u - length (strip-while ((=) 0) (list-of-vec x))) = dim-vec x
                by (metis le-add-diff-inverse length-list-of-vec length-strip-while-le
x-dim)
            fix i assume i:i<dim-vec x
                have ?H $ i= coeff (Poly (list-of-vec x)) i
                proof (rule vec-of-list-coeffs-replicate-nth[OF - deg-le])
                            show }i\in{..<\mathrm{ degree }u}\mathrm{ using x-dim i by (auto, linarith)
                qed
                also have ... =x $ i by (rule coeff-Poly-list-of-vec-nth'[OF i])
                finally show ? H' $ i=x $ i by auto
            qed
                have ?H \in carrier-vec (degree u) using deg-le dim-vec-of-list-h Hx by
auto
            moreover have transpose-mat (berlekamp-mat u-1 m}(\mathrm{ degree u)) *v ?H
= 0v (degree u)
                using t-QI-x-0 Hx QR-rw by auto
                    ultimately show ?thesis
                by (auto simp add: mat-kernel-def)
            qed
            ultimately show transpose-mat (berlekamp-mat u) *v ?H = ?H
                    using system-if-mat-kernel[of berlekamp-mat u ?H]
                    by auto
            qed
        qed
    qed
next
    fix }x\mathrm{ assume }x:x\in\mathrm{ mat-kernel (berlekamp-resulting-mat u)
    show degree (Poly (list-of-vec x)) < degree u
    by (rule degree-Poly-list-of-vec, insert assms x, auto simp: mat-kernel-def)
qed
lemma berlekamp-basis-eq-8:
    assumes v:v\in set (berlekamp-basis u)
    shows [v`CARD('a)=v] (mod u)
proof -
    {
            fix x assume x:x\in set (find-base-vectors (berlekamp-resulting-mat u))
            have set (find-base-vectors (berlekamp-resulting-mat u))\subseteq mat-kernel (berlekamp-resulting-mat
u)
            proof (rule find-base-vectors(1))
                show row-echelon-form (berlekamp-resulting-mat u)
                by (rule row-echelon-form-berlekamp-resulting-mat)
            show berlekamp-resulting-mat u \in carrier-mat (degree u) (degree u) by simp
            qed
            hence }x\in\mathrm{ mat-kernel (berlekamp-resulting-mat u) using x by auto
            hence [Poly (list-of-vec x) ^ CARD('a) = Poly (list-of-vec x)] (mod u)
                using linear-Poly-list-of-vec
                unfolding LinearCombinations.module-hom-def Matrix.module-vec-def by
```

```
auto
    }
    thus [v^CARD('a)=v] (mod u) using v unfolding set-berlekamp-basis-eq by
auto
qed
lemma surj-Poly-list-of-vec:
    assumes deg-u: degree u>0
    shows (Poly ○ list-of-vec)` (carrier V) = carrier W
proof (auto simp add: image-def)
    fix xa
    assume xa:xa \in mat-kernel (berlekamp-resulting-mat u)
    thus [Poly (list-of-vec xa) ^CARD('a) = Poly (list-of-vec xa)] (mod u)
        using linear-Poly-list-of-vec
        unfolding LinearCombinations.module-hom-def Matrix.module-vec-def by auto
    show degree (Poly (list-of-vec xa)) < degree u
    proof (rule degree-Poly-list-of-vec[OF - deg-u])
        show xa\in carrier-vec (degree u) using xa unfolding mat-kernel-def by simp
    qed
next
    fix }x\mathrm{ assume }x:[x^\mp@code{CARD ('a) = x] (mod u)
    and deg-x: degree x < degree u
    show \exists xa \in mat-kernel (berlekamp-resulting-mat u). x = Poly (list-of-vec xa)
    proof (rule bexI[of - vec-of-list (coeffs x @ replicate (degree u - length (coeffs
x)) 0)])
    let ?X = vec-of-list (coeffs x @ replicate (degree u - length (coeffs x)) 0)
    show x = Poly (list-of-vec (vec-of-list (coeffs x @ replicate (degree u - length
(coeffs x)) 0)))
            by auto
    have X:?X \in carrier-vec (degree u) unfolding carrier-vec-def
                by (auto, metis Suc-leI coeffs-0-eq-Nil deg-x degree-0 le-add-diff-inverse
                    length-coeffs-degree linordered-semidom-class.add-diff-inverse list.size(3)
order.asym)
    have t: transpose-mat (berlekamp-mat u) *v ?X = ? X
            using equation-13[OF deg-x] x by auto
    show vec-of-list (coeffs x @ replicate (degree u - length (coeffs x)) 0)
        \inmat-kernel (berlekamp-resulting-mat u) by (rule in-mat-kernel-berlekamp-resulting-mat[OF
t X])
    qed
qed
```

lemma card-set-berlekamp-basis: card (set (berlekamp-basis u)) = length (berlekamp-basis u)
proof -
have b : berlekamp-resulting-mat $u \in$ carrier-mat (degree u) (degree u) by auto have (set (berlekamp-basis u)) = (Poly ○ list-of-vec)' set (find-base-vectors (berlekamp-resulting-mat u))
unfolding set-berlekamp-basis-eq ..
also have card $\ldots=$ card (set (find-base-vectors (berlekamp-resulting-mat u))) proof (rule card-image, rule subset-inj-on[OF inj-Poly-list-of-vec])
show set (find-base-vectors (berlekamp-resulting-mat u)) \subseteq carrier-vec (degree u)
using find-base-vectors(1)[OF row-echelon-form-berlekamp-resulting-mat b]
unfolding carrier-vec-def mat-kernel-def
by auto
qed
also have $\ldots=$ length (find-base-vectors (berlekamp-resulting-mat u))
by (rule length-find-base-vectors[symmetric, OF row-echelon-form-berlekamp-resulting-mat b])
finally show ?thesis unfolding berlekamp-basis-def by auto qed

context

assumes deg-u0[simp]: degree $u>0$
begin
interpretation Berlekamp-subspace: vectorspace class-ring W
by (rule vector-space-poly.subspace-is-vs[OF subspace-Berlekamp], simp)
lemma linear-map-Poly-list-of-vec': linear-map class-ring V W (Poly olist-of-vec)
proof (auto simp add: linear-map-def)
show vectorspace class-ring V by intro-locales
show vectorspace class-ring W by (rule Berlekamp-subspace.vectorspace-axioms)
show mod-hom class-ring $V W$ (Poly ○ list-of-vec)
proof (rule mod-hom.intro, unfold mod-hom-axioms-def)
show module class-ring V by intro-locales
show module class-ring W using Berlekamp-subspace.vectorspace-axioms by intro-locales
show Poly \circ list-of-vec \in module-hom class-ring $V W$
by (rule linear-Poly-list-of-vec ${ }^{[}[$OF deg-u0])
qed
qed
lemma berlekamp-basis-basis:
Berlekamp-subspace.basis (set (berlekamp-basis u))
proof (unfold set-berlekamp-basis-eq, rule linear-map.linear-inj-image-is-basis)
show linear-map class-ring $V W$ (Poly ○ list-of-vec)
by (rule linear-map-Poly-list-of-vec')
show inj-on (Poly ○ list-of-vec) (carrier V)
proof (rule subset-inj-on[OF inj-Poly-list-of-vec])
show carrier $V \subseteq$ carrier-vec (degree u)
by (auto simp add: mat-kernel-def)
qed
show (Poly ○ list-of-vec) ' carrier $V=$ carrier W
using surj-Poly-list-of-vec [OF deg-u0] by auto
show b: V.basis (set (find-base-vectors (berlekamp-resulting-mat u)))

```
    by (rule berlekamp-resulting-mat-basis)
    show V.fin-dim
    proof -
    have finite (set (find-base-vectors (berlekamp-resulting-mat u))) by auto
    moreover have set (find-base-vectors (berlekamp-resulting-mat u)) \subseteq carrier
V
    and V.gen-set (set (find-base-vectors (berlekamp-resulting-mat u)))
        using b unfolding V.basis-def by auto
    ultimately show ?thesis unfolding V.fin-dim-def by auto
    qed
qed
lemma finsum-sum:
fixes f::'a mod-ring poly
assumes f: finite B
and a-Pi: a}\inB->\mathrm{ carrier R
and V:B\subseteq carrier W
shows }(\mp@subsup{\bigoplus}{W}{
using f a-Pi V
proof (induct B)
    case empty
    thus ?case unfolding Berlekamp-subspace.module.M.finsum-empty by auto
    next
    case (insert x V)
    have hyp:(\bigoplus\mp@subsup{W}{}{v}\inV.av\odot\mp@subsup{W}{}{v}v)=sum(\lambdav. smult (av)v)V
    proof (rule insert.hyps)
        show }a\inV->\mathrm{ carrier }
            using insert.prems unfolding class-field-def by auto
            show V\subseteqcarrier W using insert.prems by simp
    qed
    have}(\bigoplus\mp@subsup{W}{}{v}\in\mathrm{ insert }xV.av\odot\mp@subsup{\odot}{W}{v}v)=(ax\odot\mp@subsup{\odot}{W}{}x)\oplus\mp@subsup{\oplus}{W}{}(\bigoplus\mp@subsup{W}{}{v}\inV.av\odot\mp@subsup{\odot}{W}{
v)
    proof (rule abelian-monoid.finsum-insert)
        show abelian-monoid W by (unfold-locales)
        show finite V by fact
        show }x\not\inV\mathrm{ by fact
```



```
            proof (unfold Pi-def, rule, rule allI, rule impI)
                fix v}\mathrm{ assume v: vGV
                    show a v \odot W
                proof (rule Berlekamp-subspace.smult-closed)
                    show a v carrier class-ring using insert.prems v unfolding Pi-def
                            by (simp add: class-field-def)
                    show }v\in\mathrm{ carrier W using v insert.prems by auto
            qed
        qed
    show a x \odot W x carrier W
    proof (rule Berlekamp-subspace.smult-closed)
```

```
        show a x carrier class-ring using insert.prems unfolding Pi-def
            by (simp add: class-field-def)
            show }x\in\mathrm{ carrier W using insert.prems by auto
        qed
    qed
    also have ... = (ax\odot \odot W
    also have ... = (ax \odot W}x)+\operatorname{sum}(\lambdav. smult (av) v) V unfolding hyp by
simp
    also have }\ldots=(\mathrm{ smult ( a x) x) + sum ( }\lambdav.\mathrm{ smult (a v) v) V by simp
    also have ... = sum ( \lambdav. smult (av) v) (insert x V)
    by (simp add: insert.hyps(1) insert.hyps(2))
    finally show ?case
qed
```

lemma exists-vector-in-Berlekamp-subspace-dvd:
fixes $p-i::{ }^{\prime} a$ mod-ring poly
assumes finite- P : finite P
and f-desc-square-free: $u=\left(\prod a \in P . a\right)$
and $P: P \subseteq\{q$. irreducible $q \wedge$ monic $q\}$
and $p i: p-i \in P$ and $p j: p-j \in P$ and $p i-p j: p-i \neq p-j$
and monic-f: monic u and sf-f: square-free u
and not-irr-w: \neg irreducible w
and $w-d v d-f: w d v d u$ and monic-w: monic w
and $p i-d v d-w: p-i d v d w$ and $p j-d v d-w: p-j d v d w$
shows $\exists v . v \in\left\{h .\left[h \uparrow\left(C A R D\left({ }^{\prime} a\right)\right)=h\right](\bmod u) \wedge\right.$ degree $h<$ degree $\left.u\right\}$
$\wedge v \bmod p-i \neq v \bmod p-j$
\wedge degree $(v \bmod p-i)=0$
\wedge degree $(v \bmod p-j)=0$

- This implies that the algorithm decreases the degree of the reducible polynomials in each step:
$\wedge(\exists s . g c d w(v-[: s:]) \neq w \wedge \operatorname{gcd} w(v-[: s:]) \neq 1)$
proof -
have f-not-0: $u \neq 0$ using monic-f by auto
have irr-pi: irreducible $p-i$ using $p i P$ by auto
have irr-pj: irreducible $p-j$ using $p j P$ by auto
obtain m and $n:: n a t$ where $P-m: P=m '\{i . i<n\}$ and inj-on-m: inj-on m
$\{i . i<n\}$
using finite-imp-nat-seg-image-inj-on[OF finite-P] by blast
hence $n=$ card P by (simp add: card-image)
have degree-prod: degree (prod $m\{i . i<n\})=$ degree u
by (metis P-m f-desc-square-free inj-on-m prod.reindex-cong)
have not-zero: $\forall i \in\{i . i<n\} . m i \neq 0$
using P-m f-desc-square-free f-not- 0 by auto
obtain i where $m i: m i=p-i$ and $i: i<n$ using $P-m$ pi by blast
obtain j where $m j$: $m j=p-j$ and $j: j<n$ using $P-m p j$ by blast
have $i j: i \neq j$ using mi mj pi-pj by auto
obtain $s-i$ and $s-j:: ' a$ mod-ring where si-sj: $s-i \neq s-j$ using exists-two-distint by blast

```
    let ?}u=\lambdax\mathrm{ . if }x=i\mathrm{ then [:s-i:] else if }x=j\mathrm{ then [:s-j:] else [:0:]
    have degree-si: degree [:s-i:]=0 by auto
    have degree-sj: degree [:s-j:]=0 by auto
    have }\exists\mathrm{ ! v. degree v<(\if{i.i<n}. degree (mi))}\wedge(\foralla\in{i.i<n}. [v=?
a] (mod ma))
    proof (rule chinese-remainder-unique-poly)
    show }\foralla\in{i.i<n}.\forallb\in{i.i<n}. a\not=b\longrightarrow\mathrm{ Rings.coprime (ma)(mb)
    proof (rule+)
        fix ab assume a\in{i.i<n} and b\in{i.i<n} and a\not=b
        thus Rings.coprime (ma) (mb)
            using coprime-polynomial-factorization[OF P finite-P, simplified] P-m
            by (metis image-eqI inj-onD inj-on-m)
    qed
    show }\foralli\in{i.i<n}.mi\not=0 by (rule not-zero
    show 0< degree (prod m {i.i<n}) unfolding degree-prod using deg-u0 by
blast
    qed
    from this obtain v}\mathrm{ where v: }\foralla\in{i.i<n}.[v=?ua](mod ma
    and degree-v: degree v<(\sumi\in{i.i<n}. degree (mi)) by blast
    show ?thesis
    proof (rule exI[of-v], auto)
    show vp-v-mod: [v`CARD('a)=v] (mod u)
    proof (unfold f-desc-square-free, rule coprime-cong-mult-factorization-poly[OF
finite-P])
    show }P\subseteq{q. irreducible q} using P by blas
    show }\forallp\inP.[v^CARD('a)=v](\operatorname{mod}p
    proof (rule ballI)
            fix p assume p: p}\in
            hence irr-p: irreducible }\mp@subsup{|}{d}{}p\mathrm{ using P by auto
            obtain k where mk:mk=p and k:k<n using P-m p by blast
            have [v=?uk] (mod p) using v mk k by auto
            moreover have ?u k mod p=?uk
                    apply (rule mod-poly-less) using irreducible d D(1)[OF irr-p] by auto
            ultimately obtain s}\mathrm{ where v-mod-p:v mod p=[:s:] unfolding cong-def
by force
            hence deg-v-p: degree ( v mod p)=0 by auto
            have v mod p = [:s:] by (rule v-mod-p)
            also have ... = [:s:]`CARD('a) unfolding poly-const-pow by auto
            also have ... = (v mod p) ^ CARD('a) using v-mod-p by auto
            also have \ldots. = (v mod p) ^CARD('a) mod p using calculation by auto
            also have ... = v`CARD('a) mod p using power-mod by blast
            finally show [v^CARD('a)=v] (mod p) unfolding cong-def ..
    qed
    show }\forallp1 p2. p1\inP\wedge p2 \inP\wedge p1 = p2 \longrightarrow coprime p1 p2
            using P coprime-polynomial-factorization finite-P by auto
qed
    have [v=? ?u i] (mod mi) using vi by auto
    hence v-pi-si-mod:v mod p-i=[:s-i:] mod p-i unfolding cong-def mi by auto
    also have ... = [:s-i:] apply (rule mod-poly-less) using irr-pi by auto
```

finally have v-pi-si: $v \bmod p-i=[: s-i:]$.
have $[v=? u j](\bmod m j)$ using $v j$ by auto
hence v-pj-sj-mod: v mod $p-j=[: s-j:]$ mod $p-j$ unfolding cong-def mj using $i j$ by auto
also have $\ldots=[: s-j:]$ apply (rule mod-poly-less) using irr-pj by auto
finally have $v-p j-s j: v \bmod p-j=[: s-j:]$.
show v mod $p-i=v \bmod p-j \Longrightarrow$ False using si-sj $v-p i-s i v-p j-s j$ by auto
show degree (v mod $p-i$) $=0$ unfolding v-pi-si by simp
show degree ($v \bmod p-j$) $=0$ unfolding v - $p j$-sj by simp
show $\exists s . g c d w(v-[: s:]) \neq w \wedge \operatorname{gcd} w(v-[: s:]) \neq 1$
proof (rule exI[of - $s-i]$, rule conjI)
have pi-dvd-v-si: p-i dvd $v-[: s-i:]$ using v-pi-si-mod mod-eq-dvd-iff-poly by blast
have $p j$-dvd-v-sj: p-j dvd $v-[: s-j:]$ using $v-p j-s j-m o d ~ m o d-e q-d v d-i f f-p o l y$ by blast
have w-eq: $w=\operatorname{prod}(\lambda c . g c d w(v-[: c:]))\left(\right.$ UNIV $::{ }^{\prime} a \bmod -$ ring set $)$
proof (rule Berlekamp-gcd-step)
show $\left[v{ }^{\wedge} C A R D\left({ }^{\prime} a\right)=v\right](\bmod w)$ using vp-v-mod cong-dvd-modulus-poly $w-d v d-f$ by blast
show square-free w by (rule square-free-factor[OF w-dvd-f sf-f])
show monic w by (rule monic-w)
qed
show $g c d w(v-[: s-i:]) \neq w$
proof (rule ccontr, simp)
assume $g c d-w$: $\operatorname{gcd} w(v-[: s-i:])=w$
show False apply (rule $\langle v \bmod p-i=v \bmod p-j \Longrightarrow$ False〉)
by (metis irreducibleE 〈degree ($v \bmod p-i)=0\rangle$ gcd-greatest-iff gcd-w irr-pj is-unit-field-poly mod-eq-dvd-iff-poly mod-poly-less neq0-conv pj-dvd-w v-pi-si)
qed
show $\operatorname{gcd} w(v-[: s-i:]) \neq 1$
by (metis irreducibleE gcd-greatest-iff irr-pi pi-dvd-v-si pi-dvd-w)
qed
show degree $v<$ degree u
proof -
have $\left(\sum i \mid i<n\right.$. degree $\left.(m i)\right)=$ degree $(\operatorname{prod} m\{i . i<n\})$ by (rule degree-prod-eq-sum-degree[symmetric, OF not-zero])
thus ?thesis using degree-v unfolding degree-prod by auto
qed
qed
qed
lemma exists-vector-in-Berlekamp-basis-dvd-aux:
assumes basis- V : Berlekamp-subspace.basis B
and finite- V : finite B
assumes finite- P : finite P
and f-desc-square-free: $u=\left(\prod a \in P . a\right)$
and $P: P \subseteq\{q$. irreducible $q \wedge$ monic $q\}$
and $p i: p-i \in P$ and $p j: p-j \in P$ and $p i-p j: p-i \neq p-j$
and monic-f: monic u and $s f$-f: square-free u
and not-irr-w: \neg irreducible w
and $w-d v d-f: w d v d u$ and monic-w: monic w
and pi-dvd-w: $p-i d v d w$ and $p j-d v d-w: ~ p-j d v d w$
shows $\exists v \in B . v \bmod p-i \neq v \bmod p-j$ proof (rule ccontr, auto)
have V-in-carrier: $B \subseteq$ carrier W
using basis- V unfolding Berlekamp-subspace.basis-def by auto
assume all-eq: $\forall v \in B . v \bmod p-i=v \bmod p-j$
obtain x where $x: x \in\left\{h .\left[h{ }^{\wedge} C A R D\left({ }^{\prime} a\right)=h\right](\bmod u) \wedge\right.$ degree $h<$ degree $\left.u\right\}$ and x-pi-pj: $x \bmod p-i \neq x \bmod p-j$ and degree $(x \bmod p-i)=0$ and degree $(x \bmod p-j)=0$ $(\exists s . \operatorname{gcd} w(x-[: s:]) \neq w \wedge \operatorname{gcd} w(x-[: s:]) \neq 1)$ using exists-vector-in-Berlekamp-subspace-dvd[OF - - pi pj - - w-dvd-f
monic-w pi-dvd-w]
assms by meson
have x-in: $x \in$ carrier W using x by auto
hence $\left(\exists!a . a \in B \rightarrow_{E}\right.$ carrier class-ring \wedge Berlekamp-subspace.lincomb a $B=$ x)
using Berlekamp-subspace.basis-criterion[OF finite-V V-in-carrier] using ba-sis- V
by (simp add: class-field-def)
from this obtain a where $a-P i: a \in B \rightarrow_{E}$ carrier class-ring
and lincomb-x: Berlekamp-subspace.lincomb a $B=x$
by blast
have $f s$-ss: $\left(\bigoplus W^{v} \in B . a v \odot_{W} v\right)=\operatorname{sum}(\lambda v$. smult $(a v) v) B$
proof (rule finsum-sum)
show finite B by fact
show $a \in B \rightarrow$ carrier class-ring using $a-P i$ by auto
show $B \subseteq$ carrier W by (rule V-in-carrier)
qed
have x mod $p-i=$ Berlekamp-subspace.lincomb a $B \bmod p-i$ using lincomb-x by simp
also have $\ldots=\left(\bigoplus_{W} v \in B . a v \odot_{W} v\right)$ mod $p-i$ unfolding Berlekamp-subspace.lincomb-def
also have $\ldots=(\operatorname{sum}(\lambda v$. smult $(a v) v) B) \bmod p-i$ unfolding $f s-s s .$.
also have $\ldots=\operatorname{sum}(\lambda v$. smult ($a v$) v mod $p-i$) B using finite- V poly-mod-sum
by blast
also have $\ldots=\operatorname{sum}(\lambda v . \operatorname{smult}(a v)(v \bmod p-i)) B$ by (meson mod-smult-left)
also have $\ldots=\operatorname{sum}(\lambda v$. smult $(a v)(v \bmod p-j)) B$ using all-eq by auto
also have $\ldots=\operatorname{sum}(\lambda v$. smult ($a v$) v mod $p-j$) B by (metis mod-smult-left)
also have $\ldots=(\operatorname{sum}(\lambda v . \operatorname{smult}(a v) v) B) \bmod p-j$
by (metis (mono-tags, lifting) finite- V poly-mod-sum sum.cong)
also have $\ldots=\left(\bigoplus_{W} v \in B . a v \odot_{W} v\right) \bmod p-j$ unfolding $f_{s-s s} .$.
also have $\ldots=$ Berlekamp-subspace.lincomb a $B \bmod p-j$
unfolding Berlekamp-subspace.lincomb-def ..
also have $\ldots=x \bmod p-j$ using lincomb-x by simp
finally have $x \bmod p-i=x \bmod p-j$. thus False using $x-p i-p j$ by contradiction qed
lemma exists-vector-in-Berlekamp-basis-dvd:
assumes basis- V : Berlekamp-subspace.basis B
and finite- V : finite B
assumes finite- P : finite P
and f-desc-square-free: $u=\left(\prod a \in P . a\right)$
and $P: P \subseteq\{q$. irreducible $q \wedge$ monic $q\}$
and $p i: p-i \in P$ and $p j: p-j \in P$ and $p i-p j: p-i \neq p-j$
and monic-f: monic u and $s f$ - f : square-free u
and not-irr-w: \neg irreducible w
and $w-d v d-f: w d v d u$ and monic-w: monic w
and pi-dvd-w: $p-i d v d w$ and $p j-d v d-w: ~ p-j d v d w$
shows $\exists v \in B . v \bmod p-i \neq v \bmod p-j$
\wedge degree $(v \bmod p-i)=0$
\wedge degree $(v \bmod p-j)=0$

- This implies that the algorithm decreases the degree of the reducible polynomials in each step:
$\wedge(\exists s . \operatorname{gcd} w(v-[: s:]) \neq w \wedge \neg$ coprime $w(v-[: s:]))$
proof -
have f-not- $0: u \neq 0$ using monic- f by auto
have irr-pi: irreducible $p-i$ using $p i P$ by fast
have irr-pj: irreducible $p-j$ using $p j P$ by fast
obtain v where $v V: v \in B$ and $v-p i-p j: v \bmod p-i \neq v \bmod p-j$
using assms exists-vector-in-Berlekamp-basis-dvd-aux by blast
have $v: v \in\left\{v .\left[v^{\wedge} C A R D\left({ }^{\prime} a\right)=v\right](\bmod u)\right\}$
using basis- V vV unfolding Berlekamp-subspace.basis-def by auto
have deg-v-pi: degree ($v \bmod p-i$) $=0$
by (rule degree-u-mod-irreducible d_{d}-factor- $0[O F v$ finite- $P f$-desc-square-free P $p i]$)
from this obtain $s-i$ where v-pi-si: v mod $p-i=[: s-i:]$ using degree-eq-zeroE by blast
have deg-v-pj: degree ($v \bmod p-j$) $=0$
by (rule degree-u-mod-irreducible ${ }_{d}$-factor- $0[O F v$ finite- P f-desc-square-free P pj])
from this obtain $s-j$ where $v-p j$-sj: v mod $p-j=[: s-j:]$ using degree-eq-zeroE by blast
have $s i-s j$: $s-i \neq s-j$ using v-pi-si $v-p j-s j v-p i-p j$ by auto
have $(\exists s . g c d w(v-[: s:]) \neq w \wedge \neg$ Rings.coprime $w(v-[: s:]))$
proof (rule exI[of - s - $i]$, rule conjI)
have $p i-d v d-v-s i: p-i d v d v-[: s-i:]$ by (metis mod-eq-dvd-iff-poly mod-mod-trivial v-pi-si)
have $p j$-dvd-v-sj: $p-j d v d v-[: s-j:]$ by (metis mod-eq-dvd-iff-poly mod-mod-trivial $v-p j-s j)$
have w-eq: $w=\operatorname{prod}(\lambda c . g c d w(v-[: c:]))\left(U N I V::{ }^{\prime} a \bmod\right.$-ring set)
proof (rule Berlekamp-gcd-step)
show $\left[v{ }^{\wedge} C A R D\left({ }^{\prime} a\right)=v\right.$ ($\left.\bmod w\right)$ using v cong-dvd-modulus-poly $w-d v d-f$ by blast
show square-free w by (rule square-free-factor[OF w-dvd-f sf-f])
show monic w by (rule monic- w)
qed
show gcd $w(v-[: s-i:]) \neq w$
by (metis irreducibleE deg-v-pi gcd-greatest-iff irr-pj is-unit-field-poly mod-eq-dvd-iff-poly mod-poly-less neq0-conv pj-dvd-w v-pi-pj v-pi-si)
show \neg Rings.coprime $w(v-[: s-i:])$
using irr-pi pi-dvd-v-si pi-dvd-w
by (simp add: irreducible ${ }_{d} D(1)$ not-coprimeI)
qed
thus ?thesis using v-pi-pj $v V$ deg-v-pi deg-v-pj by auto

qed

lemma exists-bijective-linear-map-W-vec:
assumes finite- P : finite P
and u-desc-square-free: $u=\left(\prod a \in P . a\right)$
and $P: P \subseteq\{q$. irreducible $q \wedge$ monic $q\}$
shows $\exists f$. linear-map class-ring W (module-vec TYPE('a mod-ring) (card P)) f
\wedge bij-betw f (carrier W) (carrier-vec (card P)::'a mod-ring vec set)

proof -

let ? $B=$ carrier-vec $($ card $P)::^{\prime}$ a mod-ring vec set
have u-not- 0 : $u \neq 0$ using deg-u0 degree- 0 by force
obtain m and n ::nat where $P-m: P=m '\{i . i<n\}$ and inj-on-m: inj-on m
$\{i . i<n\}$
using finite-imp-nat-seg-image-inj-on[OF finite-P] by blast
hence $n: n=$ card P by (simp add: card-image)
have degree-prod: degree (prod $m\{i . i<n\}$) $=$ degree u
by (metis P-m u-desc-square-free inj-on-m prod.reindex-cong)
have not-zero: $\forall i \in\{i . i<n\} . m i \neq 0$
using P-m u-desc-square-free u-not-0 by auto
have deg-sum-eq: $\left(\sum i \in\{i . i<n\}\right.$. degree $\left.(m i)\right)=$ degree u
by (metis degree-prod degree-prod-eq-sum-degree not-zero)
have coprime-mi-mj: $\forall i \in\{i . i<n\} . \forall j \in\{i . i<n\} . i \neq j \longrightarrow$ coprime $(m i)(m$
j)
proof (rule+)
fix $i j$ assume $i: i \in\{i . i<n\}$
and $j: j \in\{i . i<n\}$ and $i j: i \neq j$
show coprime ($m i$) $(m j$)
proof (rule coprime-polynomial-factorization $[$ OF P finite- $P]$)
show $m i \in P$ using $i P-m$ by auto
show $m j \in P$ using $j P-m$ by auto
show $m i \neq m j$ using $i n j$-on-m $i i j j$ unfolding inj-on-def by blast
qed
qed
let ?f $=\lambda v . v e c n(\lambda i$. coeff $(v \bmod (m i)) 0)$
interpret vec-VS: vectorspace class-ring (module-vec TYPE('a mod-ring) n)
by (rule VS-Connect.vec-vs)
interpret linear-map class-ring W (module-vec TYPE('a mod-ring) n) ?f
by (intro-locales, unfold mod-hom-axioms-def LinearCombinations.module-hom-def, auto simp add: vec-eq-iff module-vec-def mod-smult-left poly-mod-add-left)
have linear-map class-ring W (module-vec TYPE ('a mod-ring) n) ?f
by (intro-locales)
moreover have inj-f: inj-on ?f (carrier W)
proof (rule Ke0-imp-inj, auto simp add: mod-hom.ker-def)
show $\left[0^{\wedge} C A R D\left({ }^{\prime} a\right)=0\right]$ ($\bmod u$) by (simp add: cong-def zero-power)
show vec $n(\lambda i .0)=\mathbf{0}_{\text {module-vec } \operatorname{TYPE}(' a ~ m o d-r i n g) ~} n$ by (auto simp add:
module-vec-def)
fix x assume $x:\left[x^{\wedge} C A R D\left({ }^{\prime} a\right)=x\right](\bmod u)$ and deg-x: degree $x<$ degree u
and v : vec $n(\lambda i$. coeff $(x \bmod m i) 0)=\mathbf{0}_{\text {module-vec TYPE }}\left({ }^{\prime} a \bmod -\right.$ ring $) ~ n$
have cong- 0 : $\forall i \in\{i . i<n\} .[x=(\lambda i .0) i](\bmod m i)$
proof (rule, unfold cong-def)
fix i assume $i: i \in\{i . i<n\}$
have deg-x-mod-mi: degree $(x \bmod m i)=0$
proof (rule degree-u-mod-irreducible d_{d}-factor- $0[O F$ - finite- P u-desc-square-free $P]$)
show $x \in\left\{v .\left[v{ }^{\wedge} C A R D\left({ }^{\prime} a\right)=v\right](\bmod u)\right\}$ using x by auto show $m i \in P$ using $P-m i$ by auto
qed
thus $x \bmod m i=0 \bmod m i$
using v
unfolding module-vec-def
by (auto, metis i leading-coeff-neq-0 mem-Collect-eq index-vec index-zero-vec(1))
qed
moreover have deg-x2: degree $x<\left(\sum i \in\{i . i<n\}\right.$. degree ($m i$) $)$
using deg-sum-eq deg-x by simp
moreover have $\forall i \in\{i . i<n\} .[0=(\lambda i .0) i](\bmod m i)$
by (auto simp add: cong-def)
moreover have degree $0<\left(\sum i \in\{i . i<n\}\right.$. degree ($\left.m i\right)$)
using degree-prod deg-sum-eq deg-u0 by force
moreover have \exists !x. degree $x<\left(\sum i \in\{i\right.$. $i<n\}$. degree $\left.(m i)\right)$
$\wedge(\forall i \in\{i . i<n\} .[x=(\lambda i .0) i](\bmod m i))$
proof (rule chinese-remainder-unique-poly[OF not-zero])
show $0<$ degree $(\operatorname{prod} m\{i . i<n\})$
using deg-u0 degree-prod by linarith
qed (insert coprime-mi-mj, auto)
ultimately show $x=0$ by blast
qed
moreover have ?f ' (carrier W) $=$? B
proof (auto simp add: image-def)
fix $x a$
show $n=$ card P by (auto simp add: n)
next
fix $x:$:'a mod-ring vec assume $x: x \in$ carrier-vec (card P)
have \exists ! v. degree $v<\left(\sum i \in\{i . i<n\}\right.$. degree $\left.(m i)\right) \wedge(\forall i \in\{i . i<n\} .[v=$
$(\lambda i .[: x \$ i:]) i](\bmod m i))$
proof (rule chinese-remainder-unique-poly[OF not-zero])

```
        show 0< degree (prod m{i.i<n})
        using deg-u0 degree-prod by linarith
    qed (insert coprime-mi-mj, auto)
    from this obtain v}\mathrm{ where deg-v: degree v<( 位{i.i<n}. degree (mi))
        and v-x-cong: (\foralli\in{i.i<n}.[v=(\lambdai.[:x $ i:]) i] (mod m i)) by auto
    show \existsxa.[xa ^CARD('a)=xa] (mod u)^ degree xa<degree u
        \wedgex=vec n (\lambdai. coeff (xa mod mi) 0)
    proof (rule exI[of-v], auto)
        show v: [v^CARD('a)=v] (mod u)
    proof (unfold u-desc-square-free, rule coprime-cong-mult-factorization-poly[OF
finite-P], auto)
            fix y assume y: y\inP thus irreducible y using P by blast
            obtain i where i:i\in{i.i<n} and mi:y=mi using P-m y by blast
            have irreducible (m i) using i P-m P by auto
            moreover have [v=[:x$i:]] (mod m i) using v-x-cong i by auto
            ultimately have v-mi-eq-xi:v mod mi= [:x $ i:]
            by (auto simp: cong-def intro!: mod-poly-less)
    have xi-pow-xi:[:x $ i:]^CARD('a)=[:x $ i:] by (simp add: poly-const-pow)
            hence (v mod m i)^CARD('a) = v mod mi using v-mi-eq-xi by auto
            hence (v mod m i)`CARD('a) =( v^CARD('a) mod mi)
            by (metis mod-mod-trivial power-mod)
    thus [v^CARD('a)=v] (mod y) unfolding mi cong-def v-mi-eq-xi xi-pow-xi
by simp
    next
        fix p1 p2 assume p1\inP and p2 \inP and p1 f p2
        then show Rings.coprime p1 p2
            using coprime-polynomial-factorization[OF P finite-P] by auto
    qed
    show degree v< degree u using deg-v deg-sum-eq degree-prod by presburger
    show }x=vecn(\lambdai.coeff (v mod mi) 0)
    proof (unfold vec-eq-iff, rule conjI)
        show dim-vec x = dim-vec (vec n (\lambdai. coeff (v mod mi) 0)) using x n by
simp
            show }\foralli<dim-vec (vec n (\lambdai.coeff (v\operatorname{mod}mi)0)). x$i=vec n (\lambdai
coeff (v mod m i) 0) $ i
        proof (auto)
            fix i assume i: i<n
            have deg-mi: irreducible ( m i) using i P-m P by auto
            have deg-v-mi: degree (v mod mi) =0
    proof (rule degree-u-mod-irreducible d-factor-0[OF - finite-P u-desc-square-free
P])
                    show v}\in{v.[v\mp@subsup{}{}{`}CARD('a)=v](\operatorname{mod}u)}\mathrm{ using v by fast
                    show m i f P using P-m i by auto
            qed
            have v mod mi=[:x $ i:] mod mi using v-x-cong i unfolding cong-def
by auto
            also have ... = [:x $ i:] using deg-mi by (auto intro!: mod-poly-less)
            finally show x $i= coeff (v mod m i) 0 by simp
        qed
```

```
            qed
            qed
    qed
    ultimately show ?thesis unfolding bij-betw-def n by auto
qed
lemma fin-dim-kernel-berlekamp:V.fin-dim
proof -
    have finite (set (find-base-vectors (berlekamp-resulting-mat u))) by auto
    moreover have set (find-base-vectors (berlekamp-resulting-mat u)) \subseteqcarrier V
    and V.gen-set (set (find-base-vectors (berlekamp-resulting-mat u)))
    using berlekamp-resulting-mat-basis[of u] unfolding V.basis-def by auto
    ultimately show ?thesis unfolding V.fin-dim-def by auto
qed
lemma Berlekamp-subspace-fin-dim: Berlekamp-subspace.fin-dim
proof (rule linear-map.surj-fin-dim[OF linear-map-Poly-list-of-vec ]])
    show (Poly ○ list-of-vec)' carrier V = carrier W
    using surj-Poly-list-of-vec[OF deg-u0] by auto
    show V.fin-dim by (rule fin-dim-kernel-berlekamp)
qed
context
    fixes P
    assumes finite-P: finite P
    and u-desc-square-free: }u=(\proda\inP.a
    and P:P\subseteq{q. irreducible q}\wedge monic q
begin
interpretation RV: vec-space TYPE('a mod-ring) card P.
lemma Berlekamp-subspace-eq-dim-vec: Berlekamp-subspace.dim = RV.dim
proof -
    obtain f where lm-f: linear-map class-ring W (module-vec TYPE('a mod-ring)
(card P)) f
    and bij-f: bij-betw f (carrier W) (carrier-vec (card P)::'a mod-ring vec set)
        using exists-bijective-linear-map-W-vec[OF finite-P u-desc-square-free P] by
blast
    show ?thesis
    proof (rule linear-map.dim-eq[OF lm-f Berlekamp-subspace-fin-dim])
        show inj-on f (carrier W) by (rule bij-betw-imp-inj-on[OF bij-f])
        show f'carrier W = carrier RV.V using bij-f unfolding bij-betw-def by
auto
    qed
qed
lemma Berlekamp-subspace-dim: Berlekamp-subspace.dim = card P
    using Berlekamp-subspace-eq-dim-vec RV.dim-is-n by simp
```

```
corollary card-berlekamp-basis-number-factors: card (set (berlekamp-basis u)) =
card P
    unfolding Berlekamp-subspace-dim[symmetric]
    by (rule Berlekamp-subspace.dim-basis[symmetric], auto simp add: berlekamp-basis-basis)
    lemma length-berlekamp-basis-numbers-factors: length (berlekamp-basis u) = card
P
    using card-set-berlekamp-basis card-berlekamp-basis-number-factors by auto
```

end
end
end
end
context
assumes SORT-CONSTRAINT(' a :: prime-card)
begin
context
fixes f :: 'a mod-ring poly and n
assumes sf: square-free f
and $n: n=$ length (berlekamp-basis f)
and monic-f: monic f
begin
lemma berlekamp-basis-length-factorization: assumes $f: f=$ prod-list us
and $d: \bigwedge u . u \in$ set $u s \Longrightarrow$ degree $u>0$
shows length us $\leq n$
proof (cases degree $f=0$)
case True
have us = []
proof (rule ccontr)
assume $u s \neq[]$
from this obtain u where $u: u \in$ set us by fastforce
hence deg-u: degree $u>0$ using d by auto
have degree $f=$ degree (prod-list us) unfolding f..
also have..$=$ sum-list (map degree us)
proof (rule degree-prod-list-eq)
fix p assume $p: p \in$ set us
show $p \neq 0$ using $d[$ OF $p]$ degree- 0 by auto
qed
also have $\ldots \geq$ degree u by (simp add: member-le-sum-list u)
finally have degree $f>0$ using deg-u by auto
thus False using True by auto
qed
thus ?thesis by simp
next

```
    case False
    hence f-not-0: f}\not=0\mathrm{ using degree-0 by fastforce
    obtain P where fin-P: finite P and f-P:f=\prodP and P:P\subseteq{p. irreducible
p\wedge monic p}
    using monic-square-free-irreducible-factorization[OF monic-f sf] by auto
    have n-card-P: n = card P
    using P False f-P fin-P length-berlekamp-basis-numbers-factors n by blast
    have distinct-us: distinct us using d f sf square-free-prod-list-distinct by blast
    let ?us'=(map normalize us)
    have distinct-us': distinct ?us'
    proof (auto simp add: distinct-map)
    show distinct us by (rule distinct-us)
    show inj-on normalize (set us)
    proof (auto simp add: inj-on-def, rule ccontr)
        fix x y assume x:x\in set us and y:y\in set us and n: normalize x =
normalize y
        and x-not-y: }x\not=
        from normalize-eq-imp-smult[OF n]
        obtain c where c0:c\not=0 and y-smult: y= smult c x by blast
        have sf-xy: square-free ( }x*y\mathrm{ )
        proof (rule square-free-factor[OF - sf])
            have }x*y=\mathrm{ prod-list [x,y] by simp
            also have ... dvd prod-list us
            by (rule prod-list-dvd-prod-list-subset, auto simp add: x y x-not-y distinct-us)
            also have ... = f unfolding f ..
            finally show }x*ydvdf\mathrm{ .
        qed
        have x*y= smult c (x*x) using y-smult mult-smult-right by auto
        hence sf-smult: square-free (smult c (x*x)) using sf-xy by auto
        have }x*xdvd (smult c (x*x)) by (simp add: dvd-smult
        hence }\neg\mathrm{ square-free (smult c (x*x))
            by (metis d square-free-def x)
        thus False using sf-smult by contradiction
    qed
qed
have length-us-us': length us = length ?us' by simp
have f-us': f = prod-list ?us'
proof -
    have f}=\mathrm{ normalize f using monic-f f-not-0 by (simp add: normalize-monic)
    also have ... = prod-list ?us' by (unfold f, rule prod-list-normalize[of us])
    finally show ?thesis .
qed
have \existsQ. prod-list Q = prod-list ?us'^ length ?us' \leq length }
            \wedge(\forallu.u \in set Q \longrightarrow irreducible }u\wedge\mathrm{ monic u)
proof (rule exists-factorization-prod-list)
    show degree (prod-list?us') > 0 using False f-us' by auto
    show square-free (prod-list ?us') using f-us' sf by auto
    fix u assume u:u\in set ?us'
    have u-not0: u\not=0 using d u degree-0 by fastforce
```

```
    have degree }u>0\mathrm{ using d u by auto
    moreover have monic u using u monic-normalize[OF u-not0] by auto
    ultimately show degree u>0^ monic u by simp
    qed
    from this obtain Q
    where Q-us': prod-list Q = prod-list ?us'
    and length-us'-Q: length ?us' }\leq\mathrm{ length }
    and Q:(\forallu.u\in set Q\longrightarrow irreducible }u\wedge\mathrm{ monic }u
    by blast
    have distinct-Q: distinct Q
    proof (rule square-free-prod-list-distinct)
    show square-free (prod-list Q) using Q-us' f-us' sf by auto
    show }\u.u\in\mathrm{ set }Q\Longrightarrow\mathrm{ degree }u>0\mathrm{ using Q irreducible-degree-field by auto
    qed
    have set-Q-P: set Q = P
    proof (rule monic-factorization-uniqueness)
    show }\Pi(\mathrm{ set }Q)=\PiP\mathrm{ using Q-us'
        by (metis distinct-Q f-P f-us' list.map-ident prod.distinct-set-conv-list)
    qed (insert P Q fin-P, auto)
    hence length Q = card P using distinct-Q distinct-card by fastforce
    have length us = length ?us' by (rule length-us-us')
    also have ... \leq length Q using length-us'-Q by auto
    also have ... = card (set Q) using distinct-card [OF distinct-Q] by simp
    also have ... = card P using set- Q-P by simp
    finally show ?thesis using n-card-P by simp
qed
lemma berlekamp-basis-irreducible: assumes f:f= prod-list us
    and n-us: length us =n
    and us: \bigwedgeu.u\in set us \Longrightarrow degree u>0
    and u:u\in set us
    shows irreducible u
proof (fold irreducible-connect-field, intro irreducible}\mp@subsup{d}{I}{}[\mathrm{ [OF us[OF u]])
    fix q r :: 'a mod-ring poly
    assume dq: degree q>0 and qu: degree q< degree u and dr: degree r>0 and
uqr: u}=q*
    with us[OF u] have q: q\not=0 and r:r\not=0 by auto
    from split-list[OF u] obtain xs ys where id:us=xs @u# ys by auto
    let ?us = xs@q#r#ys
    have f:f= prod-list ?us unfolding f id uqr by simp
    {
    fix }
    assume x fet ?us
    with us[unfolded id] dr dq have degree x > 0 by auto
}
from berlekamp-basis-length-factorization[OF f this]
have length?us \leqn by simp
also have ... = length us unfolding n-us by simp
also have ... < length ?us unfolding id by simp
```

```
    finally show False by simp
qed
end
lemma not-irreducible-factor-yields-prime-factors:
    assumes uf:u dvd (f :: 'b :: {field-gcd} poly) and fin: finite P
        and fP:f=\prodP and P:P\subseteq{q. irreducible q ^ monic q}
    and u: degree u>0\neg irreducible u
    shows \exists pi pj. pi\inP^pj\inP^pi\not= pj^pidvd u\wedge pj dvd u
proof -
    from finite-distinct-list[OF fin] obtain ps where Pps: P = set ps and dist:
distinct ps by auto
    have fP:f= prod-list ps unfolding fP Pps using dist
    by (simp add: prod.distinct-set-conv-list)
    note P}=P[unfolded Pps
    have set ps\subseteqP unfolding Pps by auto
    from uf[unfolded fP] P dist this
    show ?thesis
    proof (induct ps)
        case Nil
        with u show ?case using divides-degree[of u 1] by auto
    next
        case (Cons p ps)
        from Cons(3) have ps: set ps\subseteq{q. irreducible q ^ monic q} by auto
        from Cons(2) have dvd: u dvd p* prod-list ps by simp
        obtain k where gcd: u=gcd pu*k by (meson dvd-def gcd-dvd2)
    from Cons(3) have *: monic p irreducible p p}=0\mathrm{ by auto
    from monic-irreducible-gcd[OF *(1), of u]*(2)
    have gcd pu=1\vee gcd pu=p by auto
    thus ?case
    proof
        assume gcd pu=1
        then have Rings.coprime p u
                by (rule gcd-eq-1-imp-coprime)
            with dvd have u dvd prod-list ps
                using coprime-dvd-mult-right-iff coprime-imp-coprime by blast
            from Cons(1)[OF this ps] Cons(4-5) show ?thesis by auto
    next
            assume gcd pu=p
            with gcd have upk:u=p*k by auto
            hence p: pdvd u by auto
            from dvd[unfolded upk] *(3) have kps: k dvd prod-list ps by auto
            from dvd u* have dk: degree k>0
                by (metis gr0I irreducible-mult-unit-right is-unit-iff-degree mult-zero-right
upk)
            from ps kps have \existsq\in set ps.q dvd k
            proof (induct ps)
                case Nil
                with dk show ?case using divides-degree[of k 1] by auto
```

```
        next
            case (Cons p ps)
            from Cons(3) have dvd: k dvd p* prod-list ps by simp
            obtain l where gcd: k=gcd pk*l by (meson dvd-def gcd-dvd2)
            from Cons(2) have *: monic p irreducible p p =0 by auto
            from monic-irreducible-gcd[OF *(1), of k]*(2)
            have gcd pk=1\vee gcd pk=p by auto
            thus ?case
            proof
                assume gcd p k=1
                with dvd have k dvd prod-list ps
                    by (metis dvd-triv-left gcd-greatest-mult mult.left-neutral)
                from Cons(1)[OF - this] Cons(2) show ?thesis by auto
            next
                assume gcd pk=p
                with gcd have upk: k=p*l by auto
                hence p: p dvd k by auto
                thus ?thesis by auto
            qed
            qed
            then obtain q}\mathrm{ where q:q eset ps and dvd: qdvd k by auto
            from dvd upk have qu:qdvd u by auto
            from Cons(4) q have p\not=q by auto
            thus ?thesis using q p qu Cons(5) by auto
        qed
    qed
qed
lemma berlekamp-factorization-main:
    fixes f::'a mod-ring poly
    assumes sf-f: square-free f
        and vs:vs = vs1 @ vs2
        and vsf:vs = berlekamp-basis f
        and n-bb: n = length (berlekamp-basis f)
        and n: n = length us1 + n2
        and us:us=us1 @ berlekamp-factorization-main d divs vs2 n2
        and us1: \bigwedgeu.u\in set us1\Longrightarrow monic u ^ irreducible u
        and divs: \bigwedge d. d \in set divs \Longrightarrow monic d ^ degree d>0
        and vs1: \bigwedgeuvi.v\in set vs1\Longrightarrowu\in set us1 U set divs
            \Longrightarrow i < C A R D ( ' a ) \Longrightarrow g c d ~ u ( v - ~ [ : o f - n a t ~ i : ] ) ~ \in \{ 1 , u \}
        and f:f=prod-list (us1@ divs)
        and deg-f: degree f>0
        and d: \bigwedgeg.gdvd f\Longrightarrow degree g=d \Longrightarrow irreducible g
    shows f= prod-list us }\wedge(\forallu\in\mathrm{ set us. monic }u\wedge\mathrm{ irreducible u)
proof -
    have mon-f: monic f unfolding f
        by (rule monic-prod-list, insert divs us1, auto)
    from monic-square-free-irreducible-factorization[OF mon-f sf-f] obtain P where
        P: finite Pf=\prod PP\subseteq{q. irreducible q\wedge monic q} by auto
```

```
hence \(f 0: f \neq 0\) by auto
show ?thesis
    using vs \(n\) us divs \(f\) us1 vs 1
proof (induct vs2 arbitrary: divs n2 us1 vs1)
    case (Cons v vs2)
    show ?case
    proof (cases \(v=1\) )
        case False
        from Cons(2) vsf have \(v: v \in\) set (berlekamp-basis \(f\) ) by auto
        from berlekamp-basis-eq- \(8[O F\) this \(]\) have \(v f:\left[v^{\wedge} \operatorname{CARD}\left({ }^{\prime} a\right)=v\right](\bmod f)\).
        let ? \(g c d=\lambda u\) i. gcd \(u(v-[: o f-i n t ~ i:])\)
        let ? gcdn \(=\lambda u\) i. gcd \(u(v-[\) :of-nat \(i:])\)
        let ? map \(=\lambda u .(\operatorname{map}(\lambda i\). ? gcd \(u i)[0 . .<C A R D(' a)])\)
        define udivs where udivs \(\equiv \lambda u\). filter \((\lambda w . w \neq 1)\) (? map u)
        \{
            obtain \(x s\) where \(x s:\left[0 . .<C A R D\left(^{\prime} a\right)\right]=x s\) by auto
            have udivs \(=\left(\lambda u .\left[w . i \leftarrow\left[0 . .<\operatorname{CARD}\left({ }^{\prime} a\right)\right], w \leftarrow[? g c d u i], w \neq 1\right]\right)\)
                    unfolding udivs-def xs
            by (intro ext, auto simp: o-def, induct xs, auto)
    \} note udivs-def \({ }^{\prime}=\) this
    define facts where facts \(\equiv[w . u \leftarrow\) divs, \(w \leftarrow\) udivs \(u]\)
    \{
        fix \(u\)
            assume \(u: u \in\) set divs
        then obtain bef aft where divs: divs \(=\) bef @ \(u \#\) aft by (meson split-list)
        from Cons (5) [OF u] have mon-u: monic \(u\) by simp
        have \(u f: u d v d f\) unfolding \(\operatorname{Cons(6)}\) divs by auto
    from vf uf have \(v u:\left[v^{\wedge} C A R D(' a)=v\right]\) (mod \(u\) ) by (rule cong-dvd-modulus-poly)
        from square-free-factor[OF uf \(s f\)-f] have \(s f\) - \(u\) : square-free \(u\).
        let \(? g=\) ? \(g c d u\)
        from mon-u have \(u 0: u \neq 0\) by auto
        have \(u=\left(\prod c \in U N I V . g c d u(v-[: c:])\right)\)
            using Berlekamp-gcd-step[OF vu mon-u sf-u].
        also have \(\ldots=\left(\prod i \in\left\{0 . .<\operatorname{int} \operatorname{CARD}\left({ }^{\prime} a\right)\right\}\right.\). ? \(\left.g i\right)\)
        by (rule sym, rule prod.reindex-cong[OF to-int-mod-ring-hom.inj-f range-to-int-mod-ring[symmetric]],
            simp add: of-int-of-int-mod-ring)
        finally have \(u\)-prod: \(u=\left(\prod i \in\left\{0 . .<\right.\right.\) int \(\left.\operatorname{CARD}\left({ }^{\prime} a\right)\right\}\). ? \(\left.g i\right)\).
        let ? \(S=\left\{0 . .<\right.\) int \(\left.C A R D\left({ }^{\prime} a\right)\right\}-\{i\). ? \(g i=1\}\)
        \{
            fix \(i\)
            assume \(i \in ? S\)
            hence ? \(g i \neq 1\) by auto
                moreover have mgi: monic (?g i) by (rule poly-gcd-monic, insert u0,
auto)
            ultimately have degree (?g i) >0
                using monic-degree-0 by blast
        note this mgi
        \} note \(g S=\) this
```

```
    have int-set: int ' set \(\left[0 . .<C A R D\left({ }^{\prime} a\right)\right]=\left\{0 . .<\right.\) int \(\left.C A R D\left({ }^{\prime} a\right)\right\}\)
```

 by (simp add: image-int-atLeastLessThan)
 have inj: inj-on ? \(g\) ?S unfolding inj-on-def
 proof (intro ballI impI)
 fix \(i j\)
 assume \(i: i \in ? S\) and \(j: j \in ? S\) and \(g i j: ? g i=? g j\)
 show \(i=j\)
 proof (rule ccontr)
 define \(S\) where \(S=\left\{0 . .<\right.\) int \(\left.\operatorname{CARD}\left({ }^{\prime} a\right)\right\}-\{i, j\}\)
 have \(i d:\left\{0 . .<\right.\) int \(\left.C A R D\left({ }^{\prime} a\right)\right\}=(\) insert \(i(\) insert \(j S)\)) and \(S: i \notin S j \notin\)
 S finite S
using $i j$ unfolding S-def by auto
assume $i j: i \neq j$
have $u=\left(\prod i \in\left\{0 . .<\right.\right.$ int $\left.\operatorname{CARD}\left({ }^{\prime} a\right)\right\}$.?g i) by fact
also have $\ldots=$? $g i * ? g j *\left(\prod i \in S . ? g i\right)$
unfolding id using S ij by auto
also have $\ldots=? g i * ? g i *\left(\prod i \in S . ? g i\right)$ unfolding gij by simp
finally have $d v d$: ? $g i * ? g i d v d u$ unfolding $d v d-d e f$ by auto
with sf-u[unfolded square-free-def, THEN conjunct2, rule-format, OF
$g S(1)[O F i]]$
show False by simp
qed
qed
have $u=\left(\prod i \in\left\{0 . .<\right.\right.$ int $\left.\operatorname{CARD}\left({ }^{\prime} a\right)\right\}$. ?g $\left.i\right)$ by fact
also have $\ldots=\left(\prod i \in\right.$?S. ?g $\left.i\right)$
by (rule sym, rule prod.setdiff-irrelevant, auto)
also have $\ldots=\Pi$ (set (udivs $u)$) unfolding udivs-def set-filter set-map
by (rule sym, rule prod.reindex-cong[of?g, OF inj - refl], auto simp:
int-set[symmetric])
finally have u-udivs: $u=\Pi($ set $($ udivs $u))$.
\{
fix w
assume mem: $w \in \operatorname{set}$ (udivs u)
then obtain i where $w: w=? g i$ and $i: i \in ? S$
unfolding udivs-def set-filter set-map int-set by auto
have wu: w dvd u by (simp add: w)
let $? v=\lambda j . v-[: o f-n a t j:]$
define j where $j=$ nat i
from i have j : of-int $i=($ of-nat $j::$ 'a mod-ring) $j<C A R D(' a)$ unfolding
j-def by auto
from $g S[O F i$, folded $w]$ have $*$: degree $w>0$ monic $w \neq 0$ by auto
from w have $w d v d$?v j using j by simp
hence gcdj: ? gcdn $w j=w$ by (metis gcd.commute gcd-left-idem $j(1) w$)
\{
fix j^{\prime}
assume $j^{\prime}: j^{\prime}<C A R D\left({ }^{\prime} a\right)$
have ? gcdn $w j^{\prime} \in\{1, w\}$

```
            proof (rule ccontr)
                    assume not: ?gcdn w j'}\not\in{1,w
                    with gcdj have neq: int j' }=\mathrm{ int j by auto
                    let ?h = ?gcdn w j'
            from *(3) not have deg: degree ?h}>
                    using monic-degree-0 poly-gcd-monic by auto
            have hw: ?h dvd w by auto
            have ?h dvd ?gcdn u j' using wu using dvd-trans by auto
            also have ?gcdn u j' = ?g j' by simp
            finally have hj': ?h dvd ?g j' by auto
            from divides-degree[OF this] deg u0 have degj': degree (?g j') >0 by
            hence j'1:?g j'\not=1 by auto
            with j' have mem': ?g j' \in set (udivs u) unfolding udivs-def by auto
                    from degj' j' have j'S: int j' }\in\mathrm{ ? S by auto
                    from i j have jS: int j E ?S by auto
                    from inj-on-contraD[OF inj neq j'S jS]
                    have neq: w}\not=??g\mp@subsup{j}{}{\prime}\mathrm{ using wj by auto
                        have cop: \neg coprime w (?g j') using hj' hw deg
                            by (metis coprime-not-unit-not-dvd poly-dvd-1 Nat.neq0-conv)
                    obtain }\mp@subsup{w}{}{\prime}\mathrm{ where }\mp@subsup{w}{}{\prime}:?g\mp@subsup{j}{}{\prime}=\mp@subsup{w}{}{\prime}\mathrm{ by auto
                    from u-udivs sf-u have square-free (\Pi (set (udivs u))) by simp
                    from square-free-prodD[OF this finite-set mem mem] cop neq
                    show False by simp
            qed
        }
        from gS[OF i, folded w] i this
        have degree w>0 monic w ^j.j<CARD('a)\Longrightarrow ?gcdn w j { {1,w}
        } note udivs = this
        let ?is = filter (\lambda i. ?g i\not=1) (map int [0 ..< CARD('a)])
        have id: udivs u= map ?g ?is
            unfolding udivs-def filter-map o-def ..
        have dist: distinct (udivs u) unfolding id distinct-map
        proof (rule conjI[OF distinct-filter], unfold distinct-map)
            have ?S = set ?is unfolding int-set[symmetric] by auto
            thus inj-on ?g (set ?is) using inj by auto
        qed (auto simp: inj-on-def)
        from u-udivs prod.distinct-set-conv-list[OF dist, of id]
        have prod-list (udivs u)=u by auto
        note udivs this dist
    } note udivs = this
    have facts: facts = concat (map udivs divs)
        unfolding facts-def by auto
    obtain lin nonlin where part: List.partition ( }\lambda\mathrm{ q. degree q}=d\mathrm{ ) facts =
    by force
    from Cons(6) have f= prod-list us1 * prod-list divs by auto
```

auto
by auto
(lin,nonlin)
also have prod-list divs $=$ prod-list facts unfolding facts using udivs(4)
by (induct divs, auto)
finally have $f: f=$ prod-list us1 $*$ prod-list facts .
note facts' $=$ facts
\{
fix u
assume $u: u \in$ set facts
from $u[$ unfolded facts $]$ obtain u^{\prime} where $u^{\prime}: u^{\prime} \in$ set divs and $u: u \in$ set (udivs u^{\prime}) by auto
from $u^{\prime} u \operatorname{divs}(1-2)\left[O F u^{\prime} u\right]$ prod-list-dvd[OF u, unfolded udivs(4)[OF $\left.\left.u^{\prime}\right]\right]$
have degree $u>0$ monic $u \exists u^{\prime} \in$ set divs. u dvd u^{\prime} by auto
$\}$ note facts $=$ this
have not1: $(v=1)=$ False using False by auto
have us=us1 @ (if length divs =n2 then divs
else let $($ lin, nonlin $)=$ List.partition $(\lambda q$. degree $q=d)$ facts
in lin @ berlekamp-factorization-main d nonlin vs2 (n2 - length lin))
unfolding Cons(4) facts-def udivs-def' berlekamp-factorization-main.simps Let-def not1 if-False
by (rule arg-cong[where $f=\lambda x$.us1 @ $x]$, rule if-cong, simp-all)
hence res: us $=u s 1$ @ (if length divs = n2 then divs else lin @ berlekamp-factorization-main d nonlin vs2 (n2 - length lin))
unfolding part by auto
show ?thesis
proof (cases length divs $=$ n2 $)$
case False
with res have us: us =(us1 @ lin) @ berlekamp-factorization-main d nonlin vs2 (n2 - length lin)
by auto
from $\operatorname{Cons(2)~have~vs:~vs~}=(v s 1 @[v]) @ v s 2$ by auto
have $f: f=$ prod-list ((us1 @ lin) @ nonlin)
unfolding f using prod-list-partition[OF part] by simp
\{
fix u
assume $u \in \operatorname{set}((u s 1$ @ lin) @ nonlin)
with part have $u \in$ set facts \cup set us1 by auto
with facts Cons(7) have degree $u>0$ by (auto simp: irreducible-degree-field)
\} note deg $=$ this
from berlekamp-basis-length-factorization[OF sf-f n-bb mon-f f deg, unfolded Cons(3)]
have $n 2 \geq$ length lin by auto
hence n : $n=$ length (us1 @ lin) $+(n 2-l e n g t h ~ l i n) ~$
unfolding Cons(3) by auto
show ?thesis
proof (rule Cons(1)[OF vs n us - f])
fix u
assume $u \in$ set nonlin
with part have $u \in$ set facts by auto
from facts $[O F$ this $]$ show monic $u \wedge$ degree $u>0$ by auto
next

```
        fix }
        assume u:u\inset(us1 @ lin)
        {
            assume *: \neg(monic u ^ irreducible e u)
            with Cons(7) u have u\in set lin by auto
            with part have uf:u\in set facts and deg: degree }u=d\mathrm{ by auto
            from facts[OFuf] obtain }\mp@subsup{u}{}{\prime}\mathrm{ where }\mp@subsup{u}{}{\prime}\in\mathrm{ set divs and }u\mp@subsup{u}{}{\prime}:u dvd \mp@subsup{u}{}{\prime}\mathrm{ by
auto
            from this(1) have }\mp@subsup{u}{}{\prime}dvdf\mathrm{ unfolding Cons(6) using prod-list-dvd[of
u] by auto
            with uu' have u dvd f by (rule dvd-trans)
            from facts[OFuf]d[OF this deg]* have False by auto
        }
        thus monic }u\wedge irreducible u by aut
    next
        fix wui
```



```
        and u:u\inset (us1 @ lin) \cup set nonlin
        and i:i<CARD('a)
    from u part have u:u\in set us1 }\cup\mathrm{ set facts by auto
    show gcd u (w-[:of-nat i:]) \in{1,u}
    proof (cases u \in set us1)
        case True
        from Cons(7)[OF this] have monic u irreducible u by auto
        thus ?thesis by (rule monic-irreducible-gcd)
        next
        case False
        with u have u:u\in set facts by auto
        show ?thesis
        proof (cases w=v)
            case True
            from u[unfolded facts'] obtain }\mp@subsup{u}{}{\prime}\mathrm{ where }u:u\in\mathrm{ set (udivs }\mp@subsup{u}{}{\prime}\mathrm{ )
                and }\mp@subsup{u}{}{\prime}:\mp@subsup{u}{}{\prime}\in\mathrm{ set divs by auto
            from udivs(3)[OF u' u i] show ?thesis unfolding True.
        next
            case False
            with w have w:w\in set vs1 by auto
            from }u\mathrm{ obtain }\mp@subsup{u}{}{\prime}\mathrm{ where }\mp@subsup{u}{}{\prime}:\mp@subsup{u}{}{\prime}\in\mathrm{ set divs and dvd: u dvd u}\mp@subsup{u}{}{\prime
                using facts(3)[of u] dvd-refl[of u] by blast
            from w have w\in set vs }\veev=v\mathrm{ by auto
            from facts(1-2)[OF u] have u: monic u by auto
            from Cons(8)[OFw-i] u'
            have gcd u'}(w-[:of-nat i:])\in{1,\mp@subsup{u}{}{\prime}}\mathrm{ by auto
            with dvd u show ?thesis by (rule monic-gcd-dvd)
        qed
        qed
    qed
next
    case True
```

```
    with res have us:us = us1 @ divs by auto
    from Cons(3) True have n: n= length us unfolding us by auto
    show ?thesis unfolding us[symmetric]
    proof (intro conjI ballI)
        show f:f= prod-list us unfolding us using Cons(6) by simp
        {
            fix u
            assume u\in set us
            hence degree u>0 using Cons(5) Cons(7)[unfolded irreducible edef]
                unfolding us by (auto simp: irreducible-degree-field)
            } note deg = this
            fix }
            assume u:u\in set us
            thus monic u unfolding us using Cons(5) Cons(7) by auto
            show irreducible u
                by (rule berlekamp-basis-irreducible[OF sf-f n-bb mon-f f n[symmetric]
deg u])
            qed
        qed
    next
        case True
        with Cons(4) have us:us = us1 @ berlekamp-factorization-main d divs vs2
n2 by simp
        from Cons(2) True have vs:vs=(vs1 @ [1])@ vs2 by auto
        show ?thesis
        proof (rule Cons(1)[OF vs Cons(3) us Cons(5-7)],goal-cases)
            case (3 v u i)
            show ?case
            proof (cases v=1)
            case False
            with 3 Cons(8)[of v u i] show ?thesis by auto
            next
                case True
                    hence deg: degree (v - [: of-nat i:]) = 0
                    by (metis (no-types, opaque-lifting) degree-pCons-0 diff-pCons diff-zero
pCons-one)
                    from 3(2) Cons(5,7)[of u] have monic u by auto
                    from gcd-monic-constant[OF this deg] show ?thesis .
            qed
        qed
    qed
next
    case Nil
    with vsf have vs1:vs1 = berlekamp-basis f by auto
    from Nil(3) have us:us=us1 @ divs by auto
    from Nil(4,6) have md: \bigwedgeu.u\in set us \Longrightarrow monic u ^ degree u>0
        unfolding us by (auto simp: irreducible-degree-field)
    from Nil(7)[unfolded vs1] us
    have no-further-splitting-possible:
```

$\bigwedge u v i . v \in \operatorname{set}($ berlekamp-basis $f) \Longrightarrow u \in \operatorname{set} u s$
$\Longrightarrow i<\operatorname{CARD}\left(^{\prime} a\right) \Longrightarrow \operatorname{gcd} u(v-[: o f-n a t i:]) \in\{1, u\}$ by auto
from $\operatorname{Nil(5)~us~have~prod:~} f=$ prod-list us by simp
show ?case
proof (intro conjI ballI)
fix u
assume $u: u \in$ set us
from $m d[O F$ this $]$ have mon-u: monic u and deg-u: degree $u>0$ by auto from prod u have $u f: u d v d f$ by (simp add: prod-list-dvd)
from monic-square-free-irreducible-factorization[OF mon-f sf-f] obtain P where
P : finite $P f=\prod P P \subseteq\{q$. irreducible $q \wedge$ monic $q\}$ by auto
show irreducible u
proof (rule ccontr)
assume irr-u: \neg irreducible u
from not-irreducible-factor-yields-prime-factors[OF uf P deg-u this]
obtain pi pj where $p i j: p i \in P p j \in P$ pi $\neq p j$ pi dvd $u p j d v d u$ by blast
from exists-vector-in-Berlekamp-basis-dvd[OF
deg-f berlekamp-basis-basis[OF deg-f, folded vs1] finite-set
P pij(1-3) mon-f sf-f irr-u uf mon-u pij(4-5), unfolded vs1]
obtain $v s$ where $v: v \in \operatorname{set}$ (berlekamp-basis f)
and gcd: gcd $u(v-[: s:]) \notin\{1, u\}$ using is-unit-gcd by auto from surj-of-nat-mod-ring[of s] obtain i where $i: i<C A R D\left({ }^{\prime} a\right)$ and $s: s$ $=o f-n a t i$ by auto
from no-further-splitting-possible[OF $v \quad u \quad i]$ gcd[unfolded $s]$ show False by auto qed
qed (insert prod md, auto)
qed
qed
lemma berlekamp-monic-factorization:
fixes $f::$ 'a mod-ring poly
assumes $s f$-f: square-free f
and us: berlekamp-monic-factorization $d f=u s$
and $d: \wedge g . g d v d f \Longrightarrow$ degree $g=d \Longrightarrow$ irreducible g
and deg: degree $f>0$
and mon: monic f
shows $f=$ prod-list us $\wedge(\forall u \in$ set us. monic $u \wedge$ irreducible $u)$
proof -
from us[unfolded berlekamp-monic-factorization-def Let-def] deg
have us: us = [] @ berlekamp-factorization-main d [f] (berlekamp-basis f) (length
(berlekamp-basis f))
by (auto)
have id: berlekamp-basis $f=[]$ @ berlekamp-basis f
length $($ berlekamp-basis $f)=$ length []$+$ length (berlekamp-basis $f)$
$f=$ prod-list ([] @ [f])
by auto
show $f=$ prod-list us $\wedge(\forall u \in$ set us. monic $u \wedge$ irreducible $u)$

```
    by (rule berlekamp-factorization-main[OF sf-f id(1) refl refl id(2) us --id(3)],
    insert mon deg d, auto)
qed
end
end
```


7 Distinct Degree Factorization

```
theory Distinct-Degree-Factorization
imports
    Finite-Field
    Polynomial-Factorization.Square-Free-Factorization
    Berlekamp-Type-Based
begin
definition factors-of-same-degree :: nat = ' }a\mathrm{ :: field poly }=>\mathrm{ bool where
    factors-of-same-degree if = (i\not=0\wedge degree f }\not=0\wedge\mathrm{ monic f ^( }\forall\mathrm{ g. irreducible
g\longrightarrowgdvd f}\longrightarrow\mathrm{ degree }g=i)
lemma factors-of-same-degreeD: assumes factors-of-same-degree if
    shows }i\not=0\mathrm{ degree }f\not=0\mathrm{ monic fg dvd f}\Longrightarrow\mathrm{ irreducible g}=(\mathrm{ degree }g=i
proof -
    note * = assms[unfolded factors-of-same-degree-def]
    show i:i\not=0 and f: degree f}\not=0\mathrm{ monic f using * by auto
    assume gf:g gdvd f
    with * have irreducible g\Longrightarrow degree g=i by auto
    moreover
    {
        assume **: degree g=i}\neg\mathrm{ irreducible g
        with irreducible e
gh: g=h1*h2
            and deg-h2: degree h2 < degree g by auto
        from ** i have g0:g\not=0 by auto
        from gf gh g0 have h1 dvd f using dvd-mult-left by blast
        from * f this irr have deg-h: degree h1 = i by auto
        from arg-cong[OF gh, of degree] g0 have degree g = degree h1 + degree h2
            by (simp add: degree-mult-eq gh)
        with **(1) deg-h have degree h2 = 0 by auto
        from degree0-coeffs[OF this] obtain c where h2: h2 = [:c:] by auto
        with gh g0 have g: g= smult c h1 c\not=0 by auto
        with irr **(2) irreducible-smult-field[of c h1] have False by auto
    }
    ultimately show irreducible g=(degree g=i) by auto
qed
```

hide-const order
theorem (in field) finite-field-mult-group-has-gen2:
assumes finite:finite (carrier R)
shows $\exists a \in$ carrier (mult-of R). group.ord (mult-of R) $a=$ order (mult-of R)
\wedge carrier $($ mult-of $R)=\{a[\rceil i \mid i:: n a t . i \in U N I V\}$
proof -
note mult-of-simps[simp]
have finite': finite (carrier (mult-of R)) using finite by (rule finite-mult-of)
interpret G : group mult-of R rewrites
$\left([\bigcirc]_{\text {mult-of } R}\right)=(([\urcorner)::-\Rightarrow$ nat $\Rightarrow-)$ and $\mathbf{1}_{\text {mult-of } R}=\mathbf{1}$
by (rule field-mult-group) (simp-all add: fun-eq-iff nat-pow-def)
let ? $N=\lambda x$. card $\{a \in$ carrier (mult-of R). group.ord (mult-of R) $a=x\}$
have $0<$ order $R-1$ unfolding Coset.order-def using card-mono[OF finite, of $\{\mathbf{0}, \mathbf{1}\}]$ by simp
then have $*: 0<$ order (mult-of R) using assms by (simp add: order-mult-of) have fin: finite $\{d . d$ dvd order (mult-of R) \} using dvd-nat-bounds[OF *] by force
have $\left(\sum d \mid d d v d\right.$ order (mult-of $\left.R\right)$. ? $N d$)
$=\operatorname{card}(U N d:\{d . d$ dvd order (mult-of $R)\} .\{a \in \operatorname{carrier}($ mult-of $R)$. group.ord (mult-of R) $a=d\}$)
(is - = card? U)
using fin finite by (subst card-UN-disjoint) auto
also have ? $U=$ carrier (mult-of R)
proof
\{ fix x assume $x: x \in$ carrier (mult-of R)
hence $x^{\prime}: x \in$ carrier (mult-of R) by simp
then have group.ord (mult-of R) x dvd order (mult-of R)
using finite ${ }^{\prime}$ G.ord-dvd-group-order $[O F x]$ by (simp add: order-mult-of)
hence $x \in$? U using dvd-nat-bounds[of order (mult-of R) group.ord (mult-of R) $x] x$ by blast
\} thus carrier (mult-of R) \subseteq ? U by blast

qed auto

also have card $\ldots=$ Coset.order (mult-of R)
using order-mult-of finite' by (simp add: Coset.order-def)
finally have sum-Ns-eq: $\left(\sum d \mid d\right.$ dvd order (mult-of R). ? $N d$) $=$ order (mult-of R) .
\{ fix d assume $d: d$ dvd order (mult-of R)
have card $\{a \in$ carrier (mult-of R). group.ord (mult-of R) $a=d\} \leq p h i^{\prime} d$ proof cases
assume card $\{a \in$ carrier (mult-of R). group.ord (mult-of R) $a=d\}=0$
thus ?thesis by presburger
next
assume card $\{a \in$ carrier (mult-of R). group.ord (mult-of R) $a=d\} \neq 0$
hence $\exists a \in$ carrier (mult-of R). group.ord (mult-of R) $a=d$ by (auto simp: card-eq-0-iff)
thus ?thesis using num-elems-of-ord-eq-phi' $[$ OF finite $d]$ by auto qed
\}
hence all-le: $\backslash i . i \in\{d . d$ dvd order (mult-of $R)\}$
$\Longrightarrow(\lambda i$. card $\{a \in$ carrier (mult-of R). group.ord (mult-of $R) a=i\}) i \leq$ (λi. phi' i) i by fast
hence le:($\sum i \mid i d v d$ order (mult-of R). ? $N i$)
$\leq\left(\sum i \mid i d v d\right.$ order (mult-of $\left.\left.R\right) . p h i^{\prime} i\right)$ using sum-mono of $\{d . d$ dvd order (mult-of $R)\}$
di. card $\{a \in$ carrier (mult-of R). group.ord (mult-of R) $a=i\}$] by presburger
have order (mult-of $R)=\left(\sum d \mid d\right.$ dvd order (mult-of $\left.\left.R\right) . p h i^{\prime} d\right)$ using $*$ by (simp add: sum-phi'-factors)
hence eq:($\sum i \mid i$ dvd order (mult-of R). ?N i)
$=\left(\sum i \mid i d v d\right.$ order (mult-of $\left.R\right)$. phi' $\left.i\right)$ using le sum-Ns-eq by presburger
have $\bigwedge i . i \in\{d . d$ dvd order (mult-of $R)\} \Longrightarrow ? N i=\left(\lambda i . p h i^{\prime} i\right) i$
proof (rule ccontr)
fix i
assume $i 1: i \in\{d . d$ dvd order (mult-of $R)\}$ and $? N i \neq p h i^{\prime} i$
hence ? $N i=0$
using num-elems-of-ord-eq-phi' $[$ OF finite, of $i]$ by (auto simp: card-eq-0-iff)
moreover have $0<i$ using $* i 1$ by (simp add: dvd-nat-bounds[of order (mult-of R) $i]$)
ultimately have ? $N i<p h i^{\prime} i$ using phi'-nonzero by presburger
hence ($\sum i \mid i$ dvd order (mult-of R). ? $N i$)
$<\left(\sum i \mid i\right.$ dvd order (mult-of R). phi' ${ }^{\prime}$)
using sum-strict-mono-ex1[OF fin, of ? $\left.N \lambda i \cdot p h i^{\prime} i\right]$
i1 all-le by auto
thus False using eq by force
qed
hence ? $N($ order $($ mult-of $R))>0$ using $*$ by (simp add: phi'-nonzero)
then obtain a where $a: a \in$ carrier (mult-of R) and a-ord:group.ord (mult-of R) $a=$ order (mult-of R)
by (auto simp add: card-gt-0-iff)
hence set-eq:\{a[` $i \mid i::$ nat. $i \in U N I V\}=(\lambda x . a[\urcorner] x)$ ' $\{0$.. group.ord (mult-of R) $a-1\}$
using G.ord-elems[OF finite $]$ by auto
have card-eq:card $((\lambda x . a[\uparrow x)$ ' $\{0$.. group.ord $($ mult-of $R) a-1\})=\operatorname{card}\{0$.. group.ord (mult-of R) $a-1\}$
by (intro card-image G.ord-inj finite' a)
hence card $((\lambda x . a[\rceil x)$ ' $\{0$.. group.ord $($ mult-of $R) a-1\})=$ card $\{0$..order (mult-of R) -1$\}$
using assms by (simp add: card-eq a-ord)
hence card-R-minus-1:card $\{a[\rceil i \mid i::$ nat. $i \in U N I V\}=\operatorname{order}($ mult-of $R)$
using * by (subst set-eq) auto
have $* *:\{a[\rceil i \mid i:: n a t . i \in U N I V\} \subseteq$ carrier (mult-of R)
using G.nat-pow-closed $[$ OF a] by auto

```
    with - have carrier (mult-of R) = {a[`]|i::nat. i \inUNIV }
    by (rule card-seteq[symmetric]) (simp-all add: card-R-minus-1 finite Coset.order-def
del: UNIV-I)
    thus ?thesis using a a-ord by blast
qed
```

```
lemma add-power-prime-poly-mod-ring[simp]:
fixes \(x::\) 'a::\{prime-card\} mod-ring poly
```



```
proof (induct \(n\) arbitrary: \(x y\) )
    case 0
    then show ?case by auto
next
    case (Suc n)
    define \(p\) where \(p: p=C A R D\left({ }^{\prime} a\right)\)
    have \((x+y){ }^{\wedge}{ }^{\wedge}\) Suc \(n=(x+y) \wedge(p * p \wedge)\) by simp
    also have \(\ldots=\left((x+y)^{\wedge} p\right)^{\wedge}(p \wedge n)\)
        by (simp add: power-mult)
    also have \(\ldots=\left(\widehat{x} p+y^{〔} p\right)^{\wedge}(p \widehat{n})\)
        by (simp add: add-power-poly-mod-ring \(p\) )
    also have \(\ldots=\left(x^{\widehat{p} p}\right) \uparrow\left(p^{\wedge} n\right)+(y \widehat{p}) \uparrow(p \wedge n)\) using Suc.hyps unfolding \(p\) by
auto
    also have \(\ldots=x^{\wedge}\left(p^{\wedge}(n+1)\right)+y^{\wedge}\left(p^{\wedge}(n+1)\right)\) by (simp add: power-mult)
    finally show ?case by (simp add: p)
qed
lemma fermat-theorem-mod-ring2[simp]:
fixes \(a:: ' a::\{\) prime-card \(\}\) mod-ring
shows \(a^{\wedge}\left(C A R D\left({ }^{\prime} a\right) \wedge n\right)=a\)
proof (induct \(n\) arbitrary: a)
    case (Suc n)
    define \(p\) where \(p=C A R D\left({ }^{\prime} a\right)\)
    have \(a^{\wedge} p^{\wedge}\) Suc \(n=a^{\wedge}\left(p *\left(p^{\wedge} n\right)\right)\) by simp
    also have \(\ldots=\left(a^{\wedge} p\right) \uparrow\left(p^{\wedge} n\right)\) by (simp add: power-mult)
    also have \(\ldots=a^{\wedge}\left(p^{\wedge} n\right)\) using fermat-theorem-mod-ring \([o f ~ a \wedge p]\) unfolding
\(p\)-def by auto
    also have \(\ldots=a\) using Suc.hyps \(p\)-def by auto
    finally show? case by (simp add: p-def)
qed auto
lemma fermat-theorem-power-poly[simp]:
    fixes \(a:\) :'a::prime-card mod-ring
    shows [:a:] ^CARD ('a::prime-card) \({ }^{\wedge} n=[: a:]\)
    by (auto simp add: Missing-Polynomial.poly-const-pow mod-poly-less)
```

lemma degree-prod-monom: degree $\left(\prod i=0 . .<n\right.$. monom 11$)=n$
by (metis degree-monom-eq prod-pow x-pow-n zero-neq-one)
lemma degree-monom0 $[$ simp $]$: degree (monom a 0) $=0$ using degree-monom-le by auto
lemma degree-monom0 ${ }^{\prime}[$ simp $]$: degree (monom 0 b) $=0$ by auto
lemma sum-monom-mod:
assumes $b<$ degree f
shows $\left(\sum i \leq b . \operatorname{monom}(g i) i\right) \bmod f=\left(\sum i \leq b . \operatorname{monom}(g i) i\right)$
using assms
proof (induct b)
case 0
then show ?case by (auto simp add: mod-poly-less)
next
case (Suc b)
have hyp: $\left(\sum i \leq b\right.$. monom $\left.(g i) i\right) \bmod f=\left(\sum i \leq b . \operatorname{monom}(g i) i\right)$
using Suc.prems Suc.hyps by simp
have rw-monom: monom $(g$ (Suc b)) $($ Suc b) mod $f=$ monom $(g$ (Suc b)) (Suc b)
by (metis Suc.prems degree-monom-eq mod-0 mod-poly-less monom-hom.hom-0-iff)
have rw: $\left(\sum i \leq S u c b\right.$. monom $\left.(g i) i\right)=\left(\operatorname{monom}(g(S u c b))(S u c b)+\left(\sum i \leq b\right.\right.$. monom (gi)i))
by auto
have $\left(\sum i \leq S u c b\right.$. monom $\left.(g i) i\right) \bmod f$
$=\left(\right.$ monom $(g($ Suc $b))($ Suc $b)+\left(\sum i \leq b\right.$. monom $\left.\left.(g i) i\right)\right) \bmod f$ using $r w$ by presburger
also have $\ldots=((\operatorname{monom}(g(S u c b))(S u c b)) \bmod f)+\left(\left(\sum i \leq b\right.\right.$. monom $(g i)$
i) $\bmod f$)
using poly-mod-add-left by auto
also have $\ldots=\operatorname{monom}(g($ Suc $b))($ Suc $b)+\left(\sum i \leq b . \operatorname{monom}(g i) i\right)$
using hyp rw-monom by presburger
also have $\ldots=\left(\sum i \leq S u c\right.$ b. monom $\left.(g i) i\right)$ using $r w$ by auto
finally show ?case .
qed
lemma x-power-aq-minus-1-rw:
fixes $x:: n a t$
assumes $x: x>1$
and $a: a>0$
and $b: b>0$
shows $x^{\wedge}(a * q)-1=((x \widehat{a})-1) * \operatorname{sum}((\wedge)(x \widehat{a}))\{. .<q\}$
proof -
have $x a:\left(x^{\wedge} a\right)>0$ using x by auto
have int-rw1: int $\left(x^{\wedge} a\right)-1=\operatorname{int}\left(\left(x^{\wedge} a\right)-1\right)$
using $x a$ by linarith
have int-rw2: $\operatorname{sum}\left((\mathcal{\wedge})\left(\operatorname{int}\left(x^{\wedge} a\right)\right)\right)\{. .<q\}=\operatorname{int}\left(\operatorname{sum}\left((\mathcal{)})\left(\left(x^{\wedge} a\right)\right)\right)\{. .<q\}\right)$ unfolding int-sum by simp
have $\operatorname{int}\left(x^{\wedge} a\right) \wedge q=\operatorname{int}(S u c((x \wedge a) \wedge q-1))$ using $x a$ by auto

```
    hence \(\operatorname{int}\left(\left(x^{\wedge} a\right) \wedge q-1\right)=\operatorname{int}\left(x^{\wedge} a\right)^{\wedge} q-1\) using xa by presburger
    also have \(\ldots=\left(\operatorname{int}\left(x^{\wedge} a\right)-1\right) * \operatorname{sum}\left((\wedge)\left(\operatorname{int}\left(x^{\wedge} a\right)\right)\right)\{. .<q\}\)
    by (rule power-diff-1-eq)
    also have \(\ldots=\left(\operatorname{int}\left(\left(x^{\wedge} a\right)-1\right)\right) * \operatorname{int}\left(\operatorname{sum}\left((\mathcal{)})\left(\left(x^{\wedge} a\right)\right)\right)\{. .<q\}\right)\)
    unfolding int-rw1 int-rw2 by simp
    also have \(\ldots=\operatorname{int}\left(\left(\left(x^{\wedge} a\right)-1\right) *\left(\operatorname{sum}\left((\wedge)\left(\left(x^{\wedge} a\right)\right)\right)\{. .<q\}\right)\right)\) by auto
    finally have aux: int \(\left(\left(x^{\wedge} a\right)^{\wedge} q-1\right)=\operatorname{int}\left(\left(\left(x^{\wedge} a\right)-1\right) * \operatorname{sum}\left((\mathcal{\wedge})\left(x^{\wedge}\right.\right.\right.\)
a)) \(\{. .<q\}\) ) .
    have \(x^{\wedge}(a * q)-1=(\widehat{x a)} q-1\)
    by (simp add: power-mult)
    also have \(\ldots=((x \widehat{a})-1) * \operatorname{sum}((\wedge)(x \widehat{x a}))\{. .<q\}\)
    using aux unfolding int-int-eq.
    finally show ?thesis .
qed
lemma dvd-power-minus-1-conv1:
    fixes \(x\) ::nat
    assumes \(x\) : \(x>1\)
    and \(a: a>0\)
    and \(x a-d v d: x^{\wedge} a-1 d v d x \wedge-1\)
    and \(b 0: b>0\)
    shows \(a d v d b\)
proof -
    define \(r\) where \(r[\operatorname{simp}]: r=b \bmod a\)
    define \(q\) where \(q[\) simp \(]: q=b\) div \(a\)
    have \(b: b=a * q+r\) by auto
    have \(r a: r<a\) by ( \(\operatorname{simp} a d d: a\) )
    hence \(x\)-less-xa: \(x{ }^{\wedge} r-1<x^{\wedge} a-1\)
    using \(x\) power-strict-increasing-iff diff-less-mono \(x\) by simp
    have \(d v d: x^{\wedge} a-1\) dvd \(x^{\wedge}(a * q)-1\)
    using \(x\)-power-aq-minus-1-rw[OF \(x\) a b0] unfolding dvd-def by auto
    have \(x \wedge b-1=x \wedge b-x \widehat{r}+x \widehat{r}-1\)
    using assms(1) assms(4) by auto
    also have \(\ldots=x \widehat{r} *(x \uparrow(a * q)-1)+x \widehat{x}-1\)
    by (metis (no-types, lifting) b diff-mult-distrib2 mult.commute nat-mult-1-right
power-add)
    finally have \(x \wedge-1=\widehat{x} r *(x \wedge(a * q)-1)+\widehat{x} r-1\).
    hence \(x^{\wedge} a-1\) dvd \(x \wedge r *(x \wedge(a * q)-1)+x^{\wedge} r-1\) using \(x a-d v d\) by
presburger
    hence \(\widehat{x} a-1 d v d \widehat{x} r-1\)
            by (metis (no-types) diff-add-inverse diff-commute dvd dvd-diff-nat dvd-trans
dvd-triv-right)
    hence \(r=0\)
            using \(x\)-less-xa
            by (meson nat-dvd-not-less neq0-conv one-less-power \(x\) zero-less-diff)
    thus ?thesis by auto
qed
```

```
lemma dvd-power-minus-1-conv2:
    fixes x::nat
    assumes x: x> 1
        and a: a>0
        and a-dvd-b: a dvd b
        and b0:b>0
    shows x^a-1 dvd x^b - 1
proof -
    define q where q[simp]: q=b div a
    have b:b=a*q using a-dvd-b by auto
    have x^b-1=((x^a) - 1)* sum ((`) (x^a)) {..<q}
        unfolding b by (rule x-power-aq-minus-1-rw[OF x a b0])
    thus ?thesis unfolding dvd-def by auto
qed
corollary dvd-power-minus-1-conv:
    fixes x::nat
    assumes x:x>1
        and a:a>0
        and b0:b>0
    shows a dvd b = (x^a-1 dvd x`b - 1)
    using assms dvd-power-minus-1-conv1 dvd-power-minus-1-conv2 by blast
```

locale poly-mod-type-irr $=$ poly-mod-type m TYPE('a::prime-card) for $m+$
fixes $f::^{\prime} a::\{$ prime-card $\}$ mod-ring poly
assumes irr-f: irreducible ${ }_{d} f$
begin
definition plus-irr :: 'a mod-ring poly \Rightarrow 'a mod-ring poly \Rightarrow 'a mod-ring poly
where plus-irr ab=(a+b) mod f
definition minus-irr :: 'a mod-ring poly \Rightarrow^{\prime} a mod-ring poly \Rightarrow 'a mod-ring poly
where minus-irr $x y \equiv(x-y) \bmod f$
definition uminus-irr :: 'a mod-ring poly \Rightarrow ' a mod-ring poly
where uminus-irr $x=-x$
definition mult-irr :: 'a mod-ring poly \Rightarrow^{\prime} 'a mod-ring poly \Rightarrow 'a mod-ring poly
where mult-irr x y $=((x * y) \bmod f)$
definition carrier-irr :: 'a mod-ring poly set
where carrier-irr $=\{x$. degree $x<$ degree $f\}$
definition power-irr :: 'a mod-ring poly \Rightarrow nat \Rightarrow 'a mod-ring poly
where power-irr $p n=((p$ n $) \bmod f)$
definition $R=$ (carrier $=$ carrier-irr, monoid.mult $=$ mult-irr, one $=1$, zero $=$ 0, add = plus-irr ()
lemma degree-f[simp]: degree $f>0$
using irr-f irreducible ${ }_{d} D(1)$ by blast
lemma element-in-carrier: $(a \in$ carrier $R)=($ degree $a<$ degree $f)$
unfolding R-def carrier-irr-def by auto
lemma f-dvd-ab:
$a=0 \vee b=0$ if $f d v d a * b$
and a : degree $a<$ degree f
and b : degree $b<$ degree f
proof (rule ccontr)
assume $\neg(a=0 \vee b=0)$
then have $a \neq 0$ and $b \neq 0$
by simp-all
with $a b$ have $\neg f d v d a$ and $\neg f d v d b$ by (auto simp add: mod-poly-less dvd-eq-mod-eq-0)
moreover from $\langle f d v d a * b\rangle$ irr- f have $f d v d a \vee f d v d b$
by auto
ultimately show False by simp
qed
lemma ab-mod-f0:
$a=0 \vee b=0$ if $a * b \bmod f=0$
and a : degree $a<$ degree f
and b : degree $b<$ degree f
using that f-dvd-ab by auto
lemma irreducible $_{d}$ D2:
fixes $p q$:: 'b::\{comm-semiring-1,semiring-no-zero-divisors\} poly
assumes irreducible $_{d} p$
and degree $q<$ degree p and degree $q \neq 0$
shows $\neg q d v d p$
using assms irreducible ${ }_{d}$-dvd-smult by force
lemma times-mod-f-1-imp-0:
assumes x : degree $x<$ degree f
and $x 2: \forall x a . x * x a \bmod f=1 \longrightarrow \neg$ degree $x a<$ degree f
shows $x=0$
proof (rule ccontr)
assume $x 3: x \neq 0$
let $? u=$ fst (bezout-coefficients $f x$)
let $? v=$ snd (bezout-coefficients $f x$)

```
    have \(? u * f+? v * x=g c d f x\) using bezout-coefficients-fst-snd by auto
    also have \(\ldots=1\)
    proof (rule ccontr)
    assume \(g\) : \(\operatorname{gcd} f x \neq 1\)
    have degree \((\operatorname{gcd} f x)<\) degree \(f\)
        by (metis degree-0 dvd-eq-mod-eq-0 gcd-dvd1 gcd-dvd2 irr-f
            irreducible \(_{d} D(1)\) mod-poly-less nat-neq-iff \(x\) x3)
    have \(\neg \operatorname{gcd} f x d v d f\)
    proof (rule irreducible \({ }_{d}\) D2[OF irr-f])
        show degree \((\operatorname{gcd} f x)<\) degree \(f\)
            by (metis degree-0 dvd-eq-mod-eq-0 gcd-dvd1 gcd-dvd2 irr-f
                irreducible \({ }_{d} D(1)\) mod-poly-less nat-neq-iff \(x\) x3)
    show degree \((\operatorname{gcd} f x) \neq 0\)
            by (metis (no-types, opaque-lifting) \(g\) degree-mod-less' gcd.bottom-left-bottom
gcd-eq-0-iff
                gcd-left-idem gcd-mod-left gr-implies-not0 x)
    qed
    moreover have \(g c d f x d v d f\) by auto
    ultimately show False by contradiction
qed
finally have \(? v * x \bmod f=1\)
    by (metis degree-1 degree-f mod-mult-self3 mod-poly-less)
hence \((x *(? v \bmod f)) \bmod f=1\)
    by (simp add: mod-mult-right-eq mult.commute)
moreover have degree \((? v \bmod f)<\) degree \(f\)
    by (metis degree-0 degree-f degree-mod-less' not-gr-zero)
    ultimately show False using \(x 2\) by auto
qed
sublocale field-R: field \(R\)
proof -
    have \(*: \exists y\). degree \(y<\) degree \(f \wedge f d v d x+y\) if degree \(x<\) degree \(f\)
    for \(x\) :: 'a mod-ring poly
proof -
    from that have degree \((-x)<\) degree \(f\)
        by \(\operatorname{simp}\)
    moreover have \(f d v d(x+-x)\)
        by \(\operatorname{simp}\)
    ultimately show ?thesis
        by blast
qed
have \(* *\) : degree \((x * y \bmod f)<\) degree \(f\)
    if degree \(x<\) degree \(f\) and degree \(y<\) degree \(f\)
    for \(x y\) :: 'a mod-ring poly
    using that by (cases \(x=0 \vee y=0\) )
        (auto intro: degree-mod-less \({ }^{\prime}\) dest: \(f\)-dvd-ab)
    show field \(R\)
        by standard (auto simp add: R-def carrier-irr-def plus-irr-def mult-irr-def
Units-def algebra-simps degree-add-less mod-poly-less mod-add-eq mult-poly-add-left
```

mod-mult-left-eq mod-mult-right-eq mod-eq-0-iff-dvd ab-mod-f0 *** dest: times-mod-f-1-imp-0) qed
lemma zero-in-carrier $[$ simp $]: 0 \in$ carrier-irr unfolding carrier-irr-def by auto

```
lemma card-carrier-irr[simp]: card carrier-irr = CARD('a)`(degree f)
proof -
    let ?A = (carrier-vec (degree f):: 'a mod-ring vec set)
    have bij-A-carrier: bij-betw (Poly o list-of-vec) ?A carrier-irr
    proof (unfold bij-betw-def, rule conjI)
        show inj-on (Poly ○ list-of-vec) ?A by (rule inj-Poly-list-of-vec)
        show (Poly ○ list-of-vec)' ?A = carrier-irr
        proof (unfold image-def o-def carrier-irr-def, auto)
            fix xa assume xa\in?A thus degree (Poly (list-of-vec xa)) < degree f
                using degree-Poly-list-of-vec irr-f by blast
    next
            fix x::'a mod-ring poly
            assume deg-x: degree x < degree f
            let ?xa = vec-of-list (coeffs x @ replicate (degree f - length (coeffs x)) 0)
            show \exists xa\incarrier-vec (degree f). x = Poly (list-of-vec xa)
                by (rule bexI[of - ?xa], unfold carrier-vec-def, insert deg-x)
                    (auto simp add: degree-eq-length-coeffs)
    qed
    qed
    have CARD('a)`(degree f) = card ?A
    by (simp add: card-carrier-vec)
    also have ... = card carrier-irr using bij-A-carrier bij-betw-same-card by blast
    finally show ?thesis ..
qed
lemma finite-carrier-irr[simp]: finite (carrier-irr)
proof -
    have degree f > degree 0 using degree-0 by auto
    hence carrier-irr }\not={}\mathrm{ using degree-0 unfolding carrier-irr-def
        by blast
    moreover have card carrier-irr }\not=0\mathrm{ by auto
    ultimately show ?thesis using card-eq-0-iff by metis
qed
lemma finite-carrier-R[simp]: finite (carrier R) unfolding R-def by simp
lemma finite-carrier-mult-of[simp]: finite (carrier (mult-of R))
    unfolding carrier-mult-of by auto
lemma constant-in-carrier[simp]: [:a:] \in carrier R
    unfolding }R\mathrm{ -def carrier-irr-def by auto
lemma mod-in-carrier[simp]: a mod f carrier R
    unfolding R-def carrier-irr-def
```

by（auto，metis degree－0 degree－f degree－mod－less＇less－not－refl）
lemma order－irr：Coset．order（mult－of $R)=\operatorname{CARD}\left({ }^{\prime} a\right)$ degree $f-1$
by（simp add：card－Diff－singleton Coset．order－def carrier－mult－of R－def）
lemma element－power－order－eq－1：
assumes $x: x \in$ carrier（mult－of R ）
shows $x\left[\bigcap_{(\text {mult－of } R)}\right.$ Coset．order（mult－of $\left.R\right)=\mathbf{1}_{(\text {mult－of } R)}$
by（meson field－R．field－mult－group finite－carrier－mult－of group．pow－order－eq－1 x ）
corollary element－power－order－eq－1＇：
assumes $x: x \in$ carrier（mult－of R ）
shows $x[]_{(\text {mult－of } R)} C A R D\left({ }^{\prime} a\right)$＾degree $f=x$
proof－
have $x\left[{ }^{〔}{ }_{(\text {mult－of } R)} C A R D\left({ }^{\prime} a\right)\right.$ へ degree f
$=x \otimes_{(\text {mult－of } R)} x[]_{(\text {mult－of } R)}(C A R D(' a) \wedge$ degree $f-1)$
by（metis Diff－iff One－nat－def Suc－pred field－R．m－comm field－R．nat－pow－Suc field－R．nat－pow－closed mult－of－simps（1）mult－of－simps（2）nat－pow－mult－of neq0－conv power－eq－0－iff x zero－less－card－finite）
also have $x \otimes_{(\text {mult－of } R)} x\left[{ }^{\wedge}\right]_{(\text {mult－of } R)}\left(C A R D\left({ }^{\prime} a\right) \uparrow\right.$ degree $\left.f-1\right)=x$
by（metis carrier－mult－of element－power－order－eq－1 field－R．Units－closed field－R．field－Units
field－R．r－one monoid．simps（2）mult－mult－of mult－of－def order－irr x ）
finally show ？thesis．
qed
lemma pow－irr［simp］：$x[]_{(R)} n=x \widehat{n} \bmod f$
by（induct n，auto simp add：mod－poly－less nat－pow－def R－def mult－of－def mult－irr－def carrier－irr－def mod－mult－right－eq mult．commute）
lemma pow－irr－mult－of $[$ simp $]: x[]_{(\text {mult－of } R)} n=x \widehat{n} \bmod f$
by（induct n，auto simp add：mod－poly－less nat－pow－def R－def mult－of－def mult－irr－def carrier－irr－def mod－mult－right－eq mult．commute）
lemma fermat－theorem－power－poly－$R[$ simp $]:[: a:][\}_{R} C A R D\left({ }^{\prime} a\right) ~ へ ~ n=[: a:]$
by（auto simp add：Missing－Polynomial．poly－const－pow mod－poly－less）
lemma times－mod－expand：
$\left(a \otimes_{(R)} b\right)=\left((a \bmod f) \otimes_{(R)}(b \bmod f)\right)$
by（simp add：mod－mult－eq R－def mult－irr－def）
lemma mult－closed－power：
assumes $x: x \in$ carrier R and $y: y \in$ carrier R
and $x\left[{ }^{[}{ }_{(R)} C A R D\left({ }^{\prime} a\right){ }^{\wedge} m^{\prime}=x\right.$
and $y\left[{ }^{〔}{ }_{(R)} C A R D\left({ }^{\prime} a\right)^{\wedge} m^{\prime}=y\right.$
shows $\left(x \otimes_{(R)} y\right)\left[{ }^{〔}{ }_{(R)} C A R D\left({ }^{\prime} a\right)^{\wedge} m^{\prime}=\left(x \otimes_{(R)} y\right)\right.$
using assms assms field－R．nat－pow－distrib by auto
lemma add－closed－power：
assumes $x 1: x\left[{ }^{\wedge}\right]_{(R)} C A R D\left({ }^{\prime} a\right){ }^{\wedge} m^{\prime}=x$
and $y 1: y\left[\bigcap_{(R)} C A R D\left({ }^{\prime} a\right){ }^{\wedge} m^{\prime}=y\right.$
shows $\left(x \oplus_{(R)} y\right)[]_{(R)} C A R D\left({ }^{\prime} a\right)^{\wedge} m^{\prime}=\left(x \oplus_{(R)} y\right)$
proof－
have $(x+y) \wedge C A R D(' a) \wedge m^{\prime}=x^{\wedge}\left(C A R D\left({ }^{\prime} a\right) \wedge m^{\prime}\right)+y^{\wedge}\left(C A R D\left({ }^{\prime} a\right){ }^{\wedge} m^{\prime}\right)$
by auto
hence $(x+y){ }^{\wedge} C A R D\left({ }^{\prime} a\right){ }^{\wedge} m^{\prime} \bmod f=\left(x^{\wedge}\left(C A R D\left({ }^{\prime} a\right){ }^{\wedge} m^{\prime}\right)+y \wedge\left(C A R D\left({ }^{\prime} a\right)\right.\right.$
$\left.\left.{ }^{\wedge} m^{\prime}\right)\right) \bmod f$ by auto
hence $\left(x \oplus_{(R)} y\right)\left[{ }_{(}(R) \operatorname{CARD}\left({ }^{\prime} a\right)^{\wedge} m^{\prime}\right.$
$=\left(x\left[{ }^{\wedge}\right]_{(R)} C A R D\left({ }^{\prime} a\right){ }^{\wedge} m^{\prime}\right) \oplus_{(R)}\left(y\left[{ }^{〔}\right]_{(R)} C A R D\left({ }^{\prime} a\right){ }^{\wedge} m^{\prime}\right)$
by（auto，unfold R－def plus－irr－def，auto simp add：mod－add－eq power－mod）
also have $\ldots=x \oplus_{(R)} y$ unfolding $x 1$ y1 by simp
finally show ？thesis．
qed
lemma x－power－pm－minus－1：
assumes $x: x \in$ carrier（mult－of R ）
and $x\left[{ }^{[}\right]_{(R)} C A R D\left({ }^{\prime} a\right)^{\wedge} m^{\prime}=x$
shows $x[]_{(R)}\left(C A R D\left({ }^{\prime} a\right)^{\wedge} m^{\prime}-1\right)=\mathbf{1}_{(R)}$
by（metis（no－types，lifting）One－nat－def Suc－pred assms（2）carrier－mult－of field－R．Units－closed
field－R．Units－l－cancel field－R．field－Units field－R．l－one field－R．m－rcancel field－R．nat－pow－Suc
field－R．nat－pow－closed field－R．one－closed field－R．r－null field－R．r－one x zero－less－card－finite
zero－less－power）

context

begin
private lemma monom－a－1－P：
assumes m：monom $11 \in$ carrier R
and eq：monom $11\left[{ }^{[}\right]_{(R)}\left(C A R D\left({ }^{\prime} a\right){ }^{\wedge} m{ }^{\prime}\right)=$ monom 11
shows monom a $1\left[{ }^{\wedge}\right]_{(R)}\left(C A R D\left(^{\prime} a\right)^{\wedge} m^{\prime}\right)=$ monom a 1
proof－
have monom a $1=[: a:] *($ monom 11$)$
by（metis One－nat－def monom－0 monom－Suc mult．commute pCons－0－as－mult）
also have $\ldots=[: a:] \otimes_{(R)}($ monom 11$)$
by（auto simp add：R－def mult－irr－def）
（metis One－nat－def assms（2）mod－mod－trivial mod－smult－left pow－irr）
finally have eq2：monom a $1=[: a:] \otimes_{R}$ monom 11 ．
show ？thesis unfolding eq2
by (rule mult-closed-power $[O F-m-e q]$, insert fermat-theorem-power-poly- R, auto)
qed
private lemma prod-monom-1-1:
defines $P==\left(\lambda x n .\left(x\left[\bigcap_{(R)}(C A R D(' a) \wedge n)=x\right)\right)\right.$
assumes m: monom $11 \in$ carrier R
and eq: P (monom 11 1) n
shows $P\left(\left(\prod i=0 . .<b::\right.\right.$ nat. monom 11$\left.) \bmod f\right) n$
proof (induct b)
case 0
then show ?case unfolding P-def
by (simp add: power-mod)

next

case (Suc b)
let $? N=\left(\prod i=0 . .<b\right.$. monom 11$)$
have eq2: $\left(\prod i=0 . .<S u c b\right.$. monom 11$) \bmod f=\operatorname{monom} 11 \otimes_{(R)}\left(\prod i=\right.$ $0 . .<b$. monom 1 1)
by (metis field-R.m-comm field-R.nat-pow-Suc mod-in-carrier mod-mod-trivial pow-irr prod-pow times-mod-expand)
also have $\ldots=(\operatorname{monom} 11 \bmod f) \otimes_{(R)}\left(\left(\prod i=0 . .<b . \operatorname{monom} 11\right) \bmod f\right)$
by (rule times-mod-expand)
finally have eq2: $\left(\prod i=0 . .<\right.$ Suc b. monom 11$) \bmod f$
$=(\operatorname{monom} 11 \bmod f) \otimes_{(R)}\left(\left(\prod i=0 . .<b . \operatorname{monom} 11\right) \bmod f\right)$.
show ?case
unfolding eq2 P-def
proof (rule mult-closed-power)
show $(\operatorname{monom} 11 \bmod f)[]_{R} C A R D(' a){ }^{\wedge} n=\operatorname{monom} 11 \bmod f$
using P-def element-in-carrier eq m mod-poly-less by force
show $\left(\left(\prod i=0 . .<b\right.\right.$. monom 11) $\left.\bmod f\right)[\urcorner_{R} C A R D\left({ }^{\prime} a\right){ }^{\wedge} n=\left(\prod i=0 . .<b\right.$. monom 1 1) $\bmod f$
using P-def Suc.hyps by blast
qed (auto)
qed
private lemma monom-1-b:
defines $P==\left(\lambda x n .\left(x\left[\bigcap_{(R)}(C A R D(' a) \wedge n)=x\right)\right)\right.$
assumes m: monom $11 \in$ carrier R
and monom-1-1: P (monom 11) m^{\prime}
and $b: b<$ degree f
shows P (monom 1 b) m^{\prime}
proof -
have monom $1 b=\left(\prod i=0 . .<b\right.$. monom 11$)$
by (metis prod-pow x-pow-n)
also have $\ldots=\left(\prod i=0 . .<b\right.$. monom 11$) \bmod f$
by (rule mod-poly-less[symmetric], auto)
(metis One-nat-def b degree-linear-power x-as-monom)
finally have eq2: monom $1 b=\left(\prod i=0 . .<b . \operatorname{monom} 11\right) \bmod f$.

```
    show ?thesis unfolding eq2 P-def
    by (rule prod-monom-1-1[OF m monom-1-1[unfolded P-def]])
qed
```

private lemma monom- $a-b$:
defines $P==\left(\lambda x n .\left(x\left[{ }^{\wedge}\right]_{(R)}\left(C A R D\left({ }^{\prime} a\right){ }^{\wedge} n\right)=x\right)\right)$
assumes m: monom $11 \in$ carrier R
and $m 1: P($ monom 11$) m^{\prime}$
and $b: b<$ degree f
shows P (monom a b) m^{\prime}
proof -
have monom a $b=$ smult a (monom $1 b$)
by (simp add: smult-monom)
also have $\ldots=[: a:] *($ monom $1 b)$ by auto
also have $\ldots=[: a:] \otimes_{(R)}($ monom $1 b)$
unfolding R-def mult-irr-def
by (simp add: b degree-monom-eq mod-poly-less)
finally have eq: monom a $b=[: a:] \otimes_{(R)}($ monom $1 b)$.
show ?thesis unfolding eq P-def
proof (rule mult-closed-power)
show [:a:] [$]_{R} C A R D(' a){ }^{\wedge} m^{\prime}=[: a:]$ by (rule fermat-theorem-power-poly- R)
show monom $1 b\left[\bigcap_{R} C A R D\left({ }^{\prime} a\right)^{\wedge} m^{\prime}=\right.$ monom $1 b$
unfolding P-def by (rule monom-1-b[OF m m1[unfolded P-def] b])
show monom $1 b \in$ carrier R unfolding element-in-carrier using b
by (simp add: degree-monom-eq)
qed (auto)
qed
private lemma sum-monoms- P :
defines $P==\left(\lambda x n .\left(x[]_{(R)}\left(C A R D\left({ }^{\prime} a\right)^{\wedge} n\right)=x\right)\right)$
assumes m: monom $11 \in$ carrier R
and monom-1-1: $P($ monom 11$) n$
and $b: b<$ degree f
shows $P\left(\left(\sum i \leq b\right.\right.$. monom $\left.\left.(g i) i\right)\right) n$
using b
proof (induct b)
case 0
then show ?case unfolding P-def
by (simp add: poly-const-pow mod-poly-less monom-0)
next
case (Suc b)
have $b: b<$ degree f using Suc.prems by auto
have rw: $\left(\sum i \leq b\right.$. monom $\left.(g i) i\right) \bmod f=\left(\sum i \leq b\right.$. monom $\left.(g i) i\right)$ by (rule sum-monom-mod $[$ OF $b]$)
have rw2: $($ monom $(g(S u c b))(S u c b) \bmod f)=\operatorname{monom}(g(S u c b))(S u c b)$
by (metis Suc.prems field-R.nat-pow-eone m monom-a-b pow-irr power-0 power-one-right)

```
    have hyp: P (\sumi\leqb. monom (g i) i) n using Suc.prems Suc.hyps by auto
    have (\sumi\leqSuc b. monom (g i) i) = monom (g (Suc b)) (Suc b) + (\sumi\leqb.
monom (gi) i)
    by simp
    also have ... = (monom (g(Suc b)) (Suc b) mod f) +((\sumi\leqb.monom (gi) i)
mod f)
    using rw rw2 by argo
    also have ... = monom (g (Suc b)) (Suc b) }\mp@subsup{\oplus}{R}{}(\sumi\leqb.monom (gi)i
    unfolding R-def plus-irr-def
    by (simp add: poly-mod-add-left)
    finally have eq:(\sumi\leqSuc b. monom (gi) i)
    =monom (g(Suc b)) (Suc b) }\mp@subsup{\oplus}{R}{}(\sumi\leqb.monom (gi) i)
    show ?case unfolding eq P-def
    proof (rule add-closed-power)
        show monom (g(Suc b)) (Suc b) [`]}\mp@subsup{|}{R}{}CARD('a)^ n = monom (g (Suc b))
(Suc b)
            by (rule monom-a-b[OF m monom-1-1[unfolded P-def] Suc.prems])
        show (\sumi\leqb. monom (gi) i)[`]}\mp@subsup{|}{R}{CARD('a)^n}=(\sumi\leqb.monom (gi)i
        using hyp unfolding P-def by simp
    qed
qed
lemma element-carrier-P:
    defines }P\equiv(\lambdaxn.(x[`](R) (CARD('a)^ n)=x)
    assumes m: monom 1 1 \in carrier R
    and monom-1-1: P (monom 1 1) m'
    and a: a\incarrier R
shows Pa m'
proof -
    have degree-a: degree a<degree f using a element-in-carrier by simp
    have }P(\sumi\leq\mathrm{ degree a. monom (poly.coeff a i) i) m'
        unfolding P-def
        by (rule sum-monoms-P[OF m monom-1-1[unfolded P-def] degree-a])
    thus ?thesis unfolding poly-as-sum-of-monoms by simp
qed
end
end
lemma degree-divisor1:
    assumes f: irreducible (f :: 'a :: prime-card mod-ring poly)
    and d: degree f=d
shows f dvd (monom 1 1)^(CARD('a)^d) - monom 11
proof -
    interpret poly-mod-type-irr CARD('a) f by (unfold-locales, auto simp add: f)
    show ?thesis
    proof (cases d=1)
        case True
```

```
    show ?thesis
    proof (cases monom 1 1 mod f=0)
    case True
    then show ?thesis
        by (metis Suc-pred dvd-diff dvd-mult2 mod-eq-0-iff-dvd power.simps(2)
            zero-less-card-finite zero-less-power)
    next
    case False note mod-f-not0 = False
    have monom 1 (CARD('a)) mod f}=m\mathrm{ monom 1 1 mod f
    proof -
        let ?g1 = (monom 1 (CARD('a))) mod f
        let ?g2 = (monom 1 1) mod f
        have deg-g1: degree ?g1 < degree f and deg-g2: degree ?g2 < degree f
        by (metis True card-UNIV-unit d degree-0 degree-mod-less' zero-less-card-finite
zero-neq-one)+
            have g2: ?g2 [`] (mult-of R)}CARD('a)^degree f = ?g2 ^(CARD('a)`degree
f) mod f
            by (rule pow-irr-mult-of)
            have ?g2 [`](mult-of R) CARD('a)^degree }f=?g
            by (rule element-power-order-eq-1', insert mod-f-not0 deg-g2,
                auto simp add: carrier-mult-of R-def carrier-irr-def )
            hence ?g2 ` CARD('a) mod f = ?g2 mod f using True d by auto
            hence ?g1 mod f}=\mathrm{ ? g2 mod f by (metis mod-mod-trivial power-mod x-pow-n)
            thus ?thesis by simp
        qed
        thus ?thesis by (metis True mod-eq-dvd-iff-poly power-one-right x-pow-n)
        qed
    next
        case False
        have deg-f1: 1 < degree f
            using False d degree-f by linarith
        have monom 11[`](mult-of R)}\operatorname{CARD('a)`degree f= monom 1 1
            by (rule element-power-order-eq-1', insert deg-f1)
                (auto simp add: carrier-mult-of R-def carrier-irr-def degree-monom-eq)
    hence monom 1 1^CARD('a)^degree f mod f = monom 1 1 mod f
            using deg-f1 by (auto, metis mod-mod-trivial)
    thus ?thesis using d mod-eq-dvd-iff-poly by blast
qed
qed
lemma degree-divisor2:
    assumes f: irreducible (f :: 'a :: prime-card mod-ring poly)
    and d: degree f=d
    and c-ge-1:1\leqc and cd:c<d
shows }\negfdvd monom 1 1 ^ CARD('a) ^ c-monom 11
proof (rule ccontr)
    interpret poly-mod-type-irr CARD('a) f by (unfold-locales, auto simp add: f)
    have field-R: field R
```

```
    by (simp add: field-R.field-axioms)
assume ᄀ ᄀfdvd monom 1 1 ^ CARD('a) ^c - monom 11
hence f-dvd: f dvd monom 1 1 ^ CARD('a) ^c-monom 1 1 by simp
obtain a where a-R: a \in carrier (mult-of R)
    and ord-a: group.ord (mult-of R) a = order (mult-of R)
    and gen: carrier (mult-of R)={a[`]}\mp@subsup{]}{R}{}i|i.i\in(UNIV::nat set)
    using field.finite-field-mult-group-has-gen2[OF field-R] by auto
have d-not1:d>1 using c-ge-1 cd by auto
have monom-in-carrier: monom 11\in carrier (mult-of R)
    using d-not1 unfolding carrier-mult-of R-def carrier-irr-def
    by (simp add: d degree-monom-eq)
then have monom 11}\in{\mp@subsup{0}{R}{}
    by auto
then obtain k where monom 1 1 = a^ k mod f
    using gen monom-in-carrier by auto
then have k: a[`]}\mp@subsup{|}{}{k}=\mathrm{ monom 1 1
    by simp
have a-m-1:a [`]}\mp@subsup{]}{R}{}(CARD('a)`c-1)=\mp@subsup{\mathbf{1}}{R}{
proof (rule x-power-pm-minus-1[OF a-R])
    let ?x = monom 1 1::'a mod-ring poly
    show a [`]}\mp@subsup{}{R}{}CARD('a) ^c c=
    proof (rule element-carrier-P)
        show ?x \in carrier R
            by (metis k mod-in-carrier pow-irr)
        have ?x^CARD('a)^c mod f = ?x mod f using f-dvd
            using mod-eq-dvd-iff-poly by blast
        thus ?x [`]}\mp@subsup{]}{R}{}CARD('a)^c=? ? x
            by (metis d d-not1 degree-monom-eq mod-poly-less one-neq-zero pow-irr)
        show a carrier R using a-R unfolding carrier-mult-of by auto
    qed
qed
have Group.group (mult-of R)
    by (simp add: field-R.field-mult-group)
moreover have finite (carrier (mult-of R)) by auto
moreover have a\incarrier (mult-of R) by (rule a-R )
moreover have a[^]mult-of R (CARD('a)^c-1)= =1 mult-of R
    using a-m-1 unfolding mult-of-def
    by (auto, metis mult-of-def pow-irr-mult-of nat-pow-mult-of)
ultimately have ord-dvd: group.ord (mult-of R) a dvd (CARD('a)`c - 1)
    by (meson group.pow-eq-id)
have d dvd c
proof (rule dvd-power-minus-1-conv1[OF nontriv])
    show 0<d using cd by auto
    show CARD('a) ^d - 1 dvd CARD('a) ^ c - 1
        using ord-dvd by (simp add: d ord-a order-irr)
    show 0<c using c-ge-1 by auto
qed
thus False using c-ge-1 cd
    using nat-dvd-not-less by auto
```


qed

lemma degree-divisor: assumes irreducible (f :: ' a :: prime-card mod-ring poly) degree $f=d$
shows $f d v d(\text { monom } 11)^{\wedge}\left(\operatorname{CARD}\left({ }^{\prime} a\right)^{\wedge} d\right)-m o n o m 11$
and $1 \leq c \Longrightarrow c<d \Longrightarrow \neg f d v d(\text { monom } 11)^{\wedge}\left(C A R D\left({ }^{\prime} a\right)^{\wedge} c\right)-$ monom 11
using assms degree-divisor1 degree-divisor2 by blast+

context

assumes SORT-CONSTRAINT('a :: prime-card)
begin
function dist-degree-factorize-main ::
'a mod-ring poly \Rightarrow 'a mod-ring poly \Rightarrow nat \Rightarrow (nat \times 'a mod-ring poly) list
\Rightarrow (nat \times 'a mod-ring poly) list where
dist-degree-factorize-main v wd res $=($ if $v=1$ then res else if $d+d>$ degree v then (degree v, v) \# res else let
$w=w^{\Upsilon}\left(C A R D\left({ }^{\prime} a\right)\right) \bmod v$;
$d=$ Suc d;
$g d=\operatorname{gcd}(w-m o n o m 11) v$
in if $g d=1$ then dist-degree-factorize-main $v w d$ res else
let $v^{\prime}=v$ div gd in
dist-degree-factorize-main $v^{\prime}\left(w \bmod v^{\prime}\right) d((d, g d) \#$ res $\left.)\right)$
by pat-completeness auto

termination

proof (relation measure $(\lambda(v, w, d$, res $)$. Suc (degree $v)-d)$, goal-cases)
case ($3 v w d$ res x xa xb xc)
have $x b$ dvd v unfolding 3 by auto
hence xc dvd v unfolding 3 by (metis dvd-def dvd-div-mult-self)
from divides-degree[OF this] 3
show? case by auto
qed auto
declare dist-degree-factorize-main.simps[simp del]
lemma dist-degree-factorize-main: assumes
dist: dist-degree-factorize-main v wd res $=$ facts and
$w: w=(\text { monom } 11)^{\wedge}\left(C A R D\left({ }^{\prime} a\right)^{\wedge} d\right) \bmod v$ and
sf: square-free u and
mon: monic u and
prod: $u=v *$ prod-list (map snd res) and
deg: $\bigwedge f$. irreducible $f \Longrightarrow f$ dvd $v \Longrightarrow$ degree $f>d$ and
res: $\bigwedge i f .(i, f) \in$ set res $\Longrightarrow i \neq 0 \wedge$ degree $f \neq 0 \wedge$ monic $f \wedge(\forall$ g. irreducible
$g \longrightarrow g \operatorname{dvd} f \longrightarrow$ degree $g=i$)
shows $u=$ prod-list (map snd facts) $\wedge(\forall i f .(i, f) \in$ set facts \longrightarrow factors-of-same-degree $i f$)
using dist w prod res deg unfolding factors-of-same-degree-def

```
proof (induct \(v\) w d res rule: dist-degree-factorize-main.induct)
    case ( \(1 \mathrm{v} w d\) res)
    note \(I H=1(1-2)\)
    note result \(=1\) (3)
    note \(w=1\) (4)
    note \(u=1\) (5)
    note res \(=1(6)\)
    note fact \(=1(7)\)
    note \([\) simp \(]=\) dist-degree-factorize-main.simps \([o f-d]\)
    let ?x = monom 11 :: 'a mod-ring poly
    show ?case
    proof (cases \(v=1\) )
        case True
        thus ?thesis using result \(u\) mon res by auto
    next
        case False note \(v=\) this
        note \(I H=I H[O F\) this \(]\)
    have mon-prod: monic (prod-list (map snd res)) by (rule monic-prod-list, insert
res, auto)
    with mon[unfolded \(u\) ] have mon-v: monic \(v\) by (simp add: coeff-degree-mult)
    with False have deg-v: degree \(v \neq 0\) by (simp add: monic-degree-0)
    show ?thesis
    proof (cases degree \(v<d+d\) )
            case True
            with result False have facts: facts \(=(\) degree \(v, v) \#\) res by simp
            show ?thesis
            proof (intro allI conjI impI)
                fix \(i f g\)
                    assume \(*:(i, f) \in\) set facts irreducible \(g g d v d f\)
            show degree \(g=i\)
            proof (cases ( \(i, f\) ) \(\in\) set res)
                    case True
                    from res \([\) OF this] * show ?thesis by auto
                    next
                    case False
                    with \(*\) facts have \(i d: i=\) degree \(v f=v\) by auto
                    note \(*=*(2-3)\) [unfolded id]
                            from fact \([O F *]\) have \(d g: d<\) degree \(g\) by auto
                            from divides-degree[OF *(2)] mon-v have deg-gv: degree \(g \leq\) degree \(v\) by
auto
                    from \(*(2)\) obtain \(h\) where \(v g h: v=g * h\) unfolding dvd-def by auto
                    from arg-cong[OF this, of degree] mon-v have dvgh: degree \(v=\) degree \(g\)
+ degree \(h\)
            by (metis deg-v degree-mult-eq degree-mult-eq-0)
            with \(d g\) deg-gv dg True have deg-h: degree \(h<d\) by auto
            \{
                assume degree \(h=0\)
                with dvgh have degree \(g=\) degree \(v\) by simp
            \}
```

```
        moreover
        {
            assume deg-h0: degree h}\not=
            hence \existsk. irreducible d k^k dvd h
                using dvd-triv-left irreducible e}\mp@subsup{d}{\mathrm{ -factor by blast}}{
            then obtain }k\mathrm{ where irr: irreducible k and k dvd h by auto
            from dvd-trans[OF this(2), of v] vgh have k dvd v by auto
            from fact[OF irr this] have dk:d< degree k.
            from divides-degree[OF<k dvd h>] deg-h0 have degree k}\leq\mathrm{ degree }h\mathrm{ by
auto
            with deg-h have degree }k<d\mathrm{ by auto
            with dk have False by auto
            }
            ultimately have degree g= degree v by auto
            thus ?thesis unfolding id by auto
            qed
        qed (insert v mon-v deg-v u facts res, force+)
    next
        case False
        note IH = IH[OF this refl refl refl]
        let ? p = CARD('a)
        let ?w = w^ ?p mod v
        let ?g = gcd (?w - ?x) v
        let ?v=v div?g
        let ?d = Suc d
    from result[simplified] v False
    have result: (if ?g=1 then dist-degree-factorize-main v ?w ?d res
        else dist-degree-factorize-main ?v (?w mod ?v) ?d ((?d, ?g) # res))
= facts
        by (auto simp: Let-def)
    from mon-v have mon-g: monic ?g by (metis deg-v degree-0 poly-gcd-monic)
    have ww:?w = ?x^ ?p ^ ?d mod v unfolding w
            by simp (metis (mono-tags, opaque-lifting) One-nat-def mult.commute
power-Suc power-mod power-mult x-pow-n)
    have gv: ?g dvd v by auto
    hence gv': v div ?g dvd v
        by (metis dvd-def dvd-div-mult-self)
    {
        fix f
        assume irr: irreducible f and fv: f dvd v and degree f =?d
        from degree-divisor(1)[OF this(1,3)]
        have }fdvd ?x ^ ?p ^ ?d - ?x by auto
    hence f dvd (?x^ ?p ^ ?d - ?x) mod v using fv by (rule dvd-mod)
    also have (?x^ ?p^ ?d - ?x) mod v = ?x^ ?p^`?d mod v - ?x mod v
by (rule poly-mod-diff-left)
    also have ?x^ ? p ^ ?d mod v = ?w mod v unfolding ww by auto
            also have ... - ?x mod v = ( w^ ?p mod v - ?x) mod v by (metis
poly-mod-diff-left)
    finally have f dvd ( w^?p mod v - ?x) using fv by (rule dvd-mod-imp-dvd)
```

with $f v$ have $f d v d ? g$ by auto
\} note $d e g-d-d v d-g=$ this
show ?thesis
proof (cases ? $g=1$)
case True
with result have dist: dist-degree-factorize-main v ? w ?d res $=$ facts by auto
show ?thesis
proof (rule $\operatorname{IH}(1)$ [OF True dist ww ures])
fix f
assume irr: irreducible f and $f v: f$ dvd v
from fact $[$ OF this] have $d<$ degree f.
moreover have degree $f \neq$? d
proof
assume degree $f=$? d
from divides-degree[OF deg-d-dvd-g[OF irr fv this]] mon-v
have degree $f \leq$ degree ?g by auto
with irr have degree ? $g \neq 0$ unfolding irreducible $_{d}$-def by auto
with True show False by auto
qed
ultimately show ? $d<$ degree f by auto
qed
next
case False
with result
have result: dist-degree-factorize-main ?v (?w mod ?v) ?d ((?d, ?g) \# res)
$=$ facts
by auto
from False mon- g have deg- g : degree $? g \neq 0$ by (simp add: monic-degree-0)
have www: ? w mod ? $v=$ monom $11^{\wedge} ? p \wedge$?d mod ? v using $g v^{\prime}$ by (simp add: mod-mod-cancel ww)
from square-free-factor[OF - sf, of v] u have sfv: square-free v by auto
have $u: u=? v * \operatorname{prod}$-list (map snd ((?d, ?g) \# res))
unfolding u by simp
show ?thesis
proof (rule IH(2)[OF False refl result www u], goal-cases)
case (1if)
show ?case
proof (cases $(i, f) \in$ set res)
case True
from res $[$ OF this $]$ show ?thesis by auto
next
case False
with 1 have $i d: i=? d f=$? g by auto
show ?thesis unfolding id
proof (intro conjI impI allI)
fix g
assume *: irreducible g g dvd ? g
hence $g v: g$ dvd v using dvd-trans $[o f g ? g$ v] by simp

```
            from fact[OF*(1) this] have dg:d< degree g.
                    {
                        assume degree g> ?d
                        from degree-divisor(2)[OF *(1) refl-this]
                        have ndvd: ᄀ g dvd ? x ^ ? p ^ ?d - ?x by auto
                        from *(2) have g dvd? ? - ?x by simp
    from this[unfolded ww]
    have g dvd ?x^ ?p^ ?d mod v - ?x .
                            with gv have g dvd (?x ^ ?p^ ? d mod v - ?x) mod v by (metis
dvd-mod)
    also have (? (x^? ? ^ ?d mod v - ?x) mod v = (?x^ ? p^ ?d - ?x)
mod v
            by (metis mod-diff-left-eq)
                    finally have g dvd ?x ^ ?p ^ ?d - ?x using gv by (rule
dvd-mod-imp-dvd)
                        with ndvd have False by auto
                    }
                    with dg show degree g = ?d by presburger
            qed (insert mon-g deg-g, auto)
            qed
        next
            case (2 f)
            note irr = 2(1)
            from dvd-trans[OF 2(2) gv] have fv: f dvd v .
            from fact[OF irr fv] have df:d< degree f degree f}\not=0\mathrm{ by auto
            {
                assume degree f=?d
                from deg-d-dvd-g[OF irr fv this] have fg: f dvd?g.
                from gv have id:v=(v div ?g)* ? g by simp
                from sfv id have square-free (v div ?g*?g) by simp
                from square-free-multD(1)[OF this 2(2) fg] have degree f=0.
                with df have False by auto
            }
            with df show ?d < degree f by presburger
            qed
        qed
    qed
    qed
qed
definition distinct-degree-factorization
    :: 'a mod-ring poly }=>\mathrm{ (nat > 'a mod-ring poly) list where
    distinct-degree-factorization f=
        (if degree f=1 then [(1,f)] else dist-degree-factorize-main f(monom 1 1) 0
[])
lemma distinct-degree-factorization: assumes
    dist: distinct-degree-factorization f}=\mathrm{ facts and
    u: square-free f and
```

```
    mon: monic f
shows f= prod-list (map snd facts) }\wedge(\forallif.(i,f)\in\mathrm{ set facts }\longrightarrow\mathrm{ factors-of-same-degree
if)
proof -
    note dist = dist[unfolded distinct-degree-factorization-def]
    show ?thesis
    proof (cases degree f\leq1)
    case False
    hence degree f>1 and dist: dist-degree-factorize-main f(monom 1 1) 0 []=
facts
            using dist by auto
    hence *: monom 1 (Suc 0) = monom 1 (Suc 0) mod f
            by (simp add: degree-monom-eq mod-poly-less)
    show ?thesis
            by (rule dist-degree-factorize-main[OF dist - u mon], insert *, auto simp:
irreducible d}\mp@subsup{d}{}{-def)
    next
        case True
        hence degree f=0\vee degree f=1 by auto
        thus ?thesis
        proof
            assume degree f=0
            with mon have f:f=1 using monic-degree-0 by blast
            hence facts =[] using dist unfolding dist-degree-factorize-main.simps[of -
- 0]
            by auto
            thus ?thesis using f by auto
    next
        assume deg: degree f=1
        hence facts: facts = [(1,f)] using dist by auto
        show ?thesis unfolding facts factors-of-same-degree-def
        proof (intro conjI allI impI; clarsimp)
            fix g
            assume irreducible g g dvd f
            thus degree g=Suc 0 using deg divides-degree[of g f] by (auto simp:
irreducibled}\mp@subsup{d}{-}{-def)
            qed (insert mon deg, auto)
        qed
    qed
qed
end
end
```


8 A Combined Factorization Algorithm for Polynomials over GF (p)

8.1 Type Based Version

We combine Berlekamp's algorithm with the distinct degree factorization to obtain an efficient factorization algorithm for square-free polynomials in GF(p).
theory Finite-Field-Factorization
imports Berlekamp-Type-Based
Distinct-Degree-Factorization
begin
We prove soundness of the finite field factorization, indepedendent on whether distinct-degree-factorization is applied as preprocessing or not.

```
consts use-distinct-degree-factorization :: bool
context
assumes SORT-CONSTRAINT('a::prime-card)
begin
definition finite-field-factorization :: 'a mod-ring poly = 'a mod-ring > 'a mod-ring
poly list where
    finite-field-factorization f}=(\mathrm{ if degree f}=0\mathrm{ then (lead-coeff f,[]) else let
        a=lead-coeff f;
        u= smult (inverse a) f;
        gs = (if use-distinct-degree-factorization then distinct-degree-factorization u else
[(1,u)]);
    (irr,hs) = List.partition ( }\lambda(i,f).\mathrm{ degree }f=i)g
    in (a,map snd irr @ concat (map ( }\lambda(i,g).berlekamp-monic-factorization i g
hs)))
lemma finite-field-factorization-explicit:
    fixes f::'a mod-ring poly
    assumes sf-f: square-free f
        and us: finite-field-factorization f}=(c,us
    shows f= smult c (prod-list us) ^(\forallu\in set us. monic }u\wedge\mathrm{ irreducible u)
proof (cases degree f=0)
    case False note f}=\mathrm{ this
    define g}\mathrm{ where g=smult (inverse c) f
    obtain gs where dist: (if use-distinct-degree-factorization then distinct-degree-factorization
g else [(1,g)]) = gs by auto
    note us =us[unfolded finite-field-factorization-def Let-def]
    from us f have c:c = lead-coeff f by auto
    obtain irr hs where part:List.partition ( }\lambda(i,f).\mathrm{ degree f = i) gs=(irr,hs) by
force
    from arg-cong[OF this, of fst] have irr: irr = filter ( }\lambda(i,f). degree f=i) g
by auto
```

from us[folded c, folded g-def, unfolded dist part split] f
have us: us = map snd irr @ concat (map $(\lambda(x, y)$.berlekamp-monic-factorization $x y) h s$) by auto
from $f c$ have $c 0: c \neq 0$ by auto
from False c0 have deg-g: degree $g \neq 0$ unfolding g-def by auto
have mon-g: monic g unfolding g-def
by (metis c c0 field-class.field-inverse lead-coeff-smult)
from $s f$ - f have $s f$ - g : square-free g unfolding g-def by (simp add: c0)
from $c 0$ have $f: f=$ smult $c g$ unfolding g-def by auto
have $g=$ prod-list (map snd gs) $\wedge(\forall(i, f) \in$ set gs. degree $f>0 \wedge$ monic $f \wedge$
$(\forall h . h$ dvd $f \longrightarrow$ degree $h=i \longrightarrow$ irreducible $h)$)
proof (cases use-distinct-degree-factorization)
case True
with dist have distinct-degree-factorization $g=g s$ by auto
note dist $=$ distinct-degree-factorization[OF this sf-g mon-g]
from dist have $g: g=$ prod-list (map snd $g s$) by auto
show ?thesis
proof (intro conjI[OF g] ballI, clarify)
fix $i f$
assume $(i, f) \in$ set $g s$
with dist have factors-of-same-degree if by auto
from factors-of-same-degree $D[O F$ this]
show degree $f>0 \wedge$ monic $f \wedge(\forall h . h$ dvd $f \longrightarrow$ degree $h=i \longrightarrow$ irreducible
h) by auto
qed
next
case False
with dist have gs: gs $=[(1, g)]$ by auto
show ?thesis unfolding $g s$ using deg-g mon-g linear-irreducible ${ }_{d}\left[\right.$ where ${ }^{\prime} a=$
'a mod-ring] by auto
qed
hence g-gs: $g=$ prod-list (map snd gs)
and mon-gs: $\bigwedge i f .(i, f) \in$ set gs \Longrightarrow monic $f \wedge$ degree $f>0$
and irrI: $\bigwedge i f h .(i, f) \in$ set $g s \Longrightarrow h d v d f \Longrightarrow$ degree $h=i \Longrightarrow$ irreducible
h by auto
have $g: g=$ prod-list (map snd irr) * prod-list (map snd hs) unfolding g-gs using prod-list-map-partition[OF part].
\{
fix f
assume $f \in$ snd ' set irr
from this[unfolded irr] obtain i where $*:(i, f) \in$ set gs degree $f=i$ by auto have $f d v d f$ by auto
from $\operatorname{irrI}[O F *(1)$ this *(2)] mon-gs[OF *(1)] have monic firreducible f by auto
\} note $i r r=t h i s$
let ? berl $=\lambda$ hs. concat $(\operatorname{map}(\lambda(x, y)$. berlekamp-monic-factorization $x y) h s)$
have set $h s \subseteq$ set gs using part by auto
hence prod-list (map snd hs) $=$ prod-list (?berl hs)
$\wedge\left(\forall f \in \operatorname{set}\left(\right.\right.$?berl hs). monic $f \wedge$ irreducible $\left._{d} f\right)$
proof (induct hs)
case (Cons ih hs)
obtain $i h$ where $i h$: ih $=(i, h)$ by force
have ?berl (Cons ih hs) = berlekamp-monic-factorization i h @ ?berl hs unfolding ih by auto
from Cons(2)[unfolded ih] have mem: $(i, h) \in$ set gs and sub: set $h s \subseteq$ set gs by auto
note $I H=\operatorname{Cons}(1)[$ OF sub]
from mem have $h \in$ set (map snd gs) by force
from square-free-factor[OF prod-list-dvd[OF this], folded g-gs, OF sf-g] have sf: square-free h.
from mon-gs[OF mem] $\operatorname{irr}[$ [OF mem] have $*$: degree $h>0$ monic h
$\bigwedge g . g$ dvd $h \Longrightarrow$ degree $g=i \Longrightarrow$ irreducible g by auto
from berlekamp-monic-factorization[OF sf refl *(3) *(1-2), of $i]$
have berl: prod-list (berlekamp-monic-factorization $i h)=h$
and irr: $\wedge f . f \in$ set (berlekamp-monic-factorization $i h) \Longrightarrow$ monic $f \wedge$ irreducible f by auto
have prod-list (map snd (Cons ih hs)) $=h *$ prod-list (map snd hs) unfolding ih by simp
also have prod-list (map snd hs) = prod-list (?berl hs) using IH by auto
finally have prod-list (map snd (Cons ih hs)) = prod-list (?berl (Cons ih hs)) unfolding ih using berl by auto
thus ?case using IH irr unfolding ih by auto
qed auto
with g irr have main: $g=$ prod-list us $\wedge\left(\forall u \in\right.$ set us. monic $u \wedge$ irreducible $_{d}$ u) unfolding us
by auto
thus ?thesis unfolding f using $s f-g$ by auto next
case True
with us[unfolded finite-field-factorization-def] have $c=l e a d$-coeff f and us: us $=[]$ by auto
with degree 0 -coeffs $[$ OF True $]$ have $f: f=[: c:]$ by auto
show ?thesis unfolding us f by (auto simp: normalize-poly-def)
qed
lemma finite-field-factorization:
fixes $f::^{\prime} a$ mod-ring poly
assumes $s f$-f: square-free f
and us: finite-field-factorization $f=(c, u s)$
shows unique-factorization $\operatorname{Irr}-\operatorname{Mon} f$ (c, mset us)
proof -
from finite-field-factorization-explicit[OF sf-f us]
have fact: factorization $\operatorname{Irr}-\operatorname{Mon} f(c$, mset us)
unfolding factorization-def split Irr-Mon-def by (auto simp: prod-mset-prod-list)
from $s f$ - f [unfolded square-free-def] have $f \neq 0$ by auto
from exactly-one-factorization[OF this] fact
show ?thesis unfolding unique-factorization-def by auto
qed

end

Experiments revealed that preprocessing via distinct-degree-factorization slows down the factorization algorithm (statement for implementation in AFP 2017)
overloading use-distinct-degree-factorization \equiv use-distinct-degree-factorization begin
definition use-distinct-degree-factorization
where [code-unfold]: use-distinct-degree-factorization $=$ False
end
end

8.2 Record Based Version

theory Finite-Field-Factorization-Record-Based imports
Finite-Field-Factorization
Matrix-Record-Based
Poly-Mod-Finite-Field-Record-Based
HOL-Types-To-Sets.Types-To-Sets
Jordan-Normal-Form.Matrix-IArray-Impl
Jordan-Normal-Form.Gauss-Jordan-IArray-Impl
Polynomial-Interpolation.Improved-Code-Equations
Polynomial-Factorization.Missing-List

begin

hide-const(open) monom coeff
Whereas 【square-free ?f; finite-field-factorization ?f $=(? c$, ?us $) \rrbracket \Longrightarrow$ unique-factorization Irr-Mon ?f (?c, mset ? us) provides a result for a polynomials over GF(p), we now develop a theorem which speaks about integer polynomials modulo p .
lemma (in poly-mod-prime-type) finite-field-factorization-modulo-ring:
assumes $g:(g::$ 'a mod-ring poly $)=o f$-int-poly f
and $s f$: square-free- $m f$
and fact: finite-field-factorization $g=(d, g s)$
and $c: c=$ to-int-mod-ring d
and $f s: f s=$ map to-int-poly gs
shows unique-factorization-m $f(c$, mset $f s)$
proof -
have [transfer-rule]: MP-Relf g unfolding g MP-Rel-def by (simp add: Mp-f-representative)
have $s g$: square-free g by (transfer, rule sf)
have [transfer-rule]: M-Rel cd unfolding M-Rel-def c by (rule M-to-int-mod-ring)
have $f s$-gs[transfer-rule]: list-all2 MP-Rel fs gs
unfolding fs list-all2-map1 MP-Rel-def[abs-def] Mp-to-int-poly by (simp add:
list.rel-refl)
have [transfer-rule]: rel-mset MP-Rel (mset fs) (mset gs)
using $f s$-gs using rel-mset-def by blast

```
    have [transfer-rule]: MF-Rel (c,mset fs) (d,mset gs) unfolding MF-Rel-def by
transfer-prover
    from finite-field-factorization[OF sg fact]
    have uf: unique-factorization Irr-Mon g (d,mset gs) by auto
    from uf[untransferred] show unique-factorization-m f (c,mset fs).
qed
```

We now have to implement finite-field-factorization.

context

 fixes \(p::\) int
 and ff-ops :: 'i arith-ops-record
 begin
fun power-poly-f-mod-i :: ('i list \Rightarrow ' i list $) \Rightarrow$ 'i list \Rightarrow nat \Rightarrow 'i list where
power-poly-f-mod-i modulus a $n=$ (if $n=0$ then modulus (one-poly-i ff-ops)
else let $(d, r)=$ Divides.divmod-nat n 2;
rec $=$ power-poly-f-mod-i modulus (modulus (times-poly-i ff-ops a a))d in
if $r=0$ then rec else modulus (times-poly-i ff-ops rec a))
declare power-poly-f-mod-i.simps[simp del]
fun power-polys- i :: 'i list \Rightarrow 'i list \Rightarrow 'i list \Rightarrow nat \Rightarrow 'i list list where
power-polys-i mul-p u curr-p (Suc i) $=$ curr-p \#
power-polys-i mul-p u (mod-field-poly-i ff-ops (times-poly-i ff-ops curr-p mul-p)
u) i
| power-polys-i mul-p u curr-p $0=[]$
lemma length-power-polys-i[simp]: length (power-polys-i x y $z n)=n$
by (induct n arbitrary: $x y z$, auto)
definition berlekamp-mat-i :: 'i list \Rightarrow ' i mat where
berlekamp-mat-i $u=$ (let $n=$ degree- $i u$;
$z e=$ arith-ops-record.zero ff-ops; on $=$ arith-ops-record.one ff-ops;
mul-p $=$ power-poly-f-mod-i (λ v. mod-field-poly-i ff-ops v u)
[ze, on] (nat p);
xks $=$ power-polys-i mul-p $u[o n] n$
in mat-of-rows-list $n(\operatorname{map}(\lambda c s . c s @ r e p l i c a t e ~(~ n-l e n g t h ~ c s) ~ z e) ~ x k s)) ~$
definition berlekamp-resulting-mat-i :: 'i list \Rightarrow 'i mat where
berlekamp-resulting-mat-i $u=$ (let $Q=$ berlekamp-mat-i u;
$n=$ dim-row Q;
$Q I=$ mat $n n(\lambda(i, j)$. if $i=j$ then arith-ops-record.minus ff-ops $(Q \$ \$(i, j))$
(arith-ops-record.one ff-ops) else $Q \$ \$(i, j))$
in (gauss-jordan-single-i ff-ops (transpose-mat QI)))
definition berlekamp-basis- $i::$ ' i list \Rightarrow 'i list list where
berlekamp-basis-i $u=($ map (poly-of-list-i ff-ops o list-of-vec)
(find-base-vectors-i ff-ops (berlekamp-resulting-mat-i u)))
primrec berlekamp-factorization-main- $i:: ' i \Rightarrow{ }^{\prime} i \Rightarrow n a t \Rightarrow{ }^{\prime} i$ list list \Rightarrow 'i list list \Rightarrow nat \Rightarrow 'i list list where
berlekamp-factorization-main-i ze on d divs $(v \#$ vs) $n=($
if $v=[o n]$ then berlekamp-factorization-main- i ze on d divs vs n else
if length divs $=n$ then divs else
let of-int $=$ arith-ops-record.of-int ff-ops;
facts $=$ filter $(\lambda w . w \neq[o n])$
[gcd-poly-i ff-ops u (minus-poly-i ff-ops v (if $s=0$ then [] else [of-int (int
s)])) .

$$
u \leftarrow \text { divs }, s \leftarrow[0 . .<\text { nat } p]] ;
$$

(lin, nonlin) $=$ List.partition $(\lambda q$. degree- $i q=d$) facts
in lin @ berlekamp-factorization-main-i ze on d nonlin vs (n - length lin $)$)
| berlekamp-factorization-main-i ze on d divs [] $n=$ divs
definition berlekamp-monic-factorization- $i::$ nat $\Rightarrow{ }^{\prime} i$ list \Rightarrow ' i list list where
berlekamp-monic-factorization-i $d f=$ (let
$v s=$ berlekamp-basis-if
in berlekamp-factorization-main-i (arith-ops-record.zero ff-ops) (arith-ops-record.one
ff-ops) $d[f]$ vs (length vs))
partial-function (tailrec) dist-degree-factorize-main- $i::$
${ }^{\prime} i \Rightarrow{ }^{\prime} i \Rightarrow$ nat \Rightarrow 'i list $\Rightarrow{ }^{\prime} i$ list \Rightarrow nat \Rightarrow (nat $\times{ }^{\prime}$ i list $)$ list
\Rightarrow (nat \times 'i list) list where
[code]: dist-degree-factorize-main-i ze on $d v v w d$ res $=($ if $v=[$ on] then res else if $d+d>d v$
then $(d v, v) \#$ res else let
$w=$ power-poly-f-mod-i $(\lambda f$. mod-field-poly-i ff-ops $f v) w($ nat $p) ;$
$d=$ Suc $d ;$
$g d=$ gcd-poly-i ff-ops (minus-poly-i ff-ops $w[z e, o n]) v$
in if $g d=[o n]$ then dist-degree-factorize-main- i ze on $d v v w d$ res else
let $v^{\prime}=$ div-field-poly-i ff-ops v gd
in dist-degree-factorize-main-i ze on (degree-i v^{\prime}) v^{\prime} (mod-field-poly-i ff-ops w $\left.\left.v^{\prime}\right) d((d, g d) \# r e s)\right)$
definition distinct-degree-factorization- i
:: 'i list \Rightarrow (nat \times 'i list) list where
distinct-degree-factorization-i $f=$ (let ze $=$ arith-ops-record.zero ff-ops;
on $=$ arith-ops-record.one ff-ops in if degree- $i f=1$ then $[(1, f)]$ else
dist-degree-factorize-main-i ze on (degree-if) f [ze,on] 0 [])
definition finite-field-factorization-i $::$ ' i list $\Rightarrow{ }^{\prime} i \times{ }^{\prime} i$ list list where
finite-field-factorization-i $f=($ if degree- $i f=0$ then (lead-coeff-i ff-ops $f,[])$ else let
$a=$ lead-coeff-i ff-ops $f ;$
$u=$ smult-i ff-ops (arith-ops-record.inverse ff-ops a) f;
gs $=$ (if use-distinct-degree-factorization then distinct-degree-factorization-i u else $[(1, u)])$;
$($ irr,$h s)=$ List.partition $(\lambda(i, f)$. degree- $i f=i)$ gs
in (a, map snd irr @ concat (map ($\lambda(i, g)$. berlekamp-monic-factorization-i i g)
$h s)$))
end
context prime-field-gen
begin
lemma power-polys- i : assumes $i: i<n$ and [transfer-rule]: poly-rel $f f^{\prime}$ poly-rel $g g^{\prime}$
and h : poly-rel $h h^{\prime}$
shows poly-rel (power-polys-i ff-ops gf $h n!i$ (power-polys $g^{\prime} f^{\prime} h^{\prime} n!i$)
using $i h$
proof (induct n arbitrary: $h h^{\prime} i$)
case (Suc $n h h^{\prime} i$) note $*=$ this
note $[$ transfer-rule $]=*(3)$
show ? case
proof (cases i)
case 0
with Suc show ?thesis by auto
next
case (Suc j)
with $*(2-)$ have $j<n$ by auto
note $I H=*(1)[$ OF this $]$
show ?thesis unfolding Suc by (simp, rule IH, transfer-prover)
qed
qed simp
lemma power-poly-f-mod- i : assumes m : (poly-rel $===>$ poly-rel) $m\left(\lambda x^{\prime} \cdot x^{\prime} \bmod \right.$ m^{\prime})
shows poly-rel ff' \Longrightarrow poly-rel (power-poly-f-mod-i ff-ops $m f n$) (power-poly-f-mod $m^{\prime} f^{\prime} n$)
proof -
from m have $m: ~ \bigwedge x x^{\prime}$. poly-rel $x x^{\prime} \Longrightarrow$ poly-rel $(m x)\left(x^{\prime} \bmod m^{\prime}\right)$
unfolding rel-fun-def by auto
show poly-rel ff' \Longrightarrow poly-rel (power-poly-f-mod-i ff-ops m f n) (power-poly-f-mod $m^{\prime} f^{\prime} n$)
proof (induct n arbitrary: $f f^{\prime}$ rule: less-induct)
case (less $n f f^{\prime}$)
note $f[$ transfer-rule $]=\operatorname{less}(2)$
show ?case
proof (cases $n=0$)
case True
show ?thesis
by (simp add: True power-poly-f-mod-i.simps power-poly-f-mod-binary, rule m [OF poly-rel-one])
next
case False
hence $n:(n=0)=$ False by simp
obtain $q r$ where div: Divides.divmod-nat $n 2=(q, r)$ by force
from this[unfolded divmod-nat-def] n have $q<n$ by auto
note $I H=\operatorname{less}(1)[$ OF this $]$
have rec: poly-rel (power-poly-f-mod-i ff-ops $m(m$ (times-poly-i ff-ops ff)) q)
(power-poly-f-mod $m^{\prime}\left(f^{\prime} * f^{\prime} \bmod m^{\prime}\right) q$)
by (rule IH, rule m, transfer-prover)
have other: poly-rel
(m (times-poly- i ff-ops (power-poly-f-mod-i ff-ops m (m (times-poly-i ff-ops $f f)$) q) f))
(power-poly-f-mod $\left.m^{\prime}\left(f^{\prime} * f^{\prime} \bmod m^{\prime}\right) q * f^{\prime} \bmod m^{\prime}\right)$
by (rule m, rule poly-rel-times[unfolded rel-fun-def, rule-format, OF rec f])
show ?thesis unfolding power-poly-f-mod-i.simps[of - - n] Let-def
power-poly-f-mod-binary $[$ of $-n]$ div split n if-False using rec other by auto qed
qed
qed
lemma berlekamp-mat-i[transfer-rule]: (poly-rel $===>$ mat-rel R)
(berlekamp-mat-i pff-ops) berlekamp-mat
proof (intro rel-funI)
fix $f f^{\prime}$
let $? z e=$ arith-ops-record.zero ff-ops
let $?$ on $=$ arith-ops-record.one ff-ops
assume $f[$ transfer-rule $]$: poly-rel $f f^{\prime}$
have deg: degree-i $f=$ degree f^{\prime} by transfer-prover
\{
fix $i j$
assume i : $i<$ degree f^{\prime} and $j: j<$ degree f^{\prime}
define $c s$ where $c s=\left(\lambda c s::\right.$ ' i list. cs @ replicate (degree $f^{\prime}-$ length cs) ?ze)
define $c s^{\prime}$ where $c s^{\prime}=(\lambda c s::$ 'a mod-ring poly. coeffs cs @ replicate (degree $f^{\prime}-$ length (coeffs cs)) 0)
define poly where poly $=$ power-polys-i ff-ops
(power-poly-f-mod-i ff-ops (λv. mod-field-poly-i ff-ops $v f$) [?ze, ?on] (nat
p)) f [?on]
(degree f^{\prime})
define poly' where poly ${ }^{\prime}=\left(\right.$ power-polys $\left(\right.$ power-poly-f-mod $f^{\prime}[: 0,1:]($ nat $\left.p)\right)$
$f^{\prime} 1\left(\right.$ degree $\left.\left.f^{\prime}\right)\right)$
have *: poly-rel (power-poly-f-mod-i ff-ops (λv. mod-field-poly-i ff-ops vf) [?ze, ?on] (nat p))
(power-poly-f-mod $f^{\prime}[: 0,1:]($ nat $\left.p)\right)$
by (rule power-poly-f-mod-i, transfer-prover, simp add: poly-rel-def one zero)
have [transfer-rule]: poly-rel (poly!i) (poly' ! i)
unfolding poly-def poly'-def
by (rule power-polys-i[OF if *], simp add: poly-rel-def one)
have $*$: list-all2 $R(c s($ poly! $i))\left(c s^{\prime}(\right.$ poly' ! i $\left.)\right)$
unfolding $c s$-def $c s^{\prime}$-def by transfer-prover
from list-all2-nth $D[O F *[$ unfolded poly-rel-def $]$, of $j] j$
have $R(c s(p o l y!i)!j)\left(c s^{\prime}\left(p_{0} y^{\prime}!i\right)!j\right)$ unfolding cs-def by auto
hence R
(mat-of-rows-list (degree f^{\prime})

```
            (map (\lambdacs.cs @ replicate (degree f' - length cs) ?ze)
            (power-polys-i ff-ops
                (power-poly-f-mod-i ff-ops (\lambdav. mod-field-poly-i ff-ops v f) [?ze, ?on]
(nat p)) f[?on]
                                    (degree f
                            (i,j))
                    (mat-of-rows-list (degree f')
                        (map (\lambdacs.coeffs cs @ replicate (degree f' - length (coeffs cs)) 0)
                                    (power-polys (power-poly-f-mod f' [:0, 1:] (nat p)) f'1 (degree f'))) $$
                    (i,j))
        unfolding mat-of-rows-list-def length-map length-power-polys-i power-polys-works
            length-power-polys index-mat[OF i j] split
                unfolding poly-def cs-def poly'-def cs'-def using i
            by auto
    } note main = this
    show mat-rel R (berlekamp-mat-i p ff-ops f) (berlekamp-mat f')
    unfolding berlekamp-mat-i-def berlekamp-mat-def Let-def nat-p[symmetric] deg
    unfolding mat-rel-def
    by (intro conjI allI impI, insert main, auto)
qed
lemma berlekamp-resulting-mat-i[transfer-rule]:(poly-rel ===> mat-rel R)
    (berlekamp-resulting-mat-i p ff-ops) berlekamp-resulting-mat
proof (intro rel-funI)
    fix ff}\mp@subsup{f}{}{\prime
    assume poly-rel f f'
    from berlekamp-mat-i[unfolded rel-fun-def, rule-format, OF this]
    have bmi: mat-rel R (berlekamp-mat-i p ff-ops f) (berlekamp-mat f') .
    show mat-rel R (berlekamp-resulting-mat-i p ff-ops f) (berlekamp-resulting-mat
f')
    unfolding berlekamp-resulting-mat-def Let-def berlekamp-resulting-mat-i-def
    by (rule gauss-jordan-i[unfolded rel-fun-def, rule-format],
    insert bmi, auto simp: mat-rel-def one intro!: minus[unfolded rel-fun-def, rule-format])
qed
lemma berlekamp-basis-i[transfer-rule]: (poly-rel ===> list-all2 poly-rel)
    (berlekamp-basis-i p ff-ops) berlekamp-basis
    unfolding berlekamp-basis-i-def[abs-def] berlekamp-basis-code[abs-def] o-def
    by transfer-prover
lemma berlekamp-factorization-main-i[transfer-rule]:
    ((=) ===> list-all2 poly-rel ===> list-all2 poly-rel ===> (=) ===>> list-all2
poly-rel)
        (berlekamp-factorization-main-i p ff-ops (arith-ops-record.zero ff-ops)
            (arith-ops-record.one ff-ops))
        berlekamp-factorization-main
proof (intro rel-funI, clarify, goal-cases)
    case (1-d xs xs' ys ys' - n)
    let ?ze = arith-ops-record.zero ff-ops
```

let $?$ on $=$ arith-ops-record.one ff-ops
let ?of-int $=$ arith-ops-record.of-int ff-ops
from 1(2) 1(1) show?case
proof (induct ys ys ${ }^{\prime}$ arbitrary: xs $x s^{\prime} n$ rule: list-all2-induct)
case (Cons y ys y^{\prime} ys' $x s x s^{\prime} n$)
note trans[transfer-rule $]=\operatorname{Cons}(1,2,4)$
obtain clar0 clar1 clar2 where clarify: Λ s u. gcd-poly-iff-ops u
(minus-poly-i ff-ops y
$($ if $s=0$ then [] else $[$?of-int $($ int $s)]))=\operatorname{clar0} s u$
$[0 . .<$ nat $p]=$ clar 1
[?on] = clar2 by auto
define facts where facts $=$ concat (map (λu. concat
(map (λ s. if gcd-poly-i ff-ops u
(minus-poly-i ff-ops y (if $s=0$ then [] else [?of-int
$($ int $s)])) \neq$
[?on]
then [gcd-poly-i ff-ops u
(minus-poly-i ff-ops y (if $s=0$ then [] else [?of-int
(int s)]))]
else [])
$[0 . .<$ nat $p])) x s)$
define Facts where Facts $=[w \leftarrow$ concat (map (λ u. map (λs. gcd-poly-i ff-ops u (minus-poly-i ff-ops y (if $s=0$ then [] else $[$?of-int $($ int $s)]))$)
$[0 . .<$ nat p] $)$
xs) . $w \neq[$? on $]$]
have Facts: Facts = facts
unfolding Facts-def facts-def clarify
proof (induct $x s$)
case (Cons x xs)
show ? case by (simp add: Cons, induct clar1, auto)
qed simp
define facts ${ }^{\prime}$ where facts $^{\prime}=$ concat
(map (λu. concat
$\left(\operatorname{map}\left(\lambda x\right.\right.$. if $\operatorname{gcd} u\left(y^{\prime}-[\right.$:of-nat $\left.x:]\right) \neq 1$
then $\left[\right.$ gcd $u\left(y^{\prime}-[: o f-i n t(\right.$ int $\left.\left.x):]\right)\right]$ else [])
$[0 . .<$ nat $p])$)
$\left.x s^{\prime}\right)$
have $i d: \bigwedge x$. of-int $($ int $x)=$ of-nat $x[? o n]=$ one-poly-iff-ops
by (auto simp: one-poly-i-def)
have facts[transfer-rule]: list-all2 poly-rel facts facts'
unfolding facts-def facts'-def
apply (rule concat-transfer[unfolded rel-fun-def, rule-format])
apply (rule list.map-transfer[unfolded rel-fun-def, rule-format, OF - trans(3)])
apply (rule concat-transfer[unfolded rel-fun-def, rule-format])
apply (rule list-all2-map-map)
proof (unfold id)
fix $f f^{\prime} x$

```
    assume [transfer-rule]: poly-rel ff' and x: x set [0..<nat p]
    hence *: O < int x int x < p by auto
    from of-int[OF this] have rel[transfer-rule]: R (?of-int (int x)) (of-nat x) by
auto
    {
        assume 0 < x
        with * have *: 0< int x int x<p by auto
        have (of-nat x:: 'a mod-ring)=of-int (int x) by simp
        also have ... =0 unfolding of-int-of-int-mod-ring using * unfolding p
        by (transfer', auto)
    }
    with rel have [transfer-rule]: poly-rel (if x = 0 then [] else [?of-int (int x)])
[:of-nat x:]
            unfolding poly-rel-def by (auto simp add: cCons-def p)
    show list-all2 poly-rel
        (if gcd-poly-i ff-ops f (minus-poly-i ff-ops y (if x = 0 then [] else [?of-int
(int x)])) \not= one-poly-i ff-ops
            then [gcd-poly-i ff-ops f (minus-poly-i ff-ops y (if x = 0 then [] else [?of-int
(int x)]))]
            else [])
            (if gcd f' (y' - [:of-nat x:]) # 1 then [gcd f' ( }\mp@subsup{y}{}{\prime}-[:0f-nat x:])] else []
            by transfer-prover
        qed
        have id1: berlekamp-factorization-main-i p ff-ops ?ze ?on d xs (y # ys) n=(
        if }y=[\mathrm{ ?on] then berlekamp-factorization-main-i p ff-ops ?ze ?on d xs ys n else
        if length xs = n then xs else
        (let fac = facts;
            (lin, nonlin) = List.partition ( }\lambdaq.\mathrm{ degree-i q = d) fac
            in lin @ berlekamp-factorization-main-i p ff-ops ?ze ?on d nonlin ys (n
- length lin)))
    unfolding berlekamp-factorization-main-i.simps Facts[symmetric]
    by (simp add: o-def Facts-def Let-def)
    have id2: berlekamp-factorization-main d xs' ( }\mp@subsup{y}{}{\prime}##ys') n=
    if }\mp@subsup{y}{}{\prime}=1\mathrm{ then berlekamp-factorization-main d xs' ys' n
    else if length xs' = n then xs' else
    (let fac = facts';
        (lin, nonlin) = List.partition (\lambdaq. degree q = d) fac
            in lin @ berlekamp-factorization-main d nonlin ys' ( }n\mathrm{ - length lin)))
    by (simp add: o-def facts'-def nat-p)
    have len:length xs = length xs' by transfer-prover
    have id3: (y=[?on]) = ( y'=1)
    by (transfer-prover-start, transfer-step+, simp add: one-poly-i-def finite-field-ops-int-def)
    show ?case
    proof (cases y'}=1\mathrm{ )
    case True
    hence id4: ( }\mp@subsup{y}{}{\prime}=1)=\mathrm{ True by simp
    show ?thesis unfolding id1 id2 id3 id4 if-True
    by (rule Cons(3), transfer-prover)
    next
```

```
    case False
    hence id4:}(\mp@subsup{y}{}{\prime}=1)=\mathrm{ False by simp
    note id1 = id1[unfolded id3 id4 if-False]
    note id2 = id2[unfolded id4 if-False]
    show ?thesis
    proof (cases length xs' = n)
            case True
            thus ?thesis unfolding id1 id2 Let-def len using trans by simp
        next
            case False
            hence id: (length xs' = n) = False by simp
            have id': length [q\leftarrowfacts . degree-i q = d] = length [q\leftarrowfacts'. degree q=
d]
            by transfer-prover
            have [transfer-rule]: list-all2 poly-rel (berlekamp-factorization-main-i p ff-ops
?ze ?on d [x\leftarrowfacts . degree-i }x\not=d]\mathrm{ ys
            (n - length [q\leftarrowfacts . degree-i q=d]))
            (berlekamp-factorization-main d [x\leftarrowfacts' . degree x }\not=d]y\mp@subsup{s}{}{\prime
            (n-length [q\leftarrowfacts'. degree q=d]))
            unfolding id'
            by (rule Cons(3), transfer-prover)
            show ?thesis unfolding id1 id2 Let-def len id if-False
            unfolding partition-filter-conv o-def split by transfer-prover
        qed
    qed
    qed simp
qed
lemma berlekamp-monic-factorization-i[transfer-rule]:
    ((=) ===> poly-rel ===> list-all2 poly-rel)
                            (berlekamp-monic-factorization-i p ff-ops) berlekamp-monic-factorization
    unfolding berlekamp-monic-factorization-i-def[abs-def] berlekamp-monic-factorization-def[abs-def]
Let-def
    by transfer-prover
lemma dist-degree-factorize-main-i:
    poly-rel F f \Longrightarrow poly-rel G g\Longrightarrow list-all2 (rel-prod (=) poly-rel) Res res
    Clist-all2 (rel-prod (=) poly-rel)
        (dist-degree-factorize-main-i p ff-ops
            (arith-ops-record.zero ff-ops) (arith-ops-record.one ff-ops) (degree-i F) FG
d Res)
            (dist-degree-factorize-main f g d res)
proof (induct fg d res arbitrary:F G Res rule: dist-degree-factorize-main.induct)
    case (1 v w d res V W Res)
    let ?ze = arith-ops-record.zero ff-ops
    let ?on = arith-ops-record.one ff-ops
    note simp = dist-degree-factorize-main.simps[of v w d}
        dist-degree-factorize-main-i.simps[of p ff-ops ?ze ?on degree-i V V W d]
    have v[transfer-rule]: poly-rel Vv by (rule 1)
```

```
    have w[transfer-rule]: poly-rel Ww by (rule 1)
    have res[transfer-rule]: list-all2 (rel-prod (=) poly-rel) Res res by (rule 1)
    have [transfer-rule]: poly-rel [?on] 1
    by (simp add: one poly-rel-def)
    have id1: (V = [?on]) = (v=1) unfolding finite-field-ops-int-def by trans-
fer-prover
    have id2: degree-i }V=\mathrm{ degree v by transfer-prover
    note simp = simp[unfolded id1 id2]
    note IH=1(1,2)
    show ?case
    proof (cases v=1)
        case True
        with res show ?thesis unfolding id2 simp by simp
    next
    case False
    with id1 have (v=1) = False by auto
    note simp = simp[unfolded this if-False]
    note IH=IH[OF False]
    show ?thesis
    proof (cases degree v<d+d)
        case True
        thus ?thesis unfolding id2 simp using res v by auto
    next
        case False
        hence (degree v<d+d)= False by auto
        note simp = simp[unfolded this if-False]
        let ?P = power-poly-f-mod-i ff-ops ( }\lambdaf\mathrm{ . mod-field-poly-i ff-ops f V)W (nat
p)
            let ?G = gcd-poly-i ff-ops (minus-poly-i ff-ops ?P [?ze, ?on]) V
            let ? g = gcd ( }w\mp@subsup{}{}{`}CARD('a) mod v - monom 1 1) v
            define }G\mathrm{ where }G=\mathrm{ ? }
            define }g\mathrm{ where }g=?
            note simp = simp[unfolded Let-def, folded G-def g-def]
            note IH = IH[OF False refl refl refl]
            have [transfer-rule]: poly-rel [?ze,?on] (monom 1 1) unfolding poly-rel-def
                by (auto simp: coeffs-monom one zero)
            have id: w^ CARD('a) mod v = power-poly-f-mod v w (nat p)
                unfolding power-poly-f-mod-def by (simp add: p)
            have P[transfer-rule]: poly-rel ?P ( w ^CARD('a) mod v) unfolding id
                by (rule power-poly-f-mod-i[OF - w], transfer-prover)
            have g[transfer-rule]: poly-rel G g}\mathrm{ unfolding G-def g-def by transfer-prover
            have id3: }(G=[?on])=(g=1) by transfer-prover
            note simp = simp[unfolded id3]
            show ?thesis
            proof (cases g=1)
            case True
            from IH(1)[OF this[unfolded g-def] v P res] True
            show ?thesis unfolding id2 simp by simp
            next
```

```
            case False
            have vg: poly-rel (div-field-poly-i ff-ops V G) (v div g) by transfer-prover
            have poly-rel (mod-field-poly-i ff-ops ?P
                            (div-field-poly-i ff-ops V G)) (w ^ CARD('a) mod v mod (v div g)) by
transfer-prover
            note IH = IH(2)[OF False[unfolded g-def] refl vg[unfolded G-def g-def]
this[unfolded G-def g-def],
                    folded g-def G-def]
            have list-all2 (rel-prod (=) poly-rel) ((Suc d, G) # Res) ((Suc d, g) # res)
                    using g res by auto
                note IH = IH[OF this]
                from False have (g=1) = False by simp
                note simp = simp[unfolded this if-False]
                show ?thesis unfolding id2 simp using IH by simp
            qed
            qed
    qed
qed
lemma distinct-degree-factorization-i[transfer-rule]: (poly-rel ===> list-all2 (rel-prod
(=) poly-rel))
    (distinct-degree-factorization-i p ff-ops) distinct-degree-factorization
proof
    fix Ff
    assume f[transfer-rule]: poly-rel F f
    have id: (degree-i F=1)=(degree f=1) by transfer-prover
    note d = distinct-degree-factorization-i-def distinct-degree-factorization-def
    let ?ze = arith-ops-record.zero ff-ops
    let ?on = arith-ops-record.one ff-ops
    show list-all2 (rel-prod (=) poly-rel) (distinct-degree-factorization-i p ff-ops F)
                (distinct-degree-factorization f)
    proof (cases degree f=1)
        case True
            with id f}\mathrm{ show ?thesis unfolding d by auto
    next
        case False
        from False id have ?thesis = (list-all2 (rel-prod (=) poly-rel)
            (dist-degree-factorize-main-i p ff-ops ?ze ?on (degree-i F) F [?ze, ?on] 0 [])
            (dist-degree-factorize-main f (monom 1 1) 0 [])) unfolding d Let-def by simp
            also have .. 
                by (rule dist-degree-factorize-main-i[OF f], auto simp: poly-rel-def
                coeffs-monom one zero)
            finally show ?thesis .
    qed
qed
lemma finite-field-factorization-i[transfer-rule]:
    (poly-rel ===> rel-prod R (list-all2 poly-rel))
```

(finite-field-factorization-i p ff-ops) finite-field-factorization
unfolding finite-field-factorization-i-def finite-field-factorization-def Let-def lead-coeff-i-def' by transfer-prover

Since the implementation is sound, we can now combine it with the soundness result of the finite field factorization.

```
lemma finite-field-i-sound:
    assumes f': f' =of-int-poly-i ff-ops(Mpf)
    and berl-i: finite-field-factorization-i p ff-ops f' = ( }\mp@subsup{c}{}{\prime},f\mp@subsup{s}{}{\prime}
    and sq: square-free-m f
    and fs: fs = map (to-int-poly-i ff-ops) fs '
    and c:c = arith-ops-record.to-int ff-ops c'
    shows unique-factorization-m f (c, mset fs)
    \wedgec\in{0 .. < p}
    \wedge(\forallfi\in set fs.set (coeffs fi)\subseteq{0..<p})
proof -
    define f'' :: 'a mod-ring poly where f'' = of-int-poly (Mpf)
    have rel-f[transfer-rule]: poly-rel f' f'\prime
    by (rule poly-rel-of-int-poly[OF f'], simp add: f''-def)
    interpret pff:idom-ops poly-ops ff-ops poly-rel
    by (rule idom-ops-poly)
    obtain }\mp@subsup{c}{}{\prime\prime}f\mp@subsup{s}{}{\prime\prime}\mathrm{ where berl: finite-field-factorization f"}=(\mp@subsup{c}{}{\prime\prime},f\mp@subsup{s}{}{\prime\prime})\mathrm{ by force
    from rel-funD[OF finite-field-factorization-i rel-f, unfolded rel-prod-conv assms(2)
split berl]
    have rel[transfer-rule]: R c' c'l list-all2 poly-rel fs' fs'" by auto
    from to-int[OF rel(1)] have cc': c=to-int-mod-ring c'| unfolding c by simp
    have c:c\in{0 ..< p} unfolding cc'
    by (metis Divides.pos-mod-bound Divides.pos-mod-sign M-to-int-mod-ring atLeast-
LessThan-iff
        gr-implies-not-zero nat-le-0 nat-p not-le poly-mod.M-def zero-less-card-finite)
    {
    fix f
    assume f}\in\mathrm{ set fs'
        with rel(2) obtain f' where poly-rel f f' unfolding list-all2-conv-all-nth
set-conv-nth
            by auto
    hence is-poly ff-ops f using fun-cong[OF Domainp-is-poly, of f]
        unfolding Domainp-iff [abs-def] by auto
    }
    hence fs': Ball (set fs') (is-poly ff-ops) by auto
    define mon :: 'a mod-ring poly }=>\mathrm{ bool where mon = monic
    have [transfer-rule]:(poly-rel ===> (=)) (monic-i ff-ops) mon unfolding mon-def
    by (rule poly-rel-monic)
    have len: length fs' }\mp@subsup{}{}{\prime}=\mathrm{ length fs"' by transfer-prover
    have fs':}fs=m\mathrm{ map to-int-poly fs" unfolding fs
    proof (rule nth-map-conv[OF len], intro allI impI)
    fix }
    assume i:i< length fs'
```

```
    obtain fg}\mathrm{ where id: fs}\mp@subsup{s}{}{\prime}!i=ff\mp@subsup{s}{}{\prime\prime}!i=g by aut
    from i rel(2)[unfolded list-all2-conv-all-nth[of-fs'fs'I]] id
    have poly-rel fg}\mathrm{ by auto
    from to-int-poly-i[OF this] have to-int-poly-i ff-ops f=to-int-poly g.
    thus to-int-poly-i ff-ops (fs''!i)= to-int-poly (fs''! ! ) unfolding id .
    qed
    have f: f'\prime}=of-int-poly f unfolding poly-eq-iff f'\prime-def
    by (simp add: to-int-mod-ring-hom.injectivity to-int-mod-ring-of-int-M Mp-coeff)
    have *: unique-factorization-m f (c, mset fs)
    using finite-field-factorization-modulo-ring[OF f sq berl cc' fs'] by auto
    have fs':(\forall fi\inset fs. set (coeffs fi)\subseteq{0..<p}) unfolding fs'
    using range-to-int-mod-ring[where ' }a='='a
    by (auto simp: coeffs-to-int-poly p)
    with cfs *
    show ?thesis by blast
qed
end
definition finite-field-factorization-main :: int => 'i arith-ops-record }=>\mathrm{ int poly }
int }\times\mathrm{ int poly list where
    finite-field-factorization-main p f-ops f \equiv
        let ( }\mp@subsup{c}{}{\prime},\mp@subsup{f}{\prime}{\prime})=\mathrm{ finite-field-factorization-i p f-ops(of-int-poly-i f-ops (poly-mod.Mp
pf))
    in (arith-ops-record.to-int f-ops c', map (to-int-poly-i f-ops) fs')
lemma(in prime-field-gen) finite-field-factorization-main:
    assumes res: finite-field-factorization-main p ff-ops f = (c,fs)
    and sq: square-free-m f
    shows unique-factorization-m f(c,mset fs)
        \wedgec\in{0 ..<p}
    \wedge(\forallfi\in set fs.set (coeffs fi)\subseteq{0..<p})
proof -
    obtain c'fs' where
        res': finite-field-factorization-i p ff-ops (of-int-poly-i ff-ops (Mp f)) =( c',}f\mp@subsup{s}{}{\prime}
by force
    show ?thesis
    by (rule finite-field-i-sound[OF refl res' sq],
            insert res[unfolded finite-field-factorization-main-def res'], auto)
qed
definition finite-field-factorization-int :: int }=>\mathrm{ int poly }=>\mathrm{ int }\times\mathrm{ int poly list
where
    finite-field-factorization-int p = (
        if p}\leq6553
        then finite-field-factorization-main p (finite-field-ops32 (uint32-of-int p))
        else if p\leq4294967295
        then finite-field-factorization-main p (finite-field-ops64 (uint64-of-int p))
        else finite-field-factorization-main p (finite-field-ops-integer (integer-of-int p)))
```

context poly-mod-prime begin
lemmas finite-field-factorization-main-integer $=$ prime-field-gen.finite-field-factorization-main [OF prime-field.prime-field-finite-field-ops-integer, unfolded prime-field-def mod-ring-locale-def, unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemmas finite-field-factorization-main-uint32 $=$ prime-field-gen.finite-field-factorization-main [OF prime-field.prime-field-finite-field-ops32, unfolded prime-field-def mod-ring-locale-def, unfolded poly-mod-type-simps, internalize-sort ' a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemmas finite-field-factorization-main-uint64 $=$ prime-field-gen.finite-field-factorization-main [OF prime-field.prime-field-finite-field-ops64, unfolded prime-field-def mod-ring-locale-def, unfolded poly-mod-type-simps, internalize-sort ' a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemma finite-field-factorization-int:
assumes sq: poly-mod.square-free-m $p f$
and result: finite-field-factorization-int $p f=(c, f s)$
shows poly-mod.unique-factorization-m $p f$ (c, mset $f s$)
$\wedge c \in\{0 . .<p\}$
$\wedge(\forall f i \in$ set fs. set $($ coeffs $f i) \subseteq\{0 . .<p\})$
using finite-field-factorization-main-integer[OF - sq, of c fs] finite-field-factorization-main-uint32[OF - - sq, of c fs] finite-field-factorization-main-uint64[OF - sq, of c fs] result[unfolded finite-field-factorization-int-def]
by (auto split: if-splits)
end
end

9 Hensel Lifting

9.1 Properties about Factors

We define and prove properties of Hensel-lifting. Here, we show the result that Hensel-lifting can lift a factorization $\bmod p$ to a factorization mod p^{n}. For the lifting we have proofs for both versions, the original linear Hensel-lifting or the quadratic approach from Zassenhaus. Via the linear version, we also show a uniqueness result, however only in the binary case, i.e., where $f=g \cdot h$. Uniqueness of the general case will later be shown in theory Berlekamp-Hensel by incorporating the factorization algorithm for finite fields algorithm.

```
theory Hensel-Lifting
imports
    HOL-Computational-Algebra.Euclidean-Algorithm
    Poly-Mod-Finite-Field-Record-Based
```

Polynomial-Factorization.Square-Free-Factorization begin
lemma uniqueness-poly-equality:
fixes $f g$:: ' a :: \{factorial-ring-gcd,semiring-gcd-mult-normalize\} poly
assumes cop: coprime $f g$
and deg: $B=0 \vee$ degree $B<$ degree $f B^{\prime}=0 \vee$ degree $B^{\prime}<$ degree f
and $f: f \neq 0$ and $e q: A * f+B * g=A^{\prime} * f+B^{\prime} * g$
shows $A=A^{\prime} B=B^{\prime}$
proof -
from eq have $*:\left(A-A^{\prime}\right) * f=\left(B^{\prime}-B\right) * g$ by (simp add: field-simps)
hence $f d v d\left(B^{\prime}-B\right) * g$ unfolding dvd-def by (intro exI $[o f-A-A\rceil$, auto simp: field-simps)
with cop[simplified] have $d v d: f d v d\left(B^{\prime}-B\right)$
by (simp add: coprime-dvd-mult-right-iff ac-simps)
from divides-degree $[$ OF this $]$ have degree $f \leq$ degree $\left(B^{\prime}-B\right) \vee B=B^{\prime}$ by auto
with degree-diff-le-max $\left[o f B^{\prime} B\right]$ deg
show $B=B^{\prime}$ by auto
with $* f$ show $A=A^{\prime}$ by auto
qed
lemmas (in poly-mod-prime-type) uniqueness-poly-equality $=$ uniqueness-poly-equality[where ${ }^{\prime} a={ }^{\prime} a$ mod-ring, untransferred]
lemmas (in poly-mod-prime) uniqueness-poly-equality $=$ poly-mod-prime-type.uniqueness-poly-equality
[unfolded poly-mod-type-simps, internalize-sort ' a :: prime-card, OF type-to-set,
unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemma pseudo-divmod-main-list-1-is-divmod-poly-one-main-list:
pseudo-divmod-main-list (1 :: 'a :: comm-ring-1) qfgn=divmod-poly-one-main-list $q f g n$
by (induct n arbitrary: $q f g$, auto simp: Let-def)
lemma pdivmod-monic-pseudo-divmod: assumes g : monic g shows pdivmod-monic $f g=$ pseudo-divmod $f g$
proof -
from g have $i d$: (coeffs $g=[])=$ False by auto
from g have mon: hd (rev (coeffs g)) = 1 by (metis coeffs-eq-Nil hd-rev id
last-coeffs-eq-coeff-degree)
show ?thesis
unfolding pseudo-divmod-impl pseudo-divmod-list-def id if-False pdivmod-monic-def
Let-def mon
pseudo-divmod-main-list-1-is-divmod-poly-one-main-list by (auto split: prod.splits)
qed
lemma pdivmod-monic: assumes g : monic g and res: pdivmod-monic $f g=(q, r)$
shows $f=g * q+r r=0 \vee$ degree $r<$ degree g
proof -
from g have $g 0: g \neq 0$ by auto
from pseudo-divmod[OF g0 res[unfolded pdivmod-monic-pseudo-divmod[OF g]], unfolded g]
show $f=g * q+r r=0 \vee$ degree $r<$ degree g by auto
qed
definition dupe-monic :: 'a :: comm-ring-1 poly \Rightarrow 'a poly \Rightarrow 'a poly \Rightarrow 'a poly
\Rightarrow 'a poly \Rightarrow
'a poly * 'a poly where
dupe-monic D H S T U $=$ (case pdivmod-monic $(T * U) D$ of $(q, r) \Rightarrow$ $(S * U+H * q, r))$
lemma dupe-monic: assumes $1: D * S+H * T=1$
and mon: monic D
and dupe: dupe-monic D HS T U $=(A, B)$
shows $A * D+B * H=U B=0 \vee$ degree $B<$ degree D
proof -
obtain $Q R$ where div: pdivmod-monic $((T * U)) D=(Q, R)$ by force
from dupe[unfolded dupe-monic-def div split]
have $A: A=(S * U+H * Q)$ and $B: B=R$ by auto
from pdivmod-monic[OF mon div] have $T U: T * U=D * Q+R$ and
deg: $R=0 \vee$ degree $R<$ degree D by auto
hence $R: R=T * U-D * Q$ by simp
have $A * D+B * H=(D * S+H * T) * U$ unfolding $A B R$ by (simp add: field-simps)
also have $\ldots=U$ unfolding 1 by simp
finally show eq: $A * D+B * H=U$.
show $B=0 \vee$ degree $B<$ degree D using deg unfolding B.
qed
lemma dupe-monic-unique: fixes $D::$ ' a :: \{factorial-ring-gcd,semiring-gcd-mult-normalize $\}$
poly
assumes 1: $D * S+H * T=1$
and mon: monic D
and dupe: dupe-monic D HSTU=(A,B)
and cop: coprime $D H$
and other: $A^{\prime} * D+B^{\prime} * H=U B^{\prime}=0 \vee$ degree $B^{\prime}<$ degree D
shows $A^{\prime}=A B^{\prime}=B$
proof -
from dupe-monic[OF 1 mon dupe $]$ have one: $A * D+B * H=U B=0 \vee$ degree $B<$ degree D by auto
from mon have $D 0: D \neq 0$ by auto
from uniqueness-poly-equality[OF cop one(2) other(2) D0, of $A A^{\prime}$, unfolded other, OF one(1)]
show $A^{\prime}=A B^{\prime}=B$ by auto
qed
context ring-ops
begin
lemma poly-rel-dupe-monic-i: assumes mon: monic D
and rel: poly-rel d D poly-rel h H poly-rel s S poly-rel t T poly-rel u U
shows rel-prod poly-rel poly-rel (dupe-monic-i ops d h stu) (dupe-monic D H S T U)
proof -
note defs = dupe-monic-i-def dupe-monic-def
note $[$ transfer-rule] $=$ rel
have [transfer-rule]: rel-prod poly-rel poly-rel
(pdivmod-monic-i ops (times-poly-i ops $t u) d$)
(pdivmod-monic $(T * U) D)$
by (rule poly-rel-pdivmod-monic[OF mon], transfer-prover +)
show ?thesis unfolding defs by transfer-prover
qed
end
context mod-ring-gen
begin
lemma monic-of-int-poly: monic $D \Longrightarrow$ monic (of-int-poly (Mp D) :: 'a mod-ring poly)
using Mp-f-representative Mp-to-int-poly monic-Mp by auto
lemma dupe-monic- i : assumes dupe- i : dupe-monic- $i f f$-ops d hstu=(a,b)
and 1: $D * S+H * T=m 1$
and mon: monic D
and $A: A=$ to-int-poly-i ff-ops a
and $B: B=$ to-int-poly-i ff-ops b
and $d:$ Mp-rel-i d D
and h : Mp-rel-i h H
and $s: M p-r e l-i s S$
and t : Mp-rel-i $t T$
and u : Mp-rel-i $u U$
shows
$A * D+B * H=m U$
$B=0 \vee$ degree $B<$ degree D
Mp-rel-i a A
Mp-rel-i b B
proof -
let ?I $=\lambda f$. of-int-poly $(M p f)::$ 'a mod-ring poly
let $? i=$ to-int-poly-i ff-ops
note $d d=M p-r e l-i D[$ OF $d]$
note $h h=M p-r e l-i D[O F h]$
note $s s=$ Mp-rel-iD[OFs $s]$
note $t t=M p-r e l-i D[O F t]$
note $u u=$ Mp-rel-iD[OF u]
obtain $A^{\prime} B^{\prime}$ where dupe: dupe-monic (?I D) (?I H) (?I S) (?I T) (?I U) = $\left(A^{\prime}, B^{\prime}\right)$ by force
from poly-rel-dupe-monic-i[OF monic-of-int-poly[OF mon] dd(1) hh(1) ss(1) $t t(1) u u(1)$, unfolded dupe-i dupe]
have a: poly-rel a A^{\prime} and b : poly-rel $b B^{\prime}$ by auto
show aa: Mp-rel-i a A by (rule $M p-r e l-i I^{\prime}[O F$ a, folded $\left.A]\right)$
show bb: Mp-rel-i b B by (rule Mp-rel-iI' $[$ OF b, folded B])
note $A a=M p-r e l-i D\left[\begin{array}{ll}O F & a a\end{array}\right]$
note $B b=M p-r e l-i D[O F b b]$
from poly-rel-inj[OF a $A a(1)] A$ have $A: A^{\prime}=$? I A by simp
from poly-rel-inj[OF b Bb(1)] B have $B: B^{\prime}=$?I B by simp
note $M p=d d(2) h h(2) s s(2) t t(2) u u(2)$
note $[$ transfer-rule] $=M p$
have $(=)(D * S+H * T=m 1)(? I D * ? I S+? I H * ? I T=1)$ by transfer-prover
with 1 have 11: ?I $D *$? I $S+$?I $H *$?I $T=1$ by simp
from dupe-monic[OF 11 monic-of-int-poly[OF mon] dupe, unfolded $A B]$
have res: ?I $A *$? I $D+$?I $B *$?I $H=$? I U ? I $B=0 \vee$ degree (?I $B)<$ degree (?I D) by auto
note $[$ transfer-rule $]=A a(2) B b(2)$
have $(=)(A * D+B * H=m U)(? I A *$?I $D+$?I $B *$?I $H=$?I $U)$
$(=)(B=m 0 \vee$ degree-m $B<$ degree-m $D)($?I $B=0 \vee$ degree $($?I $B)<$ degree (?I $D)$) by transfer-prover +
with res have $*: A * D+B * H=m U B=m 0 \vee$ degree-m $B<$ degree-m D by auto
show $A * D+B * H=m U$ by fact
have $B: M p B=B$ using $M p$-rel- i-Mp-to-int-poly-i assms(5) bb by blast
from $*(2)$ show $B=0 \vee$ degree $B<$ degree D unfolding B using degree-m-le[of
$D]$ by auto
qed
lemma Mp-rel-i-of-int-poly-i: assumes $M p F=F$
shows Mp-rel-i (of-int-poly-i ff-ops F) F
by (metis Mp-f-representative Mp-rel-iI' assms poly-rel-of-int-poly to-int-poly-i)
lemma dupe-monic-i-int: assumes dupe-i: dupe-monic-i-int ff-ops D HSTU= (A, B)
and $1: D * S+H * T=m 1$
and mon: monic D
and norm: $M p D=D M p H=H M p S=S M p T=T M p U=U$
shows
$A * D+B * H=m U$
$B=0 \vee$ degree $B<$ degree D
$M p A=A$
$M p B=B$
proof -
let ?oi $=$ of-int-poly-i ff-ops
let $? t i=$ to-int-poly-i ff-ops
note rel $=$ norm $[T H E N ~ M p-r e l-i-o f-i n t-p o l y-i]$
obtain $a b$ where dupe: dupe-monic-i ff-ops (?oi D) (?oi H) (?oi S) (?oi T) $($?oi $U)=(a, b)$ by force
from dupe-i[unfolded dupe-monic-i-int-def this Let-def] have $A B: A=$?ti a B $=$? ti b by auto
from dupe-monic-i[OF dupe 1 mon $A B$ rel $]$ Mp-rel-i-Mp-to-int-poly-i

```
    show A*D+B*H=mU
    B=0\vee degree B< degree D
    Mp A = A
    Mp B=B
    unfolding }AB\mathrm{ by auto
qed
```

end
definition dupe-monic-dynamic
$::$ int \Rightarrow int poly \times int
poly where
dupe-monic-dynamic $p=$ (
if $p \leq 65535$
then dupe-monic-i-int (finite-field-ops32 (uint32-of-int p))
else if $p \leq 4294967295$
then dupe-monic-i-int (finite-field-ops64 (uint64-of-int p))
else dupe-monic-i-int (finite-field-ops-integer (integer-of-int p)))
context poly-mod-2
begin
lemma dupe-monic-i-int-finite-field-ops-integer: assumes
dupe-i: dupe-monic-i-int (finite-field-ops-integer (integer-of-int m)) DHST
$U=(A, B)$
and 1: $D * S+H * T=m 1$
and mon: monic D
and norm: $M p D=D M p H=H M p S=S M p T=T M p U=U$
shows
$A * D+B * H=m U$
$B=0 \vee$ degree $B<$ degree D
Mp $A=A$
$M p B=B$
using m1 mod-ring-gen.dupe-monic-i-int [OF
mod-ring-locale.mod-ring-finite-field-ops-integer[unfolded mod-ring-locale-def],
internalize-sort ' a :: nontriv, OF type-to-set, unfolded remove-duplicate-premise,
cancel-type-definition, OF - assms $]$ by auto
lemma dupe-monic-i-int-finite-field-ops32: assumes
$m: m \leq 65535$
and dupe-i: dupe-monic-i-int (finite-field-ops32 (uint32-of-int m)) D HSTU=
(A, B)
and 1: $D * S+H * T=m 1$
and mon: monic D
and norm: $M p D=D M p H=H M p S=S M p T=T M p U=U$
shows
$A * D+B * H=m U$

```
\(B=0 \vee\) degree \(B<\) degree \(D\)
\(M p A=A\)
\(M p B=B\)
using m1 mod-ring-gen.dupe-monic-i-int[OF
    mod-ring-locale.mod-ring-finite-field-ops32[unfolded mod-ring-locale-def],
    internalize-sort ' \(a\) :: nontriv, OF type-to-set, unfolded remove-duplicate-premise,
    cancel-type-definition, OF - assms] by auto
lemma dupe-monic-i-int-finite-field-ops64: assumes
    \(m: m \leq 4294967295\)
    and dupe-i: dupe-monic-i-int (finite-field-ops64 (uint64-of-int m)) D HSTU=
\((A, B)\)
    and \(1: D * S+H * T=m 1\)
    and mon: monic \(D\)
    and norm: \(M p D=D M p H=H M p S=S M p T=T M p U=U\)
shows
\(A * D+B * H=m U\)
\(B=0 \vee\) degree \(B<\) degree \(D\)
\(M p A=A\)
\(M p B=B\)
using m1 mod-ring-gen.dupe-monic-i-int[OF
    mod-ring-locale.mod-ring-finite-field-ops64[unfolded mod-ring-locale-def],
    internalize-sort ' \(a\) :: nontriv, OF type-to-set, unfolded remove-duplicate-premise,
        cancel-type-definition, OF - assms] by auto
```

lemma dupe-monic-dynamic: assumes dupe: dupe-monic-dynamic m D H S T U
$=(A, B)$
and $1: D * S+H * T=m 1$
and mon: monic D
and norm: $M p D=D M p H=H M p S=S M p T=T M p U=U$
shows
$A * D+B * H=m U$
$B=0 \vee$ degree $B<$ degree D
$M p A=A$
$M p B=B$
using dupe
dupe-monic-i-int-finite-field-ops32[OF - - 1 mon norm, of $A B]$
dupe-monic-i-int-finite-field-ops64[OF - 1 mon norm, of $A B]$
dupe-monic-i-int-finite-field-ops-integer $[O F-1$ mon norm, of $A B]$
unfolding dupe-monic-dynamic-def by (auto split: if-splits)
end
context poly-mod
begin
definition dupe-monic-int $::$ int poly \Rightarrow int poly \Rightarrow int poly \Rightarrow int poly \Rightarrow int poly

$$
\Rightarrow
$$

int poly * int poly where
dupe-monic-int D H S T U $=$ (case pdivmod-monic $(M p(T * U)) D$ of $(q, r) \Rightarrow$ $(M p(S * U+H * q), M p r))$
end
declare poly-mod.dupe-monic-int-def[code]
Old direct proof on int poly. It does not permit to change implementation. This proof is still present, since we did not export the uniqueness part from the type-based uniqueness result $\llbracket ? D * ? S+? H * ? T=1$; monic ? D; dupe-monic ?D ?H ?S ?T ? $U=(? A, ? B) ;$ comm-monoid-mult-class.coprime $? D ? H ; ? A^{\prime} * ? D+? B^{\prime} * ? H=? U ; ? B^{\prime}=0 \vee$ degree ? $B^{\prime}<$ degree ? $D \rrbracket$ $\Longrightarrow ? A^{\prime}=? A$
$\llbracket ? D * ? S+? H * ? T=1 ;$ monic $? D ;$ dupe-monic ? $D ? H ? S ? T ? U=$ $(? A, ? B) ;$ comm-monoid-mult-class.coprime ? $D ? H ; ? A^{\prime} * ? D+? B^{\prime} * ? H$ $=? U ; ? B^{\prime}=0 \vee$ degree ? $B^{\prime}<$ degree ? $D \rrbracket \Longrightarrow ? B^{\prime}=? B$ via the various relations.
lemma (in poly-mod-2) dupe-monic-int: assumes 1: $D * S+H * T=m 1$ and mon: monic D
and dupe: dupe-monic-int $D H S T U=(A, B)$
shows $A * D+B * H=m U B=0 \vee$ degree $B<$ degree $D M p A=A M p B$ $=B$
coprime-m $D H \Longrightarrow A^{\prime} * D+B^{\prime} * H=m U \Longrightarrow B^{\prime}=0 \vee$ degree $B^{\prime}<$ degree $D \Longrightarrow M p D=D$
$\Longrightarrow M p A^{\prime}=A^{\prime} \Longrightarrow M p B^{\prime}=B^{\prime} \Longrightarrow$ prime m

$$
\Longrightarrow A^{\prime}=A \wedge B^{\prime}=B
$$

proof -
obtain $Q R$ where div: pdivmod-monic $(M p(T * U)) D=(Q, R)$ by force
from dupe[unfolded dupe-monic-int-def div split]
have $A: A=M p(S * U+H * Q)$ and $B: B=M p R$ by auto
from pdivmod-monic[OF mon div] have $T U: M p(T * U)=D * Q+R$ and deg: $R=0 \vee$ degree $R<$ degree D by auto
hence $M p R=M p(M p(T * U)-D * Q)$ by simp
also have $\ldots=M p(T * U-M p(M p(M p D * Q)))$ unfolding $M p-M p$
unfolding minus-Mp
using minus-Mp mult-Mp by metis
also have $\ldots=M p(T * U-D * Q)$ by simp
finally have r : $M p R=M p(T * U-D * Q)$ by simp
have $M p(A * D+B * H)=M p(M p(A * D)+M p(B * H))$ by simp
also have $M p(A * D)=M p((S * U+H * Q) * D)$ unfolding A by simp
also have $M p(B * H)=M p(M p R * M p H)$ unfolding B by simp
also have $\ldots=M p((T * U-D * Q) * H)$ unfolding r by simp
also have $M p(M p((S * U+H * Q) * D)+M p((T * U-D * Q) * H))=$
$M p((S * U+H * Q) * D+(T * U-D * Q) * H)$ by simp
also have $(S * U+H * Q) * D+(T * U-D * Q) * H=(D * S+H * T)$

* U

```
    by (simp add: field-simps)
    also have Mp\ldots= Mp}(Mp(D*S+H*T)*U) by sim
    also have Mp}(D*S+H*T)=1 using 1 by sim
    finally show eq:A*D+B*H=m U by simp
    have id: degree-m (Mp R)= degree-m R by simp
    have id': degree D = degree-m D using mon by simp
    show degB: }B=0\vee\mathrm{ degree }B<\mathrm{ degree }D\mathrm{ using deg unfolding B id id'
    using degree-m-le[of R] by (cases R=0,auto)
    show Mp:MpA=A Mp B=B unfolding A B by auto
    assume another: }\mp@subsup{A}{}{\prime}*D+\mp@subsup{B}{}{\prime}*H=mU\mathrm{ and degB': 沙=0 }\vee\mathrm{ degree }\mp@subsup{B}{}{\prime}
degree D
    and norm: Mp A' = A' Mp B' = B' and cop: coprime-m D H and D:Mp D
= D
    and prime: prime m
    from degB Mp D have degB: B=m 0 \vee degree-m B<degree-m D by auto
    from degB' Mp D norm have deg\mp@subsup{B}{}{\prime}:\mp@subsup{B}{}{\prime}=m 0\vee degree-m }\mp@subsup{B}{}{\prime}<\operatorname{degree-m D by
auto
    from mon D have D0:\neg(D=m 0) by auto
    from prime interpret poly-mod-prime m}\mathrm{ by unfold-locales
    from another eq have }\mp@subsup{A}{}{\prime}*D+\mp@subsup{B}{}{\prime}*H=mA*D+B*H by sim
    from uniqueness-poly-equality[OF cop degB' degB D0 this]
    show }\mp@subsup{A}{}{\prime}=A\wedge\mp@subsup{B}{}{\prime}=B\mathrm{ unfolding norm Mp by auto
qed
lemma coprime-bezout-coefficients:
    assumes cop: coprime fg
        and ext: bezout-coefficients f g=(a,b)
    shows }a*f+b*g=
    using assms bezout-coefficients [of fg a b]
    by simp
lemma (in poly-mod-prime-type) bezout-coefficients-mod-int: assumes \(f:(F::\) ' \(a\)
mod-ring poly) = of-int-poly f
    and g:(G :: 'a mod-ring poly) =of-int-poly g
    and cop: coprime-m f g
    and fact: bezout-coefficients FG=(A,B)
    and a: a = to-int-poly A
    and b:b=to-int-poly }
    shows f*a+g*b=m1
proof -
    have f[transfer-rule]:MP-Rel f F unfolding f MP-Rel-def by (simp add: Mp-f-representative)
        have g[transfer-rule]:MP-Rel g G unfolding g MP-Rel-def by (simp add:
Mp-f-representative)
    have [transfer-rule]: MP-Rel a A unfolding a MP-Rel-def by (rule Mp-to-int-poly)
    have [transfer-rule]: MP-Rel b B unfolding b MP-Rel-def by (rule Mp-to-int-poly)
    from cop have coprime F G using coprime-MP-Rel[unfolded rel-fun-def] fg}\mathrm{ by
auto
    from coprime-bezout-coefficients [OF this fact]
```

```
    have \(A * F+B * G=1\).
    from this [untransferred]
    show ?thesis by (simp add: ac-simps)
qed
definition bezout-coefficients-i :: 'i arith-ops-record \(\Rightarrow\) 'i list \(\Rightarrow\) ' \(i\) list \(\Rightarrow\) 'i list \(\times\)
' \(i\) list where
    bezout-coefficients-i ff-ops \(f g=\) fst (euclid-ext-poly-i ff-ops \(f g\) )
definition euclid-ext-poly-mod-main \(::\) int \(\Rightarrow\) 'a arith-ops-record \(\Rightarrow\) int poly \(\Rightarrow\) int
poly \(\Rightarrow\) int poly \(\times\) int poly where
    euclid-ext-poly-mod-main p ff-ops fg=(case bezout-coefficients-i ff-ops (of-int-poly-i
ff-ops f) (of-int-poly-i ff-ops g) of
    \((a, b) \Rightarrow(\) to-int-poly-i ff-ops a, to-int-poly-i ff-ops \(b))\)
```

definition euclid-ext-poly-dynamic $::$ int \Rightarrow int poly \Rightarrow int poly \Rightarrow int poly \times int
poly where
euclid-ext-poly-dynamic $p=($
if $p \leq 65535$
then euclid-ext-poly-mod-main p (finite-field-ops32 (uint32-of-int p))
else if $p \leq 4294967295$
then euclid-ext-poly-mod-main p (finite-field-ops64 (uint64-of-int p))
else euclid-ext-poly-mod-main p (finite-field-ops-integer (integer-of-int p)))
context prime-field-gen
begin
lemma bezout-coefficients-i[transfer-rule]:
(poly-rel $===>$ poly-rel $===>$ rel-prod poly-rel poly-rel)
(bezout-coefficients-i ff-ops) bezout-coefficients
unfolding bezout-coefficients-i-def bezout-coefficients-def
by transfer-prover
lemma bezout-coefficients-i-sound: assumes $f: f^{\prime}=o f-i n t-p o l y-i f f-o p s f M p f=f$
and $g: g^{\prime}=o f$-int-poly- $i f f$-ops $g M p g=g$
and cop: coprime-m $f g$
and res: bezout-coefficients-i ff-ops $f^{\prime} g^{\prime}=\left(a^{\prime}, b^{\prime}\right)$
and $a: a=$ to-int-poly-i ff-ops a^{\prime}
and $b: b=$ to-int-poly-i ff-ops b^{\prime}
shows $f * a+g * b=m 1$
$M p a=a M p b=b$
proof -
from f have $f^{\prime}: f^{\prime}=o f$-int-poly-i ff-ops $(M p f)$ by simp
define $f^{\prime \prime}$ where $f^{\prime \prime} \equiv$ of-int-poly ($M p f$) :: 'a mod-ring poly
have $f^{\prime \prime}: f^{\prime \prime}=o f-i n t-p o l y f$ unfolding $f^{\prime \prime}$-def f by simp
have rel-f[transfer-rule]: poly-rel $f^{\prime} f^{\prime \prime}$
by (rule poly-rel-of-int-poly[OF $\left.f^{\prime}\right]$, simp add: $f^{\prime \prime} f$)
from g have $g^{\prime}: g^{\prime}=o f$-int-poly-i ff-ops $(M p g)$ by simp
define $g^{\prime \prime}$ where $g^{\prime \prime} \equiv$ of-int-poly ($M p g$) :: 'a mod-ring poly
have $g^{\prime \prime}: g^{\prime \prime}=$ of-int-poly g unfolding $g^{\prime \prime}$-def g by simp

```
    have rel-g[transfer-rule]: poly-rel \(g^{\prime} g^{\prime \prime}\)
    by (rule poly-rel-of-int-poly[OF g], simp add: \(g^{\prime \prime} g\) )
    obtain \(a^{\prime \prime} b^{\prime \prime}\) where eucl: bezout-coefficients \(f^{\prime \prime} g^{\prime \prime}=\left(a^{\prime \prime}, b^{\prime \prime}\right)\) by force
    from bezout-coefficients-i[unfolded rel-fun-def rel-prod-conv, rule-format, OF rel-f
rel-g,
    unfolded res split eucl]
    have rel[transfer-rule]: poly-rel \(a^{\prime} a^{\prime \prime}\) poly-rel \(b^{\prime} b^{\prime \prime}\) by auto
    with to-int-poly-i have \(a: a=\) to-int-poly \(a^{\prime \prime}\)
    and \(b: b=\) to-int-poly \(b^{\prime \prime}\) unfolding \(a b\) by auto
    from bezout-coefficients-mod-int \(\left[\right.\) OF \(f^{\prime \prime} g^{\prime \prime}\) cop eucl a b]
    show \(f * a+g * b=m 1\).
    show \(M p a=a M p b=b\) unfolding \(a b\) by (auto simp: Mp-to-int-poly)
qed
lemma euclid-ext-poly-mod-main: assumes cop: coprime-m \(f g\)
    and \(f: M p f=f\) and \(g: M p g=g\)
    and res: euclid-ext-poly-mod-main \(m\) ff-ops \(f g=(a, b)\)
shows \(f * a+g * b=m 1\)
    \(M p a=a M p b=b\)
proof -
    obtain \(a^{\prime} b^{\prime}\) where res': bezout-coefficients-i ff-ops (of-int-poly-i ff-ops f)
        (of-int-poly-i ff-ops g) \(=\left(a^{\prime}, b^{\prime}\right)\) by force
    show \(f * a+g * b=m 1\)
    \(M p a=a M p b=b\)
        by (insert bezout-coefficients-i-sound[OF refl frefl g cop res \(]\)
        res [unfolded euclid-ext-poly-mod-main-def res'], auto)
qed
end
context poly-mod-prime begin
lemmas euclid-ext-poly-mod-integer \(=\) prime-field-gen.euclid-ext-poly-mod-main [OF prime-field.prime-field-finite-field-ops-integer, unfolded prime-field-def mod-ring-locale-def poly-mod-type-simps, internalize-sort
' \(a\) :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemmas euclid-ext-poly-mod-uint32 \(=\) prime-field-gen.euclid-ext-poly-mod-main [OF prime-field.prime-field-finite-field-ops32, unfolded prime-field-def mod-ring-locale-def poly-mod-type-simps, internalize-sort
' \(a\) :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition,
OF non-empty]
lemmas euclid-ext-poly-mod-uint64 \(=\) prime-field-gen.euclid-ext-poly-mod-main \([O F\) prime-field.prime-field-finite-field-ops64,
unfolded prime-field-def mod-ring-locale-def poly-mod-type-simps, internalize-sort
' \(a\) :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
```

```
lemma euclid-ext-poly-dynamic:
    assumes cop: coprime-m fg and f:Mpf=f and g:Mpg=g
    and res: euclid-ext-poly-dynamic p f g=(a,b)
    shows f*a+g*b=m1
        Mpa=aMpb=b
    using euclid-ext-poly-mod-integer[OF cop f g, of p a b]
        euclid-ext-poly-mod-uint32[OF - cop f g, of p a b]
        euclid-ext-poly-mod-uint64[OF - cop f g, of p a b]
        res[unfolded euclid-ext-poly-dynamic-def] by (auto split: if-splits)
end
lemma range-sum-prod: assumes xy: x }\in{0..<q}(y:: int)\in{0..<p
    shows }x+q*y\in{0..<p*q
proof -
    {
        fix x q :: int
        have }x\in{0..<q}\longleftrightarrow0\leqx\wedgex<q\mathrm{ by auto
    } note id = this
    from xy have 0:0\leqx+ q* y by auto
    have }x+q*y\leqq-1+q*y\mathrm{ using xy by simp
    also have q*y\leqq*(p-1) using xy by auto
    finally have }x+q*y\leqq-1+q*(p-1) by aut
    also have ... =p*q-1 by (simp add: field-simps)
    finally show ?thesis using 0 by auto
qed
context
    fixes C :: int poly
begin
context
    fixes p :: int and ST D1 H1 :: int poly
begin
fun linear-hensel-main where
    linear-hensel-main (Suc 0) =(D1,H1)
| linear-hensel-main (Suc n) = (
        let (D,H)= linear-hensel-main n;
                            q= p^n;
            U = poly-mod.Mp p (sdiv-poly (C-D*H)q); - H2 + H3
            (A,B) = poly-mod.dupe-monic-int p D1 H1 S T U
        in (D + smult q B,H + smult q A)) - H4
        | linear-hensel-main 0 = (D1,H1)
lemma linear-hensel-main: assumes 1: poly-mod.eq-m p (D1*S+H1*T) 1
    and equiv: poly-mod.eq-m p (D1*H1) C
    and monD1: monic D1
```

and normDH1：poly－mod．Mp p D1＝D1 poly－mod．Mp p H1＝H1
and res：linear－hensel－main $n=(D, H)$
and $n: n \neq 0$
and prime：prime $p-p>1$ suffices if one does not need uniqueness
and cop：poly－mod．coprime－m p D1 H1
shows poly－mod．eq－m $(p$ へ $)(D * H) C$
\wedge monic D
\wedge poly－mod．eq－m p D D1＾poly－mod．eq－m pHH1
\wedge poly－mod．$M p$（ p へ n ）$D=D$
\wedge poly－mod．Mp $(p \wedge n) H=H \wedge$
（poly－mod．eq－m $\left(p^{\wedge} n\right)\left(D^{\prime} * H^{\prime}\right) C \longrightarrow$
poly－mod．eq－m p $D^{\prime} D 1 \longrightarrow$
poly－mod．eq－m p $H^{\prime} H 1 \longrightarrow$
poly－mod．Mp（ $p^{\wedge} n$ ）$D^{\prime}=D^{\prime} \longrightarrow$
poly－mod．Mp $\left(p^{〔} n\right) H^{\prime}=H^{\prime} \longrightarrow$ monic $\left.D^{\prime} \longrightarrow D^{\prime}=D \wedge H^{\prime}=H\right)$
using res n
proof（induct n arbitrary：$D H D^{\prime} H^{\prime}$ ）
case（Suc $n D^{\prime} H^{\prime} D^{\prime \prime} H^{\prime \prime}$ ）
show ？case
proof（cases $n=0$ ）
case True
with Suc equiv monD1 normDH1 show ？thesis by auto
next
case False
hence $n: n \neq 0$ by auto
let ？$q=p^{\wedge} n$
let $? p q=p * p \wedge n$
from prime have $p: p>1$ using prime－gt－1－int by force
from $n p$ have $q: ? q>1$ by auto
from $n p$ have $p q: ? p q>1$ by（metis power－gt1－lemma）
interpret p ：poly－mod－2 p using p unfolding poly－mod－2－def．
interpret q ：poly－mod－2 ？q using q unfolding poly－mod－2－def．
interpret $p q$ ：poly－mod－2 ？pq using $p q$ unfolding poly－mod－2－def ．
obtain $D H$ where rec：linear－hensel－main $n=(D, H)$ by force
obtain V where V ：sdiv－poly $(C-D * H)$ ？$q=V$ by force
obtain U where U ：p．Mp（sdiv－poly $(C-D * H) ? q)=U$ by auto
obtain $A B$ where dupe：p．dupe－monic－int D1 H1 S T U $=(A, B)$ by force
note $I H=\operatorname{Suc}(1)[$ OF rec $n]$
from $I H$
have $C D H$ ：q．eq－m $(D * H) C$
and monD：monic D
and p－eq：p．eq－m D D1 p．eq－m H H1
and norm：$q \cdot M p D=D$ q．Mp $H=H$ by auto
from n obtain k where $n: n=S u c k$ by（cases n ，auto）
have $q q: ? q * ? q=? p q * p \wedge k$ unfolding n by simp
from Suc（2）［unfolded n linear－hensel－main．simps，folded n ，unfolded rec split Let－def U dupe］
have $D^{\prime}: D^{\prime}=D+$ smult ？q B and $H^{\prime}: H^{\prime}=H+$ smult ？$q A$ by auto
note dupe $=$ p.dupe-monic-int $[O F 1$ monD1 dupe $]$
from $C D H$ have $q \cdot M p C-q \cdot M p(D * H)=0$ by simp
hence $q \cdot M p(q \cdot M p C-q \cdot M p(D * H))=0$ by simp
hence $q \cdot M p(C-D * H)=0$ by simp
from q.Mp-0-smult-sdiv-poly[OF this] have CDHq: smult ?q (sdiv-poly (C $D * H) ? q)=C-D * H$.
have $A D B H U$: $p . e q-m(A * D+B * H) U$ using p-eq dupe(1)
by (metis (mono-tags, lifting) p.mult-Mp(2) poly-mod.plus-Mp)
have pq.Mp $\left(D^{\prime} * H^{\prime}\right)=p q \cdot M p((D+$ smult ? $q B) *(H+$ smult ? $q A))$ unfolding $D^{\prime} H^{\prime}$ by simp
also have $(D+$ smult ?q $B) *(H+$ smult ? $q A)=(D * H+$ smult $? q(A *$ $D+B * H))+\operatorname{smult}(? q * ? q)(A * B)$
by (simp add: field-simps smult-distribs)
also have $p q \cdot M p \ldots=p q \cdot M p(D * H+p q \cdot M p(s m u l t ? q(A * D+B * H))$
$+p q \cdot M p(\operatorname{smult}(? q * ? q)(A * B)))$
using pq.plus-Mp by metis
also have $p q \cdot M p($ smult $(? q * ? q)(A * B))=0$ unfolding $q q$ by (metis pq.Mp-smult-m-0 smult-smult)
finally have $D H^{\prime}: p q \cdot M p\left(D^{\prime} * H^{\prime}\right)=p q \cdot M p(D * H+p q \cdot M p$ (smult ?q $(A *$
$D+B * H)$) by simp
also have pq.Mp (smult ? $q(A * D+B * H))=p q . M p$ (smult ?q U) using p.Mp-lift-modulus[OF ADBHU, of ?q] by simp
also have $\ldots=p q \cdot M p(C-D * H)$ unfolding arg-cong[OF CDHq, of pq.Mp, symmetric] U[symmetric] V by (rule p.Mp-lift-modulus[of - - ?q], auto)
also have pq.Mp $(D * H+p q \cdot M p(C-D * H))=p q \cdot M p C$ by simp
finally have $C D H$: pq.eq-m $C\left(D^{\prime} * H^{\prime}\right)$ by simp
have deg: degree $D 1=$ degree D using $p-e q(1)$ monD1 monD
by (metis p.monic-degree-m)
have mon: monic D^{\prime} unfolding D^{\prime} using dupe(2) monD unfolding deg by (rule monic-smult-add-small)
have normD': pq.Mp $D^{\prime}=D^{\prime}$
unfolding D^{\prime} pq.Mp-ident-iff poly-mod.Mp-coeff plus-poly.rep-eq coeff-smult
proof
fix i
from norm(1) dupe(4) have coeff $D i \in\{0 . .<? q\}$ coeff $B i \in\{0 . .<p\}$
unfolding p.Mp-ident-iff $q . M p$-ident-iff by auto
thus coeff $D i+? q *$ coeff $B i \in\{0 . .<? p q\}$ by (rule range-sum-prod)
qed
have $n o r m H^{\prime}: p q \cdot M p H^{\prime}=H^{\prime}$
unfolding H^{\prime} pq.Mp-ident-iff poly-mod.Mp-coeff plus-poly.rep-eq coeff-smult
proof
fix i
from norm(2) dupe(3) have coeff $H i \in\{0 . .<? q\}$ coeff $A i \in\{0 . .<p\}$ unfolding p.Mp-ident-iff q.Mp-ident-iff by auto
thus coeff $H i+? q *$ coeff $A i \in\{0 . .<? p q\}$ by (rule range-sum-prod)
qed
have eq: p.eq-m D D^{\prime} p.eq-m $H H^{\prime}$ unfolding $D^{\prime} H^{\prime} n$
poly-eq-iff p.Mp-coeff $p . M$-def by (auto simp: field-simps) with $p-e q$ have eq: p.eq-m $D^{\prime} D 1$ p.eq-m $H^{\prime} H 1$ by auto \{
assume $C D H^{\prime \prime}$: pq.eq-m $C\left(D^{\prime \prime} * H^{\prime \prime}\right)$
and $D H 1^{\prime \prime}:$ p.eq-m D1 $D^{\prime \prime}$ p.eq-m H1 $H^{\prime \prime}$
and norm ${ }^{\prime \prime}:$ pq.Mp $D^{\prime \prime}=D^{\prime \prime} p q . M p H^{\prime \prime}=H^{\prime \prime}$
and monD ${ }^{\prime \prime}$: monic $D^{\prime \prime}$
from $q \cdot D p-M p-e q\left[\right.$ of $\left.D^{\prime \prime}\right]$ obtain $d B^{\prime}$ where $D^{\prime \prime}: D^{\prime \prime}=q \cdot M p d+$ smult $? q$ B^{\prime} by auto
from $q \cdot D p-M p-e q\left[o f H^{\prime \prime}\right]$ obtain $h A^{\prime}$ where $H^{\prime \prime}: H^{\prime \prime}=q \cdot M p h+s m u l t ? q$ A^{\prime} by auto
\{
fix $A B$
assume $*$: pq.Mp $(q \cdot M p A+$ smult ? $q B)=q \cdot M p A+$ smult $? q B$
have $p \cdot M p B=B$ unfolding $p \cdot M p$-ident-iff
proof
fix i
from arg-cong[OF *, of λf. coeff $f i$, unfolded pq.Mp-coeff pq.M-def]
have coeff $(q . M p A+$ smult ?q B) $i \in\{0 . .<$?pq\} using * pq.Mp-ident-iff by blast
hence sum: coeff $(q . M p A) i+? q *$ coeff $B i \in\{0 . .<? p q\}$ by auto have $q \cdot M p(q \cdot M p A)=q \cdot M p A$ by auto
from this[unfolded q.Mp-ident-iff] have A : coeff $(q . M p A) i \in\{0 . .<p \wedge n\}$

by auto

\{
assume coeff $B i<0$ hence coeff $B i \leq-1$ by auto
from mult-left-mono[OF this, of ?q] q.m1 have ?q $*$ coeff $B i \leq-? q$
by simp
with A sum have False by auto
\} hence coeff $B i \geq 0$ by force
moreover
\{
assume coeff $B i \geq p$
from mult-left-mono[OF this, of ?q] q.m1 have ? $q *$ coeff $B i \geq$?pq by
simp
with A sum have False by auto
\} hence coeff $B i<p$ by force
ultimately show coeff $B i \in\{0 . .<p\}$ by auto
qed
\} note norm-convert $=$ this
from norm-convert $\left[\right.$ OF norm ${ }^{\prime \prime}(1)\left[\right.$ unfolded $\left.\left.D^{\prime \prime}\right]\right]$ have norm $B^{\prime}: p . M p B^{\prime}=B^{\prime}$
from norm-convert $\left[O F\right.$ norm ${ }^{\prime \prime}(2)\left[\right.$ unfolded $\left.\left.H^{\prime \prime}\right]\right]$ have norm $A^{\prime}: p . M p A^{\prime}=A^{\prime}$
let $? d=q \cdot M p d$
let $? h=q \cdot M p h$
\{
assume $l t$: degree ? $d<$ degree B^{\prime}
hence eq: degree $D^{\prime \prime}=$ degree B^{\prime} unfolding $D^{\prime \prime}$ using q.m1 p.m1

```
        by (subst degree-add-eq-right, auto)
    from lt have [simp]: coeff ?d (degree B')=0 by (rule coeff-eq-0)
    from monD'"[unfolded eq, unfolded D'', simplified] False q.m1 lt have False
    by (metis mod-mult-self1-is-0 poly-mod.M-def q.M-1 zero-neq-one)
    }
    hence deg-d\mp@subsup{B}{}{\prime}:\mathrm{ degree ?d }\geq\mathrm{ degree }\mp@subsup{B}{}{\prime}\mathrm{ by presburger}
    {
    assume eq: degree ?d = degree B' and }\mp@subsup{B}{}{\prime}:\mp@subsup{B}{}{\prime}\not=
    let ?B = coeff B' (degree B')
    from norm }\mp@subsup{B}{}{\prime}[\mathrm{ unfolded p.Mp-ident-iff, rule-format, of degree B`] B'
    have ? B \in{0..<p} - {0} by simp
    hence bnds: ? B>0 ?B<p}\mathrm{ by auto
    have degD\mp@subsup{D}{}{\prime\prime}:\mathrm{ degree }\mp@subsup{D}{}{\prime\prime}\leq\mathrm{ degree ?d unfolding }\mp@subsup{D}{}{\prime\prime}\mathrm{ using eq by (simp add:}
degree-add-le)
    have ?q * ?B \geq1 * 1 by (rule mult-mono, insert q.m1 bnds, auto)
    moreover have coeff D'\prime}(\mathrm{ degree ?d) = 1 + ?q*?B using monD"
        unfolding }\mp@subsup{D}{}{\prime\prime}\mathrm{ using eq
            by (metis D" coeff-smult monD'" plus-poly.rep-eq poly-mod.Dp-Mp-eq
            poly-mod.degree-m-eq-monic poly-mod.plus-Mp(1)
            q.Mp-smult-m-0 q.m1 q.monic-Mp q.plus-Mp(2))
    ultimately have gt:coeff }\mp@subsup{D}{}{\prime\prime}(\mathrm{ degree ? d) > 1 by auto
    hence coeff D''(degree ?d) }\not=0\mathrm{ by auto
    hence degree }\mp@subsup{D}{}{\prime\prime}\geq\mathrm{ degree ?d by (rule le-degree)
    with degree-add-le-max[of ?d smult ?q B', folded D'\eta eq
    have deg: degree }\mp@subsup{D}{}{\prime\prime}=\mathrm{ degree ?d using degD"' by linarith
    from gt[folded this] have }\neg\mathrm{ monic D" by auto
    with monD" have False by auto
    }
    with deg-d\mp@subsup{B}{}{\prime}}\mathrm{ have deg-dB2: 列}=0\vee\mathrm{ degree }\mp@subsup{B}{}{\prime}<\mathrm{ degree ?d by fastforce
    have d: q.Mp D'\prime}=?d\mathrm{ unfolding }\mp@subsup{D}{}{\prime\prime
    by (metis add.right-neutral poly-mod.Mp-smult-m-0 poly-mod.plus-Mp)
    have h: q.Mp H'}=?h\mathrm{ unfolding }\mp@subsup{H}{}{\prime\prime
        by (metis add.right-neutral poly-mod.Mp-smult-m-0 poly-mod.plus-Mp)
```



```
    from arg-cong[OF this, of q.Mp]
    have q.MpC=q.Mp( D'* *H'
        using p.m1 q.Mp-product-modulus by auto
    also have ... = q.Mp (q.Mp D'| * q.Mp H'\) by simp
    also have ... = q.Mp (?d*?h) unfolding d h by simp
    finally have eqC:q.eq-m (?d*?h) C by auto
    have d1: p.eq-m ?d D1 unfolding d[symmetric] using DH1"'
        using assms(4) n p.Mp-product-modulus p.m1 by auto
    have h1: p.eq-m ?h H1 unfolding h[symmetric] using DH1"
        using assms(5) n p.Mp-product-modulus p.m1 by auto
    have mond: monic (q.Mp d) using monD"\prime deg-dB2 unfolding D"
        using d q.monic-Mp[OF monD'] by simp
    from eqC d1 h1 mond IH[of q.Mp d q.Mp h] have IH:?d=D ?h=H by
auto
    from deg-dB2[unfolded IH] have deg\mp@subsup{B}{}{\prime}:\mp@subsup{B}{}{\prime}=0\vee\mathrm{ degree }\mp@subsup{B}{}{\prime}<\mathrm{ degree }D\mathrm{ by}
```

auto
from $I H$ have $D^{\prime \prime}: D^{\prime \prime}=D+$ smult $? q B^{\prime}$ and $H^{\prime \prime}: H^{\prime \prime}=H+$ smult $? q A^{\prime}$ unfolding $D^{\prime \prime} H^{\prime \prime}$ by auto
have pq.Mp $\left(D^{\prime \prime} * H^{\prime \prime}\right)=p q \cdot M p\left(D^{\prime} * H^{\prime}\right)$ using $C D H^{\prime \prime} C D H$ by simp also have $p q \cdot M p\left(D^{\prime \prime} * H^{\prime \prime}\right)=p q \cdot M p\left(\left(D+\right.\right.$ smult ? $\left.q B^{\prime}\right) *(H+$ smult ? q $\left.A^{\prime}\right)$)
unfolding $D^{\prime \prime} H^{\prime \prime}$ by simp
also have $\left(D+\right.$ smult ? $\left.q B^{\prime}\right) *\left(H+\right.$ smult $\left.? q A^{\prime}\right)=\left(D * H+\right.$ smult $? q\left(A^{\prime}\right.$ * $\left.\left.D+B^{\prime} * H\right)\right)+\operatorname{smult}(? q * ? q)\left(A^{\prime} * B^{\prime}\right)$ by (simp add: field-simps smult-distribs)
also have $p q \cdot M p \ldots=p q \cdot M p\left(D * H+p q \cdot M p\right.$ (smult $? q\left(A^{\prime} * D+B^{\prime} *\right.$ $H))+\operatorname{pq.Mp}\left(\right.$ smult $\left.\left.(? q * ? q)\left(A^{\prime} * B^{\prime}\right)\right)\right)$
using pq.plus-Mp by metis
also have $p q . M p\left(\right.$ smult $\left.(? q * ? q)\left(A^{\prime} * B^{\prime}\right)\right)=0$ unfolding $q q$ by (metis pq.Mp-smult-m-0 smult-smult)
finally have $p q . M p\left(D * H+p q . M p\left(s m u l t ? q\left(A^{\prime} * D+B^{\prime} * H\right)\right)\right)$

$$
=p q \cdot M p(D * H+p q \cdot M p(s m u l t ? q(A * D+B * H))) \text { unfolding } D H^{\prime}
$$

by simp
hence $p q \cdot M p\left(\right.$ smult ? $\left.q\left(A^{\prime} * D+B^{\prime} * H\right)\right)=p q \cdot M p($ smult $? q(A * D+B$ * $H)$)
by (metis (no-types, lifting) add-diff-cancel-left' poly-mod.minus-Mp(1) poly-mod.plus-Mp(2))
hence $p \cdot M p\left(A^{\prime} * D+B^{\prime} * H\right)=p \cdot M p(A * D+B * H)$ unfolding poly-eq-iff p.Mp-coeff pq.Mp-coeff coeff-smult
by (insert p, auto simp: $p . M$-def pq.M-def)
hence $p \cdot M p\left(A^{\prime} * D 1+B^{\prime} * H 1\right)=p \cdot M p(A * D 1+B * H 1)$ using p-eq by (metis p.mult-Mp(2) poly-mod.plus-Mp)
hence eq: p.eq-m $\left(A^{\prime} * D 1+B^{\prime} * H 1\right) U$ using dupe(1) by auto
have degree $D=$ degree $D 1$ using monD monD1
arg-cong[OF p-eq(1), of degree]
p.degree-m-eq-monic[OF - p.m1] by auto
hence $B^{\prime}=0 \vee$ degree $B^{\prime}<$ degree $D 1$ using $\operatorname{deg} B^{\prime}$ by simp
from dupe (5)[OF cop eq this normDH1(1) norm A^{\prime} norm B^{\prime} prime $]$ have A^{\prime} $=A B^{\prime}=B$ by auto
hence $D^{\prime \prime}=D^{\prime} H^{\prime \prime}=H^{\prime}$ unfolding $D^{\prime \prime} H^{\prime \prime} D^{\prime} H^{\prime}$ by auto
\}
thus ?thesis using normD' normH' $C D H$ mon eq by simp
qed
qed simp
end
end
definition linear-hensel-binary $::$ int \Rightarrow nat \Rightarrow int poly \Rightarrow int poly \Rightarrow int poly \Rightarrow int poly \times int poly where
linear-hensel-binary p n C D $H=$ (let
$(S, T)=$ euclid-ext-poly-dynamic p $D H$
in linear-hensel-main $C p S T D H n)$
lemma (in poly-mod-prime) unique-hensel-binary:
assumes prime: prime p
and cop: coprime-m $D H$ and eq: eq-m $(D * H) C$
and normalized-input: $M p D=D M p H=H$
and monic-input: monic D
and $n: n \neq 0$
shows $\exists!\left(D^{\prime}, H^{\prime}\right)$. - D^{\prime}, H^{\prime} are computed via linear-hensel-binary
poly-mod.eq-m $\left(p^{\wedge} n\right)\left(D^{\prime} * H^{\prime}\right) C-$ the main result: equivalence $\bmod p \widehat{ } n$
\wedge monic D^{\prime} - monic output
$\wedge e q-m D D^{\prime} \wedge e q-m H H^{\prime}-$ apply $‘ \bmod p^{\prime}$ on D^{\prime} and H^{\prime} yields D and H again
\wedge poly-mod. $M p\left(p^{\wedge} n\right) D^{\prime}=D^{\prime} \wedge$ poly-mod. $M p\left(p^{\wedge} n\right) H^{\prime}=H^{\prime}$ —output is

normalized

proof -

obtain $D^{\prime} H^{\prime}$ where hensel-result: linear-hensel-binary p n C D $H=\left(D^{\prime}, H^{\prime}\right)$
by force
from $m 1$ have $p: p>1$.
obtain $S T$ where ext: euclid-ext-poly-dynamic p $D H=(S, T)$ by force
obtain D1 H1 where main: linear-hensel-main C p STDHn=(D1,H1) by force
from hensel-result[unfolded linear-hensel-binary-def ext split Let-def main]
have id: $D 1=D^{\prime} H 1=H^{\prime}$ by auto
note eucl $=$ euclid-ext-poly-dynamic [OF cop normalized-input ext]
from linear-hensel-main [OF eucl(1)
eq monic-input normalized-input main [unfolded id] n prime cop]
show ?thesis by (intro ex1I, auto)
qed
context
fixes C :: int poly
begin
lemma hensel-step-main: assumes
one-q: poly-mod.eq-m $q(D * S+H * T) 1$
and one-p: poly-mod.eq-m $p(D 1 * S 1+H 1 * T 1) 1$
and $C D H$: poly-mod.eq-m q $C(D * H)$
and D1D: poly-mod.eq-m p D1 D
and $H 1 H$: poly-mod.eq-m p H1 H
and S1S: poly-mod.eq-m p S1S
and T1T: poly-mod.eq-m p T1 T
and mon: monic D
and mon1: monic D1
and $q: q>1$
and $p: p>1$
and D1: poly-mod.Mp p D1 = D1
and H1: poly-mod.Mp pH1 = H1
and S1: poly-mod.Mp p S1=S1
and T1: poly-mod.Mp p T1 $=T 1$
and D : poly-mod.Mp q $D=D$
and H : poly-mod.Mp q $H=H$
and S : poly-mod.Mp $q S=S$
and T : poly-mod. $M p$ q $T=T$
and U1: U1 $=$ poly-mod.Mp $p($ sdiv-poly $(C-D * H) q)$
and dupe1: dupe-monic-dynamic p D1 H1 S1 T1 U1 $=(A, B)$
and $D^{\prime}: D^{\prime}=D+$ smult $q B$
and $H^{\prime}: H^{\prime}=H+$ smult $q A$
and U2: U2 $=$ poly-mod.Mp $q\left(\right.$ sdiv-poly $\left.\left(S * D^{\prime}+T * H^{\prime}-1\right) p\right)$
and dupe2: dupe-monic-dynamic q D H S T UZ $=\left(A^{\prime}, B^{\prime}\right)$
and $r q: r=p * q$
and $p q: p$ dvd q
and $S^{\prime}: S^{\prime}=$ poly-mod.Mpr $\left(S-\right.$ smult $\left.p A^{\prime}\right)$
and $T^{\prime}: T^{\prime}=$ poly-mod.Mp $r\left(T-\right.$ smult $\left.p B^{\prime}\right)$
shows poly-mod.eq-m r $C\left(D^{\prime} * H^{\prime}\right)$
poly-mod.Mp r $D^{\prime}=D^{\prime}$
poly-mod.Mp r $H^{\prime}=H^{\prime}$
poly-mod.Mp $r S^{\prime}=S^{\prime}$
poly-mod.Mp $r T^{\prime}=T^{\prime}$
poly-mod.eq-mr $\left(D^{\prime} * S^{\prime}+H^{\prime} * T^{\prime}\right) 1$
monic D^{\prime}
unfolding $r q$
proof -
from $p q$ obtain k where $q p: q=p * k$ unfolding dvd-def by auto
from arg-cong[OF qp, of sgn] $q p$ have $k 0: k>0$ unfolding sgn-mult by (auto simp: sgn-1-pos)
from $q p$ have $q q: q * q=p * q * k$ by auto
let $? r=p * q$
interpret poly-mod-2 p by (standard, insert p, auto)
interpret q : poly-mod-2 q by (standard, insert q, auto)
from $p q$ have r : ? $r>1$ by (simp add: less-1-mult)
interpret r : poly-mod-2 ?r using r unfolding poly-mod-2-def .
have $M p$-conv: $M p(q \cdot M p x)=M p x$ for x unfolding $q p$
by (rule Mp-product-modulus[OF refl k0])
from arg-cong[OF CDHq, of $M p$, unfolded $M p$-conv $]$ have $M p C=M p$ (Mp D

* Mp H)
by simp
also have $M p D=M p D 1$ using $D 1 D$ by simp
also have $M p H=M p H 1$ using $H 1 H$ by simp
finally have $C D H p$: eq-m $C(D 1 * H 1)$ by $s i m p$
have $M p U 1=U 1$ unfolding $U 1$ by simp
note dupe1 $=$ dupe-monic-dynamic[OF dupe1 one-p mon1 D1 H1 S1 T1 this]
have $q \cdot M p U 2=U 2$ unfolding $U 2$ by simp
note dupe2 $=$ q.dupe-monic-dynamic[OF dupe2 one-q mon D H S This]
from $C D H q$ have $q \cdot M p C-q \cdot M p(D * H)=0$ by simp
hence $q \cdot M p(q \cdot M p C-q \cdot M p(D * H))=0$ by simp
hence $q \cdot M p(C-D * H)=0$ by simp
from q.Mp-0-smult-sdiv-poly[OF this] have CDHq: smult q (sdiv-poly $(C-D *$ H) q) $=C-D * H$.
\{
fix $A B$

```
    have \(M p(A * D 1+B * H 1)=M p(M p(A * D 1)+M p(B * H 1))\) by simp
    also have \(M p(A * D 1)=M p(A * M p D 1)\) by simp
    also have \(\ldots=M p(A * D)\) unfolding \(D 1 D\) by simp
    also have \(M p(B * H 1)=M p(B * M p H 1)\) by simp
    also have \(\ldots=M p(B * H)\) unfolding \(H 1 H\) by simp
    finally have \(M p(A * D 1+B * H 1)=M p(A * D+B * H)\) by simp
    \} note \(\mathrm{D} 1 \mathrm{H} 1=\) this
    have \(r . M p\left(D^{\prime} * H^{\prime}\right)=r . M p((D+\) smult \(q B) *(H+\) smult \(q A))\)
    unfolding \(D^{\prime} H^{\prime}\) by simp
    also have \((D+\operatorname{smult} q B) *(H+\operatorname{smult} q A)=(D * H+\operatorname{smult} q(A * D+\)
\(B * H))+\operatorname{smult}(q * q)(A * B)\)
    by (simp add: field-simps smult-distribs)
    also have \(r . M p \ldots=r \cdot M p(D * H+r . M p(s m u l t ~ q(A * D+B * H))+r . M p\)
(smult \((q * q)(A * B)))\)
    using r.plus-Mp by metis
    also have r.Mp \((\operatorname{smult}(q * q)(A * B))=0\) unfolding \(q q\)
        by (metis r.Mp-smult-m-0 smult-smult)
    also have r.Mp(smult \(q(A * D+B * H))=r . M p(\) smult \(q\) U1)
    proof (rule Mp-lift-modulus[of - \(q\) ])
        show \(M p(A * D+B * H)=M p\) U1 using dupe1(1) unfolding D1H1 by
simp
    qed
    also have \(\ldots=r . M p(C-D * H)\)
        unfolding arg-cong[OF CDHq, of r.Mp, symmetric]
        using Mp-lift-modulus[of U1 sdiv-poly \((C-D * H) q\) \(q\) ] unfolding U1
        by simp
    also have r.Mp \((D * H+r . M p(C-D * H)+0)=r . M p C\) by simp
    finally show \(C D H\) : r.eq-m \(C\left(D^{\prime} * H^{\prime}\right)\) by simp
    have degree \(D 1=\operatorname{degree}(M p D 1)\) using mon1 by simp
    also have \(\ldots=\) degree \(D\) unfolding \(D 1 D\) using mon by simp
    finally have deg-eq: degree \(D 1=\) degree \(D\) by simp
    show mon: monic \(D^{\prime}\) unfolding \(D^{\prime}\) using dupe1(2) mon unfolding deg-eq by
(rule monic-smult-add-small)
    have \(M p\left(S * D^{\prime}+T * H^{\prime}-1\right)=M p(M p(D * S+H * T)+(\operatorname{smult} q(S *\)
\(B+T * A)-1)\) )
    unfolding \(D^{\prime} H^{\prime}\) plus-Mp by (simp add: field-simps smult-distribs)
    also have \(M p(D * S+H * T)=M p(M p(D 1 * M p S)+M p(H 1 * M p T))\)
using D1H1[of \(S T]\) by (simp add: ac-simps)
    also have \(\ldots=1\) using one-p unfolding S1S[symmetric] T1T[symmetric] by
simp
    also have Mp \((1+(\operatorname{smult} q(S * B+T * A)-1))=M p(\operatorname{smult} q(S * B+\)
\(T * A)\) ) by simp
    also have \(\ldots=0\) unfolding \(q p\) by (metis Mp-smult-m-0 smult-smult)
    finally have \(M p\left(S * D^{\prime}+T * H^{\prime}-1\right)=0\).
    from Mp-0-smult-sdiv-poly[OF this]
    have SDTH: smult \(p\) (sdiv-poly \(\left.\left(S * D^{\prime}+T * H^{\prime}-1\right) p\right)=S * D^{\prime}+T * H^{\prime}\)
- 1 .
    have swap: \(q * p=p * q\) by simp
    have \(r . M p\left(D^{\prime} * S^{\prime}+H^{\prime} * T^{\prime}\right)=\)
```

r.Mp $\left((D+\right.$ smult $q B) *\left(S-\right.$ smult $\left.p A^{\prime}\right)+(H+$ smult $q A) *(T-$ smult $\left.p B^{\prime}\right)$)
unfolding $D^{\prime} S^{\prime} H^{\prime} T^{\prime} r q$ using r.plus-Mp r.mult-Mp by metis also have $\ldots=r \cdot M p((D * S+H * T+$
smult $q(B * S+A * T))-$ smult $p\left(A^{\prime} * D+B^{\prime} * H\right)-$ smult ?r $\left(A * B^{\prime}\right.$
$\left.+B * A^{\prime}\right)$)
by (simp add: field-simps smult-distribs)
also have $\ldots=r . M p((D * S+H * T+$
smult $q(B * S+A * T))-r . M p\left(\right.$ smult $\left.p\left(A^{\prime} * D+B^{\prime} * H\right)\right)-r . M p$ (smult
?r $\left.\left.\left(A * B^{\prime}+B * A^{\prime}\right)\right)\right)$
using r.plus-Mp r.minus-Mp by metis
also have $r \cdot M p\left(\right.$ smult ? $\left.r\left(A * B^{\prime}+B * A^{\prime}\right)\right)=0$ by simp

using q.Mp-lift-modulus[OF dupe2(1), of p] unfolding swap.
also have $\ldots=r . M p\left(S * D^{\prime}+T * H^{\prime}-1\right)$
unfolding arg-cong[OF SDTH, of r.Mp, symmetric]
using q.Mp-lift-modulus[of U2 sdiv-poly $\left.\left(S * D^{\prime}+T * H^{\prime}-1\right) p p\right]$
unfolding U2 swap by simp
also have $S * D^{\prime}+T * H^{\prime}-1=S * D+T * H+\operatorname{smult} q(B * S+A *$
T) -1
unfolding $D^{\prime} H^{\prime}$ by (simp add: field-simps smult-distribs)
also have $r . M p(D * S+H * T+\operatorname{smult} q(B * S+A * T)-$
r.Mp $(S * D+T * H+\operatorname{smult} q(B * S+A * T)-1)-0)$
$=1$ by simp
finally show 1: r.eq-m $\left(D^{\prime} * S^{\prime}+H^{\prime} * T^{\prime}\right) 1$ by simp
show $D^{\prime}: r . M p D^{\prime}=D^{\prime}$ unfolding $D^{\prime} r$.Mp-ident-iff poly-mod.Mp-coeff plus-poly.rep-eq coeff-smult
proof
fix n
from D dupe1 (4) have coeff $D n \in\{0 . .<q\}$ coeff $B n \in\{0 . .<p\}$
unfolding q.Mp-ident-iff Mp-ident-iff by auto
thus coeff $D n+q *$ coeff $B n \in\{0 . .<? r\}$ by (metis range-sum-prod)
qed
show $H^{\prime}:$ r.Mp $H^{\prime}=H^{\prime}$ unfolding $H^{\prime} r$.Mp-ident-iff poly-mod.Mp-coeff plus-poly.rep-eq coeff-smult

proof

fix n
from H dupe1(3) have coeff $H n \in\{0 . .<q\}$ coeff $A n \in\{0 . .<p\}$
unfolding q.Mp-ident-iff Mp-ident-iff by auto
thus coeff $H n+q *$ coeff $A n \in\{0 . .<? r\}$ by (metis range-sum-prod)
qed
show poly-mod.Mp ?r $S^{\prime}=S^{\prime}$ poly-mod.Mp ?r $T^{\prime}=T^{\prime}$
unfolding $S^{\prime} T^{\prime} r q$ by auto
qed
definition hensel-step where
hensel-step p q S1 T1 D1 H1 S T D H $=($
let $U=$ poly-mod.Mp $p($ sdiv-poly $(C-D * H) q) ;-Z 2$ and $Z 3$
$(A, B)=$ dupe-monic-dynamic p D1 H1 S1 T1 U;

$$
\begin{aligned}
& D^{\prime}=D+\text { smult } q B ;-Z 4 \\
& H^{\prime}=H+\text { smult } q A ; \\
& U^{\prime}=\text { poly-mod.Mp } q\left(\text { sdiv-poly }\left(S * D^{\prime}+T * H^{\prime}-1\right) p\right) ;-Z 5+Z 6 \\
& \left(A^{\prime}, B^{\prime}\right)=\text { dupe-monic-dynamic } q D H S T U^{\prime} ; \\
& q^{\prime}=p * q ; \\
& S^{\prime}=\text { poly-mod.Mp } q^{\prime}\left(S-\text { smult } p A^{\prime}\right) ;-Z^{\prime} \\
& T^{\prime}=\text { poly-mod.Mp } q^{\prime}\left(T-\text { smult } p B^{\prime}\right) \\
& \text { in } \left.\left(S^{\prime}, T^{\prime}, D^{\prime}, H^{\prime}\right)\right)
\end{aligned}
$$

definition quadratic-hensel-step q STDH=hensel-step q q S TD HSTDH
lemma quadratic-hensel-step-code[code]:
quadratic-hensel-step q S TD $H=$
(let dupe $=$ dupe-monic-dynamic q DHST; 七 this will share the conversions of $D H S T$
$U=$ poly-mod.Mp $q($ sdiv-poly $(C-D * H) q) ;$
$(A, B)=$ dupe U;
$D^{\prime}=D+$ Polynomial.smult $q B$;
$H^{\prime}=H+$ Polynomial.smult $q A$;
$U^{\prime}=$ poly-mod.Mp $q\left(\right.$ sdiv-poly $\left.\left(S * D^{\prime}+T * H^{\prime}-1\right) q\right) ;$
$\left(A^{\prime}, B^{\prime}\right)=$ dupe U^{\prime};
$q^{\prime}=q * q ;$
$S^{\prime}=$ poly-mod.Mp $q^{\prime}\left(S-\right.$ Polynomial.smult $\left.q A^{\prime}\right)$;
$T^{\prime}=$ poly-mod. $M p q^{\prime}\left(T-\right.$ Polynomial.smult $\left.q B^{\prime}\right)$ in $\left.\left(S^{\prime}, T^{\prime}, D^{\prime}, H^{\prime}\right)\right)$
unfolding quadratic-hensel-step-def[unfolded hensel-step-def] Let-def ..
definition simple-quadratic-hensel-step where - do not compute new values S^{\prime} and T^{\prime}
simple-quadratic-hensel-step q S T D H = (

```
let \(U=\) poly-mod.Mp \(q\) (sdiv-poly \((C-D * H) q\) ); Z2 \(+Z 3\)
    \((A, B)=\) dupe-monic-dynamic q D HSTU;
    \(D^{\prime}=D+\) smult \(q B ;-Z 4\)
    \(H^{\prime}=H+\) smult \(q A\)
in \(\left.\left(D^{\prime}, H^{\prime}\right)\right)\)
```

lemma hensel-step: assumes step: hensel-step p q S1 T1 D1 H1 S T D H $=\left(S^{\prime}\right.$, $\left.T^{\prime}, D^{\prime}, H^{\prime}\right)$
and one-p: poly-mod.eq-m $p(D 1 * S 1+H 1 * T 1) 1$
and mon1: monic D1
and $p: p>1$
and $C D H q$: poly-mod.eq-m $q C(D * H)$
and one-q: poly-mod.eq-m $q(D * S+H * T) 1$
and D1D: poly-mod.eq-m p D1 D
and H1H: poly-mod.eq-m p H1 H
and S1S: poly-mod.eq-m p S1 S
and T1T: poly-mod.eq-m p T1 T
and mon: monic D
and $q: q>1$
and D1: poly-mod.Mp p D1 = D1
and H1: poly-mod.Mp p H1 = H1
and S1: poly-mod.Mp p S1 = S1
and T1: poly-mod.Mp p T1 $=T 1$
and D : poly-mod.Mp q $D=D$
and H : poly-mod.Mp q $H=H$
and S : poly-mod.Mp $q S=S$
and T : poly-mod.Mp $q T=T$
and $r q: r=p * q$
and $p q: p$ dvd q
shows

> poly-mod.eq-m r $C\left(D^{\prime} * H^{\prime}\right)$ poly-mod.eq-m $r\left(D^{\prime} * S^{\prime}+H^{\prime} * T^{\prime}\right) 1$ poly-mod.Mp r r $D^{\prime}=D^{\prime}$ poly-mod.Mp $r H^{\prime}=H^{\prime}$ poly-mod.Mp r $S^{\prime}=S^{\prime}$ poly-mod.Mp $r T^{\prime}=T^{\prime}$ poly-mod.Mp
proof -
define U where $U: U=$ poly-mod.Mp $p($ sdiv-poly $(C-D * H) q)$
note step $=$ step[unfolded hensel-step-def Let-def, folded U]
obtain $A B$ where dupe1: dupe-monic-dynamic p D1 H1 S1 T1 $U=(A, B)$ by
force
note step $=$ step [unfolded dupe1 split]
from step have $D^{\prime}: D^{\prime}=D+$ smult $q B$ and $H^{\prime}: H^{\prime}=H+$ smult $q A$
by (auto split: prod.splits)
define U^{\prime} where $U^{\prime}: U^{\prime}=$ poly-mod.Mp q (sdiv-poly $\left(S * D^{\prime}+T * H^{\prime}-1\right)$
p)
obtain $A^{\prime} B^{\prime}$ where dupe2: dupe-monic-dynamic q D HST $U^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ by force
from step $\left[\right.$ folded $D^{\prime} H^{\prime}$, folded U^{\prime}, unfolded dupe2 split, folded rq]
have $S^{\prime}: S^{\prime}=$ poly-mod.Mp $r\left(S-\right.$ Polynomial.smult $\left.p A^{\prime}\right)$ and
$T^{\prime}: T^{\prime}=$ poly-mod.Mp $r\left(T-\right.$ Polynomial.smult $\left.p B^{\prime}\right)$ by auto
from hensel-step-main[OF one-q one-p CDHq D1D H1H S1S T1T mon mon1 q p D1 H1 S1 T1 D H S T U
dupe1 $D^{\prime} H^{\prime} U^{\prime}$ dupe2 rq pq $S^{\prime} T^{\prime}$
show poly-mod.eq-m $r\left(D^{\prime} * S^{\prime}+H^{\prime} * T^{\prime}\right) 1$
poly-mod.eq-m r C $\left(D^{\prime} * H^{\prime}\right)$
poly-mod.Mp r $D^{\prime}=D^{\prime}$
poly-mod.Mp r $H^{\prime}=H^{\prime}$
poly-mod.Mp $r S^{\prime}=S^{\prime}$
poly-mod.Mp r $T^{\prime}=T^{\prime}$
monic D^{\prime} by auto
from $p q$ obtain s where $q: q=p * s$ by (metis $d v d E$)
show poly-mod.Mp p D1 = poly-mod. M p p D^{\prime}

$$
\text { poly-mod.Mp p } H 1=\text { poly-mod.Mp } p H^{\prime}
$$

unfolding $q D^{\prime} D 1 D H^{\prime} H 1 H$
by (metis add.right-neutral poly-mod.Mp-smult-m-0 poly-mod.plus-Mp(2) smult-smult) +
from $\langle q>1\rangle$ have $q 0: q>0$ by auto
show poly-mod.Mp p $S 1=$ poly-mod.Mp p S^{\prime}
poly-mod.Mp p T1 = poly-mod.Mp p T^{\prime}
unfolding S^{\prime} S1S T^{\prime} T1T poly-mod-2.Mp-product-modulus[OF poly-mod-2.intro[OF
$\langle p>1\rangle] r q q 0]$
by (metis group-add-class.diff-0-right poly-mod.Mp-smult-m-0 poly-mod.minus-Mp(2))+

qed

lemma quadratic-hensel-step: assumes step: quadratic-hensel-step q STD $H=$ $\left(S^{\prime}, T^{\prime}, D^{\prime}, H^{\prime}\right)$
and $C D H$: poly-mod.eq-m q $C(D * H)$
and one: poly-mod.eq-m $q(D * S+H * T) 1$
and D : poly-mod.Mp q $D=D$
and H : poly-mod.Mp $q H=H$
and S : poly-mod.Mp q $S=S$
and T : poly-mod.Mp $q T=T$
and mon: monic D
and $q: q>1$
and $r q: r=q * q$
shows
poly-mod.eq-m r $C\left(D^{\prime} * H^{\prime}\right)$
poly-mod.eq-m $r\left(D^{\prime} * S^{\prime}+H^{\prime} * T^{\prime}\right) 1$
poly-mod.Mp r $D^{\prime}=D^{\prime}$
poly-mod.Mp r $H^{\prime}=H^{\prime}$
poly-mod.Mp $r S^{\prime}=S^{\prime}$
poly-mod.Mp r $T^{\prime}=T^{\prime}$
poly-mod.Mp $q D=$ poly-mod.Mp $q D^{\prime}$
poly-mod.Mp q $H=$ poly-mod.Mp q H^{\prime}
poly-mod.Mp q $S=$ poly-mod.Mp q S^{\prime}
poly-mod.Mp $q T=$ poly-mod.Mp $q T^{\prime}$
monic D^{\prime}
proof (atomize(full), goal-cases)
case 1
from hensel-step[OF step[unfolded quadratic-hensel-step-def] one mon q CDH one refl refl refl refl mon q D HSTDHSTrq]
show? ?ase by auto
qed
context
fixes $p::$ int and S1 T1 D1 H1 :: int poly
begin
private lemma decrease[termination-simp]: $\neg j \leq 1 \Longrightarrow$ odd $j \Longrightarrow \operatorname{Suc}$ (j div 2)
$<j$ by presburger

fun quadratic-hensel-loop where

quadratic-hensel-loop (j :: nat) $=($
if $j \leq 1$ then $(p, S 1, T 1, D 1, H 1)$ else if even j then
(case quadratic-hensel-loop (j div 2) of $(q, S, T, D, H) \Rightarrow$
let $q q=q * q$ in
(case quadratic-hensel-step qS TDH of - quadratic step
$\left.\left.\left(S^{\prime}, T^{\prime}, D^{\prime}, H^{\prime}\right) \Rightarrow\left(q q, S^{\prime}, T^{\prime}, D^{\prime}, H^{\prime}\right)\right)\right)$ else - odd j
(case quadratic-hensel-loop (j div $2+1$) of
$(q, S, T, D, H) \Rightarrow$
(case quadratic-hensel-step qSTDH of - quadratic step
$\left(S^{\prime}, T^{\prime}, D^{\prime}, H^{\prime}\right) \Rightarrow$
let $q q=q * q ; p j=q q$ div $p ;$ down $=$ poly-mod.Mp $p j$ in (pj, down S^{\prime}, down T^{\prime}, down D^{\prime}, down $\left.H^{\prime}\right)$)))
definition quadratic-hensel-main $j=$ (case quadratic-hensel-loop j of $(q q, S, T, D, H) \Rightarrow(D, H))$
declare quadratic-hensel-loop.simps[simp del]

- unroll the definition of hensel-loop so that in outermost iteration we can use simple-hensel-step
lemma quadratic-hensel-main-code[code]: quadratic-hensel-main $j=($
if $j \leq 1$ then (D1, H1)

$$
\text { else if even } j
$$

then (case quadratic-hensel-loop (j div 2) of

$$
(q, S, T, D, H) \Rightarrow
$$

simple-quadratic-hensel-step q STDH)
else (case quadratic-hensel-loop (j div $2+1$) of
$(q, S, T, D, H) \Rightarrow$
(case simple-quadratic-hensel-step q S T D H of

$$
\left(D^{\prime}, H^{\prime}\right) \Rightarrow \text { let down }=\text { poly-mod.Mp }(q * q \operatorname{div} p) \text { in }\left(\text { down } D^{\prime}\right. \text {, down }
$$

$\left.H^{\prime}\right)$))
unfolding quadratic-hensel-loop.simps[of j] quadratic-hensel-main-def Let-def
by (simp split: if-splits prod.splits option.splits sum.splits
add: quadratic-hensel-step-code simple-quadratic-hensel-step-def Let-def)

context

fixes $j::$ nat
assumes 1: poly-mod.eq-m $p(D 1 * S 1+H 1 * T 1) 1$
and CDH1: poly-mod.eq-m p C (D1 * H1)
and mon1: monic D1
and $p: p>1$
and D1: poly-mod.Mp p D1 = D1
and H1: poly-mod.Mp p H1 = H1
and S1: poly-mod.Mp p S1 $=S 1$
and T1: poly-mod.Mp p T1 = T1
and $j: j \geq 1$
begin
lemma quadratic-hensel-loop:
assumes quadratic-hensel-loop $j=(q, S, T, D, H)$
shows (poly-mod.eq-m q $C(D * H) \wedge$ monic D
\wedge poly-mod.eq-m p D1 D \wedge poly-mod.eq-m pH1 H
\wedge poly-mod.eq-m $q(D * S+H * T) 1$
\wedge poly-mod.Mp $q D=D \wedge$ poly-mod.Mp $q H=H$
\wedge poly-mod.Mp $q S=S \wedge$ poly-mod.Mp $q T=T$
$\wedge q=p^{〔} j$)
using j assms
proof (induct j arbitrary: q S T D H rule: less-induct)
case (less $j q^{\prime} S^{\prime} T^{\prime} D^{\prime} H^{\prime}$)
note res $=$ less(3)
interpret poly-mod-2 p using p by (rule poly-mod-2.intro)
let ?hens = quadratic-hensel-loop
note $\operatorname{simp}[\operatorname{simp}]=$ quadratic-hensel-loop.simps $[$ of $j]$
show ? case
proof (cases $j=1$)
case True
show ?thesis using res simp unfolding True using CDH1 1 mon1 D1 H1 S1
T1 by auto
next
case False
with less(2) have False: $(j \leq 1)=$ False by auto
have mod-2: $k \geq 1 \Longrightarrow$ poly-mod-2 ($p^{\wedge} k$) for k by (intro poly-mod-2.intro,
insert p, auto)
\{
fix $k D$
assume $*: k \geq 1 k \leq j$ poly-mod.Mp $\left(p^{\wedge} k\right) D=D$
from $*$ (2) have $\left\{0 . .<p^{\wedge} k\right\} \subseteq\left\{0 . .<p^{\wedge} j\right\}$ using p by auto
hence poly-mod. $M p$ ($p^{\wedge} j$) $D=D$
unfolding poly-mod-2.Mp-ident-iff[OF mod-2[OF less(2)]]
using *(3)[unfolded poly-mod-2.Mp-ident-iff[OF mod-2[OF *(1)]]] by blast
$\}$ note lift-norm $=$ this
show ?thesis
proof (cases even j)
case True
let ${ }^{2} j 2=j \operatorname{div} 2$
from False have $l t$: ? $j 2<j 1 \leq$? $j 2$ by auto
obtain $q S T D H$ where rec: ?hens ? $j 2=(q, S, T, D, H)$ by (cases ?hens
?j2, auto)
note $I H=$ less $(1)[$ OF lt rec]
from $I H$
have $*$: poly-mod.eq-m q $C(D * H)$
poly-mod.eq-m $q(D * S+H * T) 1$
monic D
eq-m D1 D
eq-m H1 H
poly-mod.Mp q $D=D$
poly-mod.Mp q $H=H$
poly-mod.Mp q $S=S$
poly-mod.Mp q $T=T$
$q=p^{\text {へ } ? ~} \mathrm{j}_{2}$
by auto
hence norm: poly-mod. $M p\left(p^{\wedge} j\right) D=D$ poly-mod. $M p\left(p^{\wedge} j\right) H=H$
poly-mod.Mp $\left(p^{\wedge} j\right) S=S$ poly-mod.Mp $\left(p^{\wedge} j\right) T=T$
using lift-norm [OF lt(2)] by auto
from lt p have $q: q>1$ unfolding $*$ by simp
let ?step $=$ quadratic-hensel-step q S T D H
obtain S2 T2 D2 H2 where step-res: ? step $=(S 2, T 2, D 2, H 2)$ by (cases ?step, auto)
note step $=$ quadratic-hensel-step $[$ OF step-res $*(1,2,6-9,3)$ q refl $]$
let ? $q q=q * q$
\{
fix $D D 2$
assume poly-mod.Mp q D $=$ poly-mod.Mp q D2
from arg-cong[OF this, of Mp] Mp-Mp-pow-is-Mp[of ? j2, OF - p, folded
*(10)] $l t$
have $M p D=M p D 2$ by simp
\} note shrink $=$ this
have **: poly-mod.eq-m ?qq C (D2 * H2)
poly-mod.eq-m?qq (D2 * S2 $+H 2 * T 2) 1$
monic D2
$e q-m$ D1 D2
eq-m H1 H2
poly-mod.Mp? $q q$ D2 $=$ D2
poly-mod.Mp ?qq H2 = H2
poly-mod.Mp? ${ }^{\text {qq }}$ S2 $=$ S2
poly-mod.Mp?qq T2 = T2
using step shrink[of H H2] shrink[of D D2] $*(4-7)$ by auto
note simp $=$ simp False if-False rec split Let-def step-res option.simps
from True have $j: p^{\wedge} j=p^{\wedge}(2 * ? j 2)$ by auto
with $*(10)$ have $q q: q * q=p^{\wedge} j$
by (simp add: power-mult-distrib semiring-normalization-rules(30-))
from res[unfolded simp] True have $i d^{\prime}: q^{\prime}=? q q S^{\prime}=S 2 T^{\prime}=T 2 D^{\prime}=D 2$ $H^{\prime}=H 2$ by auto
show ?thesis unfolding $i d^{\prime}$ using $* *$ by (auto simp: $q q$)
next
case odd: False
hence False': (even $j)=$ False by auto
let $? j 2=j \operatorname{div} 2+1$
from False odd have $l t$: ? j2 $<j 1 \leq$? j2 by presburger +
obtain $q S T D H$ where rec: ?hens? ${ }^{2} 2=(q, S, T, D, H)$ by (cases ?hens ? j2, auto)
note $I H=\operatorname{less}(1)[$ OF lt rec]
note $\operatorname{simp}=\operatorname{simp}$ False if－False rec sum．simps split Let－def False＇option．simps
from $I H$ have $*$ ：poly－mod．eq－m q $C(D * H)$
poly－mod．eq－m $q(D * S+H * T) 1$
monic D
$e q-m$ D1 D
eq－m H1 H
poly－mod．Mp q $D=D$
poly－mod．Mp q $H=H$
poly－mod．Mp q $S=S$
poly－mod．Mp $q T=T$
$q=p^{へ}$ ？j_{2}
by auto
hence norm：poly－mod．$M p\left(p^{\wedge} j\right) D=D$ poly－mod．Mp $\left(p^{\wedge} j\right) H=H$
using lift－norm［OF lt（2）］lt by auto
from $l t p$ have $q: q>1$ unfolding＊
using mod－2 poly－mod－2．m1 by blast
let ？step $=$ quadratic－hensel－step q S T D H
obtain S2 T2 D2 H2 where step－res：？step $=(S 2$, T2，D2，H2）by（cases ？step，auto）
have $d v d: q d v d q$ by auto
note step $=$ quadratic－hensel－step $[$ OF step－res $*(1,2,6-9,3)$ q refl $]$
let ？$q q=q * q$
\｛
fix $D D 2$
assume poly－mod．Mp q D $=$ poly－mod．Mp q D2
from arg－cong［OF this，of Mp］Mp－Mp－pow－is－Mp［of ？j2，OF－p，folded
＊（10）］$l t$
have $M p D=M p D 2$ by simp
\} note shrink $=$ this
have $* *$ ：poly－mod．eq－m ？qq $C(D 2 * H 2)$
poly－mod．eq－m？qq（D2＊S2＋H2＊T2） 1
monic D2
eq－m D1 D2
eq－m H1 H2
poly－mod．Mp？$q q$ D2＝D2
poly－mod．Mp ？qq H2＝H2
poly－mod．Mp？qq S2＝S2
poly－mod．$M p$ ？$q q$ T2 $=T 2$
using step shrink［of H H2］shrink［of D D2］$*(4-7)$ by auto
note $\operatorname{simp}=\operatorname{simp}$ False if－False rec split Let－def step－res option．simps
from odd have j ：Suc $j=2 *$ ？$j 2$ by auto
from arg－cong［OF this，of $\lambda j . p^{\wedge} j$ div $\left.p\right]$
have $p j: p \bigwedge j=q * q$ div p and $q q: q * q=p へ j * p$ unfolding $*(10)$
using p
by（simp add：power－mult－distrib semiring－normalization－rules（30－））＋
let ？$p j=p^{\wedge} j$
from res［unfolded simp］pj
have $i d$ ：
$q^{\prime}=p^{〔} j$

```
            \(S^{\prime}=\) poly-mod.Mp ?pj S2
            \(T^{\prime}=\) poly-mod.Mp ?pj T2
            \(D^{\prime}=\) poly-mod.Mp ?pj D2
            \(H^{\prime}=\) poly-mod.Mp ?pj H2
            by auto
    interpret pj: poly-mod-2 ?pj by (rule \(\bmod -2[O F<1 \leq j\rangle])\)
    have norm: pj.Mp \(D^{\prime}=D^{\prime} p j . M p H^{\prime}=H^{\prime}\)
        unfolding \(i d\) by (auto simp: poly-mod.Mp-Mp)
    have mon: monic \(D^{\prime}\) using pj.monic-Mp[OF step(11)] unfolding id.
    have \(i d^{\prime}: M p(p j . M p D)=M p D\) for \(D\) using \(\langle 1 \leq j\rangle\)
        by (simp add: Mp-Mp-pow-is-Mp p)
    have eq: eq-m D1 D2 \(\Longrightarrow e q-m D 1\) ( \(p j . M p\) D2) for D1 D2
        unfolding \(i d^{\prime}\) by auto
    have \(i d^{\prime \prime}: p j . M p(p o l y\)-mod. \(M p(q * q) D)=p j . M p D\) for \(D\)
        unfolding \(q q\) by (rule \(p j\).Mp-product-modulus[OF refl], insert \(p\), auto)
    \{
        fix \(D 1\) D2
        assume poly-mod.eq-m \((q * q)\) D1 D2
        hence poly-mod.Mp \((q * q) D 1=\operatorname{poly-mod} . M p(q * q) D 2\) by \(\operatorname{simp}\)
        from arg-cong[OF this, of pj.Mp]
        have \(p j . M p D 1=p j . M p\) D2 unfolding \(i d^{\prime \prime}\).
        \} note \(e q^{\prime}=t h i s\)
        from \(e q^{\prime}[O F \operatorname{step}(1)]\) have eq1: pj.eq-m \(C\left(D^{\prime} * H^{\prime}\right)\) unfolding id by simp
        from eq \({ }^{\prime}\left[O F\right.\) step(2)] have eq2: pj.eq-m \(\left(D^{\prime} * S^{\prime}+H^{\prime} * T^{\prime}\right) 1\)
            unfolding id by (metis pj.mult-Mp pj.plus-Mp)
        from \(* *(4-5)\) have eq3: eq-m D1 \(D^{\prime}\) eq-m H1 \(H^{\prime}\)
        unfolding \(i d\) by (auto intro: eq)
        from norm mon eq1 eq2 eq3
        show ?thesis unfolding id by simp
    qed
    qed
qed
lemma quadratic-hensel-main: assumes res: quadratic-hensel-main \(j=(D, H)\)
    shows poly-mod.eq-m ( \(p\) § \() C(D * H)\)
    monic \(D\)
    poly-mod.eq-m p D1 D
    poly-mod.eq-m p H1 H
    poly-mod.Mp ( \(p\) 〔 \(j\) ) \(D=D\)
    poly-mod.Mp \((p\) 〔 \() ~ H=H\)
proof (atomize(full), goal-cases)
    case 1
    let ?hen = quadratic-hensel-loop \(j\)
    from res obtain \(q S T\) where hen: ?hen \(=(q, S, T, D, H)\)
    by (cases ?hen, auto simp: quadratic-hensel-main-def)
    from quadratic-hensel-loop \([O F\) hen show ?case by auto
qed
end
end
```


end

datatype 'a factor-tree $=$ Factor-Leaf 'a int poly \mid Factor-Node ' a 'a factor-tree 'a factor-tree

```
fun factor-node-info :: 'a factor-tree }=>\mp@subsup{}{}{\prime}'a\mathrm{ where
    factor-node-info (Factor-Leaf i x)=i
| factor-node-info (Factor-Node i l r)=i
fun factors-of-factor-tree :: 'a factor-tree }=>\mathrm{ int poly multiset where
    factors-of-factor-tree (Factor-Leaf i x) ={#x#}
|factors-of-factor-tree (Factor-Node ilr) = factors-of-factor-tree l + factors-of-factor-tree
r
fun product-factor-tree :: int = 'a factor-tree }=>\mathrm{ int poly factor-tree where
    product-factor-tree p (Factor-Leaf i x) =(Factor-Leaf x x)
| product-factor-tree p (Factor-Node il r) = (let
    L = product-factor-tree pl;
    R= product-factor-tree pr;
    f= factor-node-info L;
    g= factor-node-info }R\mathrm{ ;
    fg=poly-mod.Mp p (f*g)
    in Factor-Node fg L R)
fun sub-trees :: 'a factor-tree }=>\mathrm{ 'a factor-tree set where
    sub-trees (Factor-Leaf i x)={ Factor-Leaf i x }
| sub-trees (Factor-Node i l r) = insert (Factor-Node il r) (sub-trees l U sub-trees
r)
```

lemma sub-trees-refl[simp]: $t \in$ sub-trees t by (cases t, auto)
lemma product-factor-tree: assumes $\wedge x . x \in \#$ factors-of-factor-tree $t \Longrightarrow$ poly-mod.Mp
px=x
shows $u \in$ sub-trees (product-factor-tree $p t) \Longrightarrow$ factor-node-info $u=f \Longrightarrow$
poly-mod.Mp pf=f $\wedge f=$ poly-mod.Mp (prod-mset (factors-of-factor-tree u))
\wedge
factors-of-factor-tree (product-factor-tree $p t$) $=$ factors-of-factor-tree t
using assms
proof (induct t arbitrary: uf)
case (Factor-Node ilruf)
interpret poly-mod p.
let $? L=$ product-factor-tree $p l$
let $? R=$ product-factor-tree $p r$
let $? f=$ factor-node-info ? L
let $? g=$ factor-node-info $? R$
let $? f g=M p(? f * ? g)$
have $M p$?f $=$?f \wedge ?f $=M p($ prod-mset $($ factors-of-factor-tree ? $L)) \wedge$
$($ factors-of-factor-tree ?L $)=($ factors-of-factor-tree l)
by (rule Factor-Node(1)[OF sub-trees-refl refl], insert Factor-Node(5), auto)

```
hence IH1: ?f \(=M p(\) prod-mset \((\) factors-of-factor-tree ? \(L))\)
    (factors-of-factor-tree ?L) \(=(\) factors-of-factor-tree \(l)\) by blast +
have \(M p ? g=? g \wedge ? g=M p(\) prod-mset \((\) factors-of-factor-tree ? \(R)) \wedge\)
    (factors-of-factor-tree ?R) \(=(\) factors-of-factor-tree \(r)\)
    by (rule Factor-Node(2)[OF sub-trees-refl refl], insert Factor-Node(5), auto)
hence \(I H 2: ? g=M p\) (prod-mset (factors-of-factor-tree ?R))
    \((\) factors-of-factor-tree ? \(R\) ) \()=(\) factors-of-factor-tree \(r)\) by blast +
have id: (factors-of-factor-tree (product-factor-tree p \((\) Factor-Node ilr))\()=\)
    (factors-of-factor-tree (Factor-Node il r)) by (simp add: Let-def IH1 IH2)
from Factor-Node(3) consider (root) \(u=\) Factor-Node ?fg ?L ?R
    | ( \(l\) ) \(u \in\) sub-trees ? \(L \mid(r) u \in\) sub-trees ? \(R\)
    by (auto simp: Let-def)
thus? case
proof cases
    case root
    with Factor-Node have \(f: f=\) ? \(f g\) by auto
    show ?thesis unfolding \(f\) root id by (simp add: Let-def ac-simps IH1 IH2)
next
    case \(l\)
    have \(M p f=f \wedge f=M p\) (prod-mset (factors-of-factor-tree \(u\) ))
        using Factor-Node(1)[OF l Factor-Node(4)] Factor-Node(5) by auto
    thus ?thesis unfolding id by blast
next
    case \(r\)
    have \(M p f=f \wedge f=M p\) (prod-mset (factors-of-factor-tree u))
        using Factor-Node(2)[OF r Factor-Node(4)] Factor-Node(5) by auto
    thus ?thesis unfolding id by blast
qed
qed auto
fun create-factor-tree-simple :: int poly list \(\Rightarrow\) unit factor-tree where
    create-factor-tree-simple \(x s=(\) let \(n=\) length \(x s\) in if \(n \leq 1\) then Factor-Leaf ()
( \(h d x s\) )
    else let \(i=n \operatorname{div} 2\);
        \(x s 1=\) take \(i x s\);
        \(x s \mathcal{Z}=d r o p i x s\)
        in Factor-Node () (create-factor-tree-simple xs1) (create-factor-tree-simple xs2)
        )
declare create-factor-tree-simple.simps[simp del]
lemma create-factor-tree-simple: \(x s \neq[] \Longrightarrow\) factors-of-factor-tree (create-factor-tree-simple
\(x s)=m s e t x s\)
proof (induct xs rule: wf-induct[OF wf-measure[of length]])
    case (1 xs)
    from 1 (2) have \(x s\) : length \(x s \neq 0\) by auto
    then consider (base) length \(x s=1 \mid\) (step) length \(x s>1\) by linarith
    thus ?case
    proof cases
```

```
    case base
    then obtain x where xs: xs = [x] by (cases xs; cases tl xs;auto)
    thus ?thesis by (auto simp: create-factor-tree-simple.simps)
    next
    case step
    let ?i = length xs div 2
    let ?xs1 = take ?i xs
    let ?xsZ = drop ?i xs
    from step have xs1: (?xs1, xs) \in measure length ?xs1 }=[]\mathrm{ by auto
    from step have xs2: (?xs2, xs) \in measure length ?xs2 }=[]\mathrm{ by auto
    from step have id: create-factor-tree-simple xs = Factor-Node () (create-factor-tree-simple
(take ?i xs))
    (create-factor-tree-simple (drop ?i xs)) unfolding create-factor-tree-simple.simps[of
xs] Let-def by auto
    have xs: xs=?.xs1 @ ?xs2 by auto
    show ?thesis unfolding id arg-cong[OF xs, of mset] mset-append
        using 1(1)[rule-format, OF xs1] 1(1)[rule-format, OF xs2]
        by auto
    qed
qed
```

We define a better factorization tree which balances the trees according to their degree., cf. Modern Computer Algebra, Chapter 15.5 on Multifactor Hensel lifting.
fun partition-factors-main $::$ nat $\Rightarrow\left({ }^{\prime} a \times n a t\right)$ list $\Rightarrow\left({ }^{\prime} a \times n a t\right)$ list $\times\left({ }^{\prime} a \times n a t\right)$ list where

```
    partition-factors-main s [] = ([], [])
```

\mid partition-factors-main $s((f, d) \# x s)=($ if $d \leq s$ then case partition-factors-main
$(s-d)$ xs of
$(l, r) \Rightarrow((f, d) \# l, r)$ else case partition-factors-main d xs of
$(l, r) \Rightarrow(l,(f, d) \# r))$
lemma partition-factors-main: partition-factors-main $s x s=(a, b) \Longrightarrow$ mset $x s=$ mset $a+$ mset b
by (induct s xs arbitrary: a b rule: partition-factors-main.induct, auto split: if-splits prod.splits)
definition partition-factors :: ('a $\times n a t)$ list $\Rightarrow\left({ }^{\prime} a \times n a t\right)$ list $\times\left({ }^{\prime} a \times n a t\right)$ list where

```
    partition-factors \(x s=(\) let \(n=\) sum-list (map snd xs) div 2 in
            case partition-factors-main \(n\) xs of
            \(([], x \# y \# y s) \Rightarrow([x], y \# y s)\)
    \(\mid(x \# y \# y s,[]) \Rightarrow([x], y \# y s)\)
    | pair \(\Rightarrow\) pair \()\)
lemma partition-factors: partition-factors \(x s=(a, b) \Longrightarrow\) mset \(x s=\) mset \(a+m s e t\)
\(b\)
    unfolding partition-factors-def Let-def
    by (cases partition-factors-main (sum-list (map snd xs) div 2) xs, auto split:
```

simp: partition-factors-main)
lemma partition-factors-length: assumes \neg length $x s \leq 1(a, b)=$ partition-factors xs
shows [termination-simp]: length $a<$ length xs length $b<$ length $x s$ and $a \neq[]$ $b \neq[]$ proof -
obtain ys zs where main: partition-factors-main (sum-list (map snd xs) div 2) $x s=(y s, z s)$ by force
note res $=\operatorname{assms}(2)[$ unfolded partition-factors-def Let-def main split]
from arg-cong[OF partition-factors-main[OF main], of size] have len: length xs $=$ length ys + length $z s$ by auto
with assms(1) have len2: length ys + length $z s \geq 2$ by auto
from res len2 have length $a<$ length $x s \wedge$ length $b<$ length $x s \wedge a \neq[] \wedge b \neq$
[] unfolding len
by (cases ys; cases zs; cases tl ys; cases tl zs; auto)
thus length $a<$ length xs length $b<$ length $x s ~ a \neq[] b \neq[]$ by blast + qed
fun create-factor-tree-balanced :: (int poly \times nat) list \Rightarrow unit factor-tree where
create-factor-tree-balanced $x s=($ if length $x s \leq 1$ then Factor-Leaf ()$(f s t(h d x s))$
else
case partition-factors xs of $(l, r) \Rightarrow$ Factor-Node ()
(create-factor-tree-balanced l)
(create-factor-tree-balanced r))
definition create-factor-tree :: int poly list \Rightarrow unit factor-tree where
create-factor-tree xs $=($ let ys $=\operatorname{map}(\lambda f .(f$, degree $f)) x s$;
$z s=$ rev (sort-key snd ys)
in create-factor-tree-balanced $z s$)
lemma create-factor-tree-balanced: $x s \neq[] \Longrightarrow$ factors-of-factor-tree (create-factor-tree-balanced
$x s)=\operatorname{mset}($ map fst xs)
proof (induct xs rule: create-factor-tree-balanced.induct)
case (1 xs)
show? ?ase
proof (cases length $x s \leq 1$)
case True
with 1 (3) obtain x where $x s: x s=[x]$ by (cases xs; cases tl xs, auto)
show ?thesis unfolding $x s$ by auto
next
case False
obtain $a b$ where part: partition-factors $x s=(a, b)$ by force
note $a b p=$ this[symmetric]
note nonempty $=$ partition-factors-length $(3-4)[$ OF False abp $]$
note $I H=1$ (1)[OF False abp nonempty(1)] 1(2)[OF False abp nonempty(2)]
show ?thesis unfolding create-factor-tree-balanced.simps[of xs] part split using

False IH partition-factors[OF part] by auto
qed
qed
lemma create-factor-tree: assumes $x s \neq[]$
shows factors-of-factor-tree (create-factor-tree xs) $=$ mset xs
proof -
let $? x s=\operatorname{rev}($ sort-key snd $(\operatorname{map}(\lambda f .(f$, degree $f)) x s))$
from assms have set $x s \neq\{ \}$ by auto
hence set ? $x s \neq\{ \}$ by auto
hence $x s: ~ ? x s \neq[]$ by blast
show ?thesis unfolding create-factor-tree-def Let-def create-factor-tree-balanced [OF $x s$]
by (auto, induct xs, auto)
qed
context
fixes $p::$ int and $n::$ nat
begin
definition quadratic-hensel-binary :: int poly \Rightarrow int poly \Rightarrow int poly \Rightarrow int poly \times int poly where
quadratic-hensel-binary C D $H=($
case euclid-ext-poly-dynamic p D H of
$(S, T) \Rightarrow$ quadratic-hensel-main C p $S T D H n)$
fun hensel-lifting-main :: int poly \Rightarrow int poly factor-tree \Rightarrow int poly list where
hensel-lifting-main U (Factor-Leaf --) $=[U]$
| hensel-lifting-main U (Factor-Node - l r) $=($ let
$v=$ factor-node-info l;
$w=$ factor-node-info r;
$(V, W)=$ quadratic-hensel-binary $U v w$
in hensel-lifting-main Vl@ hensel-lifting-main Wr)
definition hensel-lifting-monic :: int poly \Rightarrow int poly list \Rightarrow int poly list where
hensel-lifting-monic u vs $=$ (if vs $=[]$ then [] else let
$p n=p$ n;
$C=$ poly-mod.Mp pn u;
tree $=$ product-factor-tree p (create-factor-tree $v s)$
in hensel-lifting-main C tree)
definition hensel-lifting $::$ int poly \Rightarrow int poly list \Rightarrow int poly list where
hensel-lifting f gs $=($ let $l c=$ lead-coeff f;
ilc $=$ inverse-mod lc $\left(p^{\wedge} n\right)$;
$g=$ smult ilc f
in hensel-lifting-monic g gs)
end

```
context poly-mod-prime begin
context
    fixes n :: nat
    assumes n: n\not=0
begin
abbreviation hensel-binary \equiv quadratic-hensel-binary p n
abbreviation hensel-main \equivhensel-lifting-main p n
lemma hensel-binary:
    assumes cop: coprime-m DH and eq: eq-m C (D*H)
    and normalized-input: Mp D=D Mp H=H
    and monic-input: monic D
    and hensel-result: hensel-binary C D H = ( D',}\mp@subsup{H}{}{\prime}
    shows poly-mod.eq-m ( }\mp@subsup{p}{}{`}n)C(\mp@subsup{D}{}{\prime}*\mp@subsup{H}{}{\prime}) - the main result: equivalence mo
p^n
    ^monic D' - monic output
    ^ eq-m D D'^ eq-m H H' - apply ' mod p` on D' and H' yields D and H again
            \wedge poly-mod.Mp (p`n) D' = D'^ poly-mod.Mp (p`n) H'= H' - output is
normalized
proof -
    from m1 have p:p>1.
    obtain S T where ext: euclid-ext-poly-dynamic p D H=(S,T) by force
    obtain D1 H1 where main: quadratic-hensel-main C p S T D H n=(D1,H1)
by force
    note hen = hensel-result[unfolded quadratic-hensel-binary-def ext split Let-def
main]
    from n have n: n\geq1 by simp
    note eucl = euclid-ext-poly-dynamic[OF cop normalized-input ext]
    note main = quadratic-hensel-main[OF eucl(1) eq monic-input p normalized-input
eucl(2-) n main]
    show ?thesis using hen main by auto
qed
lemma hensel-main:
    assumes eq: eq-m C (prod-mset (factors-of-factor-tree Fs))
    and }\bigwedgeF.F\in# factors-of-factor-tree Fs \LongrightarrowMp F=F^ monic F
    and hensel-result: hensel-main C Fs =Gs
    and C: monic C poly-mod.Mp ( p^n) C = C
    and sf:square-free-m C
    and \ft.t\in sub-trees Fs \Longrightarrow factor-node-info t =f \Longrightarrow>f=Mp (prod-mset
(factors-of-factor-tree t))
    shows poly-mod.eq-m ( p`n) C (prod-list Gs) — the main result: equivalence mod
p`n
    ^ factors-of-factor-tree Fs = mset (map Mp Gs)
    \wedge ( \forall G . G \in ~ s e t ~ G s ~ \longrightarrow ~ m o n i c ~ G \wedge ~ p o l y - m o d . M p ~ ( p ` n ) G = G )
```

using assms
proof (induct Fs arbitrary: C Gs)
case (Factor-Leafffs C Gs)
thus ? case by auto
next
case (Factor-Node flr C Gs) note $*=$ this
note simps $=$ hensel-lifting-main.simps
note $I H 1=*(1)[$ rule-format $]$
note $I H 2=*(2)[$ rule-format $]$
note res $=*(5)$ [unfolded simps Let-def]
note $e q=*(3)$
note $F s=*(4)$
note $C=*(6,7)$
note $s f=*(8)$
note inv $=*(9)$
interpret $p n$: poly-mod-2 $p \widehat{ } n$ apply (unfold-locales) using $m 1 n$ by auto
let $? M p=p n . M p$
define D where $D \equiv$ prod-mset (factors-of-factor-tree l)
define H where $H \equiv$ prod-mset (factors-of-factor-tree r)
let ? $D=M p D$
let $? H=M p H$
let $? D^{\prime}=$ factor-node-info l
let $? H^{\prime}=$ factor-node-info r
obtain $A B$ where hen: hensel-binary C ? $D^{\prime} ? H^{\prime}=(A, B)$ by force
note res $=$ res[unfolded hen split]
obtain $A D$ where $A D^{\prime}: A D=$ hensel-main $A l$ by auto
obtain $B H$ where $B H^{\prime}: B H=$ hensel-main $B r$ by auto
from inv[of $l, O F-r e f l]$ have $D^{\prime}: ? D^{\prime}=? D$ unfolding D-def by auto
from inv[of r, OF - refl] have $H^{\prime}: ? H^{\prime}=? H$ unfolding H-def by auto
from eq[simplified]
have $e q^{\prime}: M p C=M p(? D * ? H)$ unfolding D-def H-def by simp
from square-free-m-cong[OF sf, of ? $D * ? H, O F e q$ ']
have $s f^{\prime}$: square-free-m (?D * ?H) .
from poly-mod-prime.square-free-m-prod-imp-coprime-m[OF - this]
have cop': coprime-m ?D ?H unfolding poly-mod-prime-def using prime.
from $e q^{\prime}$ have $e q^{\prime}: e q-m C(? D * ? H)$ by simp
have monD: monic D unfolding D-def by (rule monic-prod-mset, insert Fs, auto)
from hensel-binary[OF - - - hen, unfolded $D^{\prime} H^{\prime}$, OF cop' eq' Mp-Mp Mp-Mp monic-Mp[OF monD]]
have step: poly-mod.eq-m $\left(p^{\wedge} n\right) C(A * B) \wedge$ monic $A \wedge e q-m ? D A \wedge$ $e q-m ? H B \wedge ? M p A=A \wedge ? M p B=B$.
from res have Gs: $G s=A D @ B H$ by (simp add: $A D^{\prime} B H^{\prime}$)
have $A D$: eq-m $A ? D$? $M p A=A$ eq-m A (prod-mset (factors-of-factor-tree l))
and monA: monic A
using step by (auto simp: D-def)
note $s f$-fact $=$ square-free-m-factor $[O F$ sf $]$
from square-free-m-cong[OF sf-fact(1)] AD have sfA: square-free-m A by auto
have IH1: poly-mod.eq-m $\left(p^{\wedge} n\right) A($ prod-list $A D) \wedge$

```
    factors-of-factor-tree l=mset (map Mp AD)^
    (}\forallG.G\in\mathrm{ set AD }\longrightarrow\mathrm{ monic }G\wedge?MpG=G
    by (rule IH1[OF AD(3) Fs AD'[symmetric] monA AD(2) sfA inv], auto)
    have BH: eq-m B ?H pn.Mp B = B eq-m B (prod-mset (factors-of-factor-tree r))
    using step by (auto simp: H-def)
    from step have pn.eq-m C (A*B) by simp
    hence ?Mp C=?Mp (A*B) by simp
    with C AD(2) have pn.Mp C = pn.Mp (A*pn.Mp B) by simp
    from arg-cong[OF this, of lead-coeff] C
    have monic (pn.Mp (A*B)) by simp
    then have lead-coeff (pn.Mp A)* lead-coeff (pn.Mp B)=1
    by (metis lead-coeff-mult leading-coeff-neq-0 local.step mult-cancel-right2 pn.degree-m-eq
pn.m1 poly-mod.M-def poly-mod.Mp-coeff)
    with monA AD(2) BH(2) have monB: monic B by simp
    from square-free-m-cong[OF sf-fact(2)] BH have sfB: square-free-m B by auto
    have IH2: poly-mod.eq-m ( 
        factors-of-factor-tree r = mset (map Mp BH)^
        (\forallG.G set BH\longrightarrow monic G^ ?Mp G=G)
    by (rule IH2[OF BH(3) Fs BH'[symmetric] monB BH(2) sfB inv], auto)
    from step have ?Mp C = ?Mp (?Mp A * ?Mp B) by auto
    also have ?Mp A =?Mp (prod-list AD) using IH1 by auto
    also have ?Mp B =?Mp (prod-list BH) using IH2 by auto
    finally have poly-mod.eq-m ( p^ n) C (prod-list AD * prod-list BH)
    by (auto simp: poly-mod.mult-Mp)
    thus ?case unfolding Gs using IH1 IH2 by auto
qed
lemma hensel-lifting-monic:
    assumes eq: poly-mod.eq-m p C (prod-list Fs)
    and Fs: }\F.F\in\mathrm{ set Fs C poly-mod.Mp p F=F^ monic F
    and res: hensel-lifting-monic p nC Fs=Gs
    and mon: monic (poly-mod.Mp (p`n)C)
    and sf: poly-mod.square-free-m pC
    shows poly-mod.eq-m ( p`n)C (prod-list Gs)
    mset (map (poly-mod.Mp p)Gs)=mset Fs
    G\in set Gs\Longrightarrow monic G^ poly-mod.Mp (p`n)G=G
proof -
    note res = res[unfolded hensel-lifting-monic-def Let-def]
    let ?Mp = poly-mod.Mp ( }p\mathrm{ ` n)
    let ?C = ?Mp C
    interpret poly-mod-prime p
    by (unfold-locales, insert n prime, auto)
    interpret pn: poly-mod-2 p n n using m1 n poly-mod-2.intro by auto
    from eq n have eq: eq-m (?Mp C) (prod-list Fs)
    using Mp-Mp-pow-is-Mp eq m1 n by force
    have poly-mod.eq-m (p`n)C (prod-list Gs)^mset (map (poly-mod.Mp p)Gs)
mset Fs
    \wedge(G\in set Gs \longrightarrow monic G ^ poly-mod.Mp (p^n)G=G)
    proof (cases Fs = [])
```

case True
with res have Gs: Gs $=[]$ by auto
from eq have $M p$? $C=1$ unfolding True by simp
hence degree ($M p$? $C)=0$ by simp
with degree-m-eq-monic[OF mon m1] have degree ? $C=0$ by simp
with mon have ? $C=1$ using monic-degree- 0 by blast
thus ?thesis unfolding True Gs by auto

next

case False
let $? t=$ create-factor-tree Fs
note tree $=$ create-factor-tree $[$ OF False $]$
from False res have hen: hensel-main ?C (product-factor-tree p ?t) $=G s$ by auto
have tree1: $x \in \#$ factors-of-factor-tree ? $t \Longrightarrow M p x=x$ for x unfolding tree using $F s$ by auto
from product-factor-tree[OF tree1 sub-trees-refl refl, of ?t]
have id: (factors-of-factor-tree (product-factor-tree p ?t)) =
(factors-of-factor-tree ?t) by auto
have eq: eq-m ?C (prod-mset (factors-of-factor-tree (product-factor-tree p ?t))) unfolding id tree using eq by auto
have $i d^{\prime}: M p C=M p$? C using n by (simp add: Mp-Mp-pow-is-Mp m1)
have pn.eq-m? $C($ prod-list Gs) $)$ mset Fs $=\operatorname{mset}(\operatorname{map} M p G s) \wedge(\forall G . G \in$ set $G s \longrightarrow$ monic $G \wedge$ pn.Mp $G=G$)
by (rule hensel-main[OF eq Fs hen mon pn.Mp-Mp square-free-m-cong[OF sf $i d$], unfolded id tree], insert product-factor-tree[OF tree1], auto)
thus ?thesis by auto
qed
thus poly-mod.eq-m ($\left.p^{\wedge} n\right) C$ (prod-list Gs)
mset (map (poly-mod.Mp p) Gs) $=$ mset Fs
$G \in$ set $G s \Longrightarrow$ monic $G \wedge$ poly-mod.Mp $\left(p^{\wedge} n\right) G=G$ by blast +
qed
lemma hensel-lifting:
assumes res: hensel-lifting $p n f f s=g s \quad$ - result of hensel is
fact. $g s$
and cop: coprime (lead-coeff f) p
and sf: poly-mod.square-free-m $p f$
and fact: poly-mod.factorization-m $p f(c, m s e t f s) \quad$ input is fact. $f s$ $\bmod p$
and $c: c \in\{0 . .<p\}$
and norm: $(\forall f i \in$ set fs. set $($ coeffs $f i) \subseteq\{0 . .<p\})$
shows poly-mod.factorization-m $\left(p^{\wedge} n\right) f$ (lead-coeff f, mset gs) - factorization $\bmod p \widehat{n}$

$$
\text { sort }\left(\text { map degree } f_{s}\right)=\text { sort }(\text { map degree gs }) \quad \text { - degrees stay the }
$$

same
$\wedge g . g \in$ set $g s \Longrightarrow$ monic $g \wedge$ poly-mod. $M p(p \wedge n) g=g \wedge \quad$ monic and normalized
irreducible-m $g \wedge \quad$ - irreducibility even $\bmod p$

```
        degree-m g= degree g - mod p does not change degree of g
proof -
    interpret poly-mod-prime p using prime by unfold-locales
    interpret q: poly-mod-2 p^n using m1 n unfolding poly-mod-2-def by auto
    from fact have eq: eq-m f (smult c (prod-list fs))
        and mon-fs:(\forall fi\inset fs. monic (Mp fi)^ \rreducible }\mp@subsup{\mp@code{d}}{d}{}-mfi
        unfolding factorization-m-def by auto
    {
        fix f
        assume f}\in\mathrm{ set fs
        with mon-fs norm have set (coeffs f)\subseteq{0..<p} and monic (Mp f) by auto
        hence monic f using Mp-ident-iff' by force
    } note mon-fs' = this
    have Mp-id: \f. Mp (q.Mpf)=Mpf by (simp add: Mp-Mp-pow-is-Mp m1 n)
    let ?lc = lead-coeff f
    let ? }q=\mp@subsup{p}{}{`}
    define ilc where ilc \equiv inverse-mod ?lc ?q
    define F}\mathrm{ where F}\equiv\mathrm{ smult ilc f
    from res[unfolded hensel-lifting-def Let-def]
    have hen: hensel-lifting-monic p n F fs = gs
        unfolding ilc-def F-def .
    from m1 n cop have inv: q.M (ilc * ?lc) = 1
        by (auto simp add: q.M-def inverse-mod-pow ilc-def)
    hence ilc0: ilc \not=0 by (cases ilc = 0, auto)
    {
        fix q
        assume ilc* ?lc=?q*q
        from arg-cong[OF this, of q.M] have q.M (ilc * ?lc) = 0
            unfolding q.M-def by auto
        with inv have False by auto
    } note not-dvd = this
    have mon: monic (q.Mp F) unfolding F-def q.Mp-coeff coeff-smult
        by (subst q.degree-m-eq [OF - q.m1]) (auto simp: inv ilc0 [symmetric] intro:
not-dvd)
    have q.Mp f = q.Mp (smult (q.M (?lc * ilc)) f) using inv by (simp add:
ac-simps)
    also have ... = q.Mp (smult ?lc F) by (simp add: F-def)
    finally have f:q.Mp f=q.Mp (smult ?lc F).
    from arg-cong[OF f, of Mp]
    have f-p:Mpf=Mp (smult ?lc F)
    by (simp add:Mp-Mp-pow-is-Mp n m1)
    from arg-cong[OF this, of square-free-m, unfolded Mp-square-free-m] sf
    have square-free-m (smult ?lc F) by simp
    from square-free-m-smultD[OF this] have sf: square-free-m F.
    define c}\mp@subsup{c}{}{\prime}\mathrm{ where }\mp@subsup{c}{}{\prime}\equivM(c*ilc
    from factorization-m-smult[OF fact, of ilc, folded F-def]
    have fact: factorization-m F (c', mset fs) unfolding c'-def factorization-m-def
by auto
```

```
hence eq: eq-m \(F\) (smult \(c^{\prime}\) (prod-list fs)) unfolding factorization-m-def by auto
    from factorization-m-lead-coeff [OF fact] monic-Mp[OF mon, unfolded Mp-id]
have \(M c^{\prime}=1\)
    by auto
    hence \(c^{\prime}: c^{\prime}=1\) unfolding \(c^{\prime}\)-def by auto
    with eq have eq: eq-m \(F\) (prod-list fs) by auto
    \{
    fix \(f\)
    assume \(f \in \operatorname{set} f s\)
    with mon-fs' norm have \(M p f=f \wedge\) monic \(f\) unfolding Mp-ident-iff'
        by auto
    \} note \(f_{s}=\) this
    note hen \(=\) hensel-lifting-monic \([O F\) eq \(f s\) hen mon \(s f]\)
    from hen(2) have \(g s-f s\) : mset (map Mp gs) \(=\) mset \(f s\) by auto
    have eq: q.eq-m \(f\) (smult ?lc (prod-list gs))
    unfolding \(f\) using \(\arg\)-cong \([\) OF hen(1), of \(\lambda f . q \cdot M p\) (smult ?lc \(f\) )] by simp
    \{
    fix \(g\)
    assume \(g: g \in\) set \(g s\)
    from hen \((3)[O F-g]\) have mon- \(g\) : monic \(g\) and \(M p-g: q \cdot M p g=g\) by auto
    from \(g\) have \(M p g \in \#\) mset (map Mp gs) by auto
    from this[unfolded gs-fs] obtain \(f\) where \(f: f \in\) set \(f s\) and \(f g: e q-m f g\) by
auto
    from mon-fs \(f f s\) have \(\operatorname{irr-f}\) : irreducible \({ }_{d}-m f\) and mon-f: monic \(f\) and \(M p-f\) :
\(M p f=f\) by auto
    have deg: degree-m \(g=\) degree \(g\)
        by (rule degree-m-eq-monic[OF mon-g m1])
    from irr-f fg have irr- \(g\) : irreducible \(e_{d}-m g\)
            unfolding irreducible \({ }_{d}-m\)-def dvdm-def by simp
    have q.irreducible \(e_{d}-m g\)
    by (rule irreducible \({ }_{d}\)-lifting[OF \(\left.n-i r r-g\right]\), unfold deg, rule \(q\).degree-m-eq-monic [OF
mon-g q.m1])
    note mon-g Mp-g deg irr-g this
    \} note \(g=\) this
    \{
    fix \(g\)
    assume \(g \in\) set \(g s\)
    from \(g[O F\) this]
    show monic \(g \wedge q \cdot M p g=g \wedge\) irreducible-m \(g \wedge\) degree-m \(g=\) degree \(g\) by
auto
    \}
    show sort (map degree fs) \(=\) sort (map degree gs)
    proof (rule sort-key-eq-sort-key)
    have mset ( map degree \(f s\) ) = image-mset degree ( mset \(f s\) ) by auto
    also have ... = image-mset degree (mset (map Mp gs)) unfolding gs-fs ..
    also have ... = mset (map degree (map Mp gs)) unfolding mset-map ..
    also have map degree (map Mp gs) \(=\) map degree-m gs by auto
    also have \(\ldots=\) map degree gs using \(g(3)\) by auto
    finally show mset (map degree \(f s\) ) \(=\) mset (map degree gs).
```

qed auto
show q.factorization-m f (lead-coeff f, mset gs)
using eq g unfolding q.factorization-m-def by auto
qed
end
end
end
theory Hensel-Lifting-Type-Based
imports Hensel-Lifting
begin

9.2 Hensel Lifting in a Type-Based Setting

```
lemma degree-smult-eq-iff:
    degree (smult a \(p\) ) = degree \(p \longleftrightarrow\) degree \(p=0 \vee a *\) lead-coeff \(p \neq 0\)
    by (metis (no-types, lifting) coeff-smult degree-0 degree-smult-le le-antisym
        le-degree le-zero-eq leading-coeff-0-iff)
lemma degree-smult-eqI[intro!]:
    assumes degree \(p \neq 0 \Longrightarrow a *\) lead-coeff \(p \neq 0\)
    shows degree (smult a \(p\) ) \(=\) degree \(p\)
    using assms degree-smult-eq-iff by auto
lemma degree-mult-eq2:
    assumes lc: lead-coeff \(p *\) lead-coeff \(q \neq 0\)
    shows degree \((p * q)=\) degree \(p+\) degree \(q(\) is \(-=? r)\)
proof \((\) intro antisym \([O F\) degree-mult-le] le-degree, unfold coeff-mult)
    let ?f \(=\lambda i\). coeff \(p i *\) coeff \(q(? r-i)\)
    have \(\left(\sum i \leq\right.\) ? \(r\). ?f \(\left.i\right)=\) sum ?f \(\{\)..degree \(p\}+\) sum ?f \(\{\) Suc (degree \(p\) ).. ? \(r\}\)
        by (rule sum-up-index-split)
    also have sum ?f \(\{\) Suc (degree \(p\) )..?r \(\}=0\)
        proof -
            \{ fix \(x\) assume \(x>\) degree \(p\)
                then have coeff \(p x=0\) by (rule coeff-eq- 0 )
                then have ?f \(x=0\) by auto
        \}
        then show ?thesis by (intro sum.neutral, auto)
        qed
    also have sum ?f \(\{.\). degree \(p\}=\) sum ?f \(\{. .<\) degree \(p\}+\) ?f (degree \(p\) )
        by (fold lessThan-Suc-atMost, unfold sum.lessThan-Suc, auto)
    also have sum ?f \(\{. .<\) degree \(p\}=0\)
        proof -
            \{fix \(x\) assume \(x<\) degree \(p\)
                        then have coeff \(q(? r-x)=0\) by (intro coeff-eq-0, auto)
            then have ? \(f x=0\) by auto
            \}
```

```
        then show ?thesis by (intro sum.neutral, auto)
    qed
    finally show (\sumi\leq?r. ?f i)}\not=0\mathrm{ using assms by (auto simp:)
qed
lemma degree-mult-eq-left-unit:
    fixes p q :: 'a :: comm-semiring-1 poly
    assumes unit: lead-coeff p dvd 1 and q0: q\not=0
    shows degree ( }p*q)=\mathrm{ degree }p+\mathrm{ degree q
proof(intro degree-mult-eq2 notI)
    from unit obtain c where lead-coeff p*c=1 by (elim dvdE,auto)
    then have c*lead-coeff p=1 by (auto simp: ac-simps)
    moreover assume lead-coeff p* lead-coeff q}=
    then have c*lead-coeff p*lead-coeff q=0 by (auto simp: ac-simps)
    ultimately have lead-coeff q=0 by auto
    with q0 show False by auto
qed
context ring-hom begin
lemma monic-degree-map-poly-hom: monic p \Longrightarrow degree (map-poly hom p)=de-
gree p
    by (auto intro: degree-map-poly)
lemma monic-map-poly-hom: monic p\Longrightarrow monic (map-poly hom p)
    by (simp add: monic-degree-map-poly-hom)
end
lemma of-nat-zero:
    assumes CARD('a::nontriv) dvd n
    shows (of-nat n :: 'a mod-ring) =0
    apply (transfer fixing: n) using assms by (presburger)
abbreviation rebase :: 'a :: nontriv mod-ring => 'b :: nontriv mod-ring (@- [100]100)
    where @x \equivof-int (to-int-mod-ring x)
abbreviation rebase-poly :: 'a :: nontriv mod-ring poly => 'b :: nontriv mod-ring
poly (#- [100]100)
    where #x \equivof-int-poly (to-int-poly x)
lemma rebase-self [simp]:
    @x=x
    by (simp add: of-int-of-int-mod-ring)
lemma map-poly-rebase [simp]:
    map-poly rebase p=#p
    by (induct p) simp-all
lemma rebase-poly-0: #0 = 0
```

```
    by simp
lemma rebase-poly-1: #1 = 1
    by simp
lemma rebase-poly-pCons[simp]: #pCons a p = pCons (@a)(#p)
by(cases a = 0^p=0, simp, fold map-poly-rebase, subst map-poly-pCons, auto)
lemma rebase-poly-self[simp]: #p=p by (induct p, auto)
lemma degree-rebase-poly-le: degree (#p) \leq degree p
    by (fold map-poly-rebase, subst degree-map-poly-le, auto)
lemma(in comm-ring-hom) degree-map-poly-unit: assumes lead-coeff p dvd 1
    shows degree (map-poly hom p) = degree p
    using hom-dvd-1 [OF assms] by (auto intro: degree-map-poly)
lemma rebase-poly-eq-0-iff:
    (#p :: 'a :: nontriv mod-ring poly) = 0 \longleftrightarrow(\foralli.(@coeff p i :: 'a mod-ring) =
0) (is ?l \longleftrightarrow ?r)
proof(intro iffI)
    assume?l
    then have coeff (#p :: 'a mod-ring poly) i=0 for i by auto
    then show ?r by auto
next
    assume ?r
    then have coeff (#p :: 'a mod-ring poly) i=0 for i by auto
    then show ?l by (intro poly-eqI, auto)
qed
lemma mod-mod-le:
    assumes ab:(a::int)\leqb and a0:0<a and c0:c\geq0 shows (c mod a) mod
b = c mod a
    by (meson Divides.pos-mod-bound Divides.pos-mod-sign a0 ab less-le-trans mod-pos-pos-trivial)
locale rebase-ge =
    fixes ty1 :: 'a :: nontriv itself and ty2 :: 'b :: nontriv itself
    assumes card: CARD('a) \leqCARD('b)
begin
lemma ab: int CARD('a) \leqCARD('b) using card by auto
lemma rebase-eq-0[simp]:
    shows(@(x :: 'a mod-ring) :: 'b mod-ring) = 0 \longleftrightarrowx=0
    using card by (transfer, auto)
lemma degree-rebase-poly-eq[simp]:
    shows degree (#(p :: 'a mod-ring poly) :: 'b mod-ring poly) = degree p
    by (subst degree-map-poly; simp)
```

```
lemma lead-coeff-rebase-poly[simp]:
    lead-coeff (#(p::'a mod-ring poly) :: 'b mod-ring poly) = @lead-coeff p
    by simp
lemma to-int-mod-ring-rebase: to-int-mod-ring(@(x :: 'a mod-ring)::'b mod-ring)
= to-int-mod-ring x
    using card by (transfer, auto)
lemma rebase-id[simp]: @(@(x::'a mod-ring) :: 'b mod-ring) = @x
    using card by (transfer, auto)
lemma rebase-poly-id[simp]: #(#(p::'a mod-ring poly) :: 'b mod-ring poly) = #p
by (induct p,auto)
end
locale rebase-dvd =
    fixes ty1 :: 'a :: nontriv itself and ty2 :: 'b :: nontriv itself
    assumes dvd: CARD('b) dvd CARD('a)
begin
lemma ab:CARD('a) \geqCARD('b) by (rule dvd-imp-le[OF dvd], auto)
lemma rebase-id[simp]:@(@(x::'b mod-ring) :: 'a mod-ring) = x using ab by
(transfer, auto)
lemma rebase-poly-id[simp]: #(#(p::'b mod-ring poly) :: 'a mod-ring poly) = p by
(induct p,auto)
lemma rebase-of-nat[simp]:(@(of-nat n :: 'a mod-ring) :: 'b mod-ring) = of-nat n
    apply transfer apply (rule mod-mod-cancel) using dvd by presburger
lemma mod-1-lift-nat:
    assumes (of-int (int x) :: 'a mod-ring)=1
    shows (of-int (int x) :: 'b mod-ring) = 1
proof -
    from assms have int x mod CARD('a)=1
        by transfer
    then have x mod CARD('a)=1
        by (simp add: of-nat-mod [symmetric])
    then have x mod CARD('b)=1
        by (metis dvd mod-mod-cancel one-mod-card)
    then have int x mod CARD('b)=1
        by (simp add: of-nat-mod [symmetric])
    then show ?thesis
        by transfer
qed
```

```
sublocale comm-ring-hom rebase :: 'a mod-ring => 'b mod-ring
proof
    fix x y :: 'a mod-ring
    show hom-add: (@(x+y) :: 'b mod-ring) = @x + @y
        by transfer (simp add: mod-simps dvd mod-mod-cancel)
    show (@(x*y) :: 'b mod-ring) = @ x * @y
        by transfer (simp add: mod-simps dvd mod-mod-cancel)
qed auto
lemma of-nat-CARD-eq-0[simp]:(of-nat CARD('a) :: 'b mod-ring) = 0
    using dvd by (transfer, presburger)
```

interpretation map-poly-hom: map-poly-comm-ring-hom rebase :: 'a mod-ring \Rightarrow
'b mod-ring..
sublocale poly: comm-ring-hom rebase-poly :: 'a mod-ring poly \Rightarrow ' b mod-ring poly
by (fold map-poly-rebase, unfold-locales)
lemma poly-rebase[simp]: @poly p $x=$ poly (\#(p :: 'a mod-ring poly) :: 'b mod-ring
poly) (@(x::'a mod-ring) :: 'b mod-ring)
by (fold map-poly-rebase poly-map-poly, rule)
lemma rebase-poly-smult[simp]: (\#(smult a p :: 'a mod-ring poly) :: 'b mod-ring
poly $)=$ smult $(@ a)(\# p)$
by(induct p, auto simp: hom-distribs)
end
locale rebase-mult $=$
fixes ty1 :: ' a :: nontriv itself
and ty2 $::$ ' $b::$ nontriv itself
and ty3 $::$ 'd $::$ nontriv itself
assumes $d: \operatorname{CARD}\left({ }^{\prime} a\right)=C A R D(' b) * \operatorname{CARD}\left({ }^{\prime} d\right)$
begin
sublocale rebase-dvd ty1 ty2 using d by (unfold-locales, auto)
lemma rebase-mult-eq[simp]: (of-nat $\operatorname{CARD}\left({ }^{\prime} d\right) * a:^{\prime}$ 'a mod-ring $)=o f-n a t C A R D(' d)$

* $a^{\prime} \longleftrightarrow(@ a:: ' b$ mod-ring $)=@ a^{\prime}$
proof-
from $d v d$ obtain d^{\prime} where $\operatorname{CARD}\left({ }^{\prime} a\right)=d^{\prime} * C A R D(' b)$ by (elim dvdE, auto)
then show ?thesis by (transfer, auto simp:d)
qed
lemma rebase-poly-smult-eq[simp]:
fixes $a a^{\prime}$:: 'a mod-ring poly
defines $d \equiv$ of-nat $C A R D(' d)::$ 'a mod-ring
shows smult $d a=$ smult $d a^{\prime} \longleftrightarrow(\# a:: ' b$ mod-ring poly $)=\# a^{\prime}($ is $? l \longleftrightarrow$

```
?r)
proof (intro iffI)
    assume l: ?l show ?r
    proof (intro poly-eqI)
        fix n
        from l have coeff (smult d a) n = coeff (smult d a
        then have d* coeff a n=d* coeff a' n by auto
        from this[unfolded d-def rebase-mult-eq]
        show coeff (#a :: 'b mod-ring poly) n = coeff (#a') n by auto
    qed
next
    assume r: ?r show ?l
    proof(intro poly-eqI)
        fix n
        from r have coeff (#a :: 'b mod-ring poly) n = coeff (#a') n by auto
        then have (@coeff a n :: 'b mod-ring) = @coeff a' n by auto
        from this[folded d-def rebase-mult-eq]
        show coeff (smult d a) n = coeff (smult d a') n by auto
    qed
qed
lemma rebase-eq-0-imp-ex-mult:
    (@(a :: 'a mod-ring) :: 'b mod-ring) = 0 \Longrightarrow(\existsc :: 'd mod-ring. a = of-nat
CARD('b)*@c) (is ?l \Longrightarrow ?r)
proof(cases CARD('a)=CARD('b))
    case True then show ?l \Longrightarrow?r
    by (transfer, auto)
next
    case False
    have [simp]: int CARD('b) mod int CARD('a) = int CARD('b)
    by(rule mod-pos-pos-trivial, insert ab False, auto)
    {
    fix a
    assume a: 0 \leq a a<int CARD('a) and mod: a mod int CARD('b) = 0
    from mod have int CARD('b) dvd a by auto
    then obtain i where *: a = int CARD('b)*i by (elim dvdE,auto)
    from * a have i< int CARD('d) by (simp add:d)
    moreover
            hence (i mod int CARD('a))= i
                by (metis dual-order.order-iff-strict less-le-trans not-le of-nat-less-iff *a(1)
a(2)
                    mod-pos-pos-trivial mult-less-cancel-right1 nat-neq-iff nontriv of-nat-1)
            with * a have a= int CARD('b) * (i mod int CARD('a)) mod int CARD('a)
                by (auto simp:d)
    moreover from * a have 0\leqi
    using linordered-semiring-strict-class.mult-pos-neg of-nat-0-less-iff zero-less-card-finite
            by (simp add: zero-le-mult-iff)
    ultimately have }\existsi\geq0.i<int CARD('d) ^a= int CARD('b)* (i mod int
CARD('a)) mod int CARD('a)
```

```
        by (auto intro: exI[of-i])
    }
    then show ?l \Longrightarrow?r by (transfer, auto simp:d)
qed
lemma rebase-poly-eq-0-imp-ex-smult:
    (#(p :: 'a mod-ring poly) :: 'b mod-ring poly) = 0\Longrightarrow
    (\exists\mp@subsup{p}{}{\prime}:: 'd mod-ring poly. (p=0\longleftrightarrow < ' = 0) ^ degree p'\leq degree p}\wedgep=smult
(of-nat CARD('b))(#p'))
    (is ?l \Longrightarrow?r)
proof(induct p)
    case 0
    then show ?case by (intro exI[of-0],auto)
next
    case IH:(pCons a p)
    from IH(3) have (#p :: 'b mod-ring poly) = 0 by auto
    from IH(2)[OF this] obtain p' :: 'd mod-ring poly
    where *: p=0 \longleftrightarrow p'=0 degree p'\leq degree p p = smult (of-nat CARD('b))
(#\mp@subsup{p}{}{\prime}) by (elim exE conjE)
    from IH have (@a :: 'b mod-ring) = 0 by auto
    from rebase-eq-0-imp-ex-mult[OF this]
    obtain }\mp@subsup{a}{}{\prime}:: 'd mod-ring where a':of-nat CARD('b)* (@a') = a by aut
    from IH(1) have pCons a p\not=0 by auto
    moreover from *(1,2) have degree (pCons a' p')\leqdegree ( }p\mathrm{ Cons a p) by auto
    moreover from a'*(3)
    have pCons a p = smult (of-nat CARD('b)) (#pCons a' p') by auto
    ultimately show ?case by (intro exI[of-pCons a' p], auto)
qed
end
```

lemma mod-mod-nat[simp]: a mod $b \bmod (b * c::$ nat $)=a \bmod b$ by $(\operatorname{simp} a d d$: Divides.mod-mult2-eq)
locale Knuth-ex-4-6-2-22-base $=$
fixes $t y-p::$ ' $p::$ nontriv itself
and $t y-q::$ ' $q::$ nontriv itself
and $t y-p q::$ 'pq :: nontriv itself
assumes $p q$: $\operatorname{CARD}\left({ }^{\prime} p q\right)=C A R D\left({ }^{\prime} p\right) * \operatorname{CARD}\left({ }^{\prime} q\right)$
and p-dvd- $q: C A R D\left({ }^{\prime} p\right)$ dvd $\operatorname{CARD}\left(^{\prime} q\right)$
begin
sublocale rebase-q-to-p: rebase-dvd TYPE ('q) TYPE ('p) using $p-d v d-q$ by (unfold-locales, auto)
sublocale rebase-pq-to-p: rebase-mult TYPE ('pq) TYPE ('p) TYPE ('q) using $p q$ by (unfold-locales, auto)
sublocale rebase-pq-to-q: rebase-mult TYPE('pq) TYPE('q) TYPE('p) using $p q$
by (unfold-locales, auto)
sublocale rebase-p-to-q: rebase-ge TYPE ('p) TYPE (' q) by (unfold-locales, insert $p-d v d-q$, simp add: dvd-imp-le)
sublocale rebase-p-to-pq: rebase-ge TYPE ('p) TYPE ('pq) by (unfold-locales, simp $a d d: p q)$
sublocale rebase-q-to-pq: rebase-ge TYPE ('q) TYPE ('pq) by (unfold-locales, simp $a d d: p q$)
definition $p \equiv$ if (ty-p :: 'p itself) $=$ ty- p then $\operatorname{CARD}\left({ }^{\prime} p\right)$ else undefined lemma $p[s i m p]: p \equiv C A R D(' p)$ unfolding p-def by auto
definition $q \equiv$ if $\left(t y-q::{ }^{\prime} q\right.$ itself $)=t y-q$ then $\operatorname{CARD}\left({ }^{\prime} q\right)$ else undefined
lemma $q[\operatorname{simp}]: q=C A R D\left({ }^{\prime} q\right)$ unfolding q-def by auto
lemma $p 1$: int $p>1$
using nontriv $\left[\right.$ where $\left.?^{\prime} a=' p\right] p$ by simp
lemma $q 1$: int $q>1$
using nontriv [where ?' $a=$ ' q] q by simp
lemma $q 0$: int $q>0$
using q1 by auto
lemma $p q 2[\operatorname{simp}]$: $C A R D\left({ }^{\prime} p q\right)=p * q$ using $p q$ by simp
lemma qq-eq-0[simp]: (of-nat CARD('q)* of-nat CARD('q) :: 'pq mod-ring) $=0$ proof-
have (of-nat $(q * q)::$ 'pq mod-ring) $=0$ by (rule of-nat-zero, auto simp: p-dvd-q) then show? thesis by auto
qed
lemma of-nat-q[simp]: of-nat q :: ' q mod-ring $\equiv 0$ by (fold of-nat-card-eq-0, auto)
lemma rebase-rebase[simp]:(@($(x:: ' p q$ mod-ring) :: ' q mod-ring $):: ~ ' p ~ m o d-r i n g) ~$ $=@ x$
using $p-d v d-q$ by (transfer) (simp add: mod-mod-cancel)
lemma rebase-rebase-poly[simp]: (\#(\#(f::'pq mod-ring poly) :: 'q mod-ring poly) :: 'p mod-ring poly) $=\# f$
by (induct f, auto)
end
definition dupe-monic where
dupe-monic $D H S T U=$ (case pdivmod-monic $(T * U) D$ of $(q, r) \Rightarrow(S * U$
$+H * q, r))$
lemma dupe-monic:

```
    fixes D :: 'a :: prime-card mod-ring poly
    assumes 1:D*S+H*T=1
    and mon: monic D
    and dupe:dupe-monic D H S T U = (A,B)
    shows A*D+B*H=U B=0\vee degree B<degree D
        coprime D H\Longrightarrow A'*D+ B'*H=U\Longrightarrow 焐}=0\vee\mathrm{ degree }\mp@subsup{B}{}{\prime}<\mathrm{ degree }
\Longrightarrow A ^ { \prime } = A \wedge B ^ { \prime } = B
proof -
    obtain qr where div: pdivmod-monic (T*U) D=(q,r) by force
    from dupe[unfolded dupe-monic-def div split]
    have }A:A=(S*U+H*q) and B:B=r by aut
    from pdivmod-monic[OF mon div] have TU:T*U=D*q+r and
        deg: r=0 \vee degree }r<\mathrm{ degree D by auto
    hence r: r=T*U-D*q by simp
    have}A*D+B*H=(S*U+H*q)*D+(T*U-D*q)*H\mathrm{ unfolding
A Br by simp
    also have }\ldots=(D*S+H*T)*U by (simp add: field-simps
    also have D*S+H*T=1 using 1 by simp
    finally show eq: A*D+B*H=U by simp
    show degB: B=0\vee degree B<degree D using deg unfolding B by (cases r
= 0, auto)
    assume another: A'*D+ 焐*H=U and deg\mp@subsup{B}{}{\prime}:\mp@subsup{B}{}{\prime}=0\vee\mathrm{ degree }\mp@subsup{B}{}{\prime}<\mathrm{ degree}
D
    and cop: coprime D H
    from degB have degB: B=0\vee degree B<degree D by auto
    from deg\mp@subsup{B}{}{\prime}}\mathrm{ have deg}\mp@subsup{B}{}{\prime}:\mp@subsup{B}{}{\prime}=0\vee\mathrm{ degree }\mp@subsup{B}{}{\prime}<\mathrm{ degree }D\mathrm{ by auto
    from mon have D0: D\not=0 by auto
    from another eq have }\mp@subsup{A}{}{\prime}*D+\mp@subsup{B}{}{\prime}*H=A*D+B*H by sim
    from uniqueness-poly-equality[OF cop degB' degB D0 this]
    show }\mp@subsup{A}{}{\prime}=A\wedge\mp@subsup{B}{}{\prime}=B\mathrm{ by auto
qed
locale Knuth-ex-4-6-2-22-main = Knuth-ex-4-6-2-22-base p-ty q-ty pq-ty
    for p-ty :: 'p::nontriv itself
    and q-ty :: 'q::nontriv itself
    and pq-ty :: 'pq::nontriv itself +
    fixes a b :: 'p mod-ring poly and u :: 'pq mod-ring poly and v w :: 'q mod-ring
poly
    assumes uvw: (#u :: 'q mod-ring poly) = v * w
            and degu: degree }u=\mathrm{ degree }v+\mathrm{ degree }
            and avbw: (a*#v+b*#w :: 'p mod-ring poly) = 1
            and monic-v: monic v
            and bv: degree b<degree v
begin
lemma deg-v: degree (#v :: 'p mod-ring poly) = degree v
    using monic-v by (simp add: of-int-hom.monic-degree-map-poly-hom)
```

```
lemma u0:u\not=0 using degu bv by auto
lemma ex-f:\existsf ::'p mod-ring poly. u = #v * #w + smult (of-nat q)(#f)
proof
    from uvw have (#(u-#v*#w) :: 'q mod-ring poly)=0 by (auto simp:hom-distribs)
    from rebase-pq-to-q.rebase-poly-eq-0-imp-ex-smult[OF this]
    obtain f :: 'p mod-ring poly where }u-#v*#w=smult (of-nat q)(#f) by
force
    then have }u=#v*#w+\mathrm{ smult (of-nat q)(#f) by (metis add-diff-cancel-left'
add-diff-eq)
    then show ?thesis by (intro exI[of - f], auto)
qed
definition f :: 'p mod-ring poly \equivSOME f.u = #v * #w + smult (of-nat q)
(#f)
lemma u:u=#v*#w+ smult (of-nat q)(#f)
    using ex-f[folded some-eq-ex] f-def by auto
lemma t-ex: \existst :: 'p mod-ring poly. degree ( b*f-t*#v)<degree v
proof-
    define v' where v'\equiv#v :: 'p mod-ring poly
    from monic-v
    have 1: lead-coeff v}\mp@subsup{v}{}{\prime}=1\mathrm{ by (simp add: v'-def deg-v)
    then have 4: v
    obtain t rem :: 'p mod-ring poly
    where pseudo-divmod (b*f) v}\mp@subsup{v}{}{\prime}=(t,rem) by forc
    from pseudo-divmod[OF 4 this, folded, unfolded 1]
    have b*f= v'*t+rem and deg: rem = 0 \vee degree rem < degree v' by auto
    then have rem=b*f-t*\mp@subsup{v}{}{\prime}\mathbf{by}(\mathrm{ (auto simp:ac-simps)}
    also have ... = b*f-#(#t :: 'p mod-ring poly)* v' (is - = - - ?t * v') by
simp
    also have ... = b*f- ?t * #v
    by (unfold v'-def, rule)
    finally have degree rem = degree ... by auto
    with deg bv have degree ( b*f- ?t * #v :: 'p mod-ring poly)< degree v by
(auto simp: v'-def deg-v)
    then show ?thesis by (rule exI)
qed
definition t where t \equivSOME t :: 'p mod-ring poly. degree (b*f-t*#v)<
degree v
definition }\mp@subsup{v}{}{\prime}\equivb*f-t*#
definition }\mp@subsup{w}{}{\prime}\equiva*f+t*#
lemma f: w'*#v+\mp@subsup{v}{}{\prime}*#w=f(is ?l = -)
proof-
```

```
    have ?l = f* (a*#v + b*#w :: 'p mod-ring poly) by (simp add: v'-def w'-def
ring-distribs ac-simps)
    also
        from avbw have (#(a*#v+b*#w) :: 'p mod-ring poly) = 1 by auto
        then have ( }a*#v+b*#w:: 'p mod-ring poly)=1 by aut
    finally show ?thesis by auto
qed
lemma degv': degree v' < degree v by (unfold v'-def t-def, rule someI-ex, rule t-ex)
lemma degqf[simp]: degree (smult (of-nat CARD('q)) (#f :: 'pq mod-ring poly))
= degree (#f :: 'pq mod-ring poly)
proof (intro degree-smult-eqI)
    assume degree (#f :: 'pq mod-ring poly) }=
    then have f0: degree f}\not=0\mathrm{ by simp
    moreover define l where l \equiv lead-coeff f
    ultimately have l0:l\not=0 by auto
    then show of-nat CARD('q)* lead-coeff (#f::'pq mod-ring poly)}\not=
    apply (unfold rebase-p-to-pq.lead-coeff-rebase-poly, fold l-def)
    apply (transfer)
    using q1 by (simp add: pq mod-mod-cancel)
qed
lemma degw': degree w'
proof(rule ccontr)
    let ?f = #f :: 'pq mod-ring poly
    let ?qf = smult (of-nat q)(#f) :: 'pq mod-ring poly
    have degree (#w::'p mod-ring poly) \leq degree w by (rule degree-rebase-poly-le)
    also assume }\neg\mathrm{ degree w'}\mp@subsup{w}{}{\prime}\leq\mathrm{ degree w
    then have 1: degree w< degree w' by auto
    finally have 2: degree (#w :: 'p mod-ring poly) < degree w' by auto
    then have w'0: w' }=0\mathrm{ by auto
    have 3: degree (#v* w') = degree (#v :: 'p mod-ring poly) + degree w'
        using monic-v[unfolded] by (intro degree-monic-mult[OF - w'0], auto simp:
deg-v)
    have degree f \leq degree u
    proof(rule ccontr)
    assume }\neg\mathrm{ ?thesis
    then have *: degree }u<\mathrm{ degree }f\mathrm{ by auto
    with degu have 1: degree v + degree w<degree f by auto
    define lcf where lcf \equiv lead-coeff f
    with 1 have lcf0:lcf \not=0 by (unfold, auto)
    have degree }f=\mathrm{ degree ?qf by simp
    also have ... = degree (#v*#w + ?qf)
    proof(rule sym, rule degree-add-eq-right)
        from 1 degree-mult-le[of #v::'pq mod-ring poly #w]
```

```
        show degree (#v*#w :: 'pq mod-ring poly)< degree?qf by simp
    qed
    also have ... < degree f using * u by auto
    finally show False by auto
    qed
    with degu have degree f}\leq\mathrm{ degree v + degree w by auto
    also note f[symmetric]
    finally have degree ( }\mp@subsup{w}{}{\prime}*#v+\mp@subsup{v}{}{\prime}*#w)\leq\mathrm{ degree }v+\mathrm{ degree }w\mathrm{ .
    moreover have degree ( }\mp@subsup{w}{}{\prime}*#v+\mp@subsup{v}{}{\prime}*#w)=\operatorname{degree}(\mp@subsup{w}{}{\prime}*#v
    proof(rule degree-add-eq-left)
    have degree ( v'*#w)\leq degree v'}+\mathrm{ degree (#w :: 'p mod-ring poly)
        by(rule degree-mult-le)
    also have ...< degree v + degree ( #w :: 'p mod-ring poly) using degv' by auto
    also have ... < degree (#v :: 'p mod-ring poly) + degree w' using 2 by (auto
simp: deg-v)
    also have ... = degree (#v* *') using 3 by auto
    finally show degree ( v'* #w)<degree ( }\mp@subsup{w}{}{\prime}*#v)\mathrm{ by (auto simp: ac-simps)
    qed
    ultimately have degree ( }\mp@subsup{w}{}{\prime}*#v)\leq\mathrm{ degree }v+\mathrm{ degree w by auto
    moreover
    from 3 have degree ( }\mp@subsup{w}{}{\prime}*#v)=\mathrm{ degree }\mp@subsup{w}{}{\prime}+\mathrm{ degree v by (auto simp: ac-simps
deg-v)
    with 1 have degree w+ degree v<degree ( }\mp@subsup{w}{}{\prime}*#v)\mathrm{ by auto
    ultimately show False by auto
qed
abbreviation qv' \equiv smult (of-nat q) (#v') :: 'pq mod-ring poly
abbreviation qw' \equiv smult (of-nat q) (#w') :: 'pq mod-ring poly
abbreviation }V\equiv#v+q\mp@subsup{v}{}{\prime
abbreviation W\equiv#w+q\mp@subsup{w}{}{\prime}
lemma vV:v=#V by (auto simp: v'-def hom-distribs)
lemma wW:w =#W by (auto simp: w'-def hom-distribs)
lemma uVW:u=V*W
    by (subst u, fold f, simp add: ring-distribs add.left-cancel smult-add-right[symmetric]
hom-distribs)
lemma degV: degree V = degree v
    and lcV:lead-coeff V = @lead-coeff v
    and degW}\mathrm{ : degree }W=\mathrm{ degree }
proof-
    from p1 q1 have int p< int p*int q by auto
    from less-trans[OF - this]
    have 1:l< int p\Longrightarrowl< int p* int q for l by auto
    have degree qv' = degree (#v' :: 'pq mod-ring poly)
    proof (rule degree-smult-eqI, safe, unfold rebase-p-to-pq.degree-rebase-poly-eq)
```

```
    define l where l}\equivlead-coeff v v
    assume degree v}\mp@subsup{v}{}{\prime}>
    then have lead-coeff v}\mp@subsup{v}{}{\prime}\not=0\mathrm{ by auto
    then have (@l :: 'pq mod-ring) =0 by (simp add:l-def)
    then have (of-nat q * @l :: 'pq mod-ring) =0
    apply (transfer fixing:q-ty) using p-dvd-q p1 q1 1 by auto
    moreover assume of-nat q * coeff (#v')(degree v')=(0 :: 'pq mod-ring)
    ultimately show False by (auto simp:l-def)
    qed
    also from degv' have ... < degree (#v::'pq mod-ring poly) by simp
    finally have *: degree qv' < degree (#v :: 'pq mod-ring poly).
    from degree-add-eq-left[OF *]
    show **: degree V = degree v by (simp add: v'-def)
    from * have coeff qv' (degree v)=0 by (intro coeff-eq-0, auto)
    then show lead-coeff V = @lead-coeff v by (unfold **, auto simp: v'-def)
    with u0uVW have degree (V*W)= degree V + degree W
    by (intro degree-mult-eq-left-unit, auto simp: monic-v)
    from this[folded uVW, unfolded degu **] show degree W = degree w by auto
qed
end
locale Knuth-ex-4-6-2-22-prime = Knuth-ex-4-6-2-22-main ty-p ty-q ty-pq a b uv
w
    for ty-p :: 'p :: prime-card itself
    and ty-q ::' ' :: nontriv itself
    and ty-pq :: 'pq :: nontriv itself
    and abuvw+
    assumes coprime: coprime (#v :: 'p mod-ring poly) (#w)
begin
lemma coprime-preserves: coprime (#V :: 'p mod-ring poly) (#W)
    apply (intro coprimeI,simp add: rebase-q-to-p.of-nat-CARD-eq-O[simplified] hom-distribs)
    using coprime by (elim coprimeE, auto)
lemma pre-unique:
    assumes f2: w' }\mp@subsup{}{}{\prime\prime}*#v+\mp@subsup{v}{}{\prime\prime}*#w=
        and degv'\prime}\mathrm{ : degree }\mp@subsup{v}{}{\prime\prime}<\mathrm{ degree v
    shows }\mp@subsup{v}{}{\prime\prime}=\mp@subsup{v}{}{\prime}\wedge\mp@subsup{w}{}{\prime\prime}=\mp@subsup{w}{}{\prime
proof(intro conjI)
    from f f2
    have }\mp@subsup{w}{}{\prime}*#v+\mp@subsup{v}{}{\prime}*#w=\mp@subsup{w}{}{\prime\prime}*#v+\mp@subsup{v}{}{\prime\prime}*#w\mathrm{ by auto
    also have ... - w'利*#v=\mp@subsup{v}{}{\prime\prime}*#w by auto
    also have ... - v '*#w=(\mp@subsup{v}{}{\prime\prime}-\mp@subsup{v}{}{\prime})*#w by (auto simp: left-diff-distrib)
    finally have *: (\mp@subsup{w}{}{\prime}-\mp@subsup{w}{}{\prime\prime})*#v=(\mp@subsup{v}{}{\prime\prime}-\mp@subsup{v}{}{\prime})*#w\mathrm{ by (auto simp: left-diff-distrib)}
    then have #v dvd (\mp@subsup{v}{}{\prime\prime}-\mp@subsup{v}{}{\prime})*#w by (auto intro: dvdI[of--\mp@subsup{w}{}{\prime}-\mp@subsup{w}{}{\prime\prime}]\operatorname{simp}\mathrm{ :}
```

```
ac-simps)
    with coprime have #v dvd v'\prime}-\mp@subsup{v}{}{\prime
        by (simp add: coprime-dvd-mult-left-iff)
    moreover have degree ( }\mp@subsup{v}{}{\prime\prime}-\mp@subsup{v}{}{\prime})<\mathrm{ degree v by (rule degree-diff-less[OF degv''
degv`]
    ultimately have }\mp@subsup{v}{}{\prime\prime}-\mp@subsup{v}{}{\prime}=
        by (metis deg-v degree-0 gr-implies-not-zero poly-divides-conv0)
    then show }\mp@subsup{v}{}{\prime\prime}=\mp@subsup{v}{}{\prime}\mathrm{ by auto
    with * have ( }\mp@subsup{w}{}{\prime}-\mp@subsup{w}{}{\prime\prime})*#v=0 by aut
    with bv have }\mp@subsup{w}{}{\prime}-\mp@subsup{w}{}{\prime\prime}=
        by (metis deg-v degree-0 gr-implies-not-zero mult-eq-0-iff)
    then show }\mp@subsup{w}{}{\prime\prime}=\mp@subsup{w}{}{\prime}\mathrm{ by auto
qed
lemma unique:
    assumes vV2:v=#V2 and wW2:w = #W2 and uVW2: u=V2*W2
        and degV2: degree V2 = degree v and degW2: degree W2 = degree w
        and lc:lead-coeff V2 = @lead-coeff v
    shows V2 = V W2 = W
proof-
    from vV2 have (#(V2 - #v) :: 'q mod-ring poly) = 0 by (auto simp: hom-distribs)
    from rebase-pq-to-q.rebase-poly-eq-0-imp-ex-smult[OF this]
    obtain v" :: 'p mod-ring poly
    where deg: degree }\mp@subsup{v}{}{\prime\prime}\leq\mathrm{ degree (V2 - #v)
        and v':V2 - #v = smult (of-nat CARD('q)) (#v'') by (elim exE conjE)
    then have V2: V2 = #v + ... by (metis add-diff-cancel-left' diff-add-cancel)
    from lc[unfolded degV2, unfolded V2]
    have of-nat q*(@coeff v''(degree v) :: 'pq mod-ring) = of-nat q*0 by auto
    from this[unfolded q rebase-pq-to-p.rebase-mult-eq]
    have coeff v}\mp@subsup{v}{}{\prime\prime}(\mathrm{ degree v)=0 by simp
    moreover have degree v}\mp@subsup{v}{}{\prime\prime}\leq\mathrm{ degree v using deg degV2
    by (metis degree-diff-le le-antisym nat-le-linear rebase-q-to-pq.degree-rebase-poly-eq)
    ultimately have degv'': degree v}\mp@subsup{}{}{\prime\prime}<\mathrm{ degree v
        using bv eq-zero-or-degree-less by fastforce
    from wW2 have (#(W2 - #w) :: 'q mod-ring poly) = 0 by (auto simp:
hom-distribs)
    from rebase-pq-to-q.rebase-poly-eq-0-imp-ex-smult[OF this] pq
    obtain w' :: 'p mod-ring poly where w':W2 - #w = smult (of-nat q) (#w')
by force
    then have W2: W2 = #w + ... by (metis add-diff-cancel-left' diff-add-cancel)
    have }u=#v*#w+ smult (of-nat q)(#w'\prime*#v+#v'\prime*#w) + smult (of-nat
(q*q))(#\mp@subsup{v}{}{\prime\prime}*#\mp@subsup{w}{}{\prime\prime})
    by(simp add: uVW2 V2 W2 ring-distribs smult-add-right ac-simps)
    also have smult (of-nat ( q*q)) (#v'\prime* #w'' :: 'pq mod-ring poly) = 0 by simp
    finally have }u-#v*#w= smult (of-nat q)(#w'\prime*#v+#\mp@subsup{v}{}{\prime\prime}*#w) b
auto
```

also have $u-\# v * \# w=\operatorname{smult}(o f-n a t q)(\# f)$ by (subst u, simp)
finally have $w^{\prime \prime} * \# v+v^{\prime \prime} * \# w=f$ by (simp add: hom-distribs)
from pre-unique[OF this degv']
have pre: $v^{\prime \prime}=v^{\prime} w^{\prime \prime}=w^{\prime}$ by auto
with V2 W2 show $V 2=V W 2=W$ by auto
qed
end

definition

```
    hensel-1 (ty ::'p :: prime-card itself)
```

 (\(u\) :: 'pq :: nontriv mod-ring poly) (\(v::\) ' \(q\) :: nontriv mod-ring poly) (\(w::\) ' \(q\)
 mod-ring poly) \equiv
if $v=1$ then $(1, u)$ else
let $(s, t)=$ bezout-coefficients ($\# v::{ }^{\prime} p$ mod-ring poly) $(\# w)$ in
let $(a, b)=$ dupe-monic $(\# v:: ' p$ mod-ring poly $)(\# w)$ s $t 1$ in
(Knuth-ex-4-6-2-22-main. V TYPE ('q) b u v w, Knuth-ex-4-6-2-22-main.W TYPE ('q)
$a b u v w)$

lemma hensel-1:

fixes u :: 'pq :: nontriv mod-ring poly
and $v w::$ ' $q::$ nontriv mod-ring poly
assumes $C A R D\left({ }^{\prime} p q\right)=C A R D(' p::$ prime-card $) * \operatorname{CARD}\left({ }^{\prime} q\right)$
and $C A R D\left({ }^{\prime} p\right) d v d C A R D(' q)$
and $u v w: ~ \# u=v * w$
and degu: degree $u=$ degree $v+$ degree w
and monic: monic v
and coprime: coprime ($\# v::$ 'p mod-ring poly) $(\# w)$
and out: hensel-1 TYPE ('p) uv $w=\left(V^{\prime}, W^{\prime}\right)$
shows $u=V^{\prime} * W^{\prime} \wedge v=\# V^{\prime} \wedge w=\# W^{\prime} \wedge$ degree $V^{\prime}=$ degree $v \wedge$ degree $W^{\prime}=$ degree $w \wedge$ monic $V^{\prime} \wedge$ coprime $\left(\# V^{\prime}::{ }^{\prime} p\right.$ mod-ring poly) $\left(\# W^{\prime}\right)$ (is ?main)
and $\left(\forall V^{\prime \prime} W^{\prime \prime} . u=V^{\prime \prime} * W^{\prime \prime} \longrightarrow v=\# V^{\prime \prime} \longrightarrow w=\# W^{\prime \prime} \longrightarrow\right.$

$$
\text { degree } V^{\prime \prime}=\text { degree } v \longrightarrow \text { degree } W^{\prime \prime}=\text { degree } w \longrightarrow \text { lead-coeff } V^{\prime \prime}=
$$

@lead-coeff $v \longrightarrow$

$$
\left.V^{\prime \prime}=V^{\prime} \wedge W^{\prime \prime}=W^{\prime}\right)(\text { is ?unique })
$$

proof-
from monic
have degv: degree ($\# v::$ 'p mod-ring poly) $=$ degree v
by (simp add: of-int-hom.monic-degree-map-poly-hom)
from monic
have monic2: monic (\#v :: 'p mod-ring poly)
by (auto simp: degv)
obtain $s t$ where bezout: bezout-coefficients ($\# v::^{\prime}$ 'p mod-ring poly) $(\# w)=(s$, t)
by (auto simp add: prod-eq-iff)
then have $s * \# v+t * \# w=\operatorname{gcd}(\# v:: ' p$ mod-ring poly) $(\# w)$
by (rule bezout-coefficients)
with coprime have vswt: $\# v * s+\# w * t=1$

```
    by (simp add: ac-simps)
    obtain a b where dupe:dupe-monic (#v)(#w) s t 1 = (a,b) by force
    from dupe-monic(1,2)[OF vswt monic2, where U=1, unfolded this]
    have avbw: }a*#v+b*#w=1 and degb: b=0\vee degree b<degree (#v::'
mod-ring poly) by auto
    have ?main ^ ?unique
    proof (cases b = 0)
    case b0: True
    with avbw have a*#v=1 by auto
    then have degree (#v :: 'p mod-ring poly) = 0
            by (metis degree-1 degree-mult-eq-0 mult-zero-left one-neq-zero)
    from this[unfolded degv] monic-degree-0[OF monic[unfolded]]
    have 1:v=1 by auto
    with b0 out uvw have 2: }\mp@subsup{V}{}{\prime}=1\mp@subsup{W}{}{\prime}=
            by (unfold split hensel-1-def Let-def dupe) auto
    have 3: ?unique apply (simp add: 1 2) by (metis monic-degree-0 mult.left-neutral)
    with uvw degu show ?thesis unfolding 1 2 by auto
    next
    case b0: False
    with degb degv have degb: degree b< degree v by auto
    then have v1:v\not=1 by auto
    interpret Knuth-ex-4-6-2-22-prime TYPE('p) TYPE('q) TYPE('pq) a b
        by (unfold-locales; fact assms degb avbw)
    show ?thesis
    proof (intro conjI)
        from out [unfolded hensel-1-def] v1
        have 1 [simp]: V'=V W'=W by (auto simp: bezout dupe)
        from }uVW\mathrm{ show }u=\mp@subsup{V}{}{\prime}*\mp@subsup{W}{}{\prime}\mathrm{ by auto
        from degV show [simp]: degree }\mp@subsup{V}{}{\prime}=\mathrm{ degree v by simp
        from degW show [simp]: degree }\mp@subsup{W}{}{\prime}=\mathrm{ degree w by simp
        from lcV have lead-coeff V}\mp@subsup{V}{}{\prime}=@lead-coeff v by sim
        with monic-v show monic V' by (simp add:)
        from vV show v}=#\mp@subsup{V}{}{\prime}\mathrm{ by simp
        from }wW\mathrm{ show }w=#\mp@subsup{W}{}{\prime}\mathrm{ by simp
        from coprime-preserves show coprime (# V' :: 'p mod-ring poly) (# W') by
simp
            show 9: ?unique by (unfold 1, intro allI conjI impI; rule unique)
        qed
    qed
    then show ?main ?unique by (fact conjunct1, fact conjunct2)
qed
end
```


9.3 Result is Unique

We combine the finite field factorization algorithm with Hensel-lifting to obtain factorizations $\bmod p^{n}$. Moreover, we prove results on unique-factorizations in $\bmod p^{n}$ which admit to extend the uniqueness result for binary Hensel-
lifting to the general case. As a consequence, our factorization algorithm will produce unique factorizations $\bmod p^{n}$.

```
theory Berlekamp-Hensel
imports
    Finite-Field-Factorization-Record-Based
    Hensel-Lifting
begin
```

hide-const coeff monom
definition berlekamp-hensel $::$ int \Rightarrow nat \Rightarrow int poly \Rightarrow int poly list where berlekamp-hensel $p n f=$ (case finite-field-factorization-int p fof $(-, f s) \Rightarrow$ hensel-lifting p nffs)

Finite field factorization in combination with Hensel-lifting delivers factorization modulo p^{k} where factors are irreducible modulo p. Assumptions: input polynomial is square-free modulo p.

```
context poly-mod-prime begin
lemma berlekamp-hensel-main:
    assumes n: n\not=0
        and res: berlekamp-hensel p nf=gs
        and cop: coprime (lead-coeff f) p
        and sf: square-free-m f
        and berl: finite-field-factorization-int pf = (c,fs)
    shows poly-mod.factorization-m ( }\mp@subsup{p}{}{`}n)f(lead-coeff f, mset gs) - factorization
mod p^n
    and sort (map degree fs) = sort (map degree gs)
    and \g.g\in set gs \Longrightarrow monic g ^ poly-mod.Mp (p`n)g=g^ - monic and
normalized
            poly-mod.irreducible-m pg ^ irreducibility even mod p
            poly-mod.degree-m pg= degree g}-\operatorname{mod}p\mathrm{ does not change degree of g
proof -
    from res[unfolded berlekamp-hensel-def berl split]
    have hen: hensel-lifting p nffs=gs .
    note bh = finite-field-factorization-int[OF sf berl]
    from bh have poly-mod.factorization-m pf(c,mset fs)c\in{0..<p}(\forallfi\inset fs.
set (coeffs fi)\subseteq{0..<p})
        by (auto simp: poly-mod.unique-factorization-m-alt-def)
    note hen = hensel-lifting[OF n hen cop sf, OF this]
    show poly-mod.factorization-m ( }\mp@subsup{p}{}{`}n)f\mathrm{ (lead-coeff f, mset gs)
        sort (map degree fs) = sort (map degree gs)
        \.g\in set gs \Longrightarrow monic g ^ poly-mod.Mp (p^n)g=g^
            poly-mod.irreducible-m p g ^
            poly-mod.degree-m p g = degree g using hen by auto
qed
theorem berlekamp-hensel:
    assumes cop: coprime (lead-coeff f) p
```

and $s f$: square-free-m f
and res: berlekamp-hensel $p n f=g s$
and $n: n \neq 0$
shows poly-mod.factorization-m $(p \widehat{ }) f$ (lead-coeff f, mset gs) — factorization $\bmod p \wedge n$
and $\Lambda g . g \in$ set $g s \Longrightarrow$ poly-mod. $M p\left(p^{\wedge} n\right) g=g \wedge$ poly-mod.irreducible-m p g

- normalized and irreducible even $\bmod p$
proof -
obtain $c f s$ where finite-field-factorization-int $p f=(c, f s)$ by force
from berlekamp-hensel-main[OF n res cop sf this]
show poly-mod.factorization-m ($p^{\wedge} n$) f (lead-coeff f, mset gs)
$\wedge g . g \in$ set $g s \Longrightarrow$ poly-mod.Mp $(p \widehat{ }) g=g \wedge$ poly-mod.irreducible-m p g by auto
qed
lemma berlekamp-and-hensel-separated:
assumes cop: coprime (lead-coeff f) p
and $s f$: square-free-m f
and res: hensel-lifting $p n f f s=g s$
and berl: finite-field-factorization-int p $f=(c, f s)$
and $n: n \neq 0$
shows berlekamp-hensel $p n f=g s$
and sort (map degree fs) $=$ sort (map degree gs)
proof -
show berlekamp-hensel p $n f=g s$ unfolding res[symmetric]
berlekamp-hensel-def hensel-lifting-def berl split Let-def ..
from berlekamp-hensel-main[OF n this cop sf berl] show sort (map degree $f s$) $=$ sort (map degree gs)
by auto
qed
end
lemma prime-cop-exp-poly-mod:
assumes prime: prime p and cop: coprime c p and $n: n \neq 0$
shows poly-mod. M (p へ n) $c \in\{1 . .<p \widehat{p}\}$
proof -
from prime have $p 1: p>1$ by (simp add: prime-int-iff)
interpret poly-mod-2 p ^n unfolding poly-mod-2-def using $p 1 n$ by simp
from cop $p 1 m 1$ have $M c \neq 0$
by (auto simp add: M-def)
moreover have $M c<p \widehat{n} M c \geq 0$ unfolding M-def using $m 1$ by auto
ultimately show ?thesis by auto
qed
context poly-mod-2
begin

```
context
    fixes p :: int
    assumes prime: prime p
begin
interpretation p: poly-mod-prime p using prime by unfold-locales
lemma coprime-lead-coeff-factor: assumes coprime (lead-coeff (f*g)) p
    shows coprime (lead-coeff f) p coprime (lead-coeff g) p
proof -
    {
        fix fg
        assume cop: coprime (lead-coeff (f*g)) p
        from this[unfolded lead-coeff-mult]
        have coprime (lead-coeff f) p using prime
            by simp
    }
    from this[OF assms] this[of g f] assms
    show coprime (lead-coeff f) p coprime (lead-coeff g) p by (auto simp:ac-simps)
qed
lemma unique-factorization-m-factor: assumes uf: unique-factorization-m (f * g)
(c,hs)
    and cop: coprime (lead-coeff (f*g)) p
    and sf:p.square-free-m (f*g)
    and n: n\not=0
    and m:m}=\mp@code{p`
    shows \existsfs gs. unique-factorization-m f (lead-coeff f,fs)
    ^ unique-factorization-m g (lead-coeff g,gs)
    \wedgeMf(c,hs)=Mf(lead-coeff f*lead-coeff g,fs + gs)
    ^ image-mset Mp fs = fs ^ image-mset Mp gs = gs
proof -
    from prime have p1:1<p by (simp add: prime-int-iff)
    interpret p: poly-mod-2 p by (standard, rule p1)
    note sf = p.square-free-m-factor[OF sf]
    note cop = coprime-lead-coeff-factor[OF cop]
    from cop have copm: coprime (lead-coeff f) m coprime (lead-coeff g) m
        by (simp-all add:m)
    have df: degree-m f = degree f
    by (rule degree-m-eq[OF - m1], insert copm(1) m1, auto)
    have dg: degree-m g= degree g
    by (rule degree-m-eq[OF - m1], insert copm(2) m1, auto)
    define fs where fs \equivmset (berlekamp-hensel p nf)
    define gs where gs \equivmset (berlekamp-hensel p n g)
    from p.berlekamp-hensel[OF cop(1) sf(1) refl n, folded m]
    have f: factorization-m f (lead-coeff f,fs)
    and f-id: }\bigwedgef.f\in#fs\LongrightarrowMpf=f\mathrm{ unfolding fs-def by auto
    from p.berlekamp-hensel[OF cop(2) sf(2) refl n, folded m]
    have g: factorization-m g (lead-coeff g,gs)
```

and g-id: $\wedge f . f \in \# g s \Longrightarrow M p f=f$ unfolding gs-def by auto
from factorization-m-prod $[O F f g]$ uf[unfolded unique-factorization-m-alt-def]
have eq: Mf (lead-coeff $f *$ lead-coeff $g, f s+g s)=M f(c, h s)$ by blast
have uff: unique-factorization-m f (lead-coeff $f, f s$)
proof (rule unique-factorization-mI[OF f])
fix $e k s$
assume factorization-m $f(e, k s)$
from factorization-m-prod $[O F$ this $g]$ uf[unfolded unique-factorization-m-alt-def] factorization-m-lead-coeff[OF this, unfolded degree-m-eq-lead-coeff[OF df]]
have $M f(e * l e a d-c o e f f ~ g, k s+g s)=M f(c, h s)$ and $e: M(l e a d-c o e f f f)=M$
e by blast+
from this[folded eq, unfolded Mf-def split]
have ks: image-mset $M p k s=$ image-mset $M p f s$ by auto
show $M f(e, k s)=M f($ lead-coeff $f, f s)$ unfolding $M f$-def split ks e by simp
qed
have $i d f$: image-mset $M p f s=f s$ using f-id by (induct fs, auto)
have idg: image-mset $M p$ gs $=g s$ using g-id by (induct gs, auto)
have ufg: unique-factorization-m g (lead-coeff $g, g s$)
proof (rule unique-factorization-mI[OF g])
fix $e k s$
assume factorization-m $g(e, k s)$
from factorization-m-prod[OF f this] uf[unfolded unique-factorization-m-alt-def]
factorization-m-lead-coeff [OF this, unfolded degree-m-eq-lead-coeff [OF dg]]
have $M f($ lead-coeff $f * e, f s+k s)=M f(c, h s)$ and $e: M($ lead-coeff $g)=M$ e by blast +
from this[folded eq, unfolded Mf-def split]
have ks: image-mset $M p k s=$ image-mset $M p$ gs by auto
show $M f(e, k s)=M f(l e a d-c o e f f g, g s)$ unfolding $M f$-def split ks e by simp
qed
from uff ufg eq[symmetric] idf idg show ?thesis by auto
qed
lemma unique-factorization-factorI:
assumes ufact: unique-factorization-m $(f * g) F G$
and cop: coprime (lead-coeff $(f * g)) p$
and $s f$: poly-mod.square-free-m $p(f * g)$
and $n: n \neq 0$
and $m: m=p \widehat{ } n$
shows factorization-m $f F \Longrightarrow$ unique-factorization-m $f F$
and factorization-m $g G \Longrightarrow$ unique-factorization-m $g G$
proof -
obtain $c f g$ where $F G$: $F G=(c, f g)$ by force
from unique-factorization-m-factor[OF ufact[unfolded $F G$] cop sf $n m$]
obtain $f s$ gs where ufact: unique-factorization-m f (lead-coeff $f, f s$)
unique-factorization-m g (lead-coeff $g, g s$) by auto
from ufact (1) show factorization-m $f F \Longrightarrow$ unique-factorization-m f F by (metis unique-factorization-m-alt-def)
from ufact(2) show factorization-m $g G \Longrightarrow$ unique-factorization-m $g G$
by (metis unique-factorization-m-alt-def)

```
qed
end
lemma monic-Mp-prod-mset: assumes fs: \bigwedgef.f\in# fs \Longrightarrow monic (Mpf)
    shows monic (Mp (prod-mset fs))
proof -
    have monic (prod-mset (image-mset Mp fs))
    by (rule monic-prod-mset, insert fs, auto)
    from monic-Mp[OF this] have monic (Mp (prod-mset (image-mset Mp fs))).
    also have Mp (prod-mset (image-mset Mp fs)) = Mp (prod-mset fs) by (rule
Mp-prod-mset)
    finally show ?thesis .
qed
lemma degree-Mp-mult-monic: assumes monic f monic g
    shows degree (Mp (f*g)) = degree f + degree g
    by (metis zero-neq-one assms degree-monic-mult leading-coeff-0-iff monic-degree-m
monic-mult)
lemma factorization-m-degree: assumes factorization-m f (c,fs)
    and 0:Mpf\not=0
    shows degree-mf=sum-mset (image-mset degree-m fs)
proof -
    note a =assms[unfolded factorization-m-def split]
    hence deg: degree-m f = degree-m (smult c (prod-mset fs))
    and fs: \bigwedgef.f\in# fs \Longrightarrow monic (Mpf) by auto
    define gs where gs \equivMp (prod-mset fs)
    from monic-Mp-prod-mset[OF fs] have mon-gs: monic gs unfolding gs-def .
    have d:degree (Mp (Polynomial.smult c gs)) = degree gs
    proof -
        have f1:0 # c by (metis 0 Mp-0 a(1) smult-eq-0-iff)
        then have Mc\not=0 by (metis (no-types) 0 assms(1) factorization-m-lead-coeff
leading-coeff-0-iff)
    then show degree (Mp (Polynomial.smult c gs)) = degree gs
            unfolding monic-degree-m[OF mon-gs,symmetric]
            using f1 by (metis coeff-smult degree-m-eq degree-smult-eq m1 mon-gs monic-degree-m
mult-cancel-left1 poly-mod.M-def)
    qed
    note deg
    also have degree-m (smult c (prod-mset fs)) = degree-m (smult c gs)
    unfolding gs-def by simp
    also have ... = degree gs using d.
    also have ... = sum-mset (image-mset degree-m fs) unfolding gs-def
    using fs
    proof (induct fs)
        case (add ffs)
    have mon: monic (Mpf) monic (Mp (prod-mset fs)) using monic-Mp-prod-mset[of
fs]
```

```
        add(2) by auto
        have degree (Mp (prod-mset (add-mset ffs))) = degree (Mp (Mpf*Mp
(prod-mset fs)))
        by (auto simp: ac-simps)
    also have ... = degree (Mpf) + degree (Mp (prod-mset fs))
        by (rule degree-Mp-mult-monic[OF mon])
    also have degree (Mp (prod-mset fs)) = sum-mset (image-mset degree-m fs)
        by (rule add(1), insert add(2), auto)
    finally show ?case by (simp add: ac-simps)
    qed simp
    finally show ?thesis .
qed
lemma degree-m-mult-le: degree-m (f*g)\leqdegree-m f + degree-m g
    using degree-m-mult-le by auto
lemma degree-m-prod-mset-le: degree-m (prod-mset fs) \leq sum-mset (image-mset
degree-m fs)
proof (induct fs)
    case empty
    show ?case by simp
next
    case (add f fs)
    then show ?case using degree-m-mult-le[of f prod-mset fs] by auto
qed
end
context poly-mod-prime
begin
lemma unique-factorization-m-factor-partition: assumes l0:l\not=0
    and uf: poly-mod.unique-factorization-m ( p`l)f(lead-coeff f,mset gs)
    and f:f=f1*f2
    and cop: coprime (lead-coeff f)p
    and sf:square-free-m f
    and part: List.partition (\lambdagi.gi dvdm f1) gs = (gs1, gs2)
shows poly-mod.unique-factorization-m ( p`l) f1 (lead-coeff f1, mset gs1)
    poly-mod.unique-factorization-m (p`l) f2 (lead-coeff f2,mset gs2)
proof -
    interpret pl: poly-mod-2 p`l by (standard, insert m1 l0, auto)
    let ?I = image-mset pl.Mp
    note Mp-pow [simp] = Mp-Mp-pow-is-Mp[OF l0 m1]
    have [simp]: pl.Mp x dvdm u = (x dvdm u) for }x\mathrm{ u unfolding dvdm-def using
Mp-pow[of x]
    by (metis poly-mod.mult-Mp(1))
    have gs-split: set gs = set gs1 U set gs2 using part by auto
    from pl.unique-factorization-m-factor[OF prime uf[unfolded f] - l0 refl, folded
```

```
f,OF cop sf]
    obtain hs1 hs2 where uf': pl.unique-factorization-m f1 (lead-coeff f1, hs1)
        pl.unique-factorization-m f2 (lead-coeff f2, hs2)
        and gs-hs: ?I (mset gs) =hs1 + hs2
        unfolding pl.Mf-def split by auto
    have gs-gs: ?I (mset gs) = ?I (mset gs1) + ?I (mset gs2) using part
        by (auto, induct gs arbitrary: gs1 gs2, auto)
    with gs-hs have gs-hs12: ?I (mset gs1) + ?I (mset gs2) = hs1 + hs2 by auto
    note pl-dvdm-imp-p-dvdm = pl-dvdm-imp-p-dvdm[OF l0]
    note fact = pl.unique-factorization-m-imp-factorization[OF uf]
    have gs1: ?I (mset gs1) = {#x \in# ?I (mset gs). x dvdm f1#}
        using part by (auto, induct gs arbitrary: gs1 gs2, auto)
    also have ... ={#x\in# hs1.x dvdm f1#}+{#x\in# hs2. x dvdm f1#}
unfolding gs-hs by simp
    also have {#x\in# hs2. x dvdm f1#} ={#}
    proof (rule ccontr)
    assume \neg ?thesis
    then obtain x where x:x\in# hs2 and dvd: x dvdm f1 by fastforce
    from x gs-hs have }x\in#\mathrm{ ?I (mset gs) by auto
    with fact[unfolded pl.factorization-m-def]
    have xx: pl.irreducible }\mp@subsup{d}{d}{}-mx\mathrm{ monic }x\mathrm{ by auto
    from square-free-m-prod-imp-coprime-m[OF sf[unfolded f]]
    have cop-h-f: coprime-m f1 f2 by auto
    from pl.factorization-m-mem-dvdm[OF pl.unique-factorization-m-imp-factorization[OF
uf
    have pl.dvdm x f2 by auto
    hence x dvdm f2 by (rule pl-dvdm-imp-p-dvdm)
    from cop-h-f[unfolded coprime-m-def, rule-format, OF dvd this]
    have x dvdm 1 by auto
    from dvdm-imp-degree-le[OF this xx(2)-m1] have degree x = 0 by auto
    with xx show False unfolding pl.irreducible d-m-def by auto
    qed
    also have {#x\in# hs1.x dvdm f1#} =hs1
    proof (rule ccontr)
    assume \neg ?thesis
    from filter-mset-inequality[OF this]
    obtain }x\mathrm{ where }x:x\in#hs1\mathrm{ and dvd: ᄀ x dvdm f1 by blast
    from pl.factorization-m-mem-dvdm[OF pl.unique-factorization-m-imp-factorization[OF
uf'(1)],
        of x] x dvd
    have pl.dvdm x f1 by auto
    from pl-dvdm-imp-p-dvdm[OF this] dvd show False by auto
    qed
    finally have gs-hs1: ?I (mset gs1)=hs1 by simp
    with gs-hs12 have ?I (mset gs2) = hs2 by auto
    with uf'gs-hs1 have pl.unique-factorization-m f1 (lead-coeff f1, ?I (mset gs1))
        pl.unique-factorization-m f2 (lead-coeff f2,?I (mset gs2)) by auto
    thus pl.unique-factorization-m f1 (lead-coeff f1, mset gs1)
        pl.unique-factorization-m f2 (lead-coeff f2, mset gs2)
```

unfolding pl.unique-factorization-m-def
by (auto simp: pl.Mf-def image-mset.compositionality o-def)
qed
lemma factorization-pn-to-factorization-p: assumes fact: poly-mod.factorization-m $(p$ $n) C(c, f s)$
and $s f$: square-free-m C
and $n: n \neq 0$
shows factorization-m $C(c, f s)$
proof -
let $? q=p$ へ n
from $n m 1$ have $q: ? q>1$ by simp
interpret q : poly-mod-2 ? q by (standard, insert q, auto)
from fact[unfolded q.factorization-m-def]
have eq: $q . M p C=q \cdot M p$ (Polynomial.smult $c($ prod-mset $f s))$
and irr: $\wedge f . f \in \# f s \Longrightarrow$ q.irreducible ${ }_{d}-m f$
and mon: $\bigwedge f . f \in \# f s \Longrightarrow$ monic $(q . M p f)$
by auto
from arg-cong[OF eq, of Mp]
have eq: eq-m C (smult c (prod-mset fs))
by (simp add: Mp-Mp-pow-is-Mp m1 n)
show ?thesis unfolding factorization-m-def split
proof (rule conjI[OF eq], intro ballI conjI)
fix f
assume $f: f \in \# f s$
from mon $[O F$ this $]$ have mon-qf: monic ($q . M p f$).
hence $l c$: lead-coeff $(q . M p f)=1$ by auto
from mon-qf show mon-f: monic ($M p f$) by (metis Mp-Mp-pow-is-Mp m1 monic-Mp n)
from $\operatorname{irr}[O F f]$ have irr : q.irreducible $e_{d}-m f$.
hence q.degree-m $f \neq 0$ unfolding q.irreducible $e_{d}-m$-def by auto
also have q.degree- $m f=$ degree- $m f$ using $\operatorname{mon}[O F f]$
by (metis Mp-Mp-pow-is-Mp m1 monic-degree-m n)
finally have deg: degree-m $f \neq 0$ by auto
from f obtain $g s$ where $f s: f s=\{\# f \#\}+g s$ by (metis mset-subset-eq-single subset-mset.add-diff-inverse)
from eq[unfolded $f s]$ have $M p C=M p(f *$ smult $c($ prod-mset $g s))$ by auto
from square-free-m-factor[OF square-free-m-cong[OF sf this]]
have sf-f: square-free-m f by simp
have sf-Mf: square-free-m (q.Mp f)
by (rule square-free-m-cong[OF sf-f], auto simp: Mp-Mp-pow-is-Mp n m1)
have coprime (lead-coeff ($q . M p f$)) p using mon $[O F f]$ prime by simp
from berlekamp-hensel[OF this sf-Mf refl n, unfolded lc] obtain gs where qfact: q.factorization-m (q.Mp f) (1, mset gs) and $\bigwedge g . g \in$ set $g s \Longrightarrow$ irreducible-m g by blast
hence fact: $q \cdot M p f=q \cdot M p$ (prod-list gs)
and $g s: \bigwedge g . g \in$ set $g s \Longrightarrow$ irreducible $_{d}-m g \wedge$ q.irreducible $_{d}-m g \wedge$ monic
($q . M p g$)
unfolding q.factorization-m-def by auto

```
    from q.factorization-m-degree[OF qfact]
    have deg: q.degree-m (q.Mpf) = sum-mset (image-mset q.degree-m (mset gs))
    using mon-qf by fastforce
    from irr[unfolded q.irreducible }\mp@subsup{d}{d}{}-m\mathrm{ -def]
    have sum-mset (image-mset q.degree-m (mset gs))\not=0 by (fold deg, auto)
    then obtain gg\mp@subsup{s}{}{\prime}}\mathrm{ where gs1:gs = g# gs'' by (cases gs,auto)
    {
        assume gs' }=[
        then obtain h hs where gs2: gs' =h # hs by (cases gs',}\mathrm{ ,auto)
        from deg gs[unfolded q.irreducible e
        have small: q.degree-m g< q.degree-m f
            q.degree-m h + sum-mset (image-mset q.degree-m (mset hs))<q.degree-m
f
        unfolding gs1 gs2 by auto
    have q.eq-m f (g* (h* prod-list hs))
        using fact unfolding gs1 gs2 by simp
    with irr[unfolded q.irreducible e-m-def, THEN conjunct2, rule-format, of gh
* prod-list hs]
            small(1) have }\neg\mathrm{ q.degree-m (h* prod-list hs)<q.degree-m f by auto
    hence q.degree-m f}\leqq.degree-m ( h* prod-list hs) by sim
    also have ... = q.degree-m (prod-mset ({#h#} + mset hs)) by simp
    also have ... \leqsum-mset (image-mset q.degree-m ({#h#} + mset hs))
        by (rule q.degree-m-prod-mset-le)
    also have ... < q.degree-m f using small(2) by simp
    finally have False by simp
    }
    hence gs1:gs = [g] unfolding gs1 by (cases gs', auto)
    with fact have q.Mp f=q.Mp g by auto
    from arg-cong[OF this, of Mp] have eq:Mpf=Mpg
    by (simp add: Mp-Mp-pow-is-Mp m1 n)
    from gs[unfolded gs1] have g: irreducible d}-mg\mathrm{ by auto
    with eq show irreducible d-m f unfolding irreducible d
    qed
qed
lemma unique-monic-hensel-factorization:
    assumes ufact: unique-factorization-m C (1,Fs)
    and C:monic C square-free-m C
    and n: n\not=0
    shows \existsGs. poly-mod.unique-factorization-m ( p`n)C (1,Gs)
    using ufact C
proof (induct Fs arbitrary: C rule:wf-induct[OF wf-measure[of size]])
    case (1 Fs C)
    let ? q = p`n
    from n m1 have q: ? q> 1 by simp
    interpret q: poly-mod-2 ?q by (standard, insert q, auto)
    note [simp] = Mp-Mp-pow-is-Mp[OF n m1]
    note IH=1(1)[rule-format]
    note ufact = 1(2)
```

hence fact: factorization-m C ($1, F s$) unfolding unique-factorization-m-alt-def by auto
note $\operatorname{mon} C=1$ (3)
note $s f=1$ (4)
let ? $n=$ size $F s$
\{
fix $d g s$
assume qfact: q.factorization-m $C(d, g s)$
from q.factorization-m-lead-coeff[OF this] q.monic-Mp[OF monC]
have d1: q.M $d=1$ by auto
from factorization-pn-to-factorization-p[OF qfact sf n]
have factorization-m $C(d, g s)$.
with ufact d1 have $q \cdot M d=1 M d=1$ image-mset $M p$ gs $=$ image-mset $M p$ Fs
unfolding unique-factorization-m-alt-def Mf-def by auto
$\}$ note pre-unique $=$ this
show ?case
proof (cases Fs)
case empty
with fact C have $M p C=1$ unfolding factorization-m-def by auto
hence degree $(M p C)=0$ by simp
with degree-m-eq-monic[OF monC m1] have degree $C=0$ by simp
with mon C have $C 1: C=1$ using monic-degree- 0 by blast
with fact have fact: q.factorization-m $C(1,\{\#\})$
by (auto simp: q.factorization-m-def)
show ?thesis
proof (rule exI, rule q.unique-factorization-mI[OF fact])
fix $d g s$
assume fact: q.factorization-m C (d,gs)
from pre-unique[OF this, unfolded empty]
show $q \cdot M f(d, g s)=q \cdot M f(1,\{\#\})$ by (auto simp: q.Mf-def)
qed
next
case (add $D H$) note $F D H=$ this
let ? $D=M p D$
let $? H=M p($ prod-mset $H)$
from fact have monFs: $\bigwedge F . F \in \# F s \Longrightarrow$ monic (Mp F)
and prod: eq-m C (prod-mset Fs) unfolding factorization-m-def by auto
hence monD: monic ?D unfolding $F D H$ by auto
from square-free-m-cong[OF sf, of $D *$ prod-mset H] prod[unfolded FDH]
have square-free-m $(D *$ prod-mset H) by (auto simp: ac-simps)
from square-free-m-prod-imp-coprime-m[OF this]
have coprime-m D (prod-mset H).
hence cop': coprime-m ?D ?H unfolding coprime-m-def dvdm-def $M p-M p$ by simp
from fact have $e q^{\prime}: \operatorname{eq-m}(? D * ? H) C$
unfolding FDH by (simp add: factorization-m-def ac-simps)
note unique-hensel-binary[OF prime cop' eq' ${ }^{\prime}$ ($p-M p$ Mp-Mp monD n]
from ex1-implies-ex[OF this] this
obtain $A B$ where $C A B$: q.eq-m $(A * B) C$ and monA: monic A and $D A$: $e q-m$? $D A$
and $H B$: eq-m ?H B and norm: $q \cdot M p A=A$ q.Mp $B=B$
and unique: $\wedge D^{\prime} H^{\prime}$. q.eq-m $\left(D^{\prime} * H^{\prime}\right) C \Longrightarrow$
monic $D^{\prime} \Longrightarrow$
$e q-m(M p D) D^{\prime} \Longrightarrow e q-m(M p($ prod-mset $H)) H^{\prime} \Longrightarrow q \cdot M p D^{\prime}=D^{\prime} \Longrightarrow$ $q \cdot M p H^{\prime}=H^{\prime}$
$\Longrightarrow D^{\prime}=A \wedge H^{\prime}=B$ by blast
note hensel-bin-wit $=C A B$ monA $D A H B$ norm
from monA have mon A^{\prime} : monic ($q . M p A$) by (rule q.monic-Mp)
from q.monic-Mp[OF monC] CAB have monicP:monic $(q . M p(A * B))$ by auto
have $f_{4}: \bigwedge p$. coeff $(A * p)($ degree $(A * p))=$ coeff p (degree $\left.p\right)$ by (simp add: coeff-degree-mult monA)
have f2: $\wedge p n i$. coeff $p n \bmod i=$ coeff $($ poly-mod.Mp $i p) n$
using poly-mod.M-def poly-mod.Mp-coeff by presburger
hence coeff $B($ degree $B)=0 \vee$ monic B
using monicP f_{4} by (metis (no-types) norm(2) q.degree-m-eq q.m1)
hence monB: monic B
using f_{4} monicP by (metis norm(2) leading-coeff-0-iff)
from mon A monB have lcAB: lead-coeff $(A * B)=1$ by (rule monic-mult)
hence $\operatorname{cop} A B$: coprime (lead-coeff $(A * B)) p$ by auto
from arg-cong[OF CAB, of Mp]
have $C A B^{\prime}$: eq-m $C(A * B)$ by auto
from $s f C A B^{\prime}$ have $s f A B$: square-free-m $(A * B)$ using square-free-m-cong by blast
from $C A B^{\prime}$ ufact have ufact: unique-factorization-m $(A * B)(1, F s)$ using unique-factorization-m-cong by blast
have $(1::$ nat $) \neq 0 p=p^{\wedge} 1$ by auto
note u-factor $=$ unique-factorization-factorI[OF prime ufact $\operatorname{cop} A B$ sfAB this]
from fact $D A$ have irreducible $_{d}-m D$ eq-m $A D$ unfolding add factoriza-tion-m-def by auto
hence irreducible $_{d}-m$ A using $M p$-irreducible $d_{d}-m$ by fastforce
from irreducible $_{d}$-lifting $\left[O F n\right.$ - this] have irrA: q.irreducible $d_{d}-m$ A using monA
by (simp add: m1 poly-mod.degree-m-eq-monic q.m1)
from add have lenH: $(H, F s) \in$ measure size by auto
from $H B$ fact have factB: factorization-m $B(1, H)$
unfolding FDH factorization-m-def by auto
from u-factor (2) $[$ OF factB] have ufactB: unique-factorization-m $B(1, H)$.
from $s f A B$ have $s f B$: square-free-m B by (rule square-free-m-factor)
from $I H[O F$ lenH ufactB monB $s f B]$ obtain $B s$ where
IH2: q.unique-factorization-m $B(1, B s)$ by auto
from $C A B$ have $q \cdot M p C=q \cdot M p(q \cdot M p A * q \cdot M p B)$ by simp
also have $q \cdot M p A * q \cdot M p B=q \cdot M p A * q \cdot M p$ (prod-mset Bs) using IH2 unfolding q.unique-factorization-m-alt-def q.factorization-m-def

```
by auto
    also have q.Mp \ldots= = q.Mp (A* prod-mset Bs) by simp
    finally have factC: q.factorization-m C (1, {# A #} + Bs) using IH2 monA'
irrA
    by (auto simp: q.unique-factorization-m-alt-def q.factorization-m-def)
    show ?thesis
    proof (rule exI, rule q.unique-factorization-mI[OF factC])
        fix dgs
        assume dgs: q.factorization-m C (d,gs)
        from pre-unique[OF dgs, unfolded add] have d1:q.M d=1 and
            gs-fs: image-mset Mp gs = {# Mp D#} + image-mset Mp H by (auto
simp: ac-simps)
            have }\forallfm\mathrm{ m ma. image-mset f m}\not=\mathrm{ add-mset ( }p::\mathrm{ int poly) ma }
            ( }\exists\textrm{mb}\mathrm{ pa. m=add-mset (pa::int poly) mb ^f pa=p^ image-mset f
mb=ma)
            by (simp add: msed-map-invR)
            then obtain ghs where gs:gs={#g#}+hs and gD:Mpg=MpD
            and hsH: image-mset Mp hs = image-mset Mp H
            using gs-fs by (metis add-mset-add-single union-commute)
            from dgs[unfolded q.factorization-m-def split]
            have eq: q.Mp C = q.Mp (smult d (prod-mset gs))
            and irr-mon: \bigwedgeg. g\in#gs \Longrightarrowq.irreducible d-m g ^ monic (q.Mp g)
            using d1 by auto
            note eq
            also have q.Mp (smult d (prod-mset gs)) = q.Mp (smult (q.M d) (prod-mset
                gs))
            by simp
            also have ... = q.Mp (prod-mset gs) unfolding d1 by simp
                            finally have eq: q.eq-m (q.Mp g* q.Mp (prod-mset hs)) C unfolding gs by
simp
            from gD have Dg: eq-m (Mp D) (q.Mp g) by simp
            have Mp (prod-mset H)=Mp (prod-mset (image-mset Mp H)) by simp
            also have ... = Mp (prod-mset hs) unfolding hsH[symmetric] by simp
            finally have Hhs: eq-m (Mp (prod-mset H)) (q.Mp (prod-mset hs)) by simp
            from irr-mon[of g, unfolded gs] have mon-g: monic (q.Mp g) by auto
            from unique[OF eq mon-g Dg Hhs q.Mp-Mp q.Mp-Mp]
            have gA:q.Mp g=A and hsB:q.Mp (prod-mset hs)=B by auto
            have q.factorization-m B (1,hs) unfolding q.factorization-m-def split
                by (simp add: hsB norm irr-mon[unfolded gs])
                            with IH2 have hsBs: q.Mf (1,hs)= q.Mf (1,Bs) unfolding q.unique-factorization-m-alt-def
by blast
            show q.Mf (d,gs) = q.Mf (1, {# A #} + Bs)
                using gA hsBs d1 unfolding gs q.Mf-def by auto
    qed
    qed
qed
theorem berlekamp-hensel-unique:
    assumes cop: coprime (lead-coeff f) p
```

and $s f$: poly-mod.square-free-m $p f$
and res: berlekamp-hensel $p n f=g s$
and $n: n \neq 0$
shows poly-mod.unique-factorization-m $(p \widehat{n}) f$ (lead-coeff f, mset gs) - unique factorization $\bmod p{ }^{\wedge} n$
$\bigwedge g . g \in$ set $g s \Longrightarrow$ poly-mod.Mp $\left(p^{\wedge} n\right) g=g \quad$ normalized
proof -
let $? q=p^{\wedge} n$
interpret q : poly-mod-2 ? q unfolding poly-mod-2-def using $m 1 n$ by simp
from berlekamp-hensel[OF assms]
have bh-fact: $q . f$ factorization-m f (lead-coeff f, mset gs) by auto
from berlekamp-hensel[OF assms]
show $\bigwedge g . g \in$ set $g s \Longrightarrow$ poly-mod. $M p(p \wedge n) g=g$ by blast
from prime have $p 1: p>1$ by (simp add: prime-int-iff)
let ?lc $=\operatorname{coeff} f($ degree $f)$
define ilc where ilc \equiv inverse-mod ?lc $\left(p^{\wedge} n\right)$
from cop $p 1 n$ have inv: $q \cdot M(i l c * ? l c)=1$
by (auto simp add: q.M-def ilc-def inverse-mod-pow)
hence ilc0: ilc $\neq 0$ by (cases ilc $=0$, auto)
\{
fix q
assume $i l c * ? l c=? q * q$
from arg-cong $[$ OF this, of $q \cdot M]$ have $q \cdot M(i l c * ? l c)=0$
unfolding $q \cdot M$-def by auto
with inv have False by auto
\} note not-dvd $=$ this
let ? in $=q \cdot M p$ (smult ilc f)
have mon: monic ?in unfolding q.Mp-coeff coeff-smult
by (subst q.degree-m-eq[OF - q.m1], insert not-dvd, auto simp: inv ilc0)
have $q \cdot M p f=q \cdot M p(s m u l t(q \cdot M(? l c * i l c)) f)$ using inv by (simp add:
ac-simps)
also have $\ldots=q \cdot M p$ (smult ?lc (smult ilc f)) by simp
finally have $f: q \cdot M p f=q \cdot M p$ (smult ?lc (smult ilc f)).
from arg-cong $[O F f$, of $M p]$
have $M p f=M p$ (smult ?lc (smult ilc f))
by (simp add: Mp-Mp-pow-is-Mp n p1)
from arg-cong[OF this, of square-free-m, unfolded Mp-square-free-m] sf
have square-free-m (smult (coeff f (degree f)) (smult ilc f)) by simp
from square-free-m-smultD $[O F$ this $]$ have sf: square-free-m (smult ilc f).
have $M p-i n: M p$? in $=M p$ (smult ilc f)
by (simp add: Mp-Mp-pow-is-Mp n p1)
from Mp-square-free-m[of ? in, unfolded $M p$-in] sf have sf: square-free-m?in unfolding $M p$-square-free-m by simp
obtain $a b$ where finite-field-factorization-int p ?in $=(a, b)$ by force
from finite-field-factorization-int[OF sf this]
have ufact: unique-factorization-m ? in (a, mset b) by auto
from unique-factorization-m-imp-factorization[OF this]
have fact: factorization-m ? in (a, mset b).
from factorization-m-lead-coeff[OF this] monic-Mp[OF mon]
have $M a=1$ by auto
with ufact have unique-factorization-m ? in (1, mset b)
unfolding unique-factorization-m-def $M f$-def by auto
from unique-monic-hensel-factorization[OF this mon sf n]
obtain $h s$ where q.unique-factorization-m?in $(1, h s)$ by auto
hence unique: q.unique-factorization-m (smult ilc f) ($1, h s$)
unfolding unique-factorization-m-def $M f$-def by auto
from q.factorization-m-smult[OF q.unique-factorization-m-imp-factorization[OF unique], of ?lc]
have q.factorization-m (smult (ilc * ?lc) f) (?lc, hs) by (simp add: ac-simps)
moreover have $q \cdot M p(s m u l t(q \cdot M(i l c * ? l c)) f)=q \cdot M p f$ unfolding inv by simp
ultimately have fact: q.factorization-m $f(? l c, h s)$
unfolding q.factorization-m-def by auto
have q.unique-factorization-m $f(? l c, h s)$
proof (rule q.unique-factorization-mI[OF fact])
fix $d u s$
assume other-fact: q.factorization-m f (d,us)
from q.factorization-m-lead-coeff $[O F$ this] have lc: q.M $d=$ lead-coeff ($q \cdot M p$ f) ..
have $l c: q \cdot M d=q \cdot M ? l c$ unfolding $l c$
by (metis bh-fact q.factorization-m-lead-coeff)
from q.factorization-m-smult[OF other-fact, of ilc] unique
have eq: $q \cdot M f(d * i l c, u s)=q \cdot M f(1, h s)$ unfolding q.unique-factorization-m-def by auto
thus $q \cdot M f(d, u s)=q \cdot M f(? l c, h s)$ using $l c$ unfolding $q \cdot M f-d e f$ by auto qed
with bh-fact show q.unique-factorization-m f (lead-coeff f, mset gs)
unfolding q.unique-factorization-m-alt-def by metis
qed
lemma hensel-lifting-unique:
assumes $n: n \neq 0$
and res: hensel-lifting $p n f f s=g s \quad$ - result of hensel is fact. gs
and cop: coprime (lead-coeff f) p
and $s f$: poly-mod.square-free-m $p f$
and fact: poly-mod.factorization-m $p f(c$, mset $f s)$ - input is fact. $f s$ $\bmod p$
and $c: c \in\{0 . .<p\}$
and norm: $(\forall f i \in$ set f s. set $($ coeffs $f) \subseteq\{0 . .<p\})$
shows poly-mod.unique-factorization-m ($p \widehat{n}$) f (lead-coeff f, mset gs) - unique factorization $\bmod p \widehat{ } n$
sort $($ map degree $f s)=$ sort $($ map degree gs $) \quad$ - degrees stay
the same
$\wedge g . g \in$ set $g s \Longrightarrow$ monic $g \wedge$ poly-mod. $M p(p \wedge n) g=g \wedge \quad —$ monic and normalized
poly-mod.irreducible-m $p g \wedge \quad$ - irreducibility even mod p
poly-mod.degree-m $p g=$ degree $g-\bmod p$ does not change degree of g

```
proof -
    note hensel = hensel-lifting[OF assms]
    show sort (map degree fs) = sort (map degree gs)
        \g.g\in set gs \Longrightarrow monic g ^ poly-mod.Mp ( ^^n) g=g^
            poly-mod.irreducible-m p g ^
            poly-mod.degree-m pg = degree g using hensel by auto
    from berlekamp-hensel-unique[OF cop sf refl n]
    have poly-mod.unique-factorization-m ( p^ n)f (lead-coeff f,mset (berlekamp-hensel
p nf)) by auto
    with hensel(1) show poly-mod.unique-factorization-m ( }p\mathrm{ 人n) f (lead-coeff f, mset
gs)
    by (metis poly-mod.unique-factorization-m-alt-def)
qed
end
```

end

10 Reconstructing Factors of Integer Polynomials

10.1 Square-Free Polynomials over Finite Fields and Integers

theory Square-Free-Int-To-Square-Free-GFp imports
Subresultants.Subresultant-Gcd
Polynomial-Factorization.Rational-Factorization
Finite-Field
Polynomial-Factorization.Square-Free-Factorization
begin
lemma square-free-int-rat: assumes sf: square-free f
shows square-free (map-poly rat-of-int f)
proof -
let $? r=$ map-poly rat-of-int
from sf[unfolded square-free-def] have $f 0: f \neq 0 \wedge q$. degree $q \neq 0 \Longrightarrow \neg q *$
$q d v d f$ by auto
show ?thesis
proof (rule square-freeI)
show ? $f \neq 0$ using $f 0$ by auto
fix q
assume dq: degree $q>0$ and $d v d: q * q d v d$? $r f$
hence $q 0: q \neq 0$ by auto
obtain $q^{\prime} c$ where norm: rat-to-normalized-int-poly $q=\left(c, q^{\prime}\right)$ by force
from rat-to-normalized-int-poly[OF norm] have $c 0: c \neq 0$ by auto
note $q=$ rat-to-normalized-int-poly(1)[OF norm]
from dvd obtain k where $r f$: ? $r f=q *(q * k)$ unfolding dvd-def by (auto simp: ac-simps)
from rat-to-int-factor-explicit[OF this norm] obtain s where

$$
f: f=q^{\prime} * \text { smult }(\text { content } f) s \text { by auto }
$$

let $? s=$ smult $($ content $f) s$
from \arg-cong[OF f, of ? $r] c 0$
have ?r $f=q *($ smult (inverse $c)(? r$? $s))$
by (simp add: field-simps q hom-distribs)
from arg-cong[OF this[unfolded $r f]$, of $\lambda f . f$ div $q] q 0$
have $q * k=$ smult (inverse c) (?r ?s)
by (metis nonzero-mult-div-cancel-left)
from arg-cong[OF this, of smult $c]$ have ?r ? s $=q *$ smult $c k$ using $c 0$ by (auto simp: field-simps)
from rat-to-int-factor-explicit[OF this norm] obtain t where ?s $=q^{\prime} * t$ by blast
from $f\left[\right.$ unfolded this] sf[unfolded square-free-def] f0 have degree $q^{\prime}=0$ by auto
with rat-to-normalized-int-poly(4)[OF norm] dq show False by auto qed
qed
lemma content-free-unit:
assumes content ($p::{ }^{\prime} a::\{i d o m$, semiring-gcd $\}$ poly $)=1$
shows p dvd $1 \longleftrightarrow$ degree $p=0$
by (insert assms, auto dest!:degree0-coeffs simp: normalize-1-iff poly-dvd-1)
lemma square-free-imp-resultant-non-zero: assumes sf: square-free (f :: int poly)
shows resultant $f($ pderiv $f) \neq 0$
proof (cases degree $f=0$)
case True
from degree 0 -coeffs $[$ OF this] obtain c where $f: f=[: c:]$ by auto
with sf have $c: c \neq 0$ unfolding square-free-def by auto
show ?thesis unfolding f by simp
next
case False note deg = this
define $p p$ where $p p=$ primitive-part f
define c where $c=$ content f
from sf have f0: $f \neq 0$ unfolding square-free-def by auto
hence $c 0: c \neq 0$ unfolding c-def by auto
have $f: f=$ smult c pp unfolding c-def pp-def unfolding content-times-primitive-part[of $f]$..
from $s f[$ unfolded $f] c 0$ have $s f^{\prime}$: square-free $p p$ by (metis dvd-smult smult- 0 -right square-free-def)
from deg[unfolded $f] c 0$ have deg' $^{\prime}: \bigwedge x$. degree $p p>0 \vee x$ by auto
from content-primitive-part $[O F f 0]$ have $c p$: content $p p=1$ unfolding $p p$-def
let $? p^{\prime}=$ pderiv $p p$
\{
assume resultant $p p ? p^{\prime}=0$
from this[unfolded resultant-0-gcd] have \neg coprime $p p$? p^{\prime} by auto
then obtain r where $r: r d v d p p r d v d ? p^{\prime} \neg r d v d 1$
by (blast elim: not-coprimeE)

```
from \(r(1)\) obtain \(k\) where \(p p=r * k\)..
```

from pos-zmult-eq-1-iff-lemma $[$ OF arg-cong[OF this,
of content, unfolded content-mult cp, symmetric $]$] content-ge-0-int $[$ of $r]$
have $c r$: content $r=1$ by auto
with r (3) content-free-unit have $d r$: degree $r \neq 0$ by auto
let $? r=$ map-poly rat-of-int
from $r(1)$ have $d v d$: ?r r dvd ?r $p p$ unfolding dvd-def by (auto simp: hom-distribs)
from $r(2)$ have ? r r dvd ? r ? p^{\prime} apply (intro of-int-poly-hom.hom-dvd) by auto
also have ?r ? $p^{\prime}=$ pderiv (?r pp) unfolding of-int-hom.map-poly-pderiv ..
finally have $d v d^{\prime}:$?r r dvd pderiv (?r pp) by auto
from $d r$ have $d r^{\prime}$: degree (? r) $\neq 0$ by simp
from square-free-imp-separable[OF square-free-int-rat[OF sf $\dagger]$
have separable (?r pp).
hence cop: coprime (?r pp) (pderiv (?r pp)) unfolding separable-def.
from $f 0 f$ have $p p 0: p p \neq 0$ by auto
from $d v d d v d^{\prime}$ have ?r r dvd gcd (?r pp) (pderiv (?r pp)) by auto
from divides-degree[OF this] pp0 have degree (?r r) \leq degree (gcd (?r pp) (pderiv (?r pp)))
by auto
with $d r^{\prime}$ have degree $(g c d(? r p p)(p d e r i v(? r p p))) \neq 0$ by auto
hence \neg coprime (?r pp) (pderiv (?r pp)) by auto
with cop have False by auto
\}
hence resultant $p p ? p^{\prime} \neq 0$ by auto
with resultant-smult-left[OF c0, of pp ? p^{\prime}, folded f] c0
have resultant $f ? p^{\prime} \neq 0$ by auto
with resultant-smult-right [OF c0, of f ? p^{\prime}, folded pderiv-smult $\left.f\right] c 0$ show resultant $f($ pderiv $f) \neq 0$ by auto
qed
lemma large-mod- 0 : assumes $(n::$ int $)>1|k|<n k \bmod n=0$ shows $k=0$
proof -
from $\langle k \bmod n=0\rangle$ have $n d v d k$
by auto
then obtain m where $k=n * m$..
with $\langle n>1\rangle\langle | k|<n\rangle$ show ?thesis by (auto simp add: abs-mult)
qed
definition separable-bound $::$ int poly \Rightarrow int where
separable-bound $f=\max ($ abs (resultant $f($ pderiv $f))$)
$(\max (a b s($ lead-coeff $f))($ abs (lead-coeff $(p d e r i v f))))$
lemma square-free-int-imp-resultant-non-zero-mod-ring: assumes sf: square-free f
and large: int $C A R D\left({ }^{\prime} a\right)>$ separable-bound f
shows resultant (map-poly of-int $f::{ }^{\prime} a$:: prime-card mod-ring poly) (pderiv $($ map-poly of-int $f)) \neq 0$

```
    ^ map-poly of-int f f= (0 :: 'a mod-ring poly)
proof (intro conjI, rule notI)
    let ?i =of-int :: int => ' a mod-ring
    let ?m = of-int-poly :: - = 'a mod-ring poly
    let ?f = ?mf
    from sf[unfolded square-free-def] have f0: f}\not=0\mathrm{ by auto
    hence lf:lead-coeff f}\not=0\mathrm{ by auto
    {
    fix k :: int
    have C1: int CARD('a)>1 using prime-card[where 'a ='a] by (auto simp:
prime-nat-iff)
    assume abs k<CARD('a) and ?i k=0
    hence }k=0\mathrm{ unfolding of-int-of-int-mod-ring
            by (transfer) (rule large-mod-0[OF C1])
    } note of-int-0 = this
    from square-free-imp-resultant-non-zero[OF sf]
    have non0: resultant f(pderiv f)}\not=0\mathrm{ .
    {
        fix g :: int poly
        assume abs: abs (lead-coeff g) < CARD('a)
        have degree (?m g) = degree g by (rule degree-map-poly, insert of-int- }0[O
abs], auto)
    } note deg = this
    note large = large[unfolded separable-bound-def]
    from of-int-0[of lead-coeff f] large lf have ?i (lead-coeff f)}\not=0\mathrm{ by auto
    thus f0: ?f }\not=0\mathrm{ unfolding poly-eq-iff by auto
    assume 0: resultant ?f (pderiv ?f) =0
    have resultant ?f (pderiv ?f) = ?i (resultant f (pderiv f))
        unfolding of-int-hom.map-poly-pderiv[symmetric]
    by (subst of-int-hom.resultant-map-poly(1)[OF deg deg], insert large, auto simp:
hom-distribs)
    from of-int-0[OF - this[symmetric, unfolded 0]] non0
    show False using large by auto
qed
lemma square-free-int-imp-separable-mod-ring: assumes sf: square-free f
    and large: int CARD('a) > separable-bound f
    shows separable (map-poly of-int f :: 'a :: prime-card mod-ring poly)
proof -
    define g}\mathrm{ where g= map-poly (of-int :: int # 'a mod-ring) f
    from square-free-int-imp-resultant-non-zero-mod-ring[OF sf large]
    have res: resultant g (pderiv g)}\not=0\mathrm{ and }g:g\not=0\mathrm{ unfolding g-def by auto
    from res[unfolded resultant-0-gcd] have degree (gcd g (pderiv g)) = 0 by auto
    from degree0-coeffs[OF this]
    have separable g unfolding separable-def
    by (metis degree-pCons-0 g gcd-eq-0-iff is-unit-gcd is-unit-iff-degree)
    thus ?thesis unfolding g-def .
qed
```

lemma square-free-int-imp-square-free-mod-ring: assumes sf: square-free f and large: int $C A R D(' a)>$ separable-bound f
shows square-free (map-poly of-int f :: ' a :: prime-card mod-ring poly)
using separable-imp-square-free[OF square-free-int-imp-separable-mod-ring[OF assms]]
end

10.2 Finding a Suitable Prime

The Berlekamp-Zassenhaus algorithm demands for an input polynomial f to determine a prime p such that f is square-free $\bmod p$ and such that p and the leading coefficient of f are coprime. To this end, we first prove that such a prime always exists, provided that f is square-free over the integers. Second, we provide a generic algorithm which searches for primes have a certain property P. Combining both results gives us the suitable prime for the Berlekamp-Zassenhaus algorithm.

```
theory Suitable-Prime
imports
    Poly-Mod
    Finite-Field-Record-Based
    HOL-Types-To-Sets.Types-To-Sets
    Poly-Mod-Finite-Field-Record-Based
    Polynomial-Record-Based
    Square-Free-Int-To-Square-Free-GFp
begin
lemma square-free-separable-GFp: fixes f :: 'a :: prime-card mod-ring poly
    assumes card: CARD('a) > degree f
    and sf: square-free f
    shows separable f
proof (rule ccontr)
    assume }\neg\mathrm{ separable f
    with square-free-separable-main[OF sf]
    obtain gk where *: f=g*k degree g}\not=0\mathrm{ and g0: pderiv g=0 by auto
    from assms have f:f\not=0 unfolding square-free-def by auto
    have degree f}=\mathrm{ degree }g+\mathrm{ degree k using f unfolding *(1)
    by (subst degree-mult-eq, auto)
    with card have card: degree g < CARD('a) by auto
    from *(2) obtain n where deg: degree g=Suc n by (cases degree g, auto)
    from *(2) have cg: coeff g (degree g)}\not=0\mathrm{ by auto
    from g0 have coeff (pderiv g) n=0 by auto
    from this[unfolded coeff-pderiv, folded deg] cg
    have of-nat (degree g) = (0 :: 'a mod-ring) by auto
    from of-nat-0-mod-ring-dvd[OF this] have CARD('a) dvd degree g.
    with card show False by (simp add: deg nat-dvd-not-less)
qed
```

lemma square-free-iff-separable-GFp: assumes degree $f<C A R D\left({ }^{\prime} a\right)$
shows square-free (f :: 'a :: prime-card mod-ring poly) $=$ separable f
using separable-imp-square-free[of f] square-free-separable-GFp $[O F$ assms $]$ by auto
definition separable-impl-main $::$ int \Rightarrow ' i arith-ops-record \Rightarrow int poly \Rightarrow bool where
separable-impl-main p ff-ops $f=$ separable-i ff-ops (of-int-poly-i ff-ops (poly-mod.Mp pf))
lemma (in prime-field-gen) separable-impl:
shows separable-impl-main pff-ops $f \Longrightarrow$ square-free-m f
$p>$ degree- $m \mathrm{f} \Longrightarrow p>$ separable-bound $f \Longrightarrow$ square-free f
\Longrightarrow separable-impl-main p ff-ops f unfolding separable-impl-main-def
proof -
define F where $F:(F::$ 'a mod-ring poly $)=o f-i n t-p o l y(M p f)$
let ? $f^{\prime}=o f-$ int-poly-iff-ops ($M p f$)
define $f^{\prime \prime}$ where $f^{\prime \prime} \equiv$ of-int-poly ($M p f$) :: ' a mod-ring poly
have rel-f[transfer-rule]: poly-rel ?f' $f^{\prime \prime}$
by (rule poly-rel-of-int-poly[OF refl], simp add: $f^{\prime \prime}$-def)
have separable-i ff-ops ? $f^{\prime} \longleftrightarrow g c d f^{\prime \prime}\left(\right.$ pderiv $\left.f^{\prime \prime}\right)=1$
unfolding separable-i-def by transfer-prover
also have $\ldots \longleftrightarrow$ coprime $f^{\prime \prime}\left(\right.$ pderiv $\left.f^{\prime \prime}\right)$
by (auto simp add: gcd-eq-1-imp-coprime)
finally have id: separable-i ff-ops ? $f^{\prime} \longleftrightarrow$ separable $f^{\prime \prime}$ unfolding separable-def coprime-iff-coprime .
have Mprel [transfer-rule]: MP-Rel (Mpf) F unfolding F MP-Rel-def
by (simp add: Mp-f-representative)
have square-free $f^{\prime \prime}=$ square-free F unfolding $f^{\prime \prime}$-def F by simp
also have $\ldots=$ square-free- $m(M p f)$
by (transfer, simp)
also have $\ldots=$ square-free- $m f$ by simp
finally have $i d 2$: square-free $f^{\prime \prime}=$ square-free-m f.
from separable-imp-square-free[of $\left.f^{\prime \prime}\right]$
show separable-i ff-ops ? $f^{\prime} \Longrightarrow$ square-free-m f unfolding id id2 by auto
let ? $m=$ map-poly (of-int $::$ int $\Rightarrow{ }^{\prime}$ a mod-ring)
let ?f $=$? $m f$
assume $p>$ degree- $m f$ and bnd: $p>$ separable-bound f and sf: square-free f
with rel-fun $D[O F$ degree-MP-Rel Mprel, folded $p]$
have $p>$ degree F by simp
hence $C A R D\left({ }^{\prime} a\right)>$ degree $f^{\prime \prime}$ unfolding $f^{\prime \prime}$-def F p by simp
from square-free-iff-separable-GFp[OF this]
have separable-i ff-ops ? $f^{\prime}=$ square-free $f^{\prime \prime}$ unfolding id id2 by simp
also have $\ldots=$ square-free F unfolding $f^{\prime \prime}$-def F by simp
also have $F=$?f unfolding F
by (rule poly-eqI, (subst coeff-map-poly, force)+, unfold Mp-coeff, auto simp: M-def, transfer, auto simp: p)
also have square-free ?f using square-free-int-imp-square-free-mod-ring[where

```
'a='a,OF sf] bnd m by auto
    finally
    show separable-i ff-ops ?f'.
qed
```

context poly-mod-prime begin
lemmas separable-impl-integer $=$ prime-field-gen.separable-impl
[OF prime-field.prime-field-finite-field-ops-integer, unfolded prime-field-def mod-ring-locale-def, unfolded poly-mod-type-simps, internalize-sort 'a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise,cancel-type-definition, OF non-empty]
lemmas separable-impl-uint32 $=$ prime-field-gen.separable-impl
[OF prime-field.prime-field-finite-field-ops32, unfolded prime-field-def mod-ring-locale-def, unfolded poly-mod-type-simps, internalize-sort ' a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise,cancel-type-definition, OF non-empty]
lemmas separable-impl-uint64 $=$ prime-field-gen.separable-impl
[OF prime-field.prime-field-finite-field-ops64, unfolded prime-field-def mod-ring-locale-def, unfolded poly-mod-type-simps, internalize-sort ' a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise,cancel-type-definition, OF non-empty]
end
definition separable-impl :: int \Rightarrow int poly \Rightarrow bool where
separable-impl $p=($
if $p \leq 65535$
then separable-impl-main p (finite-field-ops32 (uint32-of-int p))
else if $p \leq 4294967295$
then separable-impl-main p (finite-field-ops64 (uint64-of-int p))
else separable-impl-main p (finite-field-ops-integer (integer-of-int $p)$))
lemma square-free-mod-imp-square-free: assumes
p : prime p and sf: poly-mod.square-free-m $p f$
and cop: coprime (lead-coeff f) p
shows square-free f
proof -
interpret poly-mod p.
from $s f[$ unfolded square-free-m-def] have $f 0: M p f \neq 0$ and $n d v d: ~ \bigwedge g$. degree- m $g>0 \Longrightarrow \neg(g * g) d v d m f$
by auto
from $f 0$ have $f f 0: f \neq 0$ by auto
show square-free f unfolding square-free-def
proof (intro conjI[OF ff0] allI impI notI)
fix g
assume deg: degree $g>0$ and $d v d: g * g d v d f$
then obtain h where $f: f=g * g * h$ unfolding dvd-def by auto from arg-cong[OF this, of $M p]$ have $(g * g) d v d m f$ unfolding $d v d m$-def by auto

```
    with ndvd[of g] have deg0: degree-m g=0 by auto
    hence g0:M (lead-coeff g) = 0 unfolding Mp-def using deg
        by (metis M-def deg0 p poly-mod.degree-m-eq prime-gt-1-int neq0-conv)
    from p have p0: p}\not=0\mathrm{ by auto
    from arg-cong[OF f, of lead-coeff] have lead-coeff f = lead-coeff g* lead-coeff
g* lead-coeff h
    by (auto simp: lead-coeff-mult)
    hence lead-coeff g dvd lead-coeff f by auto
    with cop have cop: coprime (lead-coeff g) p
        by (auto elim: coprime-imp-coprime intro: dvd-trans)
    with p0 have coprime (lead-coeff g mod p) p by simp
    also have lead-coeff g mod p=0
        using M-def g0 by simp
    finally show False using p
        unfolding prime-int-iff
        by (simp add: prime-int-iff)
    qed
qed
lemma(in poly-mod-prime) separable-impl:
    shows separable-impl pf\Longrightarrow square-free-m f
        nat p> degree-m }f\Longrightarrow\mathrm{ nat }p>\mathrm{ separable-bound f }\Longrightarrow\mathrm{ square-free }
        \Longrightarrow ~ s e p a r a b l e - i m p l ~ p f
    using
    separable-impl-integer[of f]
    separable-impl-uint32[of f]
    separable-impl-uint64[of f]
    unfolding separable-impl-def by (auto split: if-splits)
lemma coprime-lead-coeff-large-prime: assumes prime: prime (p :: int)
    and large: p>abs (lead-coeff f)
    and f:f\not=0
    shows coprime (lead-coeff f) p
proof -
    {
        fix lc
        assume 0<lc lc < p
        then have \neg p dvd lc
        by (simp add: zdvd-not-zless)
    with <prime p> have coprime p lc
        by (auto intro: prime-imp-coprime)
    then have coprime lc p
        by (simp add: ac-simps)
    } note main = this
    define lc where lc = lead-coeff f
    from f have lc0:lc\not=0 unfolding lc-def by auto
    from large have large: p> abs lc unfolding lc-def by auto
    have coprime lc p
    proof (cases lc > 0)
```

```
    case True
    from large have p>lc by auto
    from main[OF True this] show ?thesis .
    next
    case False
    let ?mlc = - lc
    from large False lc0 have ?mlc > 0 p > ?mlc by auto
    from main[OF this] show ?thesis by simp
    qed
    thus ?thesis unfolding lc-def by auto
qed
lemma prime-for-berlekamp-zassenhaus-exists: assumes sf: square-free f
    shows \exists}\mathrm{ p. prime p}\wedge(coprime (lead-coeff f) p\wedge separable-impl pf
proof (rule ccontr)
    from assms have f0:f}\not=0\mathrm{ unfolding square-free-def by auto
    define }n\mathrm{ where }n=\operatorname{max}(\operatorname{max}(\mathrm{ abs (lead-coeff f)) (degree f)) (separable-bound
f)
    assume contr: \neg?thesis
    {
        fix p :: int
        assume prime: prime p and n: p>n
        then interpret poly-mod-prime p by unfold-locales
        from n have large: p>abs (lead-coeff f) nat p> degree f nat p> separa-
ble-bound f
            unfolding n-def by auto
        from coprime-lead-coeff-large-prime[OF prime large(1) f0]
        have cop: coprime (lead-coeff f) p by auto
        with prime contr have nsf: ᄀ separable-impl p f by auto
        from large(2) have nat p> degree-m f using degree-m-le[of f] by auto
        from separable-impl(2)[OF this large(3) sf] nsf have False by auto
    }
    hence no-large-prime: \ p. prime p\Longrightarrowp>n\Longrightarrow False by auto
    from bigger-prime[of nat n] obtain p where *: prime p p> nat n by auto
    define q where q\equiv int p
    from * have prime q q> n unfolding q-def by auto
    from no-large-prime[OF this]
    show False.
qed
definition next-primes :: nat => nat }\times\mathrm{ nat list where
    next-primes }n=(\mathrm{ if }n=0\mathrm{ then next-candidates 0 else
        let (m,ps)=next-candidates n in (m,filter prime ps))
partial-function (tailrec) find-prime-main ::
    (nat }=>\mathrm{ bool ) }=>\mathrm{ nat }=>\mathrm{ nat list }=>\mathrm{ nat where
    [code]: find-prime-main f np ps=(case ps of [] =>
        let ( }n\mp@subsup{p}{}{\prime},p\mp@subsup{s}{}{\prime})=next-primes n
            in find-prime-main f np' ps'
```

$$
\mid(p \# p s) \Rightarrow \text { if } f p \text { then } p \text { else find-prime-main } f n p p s)
$$

definition find-prime $::($ nat \Rightarrow bool $) \Rightarrow$ nat where
find-prime $f=$ find-prime-main $f 0[]$
lemma next-primes: assumes res: next-primes $n=(m, p s)$
and n : candidate-invariant n
shows candidate-invariant m sorted ps distinct ps $n<m$
set $p s=\{i$. prime $i \wedge n \leq i \wedge i<m\}$
proof -
have candidate-invariant $m \wedge$ sorted ps \wedge distinct $p s \wedge n<m \wedge$
set $p s=\{i$. prime $i \wedge n \leq i \wedge i<m\}$
proof (cases $n=0$)
case True
with res[unfolded next-primes-def] have nc: next-candidates $0=(m, p s)$ by auto
from this[unfolded next-candidates-def] have $p s: p s=$ primes-1000 and $m: m$ $=1001$ by auto
have $p s$: set $p s=\{i$. prime $i \wedge n \leq i \wedge i<m\}$ unfolding m True $p s$
by (auto simp: primes-1000)
with next-candidates[OF nc n[unfolded True]] True
show ?thesis by simp

next

case False
with res[unfolded next-primes-def Let-def] obtain $q s$ where $n c$: next-candidates $n=(m, q s)$
and ps: $p s=$ filter prime $q s$ by (cases next-candidates n, auto)
have sorted $q s \Longrightarrow$ sorted $p s$ unfolding $p s$ using sorted-filter[of id qs prime] by auto
with next-candidates[OF nc n] show ?thesis unfolding $p s$ by auto
qed
thus candidate-invariant m sorted $p s$ distinct $p s n<m$
set $p s=\{i$. prime $i \wedge n \leq i \wedge i<m\}$ by auto
qed
lemma find-prime: assumes \exists n. prime $n \wedge f n$
shows prime (find-prime $f) \wedge f($ find-prime $f)$
proof -
from assms obtain n where fn: prime $n f n$ by auto
\{
fix $i p s m$
assume candidate-invariant i
and $n \in$ set $p s \vee n \geq i$
and $m=($ Suc $n-i$, length $p s)$
and $\bigwedge p . p \in$ set $p s \Longrightarrow$ prime p
hence prime (find-prime-main fips) $\wedge f($ find-prime-main $f i p s)$
proof (induct m arbitrary: i ps rule: wf-induct[OF wf-measures[of [fst, snd]]]) case (1 mi ps)

```
    note IH=1(1)[rule-format]
    note can=1(2)
    note n=1(3)
    note m=1(4)
    note ps=1(5)
    note simps [simp] = find-prime-main.simps[of fi ps]
    show ?case
    proof (cases ps)
    case Nil
    with n have i-n: i\leqn by auto
    obtain j qs where np: next-primes i}=(j,qs) by forc
    note j = next-primes[OF np can]
    from j(4) i-n m have meas: ((Suc n - j, length qs),m) \in measures [fst,
snd] by auto
    have n: n f set qs \vee j\leqn unfolding j(5) using i-n fn by auto
    show ?thesis unfolding simps using IH[OF meas j(1) n refl] j(5) by (simp
add: Nil np)
    next
        case (Cons p qs)
        show ?thesis
        proof (cases f p)
            case True
            thus ?thesis unfolding simps using ps unfolding Cons by simp
    next
        case False
                have m:((Suc n - i, length qs),m) \in measures [fst, snd] using m
unfolding Cons by simp
            have n: n \in set qs \vee i\leqn using False n fn by (auto simp:Cons)
            from IH[OF m can n refl ps]
            show ?thesis unfolding simps using Cons False by simp
            qed
        qed
    qed
    } note main = this
    have candidate-invariant 0 by (simp add: candidate-invariant-def)
    from main[OF this - refl, of Nil] show ?thesis unfolding find-prime-def by
auto
qed
definition suitable-prime-bz :: int poly }=>\mathrm{ int where
    suitable-prime-bz f \equiv let lc = lead-coeff f in int (find-prime ( }\lambda\mathrm{ n . let p = int n
in
    coprime lc p}\wedge separable-impl pf)
lemma suitable-prime-bz: assumes sf: square-free f and p:p=suitable-prime-bz
f
    shows prime p coprime (lead-coeff f) p poly-mod.square-free-m p f
proof -
    let ?lc = lead-coeff f
```

```
from prime-for-berlekamp-zassenhaus-exists[OF sf, unfolded Let-def]
obtain P where *: prime P ^ coprime ?lc P ^ separable-impl P f
    by auto
hence prime (nat P) using prime-int-nat-transfer by blast
with * have \exists p. prime p ^ coprime ?lc (int p)^ separable-impl pf
    by (intro exI [of - nat P]) (auto dest: prime-gt-0-int)
from find-prime[OF this]
have prime: prime p and cop: coprime ?lc p and sf: separable-impl p f
    unfolding p suitable-prime-bz-def Let-def by auto
then interpret poly-mod-prime p by unfold-locales
from prime cop separable-impl(1)[OF sf]
show prime p coprime ?lc p square-free-m f by auto
qed
definition square-free-heuristic :: int poly }=>\mathrm{ int option where
    square-free-heuristic f}=(\mathrm{ let lc = lead-coeff f in
```



```
lemma find-Some-D: find fxs=Some y \Longrightarrowy\in set xs }\wedgefy\mathrm{ unfolding find-Some-iff
by auto
lemma square-free-heuristic: assumes square-free-heuristic f = Some p
    shows coprime (lead-coeff f) p\wedge separable-impl pf ^ prime p
proof -
    from find-Some-D[OF assms[unfolded square-free-heuristic-def Let-def]]
    show ?thesis by auto
qed
end
```


10.3 Maximal Degree during Reconstruction

We define a function which computes an upper bound on the degree of a factor for which we have to reconstruct the integer values of the coefficients. This degree will determine how large the second parameter of the factorbound will be.

In essence, if the Berlekamp-factorization will produce n factors with degrees d_{1}, \ldots, d_{n}, then our bound will be the sum of the $\frac{n}{2}$ largest degrees. The reason is that we will combine at most $\frac{n}{2}$ factors before reconstruction.

Soundness of the bound is proven, as well as a monotonicity property.

```
theory Degree-Bound
    imports Containers.Set-Impl
    HOL-Library.Multiset
    Polynomial-Interpolation.Missing-Polynomial
    Efficient-Mergesort.Efficient-Sort
begin
```

definition max-factor-degree $::$ nat list \Rightarrow nat where

```
max-factor-degree degs = (let
    ds = sort degs
    in sum-list (drop (length ds div 2) ds))
```

definition degree-bound where degree-bound vs $=$ max-factor-degree (map degree vs)
lemma insort-middle: sort (xs @ $x \# y s)=$ insort $x(\operatorname{sort}(x s @ y s))$
by (metis append.assoc sort-append-Cons-swap sort-snoc)
lemma sum-list-insort[simp]:
sum-list (insort ($d::$ ' a :: \{comm-monoid-add,linorder $\}$) xs) $=d+$ sum-list xs proof (induct xs)
case (Cons x xs)
thus ?case by (cases $d \leq x$, auto simp: ac-simps)
qed simp
lemma half-largest-elements-mono: sum-list (drop (length ds div 2) (sort ds)) \leq sum-list (drop (Suc (length ds) div 2) (insort (d :: nat) (sort ds)))
proof -
define n where $n=$ length ds div 2
define m where $m=$ Suc (length ds) div 2
define $x s$ where $x s=$ sort $d s$
have $x s$: sorted $x s$ unfolding $x s$-def by auto
have $n m: m \in\{n, S u c n\}$ unfolding n-def m-def by auto
show ?thesis unfolding n-def[symmetric] m-def[symmetric] $x s$-def[symmetric]
using $n m x s$
proof (induct xs arbitrary: $n m d$)
case (Cons x xs $n m d$)
show ?case
proof (cases n)
case 0
with $\operatorname{Cons}(2)$ have $m: m=0 \vee m=1$ by auto
show ?thesis
proof (cases $d \leq x$)
case True
hence ins: insort $d(x \# x s)=d \# x \# x s$ by auto
show ?thesis unfolding ins 0 using True m by auto
next
case False
hence ins: insort $d(x \# x s)=x \#$ insort $d x s$ by auto
show ?thesis unfolding ins 0 using False m by auto
qed
next
case (Suc nn)
with Cons(2) obtain $m m$ where $m: m=S u c m m$ and $m m: m m \in\{n n$,
Suc nn\} by auto
from Cons(3) have sort: sorted $x s$ by (simp)
note $I H=\operatorname{Cons}(1)[$ OF mm]

```
        show ?thesis
        proof (cases d \leqx)
            case True
            with Cons(3) have ins: insort d (x # xs) = d # insort x xs
                by (cases xs,auto)
            show ?thesis unfolding ins Suc m using IH[OF sort] by auto
        next
            case False
            hence ins: insort d (x#xs)=x# insort d xs by auto
            show ?thesis unfolding ins Suc m using IH[OF sort] Cons(3) by auto
            qed
    qed
    qed auto
qed
lemma max-factor-degree-mono:
    max-factor-degree (map degree (fold remove1 ws vs)) \leq max-factor-degree (map
degree vs)
    unfolding max-factor-degree-def Let-def length-sort length-map
proof (induct ws arbitrary: vs)
    case (Cons w ws vs)
    show ?case
    proof (cases w\in set vs)
        case False
        hence remove1 w vs=vs by (rule remove1-idem)
        thus ?thesis using Cons[of vs] by auto
    next
        case True
        then obtain bef aft where vs:vs=bef @ w # aft and rem1:remove1 w vs
= bef @ aft
            by (metis remove1.simps(2) remove1-append split-list-first)
        let ?exp = \ ws vs. sum-list (drop (length (fold remove1 ws vs) div 2)
            (sort (map degree (fold remove1 ws vs))))
    let ?bnd = \lambda vs. sum-list (drop (length vs div 2) (sort (map degree vs)))
    let ?bd = \lambda vs. sum-list (drop (length vs div 2) (sort vs))
    define ba where ba=bef @ aft
    define ds where ds=map degree ba
    define d}\mathrm{ where d = degree w
    have ? exp (w#ws)vs = ? exp ws (bef @ aft) by (auto simp: rem1)
    also have ... \leq?bnd ba unfolding ba-def by (rule Cons)
    also have ... = ?bd ds unfolding ds-def by simp
    also have ... \leq sum-list (drop (Suc (length ds) div 2) (insort d (sort ds)))
        by (rule half-largest-elements-mono)
        also have ... = ?bnd vs unfolding vs ds-def d-def by (simp add: ba-def
insort-middle)
    finally show ? exp (w# ws) vs \leq?bnd vs by simp
    qed
qed auto
```

lemma mset-sub-decompose: mset $d s \subseteq \#$ mset $b s+a s \Longrightarrow$ length $d s<$ length $b s$ $\Longrightarrow \exists \mathrm{b1} \mathrm{~b} \mathrm{b2}$.
$b s=b 1 @ b \# b 2 \wedge m s e t d s \subseteq \# m s e t(b 1 @ b 2)+a s$
proof (induct ds arbitrary: bs as)
case Nil
hence $b s=[] @ h d b s \# t l$ bs by auto
thus?case by fastforce

next

case (Cons d ds bs as)
have $d \in \#$ mset $(d \# d s)$ by auto
with Cons(2) have $d: d \in \#$ mset $b s+$ as by (rule mset-subset-eqD)
hence $d \in$ set bs $\vee d \in \#$ as by auto
thus? case
proof
assume $d \in$ set bs
from this[unfolded in-set-conv-decomp] obtain b1 b2 where bs: bs = b1 @ d \# b2 by auto
from $\operatorname{Cons}(2) \operatorname{Cons}(3)$
have mset $d s \subseteq \#$ mset (b1 @ b2) + as length $d s<l e n g t h ~(b 1 @ b 2)$ by (auto simp: ac-simps bs)
from Cons(1)[OF this] obtain b1'b b2' where split: b1 @ b2 = b1' @ b\# $b 2^{\prime}$
and sub: mset $d s \subseteq \#$ mset $\left(b 1^{\prime} @ b 2^{\prime}\right)+$ as by auto
from split[unfolded append-eq-append-conv2]
obtain $u s$ where $b 1=b 1^{\prime} @ u s \wedge u s @ b 2=b \# b 2^{\prime} \vee b 1 @ u s=b 1^{\prime} \wedge b 2$ $=u s @ b \# b 2^{\prime} .$.
thus ?thesis
proof
assume b1 @us=b1'^b2=us@b\#b2'
hence *: b1 @us=b1'b2=us @b\#b2' by auto
hence $b s: b s=(b 1$ @ $d \# u s) @ b \# b 2^{\prime}$ unfolding bs by auto
show ?thesis
by (intro exI conjI, rule bs, insert * sub, auto simp: ac-simps)
next
assume $b 1=b 1^{\prime} @ u s \wedge u s @ b 2=b \# b 2^{\prime}$
hence *: b1=b1' @usus @ b2 = b \# b2' by auto
show ?thesis
proof (cases us)
case Nil
with $*$ have $*: b 1=b 1^{\prime} b 2=b \# b 2^{\prime}$ by auto
hence $b s: b s=\left(b 1^{\prime} @[d]\right) @ b \# b 2^{\prime}$ unfolding bs by simp show ?thesis by (intro exI conjI, rule bs, insert * sub, auto simp: ac-simps)
next case (Cons u vs)
with $*$ have $*: b 1=b 1^{\prime} @ b \#$ vs vs @ b2 = b2 ${ }^{\prime}$ by auto hence $b s: b s=b 1^{\prime} @ b \#(v s$ @ $d \# b 2)$ unfolding bs by auto show ?thesis
by (intro exI conjI, rule bs, insert $*$ sub, auto simp: ac-simps)

```
            qed
    qed
    next
    define as'' where as' =as - {#d#}
    assume d\in# as
    hence as': as = {#d#} + as' unfolding as'-def by auto
    from Cons(2)[unfolded as'] Cons(3) have mset ds\subseteq# mset bs + as' length ds
< length bs
            by (auto simp: ac-simps)
            from Cons(1)[OF this] obtain b1 b b2 where bs: bs = b1 @ b # b2 and
                sub: mset ds\subseteq# mset (b1@ @2) + as' by auto
    show ?thesis
        by (intro exI conjI, rule bs, insert sub, auto simp: as' ac-simps)
    qed
qed
```

lemma max-factor-degree-aux: fixes es :: nat list
assumes sub: mset $d s \subseteq \#$ mset es
and len: length $d s+$ length $d s \leq$ length es and sort: sorted es
shows sum-list $d s \leq$ sum-list (drop (length es div 2) es)
proof -
define bef where bef = take (length es div 2) es
define aft where aft $=$ drop (length es div 2) es
have es: es = bef @ aft unfolding bef-def aft-def by auto
from len have len: length $d s \leq$ length bef length $d s \leq$ length aft unfolding
bef-def aft-def
by auto
from sub have sub: mset $d s \subseteq \#$ mset bef + mset aft unfolding es by auto
from sort have sort: sorted (bef @ aft) unfolding es .
show ?thesis unfolding aft-def[symmetric] using sub len sort
proof (induct ds arbitrary: bef aft)
case (Cons d ds bef aft)
have $d \in \#$ mset $(d \# d s)$ by auto
with Cons(2) have $d \in \#$ mset bef + mset aft by (rule mset-subset-eqD)
hence $d \in$ set bef $\vee d \in$ set aft by auto
thus ?case
proof
assume $d \in$ set aft
from this[unfolded in-set-conv-decomp] obtain a1 a2 where aft: aft =a1 @
d \# a2 by auto
from Cons(4) have len-a: length ds length (a1 @ a2) unfolding aft by
auto
from Cons(2)[unfolded aft] Cons(3)

auto
from mset-sub-decompose[OF this]
obtain b b1 b2
where bef: bef $=$ b1 @ b \# b2 and sub: mset $d s \subseteq \#(m s e t(b 1 @ b 2)+$
mset (a1@a2)) by auto
from Cons(3) have len-b: length $d s \leq$ length (b1 @ b2) unfolding bef by auto
from Cons(5)[unfolded bef aft] have sort: sorted ((b1 @ b2) @ (a1 @ a2)) unfolding sorted-append by auto
note $I H=\operatorname{Cons}(1)[O F$ sub len-b len-a sort $]$
show ?thesis using $I H$ unfolding aft by simp
next
assume $d \in$ set bef
from this[unfolded in-set-conv-decomp] obtain b1 b2 where bef: bef =b1 @ d \# b2 by auto
from Cons(3) have len-b: length $d s \leq$ length (b1 @ b2) unfolding bef by auto
from $\operatorname{Cons(2)[unfolded~bef]~Cons(4)~}$
 (auto simp: ac-simps)
from mset-sub-decompose[OF this]
obtain a a1 a2
where aft: aft $=a 1$ @ $a \# a 2$ and sub: mset $d s \subseteq \#(\operatorname{mset}(b 1 @ b 2)+$ mset (a1 @ a2))
by (auto simp: ac-simps)
from Cons(4) have len-a: length $d s \leq$ length (a1 @ a2) unfolding aft by auto
from Cons(5)[unfolded bef aft] have sort: sorted ((b1 @ b2) @ (a1 @a2)) and $a d: d \leq a$
unfolding sorted-append by auto
note $I H=\operatorname{Cons}(1)[$ OF sub len-b len-a sort $]$
show ?thesis using IH ad unfolding aft by simp
qed
qed auto
qed
lemma max-factor-degree: assumes sub: mset ws \subseteq \# mset vs
and len: length ws + length $w s \leq$ length $v s$
shows degree (prod-list ws) \leq max-factor-degree (map degree vs)
proof -
define $d s$ where $d s \equiv$ map degree ws
define es where es \equiv sort (map degree vs)
from sub len have sub: mset $d s \subseteq \#$ mset es and len: length $d s+$ length $d s \leq$ length es
and es: sorted es
unfolding $d s$-def es-def
by (auto simp: image-mset-subseteq-mono)
have degree (prod-list ws) \leq sum-list (map degree ws) by (rule degree-prod-list-le)
also have $\ldots \leq$ max-factor-degree (map degree vs)
unfolding max-factor-degree-def Let-def ds-def[symmetric] es-def[symmetric]
using sub len es by (rule max-factor-degree-aux)
finally show ?thesis.
qed
lemma degree-bound: assumes sub: mset ws $\subseteq \#$ mset vs
and len: length $w s+$ length $w s \leq$ length $v s$
shows degree (prod-list ws) \leq degree-bound vs
using max-factor-degree[OF sub len] unfolding degree-bound-def by auto
end

10.4 Mahler Measure

This part contains a definition of the Mahler measure, it contains Landau's inequality and the Graeffe-transformation. We also assemble a heuristic to approximate the Mahler's measure.

```
theory Mahler-Measure
imports
    Sqrt-Babylonian.Sqrt-Babylonian
    Poly-Mod-Finite-Field-Record-Based
    Polynomial-Factorization.Fundamental-Theorem-Algebra-Factorized
    Polynomial-Factorization.Missing-Multiset
begin
context comm-monoid-list begin
    lemma induct-gen-abs:
        assumes \ar.a\inset lst \LongrightarrowP(f(ha)r)(f(ga)r)
                    \xyz.Pxy\LongrightarrowPyz\LongrightarrowPxz
                    P(F(map g lst))(F (map g lst))
        shows P(F (map h lst)) (F (map g lst))
    using assms proof(induct lst arbitrary:P)
        case (Cons a as P)
        have inl:a\inset (a#as) by auto
        let ?uf = \lambdav w.P(f(ga)v)(f(ga)w)
        have p-suc:?uf (F (map g as)) (F (map gas))
            using Cons.prems(3) by auto
        { fix r aa assume aa\in set as hence ins:aa \in set (a#as) by auto
            have P(f(ga)(f(haa)r)) (f(ga)(f(g aa)r))
                    using Cons.prems(1)[of aa fr (g a),OF ins]
            by (auto simp: assoc commute left-commute)
        } note }h=thi
        from Cons.hyps(1)[of ?uf, OF h Cons.prems(2)[simplified] p-suc]
        have e1:P (f (ga) (F (maphas))) (f (ga) (F (map g as))) by simp
        have e2:P(f (ha) (F (maphas))) (f (ga) (F (maphas)))
            using Cons.prems(1)[OF inl] by blast
        from Cons(3)[OF e2 e1] show ?case by auto next
        qed auto
end
lemma prod-induct-gen:
    assumes \ar.f(ha*r :: 'a :: {comm-monoid-mult})=f(ga*r)
    shows }f(\prodv\leftarrowlst.hv)=f(\prodv\leftarrowlst.gv
```

```
proof - let ?P x y = fx=fy
    show ?thesis using comm-monoid-mult-class.prod-list.induct-gen-abs[of - ?P,OF
assms] by auto
qed
abbreviation complex-of-int::int }=>\mathrm{ complex where
    complex-of-int \equivof-int
definition l2norm-list :: int list }=>\mathrm{ int where
    l2norm-list lst = \sqrt (sum-list (map (\lambdaa.a*a)lst)) \rfloor
abbreviation l2norm :: int poly }=>\mathrm{ int where
    l2norm p = l2norm-list (coeffs p)
abbreviation norm2 p \equiv\suma\leftarrowcoeffs p. (cmod a)}\mp@subsup{)}{}{2
abbreviation l2norm-complex where
    l2norm-complex p = sqrt (norm2 p)
abbreviation height :: int poly }=>\mathrm{ int where
    height p = max-list (map (nat \circabs) (coeffs p))
definition complex-roots-complex where
    complex-roots-complex (p::complex poly) = (SOME as. smult (coeff p (degree p))
(\proda\leftarrowas. [:-a, 1:]) = p^ length as = degree p)
lemma complex-roots:
    smult (lead-coeff p) (\proda\leftarrowcomplex-roots-complex p. [:-a, 1:]) = p
    length (complex-roots-complex p) = degree p
    using someI-ex[OF fundamental-theorem-algebra-factorized]
    unfolding complex-roots-complex-def by simp-all
lemma complex-roots-c [simp]:
    complex-roots-complex [:c:] = []
    using complex-roots(2) [of [:c:]] by simp
declare complex-roots(2)[simp]
lemma complex-roots-1 [simp]:
    complex-roots-complex 1 = []
    using complex-roots-c [of 1] by (simp add: pCons-one)
lemma linear-term-irreducible }[\mathrm{ [simp]: irreducible e}[[:a,1:
    by (rule linear-irreducible }\mp@subsup{}{d}{},\operatorname{simp}
definition complex-roots-int where
    complex-roots-int (p::int poly) = complex-roots-complex (map-poly of-int p)
lemma complex-roots-int:
```

```
    smult (lead-coeff p) (\proda\leftarrowcomplex-roots-int p. [:- a, 1:]) = map-poly of-int p
    length (complex-roots-int p)= degree p
proof -
    show smult (lead-coeff p) (\proda\leftarrowcomplex-roots-int p. [:- a, 1:]) = map-poly of-int
p
    length (complex-roots-int p) = degree p
    using complex-roots[of map-poly of-int p] unfolding complex-roots-int-def by
auto
qed
```

The measure for polynomials, after K. Mahler
definition mahler-measure-poly where
mahler-measure-poly $p=$ cmod (lead-coeff $p) *\left(\prod a \leftarrow\right.$ complex-roots-complex p.
$(\max 1(c \bmod a)))$
definition mahler-measure where
mahler-measure $p=$ mahler-measure-poly (map-poly complex-of-int p)
definition mahler-measure-monic where mahler-measure-monic $p=\left(\prod a \leftarrow\right.$ complex-roots-complex $\left.p .(\max 1(\operatorname{cmod} a))\right)$
lemma mahler-measure-poly-via-monic :
mahler-measure-poly $p=$ cmod (lead-coeff p) * mahler-measure-monic p unfolding mahler-measure-poly-def mahler-measure-monic-def by simp
lemma smult-inj[simp]: assumes $\left(a::^{\prime} a:: i d o m\right) \neq 0$ shows inj (smult a)
proof-
interpret map-poly-inj-zero-hom (*) a using assms by (unfold-locales, auto)
show ?thesis unfolding smult-as-map-poly by (rule inj-f)
qed
definition reconstruct-poly::' $a:: i d o m \Rightarrow$ ' a list \Rightarrow ' a poly where reconstruct-poly c roots $=$ smult $c\left(\prod a \leftarrow\right.$ roots. $\left.[:-a, 1:]\right)$
lemma reconstruct-is-original-poly:
reconstruct-poly (lead-coeff p) (complex-roots-complex $p)=p$
using complex-roots(1) by (simp add: reconstruct-poly-def)
lemma reconstruct-with-type-conversion:
smult (lead-coeff (map-poly of-int f)) (prod-list (map (λ a. [:- a, 1:]) (complex-roots-int f)))
$=$ map-poly of-int f
unfolding complex-roots-int-def complex-roots(1) by simp
lemma reconstruct-prod:
shows reconstruct-poly ($a::$ complex) as * reconstruct-poly b bs $=$ reconstruct-poly $(a * b)($ as @ bs)
unfolding reconstruct-poly-def by auto

```
lemma linear-term-inj[simplified,simp]: inj ( \(\lambda a\). [:- \(a, 1:: ' a:: i d o m:])\)
    unfolding inj-on-def by simp
lemma reconstruct-poly-monic-defines-mset:
    assumes \(\left(\prod a \leftarrow a s\right.\). [:- \(\left.\left.a, 1:\right]\right)=\left(\prod a \leftarrow b s\right.\). [:-a, \(1::{ }^{\prime} a::\) field:] \()\)
    shows mset as \(=\) mset \(b s\)
proof -
    let ?as \(=\operatorname{mset}(\operatorname{map}(\lambda a .[:-a, 1:]) a s)\)
    let \(? b s=\operatorname{mset}(\operatorname{map}(\lambda a .[:-a, 1:]) b s)\)
    have eq-smult:prod-mset ? as = prod-mset ?bs using assms by (metis prod-mset-prod-list)
    have irr: \(\bigwedge\) as::'a list. set-mset (mset (map ( \(\lambda\) a. \([:-a, 1:])\) as \()\) ) \(\subseteq\{\) q. irreducible
\(q \wedge\) monic \(q\}\)
            by (auto intro!: linear-term-irreducible \([\) [of --::'a, simplified \(]\) )
    from monic-factorization-unique-mset[OF eq-smult irr irr]
    show ?thesis apply (subst inj-eq[OF multiset.inj-map,symmetric]) by auto
qed
lemma reconstruct-poly-defines-mset-of-argument:
    assumes \((a:: ' a:: f i e l d) \neq 0\)
            reconstruct-poly a as \(=\) reconstruct-poly a bs
    shows mset as \(=\) mset bs
proof -
    have eq-smult:smult \(a\left(\prod a \leftarrow a s .[:-a, 1:]\right)=\) smult \(a\left(\prod a \leftarrow b s .[:-a, 1:]\right)\)
        using assms(2) by (auto simp:reconstruct-poly-def)
    from reconstruct-poly-monic-defines-mset[OF Fun.injD[OF smult-inj[OF assms(1)]
eq-smult]]
    show ?thesis by simp
qed
lemma complex-roots-complex-prod [simp]:
    assumes \(f \neq 0 g \neq 0\)
    shows mset (complex-roots-complex \((f * g)\) )
        \(=\operatorname{mset}(\) complex-roots-complex \(f)+\operatorname{mset}(\) complex-roots-complex g)
proof -
    let ? \(p=f * g\)
    let ?lc \(v=(\) lead-coeff ( \(v:\) : complex poly))
    have nonzero-prod:?lc ?p \(\neq 0\) using assms by auto
    from reconstruct-prod [of ?lc f complex-roots-complex \(f\) ?lc \(g\) complex-roots-complex
g]
    have reconstruct-poly (?lc ?p) (complex-roots-complex ?p)
            \(=\) reconstruct-poly (?lc ?p) (complex-roots-complex \(f\) @ complex-roots-complex
g)
    unfolding lead-coeff-mult[symmetric] reconstruct-is-original-poly by auto
    from reconstruct-poly-defines-mset-of-argument[OF nonzero-prod this]
    show ?thesis by simp
qed
lemma mset-mult-add:
    assumes mset ( \(a::^{\prime} a::\) field list \()=\) mset \(b+\) mset \(c\)
```

```
    shows prod-list a = prod-list b* prod-list c
    unfolding prod-mset-prod-list[symmetric]
    using prod-mset-Un[of mset b mset c,unfolded assms[symmetric]].
lemma mset-mult-add-2:
    assumes mset a m mset b+mset c
    shows prod-list (map i a::'b::field list) = prod-list (map i b) * prod-list (map i c)
proof -
    have r:mset (map i a) = mset (map i b) + mset (map i c) using assms
    by (metis map-append mset-append mset-map)
    show ?thesis using mset-mult-add[OF r] by auto
qed
lemma measure-mono-eq-prod:
    assumes f\not=0 g\not=0
    shows mahler-measure-monic (f*g) = mahler-measure-monic f * mahler-measure-monic
g
    unfolding mahler-measure-monic-def
    using mset-mult-add-2[OF complex-roots-complex-prod[OF assms],of \lambda a. max 1
(cmod a)] by simp
lemma mahler-measure-poly- \(0[\) simp \(]\) : mahler-measure-poly \(0=0\) unfolding mahler-measure-poly-via-monic by auto
lemma measure-eq-prod:
mahler-measure-poly \((f * g)=\) mahler-measure-poly \(f *\) mahler-measure-poly \(g\) proof -
consider \(f=0|g=0|\) (both) \(f \neq 0 g \neq 0\) by auto
thus ? thesis proof (cases)
case both show ?thesis unfolding mahler-measure-poly-via-monic norm-mult
lead-coeff-mult
by (auto simp: measure-mono-eq-prod[OF both])
qed (simp-all)
qed
lemma prod-cmod[simp]:
\(\operatorname{cmod}\left(\prod a \leftarrow l s t . f a\right)=\left(\prod a \leftarrow l s t . \operatorname{cmod}(f a)\right)\)
by(induct lst,auto simp:real-normed-div-algebra-class.norm-mult)
lemma lead-coeff-of-prod[simp]:
lead-coeff \(\left(\prod a \leftarrow l s t . f a::^{\prime} a:: i d o m\right.\) poly \()=\left(\prod a \leftarrow\right.\) lst. lead-coeff \(\left.(f a)\right)\)
by (induct lst,auto simp:lead-coeff-mult)
lemma ineq-about-squares:assumes \(x \leq(y::\) real \()\) shows \(x \leq c \uparrow 2+y\) using assms by (simp add: add.commute add-increasing2)
lemma first-coeff-le-tail: \((\operatorname{cmod}(\text { lead-coeff } g))^{\wedge} \mathcal{Z} \leq\left(\sum a \leftarrow \operatorname{coeffs} g .(\operatorname{cmod} a) \wedge 2\right)\) proof (induct \(g\) )
case ( \(p\) Cons a \(p\) )
```

```
    thus ?case proof(cases p=0) case False
    show ?thesis using pCons unfolding lead-coeff-pCons(1)[OF False]
        by(cases a = 0,simp-all add:ineq-about-squares)
    qed simp
qed simp
lemma square-prod-cmod \([\operatorname{simp}]\) :
\((\operatorname{cmod}(a * b))^{\wedge} 2=\operatorname{cmod} a{ }^{\wedge} 2 * \operatorname{cmod} b{ }^{\wedge} 2\)
by (simp add: norm-mult power-mult-distrib)
lemma sum-coeffs-smult-cmod:
\(\left(\sum a \leftarrow\right.\) coeffs \((\) smult \(\left.v p) .(\operatorname{cmod} a)^{\wedge} 2\right)=(\operatorname{cmod} v)^{\wedge} 2 *\left(\sum a \leftarrow\right.\) coeffs \(p .(\operatorname{cmod}\)
a) 2)
(is ? \(l=? r\) )
proof -
have ?l \(=\left(\sum a \leftarrow\right.\) coeffs \(\left.p .(\operatorname{cmod} v)^{\wedge} 2 *(\operatorname{cmod} a)^{\wedge} 2\right) \mathbf{b y}(\) cases \(v=0 ;\) induct p,auto)
thus ?thesis by (auto simp:sum-list-const-mult)
qed
abbreviation linH \(a \equiv\) if (cmod \(a>1)\) then \([:-1\), cnj \(a:]\) else \([:-a, 1:]\)
lemma coeffs-cong-1[simp]: cCons a \(v=c\) Cons \(b v \longleftrightarrow a=b\) unfolding \(c\) Cons-def by auto
lemma strip-while-singleton[simp]:
strip-while \(((=) 0)[v * a]=c\) Cons \((v * a)[]\) unfolding \(c\) Cons-def strip-while-def
by auto
lemma coeffs-times-linterm:
shows coeffs ( \(p\) Cons 0 (smult a \(p\) ) smult \(b\) p) strip-while (HOL.eq ( \(0::^{\prime} a::\{\) comm-ring- 1\(\left.\}\right)\) )
\((\operatorname{map}(\lambda(c, d) . b * d+c * a)(z i p(0 \#\) coeffs p) (coeffs p @ [0]))) proof -
\(\{\) fix \(v\)
have coeffs (smult bp+pCons \((a * v)(\) smult \(a p))=\) strip-while (HOL.eq 0) (map \((\lambda(c, d) . b * d+c * a)(z i p([v]\) @ coeffs \(p)(\) coeffs \(p\) @ \([0])))\)
proof (induct \(p\) arbitrary:v) case ( \(p\) Cons pa ps) thus ?case by auto qed auto \}
from this[of 0] show ?thesis by (simp add: add.commute)
qed
lemma filter-distr-rev[simp]:
shows filter \(f(\) rev lst \()=\operatorname{rev}(\) filter flst \()\)
by(induct lst;auto)
lemma strip-while-filter:
shows filter \(((\neq) 0)(\) strip-while \(((=) 0)(\) lst::'a::zero list \())=\) filter \(((\neq) 0)\) lst
proof - \{fix lst::'a list
have filter \(((\neq) 0)\) (dropWhile \(((=) 0)\) lst \()=\) filter \(((\neq) 0)\) lst by (induct
```

```
lst;auto)
    hence (filter ((\not=)0)(strip-while ((=) 0) (rev lst))) = filter ((\not=)0) (rev lst)
    unfolding strip-while-def by(simp)}
    from this[of rev lst] show ?thesis by simp
qed
lemma sum-stripwhile[simp]:
    assumes f0=0
    shows (\suma\leftarrowstrip-while ((=) 0) lst.f a)=(\suma\leftarrowlst.fa)
proof -
    {fix lst
            have (\suma\leftarrowfilter ((\not=) 0) lst.f a)=(\suma\leftarrowlst.f a) by(induct lst,auto
simp:assms)}
    note f=this
    have sum-list (map f (filter ((\not=) 0) (strip-while ((=) 0) lst)))
        =sum-list (map f (filter ((\not=) 0) lst))
    using strip-while-filter[of lst] by(simp)
    thus ?thesis unfolding f
qed
lemma complex-split : Complex a b=c\longleftrightarrow(a=Re c^b=Im c)
    using complex-surj by auto
lemma norm-times-const:(\sumy\leftarrowlst. (cmod (a*y))}\mp@subsup{)}{}{2})=(cmod a) 2 * (\sumy\leftarrowlst
(cmod y)}\mp@subsup{)}{}{2
by(induct lst,auto simp:ring-distribs)
fun bisumTail where
    bisumTail f(Cons a (Cons b bs)) = f a b + bisumTail f(Cons b bs)|
    bisumTail f(Cons a Nil)=fal|
    bisumTail f Nil = f 1 0
fun bisum where
    bisum f(Cons a as) = f 0a + bisumTail f (Cons a as)|
    bisum f Nil =f 00
lemma bisumTail-is-map-zip:
    (\sumx\leftarrowzip (v#l1) (l1 @ [0]). f x ) = bisumTail (\lambdax y.f (x,y)) (v#l1)
by(induct l1 arbitrary:v,auto)
lemma bisum-is-map-zip:
    (\sumx\leftarrowzip (0 # l1) (l1 @ [0]).fx)=bisum (\lambdaxy.f (x,y)) l1
using bisumTail-is-map-zip[of f hd l1 tl l1] by(cases l1,auto)
lemma map-zip-is-bisum:
    bisum fl1 = (\sum(x,y)\leftarrowzip (0 # l1) (l1 @ [0]). f x y)
using bisum-is-map-zip[of \lambda(x,y).f x y] by auto
lemma bisum-outside :
    (bisum (\lambda x y.f1 x - f2 x y + f3 y) lst :: 'a :: field)
    = sum-list (map f1 lst) + f1 0 - bisum f2 lst + sum-list (map f3 lst) + f3 0
```

proof(cases lst)
case (Cons a lst) show ?thesis unfolding map-zip-is-bisum Cons by (induct lst arbitrary:a,auto)
qed auto
lemma Landau-lemma:
$\left(\sum a \leftarrow\right.$ coeffs $\left(\prod a \leftarrow\right.$ lst. [:- $\left.\left.\left.a, 1:\right]\right) .(\operatorname{cmod} a)^{2}\right)=\left(\sum a \leftarrow\right.$ coeffs $\left(\prod a \leftarrow\right.$ lst. linH a). $\left.(\text { cmod } a)^{2}\right)$
(is norm2 ?l = norm2 ?r)
proof -
have $a: \bigwedge a .(\operatorname{cmod} a)^{2}=\operatorname{Re}(a * c n j a)$ using complex-norm-square
unfolding complex-split complex-of-real-def by simp
have $b: \bigwedge x$ a $y .(\operatorname{cmod}(x-a * y))^{\wedge} 2$

$$
=(\operatorname{cmod} x)^{2}-\operatorname{Re}(a * y * \operatorname{cnj} x+x * \operatorname{cnj}(a * y))+(\operatorname{cmod}(a *
$$

y)) ${ }^{-2}$
unfolding left-diff-distrib right-diff-distrib a complex-cnj-diff by simp
have $c: \bigwedge y a x .(\operatorname{cmod}(\operatorname{cnj} a * x-y))^{2}$

$$
=(\operatorname{cmod}(a * x))^{2}-\operatorname{Re}(a * y * \operatorname{cnj} x+x * \operatorname{cnj}(a * y))+(\operatorname{cmod}
$$

y) ${ }^{2}$
unfolding left-diff-distrib right-diff-distrib a complex-cnj-diff
by (simp add: mult.assoc mult.left-commute)
\{ fix $f 1$ a
have norm2 $([:-a, 1:] * f 1)=\operatorname{bisum}(\lambda x y . \operatorname{cmod}(x-a * y)$ ^2) (coeffs f1)
by (simp add: bisum-is-map-zip[of - coeffs f1] coeffs-times-linterm[of 1 -$-a$, simplified])
also have $\ldots=$ norm2 $f 1+$ cmod $a^{\wedge} 2 *$ norm2 $f 1$
$-\operatorname{bisum}(\lambda x y . \operatorname{Re}(a * y * \operatorname{cnj} x+x * \operatorname{cnj}(a * y)))(c o e f f s f 1)$
unfolding b bisum-outside norm-times-const by simp
also have $\ldots=\operatorname{bisum}\left(\lambda x y \cdot \operatorname{cmod}(\operatorname{cnj} a * x-y)^{\wedge}\right.$ 2) (coeffs f1)
unfolding c bisum-outside norm-times-const by auto
also have $\ldots=$ norm2 ($[:-1$, cnj $a:] * f 1$)
using coeffs-times-linterm[of cnj a--1]
by (simp add: bisum-is-map-zip[of - coeffs f1] mult.commute)
finally have norm2 $([:-a, 1:] * f 1)=\ldots$.
hence $h: \bigwedge a$ f1. norm2 $([:-a, 1:] * f 1)=$ norm2 $(\operatorname{linH} a * f 1)$ by auto
show ?thesis by(rule prod-induct-gen[OF h])
qed
lemma Landau-inequality:
mahler-measure-poly $f \leq 12$ norm-complex f
proof -
let ?f $=$ reconstruct-poly (lead-coeff $f)($ complex-roots-complex $f)$
let ?roots $=($ complex-roots-complex $f)$
let ? $g=\prod a \leftarrow$? roots. linH a
have $\max : \bigwedge a . \operatorname{cmod}($ if $1<\operatorname{cmod} a$ then $c n j a \operatorname{else} 1)=\max 1(\operatorname{cmod} a)$
by simp
have $\bigwedge a .1<\operatorname{cmod} a \Longrightarrow a \neq 0$ by auto
hence $\bigwedge a$. lead-coeff $(\operatorname{linH} a)=($ if $(\operatorname{cmod} a>1)$ then cnj a else 1) by (auto

```
simp:if-split)
```

 hence lead-coeff-g:cmod (lead-coeff? \(g)=\left(\prod a \leftarrow\right.\) ?roots. max \(\left.1(\operatorname{cmod} a)\right)\) by \((\) auto
 simp:max)
have norm2 $f=\left(\sum a \leftarrow\right.$ coeffs ? $\left.f .(\operatorname{cmod} a)^{\wedge} 2\right)$ unfolding reconstruct-is-original-poly.. also have $\ldots=\operatorname{cmod}($ lead-coeff $f) \wedge 2 *\left(\sum a \leftarrow\right.$ coeffs $\left(\prod a \leftarrow\right.$?roots. [:-a, 1:]). $\left.(\text { cmod } a)^{2}\right)$
unfolding reconstruct-poly-def using sum-coeffs-smult-cmod.
finally have fg-norm:norm2 $f=\operatorname{cmod}($ lead-coeff $f){ }^{\wedge} 2 *\left(\sum a \leftarrow\right.$ coeffs $? g$. (cmod a) ^2) unfolding Landau-lemma by auto
have $(\text { cmod }(\text { lead-coeff ?g }))^{\wedge} \mathcal{Z} \leq\left(\sum a \leftarrow\right.$ coeffs ? $\left.g .(\operatorname{cmod} a)^{\wedge} 2\right)$ using first-coeff-le-tail by blast
from ordered-comm-semiring-class.comm-mult-left-mono[OF this]
have $($ cmod $($ lead-coeff $f) *$ cmod (lead-coeff ?g) $) \wedge_{2}^{2} \leq\left(\sum a \leftarrow\right.$ coeffs f. (cmod
a) 2)
unfolding fg-norm by (simp add:power-mult-distrib)
hence $\operatorname{cmod}($ lead-coeff $f) *\left(\prod a \leftarrow\right.$?roots. $\left.\max 1(\operatorname{cmod} a)\right) \leq \operatorname{sqrt}($ norm2 $f)$ using NthRoot.real-le-rsqrt lead-coeff-g by auto
thus mahler-measure-poly $f \leq \operatorname{sqrt}$ (norm2 f)
using reconstruct-with-type-conversion[unfolded complex-roots-int-def]
by (simp add: mahler-measure-poly-via-monic mahler-measure-monic-def com-
plex-roots-int-def)
qed
lemma prod-list-ge1:
assumes Ball $(\operatorname{set} x)(\lambda(a::$ real $) . a \geq 1)$
shows prod-list $x \geq 1$
using assms proof $($ induct x)
case (Cons a as)
have $\forall a \in$ set as. $1 \leq a 1 \leq a$ using Cons(2) by auto
thus ?case using Cons.hyps mult-mono' by fastforce
qed auto
lemma mahler-measure-monic-ge-1: mahler-measure-monic $p \geq 1$
unfolding mahler-measure-monic-def by(rule prod-list-ge1,simp)
lemma mahler-measure-monic-ge-0: mahler-measure-monic $p \geq 0$
using mahler-measure-monic-ge-1 le-numeral-extra(1) order-trans by blast
lemma mahler-measure-ge-0: $0 \leq$ mahler-measure h unfolding mahler-measure-def mahler-measure-poly-via-monic
by (simp add: mahler-measure-monic-ge-0)
lemma mahler-measure-constant $[$ simp $]$: mahler-measure-poly $[: c:]=\operatorname{cmod} c$ proof -
have main: complex-roots-complex $[: c:]=[]$ unfolding complex-roots-complex-def by (rule some-equality, auto)
show ?thesis unfolding mahler-measure-poly-def main by auto qed
lemma mahler-measure-factor[simplified,simp]: mahler-measure-poly $[:-a, 1:]=$ $\max 1($ cmod a)
proof -
have main: complex-roots-complex $[:-a, 1:]=[a]$ unfolding complex-roots-complex-def proof (rule some-equality, auto, goal-cases)
case (1 as)
thus ?case by (cases as, auto)
qed
show ?thesis unfolding mahler-measure-poly-def main by auto
qed
lemma mahler-measure-poly-explicit: mahler-measure-poly (smult c (Пa৮as. [:$a, 1:])$)
$=c \bmod c *\left(\prod a \leftarrow a s .(\max 1(c \bmod a))\right)$
proof (cases $c=0$)
case True
thus ?thesis by auto
next
case False note $c=$ this
show ?thesis
proof (induct as)
case (Cons a as)
have mahler-measure-poly (smult $c\left(\prod a \leftarrow a \#\right.$ as. $\left.\left.[:-a, 1:]\right)\right)$
$=$ mahler-measure-poly (smult $\left.c\left(\prod a \leftarrow a s .[:-a, 1:]\right) *[:-a, 1:]\right)$
by (rule arg-cong[of - mahler-measure-poly], unfold list.simps prod-list.Cons
mult-smult-left, simp)
also have $\ldots=$ mahler-measure-poly $\left(\right.$ smult $\left.c\left(\prod a \leftarrow a s .[:-a, 1:]\right)\right) *$ mahler-measure-poly ([:- a, 1:])
(is - = ?l * ?r) by (rule measure-eq-prod)
also have ?l $=\operatorname{cmod} c *\left(\prod a \leftarrow a s . \max 1(\operatorname{cmod} a)\right)$ unfolding Cons by simp
also have ? $r=\max 1(\operatorname{cmod} a)$ by simp
finally show? case by simp
next
case Nil
show ?case by simp
qed
qed
lemma mahler-measure-poly-ge-1:
assumes $h \neq 0$
shows $(1::$ real $) \leq$ mahler-measure h
proof -
have rc: \mid real-of-int $i|=o f-i n t| i \mid$ for i by simp
from assms have cmod (lead-coeff (map-poly complex-of-int h)) >0 by simp
hence cmod (lead-coeff (map-poly complex-of-int h)) ≥ 1
$\mathbf{b y}$ (cases lead-coeff $h=0$, auto simp del: leading-coeff-0-iff)

```
    from mult-mono[OF this mahler-measure-monic-ge-1 norm-ge-zero]
    show ?thesis unfolding mahler-measure-def mahler-measure-poly-via-monic
    by auto
qed
lemma mahler-measure-dvd: assumes \(f \neq 0\) and \(h d v d f\)
    shows mahler-measure \(h \leq\) mahler-measure \(f\)
proof -
    from assms obtain \(g\) where \(f: f=g * h\) unfolding dvd-def by auto
    from \(f\) assms have \(g 0: g \neq 0\) by auto
    hence mg: mahler-measure \(g \geq 1\) by (rule mahler-measure-poly-ge-1)
    have \(1 *\) mahler-measure \(h \leq\) mahler-measure \(f\)
    unfolding mahler-measure-def \(f\) measure-eq-prod
                of-int-poly-hom.hom-mult unfolding mahler-measure-def[symmetric]
    by (rule mult-right-mono[OF mg mahler-measure-ge-0])
    thus ?thesis by simp
qed
definition graeffe-poly \(::\) ' \(a \Rightarrow^{\prime} a\) :: comm-ring-1 list \(\Rightarrow\) nat \(\Rightarrow\) 'a poly where
    graeffe-poly \(c\) as \(m=\operatorname{smult}(c \wedge(2 ` m))\left(\prod a \leftarrow a s .\left[:-\left(a^{\wedge}(2 \wedge m)\right), 1:\right]\right)\)
```

```
context
```

context
fixes f :: complex poly and c as
fixes f :: complex poly and c as
assumes f:f=smult c(\proda\leftarrowas. [:-a,1:])
assumes f:f=smult c(\proda\leftarrowas. [:-a,1:])
begin
begin
lemma mahler-graeffe: mahler-measure-poly (graeffe-poly c as m)= (mahler-measure-poly
lemma mahler-graeffe: mahler-measure-poly (graeffe-poly c as m)= (mahler-measure-poly
f)^(2^m)
f)^(2^m)
proof -
proof -
have graeffe: graeffe-poly c as m= smult (c^2^ m) (\a\leftarrow(map (\lambdaa.a^2 ^
have graeffe: graeffe-poly c as m= smult (c^2^ m) (\a\leftarrow(map (\lambdaa.a^2 ^
m) as). [:- a, 1:])
m) as). [:- a, 1:])
unfolding graeffe-poly-def
unfolding graeffe-poly-def
by (rule arg-cong[of - - smult (c ^2^ m)], induct as, auto)
by (rule arg-cong[of - - smult (c ^2^ m)], induct as, auto)
{
{
fix n :: nat
fix n :: nat
assume n: n>0
assume n: n>0
have id: max 1 (cmod a^n) = max 1 (cmod a)^ n for a
have id: max 1 (cmod a^n) = max 1 (cmod a)^ n for a
proof (cases cmod a\leq1)
proof (cases cmod a\leq1)
case True
case True
hence cmod a` n \leq 1 by (simp add: power-le-one) hence cmod a` n \leq 1 by (simp add: power-le-one)
with True show ?thesis by (simp add: max-def)
with True show ?thesis by (simp add: max-def)
qed (auto simp: max-def)

```
            qed (auto simp: max-def)
```



```
            by (induct as, auto simp: field-simps n id)
```

 by (induct as, auto simp: field-simps n id)
 }
 }
 thus ?thesis unfolding f mahler-measure-poly-explicit graeffe
 thus ?thesis unfolding f mahler-measure-poly-explicit graeffe
 by (auto simp: o-def field-simps norm-power)
 by (auto simp: o-def field-simps norm-power)
 qed

```
qed
```


end

fun drop-half :: 'a list $\Rightarrow{ }^{\prime}$ 'a list where

$$
\text { drop-half }(x \# y \# y s)=x \# \text { drop-half ys }
$$

\mid drop-half $x s=x s$
fun alternate $::$ ' a list \Rightarrow 'a list \times 'a list where
alternate $(x \# y \# y s)=($ case alternate ys of $($ evn, od $) \Rightarrow(x \#$ evn, $y \#$ od $))$
\mid alternate $x s=(x s,[])$
definition poly-square-subst :: ' a :: comm-ring-1 poly \Rightarrow ' a poly where poly-square-subst $f=$ poly-of-list $($ drop-half $($ coeffs $f))$
definition poly-even-odd :: ' a :: comm-ring-1 poly \Rightarrow 'a poly \times ' a poly where poly-even-odd $f=$ (case alternate (coeffs f) of (evn,od) \Rightarrow (poly-of-list evn, poly-of-list od))
lemma poly-square-subst-coeff: coeff (poly-square-subst f) $i=\operatorname{coeff} f(2 * i)$ proof -
have id: coeff $f(2 * i)=$ coeff $($ Poly $($ coeffs $f))(2 * i)$ by simp
obtain $x s$ where $x s$: coeffs $f=x s$ by auto
show ?thesis unfolding poly-square-subst-def poly-of-list-def coeff-Poly-eq id xs proof (induct xs arbitrary: i rule: drop-half.induct) case (1 x y ys i) thus ?case by (cases i, auto)
next case (2-2 $x i$) thus ?case by (cases i, auto)
qed auto
qed
lemma poly-even-odd-coeff: assumes poly-even-odd $f=(e v, o d)$
shows coeff ev $i=\operatorname{coeff} f(2 * i)$ coeff od $i=\operatorname{coeff} f(2 * i+1)$
proof -
have id: $\wedge i$. coeff $f i=$ coeff (Poly (coeffs f)) i by simp
obtain $x s$ where $x s$: coeffs $f=x s$ by auto
from assms[unfolded poly-even-odd-def]
have ev-od: ev $=$ Poly $(f s t($ alternate $x s))$ od $=$ Poly $($ snd (alternate xs $))$
by (auto simp: xs split: prod.splits)
have coeff ev $i=$ coeff $f(2 * i) \wedge$ coeff od $i=\operatorname{coeff} f(2 * i+1)$
unfolding poly-of-list-def coeff-Poly-eq id xs ev-od
proof (induct xs arbitrary: i rule: alternate.induct)
case (1 x y ys i) thus ?case by (cases alternate ys; cases i, auto)
next
case (2-2 x i) thus ?case by (cases i, auto)
qed auto
thus coeff ev $i=\operatorname{coeff} f(2 * i)$ coeff od $i=\operatorname{coeff} f(2 * i+1)$ by auto qed
lemma poly-square-subst: poly-square-subst $\left(f \circ_{p}(\right.$ monom 12$\left.)\right)=f$
by (rule poly-eqI, unfold poly-square-subst-coeff, subst coeff-pcompose-x-pow-n, auto)
lemma poly-even-odd: assumes poly-even-odd $f=(g, h)$
shows $f=g \circ_{p}$ monom $12+$ monom $11 *\left(h \circ_{p}\right.$ monom 1 2)
proof -
note $i d=$ poly-even-odd-coeff[OF assms]
show ?thesis
proof (rule poly-eqI, unfold coeff-add coeff-monom-mult)
fix n :: nat
obtain $m i$ where $m i: m=n$ div $2 i=n \bmod 2$ by auto
have $n m i: n=2 * m+i i<20<(2::$ nat) $1<(2::$ nat $)$ unfolding $m i$ by auto
have (2 :: nat) $\neq 0$ by auto
show coeff $f n=$ coeff $\left(g \circ_{p}\right.$ monom 12$) n+\left(\right.$ if $1 \leq n$ then $1 *$ coeff $\left(h \circ_{p}\right.$ monom 1 2) ($n-1$) else 0)
proof (cases $i=1$)
case True
hence $i d 1: 2 * m+i-1=2 * m+0$ by auto
show ?thesis unfolding nmi id id1 coeff-pcompose-monom[OF nmi(2)] co-eff-pcompose-monom[OF nmi(3)]
unfolding True by auto
next
case False
with nmi have $i 0: i=0$ by auto
show ?thesis
proof (cases m)
case (Suc k)
hence $i d 1: 2 * m+i-1=2 * k+1$ using $i 0$ by auto
show ?thesis unfolding nmi id coeff-pcompose-monom[OF nmi(2)]
coeff-pcompose-monom[OF nmi(4)] id1 unfolding Suc iO by auto
next
case 0
show ?thesis unfolding nmi id coeff-pcompose-monom[OF nmi(2)] unfolding $i 00$ by auto
qed
qed
qed
qed
context
fixes f :: 'a :: idom poly
begin
lemma graeffe-0: $f=$ smult $c\left(\prod a \leftarrow a s .[:-a, 1:]\right) \Longrightarrow$ graeffe-poly c as $0=f$ unfolding graeffe-poly-def by auto
lemma graeffe-recursion: assumes graeffe-poly c as $m=f$
shows graeffe-poly cas (Suc m) $=$ smult $\left((-1)^{\wedge}(\right.$ degree $\left.f)\right)$ (poly-square-subst $(f$

```
* foop[:0,-1:]))
proof -
    let ?g = graeffe-poly c as m
    have f*f }\mp@subsup{\circ}{p}{}[:0,-1:]=?g*?g\mp@subsup{\circ}{p}{}[:0,-1:] unfolding assms by sim
    also have ?g }\mp@subsup{\circ}{p}{}[:0,-1:]= smult ((-1)^ length as) (smult (c^2^ m) (\proda\leftarrowas
[:a ^2 ^ m, 1:]))
        unfolding graeffe-poly-def
    proof (induct as)
        case (Cons a as)
        have ?case = ((smult (c^2^ m) ([:- (a^2^ m), 1:] 的 [:0, - 1:] * (\proda\leftarrowas.
[:- (a^2^ m), 1:]) }\mp@subsup{\circ}{p}{}[:0,-1:])
        smult (-1 * (- 1) ^ length as)
            (smult (c^2^m) ([: a^2^ m, 1:] * (\proda\leftarrowas.[:a^2^ m, 1:]))))}
            unfolding list.simps prod-list.Cons pcompose-smult pcompose-mult by simp
        also have smult (c^2^m) ([:- (a^2^ m), 1:] 的 [:0, - 1:] * (\proda\leftarrowas.
[:- (a`2^ m), 1:]) }\mp@subsup{\circ}{p}{}[:0, - 1:]
            = smult (c^2^m) ((\proda\leftarrowas.[:- (a^2^ m), 1:]) }\mp@subsup{\circ}{p}{}[:0,-1:])*[:-(
~2 ^m), 1:] }\mp@subsup{\circ}{p}{}[:0,-1:
            unfolding mult-smult-left by simp
            also have smult (c^2^ m) ((\proda\leftarrowas. [:- (a^2^ m), 1:]) }\mp@subsup{\circ}{p}{}[:0,-1:])
                smult ((- 1) ^ length as) (smult (c^2^m) (\a\leftarrowas. [:a^2^ m, 1:]))
                unfolding pcompose-smult[symmetric] Cons ..
        also have [:- (a^2^m), 1:] }\mp@subsup{\circ}{p}{}[:0,-1:]=\operatorname{smult (-1)[:a^2^m, 1:] by
simp
    finally have id: ?case = (smult ((-1) ^ length as) (smult (c^2^ m) (\proda\leftarrowas.
[:a^2^ m, 1:])) * smult (- 1) [:a ^2^ m, 1:] =
            smult (- 1 * (- 1) ^ length as) (smult (c ^ 2 ^ m) ([:a ^2 ^ m, 1:] *
(\proda\leftarrowas.[: a^2^ m, 1:])))) by simp
    obtain cd where id':}(\a\leftarrowas.[:a^2^m,1:])=c[:a^2^ m, 1:]=d by
auto
    show ?case unfolding id unfolding id' by (simp add: ac-simps)
    qed simp
    finally have f*f op}[:0,-1:]
        smult ((- 1) ^length as * (c^2^ m* c^2^m))
        ((\proda\leftarrowas.[:- (a^2^ m), 1:])*(\proda\leftarrowas.[:a^2^ m, 1:]))
        unfolding graeffe-poly-def by (simp add: ac-simps)
    also have c^2 ^ m * c^ 2^ m= c^ 2^(Suc m) by (simp add: semir-
ing-normalization-rules(36))
    also have (\proda\leftarrowas. [:- (a^2^m), 1:]) * (Пa\leftarrowas. [:a^2^m, 1:]) =
        (\proda\leftarrowas.[:- (a^2^
    proof (induct as)
    case (Cons a as)
    have id:(monom 1 2 :: 'a poly) = [:0,0,1:]
        by (metis monom-altdef pCons-0-as-mult power2-eq-square smult-1-left)
    have (\proda\leftarrowa# as.[:- (a ^2^ m), 1:]) * (\proda\leftarrowa# as.[:a^2^ m, 1:])
        =([:- (a^2^m), 1:]*[:a^2^ m, 1:])*((\proda\leftarrowas. [:- (a^2^ \ m),
1:])* (\a\leftarrowas.[:a^2^ m, 1:]))
            (is - = ?a * ?b)
            unfolding list.simps prod-list.Cons by (simp only: ac-simps)
```

also have $? b=\left(\prod a \leftarrow a s .\left[:-\left(a^{\wedge}{ }^{2}\right.\right.\right.$-Suc $\left.\left.\left.m\right), 1:\right]\right) \circ_{p}$ monom 12 unfolding Cons by simp
also have $? a=\left[:-\left(a^{\wedge} \mathcal{Z}^{\wedge}(\right.\right.$ Suc m) $\left.), 0,1:\right]$ by (simp add: semir-ing-normalization-rules(36))
also have $\ldots=\left[:-\left(a^{\wedge} 2^{\wedge}(\right.\right.$ Suc $\left.\left.m)\right), 1:\right] \circ_{p}$ monom 12 by (simp add: id)
also have $\left[:-\left(a^{\wedge} 2^{\wedge}(\right.\right.$ Suc $\left.\left.m)\right), 1:\right] \circ_{p}$ monom $12 *\left(\prod a \leftarrow a s .\left[:-\left(a{ }^{\wedge} 2^{\wedge}\right.\right.\right.$ Suc m), 1:]) \circ_{p} monom $12=$
$\left(\prod a \leftarrow a \#\right.$ as. $\left.\left[:-\left(a^{\wedge} 2^{\wedge} S u c m\right), 1:\right]\right) \circ_{p}$ monom 12 unfolding pcom-pose-mult[symmetric] by simp
finally show? case.
qed simp
finally have $f * f \circ_{p}[: 0,-1:]=($ smult $((-1)$ へ length as) (graeffe-poly c as (Suc m)) \circ_{p} monom 1 2)
unfolding graeffe-poly-def pcompose-smult by simp
from arg-cong[OF this, of $\lambda \mathrm{f}$. smult $\left((-1)^{\wedge}\right.$ length as) (poly-square-subst $\left.f\right)$, unfolded poly-square-subst]
have graeffe-poly c as (Suc $m)=$ smult $((-1)$ ^ length as) (poly-square-subst $(f$ * $\left.\left.f \circ_{p}[: 0,-1:]\right)\right)$ by simp
also have $\ldots=\operatorname{smult}\left((-1)^{\wedge}\right.$ degree $\left.f\right)\left(\right.$ poly-square-subst $\left.\left(f * f \circ_{p}[: 0,-1:]\right)\right)$
proof (cases $f=0$)
case True
thus ?thesis by (auto simp: poly-square-subst-def)
next
case False
with assms have c0:c$=0$ unfolding graeffe-poly-def by auto
from arg-cong[OF assms, of degree]
have degree $f=\operatorname{degree}\left(\right.$ smult $(c$ へ2^ $\left.m)\left(\prod a \leftarrow a s .[:-(a \wedge 2 \wedge m), 1:]\right)\right)$
unfolding graeffe-poly-def by auto
also have $\ldots=$ degree $(\Pi a \leftarrow a s .[:-(a \wedge 2 \wedge m), 1:])$ unfolding de-gree-smult-eq using c0 by auto
also have $\ldots=$ length as unfolding degree-linear-factors by simp
finally show? ?thesis by simp
qed
finally show?thesis .
qed
end
definition graeffe-one-step :: ' $a \Rightarrow$ ' $a::$ idom poly \Rightarrow ' a poly where graeffe-one-step c $f=$ smult c (poly-square-subst $\left.\left(f * f \circ_{p}[: 0,-1:]\right)\right)$
lemma graeffe-one-step-code[code]: fixes $c::$ ' a :: idom shows graeffe-one-step c $f=($ case poly-even-odd f of (g, h)
\Rightarrow smult $c(g * g$-monom $11 * h * h))$

proof -

obtain $g h$ where eo: poly-even-odd $f=(g, h)$ by force
from poly-even-odd[OF eo] have fgh: $f=g \circ_{p}$ monom $12+$ monom $11 * h \circ_{p}$ monom 12 by auto
have ma: monom (1 ::'a) 2 $=[: 0,0,1:]$ monom $\left(1::{ }^{\prime} a\right) 1=[: 0,1:]$
unfolding coeffs-eq-iff coeffs-monom
by (auto simp add: numeral-2-eq-2)
show ?thesis unfolding eo split graeffe-one-step-def
proof (rule arg-cong[of - -smult c])
let ? $g=g \circ_{p}$ monom 12
let $? h=h \circ_{p}$ monom 12
let $? x=\operatorname{monom}\left(1::{ }^{\prime} a\right) 1$
have 2: $2=\operatorname{Suc}(S u c 0)$ by simp
have $f * f \circ_{p}[: 0,-1:]=\left(g \circ_{p}\right.$ monom $12+$ monom $11 * h \circ_{p}$ monom 1
2) *
$\left(g \circ_{p}\right.$ monom $12+$ monom $11 * h \circ_{p}$ monom 12$) \circ_{p}[: 0,-1:]$ unfolding fgh by simp
also have $\left(g \circ_{p}\right.$ monom $12+$ monom $11 * h \circ_{p}$ monom 12) $\circ_{p}[: 0,-1:]$
$=g \circ_{p}\left(\right.$ monom $\left.12 \circ_{p}[: 0,-1:]\right)+$ monom $11 \circ_{p}[: 0,-1:] * h \circ_{p}($ monom $\left.12 \circ_{p}[: 0,-1:]\right)$
unfolding pcompose-add pcompose-mult pcompose-assoc by simp
also have monom (1::'a) $2 \circ_{p}[: 0,-1:]=$ monom 12 unfolding $m 2$ by auto
also have ? $x \circ_{p}[: 0,-1:]=[: 0,-1:]$ unfolding $m 2$ by auto
also have $[: 0,-1:] * h \circ_{p}$ monom $12=(-? x) * ? h$ unfolding $m 2$ by simp
also have $(? g+? x * ? h) *(? g+(-? x) * ? h)=(? g * ? g-(? x * ? x) * ? h$ * ? h)
by (auto simp: field-simps)
also have $? x * ? x=? x \circ_{p}$ monom 12 unfolding mult-monom by (insert m2, simp add: 2)
also have $(? g * ? g-\ldots * ? h * ? h)=(g * g-? x * h * h) \circ_{p}$ monom 12
unfolding pcompose-diff pcompose-mult by auto
finally have poly-square-subst $\left(f * f \circ_{p}[: 0,-1:]\right)$
$=$ poly-square-subst $\left((g * g-? x * h * h) \circ_{p}\right.$ monom 1 2) by simp
also have $\ldots=g * g-? x * h * h$ unfolding poly-square-subst by simp
finally show poly-square-subst $\left(f * f \circ_{p}[: 0,-1:]\right)=g * g-? x * h * h$. qed
qed
fun graeffe-poly-impl-main :: ' $a \Rightarrow{ }^{\prime} a$:: idom poly \Rightarrow nat $\Rightarrow{ }^{\prime} a$ poly where graeffe-poly-impl-main cf $0=f$
| graeffe-poly-impl-main cf(Suc m) = graeffe-one-step c (graeffe-poly-impl-main $c f m$)
lemma graeffe-poly-impl-main: assumes $f=$ smult $c\left(\prod a \leftarrow a s .[:-a, 1:]\right)$ shows graeffe-poly-impl-main $((-1)$ degree f) f $m=$ graeffe-poly c as m
proof (induct m)
case 0
show ?case using graeffe-0[OF assms] by simp
next
case (Suc m)
have [simp]: degree (graeffe-poly cas m) $=$ degree f unfolding graeffe-poly-def degree-smult-eq assms
degree-linear-factors by auto

```
    from arg-cong[OF Suc, of degree]
    show ?case unfolding graeffe-recursion[OF Suc[symmetric]]
    by (simp add: graeffe-one-step-def)
qed
definition graeffe-poly-impl :: 'a :: idom poly }=>\mathrm{ nat }=>\mathrm{ ' 'a poly where
    graeffe-poly-impl f}=\mathrm{ graeffe-poly-impl-main ((-1)^(degree f)) f
lemma graeffe-poly-impl: assumes }f=\mathrm{ smult c (Пaזas. [:- a, 1:])
    shows graeffe-poly-impl f m= graeffe-poly c as m
    using graeffe-poly-impl-main[OF assms] unfolding graeffe-poly-impl-def .
lemma drop-half-map: drop-half (map f xs) = map f (drop-half xs)
    by (induct xs rule: drop-half.induct, auto)
lemma (in inj-comm-ring-hom) map-poly-poly-square-subst:
    map-poly hom (poly-square-subst f) = poly-square-subst (map-poly hom f)
    unfolding poly-square-subst-def coeffs-map-poly-hom drop-half-map poly-of-list-def
    by (rule poly-eqI, auto simp: nth-default-map-eq)
context inj-idom-hom
begin
lemma graeffe-poly-impl-hom:
    map-poly hom (graeffe-poly-impl f m) = graeffe-poly-impl (map-poly hom f)m
proof -
    interpret mh: map-poly-inj-idom-hom..
    obtain c where c:(((-1) ^ degree f) :: 'a) = c by auto
    have c':(((-1) ^ degree f):: 'b) = hom c unfolding c[symmetric] by (simp
add:hom-distribs)
    show ?thesis unfolding graeffe-poly-impl-def degree-map-poly-hom c c'
    apply (induct m arbitrary: f; simp)
    by (unfold graeffe-one-step-def hom-distribs map-poly-poly-square-subst map-poly-pcompose,simp)
qed
end
lemma graeffe-poly-impl-mahler: mahler-measure (graeffe-poly-implf m)= mahler-measure
f^2^m
proof -
    let ?c = complex-of-int
    let ?cc= map-poly ?c
    let ?f = ?cc f
    note eq = complex-roots(1)[of ?f]
    interpret inj-idom-hom complex-of-int by (standard, auto)
    show ?thesis
        unfolding mahler-measure-def mahler-graeffe[OF eq[symmetric], symmetric]
        graeffe-poly-impl[OF eq[symmetric], symmetric] by (simp add: of-int-hom.graeffe-poly-impl-hom)
qed
```

definition mahler－landau－graeffe－approximation $::$ nat \Rightarrow nat \Rightarrow int poly \Rightarrow int where
mahler－landau－graeffe－approximation $k k d d f=($ let no $=\operatorname{sum-list}(\operatorname{map}(\lambda a . a * a)($ coeffs $f))$
in root－int－floor $k k(d d * n o))$
lemma mahler－landau－graeffe－approximation－core：
assumes $g: g=$ graeffe－poly－impl $f k$
shows mahler－measure $f \leq \operatorname{root}\left(\mathcal{2}^{\wedge}\right.$ Suc $\left.k\right)\left(\right.$ real－of－int $\left(\sum a \leftarrow\right.$ coeffs $\left.\left.g . a * a\right)\right)$
proof－
have mahler－measure $f=$ root（2＾k）（mahler－measure f へ（2＾k））
by（simp add：real－root－power－cancel mahler－measure－ge－0）
also have $\ldots=\operatorname{root}\left(\mathcal{2}^{\wedge} k\right)($ mahler－measure $g)$
unfolding graeffe－poly－impl－mahler g by simp
also have $\ldots=\operatorname{root}\left(2^{\wedge} k\right)(\operatorname{root} 2(($ mahler－measure $g)$＾2 $\left.))\right)$
by（simp add：real－root－power－cancel mahler－measure－ge－0）
also have $\ldots=\operatorname{root}(2 \uparrow S u c k)((($ mahler－measure $g) \wedge 2))$
by（metis power－Suc2 real－root－mult－exp）
also have $\ldots \leq \operatorname{root}\left(2^{\wedge}\right.$ Suc $\left.k\right)\left(\right.$ real－of－int $\left.\left(\sum a \leftarrow \operatorname{coeffs} g . a * a\right)\right)$
proof（rule real－root－le－mono，force）
have square－mono： $0 \leq(x::$ real $) \Longrightarrow x \leq y \Longrightarrow x * x \leq y * y$ for $x y$
by（simp add：mult－mono＇）
obtain $g s$ where $g s$ ：coeffs $g=g s$ by auto
have $(\text { mahler－measure } g)^{2} \leq$ real－of－int $\mid \sum a \leftarrow$ coeffs $g . a * a \mid$
using square－mono［OF mahler－measure－ge－0 Landau－inequality［of of－int－poly g ，folded mahler－measure－def］］
by（auto simp：power2－eq－square coeffs－map－poly o－def of－int－hom．hom－sum－list）
also have $\mid \sum a \leftarrow$ coeffs $g . a * a \mid=\left(\sum a \leftarrow\right.$ coeffs $\left.g . a * a\right)$ unfolding $g s$ by（induct gs，auto）
finally show $(\text { mahler－measure } g)^{2} \leq$ real－of－int $\left(\sum a \leftarrow\right.$ coeffs $\left.g . a * a\right)$ ．
qed
finally show mahler－measure $f \leq \operatorname{root}\left(2^{\wedge}\right.$ Suc $\left.k\right)$（real－of－int $\left(\sum a \leftarrow\right.$ coeffs $g . a$ ＊a））．
qed
lemma Landau－inequality－mahler－measure：mahler－measure $f \leq$ sqrt（real－of－int $\left(\sum a \leftarrow\right.$ coeffs f．$\left.a * a\right)$ ）
by（rule order．trans［OF mahler－landau－graeffe－approximation－core［OF refl，of－ 0］］，
auto simp：graeffe－poly－impl－def sqrt－def）
lemma mahler－landau－graeffe－approximation：
assumes g ：$g=$ graeffe－poly－impl $f k d d=d^{\wedge}\left(\right.$ 2＾$^{\wedge}($ Suc $\left.k)\right) k k=$ 2＾$^{\wedge}($ Suc $k)$
shows \lfloor real $d *$ mahler－measure $f\rfloor \leq$ mahler－landau－graeffe－approximation $k k d d$ g
proof－
have id1：real－of－int $($ int $(d$ へ 2 ＾Suc $k))=($ real d）へ2＾Suc k by simp
have id2：root $\left(2^{\wedge}\right.$ Suc $\left.k\right)\left(\right.$ real $\left.d{ }^{\wedge} 2^{\wedge} S u c k\right)=$ real d
by（simp add：real－root－power－cancel）
show ?thesis unfolding mahler-landau-graeffe-approximation-def Let-def root-int-floor of-int-mult $g(2-3)$
by (rule floor-mono, unfold real-root-mult id1 id2, rule mult-left-mono, rule mahler-landau-graeffe-approximation-core[OF g(1)], auto)
qed
context
fixes $b n d::$ nat
begin
function mahler-approximation-main $::$ nat \Rightarrow int \Rightarrow int poly \Rightarrow int \Rightarrow nat \Rightarrow nat \Rightarrow int where
mahler-approximation-main dd $\operatorname{cgmmkk}=$ (let mmm $=$ mahler-landau-graeffe-approximation $k k d d g$;
new-mm $=($ if $k=0$ then $m m m$ else $\min m m m m)$
in (if $k \geq$ bnd then new-mm else

- abort after bnd iterations of Graeffe transformation
mahler-approximation-main $(d d * d d) c$ (graeffe-one-step c g) new-mm (Suc k) $(2 * k k)))$
by pat-completeness auto
termination by (relation measure ($\lambda(d d, c, f, m m, k, k k)$. Suc bnd $-k)$, auto)
declare mahler-approximation-main.simps[simp del]
lemma mahler-approximation-main: assumes $k \neq 0 \Longrightarrow\lfloor$ real $d *$ mahler-measure
$f\rfloor \leq m m$
and $c=(-1) \uparrow($ degree $f)$
and $g=$ graeffe-poly-impl-main $c f k d d=d^{\wedge}\left(\mathbb{Z}^{\wedge}(\right.$ Suc $\left.k)\right) k k=\mathcal{V}^{\wedge}($ Suc $k)$
shows \lfloor real $d *$ mahler-measure $f\rfloor \leq$ mahler-approximation-main dd cgmm k $k k$
using assms
proof (induct c g mm kkk rule: mahler-approximation-main.induct)
case (1 dd c g mm $k k k$)
let ? $d f=\lfloor$ real $d *$ mahler-measure $f\rfloor$
note $d d=1$ (5)
note $k k=1(6)$
note $g=1$ (4)
note $c=1$ (3)
note $m m=1$ (2)
note $I H=1$ (1)
note mahl $=$ mahler-approximation-main.simps[of dd cgmekkk]
define $m m m$ where $m m m=$ mahler-landau-graeffe-approximation $k k d d g$
define new-mm where new-mm $=($ if $k=0$ then $m m m$ else min $m m m m)$
let ?cond $=b n d \leq k$
have id: mahler-approximation-main dd $c \mathrm{~g} \mathrm{~mm} k k k=$ (if ?cond then new-mm else mahler-approximation-main $(d d * d d) c$ (graeffe-one-step c g) new-mm $(S u c k)(2 * k k))$
unfolding mahl mmm-def[symmetric] Let-def new-mm-def[symmetric] by simp
have $g g: g=($ graeffe-poly-impl $f k$) unfolding g graeffe-poly-impl-def $c .$.

```
    from mahler-landau-graeffe-approximation[OF gg dd kk, folded mmm-def]
    have mmm:?df}\leqmmm
    with mm have new-mm:?df \leq new-mm unfolding new-mm-def by auto
    show ?case
    proof (cases ?cond)
    case True
    show ?thesis unfolding id using True new-mm by auto
    next
    case False
    hence id: mahler-approximation-main dd c g mm k kk=
        mahler-approximation-main (dd * dd) c (graeffe-one-step c g) new-mm (Suc
k) (2*kk)
        unfolding id by auto
    have id': graeffe-one-step c g = graeffe-poly-impl-main c f (Suc k)
        unfolding g}\mathrm{ by simp
    have }dd*dd=d`2`Suc (Suc k) 2 * kk=2`Suc (Suc k) unfolding dd
kk
            semiring-normalization-rules(26) by auto
    from IH[OF mmm-def new-mm-def False new-mm c id' this]
    show ?thesis unfolding id .
    qed
qed
definition mahler-approximation :: nat }=>\mathrm{ int poly }=>\mathrm{ int where
    mahler-approximation df= mahler-approximation-main (d*d) ((-1)^(degree
f))}f(-1)0\mp@code{2
lemma mahler-approximation: \lfloorreal d * mahler-measure f \\leq mahler-approximation
d f
    unfolding mahler-approximation-def
    by (rule mahler-approximation-main, auto simp: semiring-normalization-rules(29))
end
end
```


10.5 The Mignotte Bound

```
theory Factor-Bound
imports
    Mahler-Measure
    Polynomial-Factorization.Gauss-Lemma
    Subresultants.Coeff-Int
begin
lemma binomial-mono-left: n \leq N\Longrightarrow n choose k}\leqN\mathrm{ choose }
proof (induct n arbitrary: k N)
    case (0kN)
    thus ?case by (cases k, auto)
```

```
next
    case (Suc n kN) note IH=this
    show ?case
    proof (cases k)
        case (Suc kk)
        from IH obtain NN where N:N=Suc NN and le: n\leqNN by (cases N,
auto)
            show ?thesis unfolding N Suc using IH(1)[OF le]
            by (simp add: add-le-mono)
    qed auto
qed
definition choose-int where choose-int \(m n=\) (if \(n<0\) then 0 else \(m\) choose (nat \(n)\) )
lemma choose-int-suc[simp]:
choose-int (Suc n) \(i=\) choose-int \(n(i-1)+\) choose-int \(n i\)
proof(cases nat \(i\) )
case 0 thus ?thesis by (simp add:choose-int-def) next
case (Suc v) hence nat \((i-1)=v i \neq 0\) by simp-all
thus ?thesis unfolding choose-int-def Suc by simp
qed
lemma sum-le-1-prod: assumes \(d: 1 \leq d\) and \(c: 1 \leq c\) shows \(c+d \leq 1+c *(d::\) real \()\)
proof -
from \(d c\) have \((c-1) *(d-1) \geq 0\) by auto
thus ?thesis by (auto simp: field-simps)
qed
lemma mignotte-helper-coeff-int: cmod (coeff-int \(\left.\left(\prod a \leftarrow l s t .[:-a, 1:]\right) i\right)\)
\(\leq\) choose-int (length lst -1\() i *\left(\prod a \leftarrow l s t .(\max 1(c \bmod a))\right)\)
+ choose-int (length lst -1\()(i-1)\)
proof(induct lst arbitrary:i)
case Nil thus ?case by (auto simp:coeff-int-def choose-int-def)
case (Cons vxs i)
show ? case
proof (cases xs \(=[]\) )
case True
show ?thesis unfolding True
by (cases nat \(i\), cases nat \((i-1)\), auto simp: coeff-int-def choose-int-def)
next
case False
hence id: length ( \(v \# x s\) ) - \(1=\) Suc (length \(x s-1\) ) by auto
have \(i d^{\prime}\) : choose-int (length xs) \(i=\) choose-int (Suc (length xs -1 )) \(i\) for \(i\)
using False by (cases xs, auto)
let ? \(r=\left(\prod a \leftarrow x s\right.\). \(\left.[:-a, 1:]\right)\)
let ? \(m v=\left(\prod a \leftarrow x s .(\max 1(\operatorname{cmod} a))\right)\)
let \(? c 1=\) real \((\) choose-int \((\) length \(x s-1)(i-1-1))\)
```

let $? c 2=$ real $($ choose-int $($ length $(v \# x s)-1) i-$ choose-int $($ length $x s-$ 1) i)
let ? m xs $n=$ choose-int $($ length $x s-1) n *\left(\prod a \leftarrow x s .(\max 1(\operatorname{cmod} a))\right)$
have le1:1 $\leq \max 1(\operatorname{cmod} v)$ by auto
have le2:cmod $v \leq \max 1(\mathrm{cmod} v)$ by auto
have mv-ge-1:1 \leq ? mv by (rule prod-list-ge1, auto)
obtain $a b c d$ where $a b c d$:
$a=$ real (choose-int (length $x s-1) i)$
$b=$ real (choose-int (length xs -1$)(i-1))$
$c=\left(\prod a \leftarrow x s . \max 1(\operatorname{cmod} a)\right)$
$d=$ cmod v by auto
\{
have $c 1: c \geq 1$ unfolding abcd by (rule mv-ge-1)
have $b: b=0 \vee b \geq 1$ unfolding abcd by auto
have $a: a=0 \vee a \geq 1$ unfolding $a b c d$ by auto
hence $a 0: a \geq 0$ by auto
have $a c d$: $a *(c * d) \leq a *(c * \max 1 d)$ using a0 $c 1$ by (simp add: mult-left-mono)
from b have $b *(c+d) \leq b *(1+(c * \max 1 d))$
proof
assume $b \geq 1$
hence ?thesis $=(c+d \leq 1+c * \max 1 d)$ by simp
also have...
proof (cases $d \geq 1$)
case False
hence $i d: \max 1 d=1$ by simp
show ?thesis using False unfolding id by simp
next
case True
hence $i d: \max 1 d=d$ by simp
show ?thesis using True c1 unfolding id by (rule sum-le-1-prod)
qed
finally show ?thesis.
qed auto
with $a c d$ have $b * c+(b * d+a *(c * d)) \leq b+(a *(c * \max 1 d)+b$ * $(c * \max 1 d))$
by (auto simp: field-simps)
$\}$ note $a b c d-$ main $=$ this
have $\operatorname{cmod}($ coeff-int $([:-v, 1:] * ? r) i) \leq \operatorname{cmod}($ coeff-int ?r $(i-1))+\operatorname{cmod}$ (coeff-int (smult v ? r) i)
using norm-triangle-ineq4 by auto
also have $\ldots \leq$? m xs $(i-1)+($ choose-int $($ length $x s-1)(i-1-1))+$ cmod (coeff-int (smult v ?r) i)
using Cons[of $i-1$] by auto
also have choose-int (length $x s-1)(i-1)=$ choose-int (length $(v \# x s)-$ 1) i - choose-int (length $x s-1$) i
unfolding id choose-int-suc by auto
also have ? $c 2 *\left(\prod a \leftarrow x s . \max 1(\operatorname{cmod} a)\right)+? c 1+$
cmod $\left(\right.$ coeff-int $\left(\right.$ smult $v\left(\prod a \leftarrow x s\right.$. [:- $\left.\left.\left.\left.a, 1:\right]\right)\right) i\right) \leq$

```
?c2 * (\proda\leftarrowxs. max 1 (cmod a)) + ?c1 + cmod v*(
    real (choose-int (length xs - 1) i)* (\proda\leftarrowxs. max 1 (cmoda)) +
    real (choose-int (length xs - 1) (i-1)))
```

 using mult-mono' \([\) OF order-refl Cons, of cmod \(v i\), simplified \(]\) by (auto simp:
 norm-mult)
also have $\ldots \leq ? m(v \# x s) i+($ choose-int (length $x s)(i-1))$ using
abcd-main[unfolded abcd]
by (simp add: field-simps id')
finally show?thesis by simp
qed
qed
lemma mignotte-helper-coeff-int': cmod (coeff-int $\left.\left(\prod a \leftarrow l s t .[:-a, 1:]\right) i\right)$
$\leq(($ length lst -1$)$ choose $i) *\left(\prod a \leftarrow l s t .(\max 1(\operatorname{cmod} a))\right)$
$+\min i 1 *(($ length lst -1$)$ choose (nat $(i-1)))$
by (rule order.trans[OF mignotte-helper-coeff-int], auto simp: choose-int-def min-def)
lemma mignotte-helper-coeff:
cmod $($ coeff $h i) \leq($ degree $h-1$ choose $i) *$ mahler-measure-poly h
$+\min i 1 *($ degree $h-1 \operatorname{choose}(i-1)) * \operatorname{cmod}($ lead-coeff $h)$
proof -
let ?r $=$ complex-roots-complex h
have $\operatorname{cmod}($ coeff $h i)=\operatorname{cmod}\left(\right.$ coeff $\left(s m u l t(l e a d-c o e f f ~ h)\left(\prod a \leftarrow ? r .[:-a, 1:]\right)\right)$
i)
unfolding complex-roots by auto
also have $\ldots=\operatorname{cmod}($ lead-coeff $h) * \operatorname{cmod}\left(\operatorname{coeff}\left(\prod a \leftarrow ? r .[:-a, 1:]\right) i\right)$
by(simp add:norm-mult)
also have $\ldots \leq \operatorname{cmod}($ lead-coeff $h) *(($ degree $h-1$ choose $i) *$ mahler-measure-monic
$h+$
$(\min i 1 *(($ degree $h-1)$ choose nat $($ int $i-1))))$
unfolding mahler-measure-monic-def
by (rule mult-left-mono, insert mignotte-helper-coeff-int' $[$ of ?r i], auto)
also have $\ldots=($ degree $h-1$ choose $i) *$ mahler-measure-poly $h+$ cmod
(lead-coeff h) * (
$\min i 1 *(($ degree $h-1)$ choose nat $($ int $i-1)))$
unfolding mahler-measure-poly-via-monic by (simp add: field-simps)
also have nat (int $i-1$) $=i-1$ by (cases i, auto)
finally show ?thesis by (simp add: ac-simps split: if-splits)
qed
lemma mignotte-coeff-helper:
abs (coeff $h i) \leq$
(degree $h-1$ choose i) * mahler-measure $h+$
$(\min i 1 *($ degree $h-1 \operatorname{choose}(i-1)) * a b s(l e a d-c o e f f ~ h))$
unfolding mahler-measure-def
using mignotte-helper-coeff $[$ of of-int-poly $h i]$
by auto
lemma cmod-through-lead-coeff [simp]:

$$
\text { cmod }(\text { lead-coeff }(\text { of-int-poly } h))=\text { abs }(\text { lead-coeff } h)
$$

by simp
lemma choose-approx: $n \leq N \Longrightarrow n$ choose $k \leq N$ choose (N div 2)
by (rule order.trans[OF binomial-mono-left binomial-maximum])
For Mignotte's factor bound, we currently do not support queries for individual coefficients, as we do not have a combined factor bound algorithm.
definition mignotte-bound $::$ int poly \Rightarrow nat \Rightarrow int where
mignotte-bound $f d=\left(\right.$ let $d^{\prime}=d-1 ; d \mathcal{L}=d^{\prime}$ div 2; binom $=\left(d^{\prime}\right.$ choose d2 $)$ in (mahler-approximation 2 binom $f+$ binom $*$ abs (lead-coeff $f))$)
lemma mignotte-bound-main:
assumes $f \neq 0 g$ dvd f degree $g \leq n$
shows \mid coeff $g k \mid \leq\lfloor$ real $(n-1$ choose $k) *$ mahler-measure $f\rfloor+$ $\operatorname{int}(\min k 1 *(n-1 \operatorname{choose}(k-1))) * \mid$ lead-coeff $f \mid$
proof-
let $? b n d=2$
let ? $n=(n-1)$ choose k
let $? n^{\prime}=\min k 1 *((n-1)$ choose $(k-1))$
let ?approx $=$ mahler-approximation ?bnd ? $n f$
obtain h where $g h: g * h=f$ using assms by (metis dvdE)
have $n z: g \neq 0 \quad h \neq 0$ using $g h \operatorname{assms}(1)$ by auto
have $g 1:(1::$ real $) \leq$ mahler-measure h using mahler-measure-poly-ge-1 gh assms(1)
by auto
note $g 0=$ mahler-measure-ge-0
have to-n: (degree $g-1$ choose k) \leq real ? n
using binomial-mono-left[of degree $g-1 n-1 k] \operatorname{assms}(3)$ by auto
have to- n ': min $k 1 *($ degree $g-1$ choose $(k-1)) \leq$ real ? n^{\prime}
using binomial-mono-left[of degree $g-1 n-1 k-1] \operatorname{assms}(3)$
by (simp add: min-def)
have \mid coeff $g k \mid \leq($ degree $g-1$ choose $k) *$ mahler-measure g
$+($ real $(\min k 1 *($ degree $g-1$ choose $(k-1))) * \mid$ lead-coeff $g \mid)$
using mignotte-coeff-helper [of $g k$ by bimp
also have $\ldots \leq ? n *$ mahler-measure $f+$ real $? n^{\prime} * \mid l e a d$-coeff $f \mid$
proof (rule add-mono[OF mult-mono[OF to-n] mult-mono[OF to-n $n]$)
have mahler-measure $g \leq$ mahler-measure $g *$ mahler-measure h using $g 1$
$g 0[o f g]$
using mahler-measure-poly-ge-1 $n z(1)$ by force
thus mahler-measure $g \leq$ mahler-measure f using measure-eq-prod[of of-int-poly g of-int-poly h] unfolding mahler-measure-def gh[symmetric] by (auto simp: hom-distribs)
have $*$: lead-coeff $f=$ lead-coeff $g *$ lead-coeff h
unfolding arg-cong[OF gh, of lead-coeff, symmetric] by (rule lead-coeff-mult)
have \mid lead-coeff $h \mid \neq 0$ using $n z(2)$ by auto
hence $l h$: \mid lead-coeff $h \mid \geq 1$ by linarith
have \mid lead-coeff $f|=|$ lead-coeff $g|*|$ lead-coeff $h \mid$ unfolding * by (rule abs-mult)
also have $\ldots \geq \mid$ lead-coeff $g \mid * 1$
by (rule mult-mono, insert lh, auto)

```
    finally have |lead-coeff g| \leq |lead-coeff f| by simp
    thus real-of-int |lead-coeff g| \leq real-of-int |lead-coeff f | by simp
    qed (auto simp: g0)
    finally have |coeff g k| \leq?n * mahler-measure f + real-of-int (? n' * |lead-coeff
f|) by simp
    from floor-mono[OF this, folded floor-add-int]
    have |coeff gk|\leqfloor (? n * mahler-measure f) +? ? n'* |lead-coeff f| by linarith
    thus?thesis unfolding mignotte-bound-def Let-def using mahler-approximation[of
    ?n f ?bnd] by auto
qed
lemma Mignotte-bound:
    shows of-int |coeff g k|\leq(degree g choose k)* mahler-measure g
proof (cases k\leq degree g}\wedgeg\not=0
    case False
    hence coeff g k=0 using le-degree by (cases g=0,auto)
    thus ?thesis using mahler-measure-ge-0[of g] by auto
next
    case kg:True
    hence g: g\not=0 g dvd g by auto
    from mignotte-bound-main[OF g le-refl, of k]
    have real-of-int |coeff g k|
    \leqof-int \lfloorreal (degree g - 1 choose k)* mahler-measure g\rfloor+
        of-int (int (min k 1 * (degree g - 1 choose (k - 1))) * |lead-coeff g|) by
linarith
    also have ... \leq real (degree g - 1 choose k)* mahler-measure g
        + real (min k 1*(degree g - 1 choose (k - 1))) *(of-int |lead-coeff g| * 1)
        by (rule add-mono, force, auto)
    also have ... \leqreal (degree g-1 choose k)* mahler-measure g
            +real (min k 1*(degree g-1 choose (k-1)))* mahler-measure g
            by (rule add-left-mono[OF mult-left-mono],
            unfold mahler-measure-def mahler-measure-poly-def,
            rule mult-mono, auto intro!: prod-list-ge1)
    also have ... =
            (real ((degree g-1 choose k)+(\operatorname{min}k1*(degree g - 1 choose }(k-1))))
* mahler-measure g
    by (auto simp: field-simps)
    also have (degree g-1 choose k) +(\operatorname{min k 1 *(degree g - 1 choose (k-1)))}
= degree g choose k
    proof (cases k=0)
        case False
        then obtain kk where k: k=Suc kk by (cases k,auto)
        with kg obtain gg where g: degree g=Suc gg by (cases degree g, auto)
        show ?thesis unfolding kg by auto
    qed auto
    finally show ?thesis.
qed
lemma mignotte-bound:
```

```
    assumes f}\not=0\mathrm{ g dvd f degree g}\leq
    shows |coeff g k| \leq mignotte-bound f n
proof -
    let ?bnd = 2
    let ? }n=(n-1)\mathrm{ choose ((n-1) div 2)
    have to-n: (n-1 choose k)\leq real ?n for }
        using choose-approx[OF le-refl] by auto
    from mignotte-bound-main[OF assms, of k]
    have |coeff g k|\leq
        real ( n-1 choose k)* mahler-measure f }\rfloor
        int (min k 1* (n-1 choose (k-1)))* |lead-coeff f| .
    also have \ldots. \leq \real ( }n-1\mathrm{ choose k)* mahler-measure f }\rfloor
        int ((n-1 choose (k-1))) * |lead-coeff f 
        by (rule add-left-mono[OF mult-right-mono], cases k, auto)
    also have ... \leq mignotte-bound f n
        unfolding mignotte-bound-def Let-def
        by (rule add-mono[OF order.trans[OF floor-mono[OF mult-right-mono]
    mahler-approximation[of ?n f ?bnd]] mult-right-mono], insert to-n mahler-measure-ge-0,
auto)
    finally show ?thesis.
qed
```

As indicated before, at the moment the only available factor bound is Mignotte's one. As future work one might use a combined bound.
definition factor-bound :: int poly \Rightarrow nat \Rightarrow int where
factor-bound $=$ mignotte-bound
lemma factor-bound: assumes $f \neq 0 g$ dvd f degree $g \leq n$ shows \mid coeff $g k \mid \leq$ factor-bound $f n$
unfolding factor-bound-def by (rule mignotte-bound[OF assms])
We further prove a result for factor bounds and scalar multiplication.
lemma factor-bound-ge-0: $f \neq 0 \Longrightarrow$ factor-bound $f n \geq 0$
using factor-bound[of $f 1 n 0]$ by auto
lemma factor-bound-smult: assumes $f: f \neq 0$ and $d: d \neq 0$
and dvd: g dvd smult $d f$ and deg: degree $g \leq n$
shows \mid coeff $g k|\leq|d| *$ factor-bound $f n$
proof -
let $? n f=$ primitive-part f let $? c f=$ content f
let $? n g=$ primitive-part g let $? c g=$ content g
from content-dvd-contentI[OF dvd] have ?cg dvd abs $d *$?cf unfolding content-smult-int .
hence $d v d-c$: ? $c g ~ d v d ~ d * ? c f$ using d
by (metis abs-content-int abs-mult dvd-abs-iff)
from primitive-part-dvd-primitive-partI[OF dvd] have ?ng dvd smult (sgn d) ?nf
unfolding primitive-part-smult-int .
hence $d v d-n$: ?ng dvd ?nf using d
by (metis content-eq-zero-iff dvd dvd-smult-int f mult-eq-0-iff content-times-primitive-part smult-smult)

```
    define gc where gc= gcd ?cf ?cg
    define cg where cg=?cg div gc
    from dvd df have g: g\not=0 by auto
    from f have cf: ?cf }\not=0\mathrm{ by auto
    from g}\mathrm{ have cg:? cg}\not=0\mathrm{ by auto
    hence gc:gc\not=0 unfolding gc-def by auto
    have cg-dvd:cg dvd?cg unfolding cg-def gc-def using g by (simp add: div-dvd-iff-mult)
    have cg-id:?cg=cg*gc unfolding gc-def cg-def using g cf by simp
    from dvd-smult-int[OF d dvd] have ngf: ?ng dvd f .
    have gcf: |gc| dvd content f unfolding gc-def by auto
    have dvd-f: smult gc ?ng dvd f
    proof (rule dvd-content-dvd,
        unfold content-smult-int content-primitive-part[OF g]
        primitive-part-smult-int primitive-part-idemp)
    show }|gc|*1 dvd content f using gcf by aut
    show smult (sgn gc) (primitive-part g) dvd primitive-part f
        using dvd-n cf gc using zsgn-def by force
    qed
    have cg dvd d using dvd-c unfolding gc-def cg-def using cf cg d
    by (simp add: div-dvd-iff-mult dvd-gcd-mult)
    then obtain h where dcg:d = cg*h unfolding dvd-def by auto
    with d have h\not=0 by auto
    hence h1: |h| \geq1 by simp
    have degree (smult gc (primitive-part g)) = degree g
    using gc by auto
    from factor-bound[OF f dvd-f, unfolded this, OF deg, of k, unfolded coeff-smult]
    have le: |gc* coeff ?ng k| \leq factor-bound f n.
    note f0 = factor-bound-ge-O[OF f, of n]
    from mult-left-mono[OF le, of abs cg]
    have }|cg*gc*\mathrm{ coeff ?ng k| }\leq|cg|* factor-bound f n
    unfolding abs-mult[symmetric] by simp
    also have cg*gc* coeff ?ng k= coeff (smult ?cg ?ng) k unfolding cg-id by
simp
    also have ... = coeff g k unfolding content-times-primitive-part by simp
    finally have |coeff g k| \leq1*(|cg|* factor-bound f n) by simp
    also have \ldots}\leq|h|*(|cg|* factor-bound f n
    by (rule mult-right-mono[OF h1], insert f0, auto)
    also have \ldots. = (|cg*h|)* factor-bound f n by (simp add: abs-mult)
    finally show ?thesis unfolding dcg.
qed
end
```


10.6 Iteration of Subsets of Factors

theory Sublist-Iteration imports
Polynomial-Factorization.Missing-Multiset
Polynomial-Factorization.Missing-List

HOL-Library.IArray
begin
Misc lemmas lemma mem-snd-map: $(\exists x .(x, y) \in S) \longleftrightarrow y \in$ snd' S by force
lemma filter-upt: assumes $l \leq m m<n$ shows filter $((\leq) m)[l . .<n]=[m . .<n]$ proof (insert assms, induct n)
case 0 then show ?case by auto
next
case (Suc n) then show ?case by (cases $m=n$, auto)
qed
lemma upt-append: $i<j \Longrightarrow j<k \Longrightarrow[i . .<j] @[j . .<k]=[i . .<k]$
proof (induct k arbitrary: j)
case 0 then show ?case by auto
next
case (Suc k) then show ?case by (cases $j=k$, auto)
qed
lemma IArray-sub[simp]: (!!) as =(!) (IArray.list-of as) by auto declare IArray.sub-def[simp del]

Following lemmas in this section are for subseqs
lemma subseqs-Cons[simp]: subseqs $(x \# x s)=\operatorname{map}($ Cons $x)($ subseqs $x s) @$ subseqs xs by (simp add: Let-def)
declare subseqs.simps(2) [simp del]
lemma singleton-mem-set-subseqs $[$ simp $]:[x] \in \operatorname{set}($ subseqs $x s) \longleftrightarrow x \in$ set $x s$ by (induct $x s$, auto)
lemma Cons-mem-set-subseqsD: $y \# y s \in$ set (subseqs $x s$) $\Longrightarrow y \in$ set $x s$ by (induct xs, auto)
lemma subseqs-subset: ys \in set (subseqs $x s) \Longrightarrow$ set $y s \subseteq$ set $x s$ by (metis Pow-iff image-eqI subseqs-powset)
lemma Cons-mem-set-subseqs-Cons:
$y \# y s \in \operatorname{set}($ subseqs $(x \# x s)) \longleftrightarrow(y=x \wedge y s \in$ set (subseqs $x s)) \vee y \# y s \in$ set
(subseqs xs)
by auto
lemma sorted-subseqs-sorted:
sorted $x s \Longrightarrow y s \in$ set (subseqs $x s) \Longrightarrow$ sorted $y s$
proof(induct $x s$ arbitrary: ys)
case Nil thus?case by simp
next

```
    case Cons thus ?case using subseqs-subset by fastforce
qed
```

lemma subseqs-of-subseq: ys \in set (subseqs $x s) \Longrightarrow$ set (subseqs ys) \subseteq set (subseqs
$x s)$
proof (induct xs arbitrary: ys)
case Nil then show ? case by auto
next
case IHx: (Cons x xs)
from IHx.prems show ?case
proof (induct ys)
case Nil then show? ?ase by auto
next
case IHy: (Cons y ys)
from IHy.prems[unfolded subseqs-Cons]
consider $y=x y s \in \operatorname{set}($ subseqs $x s) \mid y \# y s \in \operatorname{set}$ (subseqs $x s$) by auto
then show? case
proof (cases)
case 1 with IHx.hyps show ?thesis by auto
next
case 2 from IHx.hyps[OF this] show ?thesis by auto
qed
qed
qed
lemma mem-set-subseqs-append: xs \in set (subseqs ys) $\Longrightarrow x s \in \operatorname{set}$ (subseqs (zs @
ys))
by (induct zs, auto)
lemma Cons-mem-set-subseqs-append:
$x \in$ set $y s \Longrightarrow x s \in \operatorname{set}($ subseqs $z s) \Longrightarrow x \# x s \in \operatorname{set}($ subseqs $(y s @ z s))$
proof (induct ys)
case Nil then show ?case by auto
next
case $I H$: (Cons y ys)
then consider $x=y \mid x \in$ set $y s$ by auto
then show ?case
proof (cases)
case 1 with $I H$ show ?thesis by (auto intro: mem-set-subseqs-append)
next
case 2 from $I H$.hyps[OF this $I H . \operatorname{prems}(2)]$ show ?thesis by auto
qed
qed
lemma Cons-mem-set-subseqs-sorted:
sorted $x s \Longrightarrow y \# y s \in$ set (subseqs $x s) \Longrightarrow y \# y s \in$ set (subseqs (filter $(\lambda x . y \leq$
x) $x s$)
by (induct xs) (auto simp: Let-def)
lemma subseqs-map $[$ simp $]$: subseqs $(\operatorname{map} f x s)=\operatorname{map}(\operatorname{map} f)($ subseqs $x s)$ by (induct xs, auto)
lemma subseqs-of-indices: map (map (nth xs)) (subseqs $[0 . .<$ length $x s])=$ subseqs xs
proof (induct $x s$)
case Nil then show? case by auto
next
case (Cons x xs)
from this[symmetric]
have subseqs $x s=\operatorname{map}(\operatorname{map}((!)(x \# x s)))($ subseqs $[$ Suc 0.. $<$ Suc (length $x s)])$ by (fold map-Suc-upt, simp)
then show?case by (unfold length-Cons upt-conv-Cons[OF zero-less-Suc], simp) qed

Specification definition subseq-of-length n xs $y s \equiv y s \in$ set (subseqs xs) \wedge length $y s=n$
lemma subseq-of-lengthI[intro]:
assumes $y s \in$ set (subseqs xs) length ys $=n$
shows subseq-of-length n xs ys
by (insert assms, unfold subseq-of-length-def, auto)
lemma subseq-of-length $D[d e s t]$:
assumes subseq-of-length n xs ys
shows $y s \in$ set (subseqs xs) length ys $=n$
by (insert assms, unfold subseq-of-length-def, auto)
lemma subseq-of-length0[simp]: subseq-of-length 0 xs ys $\longleftrightarrow y s=[]$ by auto
lemma subseq-of-length-Nil[simp]: subseq-of-length $n[] y s \longleftrightarrow n=0 \wedge y s=[]$ by (auto simp: subseq-of-length-def)
lemma subseq-of-length-Suc-upt:
subseq-of-length (Suc n) $[0 . .<m]$ xs \longleftrightarrow (if $n=0$ then length $x s=$ Suc $0 \wedge h d x s<m$ else $h d x s<h d(t l x s) \wedge$ subseq-of-length $n[0 . .<m](t l x s))($ is $? l \longleftrightarrow ? r)$
proof (cases n)
case 0
show ?thesis
proof (intro iffI)
assume l : ?l
with 0 have 1: length $x s=$ Suc 0 by auto
then have $x s: x s=[h d x s]$ by (metis length-0-conv length-Suc-conv list.sel(1))
with l have $[h d x s] \in \operatorname{set}$ (subseqs $[0 . .<m]$) by auto with 1 show ?r by (unfold 0 , auto)
next
assume ?r
with 0 have 1: length $x s=$ Suc 0 and 2: $h d x s<m$ by auto
then have $x s: x s=[h d x s]$ by (metis length-0-conv length-Suc-conv list.sel(1))
from 2 show ?l by (subst xs, auto simp: 0)
qed
next
case n : (Suc $\left.n^{\prime}\right)$
show ?thesis
proof (intro iffI)
assume ?l
with n have 1: length $x s=\operatorname{Suc}\left(S u c n^{\prime}\right)$ and 2: xs $\in \operatorname{set}($ subseqs $[0 . .<m])$
by auto
from 1 [unfolded length-Suc-conv]
obtain $x y$ ysere $x s: x s=x \# y \# y s$ and $n^{\prime}:$ length $y s=n^{\prime}$ by auto
have sorted $x s$ by (rule sorted-subseqs-sorted $[O F-2]$, auto)
from this[unfolded $x s$] have $x \leq y$ by auto
moreover
from 2 have distinct xs by (rule subseqs-distinctD, auto)
from this[unfolded $x s$] have $x \neq y$ by auto
ultimately have $x<y$ by auto
moreover
from 2 have $y \# y s \in$ set (subseqs $[0 . .<m]$) by (unfold xs, auto dest:
Cons-in-subseqsD)
with $n n^{\prime}$ have subseq-of-length $n[0 . .<m](y \# y s)$ by auto
ultimately show ?r by (auto simp: $x s$)
next
assume r : ? r
with n have len: length $x s=$ Suc (Suc n^{\prime})
and $*: h d x s<h d(t l x s)$ tl $x s \in \operatorname{set}($ subseqs $[0 . .<m])$ by auto
from len[unfolded length-Suc-conv] obtain x y ys
where $x s$: $x s=x \# y \# y s$ and n^{\prime} : length $y s=n^{\prime}$ by auto
with $*$ have $x y: x<y$ and yys: $y \# y s \in$ set (subseqs $[0 . .<m]$) by auto
from Cons-mem-set-subseqs-sorted $[O F-y y s]$
have $y \# y s \in$ set (subseqs (filter $((\leq) y)[0 . .<m])$) by auto
also from Cons-mem-set-subseqs $D[O F$ yys $]$ have $y m: y<m$ by auto then have filter $((\leq) y)[0 . .<m]=[y . .<m]$ by (auto intro: filter-upt)
finally have $y \# y s \in$ set (subseqs $[y . .<m]$) by auto
with $x y$ have $x \# y \# y s \in$ set (subseqs $(x \#[y . .<m]))$ by auto
also from $x y$ have $\ldots \subseteq \operatorname{set}($ subseqs $([0 . .<y] @[y . .<m]))$
by (intro subseqs-of-subseq Cons-mem-set-subseqs-append, auto intro: sub-seqs-refl)
also from $x y y m$ have $[0 . .<y] @[y . .<m]=[0 . .<m]$ by (auto intro: upt-append)
finally have $x s \in \operatorname{set}$ (subseqs $[0 . .<m]$) by (unfold xs)
with len[folded n] show ?l by auto
qed
qed
lemma subseqs-of-length-of-indices:
$\{$ ys. subseq-of-length n xs ys $\}=\{$ map (nth xs) is \mid is. subseq-of-length n $[0 . .<$ length $x s]$ is $\}$

```
    by(unfold subseq-of-length-def, subst subseqs-of-indices[symmetric], auto)
lemma subseqs-of-length-Suc-Cons:
    { ys. subseq-of-length (Suc n)(x#xs) ys } =
    Cons x'{ ys. subseq-of-length n xs ys }}\cup{ys. subseq-of-length (Suc n) xs ys 
    by (unfold subseq-of-length-def, auto)
datatype ('a,'b,'state)subseqs-impl = Sublists-Impl
    (create-subseqs: 'b = 'a list }=>\mathrm{ nat }=>\mathrm{ ('b }\times\mathrm{ 'a list)list }\times\mathrm{ 'state)
    (next-subseqs:'state }=>\mathrm{ ('b > 'a list)list }\times\mathrm{ 'state)
locale subseqs-impl=
    fixes f :: ' }a=>\mp@subsup{}{}{\prime}b=>\mp@subsup{}{}{\prime}
    and sl-impl :: (' ','b,'state)subseqs-impl
begin
definition S :: 'b b 'a list }=>\mathrm{ nat }=>\mathrm{ ('b }\times\mathrm{ ' a list)set where
    S base elements n = {(foldr f ys base, ys)| ys. subseq-of-length n elements ys }
end
locale correct-subseqs-impl = subseqs-impl f sl-impl
    for f:: ' }a=>\mp@subsup{}{}{\prime}b=>'
    and sl-impl :: ('a,'b,'state)subseqs-impl +
    fixes invariant :: 'b b 'a list }=>\mathrm{ nat }=>\mathrm{ 'state }=>\mathrm{ bool
    assumes create-subseqs: create-subseqs sl-impl base elements n=(out, state) \Longrightarrow
invariant base elements n state }\wedge\mathrm{ set out }=S\mathrm{ base elements n
    and next-subseqs:
    invariant base elements n state \Longrightarrow
    next-subseqs sl-impl state = (out, state')}
    invariant base elements (Suc n) state}\mp@subsup{}{}{\prime}\wedge set out =S base elements (Suc n
Basic Implementation fun subseqs-i-n-main :: (' }a=>\mp@subsup{|}{}{\prime}b=>\mp@subsup{}{}{\prime}b)=>'b=>\mp@subsup{}{}{\prime}
list }=>\mathrm{ nat }=>\mathrm{ nat }=>('b\times'a list) list where
    subseqs-i-n-main f b xs i n = (if i=0 then [(b,[])] else if i=n then [(foldr fxs
b,xs)]
    else case xs of
    (y # ys) => map (\lambda (c,zs) => (c,y # zs)) (subseqs-i-n-main f (fyb) ys (i -
1) (n-1))
    @ subseqs-i-n-main f b ys i (n-1))
declare subseqs-i-n-main.simps[simp del]
```



```
list where
    subseqs-length f b i xs =(
    let n= length xs in if i>n then [] else subseqs-i-n-main f b xs i n)
lemma subseqs-length: assumes f-ac: \bigwedge x y z.fx(fyz)=fy(fxz)
```

```
    shows set (subseqs-length f a n xs) =
    {(foldr f ys a,ys)|ys. ys \in set (subseqs xs)^ length ys = n}
proof -
    show ?thesis
    proof (cases length xs < n)
    case True
    thus ?thesis unfolding subseqs-length-def Let-def
        using length-subseqs[of xs] subseqs-length-simple-False by auto
    next
    case False
    hence id:(length xs < n) = False and n\leqlength xs by auto
    from this(2) show ?thesis unfolding subseqs-length-def Let-def id if-False
    proof (induct xs arbitrary: n a rule: length-induct[rule-format])
        case (1 xs n a)
        note n=1(2)
        note IH=1(1)
        note simp[simp] = subseqs-i-n-main.simps[of f-xs n]
        show ?case
        proof (cases n=0)
            case True
            thus ?thesis unfolding simp by simp
        next
            case False note 0 = this
            show ?thesis
            proof (cases n = length xs)
                case True
                have ?thesis}=({(foldr fxs a,xs)}=(\lambda ys. (foldr f ys a,ys))'{ys. ys 
set (subseqs xs) ^ length ys = length xs})
                    unfolding simp using 0 True by auto
                from this[unfolded full-list-subseqs] show ?thesis by auto
            next
                case False
                with n have n: n< length xs by auto
                    from 0 obtain m}\mathrm{ where m: n=Suc m by (cases n, auto)
                    from n 0 obtain y ys where xs: xs = y# ys by (cases xs,auto)
                    from n m xs have le: m\leq length ys n\leqlength ys by auto
                    from xs have lt: length ys < length xs by auto
                    have sub: set (subseqs-i-n-main f a xs n (length xs)) =
                    (\lambda(c,zs).(c,y # zs))'set (subseqs-i-n-main f (fy a) ys m (length ys))
U
                set (subseqs-i-n-main f a ys n (length ys))
                    unfolding simp using 0 False by (simp add: xs m)
                    have fold: \bigwedge ys. foldr f ys (f y a)=f y (foldr f ys a)
                    by (induct-tac ys, auto simp: f-ac)
                    show ?thesis unfolding sub IH[OF lt le(1)] IH[OF lt le(2)]
                    unfolding m xs by (auto simp: Let-def fold)
            qed
        qed
    qed
```


qed

qed
definition basic-subseqs-impl :: (' $\left.a \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} a,^{\prime} b,{ }^{\prime} b \times{ }^{\prime} a\right.$ list \times nat $)$ subseqs-impl where
basic-subseqs-impl $f=$ Sublists-Impl
(λ a xs n. (subseqs-length f a n xs, $(a, x s, n))$)
($\lambda(a, x s, n) .($ subseqs-length $f a(S u c n) x s,(a, x s, S u c n)))$
lemma basic-subseqs-impl: assumes f-ac: $\bigwedge x y z . f x(f y z)=f y(f x z)$
shows correct-subseqs-impl f (basic-subseqs-impl f)
(λ a xs n triple. $(a, x s, n)=$ triple $)$
by (unfold-locales; unfold subseqs-impl.S-def basic-subseqs-impl-def subseq-of-length-def, insert subseqs-length $[$ of f, OF f-ac], auto)

Improved Implementation datatype ('a,'b,'state) subseqs-foldr-impl $=$ Sub-
lists-Foldr-Impl

```
(subseqs-foldr: 'b = 'a list => nat => 'b list }\times\mathrm{ 'state)
```

(next-subseqs-foldr: 'state \Rightarrow 'b list \times 'state)
locale subseqs-foldr-impl $=$
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b$
and impl :: ('a,'b,'state) subseqs-foldr-impl
begin
definition S where S base elements $n \equiv\{$ foldr f ys base \mid ys. subseq-of-length n elements ys $\}$
end
locale correct-subseqs-foldr-impl $=$ subseqs-foldr-impl f impl
for f and impl $::\left({ }^{\prime} a, ' b\right.$, 'state) subseqs-foldr-impl +
fixes invariant $::{ }^{\prime} b \Rightarrow$ 'a list \Rightarrow nat \Rightarrow 'state \Rightarrow bool
assumes subseqs-foldr:
subseqs-foldr impl base elements $n=($ out, state $) \Longrightarrow$
invariant base elements n state \wedge set out $=S$ base elements n
and next-subseqs-foldr:
next-subseqs-foldr impl state $=($ out, state $) \Longrightarrow$ invariant base elements n state
\Longrightarrow invariant base elements (Suc n) state ${ }^{\prime} \wedge$ set out $=S$ base elements (Suc n)
locale $m y$-subseqs $=$
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b$
begin
context fixes head $::$ ' a and tail $::$ ' a iarray
begin
fun next-subseqs 1 and next-subseqs2
where next-subseqs1 ret0 ret1 [] $=($ ret0,$($ head, tail, ret1 $))$
next-subseqs1 ret0 ret1 $((i, v) \#$ prevs $)=$ next-subseqs2 (f head $v \#$ ret0) ret1

```
prevs \(v[0 . .<i]\)
    next-subseqs2 ret0 ret1 prevs \(v[]=\) next-subseqs 1 ret0 ret1 prevs
    | next-subseqs2 ret0 ret1 prevs \(v(j \# j s)=\)
        \(\left(\right.\) let \(v^{\prime}=f(\) tail \(!!j) v\) in next-subseqs2 \(\left(v^{\prime} \#\right.\) ret0 \()\left(\left(j, v^{\prime}\right) \#\right.\) ret1 \()\) prevs \(\left.v j s\right)\)
```

definition next-subseqs2-set $v j s \equiv\{(j, f($ tail $!!j) v) \mid j . j \in$ set $j s\}$
definition out-subseqs2-set $v j s \equiv\{f($ tail !! j) v|j.j $\operatorname{set} j s\}$
definition next-subseqs1-set prevs $\equiv \bigcup\{$ next-subseqs2-set $v[0 . .<i] \mid v i .(i, v) \in$
set prevs \}
definition out-subseqs1-set prevs \equiv
$(f$ head \circ snd $)$ 'set prevs $\cup(\bigcup\{$ out-subseqs2-set $v[0 . .<i] \mid v i .(i, v) \in$ set prevs
\})
fun next-subseqs1-spec where
next-subseqs1-spec out nexts prevs $\left(\right.$ out $^{\prime},\left(\right.$ head $^{\prime}$, tail $\left.\left.^{\prime}, n e x t s^{\prime}\right)\right) \longleftrightarrow$
set nexts $^{\prime}=$ set nexts \cup next-subseqs 1 -set prevs \wedge
set out ${ }^{\prime}=$ set out \cup out-subseqs 1 -set prevs
fun next-subseqs2-spec where
next-subseqs2-spec out nexts prevs v js (out', (head', tail', nexts')) \longleftrightarrow set nexts ${ }^{\prime}=$ set nexts \cup next-subseqs1-set prevs \cup next-subseqs2-set $v j s \wedge$ set out' $=$ set out \cup out-subseqs1-set prevs \cup out-subseqs2-set $v j s$
lemma next-subseqs2-Cons:
next-subseqs2-set $v(j \# j s)=\operatorname{insert}(j, f(t a i l!!j) v)($ next-subseqs2-set $v j s)$
by (auto simp: next-subseqs2-set-def)
lemma out-subseqs2-Cons:
out-subseqs2-set $v(j \# j s)=\operatorname{insert}(f(t a i l!!j) v)($ out-subseqs2-set $v j s)$
by (auto simp: out-subseqs2-set-def)
lemma next-subseqs1-set-as-next-subseqs2-set:
next-subseqs1-set $((i, v) \#$ prevs $)=$ next-subseqs1-set prevs \cup next-subseqs2-set v [0..<i]
by (auto simp: next-subseqs1-set-def)
lemma out-subseqs1-set-as-out-subseqs2-set:
out-subseqs1-set $((i, v) \#$ prevs $)=$
$\{f$ head $v\} \cup$ out-subseqs1-set prevs \cup out-subseqs2-set $v[0 . .<i]$
by (auto simp: out-subseqs1-set-def)
lemma next-subseqs1-spec:
shows ^out nexts. next-subseqs1-spec out nexts prevs (next-subseqs1 out nexts prevs)
and \bigwedge out nexts. next-subseqs2-spec out nexts prevs v js (next-subseqs2 out nexts prevs $v j s$)

```
proof(induct rule: next-subseqs1-next-subseqs2.induct)
    case (1 ret0 ret1)
    then show ?case by (simp add: next-subseqs1-set-def out-subseqs1-set-def)
next
    case (2 ret0 ret1 i v prevs)
    show ?case
    proof(cases next-subseqs1 out nexts ((i,v) # prevs))
        case split: (fields out' head' tail' nexts')
    have next-subseqs2-spec (f head v # out) nexts prevs v [0..<i] (out',(head',tail',nexts'))
        by (fold split, unfold next-subseqs1.simps, rule 2)
    then show ?thesis
        apply (unfold next-subseqs2-spec.simps split)
        by (auto simp: next-subseqs1-set-as-next-subseqs2-set out-subseqs1-set-as-out-subseqs2-set)
    qed
next
    case (3 ret0 ret1 prevs v)
    show ?case
    proof (cases next-subseqs1 out nexts prevs)
        case split: (fields out' head' tail' nexts')
            from 3[of out nexts] show ?thesis by(simp add: split next-subseqs2-set-def
out-subseqs2-set-def)
    qed
next
    case (4 ret0 ret1 prevs vj js)
    define tj where tj = tail !! j
    define nexts" where nexts"}=(j,ftjv) # next
    define out" where out"\prime = (f tj v) # out
    let ?n = next-subseqs2 out" nexts" prevs v js
    show ?case
    proof (cases ? n)
        case split: (fields out' head' tail' nexts')
        show ?thesis
            apply (unfold next-subseqs2.simps Let-def)
            apply (fold tj-def)
            apply (fold out'\prime-def nexts''-def)
        apply (unfold split next-subseqs2-spec.simps next-subseqs2-Cons out-subseqs2-Cons)
            using 4[OF refl, of out" nexts", unfolded split]
            apply (auto simp: tj-def nexts"'-def out"'def)
            done
    qed
qed
end
fun next-subseqs where next-subseqs (head,tail,prevs) \(=\) next-subseqs1 head tail [] [] prevs
fun create-subseqs
where create-subseqs base elements \(0=(\)
```

```
    if elements = [] then ([base],(undefined, IArray [], []))
    else let head = hd elements; tail = IArray (tl elements) in
        ([base], (head, tail, [(IArray.length tail, base)])))
    | create-subseqs base elements (Suc n) =
        next-subseqs (snd (create-subseqs base elements n))
definition impl where impl = Sublists-Foldr-Impl create-subseqs next-subseqs
sublocale subseqs-foldr-impl f impl.
definition set-prevs where set-prevs base tail n \equiv
    {(i, foldr f(map ((!) tail) is) base) | i is.
    subseq-of-length n [0..<length tail] is }\wedgei=(\mathrm{ if }n=0\mathrm{ then length tail else hd is)
}
lemma snd-set-prevs:
    snd '(set-prevs base tail n)=(\lambdaas.foldr f as base)' { as. subseq-of-length n tail
as }
    by (subst subseqs-of-length-of-indices, auto simp: set-prevs-def image-Collect)
fun invariant where invariant base elements n (head,tail,prevs) =
    (if elements = [] then prevs = []
        else head =hd elements }\wedge\mathrm{ tail = IArray (tl elements) ^ set prevs = set-prevs
base (tl elements) n)
lemma next-subseq-preserve:
    assumes next-subseqs (head,tail,prevs) = (out, (head',tail',prevs'))
    shows head' = head tail' = tail
proof-
    define P :: 'b list }\times-\times-\times(nat \times 'b) list => boo
    where P}\equiv\lambda(\mathrm{ out, (head',tail',prevs')). head' = head }\wedge tail' = tail
    { fix ret0 ret1 v js
        have *: P (next-subseqs1 head tail ret0 ret1 prevs)
            and P(next-subseqs2 head tail ret0 ret1 prevs v js)
        by(induct rule: next-subseqs1-next-subseqs2.induct, simp add: P-def, auto simp:
Let-def)
    }
    from this(1)[unfolded P-def, of [] [], folded next-subseqs.simps] assms
    show head'}=\mathrm{ head tail' = tail by auto
qed
lemma next-subseqs-spec:
    assumes nxt: next-subseqs (head,tail,prevs) = (out, (head',tail',prevs'))
    shows set prevs'}={(j,f(tail !! j)v)|vij.(i,v)\in\mathrm{ set prevs }\wedgej<i}(is ?g1
    and set out =(f head \circ snd)' set prevs U snd'set prevs' (is ?g2)
proof-
    note next-subseqs1-spec(1)[of head tail Nil Nil prevs]
```

```
    note this[unfolded nxt[simplified]]
    note this[unfolded next-subseqs1-spec.simps]
    note this[unfolded next-subseqs1-set-def out-subseqs1-set-def]
    note * = this[unfolded next-subseqs2-set-def out-subseqs2-set-def]
    then show g1:?g1 by auto
    also have snd '...=(\bigcup{{(f(tail !! j)v)|j.j<i}|vi.(i,v)\in set prevs})
    by (unfold image-Collect, auto)
    finally have **: snd'set prevs' = ...
    with conjunct2[OF *] show ?g2 by simp
qed
lemma next-subseq-prevs:
    assumes nxt: next-subseqs (head,tail,prevs)}=(\mathrm{ out, (head',tail',prevs'))
        and inv-prevs: set prevs = set-prevs base (IArray.list-of tail) n
    shows set prevs' = set-prevs base (IArray.list-of tail) (Suc n) (is ?l = ?r)
proof(intro equalityI subsetI)
    fix }
    assume r:t\in?r
    from this[unfolded set-prevs-def] obtain iis
    where t: t= (hd iis, foldr f (map ((!!) tail) iis) base)
        and sl: subseq-of-length (Suc n) [0..<IArray.length tail] iis by auto
    from sl have length iis > 0 by auto
    then obtain i is where iis: iis =i#is by (meson list.set-cases nth-mem)
    define v}\mathrm{ where v= foldr f (map ((!!) tail) is) base
    note sl[unfolded subseq-of-length-Suc-upt]
    note nxt = next-subseqs-spec[OF nxt]
    show t\in?l
    proof(cases n=0)
        case True
        from sl[unfolded subseq-of-length-Suc-upt] t
    show ?thesis by (unfold nxt[unfolded inv-prevs] True set-prevs-def length-Suc-conv,
auto)
    next
        case [simp]: False
        from sl[unfolded subseq-of-length-Suc-upt iis,simplified]
        have i:i<hd is and is:subseq-of-length n [0..<IArray.length tail] is by auto
        then have *:(hd is,v) \in set-prevs base (IArray.list-of tail) n
            by (unfold set-prevs-def, auto intro!: exI[of - is] simp: v-def)
        with i have (i,f(tail !! i)v)\in{(j,f(tail !! j)v)|j.j<hd is} by auto
        with t[unfolded iis] have t\in\ldots by (auto simp: v-def)
        with * show ?thesis by (unfold nxt[unfolded inv-prevs], auto)
    qed
next
    fix }
    assume l: t\in?l
    from l[unfolded next-subseqs-spec(1)[OF nxt]]
    obtain jvi
    where t: t=(j,f (tail!!j)v)
        and j: j<i
```

and $i v:(i, v) \in$ set prevs by auto
from iv[unfolded inv-prevs set-prevs-def, simplified]
obtain is
where $v: v=$ foldr $f($ map ((!!) tail) is) base
and is: subseq-of-length $n[0 . .<$ IArray.length tail] is
and i : if $n=0$ then $i=$ IArray.length tail else $i=h d$ is by auto
from is $j i$ have j is: subseq-of-length (Suc n) $[0 . .<$ IArray.length tail] ($j \# i s$)
by (unfold subseq-of-length-Suc-upt, auto)
then show $t \in$?r by (auto intro!: exI[of - j\#is] simp: set-prevs-def $t v$)
qed
lemma invariant-next-subseqs:
assumes inv: invariant base elements n state
and nxt: next-subseqs state $=($ out, state $)$
shows invariant base elements (Suc n) state'
$\operatorname{proof}($ cases elements $=[])$
case True with inv nxt show ?thesis by (cases state, auto)
next
case False with inv nxt show ?thesis
proof (cases state)
case state: (fields head tail prevs)
note $i n v=i n v[$ unfolded state $]$
show ?thesis
proof (cases state')
case state': (fields head' tail' prevs')
note $n x t=n x t[$ unfolded state state]
note $[$ simp $]=$ next-subseq-preserve $[$ OF nxt $]$
from False inv
have set prevs $=$ set-prevs base (IArray.list-of tail) n by auto
from False next-subseq-prevs[OF nxt this] inv
show ?thesis by (auto simp: state')
qed
qed
qed
lemma out-next-subseqs:
assumes inv: invariant base elements n state
and nxt: next-subseqs state $=($ out, state $)$
shows set out $=S$ base elements (Suc n)
proof (cases state)
case state: (fields head tail prevs)
show ?thesis
proof $($ cases elements $=[])$
case True
with inv nxt show ?thesis by (auto simp: state S-def)
next
case elements: False
show ?thesis
proof (cases state')

```
    case state':(fields head' tail' prevs')
    from elements inv[unfolded state,simplified]
    have head =hd elements
    and tail = IArray (tl elements)
    and prevs: set prevs = set-prevs base (tl elements) n by auto
    with elements have elements2: elements = head # IArray.list-of tail by
auto
    let ?f = \lambdaas. (foldr f as base)
    have set out =?f'{ys. subseq-of-length (Suc n) elements ys}
    proof-
            from invariant-next-subseqs[OF inv nxt, unfolded state' invariant.simps
if-not-P[OF elements]]
            have tail': tail' = IArray (tl elements)
            and prevs': set prevs' = set-prevs base (tl elements) (Suc n) by auto
            note next-subseqs-spec(2)[OF nxt[unfolded state state], unfolded this]
            note this[folded image-comp, unfolded snd-set-prevs]
            also note prevs
            also note snd-set-prevs
            also have f head '?f '{ as. subseq-of-length n (tl elements) as }=
            ?f 'Cons head' { as. subseq-of-length n (tl elements) as } by (auto simp:
image-def)
            also note image-Un[symmetric]
            also have
                ((#) head ' {as. subseq-of-length n (tl elements) as} \cup
                {as. subseq-of-length (Suc n) (tl elements) as})=
                {as. subseq-of-length (Suc n) elements as}
            by (unfold subseqs-of-length-Suc-Cons elements2, auto)
            finally show ?thesis.
            qed
            then show ?thesis by (auto simp: S-def)
        qed
    qed
qed
lemma create-subseqs:
    create-subseqs base elements n = (out, state) \Longrightarrow
    invariant base elements n state }\wedge\mathrm{ set out =S base elements n
proof(induct n arbitrary:out state)
    case 0 then show ?case by (cases elements, cases state, auto simp: S-def Let-def
set-prevs-def)
next
    case (Suc n) show ?case
    proof (cases create-subseqs base elements n)
        case 1: (fields out" head tail prevs)
        show ?thesis
        proof (cases next-subseqs (head, tail, prevs))
            case (fields out' head' tail' prevs')
            note 2 = this[unfolded next-subseq-preserve[OF this]]
            from Suc(2)[unfolded create-subseqs.simps 1 snd-conv 2]
```

```
        have 3: out' = out state = (head,tail,prevs') by auto
        from Suc(1)[OF 1]
        have inv: invariant base elements n (head, tail, prevs) by auto
        from out-next-subseqs[OF inv 2] invariant-next-subseqs[OF inv 2]
        show ?thesis by (auto simp: 3)
        qed
    qed
qed
sublocale correct-subseqs-foldr-impl f impl invariant
    by (unfold-locales; auto simp: impl-def invariant-next-subseqs out-next-subseqs
create-subseqs)
lemma impl-correct: correct-subseqs-foldr-impl f impl invariant ..
end
lemmas [code] =
    my-subseqs.next-subseqs.simps
    my-subseqs.next-subseqs1.simps
    my-subseqs.next-subseqs2.simps
    my-subseqs.create-subseqs.simps
    my-subseqs.impl-def
end
```


10.7 Reconstruction of Integer Factorization

We implemented Zassenhaus reconstruction-algorithm, i.e., given a factorization of $f \bmod p^{n}$, the aim is to reconstruct a factorization of f over the integers.

```
theory Reconstruction
imports
    Berlekamp-Hensel
    Polynomial-Factorization.Gauss-Lemma
    Polynomial-Factorization.Dvd-Int-Poly
    Polynomial-Factorization.Gcd-Rat-Poly
    Degree-Bound
    Factor-Bound
    Sublist-Iteration
    Poly-Mod
begin
```

hide-const coeff monom

Misc lemmas lemma foldr-of-Cons[simp]: foldr Cons xs ys =xs @ ys by (induct xs, auto)
lemma foldr-map-prod[simp]:

```
    foldr (\lambdax. map-prod (f x) (g x)) xs base = (foldr fxs (fst base), foldr g xs (snd
base))
    by (induct xs, auto)
The main part context poly-mod
begin
definition inv-Mp :: int poly }=>\mathrm{ int poly where
    inv-Mp = map-poly inv-M
definition mul-const :: int poly }=>\mathrm{ int }=>\mathrm{ int where
    mul-const p c = (coeff p 0*c) mod m
fun prod-list-m :: int poly list }=>\mathrm{ int poly where
    prod-list-m (f# fs) = Mp(f* prod-list-m fs)
| prod-list-m [] = 1
```


context

```
    fixes sl-impl :: (int poly, int }\times\mathrm{ int poly list, 'state)subseqs-foldr-impl
    and m2 :: int
begin
definition inv-M2 :: int }=>\mathrm{ int where
    inv-M2 = ( }\lambda\mathrm{ x. if }x\leqm2 then x else x -m)
definition inv-Mp2 :: int poly }=>\mathrm{ int poly where
    inv-Mp2 = map-poly inv-M2
partial-function (tailrec) reconstruction :: 'state }=>\mathrm{ int poly }=>\mathrm{ int poly
    | int }=>\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ int poly list }=>\mathrm{ int poly list
    =>(int }\times(\mathrm{ int poly list)) list }=>\mathrm{ int poly list where
    reconstruction state u luu lu d r vs res cands = (case cands of Nil
        let d'=Suc d
            in if d' + d'>
            (case next-subseqs-foldr sl-impl state of (cands,state)) =>
            reconstruction state' u luu lu d'r vs res cands)
        | (lv',ws) # cands' }=>\mathrm{ let
            lv = inv-M2 lv - lv is last coefficient of vb below
            in if lv dvd coeff luu 0 then let
                    vb=inv-Mp2 (Mp (smult lu (prod-list-m ws)))
        in if vb dvd luu then
            let pp-vb = primitive-part vb;
                    u}\mp@subsup{}{\prime}{=
                    r'=r - length ws;
                    res' = pp-vb # res
                    in if d+d> r'
                    then u'# res'
                    else let
                            lu' = lead-coeff u}\mp@subsup{u}{}{\prime}
                    vs'}=\mathrm{ fold remove1 ws vs;
```

```
                (cands'', state') = subseqs-foldr sl-impl (lu',[]) vs' d
                in reconstruction state' }\mp@subsup{u}{}{\prime}(\mathrm{ smult lu' u') lu'd r r vs'res' cands'"
        else reconstruction state u luu lu d r vs res cands'
        else reconstruction state u luu lu d r vs res cands')
    end
end
```

```
declare poly-mod.reconstruction.simps[code]
declare poly-mod.prod-list-m.simps[code]
declare poly-mod.mul-const-def[code]
declare poly-mod.inv-M2-def [code]
declare poly-mod.inv-Mp2-def[code-unfold]
declare poly-mod.inv-Mp-def[code-unfold]
definition zassenhaus-reconstruction-generic ::
    (int poly, int \(\times\) int poly list, 'state) subseqs-foldr-impl
    \(\Rightarrow\) int poly list \(\Rightarrow\) int \(\Rightarrow\) nat \(\Rightarrow\) int poly \(\Rightarrow\) int poly list where
    zassenhaus-reconstruction-generic sl-impl vs pnf=(let
        \(l f=\) lead-coeff \(f ;\)
        \(p n=p^{\wedge} n\);
        \((-\), state \()=\) subseqs-foldr sl-impl \((l f,[])\) vs 0
    in
        poly-mod.reconstruction pn sl-impl (pn div 2) state \(f\) (smult lf f) lf 0 (length
vs) vs [] [])
```

lemma coeff-mult- 0 : coeff $(f * g) 0=$ coeff $f 0 *$ coeff $g 0$
by (metis poly-0-coeff-0 poly-mult)
lemma lead-coeff-factor: assumes $u: u=v *\left(w::{ }^{\prime} a\right.$::idom poly $)$
shows smult (lead-coeff $u) u=($ smult $($ lead-coeff $w) v) *($ smult $($ lead-coeff $v)$
w)
lead-coeff (smult (lead-coeff w) v) = lead-coeff u lead-coeff (smult (lead-coeff v)
$w)=$ lead-coeff u
unfolding u by (auto simp: lead-coeff-mult lead-coeff-smult)
lemma not-irreducible ${ }_{d}$-lead-coeff-factors: assumes \neg irreducible $_{d}$ (u :: 'a :: idom
poly) degree $u \neq 0$
shows $\exists f g$. smult (lead-coeff u) $u=f * g \wedge$ lead-coeff $f=$ lead-coeff $u \wedge$
lead-coeff $g=$ lead-coeff u
\wedge degree $f<$ degree $u \wedge$ degree $g<$ degree u
proof -
from assms[unfolded irreducible ${ }_{d}$-def, simplified]
obtain $v w$ where deg: degree $v<$ degree u degree $w<$ degree u and u : $u=v$

* w by auto
define f where $f=$ smult (lead-coeff w) v
define g where $g=$ smult (lead-coeff v) w
note $l f=$ lead-coeff-factor [OF u, folded f-def g-def]
show ?thesis

```
    proof (intro exI conjI, (rule lf)+)
    show degree f<degree u degree g<degree u unfolding f-def g-def using deg
u by auto
    qed
qed
lemma mset-subseqs-size: mset'{ys.ys }\in\mathrm{ set (subseqs xs)^ length ys=n}=
    {ws. ws\subseteq# mset xs ^ size ws=n}
proof (induct xs arbitrary: n)
    case (Cons x xs n)
    show ?case (is ?l = ?r)
    proof (cases n)
        case 0
        thus ?thesis by (auto simp: Let-def)
    next
        case (Suc m)
        have ?r = {ws. ws\subseteq# mset (x# xs)}\cap{ps. size ps = n} by auto
    also have {ws.ws\subseteq#mset (x# xs)}={ps.ps\subseteq# mset xs}\cup((\lambdaps.ps+
{#x#})' {ps.ps\subseteq# mset xs})
            by (simp add: multiset-subset-insert)
    also have \ldots\cap{ps. size ps = n}={ps.ps\subseteq# mset xs ^ size ps = n}
            \cup((\lambda ps.ps + {#x#})'{ps.ps\subseteq# mset xs ^ size ps = m}) unfolding Suc
by auto
    finally have id: ?r =
            {ps.ps\subseteq# mset xs ^ size ps = n}\cup(\lambdaps.ps +{#x#})'{ps.ps\subseteq# mset
xs ^ size ps=m}.
    have ?l = mset'{ys \in set (subseqs xs). length ys = Suc m}
            \cupmset`{ys\in(#) x' set (subseqs xs). length ys = Suc m}
            unfolding Suc by (auto simp: Let-def)
    also have mset' {ys\in(#) x' set (subseqs xs). length ys = Suc m}
                = (\lambdaps.ps +{#x#})'mset'{ys\in set (subseqs xs). length ys =m} by force
    finally have id': ?l = mset ' {ys \in set (subseqs xs). length ys = Suc m}\cup
            (\lambdaps.ps +{#x#})'mset'{ys \in set (subseqs xs). length ys =m}.
    show ?thesis unfolding id id' Cons[symmetric] unfolding Suc by simp
    qed
qed auto
context poly-mod-2
begin
lemma prod-list-m[simp]: prod-list-m fs = Mp (prod-list fs)
    by (induct fs, auto)
lemma inv-Mp-coeff:coeff (inv-Mp f) n=inv-M (coeff f n)
    unfolding inv-Mp-def
    by (rule coeff-map-poly, insert m1, auto simp: inv-M-def)
lemma Mp-inv-Mp-id[simp]: Mp (inv-Mpf) =Mpf
    unfolding poly-eq-iff Mp-coeff inv-Mp-coeff by simp
```

```
lemma inv-Mp-rev: assumes bnd: \(\bigwedge n .2 * a b s(c o e f f f n)<m\)
    shows \(i n v-M p(M p f)=f\)
proof (rule poly-eqI)
    fix \(n\)
    define \(c\) where \(c=\) coeff \(f n\)
    from bnd [of \(n\), folded \(c\)-def] have bnd: \(2 *\) abs \(c<m\) by auto
    show coeff (inv-Mp (Mpf)) \(n=\) coeff \(f n\) unfolding inv-Mp-coeff \(M p\)-coeff
c-def[symmetric]
    using inv-M-rev[OF bnd].
qed
lemma mul-const-commute-below: mul-const \(x\) (mul-const \(y z\) ) \(=\) mul-const \(y\) (mul-const \(x z\) )
            unfolding mul-const-def by (metis mod-mult-right-eq mult.left-commute)
```


context

```
fixes \(p n\)
            and sl-impl :: (int poly, int \(\times\) int poly list, 'state) subseqs-foldr-impl
            and sli \(::\) int \(\times\) int poly list \(\Rightarrow\) int poly list \(\Rightarrow\) nat \(\Rightarrow\) 'state \(\Rightarrow\) bool
    assumes prime: prime \(p\)
    and \(m: m=p \widehat{n}\)
    and \(n: n \neq 0\)
    and sl-impl: correct-subseqs-foldr-impl ( \(\lambda x\). map-prod (mul-const \(x)\) (Cons \(x)\) )
sl-impl sli
begin
private definition test-dvd-exec lu \(u\) ws \(=(\neg\) inv-Mp (Mp (smult lu (prod-mset
ws))) dvd smult lu u)
private definition test-dvd \(u\) ws \(=(\forall v l . v d v d u \longrightarrow 0<\) degree \(v \longrightarrow\) degree \(v<\) degree \(u\)
\(\longrightarrow \neg v=m\) smult \(l(\) prod-mset ws))
private definition large-m \(u\) vs \(=(\forall v n . v\) dvd \(u \longrightarrow\) degree \(v \leq\) degree-bound \(v s \longrightarrow 2 * a b s(\) coeff \(v n)<m)\)
lemma large-m-factor: large-m \(u\) vs \(\Longrightarrow v d v d u \Longrightarrow\) large- \(m v\) vs
unfolding large-m-def using dvd-trans by auto
lemma test-dvd-factor: assumes \(u: u \neq 0\) and test: test-dvd \(u\) ws and \(v u: v d v d\) \(u\)
shows test-dvd \(v\) ws
proof -
from \(v u\) obtain \(w\) where \(u v: u=v * w\) unfolding dvd-def by auto
from \(u\) have deg: degree \(u=\) degree \(v+\) degree \(w\) unfolding \(u v\) by (subst degree-mult-eq, auto)
show ?thesis unfolding test-dvd-def
proof (intro allI impI, goal-cases)
case (1fl)
```

```
    from 1(1) have fu: f dvd u unfolding uv by auto
    from 1(3) have deg: degree }f<\mathrm{ degree }u\mathrm{ unfolding deg by auto
    from test[unfolded test-dvd-def, rule-format, OF fu 1(2) deg]
    show ?case.
    qed
qed
```

lemma coprime-exp-mod: coprime lu $p \Longrightarrow$ prime $p \Longrightarrow n \neq 0 \Longrightarrow$ lu $\bmod p{ }^{\wedge} n$
$\neq 0$
by (auto simp add: abs-of-pos prime-gt-0-int)
interpretation correct-subseqs-foldr-impl λx. map-prod (mul-const x) (Cons x)
sl-impl sli by fact
lemma reconstruction: assumes

and $f: f=u *$ prod-list res
and meas: meas $=(r-d$, cands $)$
and $d r: d+d \leq r$
and $r: r=$ length $v s$
and cands: set cands $\subseteq S(l u,[])$ vs d
and $d 0: d=0 \Longrightarrow$ cands $=[]$
and $l u: l u=l e a d$-coeff u
and factors: unique-factorization-m u (lu,mset vs)
and $s f$: poly-mod.square-free-m pu
and cop: coprime lu p
and norm: $\bigwedge v . v \in$ set $v s \Longrightarrow M p v=v$
and tests: \bigwedge ws. ws $\subseteq \#$ mset vs $\Longrightarrow w s \neq\{\#\} \Longrightarrow$
size $w s<d \vee$ size ws $=d \wedge$ ws $\notin($ mset o snd) 'set cands
\Longrightarrow test-dvd u ws
and $\operatorname{irr}: \wedge f . f \in$ set res \Longrightarrow irreducible $_{d} f$
and deg: degree $u>0$
and cands-ne: cands $\neq[] \Longrightarrow d<r$
and large: $\forall v n . v$ dvd smult lu $u \longrightarrow$ degree $v \leq$ degree-bound vs
$\longrightarrow 2 * a b s($ coeff $v n)<m$
and $f 0: f \neq 0$
and state: sli $(l u,[])$ vs d state
and $m 2: m 2=m$ div 2
shows $f=$ prod-list $f s \wedge\left(\forall f i \in\right.$ set fs. irreducible $\left._{d} f\right)$
proof -
from large have large: large-m (smult lu u) vs unfolding large-m-def by auto
interpret p : poly-mod-prime p using prime by unfold-locales
define R where $R \equiv$ measures [
$\lambda(n::$ nat, $c d s::($ int \times int poly list $)$ list $) . n$,
$\lambda(n, c d s)$. length $c d s]$
have $w f$: wf R unfolding R-def by simp
have mset-snd-S: \bigwedge vs lu d. (mset o snd)' $S(l u,[])$ vs $d=$
$\{$ ws. ws $\subseteq \#$ mset vs \wedge size $w s=d\}$
by (fold mset-subseqs-size image-comp, unfold S-def image-Collect, auto)
have inv-M2[simp]: inv-M2 m2 $=$ inv-M unfolding inv-M2-def m2 inv-M-def
by (intro ext, auto)
have inv-Mp2 [simp]: inv-Mp2 m2 $=$ inv-Mp unfolding inv-Mp2-def inv-Mp-def by simp
have $p-M p[s i m p]: \bigwedge f . p . M p(M p f)=p . M p f$ using $m p . m 1 n M p-M p-p o w-i s-M p$ by blast
\{
fix u lu vs
assume eq: $M p u=M p$ (smult $l u($ prod-mset vs)) and cop: coprime lu p and size: size vs $\neq 0$
and $m i: \bigwedge v . v \in \# v s \Longrightarrow$ irreducible $_{d}-m v \wedge$ monic v
from cop p.m1 have lu0: lu $\neq 0$ by auto
from size have $v s \neq\{\#\}$ by auto
then obtain $v v s^{\prime}$ where $v s-v: v s=v s^{\prime}+\{\# v \#\}$ by (cases vs, auto)
have mon: monic (prod-mset vs)
by (rule monic-prod-mset, insert mi, auto)
hence vs0: prod-mset vs $\neq 0$ by (metis coeff-0 zero-neq-one)
from mon have l-vs: lead-coeff (prod-mset vs) $=1$.
have deg-ws: degree-m (smult lu (prod-mset vs)) $=$ degree (smult lu (prod-mset vs))
by (rule degree-m-eq[OF - m1], unfold lead-coeff-smult,
insert cop n p.m1 l-vs, auto simp: m)
with eq have degree-m $u=$ degree (smult lu (prod-mset vs)) by auto
also have $\ldots=$ degree (prod-mset $v s^{\prime} * v$) unfolding degree-smult-eq vs-v
using lu0 by (simp add:ac-simps)
also have $\ldots=$ degree (prod-mset $v s^{\prime}$) + degree v
by (rule degree-mult-eq, insert vs0 [unfolded vs-v], auto)
also have $\ldots \geq$ degree v by simp
finally have deg-v: degree $v \leq$ degree- $m u$.
from mi[unfolded vs-v, of v] have irreducible $_{d}-m v$ by auto
hence $0<$ degree-m v unfolding irreducible $_{d}-m$-def by auto
also have $\ldots \leq$ degree v by (rule degree-m-le)
also have $\ldots \leq$ degree- $m u$ by (rule deg-v)
also have $\ldots \leq$ degree u by (rule degree-m-le)
finally have degree $u>0$ by auto
$\}$ note deg-non-zero $=$ this
\{
fix u :: int poly and $v s::$ int poly list and $d::$ nat
assume deg-u: degree $u>0$
and cop: coprime (lead-coeff u) p
and uf: unique-factorization-m u (lead-coeff u, mset $v s$)
and sf: p.square-free-m u
and norm: $\bigwedge v . v \in$ set $v s \Longrightarrow M p v=v$
and d : size (mset $v s)<d+d$
and tests: \bigwedge ws. $w s \subseteq \#$ mset $v s \Longrightarrow w s \neq\{\#\} \Longrightarrow$ size $w s<d \Longrightarrow$ test-dvd u ws
from deg-u have $u 0: u \neq 0$ by auto
have irreducible ${ }_{d} u$
proof (rule irreducible ${ }_{d} I[$ OF deg-u])
fix $q q^{\prime}::$ int poly
assume deg: degree $q>0$ degree $q<$ degree u degree $q^{\prime}>0$ degree $q^{\prime}<$ degree
and $u q: u=q * q^{\prime}$
then have $q u: q d v d u$ and $q^{\prime} u: q^{\prime} d v d u$ by auto
from $u 0$ have deg-u: degree $u=$ degree $q+$ degree q^{\prime} unfolding $u q$ by (subst degree-mult-eq, auto)
from coprime-lead-coeff-factor[OF prime cop[unfolded uq]]
have cop-q: coprime (lead-coeff q) p coprime (lead-coeff q^{\prime}) p by auto
from unique-factorization-m-factor[OF prime uf[unfolded uq] --n m, folded $u q$,

OF cop sf]
obtain fs gs l where $u f-q$: unique-factorization-m q (lead-coeff $q, f s$) and $u f-q^{\prime}$: unique-factorization-m q^{\prime} (lead-coeff q^{\prime}, gs)
and Mf-eq: Mf $(l, m s e t ~ v s)=M f\left(\right.$ lead-coeff $q *$ lead-coeff $\left.q^{\prime}, f s+g s\right)$
and $f s$ - $i d$: image-mset $M p f s=f s$
and $g s$-id: image-mset $M p g s=g s$ by auto
from $M f$-eq $f s$-id $g s$ - $i d$ have image-mset $M p($ mset vs $)=f s+g s$ unfolding Mf-def by auto
also have image-mset $M p$ (mset vs) $=$ mset vs using norm by (induct vs, auto)
finally have $e q$: mset $v s=f s+g s$ by simp
from uf-q[unfolded unique-factorization-m-alt-def factorization-m-def split]
have q-eq: $q=m$ smult (lead-coeff q) (prod-mset fs) by auto
have degree-m $q=$ degree q
by (rule degree-m-eq[OF-m1], insert cop-q(1) n p.m1, unfold m, auto simp:)
with q-eq have degm- q : degree $q=$ degree (Mp (smult (lead-coeff q) (prod-mset
$\left.f_{s}\right)$)) by auto
with deg have $f s$-nempty: $f s \neq\{\#\}$
by (cases fs; cases lead-coeff $q=0$; auto simp: Mp-def)
from $u f-q^{\prime}[$ unfolded unique-factorization-m-alt-def factorization-m-def split]
have q^{\prime}-eq: $q^{\prime}=m$ smult (lead-coeff q^{\prime}) (prod-mset gs) by auto
have degree-m $q^{\prime}=$ degree q^{\prime}
by (rule degree-m-eq[OF-m1], insert cop-q(2) n p.m1, unfold m, auto simp:)
with q^{\prime}-eq have degm- q^{\prime} : degree $q^{\prime}=$ degree ($M p$ (smult (lead-coeff q^{\prime})
(prod-mset gs))) by auto
with deg have gs-nempty: gs $\neq\{\#\}$
by (cases gs; cases lead-coeff $q^{\prime}=0$; auto simp: Mp-def)
from eq have size: size $f s+$ size $g s=$ size (m set vs) by auto
with d have choice: size $f s<d \vee$ size gs $<d$ by auto
from choice show False
proof
assume f_{s} : size $f_{s}<d$
from eq have sub: $f s \subseteq \#$ mset vs using mset-subset-eq-add-left[of fs gs] by
auto
have test-dvd $u f s$

```
                by (rule tests[OF sub fs-nempty, unfolded Nil], insert fs, auto)
            from this[unfolded test-dvd-def] uq deg q-eq show False by auto
    next
        assume gs: size gs <d
        from eq have sub: gs\subseteq# mset vs using mset-subset-eq-add-left[of fs gs] by
auto
            have test-dvd u gs
            by (rule tests[OF sub gs-nempty, unfolded Nil], insert gs, auto)
            from this[unfolded test-dvd-def] uq deg q'-eq show False unfolding uq by
auto
        qed
    qed
} note irreducible}\mp@subsup{\mp@code{d}}{\mathrm{ -via-tests = this}}{
show ?thesis using assms(1-16) large state
proof (induct meas arbitrary: u lu d r vs res cands state rule: wf-induct[OF wf])
    case (1 meas u lu d r vs res cands state)
    note IH=1(1)[rule-format]
    note res =1(2)[unfolded reconstruction.simps[where cands=cands]]
    note f=1(3)
    note meas =1(4)
    note dr=1(5)
    note r=1(6)
    note cands=1(7)
    note d0 = 1(8)
    note lu = 1(9)
    note factors = 1(10)
    note sf=1(11)
    note cop = 1(12)
    note norm = 1(13)
    note tests = 1(14)
    note irr = 1(15)
    note deg-u = 1(16)
    note cands-empty = 1(17)
    note large = 1(18)
    note state = 1(19)
    from unique-factorization-m-zero[OF factors]
    have Mlu0: M lu \not=0 by auto
    from Mlu0 have lu0:lu }=0\mathrm{ by auto
    from this[unfolded lu] have u0:u\not=0 by auto
    from unique-factorization-m-imp-factorization[OF factors]
    have fact: factorization-m u (lu,mset vs) by auto
    from this[unfolded factorization-m-def split] norm
    have vs:}u=m smult lu (prod-list vs) and
        vs-mi: \bigwedgef.f\in#mset vs \Longrightarrow \mp@subsup{irreducible d}{d}{}-mf\wedge monic f by auto
    let ?luu = smult lu u
    show ?case
    proof (cases cands)
        case Nil
        note res = res[unfolded this]
```

```
let \(? d^{\prime}=\) Suc \(d\)
```

show ?thesis
proof (cases $r<? d^{\prime}+$? $\left.d^{\prime}\right)$
case True
with res have $f s: f s=u \#$ res by (simp add: Let-def)
from True [unfolded r] have size: size (mset vs) <? $d^{\prime}+? d^{\prime}$ by auto
have irreducible ${ }_{d} u$
by (rule irreducible ${ }_{d}$-via-tests $[O F$ deg-u cop[unfolded lu] factors(1)[unfolded
$l u]$
sf norm size tests], auto simp: Nil)
with $f s f$ irr show ?thesis by simp
next
case False
with $d r$ have $d r: ? d^{\prime}+? d^{\prime} \leq r$ and $d r^{\prime}: ? d^{\prime}<r$ by auto
obtain state ${ }^{\prime}$ cands' ${ }^{\prime}$ where sln: next-subseqs-foldr sl-impl state $=\left(\right.$ cands $^{\prime}$, state $\left.{ }^{\prime}\right)$
by force
from next-subseqs-foldr[OF sln state] have state': sli (lu,[]) vs (Suc d) state'
and cands': set cands ${ }^{\prime}=S(l u,[])$ vs $($ Suc d) by auto
let ${ }^{2}$ new $=$ subseqs-length mul-const lu ? d^{\prime} vs
have $R:\left(\left(r-S u c d\right.\right.$, cands $\left.{ }^{\prime}\right)$, meas $) \in R$ unfolding meas R-def using
False by auto
from res False sln
have fact: reconstruction sl-impl m2 state' u ?luu lu ? $d^{\prime} r$ vs res cands ${ }^{\prime}=f s$
by auto
show ?thesis
proof (rule IH[OF R fact f refl dr $r-$-lu factors sf cop norm - irr deg-u
$d r^{\prime}$ large state $]$, goal-cases)
case (4 ws)
show ?case
proof (cases size ws $=$ Suc d)
case False
with 4 have size ws < Suc d by auto
thus ?thesis by (intro tests[OF 4(1-2)], unfold Nil, auto)
next
case True
from 4 (3)[unfolded cands' mset-snd-S] True 4 (1) show ?thesis by auto
qed
qed (auto simp: cands')
qed
next
case (Cons c cds)
with $d 0$ have $d 0: d>0$ by auto
obtain $l v^{\prime} w s$ where $c: c=\left(l v^{\prime}, w s\right)$ by force
let $? l v=i n v-M l v^{\prime}$
define $v b$ where $v b \equiv \operatorname{inv-Mp}(M p$ (smult lu (prod-list ws))
note res $=$ res[unfolded Cons c list.simps split]
from cands[unfolded Cons c S-def] have ws: ws \in set (subseqs vs) length ws
$=d$
and $l v^{\prime \prime}: l v^{\prime}=$ foldr mul-const ws lu by auto
from subseqs-sub-mset[OF ws(1)] have ws-vs: mset ws $\subseteq \#$ mset vs set ws \subseteq set vs
using set-mset-mono subseqs-length-simple-False by auto fastforce
have mon-ws: monic (prod-mset (mset ws))
by (rule monic-prod-mset, insert ws-vs vs-mi, auto)
have l-ws: lead-coeff (prod-mset (mset ws)) = 1 using mon-ws.
have $l v^{\prime}: M l v^{\prime}=M($ coeff $(s m u l t ~ l u($ prod-list ws) $) 0)$
unfolding $l v^{\prime \prime}$ coeff-smult
by (induct ws arbitrary: lu, auto simp: mul-const-def M-def coeff-mult-0)
(metis mod-mult-right-eq mult.left-commute)
show ?thesis
proof (cases ?lv dvd coeff ?luu $0 \wedge v b d v d$?luu)
case False
have $n d v d: \neg v b d v d ? l u u$
proof
assume dvd: vb dvd ?luu
hence coeff vb 0 dvd coeff ?luu 0 by (metis coeff-mult-0 dvd-def)
with dvd False have $? l v \neq$ coeff $v b 0$ by auto
also have $l v^{\prime}=M l v^{\prime}$ using $w s(2) d 0$ unfolding $l v^{\prime \prime}$
by (cases ws, force, simp add: M-def mul-const-def)
also have inv-M (Mlv) = coeff vb 0 unfolding vb-def inv-Mp-coeff
Mp-coeff lv' by simp
finally show False by simp
qed
from False res
have res: reconstruction sl-impl m2 state u ?luu lu d r vs res cds $=f$ s unfolding $v b$-def Let-def by auto
have $R:((r-d, c d s)$, meas $) \in R$ unfolding meas Cons R-def by auto
from cands have cands: set cds $\subseteq S$ (lu, []) vs d unfolding Cons by auto
show ?thesis
proof (rule IH[OF R res frefl dr r cands - lu factors sf cop norm - irr deg-u

- large state], goal-cases)
case (3 ws')
show? case
proof (cases ws ${ }^{\prime}=$ mset ws)
case False
show ?thesis
by (rule tests[OF 3(1-2)], insert 3(3) False, force simp: Cons c)
next
case True
have test: test-dvd-exec lu $u w^{\prime}$
unfolding True test-dvd-exec-def using ndvd unfolding $v b-d e f$ by
simp
show ?thesis unfolding test-dvd-def
proof (intro allI impI notI, goal-cases)
case ($1 v l$)
note $\operatorname{deg}-v=1(2-3)$
from 1(1) obtain w where $u: u=v * w$ unfolding dvd-def by auto

```
            from u0 have deg: degree }u=\mathrm{ degree }v+\mathrm{ degree w unfolding u
            by (subst degree-mult-eq, auto)
                                    define }\mp@subsup{v}{}{\prime}\mathrm{ where }\mp@subsup{v}{}{\prime}=\mathrm{ smult (lead-coeff w)v
                                    define }\mp@subsup{w}{}{\prime}\mathrm{ where }\mp@subsup{w}{}{\prime}=\mathrm{ smult (lead-coeff v) w
                                    let ?ws = smult (lead-coeff w*l) (prod-mset ws')
                                    from arg-cong[OF 1(4), of \lambda f.Mp (smult (lead-coeff w) f)]
                                    have v'-ws': Mp v'=Mp ?ws unfolding v'-def
                    by simp
from lead-coeff-factor[OF u, folded v'-def w'-def]
have prod: ?luu = v'* w' and lc:lead-coeff v'}=lu and lead-coeff w
= lu
            unfolding lu by auto
                            with lu0 have lc0: lead-coeff v\not=0 lead-coeff w\not=0 unfolding v'-def
w'-def by auto
                            from deg-v have deg-w: 0 < degree w degree w< degree u unfolding
deg by auto
    from deg-v deg-w lc0
    have deg: 0< degree v}\mp@subsup{v}{}{\prime}\mathrm{ degree }\mp@subsup{v}{}{\prime}<\mathrm{ degree u 0< degree w' degree w'
< degree u
            unfolding v'-def w'-def by auto
            from prod have v-dvd: v' dvd ?luu by auto
            with test[unfolded test-dvd-exec-def]
            have neq: v'\not= inv-Mp (Mp (smult lu (prod-mset ws'))) by auto
            have deg-m-v':}\mathrm{ degree-m v}\mp@subsup{v}{}{\prime}=\mathrm{ degree }\mp@subsup{v}{}{\prime
        by (rule degree-m-eq[OF - m1], unfold lc m,
        insert cop prime n coprime-exp-mod, auto)
    with }\mp@subsup{v}{}{\prime}-w\mp@subsup{s}{}{\prime}\mathrm{ have degree }\mp@subsup{v}{}{\prime}=\mathrm{ degree-m ?ws by simp
```



```
    also have ... = degree-m (prod-list ws) unfolding True by simp
    also have ... \leq degree (prod-list ws) by (rule degree-m-le)
    also have ... \leq degree-bound vs
        using ws-vs(1) ws(2) dr[unfolded r] degree-bound by auto
    finally have degree v}\mp@subsup{v}{}{\prime}\leq\mathrm{ degree-bound vs .
    from inv-Mp-rev[OF large[unfolded large-m-def, rule-format, OF v-dvd
this]]
    have inv: inv-Mp (Mp v') = v' by simp
    from arg-cong[OF v'-ws', of inv-Mp, unfolded inv]
    have v': v'=inv-Mp (Mp ?ws) by auto
    have deg-ws: degree-m ?ws = degree ?ws
    proof (rule degree-m-eq[OF - m1],
        unfold lead-coeff-smult True l-ws, rule)
        assume lead-coeff w*l*1 mod m=0
        hence 0:M (lead-coeff w*l)=0 unfolding M-def by simp
        have Mp ?ws = Mp (smult (M (lead-coeff w*l)) (prod-mset ws'})
by simp
        also have \ldots=0 unfolding 0 by simp
        finally have Mp ?ws =0 by simp
        hence }\mp@subsup{v}{}{\prime}=0\mathrm{ unfolding v' by (simp add: inv-Mp-def)
        with deg show False by auto
```


qed

from $\arg -c o n g\left[O F v^{\prime}\right.$, of λ f. lead-coeff ($M p f$), simplified $]$
have $M l u=M$ (lead-coeff v^{\prime}) using $l c$ by simp
also have $\ldots=$ lead-coeff ($M p v^{\prime}$)
by (rule degree-m-eq-lead-coeff[OF deg-m-v', symmetric])
also have \ldots = lead-coeff ($M p$?ws)
using arg-cong[OF v^{\prime}, of λf. lead-coeff ($\left.\left.M p f\right)\right]$ by simp
also have $\ldots=M$ (lead-coeff ? ws $)$
by (rule degree-m-eq-lead-coeff[OF deg-ws])
also have $\ldots=M$ (lead-coeff $w * l$) unfolding lead-coeff-smult True
l-ws by simp
finally have $i d: M l u=M(l e a d-c o e f f ~ w * l)$.
note v^{\prime}
also have $M p ? w s=M p\left(\operatorname{smult}(M(\right.$ lead-coeff $w * l))\left(\right.$ prod-mset $\left.\left.w s^{\prime}\right)\right)$
by simp
also have $\ldots=M p$ (smult lu (prod-mset ws')) unfolding $i d[$ symmetric]
by simp
finally show False using neq by simp
qed
qed
qed (insert d0 Cons cands-empty, auto)
next
case True
define $p p-v b$ where $p p-v b \equiv$ primitive-part $v b$
define u^{\prime} where $u^{\prime} \equiv u$ div $p p-v b$
define $l u^{\prime}$ where $l u^{\prime} \equiv$ lead-coeff u^{\prime}
let ?luu' $=$ smult $l u^{\prime} u^{\prime}$
define $v s^{\prime}$ where $v s^{\prime} \equiv$ fold remove 1 ws vs
obtain state' cands' where slc: subseqs-foldr sl-impl (lu', []) vs' $d=\left(\right.$ cands $^{\prime}$, state') by force
from subseqs-foldr[OF slc] have state': sli $\left(l u^{\prime},[]\right) v^{\prime} d$ state ${ }^{\prime}$
and cands': set cands ${ }^{\prime}=S\left(l u^{\prime},[]\right) v s^{\prime} d$ by auto
let ? ${ }^{\text {res }}{ }^{\prime}=p p-v b \#$ res
let $? r^{\prime}=r-$ length $w s$
note defs $=v b$-def $p p-v b-d e f u^{\prime}$-def $l u^{\prime}-$ def $v s^{\prime}-$ def slc
from fold-remove1-mset[OF subseqs-sub-mset[OF ws(1)]]
have vs-split: mset vs $=$ mset $v s^{\prime}+m s e t ~ w s ~ u n f o l d i n g ~ v s '-d e f ~ b y ~ a u t o ~$
hence $v s^{\prime}$-diff: mset $v s^{\prime}=m s e t ~ v s ~-~ m s e t ~ w s ~ a n d ~ w s-s u b: ~ m s e t ~ w s ~ \subseteq \# ~$ mset vs by auto
from arg-cong[OF vs-split, of size]
have $r^{\prime}: ? r^{\prime}=$ length $v s^{\prime}$ unfolding defs r by simp
from arg-cong[OF vs-split, of prod-mset $]$
have prod-vs: prod-list vs $=$ prod-list $v^{\prime}{ }^{\prime} *$ prod-list ws by simp
from arg-cong[OF vs-split, of set-mset] have set-vs: set vs $=$ set $v s^{\prime} \cup$ set ws by auto
note inv $=$ inverse-mod-coprime-exp[OF m prime $n]$
note p-inv $=$ p.inverse-mod-coprime $[$ OF prime $]$
from True res slc
have res: $\left(\right.$ if ${ }^{2} r^{\prime}<d+d$ then $u^{\prime} \#$?res ${ }^{\prime}$ else reconstruction sl-impl m2

```
state \({ }^{\prime}\)
    \(u^{\prime}\) ?luu' lu' d ? \(r^{\prime}\) vs' ? \({ }^{\text {? }}\) es \({ }^{\prime}\) cands' \()=f s\)
            unfolding Let-def defs by auto
    from True have \(d v d: v b\) dvd ?luu by simp
    from dvd-smult-int[OF lu0 this] have ppu: pp-vb dvd \(u\) unfolding defs by
simp
    hence \(u: u=p p-v b * u^{\prime}\) unfolding \(u^{\prime}\)-def
        by (metis dvdE mult-eq-0-iff nonzero-mult-div-cancel-left)
    hence \(u u^{\prime}: u^{\prime} d v d u\) unfolding \(d v d-d e f\) by auto
    have \(f\) : \(f=u^{\prime}\) * prod-list ? res' using \(f u\) by auto
    let ?fact \(=\) smult lu (prod-mset (mset ws))
    have \(M p-v b: M p v b=M p\) (smult lu (prod-list ws)) unfolding vb-def by
simp
    have \(p p-v b-v b\) : smult (content \(v b\) ) \(p p-v b=v b\) unfolding \(p p-v b-d e f\) by (rule
content-times-primitive-part)
    \{
    have smult (content \(v b) u=(\) smult (content \(v b) p p-v b) * u^{\prime}\) unfolding \(u\)
by \(\operatorname{simp}\)
            also have smult (content \(v b\) ) pp-vb \(=v b\) by fact
            finally have smult (content \(v b\) ) \(u=v b * u^{\prime}\) by simp
            from arg-cong[OF this, of Mp]
            have \(M p\left(M p v b * u^{\prime}\right)=M p(s m u l t(\) content vb) u) by simp
                            hence \(M p\) (smult (content vb) \(u\) ) \(=M p\left(? f a c t * u^{\prime}\right)\) unfolding \(M p-v b\) by
simp
    \} note prod \(=\) this
    from arg-cong[OF this, of p.Mp]
    have prod': p.Mp (smult (content vb) \(u\) ) \(=p . M p\left(? f a c t * u^{\prime}\right)\) by simp
    from dvd have lead-coeff vb dvd lead-coeff (smult lu u)
        by (metis dvd-def lead-coeff-mult)
    hence ldvd: lead-coeff vb dvd lu*lu unfolding lead-coeff-smult lu by simp
    from cop have cop-lu: coprime ( \(l u * l u\) ) \(p\)
        by \(\operatorname{simp}\)
    from coprime-divisors [OF ldvd dvd-refl] cop-lu
    have cop-lvb: coprime (lead-coeff vb) \(p\) by simp
    then have cop-vb: coprime (content \(v b\) ) \(p\)
        by (auto intro: coprime-divisors [OF content-dvd-coeff dvd-refl])
    from \(u\) have \(u^{\prime} d v d u\) unfolding \(d v d-d e f\) by auto
    hence lead-coeff \(u^{\prime}\) dvd lu unfolding lu by (metis dvd-def lead-coeff-mult)
    from coprime-divisors[OF this dvd-refl] cop
    have coprime (lead-coeff \(u^{\prime}\) ) \(p\) by simp
    hence coprime ( \(l u *\) lead-coeff \(u^{\prime}\) ) \(p\) and cop-lu': coprime \(l u^{\prime} p\)
        using cop by (auto simp: lu'-def)
    hence cop': coprime (lead-coeff (?fact \(\left.* u^{\prime}\right)\) ) p
        unfolding lead-coeff-mult lead-coeff-smult l-ws by simp
    have p.square-free-m (smult (content vb) u) using cop-vb sf p-inv
    by (auto intro!: p.square-free-m-smultI)
    from p.square-free-m-cong[OF this prod']
    have \(s f^{\prime}\) : p.square-free-m (?fact * \(u^{\prime}\) ) by simp
    from p.square-free-m-factor[OF this]
```

have $s f-u^{\prime}:$ p.square-free-m u^{\prime} by simp
have unique-factorization-m (smult (content vb) $u)(l u *$ content $v b$, mset
$v s)$
using cop-vb factors inv by (auto intro: unique-factorization-m-smult)
from unique-factorization-m-cong[OF this prod]
have uf: unique-factorization-m (?fact $\left.* u^{\prime}\right)(l u *$ content $v b$, mset vs). \{
from unique-factorization-m-factor[OF prime uf cop ${ }^{\prime} s f^{\prime} n m$]
obtain $f s$ gs where uf1: unique-factorization-m ?fact (lu, fs)
and uf2: unique-factorization-m $u^{\prime}\left(l u^{\prime}, g s\right)$
and $e q: M f(l u *$ content $v b, m s e t ~ v s)=M f\left(l u * l e a d-c o e f f ~ u^{\prime}, f s+g s\right)$
unfolding lead-coeff-smult l-ws lu'-def
by auto
have factorization-m? fact (lu, mset ws)
unfolding factorization-m-def split using set-vs vs-mi norm by auto
with uf1 [unfolded unique-factorization-m-alt-def] have Mf (lu,mset ws)
$=M f(l u, f s)$
by blast
hence $f s$-ws: image-mset $M p f_{s}=$ image-mset $M p$ (mset ws) unfolding
Mf-def split by auto
from eq[unfolded Mf-def split]
have image-mset $M p$ (mset vs) $=$ image-mset $M p f s+i m a g e-m s e t ~ M p g s$
by auto
from this[unfolded fs-ws vs-split] have gs: image-mset Mp gs = image-mset
$M p$ (mset vs ${ }^{\prime}$)
by (simp add: ac-simps)
from uf1 have uf1: unique-factorization-m ?fact (lu, mset ws)
unfolding unique-factorization-m-def Mf-def split fs-ws by simp
from uf2 have uf2: unique-factorization-m $u^{\prime}\left(l u^{\prime}\right.$, mset vs')
unfolding unique-factorization-m-def Mf-def split gs by simp
note uf1 uf2
\}
hence factors: unique-factorization-m $u^{\prime}\left(l u^{\prime}\right.$, mset vs $\left.{ }^{\prime}\right)$
unique-factorization-m?fact (lu, mset ws) by auto
have $l u^{\prime}: l u^{\prime}=l e a d$-coeff u^{\prime} unfolding $l u^{\prime}$-def by simp
have $v b 0: v b \neq 0$ using $d v d l u 0 u 0$ by auto
from $w s(2)$ have size-ws: size ($m s e t w s)=d$ by auto
with $d 0$ have size-ws0: size (mset ws) $\neq 0$ by auto
then obtain $w w s^{\prime}$ where $w s-w: w s=w \# w s^{\prime}$ by (cases ws, auto)
from $M p-v b$ have $M p-v b^{\prime}: M p v b=M p$ (smult lu (prod-mset $($ mset ws)))
by auto
have deg-vb: degree $v b>0$
by (rule deg-non-zero[OF Mp-vb' cop size-ws0 vs-mi], insert vs-split, auto)
also have degree $v b=$ degree $p p-v b$ using arg-cong[OF pp-vb-vb, of degree]
unfolding degree-smult-eq using vb0 by auto
finally have deg-pp: degree $p p-v b>0$ by auto
hence $p p-v b 0: p p-v b \neq 0$ by auto
from factors (1)[unfolded unique-factorization-m-alt-def factorization-m-def]
have eq-u': Mp $u^{\prime}=M p$ (smult lu' (prod-mset (mset vs $\left.{ }^{\prime}\right)$)) by auto
from $r^{\prime}[$ unfolded $w s(2)] d r$ have length $v s^{\prime}+d=r$ by auto
from this cands-empty[unfolded Cons] have size (mset vs') $\neq 0$ by auto
from deg-non-zero[OF eq-u' cop-lu' this vs-mi]
have deg-u': degree $u^{\prime}>0$ unfolding vs-split by auto
have irr-pp: irreducible ${ }_{d} p p-v b$
proof (rule irreducible ${ }_{d} I[$ OF deg-pp $]$)
fix q :: int poly
assume deg- q : degree $q>0$ degree $q<$ degree $p p$-vb
and deg-r: degree $r>0$ degree $r<$ degree $p p-v b$
and $p p-q r: p p-v b=q * r$
then have $q v b: q$ dvd $p p-v b$ by auto
from dvd-trans[OF qvb ppu] have qu: q dvd u.
have degree $p p-v b=$ degree $q+$ degree r unfolding $p p-q r$
by (subst degree-mult-eq, insert pp-qr pp-vb0, auto)
have uf: unique-factorization-m (smult (content vb) pp-vb) (lu, mset ws) unfolding $p p-v b-v b$
by (rule unique-factorization-m-cong[OF factors(2)], insert Mp-vb, auto)
from unique-factorization-m-smultD $[O F$ uf inv] cop-vb
have $u f$: unique-factorization-m pp-vb (lu * inverse-mod (content vb) m, mset ws) by auto
from $p p u$ have lead-coeff $p p-v b$ dvd $l u$ unfolding $l u$ by (metis dvd-def lead-coeff-mult)
from coprime-divisors [OF this dvd-refl] cop
have cop-pp: coprime (lead-coeff pp-vb) p by simp
from coprime-lead-coeff-factor[OF prime cop-pp[unfolded pp-qr]]
have cop-qr: coprime (lead-coeff q) p coprime (lead-coeff r) p by auto
from p.square-free-m-factor[OF sf[unfolded u]]
have sf-pp: p.square-free-m pp-vb by simp
from unique-factorization-m-factor $[$ OF prime uf[unfolded pp-qr] - $n m$, folded $p p-q r$, OF cop-pp sf-pp]
obtain fs gs l where $u f$ - q : unique-factorization-m q (lead-coeff $q, f s$) and $u f$-r: unique-factorization-m r (lead-coeff $r, g s$)
and Mf-eq: $M f(l$, mset ws $)=M f($ lead-coeff $q *$ lead-coeff $r, f s+g s)$
and $f s$ - id: image-mset $M p f s=f s$
and $g s$-id: image-mset $M p$ gs $=g s$ by auto
from $M f$-eq have image-mset $M p($ mset ws) $=$ image-mset $M p f s+$ image-mset Mp gs
unfolding Mf-def by auto
also have image-mset $M p(m s e t ~ w s)=$ mset ws using norm ws-vs(2) by (induct ws, auto)
finally have eq: mset $w s=$ image-mset $M p f s+$ image-mset $M p g s$ by simp
from arg-cong[OF this, of size, unfolded size-ws] have size: size $f s+$ size $g s=d$ by auto
from $u f$ - q [unfolded unique-factorization-m-alt-def factorization-m-def split]
have q-eq: $q=m$ smult (lead-coeff q) (prod-mset f s) by auto
have degree-m $q=$ degree q
by (rule degree-m-eq[OF - m1], insert cop-qr(1) n p.m1, unfold m, auto simp:)
with q-eq have degm- q : degree $q=$ degree ($M p$ (smult (lead-coeff q) (prod-mset fs))) by auto
with deg-q have $f s$-nempty: $f s \neq\{\#\}$
by (cases fs; cases lead-coeff $q=0$; auto simp: Mp-def)
from uf-r[unfolded unique-factorization-m-alt-def factorization-m-def split]
have r-eq: $r=m$ smult (lead-coeff r) (prod-mset gs) by auto
have degree-m $r=$ degree r
by (rule degree-m-eq[OF - m1], insert cop-qr(2) n p.m1, unfold m, auto simp:)
with r-eq have degm-r: degree $r=$ degree ($M p$ (smult (lead-coeff r) (prod-mset gs))) by auto
with deg-r have gs-nempty: $g s \neq\{\#\}$
by (cases gs; cases lead-coeff $r=0$; auto simp: Mp-def)
from $g s$-nempty have size $g s \neq 0$ by auto
with size have size-fs: size $f s<d$ by linarith
note $*=$ tests[unfolded test-dvd-def, rule-format, OF - fs-nempty - qu, of lead-coeff q]
from $p p u$ have degree $p p-v b \leq$ degree u using dvd-imp-degree-le u0 by blast
with $\operatorname{deg}-q$ q-eq size-fs
have $\neg f_{s} \subseteq \#$ mset vs by (auto dest!:*)
thus False unfolding vs-split eq fs-id gs-id using mset-subset-eq-add-left[of fs mset $\left.v s^{\prime}+g s\right]$
by (auto simp: ac-simps)
qed
\{
fix $w s^{\prime}$
assume $*: w s^{\prime} \subseteq \#$ mset $v s^{\prime} w s^{\prime} \neq\{\#\}$
size $w s^{\prime}<d \vee$ size $w s^{\prime}=d \wedge w s^{\prime} \notin\left(m s e t \circ\right.$ snd) ' set cands ${ }^{\prime}$
from $*(1)$ have $w s^{\prime} \subseteq \#$ mset vs unfolding vs-split
by (simp add: subset-mset.add-increasing2)
from tests[OF this *(2)] *(3)[unfolded cands' mset-snd-S] *(1)
have test-dvd u ws' by auto
from test-dvd-factor[OF u0 this[unfolded lu] uu']
have test-dvd $u^{\prime} w s^{\prime}$.
\} note tests $^{\prime}=$ this
show ?thesis
proof (cases ? $r^{\prime}<d+d$)
case True
with res have res: $f s=u^{\prime} \#$?res' by auto
from True r^{\prime} have size: size (mset vs') $<d+d$ by auto
have irreducible $_{d} u^{\prime}$
by (rule irreducible ${ }_{d}$-via-tests[OF deg-u' cop-lu'[unfolded lu'] fac-
tors(1)[unfolded lu']
sf-u' norm size tests $]$, insert set-vs, auto)
with f res irr irr-pp show ?thesis by auto
next
case False
have res: reconstruction sl-impl m2 state' u^{\prime} ?luu' lu' d ? r^{\prime} vs' ?res' cands'

```
= fs
            using False res by auto
            from False have dr:d+d\leq? 'r' by auto
            from False dr r r'd0 ws Cons have le: ? r' 
auto)
            hence R: ((?r' - d, cands'), meas) \inR unfolding meas R-def by simp
            have }d\mp@subsup{r}{}{\prime}:d<?\mp@subsup{r}{}{\prime}\mathrm{ using le False ws(2) by linarith
            have lu\mp@subsup{u}{}{\prime}:lu' dvd lu using <lead-coeff }\mp@subsup{u}{}{\prime}dvd lu> unfolding lu'
            have large-m (smult lu' u') vs
                by (rule large-m-factor[OF large dvd-dvd-smult], insert uu' luu')
            moreover have degree-bound vs'}\leq\mathrm{ degree-bound vs
            unfolding vs'-def degree-bound-def by (rule max-factor-degree-mono)
            ultimately have large': large-m (smult lu' u') vs' unfolding large-m-def
by auto
            show ?thesis
            by (rule IH[OF R res f refl dr r' - - lu' factors(1) sf-u' cop-lu' norm
tests' - deg-u'
                    dr' large' state\, insert irr irr-pp d0 Cons set-vs, auto simp: cands')
            qed
            qed
qed
    qed
qed
end
end
```

definition zassenhaus-reconstruction ::
int poly list \Rightarrow int \Rightarrow nat \Rightarrow int poly \Rightarrow int poly list where
zassenhaus-reconstruction vs p $n f=$ (let
mul $=$ poly-mod.mul-const $\left({ }^{\wedge} n\right)$;
sl-impl $=m y$-subseqs.impl $(\lambda x$. map-prod $($ mul $x)($ Cons $x))$
in zassenhaus-reconstruction-generic sl-impl vs p n f)
context
fixes $p n f$ hs
assumes prime: prime p
and cop: coprime (lead-coeff f) p
and sf: poly-mod.square-free-m pf
and deg: degree $f>0$
and bh: berlekamp-hensel $p n f=h s$
and bnd: $2 * \mid$ lead-coeff $f \mid *$ factor-bound f (degree-bound hs) $<p^{\wedge} n$
begin
private lemma $n: n \neq 0$
proof
assume n : $n=0$
hence $p n$: p へ $n=1$ by auto
let $? f=$ smult $($ lead-coeff $f) f$

```
    let ?d = degree-bound hs
    have f:f\not=0 using deg by auto
    hence lead-coeff f}\not=0\mathrm{ by auto
    hence lf: abs (lead-coeff f) > 0 by auto
    obtain cd where c: factor-bound f(degree-bound hs)=c abs (lead-coeff f)=d
by auto
    {
        assume *: 1\leqc2*d*c<10<d
        hence 1\leqd by auto
        from mult-mono[OF this *(1)]* have 1\leqd*c by auto
        hence 2*d*c\geq2 by auto
        with * have False by auto
    } note tedious= this
    have 1\leq factor-bound f?d
        using factor-bound[OF f, of 1 ?d 0] by auto
    also have ... = 0 using bnd unfolding pn
        using factor-bound-ge-0[of f degree-bound hs,OF f] lf unfolding c
        by (cases c \geq 1; insert tedious, auto)
    finally show False by simp
qed
interpretation p: poly-mod-prime p using prime by unfold-locales
lemma zassenhaus-reconstruction-generic:
    assumes sl-impl: correct-subseqs-foldr-impl (\lambdav. map-prod (poly-mod.mul-const
( (^^n)v) (Cons v)) sl-impl sli
    and res: zassenhaus-reconstruction-generic sl-impl hs p nf =fs
    shows f= prod-list fs }\wedge(\forallfi\in\mathrm{ set fs. irreducible d fi)
proof -
    let ?lc = lead-coeff f
    let ?ff = smult ?lc f
    let ?q }q=p`
    have p1:p>1 using prime unfolding prime-int-iff by simp
    interpret poly-mod-2 p`n using p1 n unfolding poly-mod-2-def by simp
    obtain cands state where slc: subseqs-foldr sl-impl (lead-coefff, []) hs 0 = (cands,
state) by force
    interpret correct-subseqs-foldr-impl \lambdax. map-prod (mul-const x) (Cons x) sl-impl
sli by fact
    from subseqs-foldr[OF slc] have state: sli (lead-coeff f, []) hs 0 state by auto
    from res[unfolded zassenhaus-reconstruction-generic-def bh split Let-def slc fst-conv]
    have res: reconstruction sl-impl (?q div 2) state f ?ff ?lc 0 (length hs) hs [] []=
fs by auto
    from p.berlekamp-hensel-unique[OF cop sf bh n]
    have ufact: unique-factorization-m f(?lc, mset hs) by simp
    note bh = p.berlekamp-hensel[OF cop sf bh n]
    from deg have f0: f\not=0 and lf0: ?lc }\not=0\mathrm{ by auto
    hence ff0:?ff }\not=0\mathrm{ by auto
    have bnd: \forallg k.g dvd ?ff \longrightarrow degree g s degree-bound hs \longrightarrow2* |coeff g k|<
p`n
```

```
    proof (intro allI impI, goal-cases)
    case (1gk)
    from factor-bound-smult[OF f0 lf0 1, of k]
    have |coeff g k| \leq |?lc| * factor-bound f (degree-bound hs).
    hence 2 * |coeff g k|\leq2 * |?lc|* factor-bound f(degree-bound hs) by auto
    also have ... < p`n using bnd .
    finally show ?case .
qed
note }b\mp@subsup{h}{}{\prime}=bh[unfolded factorization-m-def split]
have deg-f: degree-m f}=\mathrm{ degree }
    using cop unique-factorization-m-zero [OF ufact] n
    by (auto simp add:M-def intro: degree-m-eq [OF - m1])
have mon-hs: monic (prod-list hs) using bh' by (auto intro: monic-prod-list)
have Mlc:M ?lc \in{1 ..< p`n}
    by (rule prime-cop-exp-poly-mod[OF prime cop n])
    hence ?lc \not=0 by auto
    hence f0: f}\not=0\mathrm{ by auto
    have degm: degree-m (smult ?lc (prod-list hs)) = degree (smult ?lc (prod-list hs))
    by (rule degree-m-eq[OF - m1], insert n bh mon-hs Mlc, auto simp: M-def)
    from reconstruction[OF prime refl n sl-impl res - refl - refl - refl refl ufact sf
        cop - - deg - bnd f0] bh(2) state
    show ?thesis by simp
qed
lemma zassenhaus-reconstruction-irreducibled:
    assumes res: zassenhaus-reconstruction hs p nf = fs
    shows f}=\mathrm{ prod-list fs }\wedge(\forallfi\in\mathrm{ set fs. irreducible d
    by (rule zassenhaus-reconstruction-generic[OF my-subseqs.impl-correct
        res[unfolded zassenhaus-reconstruction-def Let-def]])
corollary zassenhaus-reconstruction:
    assumes pr: primitive f
    assumes res: zassenhaus-reconstruction hs p nf = fs
    shows f}=\mathrm{ prod-list fs }\wedge(\forallfi\in\mathrm{ set fs. irreducible fi)
    using zassenhaus-reconstruction-irreducible d [OF res] pr
        irreducible-primitive-connect[OF primitive-prod-list]
        by auto
end
end
theory Code-Abort-Gcd
imports
    HOL-Computational-Algebra.Polynomial-Factorial
begin
Dummy code-setup for \(G c d\) and \(L c m\) in the presence of Container.
definition dummy-Gcd where dummy-Gcd \(x=G c d x\)
```

definition dummy-Lcm where dummy-Lcm $x=\operatorname{Lcm} x$ declare [[code abort: dummy-Gcd]]
lemma dummy-Gcd-Lcm: Gcd $x=$ dummy-Gcd x Lcm $x=$ dummy-Lcm x unfolding dummy-Gcd-def dummy-Lcm-def by auto
lemmas dummy-Gcd-Lcm-poly $[$ code $]=$ dummy-Gcd-Lcm
[where ?' $a=$ ' $a::\{$ factorial-ring-gcd,semiring-gcd-mult-normalize $\}$ poly]
lemmas dummy-Gcd-Lcm-int [code] $=$ dummy-Gcd-Lcm [where ?' $a=$ int $]$
lemmas dummy-Gcd-Lcm-nat $[$ code $]=$ dummy-Gcd-Lcm [where ?'a $=n a t]$
declare [[code abort: Euclidean-Algorithm.Gcd Euclidean-Algorithm.Lcm]]
end

11 The Polynomial Factorization Algorithm

11.1 Factoring Square-Free Integer Polynomials

We combine all previous results, i.e., Berlekamp's algorithm, Hensel-lifting, the reconstruction of Zassenhaus, Mignotte-bounds, etc., to eventually assemble the factorization algorithm for integer polynomials.

```
theory Berlekamp-Zassenhaus
imports
    Berlekamp-Hensel
    Polynomial-Factorization.Gauss-Lemma
    Polynomial-Factorization.Dvd-Int-Poly
    Reconstruction
    Suitable-Prime
    Degree-Bound
    Code-Abort-Gcd
begin
context
begin
private partial-function (tailrec) find-exponent-main :: int }=>\mathrm{ int }=>\mathrm{ nat }=>\mathrm{ int
=> nat where
    [code]: find-exponent-main p pm m bnd = (if pm > bnd then m
        else find-exponent-main p (pm * p) (Suc m) bnd)
definition find-exponent :: int }=>\mathrm{ int }=>\mathrm{ nat where
    find-exponent p bnd = find-exponent-main p p 1 bnd
lemma find-exponent: assumes p: p>1
    shows p` find-exponent p bnd > bnd find-exponent p bnd }\not=
proof -
    {
        fix m}\mathrm{ and n
```

```
    assume n = nat (1 + bnd - p`m})\mathrm{ and m \1
    hence bnd < p^ find-exponent-main p (p^m) m bnd ^ find-exponent-main p
( 
    proof (induct n arbitrary: m rule: less-induct)
        case (less n m)
        note simp = find-exponent-main.simps[of p p` m}
        show ?case
        proof (cases bnd < p^ m)
            case True
            thus ?thesis using less unfolding simp by simp
        next
            case False
            hence id: find-exponent-main p(p^ m) m bnd = find-exponent-main p(p
^Suc m) (Suc m) bnd
                unfolding simp by (simp add: ac-simps)
            show ?thesis unfolding id
                by (rule less(1)[OF - refl], unfold less(2), insert False p, auto)
            qed
    qed
}
from this[OF refl, of 1]
show p` find-exponent p bnd > bnd find-exponent p bnd \not=0
    unfolding find-exponent-def by auto
qed
end
definition berlekamp-zassenhaus-factorization :: int poly \(\Rightarrow\) int poly list where
    berlekamp-zassenhaus-factorization f}=(\mathrm{ let 
- find suitable prime
\(p=\) suitable-prime-bz \(f\);
- compute finite field factorization
\(\left(-, f_{s}\right)=\) finite-field-factorization-int \(p f\);
- determine maximal degree that we can build by multiplying at most half of the factors
max-deg \(=\) degree-bound \(f s\);
- determine a number large enough to represent all coefficients of every
- factor of \(l c * f\) that has at most degree most max-deg
bnd \(=2 * \mid\) lead-coeff \(f \mid *\) factor-bound \(f\) max-deg;
- determine \(k\) such that \(p^{\wedge} k>b n d\)
\(k=\) find-exponent \(p\) bnd;
- perform hensel lifting to lift factorization to \(\bmod p \wedge k\)
\(v s=\) hensel-lifting \(p k f f s\)
- reconstruct integer factors
in zassenhaus-reconstruction vs p \(k f\) )
theorem berlekamp-zassenhaus-factorization-irreducible \({ }_{d}\) :
assumes res: berlekamp-zassenhaus-factorization \(f=f s\)
and \(s f\) : square-free \(f\)
```

```
    and deg: degree f>0
    shows}f=\mathrm{ prod-list fs }\wedge(\forallfi\in\mathrm{ set fs..irreducible }\mp@subsup{|}{d}{}f
proof -
    let ?lc = lead-coeff f
    define p where p}\equiv\mathrm{ suitable-prime-bz f
    obtain c gs where berl: finite-field-factorization-int p f}=(c,gs) by forc
    let ?degs = map degree gs
    note res = res[unfolded berlekamp-zassenhaus-factorization-def Let-def, folded
p-def,
            unfolded berl split, folded]
    from suitable-prime-bz[OF sf refl]
    have prime: prime p and cop: coprime ?lc p and sf: poly-mod.square-free-m p f
        unfolding p-def by auto
    from prime interpret poly-mod-prime p by unfold-locales
    define }n\mathrm{ where }n=\mathrm{ find-exponent p (2*abs ?lc * factor-bound f (degree-bound
gs))
    note n = find-exponent[OF m1, of 2 * abs ?lc * factor-bound f (degree-bound
gs),
    folded n-def]
    note bh = berlekamp-and-hensel-separated[OF cop sf refl berl n(2)]
    have db: degree-bound (berlekamp-hensel p nf) = degree-bound gs unfolding bh
        degree-bound-def max-factor-degree-def by simp
    note res = res[folded n-def bh(1)]
    show ?thesis
    by (rule zassenhaus-reconstruction-irreducible [ [OF prime cop sf deg refl - res],
insert n db, auto)
qed
corollary berlekamp-zassenhaus-factorization-irreducible:
    assumes res: berlekamp-zassenhaus-factorization f}=f
        and sf: square-free f
        and pr: primitive f
        and deg: degree f>0
    shows f}=\mathrm{ prod-list fs }\wedge(\forallfi\in\mathrm{ set fs.irreducible f)
    using pr irreducible-primitive-connect[OF primitive-prod-list]
        berlekamp-zassenhaus-factorization-irreducible d[OF res sf deg] by auto
end
```


11.2 A fast coprimality approximation

We adapt the integer polynomial gcd algorithm so that it first tests whether f and g are coprime modulo a few primes. If so, we are immediately done.

```
theory Gcd-Finite-Field-Impl
imports
    Suitable-Prime
    Code-Abort-Gcd
    HOL-Library.Code-Target-Int
begin
```

```
definition coprime-approx-main \(::\) int \(\Rightarrow\) ' \(i\) arith-ops-record \(\Rightarrow\) int poly \(\Rightarrow\) int poly
\(\Rightarrow\) bool where
    coprime-approx-main p ff-ops fg=(gcd-poly-iff-ops (of-int-poly-i ff-ops (poly-mod.Mp
pf))
    (of-int-poly-i ff-ops (poly-mod.Mp p g)) = one-poly-i ff-ops)
lemma (in prime-field-gen) coprime-approx-main:
    shows coprime-approx-main \(p\) ff-ops \(f g \Longrightarrow\) coprime-mfg
proof -
    define \(F\) where \(F:(F::\) 'a mod-ring poly \()=o f-i n t-p o l y(M p f)\)
    define \(G\) where \(G:\left(G::\right.\) 'a mod-ring poly) \(=\) of-int-poly ( \(M p g\) ) let \(? f^{\prime}=\)
of-int-poly-i ff-ops (Mpf)
    let ? \(g^{\prime}=o f-\) int-poly-i ff-ops \((M p g)\)
    define \(f^{\prime \prime}\) where \(f^{\prime \prime} \equiv\) of-int-poly (Mpf) :: 'a mod-ring poly
    define \(g^{\prime \prime}\) where \(g^{\prime \prime} \equiv\) of-int-poly ( \(M p g\) ) :: 'a mod-ring poly
    have rel-f[transfer-rule]: poly-rel ?f' \(f^{\prime \prime}\)
        by (rule poly-rel-of-int-poly[OF refl], simp add: \(f^{\prime \prime}\)-def)
    have rel-f[transfer-rule]: poly-rel ? \(g^{\prime} g^{\prime \prime}\)
    by (rule poly-rel-of-int-poly[OF refl], simp add: \(g^{\prime \prime}\)-def)
    have id: (gcd-poly-i ff-ops (of-int-poly-i ff-ops (Mp f)) (of-int-poly-i ff-ops (Mp
\(g)\) ) oone-poly-i ff-ops
    \(=\) coprime \(f^{\prime \prime} g^{\prime \prime}(\) is ? \(P \longleftrightarrow ? Q)\)
    proof -
        have ?P \(\longleftrightarrow g c d f^{\prime \prime} g^{\prime \prime}=1\)
            unfolding separable-i-def by transfer-prover
        also have \(\ldots \longleftrightarrow\) ? \(Q\)
        by (simp add: coprime-iff-gcd-eq-1)
        finally show?thesis .
    qed
    have fF: MP-Rel (Mpf) F unfolding \(F\) MP-Rel-def
        by (simp add: Mp-f-representative)
    have \(g G\) : MP-Rel (Mpg) G unfolding G MP-Rel-def
        by (simp add: Mp-f-representative)
    have coprime \(f^{\prime \prime} g^{\prime \prime}=\) coprime \(F G\) unfolding \(f^{\prime \prime}\)-def \(F g^{\prime \prime}\)-def \(G\) by simp
    also have \(\ldots=\) coprime-m \((M p f)(M p g)\)
    using coprime-MP-Rel[unfolded rel-fun-def, rule-format, OF fF \(g G]\) by simp
    also have \(\ldots=\) coprime- \(m f g\) unfolding coprime-m-def dvdm-def by simp
    finally have \(i d 2\) : coprime \(f^{\prime \prime} g^{\prime \prime}=\) coprime-m \(f g\).
    show coprime-approx-main pff-ops \(f g \Longrightarrow\) coprime-m \(f g\) unfolding coprime-approx-main-def
        id id2 by auto
qed
context poly-mod-prime begin
lemmas coprime-approx-main-uint32 \(=\) prime-field-gen.coprime-approx-main \([O F\)
    prime-field.prime-field-finite-field-ops32, unfolded prime-field-def mod-ring-locale-def
    poly-mod-type-simps, internalize-sort ' \(a\) :: prime-card, OF type-to-set, unfolded
```

remove-duplicate-premise, cancel-type-definition, OF non-empty]
lemmas coprime-approx-main-uint64 $=$ prime-field-gen.coprime-approx-main $[O F$
prime-field.prime-field-finite-field-ops64, unfolded prime-field-def mod-ring-locale-def
poly-mod-type-simps, internalize-sort ' a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]
end
lemma coprime-mod-imp-coprime: assumes
p : prime p and
cop-m: poly-mod.coprime-m $p f g$ and
cop: coprime (lead-coeff f) $p \vee$ coprime (lead-coeff g) p and
cnt: content $f=1 \vee$ content $g=1$
shows coprime $f g$
proof -
interpret poly-mod-prime p by (standard, rule p)
from cop-m[unfolded coprime-m-def] have cop-m: $\wedge h . h d v d m f \Longrightarrow h d v d m g$
$\Longrightarrow h d v d m 1$ by auto
show ?thesis
proof (rule coprimeI)
fix h
assume $d v d: h d v d f h d v d g$
hence $h d v d m f h d v d m g$ unfolding $d v d m$-def dvd-def by auto
from cop-m[OF this] obtain k where unit: $M p(h * M p k)=1$ unfolding
dvdm-def by auto
from content-dvd-contentI[OF dvd(1)] content-dvd-contentI[OF dvd(2)] cnt
have cnt: content $h=1$ by auto
let $? k=M p k$
from unit have $h 0: h \neq 0$ by auto
from unit have $k 0: ? k \neq 0$ by fastforce
from p have $p 0: p \neq 0$ by auto
from dvd have lead-coeff h dvd lead-coeff f lead-coeff h dvd lead-coeff g
by (metis dvd-def lead-coeff-mult)+
with cop have coph: coprime (lead-coeff h) p
by (meson dvd-trans not-coprime-iff-common-factor)
let $? k=M p k$
from arg-cong[OF unit, of degree] have degm0: degree-m $(h * ? k)=0$ by simp
have lead-coeff ? $k \in\{0 . .<p\}$ unfolding $M p$-coeff M-def using $m 1$ by simp
with $k 0$ have $l k$: lead-coeff ? $k \geq 1$ lead-coeff $? k<p$
by (auto simp add: int-one-le-iff-zero-less order.not-eq-order-implies-strict)
have id: lead-coeff $(h * ? k)=$ lead-coeff $h *$ lead-coeff ? k unfolding lead-coeff-mult
from coph prime lk have coprime (lead-coeff $h *$ lead-coeff ? k) p
by (simp add: ac-simps prime-imp-coprime zdvd-not-zless)
with id have cop-prod: coprime (lead-coeff $(h * ? k))$ p by simp
from $h 0 k 0$ have lc0: lead-coeff $(h * ? k) \neq 0$
unfolding lead-coeff-mult by auto

```
    from p have lcp:lead-coeff (h*?k) mod p\not=0
        using M-1 M-def cop-prod by auto
    have deg-eq: degree-m (h*?k) = degree ( }h*Mpk
    by (rule degree-m-eq[OF - m1], insert lcp)
    from this[unfolded degm0] have degree ( }h*Mpk)=0\mathrm{ by simp
    with degree-mult-eq[OF h0 k0] have deg0: degree }h=0\mathrm{ by auto
    from degree0-coeffs[OF this] obtain h0 where h: h= [:h0:] by auto
    have content h=abs h0 unfolding content-def h by (cases h0 = 0, auto)
    hence abs h0 = 1 using cnt by auto
    hence h0 \in{-1,1} by auto
    hence }h=1\veeh=-1 unfolding h by (auto
    thus is-unit h by auto
    qed
qed
```

We did not try to optimize the set of chosen primes. They have just been picked randomly from a list of primes.

```
definition gcd-primes32 :: int list where
    gcd-primes32 \(=[383\), 1409, 19213, 22003, 41999]
lemma gcd-primes32: \(p \in\) set gcd-primes32 \(\Longrightarrow\) prime \(p \wedge p \leq 65535\)
proof -
    have list-all ( \(\lambda\) p. prime \(p \wedge p \leq 65535\) ) gcd-primes32 by eval
    thus \(p \in\) set gcd-primes32 \(\Longrightarrow\) prime \(p \wedge p \leq 65535\) by (auto simp: list-all-iff)
qed
definition gcd-primes64 :: int list where
    gcd-primes64 \(=\) [383, 21984191, 50329901, 80329901, 219849193]
lemma gcd-primes64: \(p \in\) set gcd-primes64 \(\Longrightarrow\) prime \(p \wedge p \leq 4294967295\)
proof -
    have list-all ( \(\lambda\) p. prime \(p \wedge p \leq 4294967295\) ) gcd-primes64 by eval
    thus \(p \in\) set gcd-primes64 \(\Longrightarrow\) prime \(p \wedge p \leq 4294967295\) by (auto simp:
list-all-iff)
qed
definition coprime-heuristic :: int poly \(\Rightarrow\) int poly \(\Rightarrow\) bool where
    coprime-heuristic \(f g=(\) let lcf \(=\) lead-coeff \(f ; l c g=\) lead-coeff \(g\) in
    find ( \(\lambda\) p. (coprime lcf \(p \vee\) coprime lcg \(p\) ) \(\wedge\) coprime-approx-main \(p\) (finite-field-ops64
(uint64-of-int p)) \(f g\) )
        gcd-primes64 \(\neq\) None)
lemma coprime-heuristic: assumes coprime-heuristic \(f g\)
    and content \(f=1 \vee\) content \(g=1\)
    shows coprime \(f g\)
proof (cases find ( \(\lambda p\). (coprime (lead-coeff f) \(p \vee\) coprime (lead-coeff \(g\) ) \(p) \wedge\)
    coprime-approx-main \(p(\) finite-field-ops64 \((\) uint64-of-int \(p)) f g)\)
    gcd-primes64)
    case (Some p)
```

from find-Some- $D[O F$ Some $]$ gcd-primes64 have $p:$ prime p and small: $p \leq$ 4294967295
and cop: coprime (lead-coeff f) $p \vee$ coprime (lead-coeff g) p
and copp: coprime-approx-main p (finite-field-ops64 (uint64-of-int p)) fg by auto
interpret poly-mod-prime p using p by unfold-locales
from coprime-approx-main-uint64[OF small copp] have poly-mod.coprime-m p f
g by auto
from coprime-mod-imp-coprime[OF p this cop assms(2)] show coprime $f g$. qed (insert assms(1)[unfolded coprime-heuristic-def], auto simp: Let-def)
definition gcd-int-poly :: int poly \Rightarrow int poly \Rightarrow int poly where
gcd-int-poly $f g=$
(if $f=0$ then normalize g
else if $g=0$ then normalize f else let
$c f=$ Polynomial.content $f ;$
$c g=$ Polynomial.content g;
$c t=g c d c f c g ;$
$f f=$ map-poly $(\lambda x . x$ div cf $) f ;$ $g g=$ map-poly $(\lambda x . x \operatorname{div} c g) g$ in if coprime-heuristic ff gg then [:ct:] else smult ct (gcd-poly-code-aux ff
$g g)$)
lemma gcd-int-poly-code[code-unfold]: gcd $=$ gcd-int-poly
proof (intro ext)
fix $f g$:: int poly
let ? ff $=$ primitive-part f
let $? g g=$ primitive-part g
note $d=g c d$-int-poly-def gcd-poly-code gcd-poly-code-def
show $g c d f g=$ gcd-int-poly $f g$
proof (cases $f=0 \vee g=0 \vee \neg$ coprime-heuristic ?ff ?gg)
case True
thus ?thesis unfolding d by (auto simp: Let-def primitive-part-def)
next
case False
hence cop: coprime-heuristic ?ff ?gg by simp
from False have $f \neq 0$ by auto
from content-primitive-part[OF this] coprime-heuristic[OF cop]
have id: gcd ?ff ? gg = 1 by auto
show ?thesis unfolding gcd-poly-decompose[of fg] unfolding gcd-int-poly-def Let-def id
using False by (auto simp: primitive-part-def)
qed
qed
end
theory Square-Free-Factorization-Int

```
imports
    Square-Free-Int-To-Square-Free-GFp
    Suitable-Prime
    Code-Abort-Gcd
    Gcd-Finite-Field-Impl
begin
definition yun-wrel :: int poly }=>\mathrm{ rat }=>\mathrm{ rat poly }=>\mathrm{ bool where
    yun-wrel Fcf=(map-poly rat-of-int F = smult c f)
definition yun-rel :: int poly }=>\mathrm{ rat }=>\mathrm{ rat poly }=>\mathrm{ bool where
    yun-rel F cf=(yun-wrel Fcf
    ^content F}=1\wedge\mathrm{ lead-coeff F>0^ monic f)
definition yun-erel :: int poly }=>\mathrm{ rat poly }=>\mathrm{ bool where
    yun-erel Ff=(\exists c. yun-rel Fcf)
lemma yun-wrelD: assumes yun-wrel F cf
    shows map-poly rat-of-int F= smult cf
    using assms unfolding yun-wrel-def by auto
lemma yun-relD: assumes yun-rel F cf
    shows yun-wrel F c f map-poly rat-of-int F = smult c f
        degree F= degree f F}\not=0\mathrm{ lead-coeff }F>0\mathrm{ monic }
        f=1\longleftrightarrowF=1 content F=1
proof -
    note * = assms[unfolded yun-rel-def yun-wrel-def, simplified]
    then have degree (map-poly rat-of-int F) = degree f by auto
    then show deg: degree F= degree f by simp
    show }F\not=0\mathrm{ lead-coeff }F>0\mathrm{ monic f content F=1
        map-poly rat-of-int F = smult c f
        yun-wrel F cf using * by (auto simp: yun-wrel-def)
    {
    assume f=1
    with deg have degree F=0 by auto
    from degree0-coeffs[OF this] obtain c where F:F=[:c:] and c:c=lead-coeff
F by auto
    from c* have c0:c>0 by auto
    hence cF: content F}=c\mathrm{ unfolding F content-def by auto
    with * have c=1 by auto
    with F have F=1 by simp
}
moreover
{
    assume F = 1
    with deg have degree f=0 by auto
    with «monic f` have f=1
        using monic-degree-0 by blast
    }
```

```
    ultimately show \((f=1) \longleftrightarrow(F=1)\) by auto
qed
lemma yun-erel-1-eq: assumes yun-erel \(F f\)
    shows \((F=1) \longleftrightarrow(f=1)\)
proof -
    from assms[unfolded yun-erel-def] obtain \(c\) where yun-rel \(F c f\) by auto
    from yun-relD \([\) OF this] show ?thesis by simp
qed
lemma yun-rel-1 [simp]: yun-rel 111
    by (auto simp: yun-rel-def yun-wrel-def content-def)
```

lemma yun-erel-1[simp]: yun-erel 11 unfolding yun-erel-def using yun-rel-1 by blast
lemma yun-rel-mult: yun-rel $F c f \Longrightarrow$ yun-rel $G d g \Longrightarrow$ yun-rel $(F * G)(c * d)$ $(f * g)$
unfolding yun-rel-def yun-wrel-def content-mult lead-coeff-mult by (auto simp: monic-mult hom-distribs)
lemma yun-erel-mult: yun-erel $F f \Longrightarrow$ yun-erel $G g \Longrightarrow$ yun-erel $(F * G)(f * g)$
unfolding yun-erel-def using yun-rel-mult $[$ of $F-f G-g]$ by blast
lemma yun-rel-pow: assumes yun-rel $F c f$
shows yun-rel $\left(F^{\wedge} n\right)(c$) $n)(f \curvearrowleft n)$
by (induct n, insert assms yun-rel-mult, auto)
lemma yun-erel-pow: yun-erel $F f \Longrightarrow$ yun-erel $\left(F^{\wedge} n\right)(f \wedge n)$
using yun-rel-pow unfolding yun-erel-def by blast
lemma yun-wrel-pderiv: assumes yun-wrel F c f
shows yun-wrel (pderiv F) c (pderiv f)
by (unfold yun-wrel-def, simp add: yun-wrelD[OF assms] pderiv-smult hom-distribs)
lemma yun-wrel-minus: assumes yun-wrel $F c f$ yun-wrel $G c g$
shows yun-wrel $(F-G) c(f-g)$
using assms unfolding yun-wrel-def by (auto simp: smult-diff-right hom-distribs)
lemma yun-wrel-div: assumes f : yun-wrel $F c f$ and g : yun-wrel $G d g$
and $d v d$: $G d v d F g d v d f$
and $G 0: G \neq 0$
shows yun-wrel $(F \operatorname{div} G)(c / d)(f$ div $g)$
proof -
let $? r=r a t-o f-i n t$
let ${ }^{2} r p=$ map-poly $? r$
from $d v d$ obtain $H h$ where $f g h: F=G * H f=g * h$ unfolding dvd-def by auto

```
    from G0 yun-wrelD[OF g] have g0:g\not=0 and d0:d\not=0 by auto
    from arg-cong[OF fgh(1), of \lambda x.x div G] have H:H=F div G using G0 by
simp
    from arg-cong[OF fgh(1), of ?rp] have ?rp F = ?rp G * ?rp H by (auto simp:
hom-distribs)
    from arg-cong[OF this, of \lambdax.x div ?rp G] G0 have id: ?rp H = ?rp F div ?rp
G by auto
    have ?rp (F div G)= ?rp F div ?rp G unfolding H[symmetric] id by simp
    also have ... = smult cf div smult d g using fg}\mathrm{ unfolding yun-wrel-def by
auto
    also have ... = smult (c/d) (f div g) unfolding div-smult-right[OF dO]
div-smult-left
    by (simp add: field-simps)
    finally show ?thesis unfolding yun-wrel-def by simp
qed
lemma yun-rel-div: assumes f:yun-rel Fcf and g:yun-rel Gdg
    and dvd: G dvd F g dvd f
shows yun-rel (F div G) (c/d) (fdiv g)
proof -
    note ff = yun-relD[OF f]
    note gg= yun-relD[OF g]
    show ?thesis unfolding yun-rel-def
    proof (intro conjI)
        from yun-wrel-div[OF ff(1) gg(1) dvd gg(4)]
        show yun-wrel (F div G) (c/d) (f div g) by auto
    from dvd have fg: f=g*(f div g) by auto
    from arg-cong[OF fg, of monic] ff(6) gg(6)
    show monic (f div g) using monic-factor by blast
    from dvd have FG:F=G*(F div G) by auto
    from arg-cong[OF FG, of content, unfolded content-mult] ff(8) gg(8)
    show content (F div G)=1 by simp
    from arg-cong[OF FG, of lead-coeff, unfolded lead-coeff-mult] ff(5) gg(5)
    show lead-coeff (F div G)>0 by (simp add:zero-less-mult-iff)
    qed
qed
```

lemma yun-wrel-gcd: assumes yun-wrel $F c^{\prime} f$ yun-wrel $G c g$ and $c: c^{\prime} \neq 0 c \neq$
0
and $d: d=$ rat-of-int $(l e a d$-coeff $(g c d F G)) d \neq 0$
shows yun-wrel (gcd FG)d (gcd fg)
proof -
let $? r=r a t-o f-i n t$
let ${ }^{2} r p=$ map-poly $?$ r
have smult $d(g c d f g)=$ smult $d\left(g c d\left(s m u l t ~ c^{\prime} f\right)(s m u l t c g)\right)$
by (simp add: c gcd-smult-left gcd-smult-right)
also have $\ldots=$ smult $d(g c d(? r p F)(? r p G))$ using assms(1-2)[unfolded

```
yun-wrel-def] by simp
    also have \(\ldots=\operatorname{smult}(d *\) inverse \(d)(? r p(g c d F G))\)
        unfolding gcd-rat-to-gcd-int \(d\) by simp
    also have \(d *\) inverse \(d=1\) using \(d\) by auto
    finally show ?thesis unfolding yun-wrel-def by simp
qed
lemma yun-rel-gcd: assumes \(f\) : yun-rel \(F c f\) and \(g\) : yun-wrel \(G c^{\prime} g\) and \(c^{\prime}: c^{\prime}\)
\(\neq 0\)
    and \(d: d=\) rat-of-int (lead-coeff \((g c d F G))\)
shows yun-rel \((g c d F G) d(g c d f g)\)
    unfolding yun-rel-def
proof (intro conjI)
    note \(f f=\) yun-relD \([O F f]\)
    from ff have \(c 0: c \neq 0\) by auto
    from \(f f d\) have \(d 0: d \neq 0\) by auto
    from yun-wrel-gcd[OF ff(1) gc0 \(\left.c^{\prime} d d 0\right]\)
    show yun-wrel (gcd \(F G) d(g c d f g)\) by auto
    from \(f f\) have \(g c d f g \neq 0\) by auto
    thus monic ( \(g c d f g\) ) by (simp add: poly-gcd-monic)
    obtain \(H\) where \(H: \operatorname{gcd} F G=H\) by auto
    obtain \(l c\) where \(l c\) : coeff \(H(\) degree \(H)=l c\) by auto
    from \(f f\) have \(g c d F G \neq 0\) by auto
    hence \(H \neq 0 l c \neq 0\) unfolding \(H[\) symmetric \(] l c[\) symmetric \(]\) by auto
    thus \(0<\) lead-coeff (gcd \(F G\) ) unfolding
        arg-cong[OF normalize-gcd[of F G], of lead-coeff, symmetric]
        unfolding normalize-poly-eq-map-poly \(H\)
        by (auto, subst Polynomial.coeff-map-poly, auto,
        subst Polynomial.degree-map-poly, auto simp: sgn-if)
    have \(H\) dvd \(F\) unfolding \(H\) [symmetric] by auto
    then obtain \(K\) where \(F: F=H * K\) unfolding dvd-def by auto
    from arg-cong[OF this, of content, unfolded content-mult ff(8)]
        content-ge-0-int [of \(H]\) have content \(H=1\)
        by (auto simp add: zmult-eq-1-iff)
    thus content \((\operatorname{gcd} F G)=1\) unfolding \(H\).
qed
```

lemma yun-factorization-main-int: assumes f : $f=p$ div gcd p (pderiv p)
and $g=$ pderiv p div gcd p (pderiv p) monic p
and yun-gcd.yun-factorization-main gcd $f g i h s=r e s$
and yun-gcd.yun-factorization-main gcd FGiHs=Res
and yun-rel Fcfyun-wrel G c g list-all2 (rel-prod yun-erel (=)) Hs hs
shows list-all2 (rel-prod yun-erel (=)) Res res
proof -
let $? P=\lambda f g . \forall i$ hs res $F G H s$ Res c.
yun-gcd.yun-factorization-main gcd fgi hs $=$ res
\longrightarrow yun-gcd.yun-factorization-main gcd FGi Hs $=$ Res
\longrightarrow yun-rel $F c f \longrightarrow$ yun-wrel $G c g \longrightarrow$ list-all2 (rel-prod yun-erel $(=))$ Hs hs \longrightarrow list-all2 (rel-prod yun-erel (=)) Res res
note simps $=$ yun-gcd.yun-factorization-main.simps
note rel $=y u n-r e l D$
let ?rel $=\lambda F f$. map-poly rat-of-int $F=$ smult $($ rat-of-int $($ lead-coeff $F)) f$

show ?thesis

proof (induct rule: yun-factorization-induct[of ?P, rule-format, OF - assms]) case ($1 \mathrm{fg} i$ hs res $F G$ Hs Res c)
from $\operatorname{rel}[O F 1(4)] 1$ (1) have $f=1 F=1$ by auto
from $1(2-3)[$ unfolded simps $[o f-1]$ this] have res $=h s$ Res $=H s$ by auto with 1 (6) show ?case by simp
next
case (2fgihs res $F G H s$ Res c)
define d where $d=g-\operatorname{pderiv} f$
define a where $a=\operatorname{gcd} f d$
define D where $D=G$ - pderiv F
define A where $A=\operatorname{gcd} F D$
note $f=2(5)$
note $g=2(6)$
note $h s=2(7)$
note $f 1=2(1)$
from $f 1 \operatorname{rel}[O F f]$ have $*:(f=1)=$ False $(F=1)=$ False and $c: c \neq 0$ by auto
note res $=2(3)[$ unfolded simps $[o f-f] * i f$-False Let-def, folded d-def a-def $]$
note Res $=2(4)[$ unfolded simps $[o f-F] * i f$-False Let-def, folded D-def A-def $]$
note $I H=2(2)[$ folded d-def a-def, OF res Res]
obtain c^{\prime} where $c^{\prime}: c^{\prime}=$ rat-of-int (lead-coeff $(g c d F D)$) by auto
show ?case
proof (rule $I H$)
from yun-wrel-minus $[O F$ g yun-wrel-pderiv $[O F \operatorname{rel}(1)[O F f]]]$
have d : yun-wrel D c d unfolding D-def d-def.
have a: yun-rel $A c^{\prime}$ a unfolding A-def a-def
by (rule yun-rel-gcd [OF fdcc$]$)
hence yun-erel A a unfolding yun-erel-def by auto
thus list-all2 (rel-prod yun-erel $(=))((A, i) \# H s)((a, i) \# h s)$
using $h s$ by auto
have $A 0: A \neq 0$ by $(\operatorname{rule} \operatorname{rel}(4)[O F a])$
have A dvd D a dvd d unfolding A-def a-def by auto
from yun-wrel-div[OF d rel(1)[OF a] this A0]
show yun-wrel $(D \operatorname{div} A)\left(c / c^{\prime}\right)(d$ div $a)$.
have A dvd F a dvd f unfolding A-def a-def by auto
from yun-rel-div[OF f a this]
show yun-rel $(F \operatorname{div} A)\left(c / c^{\prime}\right)(f$ div $a)$.
qed
qed
qed
lemma yun-monic-factorization-int-yun-rel: assumes
res: yun-gcd.yun-monic-factorization gcd $f=$ res
and Res: yun-gcd.yun-monic-factorization gcd $F=$ Res and f : yun-rel F c f
shows list-all2 (rel-prod yun-erel (=)) Res res
proof -
note $f f=$ yun-relD $[O F f]$
let $? g=g c d f(p d e r i v f)$
let ?yf $=$ yun-gcd.yun-factorization-main $g c d(f$ div ?g) $($ pderiv f div ?g) 0 []
let ? $G=\operatorname{gcd} F($ pderiv $F)$
let ?yF $=$ yun-gcd.yun-factorization-main gcd $(F$ div ? $G)(p d e r i v ~ F ~ d i v ~ ? G) ~ 0 ~[] ~$
obtain $r R$ where $r: ? y f=r$ and $R: ? y F=R$ by blast
from res[unfolded yun-gcd.yun-monic-factorization-def Let-def r]
have res: res $=[(a, i) \leftarrow r . a \neq 1]$ by simp
from Res[unfolded yun-gcd.yun-monic-factorization-def Let-def R]
have Res: Res $=[(A, i) \leftarrow R . A \neq 1]$ by simp
from yun-wrel-pderiv[OF ff(1)] have f^{\prime} : yun-wrel (pderiv F) c (pderiv f).
from ff have $c: c \neq 0$ by auto
from yun-rel-gcd[OF $f f^{\prime} c$ refl $]$ obtain d where g : yun-rel ? $G d ? g$..
from yun-rel-div $[O F f g]$ have 1 : yun-rel $(F$ div ? $G)(c / d)(f$ div ? $g)$ by auto
from yun-wrel-div[OF f' yun-relD(1)[OF g]--yun-relD(4)[OF g]]
have 2: yun-wrel (pderiv F div?G) $(c / d)(p d e r i v f d i v ? g)$ by auto
from yun-factorization-main-int[OF refl refl ff(6) r R 1 2]
have list-all2 (rel-prod yun-erel (=)) R r by simp
thus ?thesis unfolding res Res
by (induct R r rule: list-all2-induct, auto dest: yun-erel-1-eq)
qed
lemma yun-rel-same-right: assumes yun-rel f c Gun-rel $g d G$
shows $f=g$
proof -
note $f=y u n-r e l D[O F \operatorname{assms}(1)]$
note $g=y u n-r e l D[O F \operatorname{assms}(2)]$
let $? r=r a t-o f-i n t$
let $?$ rp $=$ map-poly $? r$
from g have $d: d \neq 0$ by auto
obtain $a b$ where quot: quotient-of $(c / d)=(a, b)$ by force
from quotient-of-nonzero[of c / d, unfolded quot] have $b: b \neq 0$ by simp
note f (2)
also have smult $c G=$ smult (c / d) (smult $d G$) using d by (auto simp: field-simps)
also have smult $d G=$? $r p g$ using $g(2)$ by simp
also have $c d: c / d=($?r $a /$? $r b)$ using quotient-of-div[OF quot].
finally have $f g$: ?rp $f=$ smult (?r a / ?r b) $(? r p g)$ by simp
from f have $c \neq 0$ by auto
with $c d d$ have $a: a \neq 0$ by auto
from arg-cong $[$ OF fg, of λx. smult (?r b) $x]$
have smult (? \quad) $)(? r p f)=$ smult (?r $a)(? r p g)$ using b by auto
hence ?rp (smult bf) $=$? rp (smult a g) by (auto simp: hom-distribs)
then have $f g:[: b:] * f=[: a:] * g$ by auto

```
    from arg-cong[OF this, of content, unfolded content-mult f(8)g(8)]
    have content [:b:] = content [:a :] by simp
    hence abs: abs a= abs b unfolding content-def using b a by auto
    from arg-cong[OF fg, of \lambda x. lead-coeff x>0, unfolded lead-coeff-mult] f(5)g(5)
ab
    have (a>0) = (b>0) by (simp add:zero-less-mult-iff)
    with a b abs have a=b by auto
    with arg-cong[OF fg, of \lambda x.x div [:b:]] b show ?thesis
    by (metis nonzero-mult-div-cancel-left pCons-eq-O-iff)
qed
```

definition square-free-factorization-int-main :: int poly \Rightarrow (int poly \times nat) list where
square-free-factorization-int-main $f=$ (case square-free-heuristic f of None \Rightarrow yun-gcd.yun-monic-factorization gcd $f \mid$ Some $p \Rightarrow[(f, 0)])$
lemma square-free-factorization-int-main: assumes res: square-free-factorization-int-main $f=f s$
and $c t$: content $f=1$ and $l c$: lead-coeff $f>0$
and deg: degree $f \neq 0$
shows square-free-factorization $f\left(1, f_{s}\right) \wedge(\forall f i .(f i, i) \in$ set $f s \longrightarrow$ content $f i=$
$1 \wedge$ lead-coeff $f i>0) \wedge$
distinct (map snd fs)
proof (cases square-free-heuristic f)
case None
from $l c$ have $f 0: f \neq 0$ by auto
from res None have $f s$: yun-gcd.yun-monic-factorization gcd $f=f_{s}$
unfolding square-free-factorization-int-main-def by auto
let $? r=r a t-o f-i n t$
let ${ }^{2} r p=$ map-poly $? r$
define G where $G=\operatorname{smult}($ inverse (lead-coeff $(? r p f))$) (?rpf)
have ? $r p f \neq 0$ using $f 0$ by auto
hence mon: monic G unfolding G-def coeff-smult by simp
obtain Fs where Fs: yun-gcd.yun-monic-factorization gcd $G=F s$ by blast
from $l c$ have $l g$: lead-coeff $($?rp $f) \neq 0$ by auto
let ?c $=$ lead-coeff (?rpf)
define c where $c=$? c
have $r p$: ? $r p f=$ smult $c G$ unfolding G-def c-def by (simp add: field-simps)
have in-rel: yun-rel f $c G$ unfolding yun-rel-def yun-wrel-def
using rp mon lc ct by auto
from yun-monic-factorization-int-yun-rel[OF Fs fs in-rel]
have out-rel: list-all2 (rel-prod yun-erel (=)) fs Fs by auto
from yun-monic-factorization[OF Fs mon]
have square-free-factorization $G(1, F s)$ and dist: distinct (map snd $F s$) by auto
note $s f f=$ square-free-factorizationD $[$ OF this(1)]
from out-rel have map snd fs map snd Fs by (induct fs Fs rule: list-all2-induct,
auto)
with dist have dist': distinct (map snd fs) by auto
have main: square-free-factorization $f\left(1, f_{s}\right) \wedge(\forall f i .(f i, i) \in$ set $f s \longrightarrow$ content $f i=1 \wedge$ lead-coeff $f i>0$)
unfolding square-free-factorization-def split
proof (intro conjI allI impI)
from $c t$ have $f \neq 0$ by auto
thus $f=0 \Longrightarrow 1=0 f=0 \Longrightarrow f s=[]$ by auto
from dist' show distinct f s by (simp add: distinct-map)
\{
fix $a i$
assume $a:(a, i) \in$ set $f s$
with out-rel obtain $b j$ where $b j \in$ set Fs and rel-prod yun-erel $(=)(a, i) b j$
unfolding list-all2-conv-all-nth set-conv-nth by fastforce
then obtain b where $b:(b, i) \in$ set Fs and $a b:$ yun-erel $a b$ by (cases $b j$,
auto simp: rel-prod.simps)
from $\operatorname{sff}(2)[O F b]$ have b^{\prime} : square-free b degree $b \neq 0$ by auto
from $a b$ obtain c where rel: yun-rel $a c b$ unfolding yun-erel-def by auto
note $a a=y u n-r e l D[O F$ this $]$
from $a a$ have $c 0: c \neq 0$ by auto
from $b^{\prime} a a(3)$ show degree $a>0$ by simp
from square-free-smult[OF c0 $b^{\prime}(1)$, folded aa(2)]
show square-free a unfolding square-free-def by (force simp: dvd-def hom-distribs)
show cnt: content $a=1$ and $l c$: lead-coeff $a>0$ using aa by auto
fix $A I$
assume $A:(A, I) \in$ set f s and diff: $(a, i) \neq(A, I)$
from a [unfolded set-conv-nth] obtain k where $k: f s!k=(a, i) k<l e n g t h ~ f s$ by auto
from $A[$ unfolded set-conv-nth] obtain K where $K: f s!K=(A, I) K<$ length $f s$ by auto
from diff $k K$ have $k K: k \neq K$ by auto
from dist'[unfolded distinct-conv-nth length-map, rule-format, OF k (2) K(2) $k K]$
have $i I: i \neq I$ using $k K$ by simp
from A out-rel obtain $B j$ where $B j \in$ set Fs and rel-prod yun-erel $(=)(A, I)$ Bj
unfolding list-all2-conv-all-nth set-conv-nth by fastforce
then obtain B where $B:(B, I) \in$ set $F s$ and $A B$: yun-erel $A B$ by (cases Bj, auto simp: rel-prod.simps)
then obtain C where Rel: yun-rel $A C B$ unfolding yun-erel-def by auto
note $A A=$ yun-relD $[$ OF this]
from iI have $(b, i) \neq(B, I)$ by auto
from sff(3)[OF b B this] have cop: coprime b B by simp
from $A A$ have $C: C \neq 0$ by auto
from yun-rel-gcd $[O F$ rel $A A(1) C$ refl $]$ obtain c where yun-rel (gcd a A) c (gcd b B) by auto
note $\mathrm{rel}=\mathrm{yun-relD}[$ OF this]
from $\operatorname{rel}(2)$ cop have ? $r p(g c d$ a $A)=[: c:]$ by simp
from arg-cong $[O F$ this, of degree $]$ have degree $(g c d$ a $A)=0$ by simp
from degree0-coeffs $[$ OF this] obtain c where gcd: gcd a $A=[: c:]$ by auto

```
    from rel(8) rel(5) show Rings.coprime a A
        by (auto intro!: gcd-eq-1-imp-coprime simp add: gcd)
    }
    let ?prod =\lambda fs. (П (a,i)\inset fs. a ^ Suc i)
    let ?pr = \lambda fs. (П(a,i)\leftarrowfs. a^ ^uc i)
    define pr where pr=?prod fs
    from «distinct fs` have pfs: ?prod fs = ?pr fs by (rule prod.distinct-set-conv-list)
    from \distinct Fs` have pFs: ?prod Fs = ?pr Fs by (rule prod.distinct-set-conv-list)
    from out-rel have yun-erel (?prod fs) (?prod Fs) unfolding pfs pFs
    proof (induct fs Fs rule: list-all2-induct)
    case (Cons ai fs Ai Fs)
    obtain a i where ai: ai=(a,i) by force
    from Cons(1) ai obtain A where Ai:Ai=(A,i)
        and rel: yun-erel a A by (cases Ai, auto simp: rel-prod.simps)
    show ?case unfolding ai Ai using yun-erel-mult[OF yun-erel-pow[OF rel, of
Suc i] Cons(3)]
            by auto
    qed simp
    also have ?prod Fs =G using sff(1) by simp
    finally obtain d}\mathrm{ where rel: yun-rel pr d G unfolding yun-erel-def pr-def by
auto
    with in-rel have f=pr by (rule yun-rel-same-right)
    thus f= smult 1(?prod fs) unfolding pr-def by simp
    qed
    from main dist' show ?thesis by auto
next
    case (Some p)
    from res[unfolded square-free-factorization-int-main-def Some] have fs: fs =
[(f,0)] by auto
    from lc have f0:f\not=0 by auto
    from square-free-heuristic[OF Some] poly-mod-prime.separable-impl(1)[of p f]
square-free-mod-imp-square-free[of pf] deg
    show ?thesis unfolding fs
        by (auto simp: ct lc square-free-factorization-def f0 poly-mod-prime-def)
qed
definition square-free-factorization-int' :: int poly }=>\mathrm{ int }\times(\mathrm{ int poly }\times\mathrm{ nat)list
where
    square-free-factorization-int' }f=(\mathrm{ if degree f}=
    then (lead-coeff f,[]) else (let - content factorization
            c= content f;
            d = (sgn (lead-coeff f)*c);
            g = sdiv-poly f d
            - and square-free factorization
    in (d, square-free-factorization-int-main g)))
```

lemma square-free-factorization-int': assumes res: square-free-factorization-int' f $=(d, f s)$

```
    shows square-free-factorization f (d,fs)
    (fi,i) \in set fs \Longrightarrow content fi=1^ lead-coeff fi>0
    distinct (map snd fs)
proof -
    note res = res[unfolded square-free-factorization-int'-def Let-def]
    have square-free-factorization f (d,fs)
```



```
    |distinct (map snd fs)
    proof (cases degree f=0)
    case True
    from degree0-coeffs[OF True] obtain c where f:f=[:c:] by auto
    thus ?thesis using res by (simp add: square-free-factorization-def)
next
    case False
    let ?s = sgn (lead-coeff f)
    have s: ?s }\in{-1,1} using False unfolding sgn-if by aut
    define g}\mathrm{ where g= smult ?s f
    let ?d = ?s * content f
    have content g= content ([:?s:]*f) unfolding g-def by simp
    also have ... = content [:?s:] * content f unfolding content-mult by simp
    also have content [:?s:] = 1 using s by (auto simp: content-def)
    finally have cg: content g=content f by simp
    from False res
    have d:d=?d and fs:fs= square-free-factorization-int-main (sdiv-poly f ?d)
by auto
    let ?g = primitive-part g
    define ng where ng= primitive-part g
    note fs
    also have sdiv-poly f ?d = sdiv-poly g (content g) unfolding cg unfolding
g-def
            by (rule poly-eqI, unfold coeff-sdiv-poly coeff-smult, insert s, auto simp:
div-minus-right)
    finally have fs: square-free-factorization-int-main ng=fs
            unfolding primitive-part-alt-def ng-def by simp
    have lead-coeff f}\not=0\mathrm{ using False by auto
    hence lg: lead-coeff g>0 unfolding g-def lead-coeff-smult
    by (meson linorder-neqE-linordered-idom sgn-greater sgn-less zero-less-mult-iff)
    hence g0: g\not=0 by auto
    from g0 have content g}\not=0\mathrm{ by simp
            from arg-cong[OF content-times-primitive-part[of g], of lead-coeff, unfolded
lead-coeff-smult]
            lg content-ge-0-int[of g] have lg': lead-coeff ng > 0 unfolding ng-def
            by (metis <content g}\not=0\mathrm{ \ dual-order.antisym dual-order.strict-implies-order
zero-less-mult-iff)
            from content-primitive-part[OF g0] have c-ng: content ng = 1 unfolding
ng-def .
    have degree ng = degree f using <content [:sgn(lead-coeff f):]=1>g-def ng-def
            by (auto simp add: sgn-eq-0-iff)
    with False have degree ng \not=0 by auto
```

```
    note main = square-free-factorization-int-main[OF fs c-ng lg' this]
```

 show ?thesis
 proof (intro conjI impI)
 \{
 assume \((f, i) \in \operatorname{set} f s\)
 with main show content \(f i=10<\) lead-coeff \(f i\) by auto
 \}
 have \(d 0: d \neq 0\) using <content \([: ? s:]=1\rangle d\) by (auto simp:sgn-eq- 0 -iff)
 have smult \(d n g=\) smult ?s (smult (content g) (primitive-part g))
 unfolding \(n g\)-def \(d c g\) by simp
 also have smult (content \(g\)) (primitive-part \(g)=g\) using content-times-primitive-part
 also have smult ?s \(g=f\) unfolding \(g\)-def using \(s\) by auto
 finally have id: smult \(d n g=f\).
 from main have square-free-factorization \(n g(1, f s)\) by auto
 from square-free-factorization-smult[OF d0 this]
 show square-free-factorization \(f(d, f s)\) unfolding \(i d\) by simp
 show distinct (map snd \(f_{s}\)) using main by auto
 qed
 qed
thus square-free-factorization $f(d, f s)$
$(f, i) \in$ set $f s \Longrightarrow$ content $f i=1 \wedge$ lead-coeff $f i>0$ distinct (map snd f_{s}) by
auto
qed
definition x-split :: ' a :: semiring-0 poly \Rightarrow nat \times 'a poly where
x-split $f=($ let $f s=$ coeffs $f ; z s=$ takeWhile $((=) 0) f s$
in case zs of []$\Rightarrow(0, f) \mid-\Rightarrow$ (length zs, poly-of-list $($ dropWhile $((=) 0) f s)))$
lemma x-split: assumes x-split $f=(n, g)$
shows $f=$ monom $1 n * g n \neq 0 \vee f \neq 0 \Longrightarrow \neg$ monom 11 dvd g
proof -
define $z s$ where $z s=$ takeWhile $((=) 0)($ coeffs $f)$
note res $=$ assms $[$ unfolded $z s$-def $[$ symmetric $] x$-split-def Let-def]
have $f=$ monom $1 n * g \wedge((n \neq 0 \vee f \neq 0) \longrightarrow \neg($ monom 11 dvd $g))($ is -
$\wedge(-\longrightarrow \neg(? x d v d-)))$
proof (cases $f=0$)
case True
with res have $n=0 g=0$ unfolding $z s$-def by auto
thus ?thesis using True by auto
next
case False note $f=$ this
show ?thesis
proof (cases zs $=[])$
case True
hence choice: coeff f $0 \neq 0$ using f unfolding zs-def coeff-f-0-code poly-compare-0-code
by (cases coeffs f, auto)
have dvd: ? $x ~ d v d h \longleftrightarrow$ coeff $h 0=0$ for h by (simp add: monom-1-dvd-iff')

```
            from True choice res f show ?thesis unfolding dvd by auto
    next
            case False
    define ys where ys = dropWhile ((=) 0) (coeffs f)
    have dvd:?x dvd h\longleftrightarrow coeff h 0 = 0 for h by (simp add: monom-1-dvd-iff')
    from res False have n: n = length zs and g: g= poly-of-list ys unfolding
ys-def
            by (cases zs, auto)+
            obtain xx where xx: coeffs f =xx by auto
            have coeffs f=zs@ ys unfolding zs-def ys-def by auto
            also have zs = replicate n 0 unfolding zs-def n xx by (induct xx, auto)
            finally have ff:coeffs f= replicate n 0 @ ys by auto
            from f have lead-coeff f}\not=0\mathrm{ by auto
            then have nz: coeffs f}\not=[] last (coeffs f) \not=
                by (simp-all add: last-coeffs-eq-coeff-degree)
                            have ys: ys }=[]\mathrm{ using nz[unfolded ff] by auto
                            with ys-def have hd: hd ys \not=0 by (metis (full-types) hd-drop While)
                            hence coeff (poly-of-list ys) 0}=0\mathrm{ unfolding poly-of-list-def coeff-Poly using
ys by (cases ys, auto)
            moreover have coeffs (Poly ys) = ys
                by (simp add: ys-def strip-while-dropWhile-commute)
                            then have coeffs(monom-mult n (Poly ys)) = replicate n 0 @ ys
                            by (simp add: coeffs-eq-iff monom-mult-def [symmetric] ff ys monom-mult-code)
            ultimately show ?thesis unfolding dvd g
            by (auto simp add: coeffs-eq-iff monom-mult-def [symmetric] ff)
    qed
    qed
    thus f= monom 1 n*gn\not=0\veef\not=0\Longrightarrow\neg monom 1 1 dvd g by auto
qed
```

definition square-free-factorization-int $::$ int poly \Rightarrow int $\times($ int poly \times nat $)$ list
where

```
square-free-factorization-int \(f=(\) case \(x\)-split \(f\) of \((n, g)\) - extract \(x\) \(n\)
    \(\Rightarrow\) case square-free-factorization-int' \(g\) of \((d, f s)\)
    \(\Rightarrow\) if \(n=0\) then \((d, f s)\) else \((d,(\) monom \(11, n-1) \# f s))\)
```

lemma square-free-factorization-int: assumes res: square-free-factorization-int f $=\left(d, f_{s}\right)$
shows square-free-factorization $f(d, f s)$
$(f, i) \in$ set $f_{s} \Longrightarrow$ primitive $f i \wedge$ lead-coeff $f i>0$
proof -
obtain $n g$ where xs: x-split $f=(n, g)$ by force
obtain $c h s$ where sf: square-free-factorization-int' $g=(c, h s)$ by force
from res[unfolded square-free-factorization-int-def xs sf split]
have $d: d=c$ and $f_{s}: f_{s}=($ if $n=0$ then hs else (monom 11, $\left.n-1) \# h s\right)$
by (cases n, auto)
note $s f f=$ square-free-factorization-int ${ }^{\prime}(1-2)[O F s f]$
note $x s=x$-split[OF $x s]$

```
    let ?x = monom 1 1 :: int poly
    have x: primitive ?}x\wedge lead-coeff ?x = 1 ^ degree ? x = 1
    by (auto simp add: degree-monom-eq content-def monom-Suc)
    thus (fi,i)\in set fs \Longrightarrow primitive fi ^ lead-coeff fi>0 using sff(2) unfolding
fs
    by (cases n, auto)
    show square-free-factorization f (d,fs)
    proof (cases n)
        case 0
        with d fs sff xs show ?thesis by auto
    next
        case (Suc m)
        with xs have fg:f=monom 1 (Suc m)*g and dvd:\neg?x dvd g by auto
    from Suc have fs: fs = (?x,m) # hs unfolding fs by auto
    have degx: degree ?x = 1 by code-simp
    from irreducible d
?x by auto
    have fg:f=?x` n*g unfolding fg Suc by (metis x-pow-n)
    have eq0:? ? ^ n*g=0\longleftrightarrowg=0 by simp
    note sf = square-free-factorizationD[OF sff(1)]
    {
        fix a i
        assume ai: (a,i)\in set hs
        with sf(4) have g0:g\not=0 by auto
        from split-list[OF ai] obtain ys zs where hs: hs=ys @ (a,i)#zs by auto
        have a dvd g unfolding square-free-factorization-prod-list[OF sff(1)] hs
        by (rule dvd-smult, simp add: ac-simps)
    moreover have }\neg\mathrm{ ?x dvd g using xs[unfolded Suc] by auto
    ultimately have dvd: \neg?x dvd a using dvd-trans by blast
    from sf(2)[OF ai] have }a\not=0\mathrm{ by auto
    have 1 = gcd ?x a
    proof (rule gcdI)
        fix d
        assume d: d dvd ?.x d dvd a
        from content-dvd-contentI[OF d(1)] x have cnt: is-unit (content d) by auto
        show is-unit d
        proof (cases degree d=1)
            case False
                with divides-degree[OF d(1), unfolded degx] have degree d = 0 by auto
                from degree0-coeffs[OF this] obtain c where dc: d = [:c:] by auto
                from cnt[unfolded dc] have is-unit c by (auto simp: content-def, cases c
=0,auto)
                hence d*d = 1 unfolding dc by (cases c=-1; cases c = 1, auto)
                thus is-unit d by (metis dvd-triv-right)
        next
                case True
                from d(1) obtain e where xde: ? }x=d*e unfolding dvd-def by aut
                from arg-cong[OF this, of degree] degx have degree d + degree e = 1
                    by (metis True add.right-neutral degree-0 degree-mult-eq one-neq-zero)
```

```
        with True have degree e=0 by auto
        from degree0-coeffs[OF this] xde obtain e where xde: ?x = [:e:]*d by
auto
            from arg-cong[OF this, of content, unfolded content-mult] }
            have content [:e:] * content d = 1 by auto
            also have content [:e :] = abs e by (auto simp: content-def, cases e = 0,
auto)
            finally have }|e|*\mathrm{ content d}=1
            from pos-zmult-eq-1-iff-lemma[OF this] have e *e=1 by (cases e=1;
cases e = -1, auto)
            with arg-cong[OF xde, of smult e] have d=?x * [:e:] by auto
            hence ?x dvd d unfolding dvd-def by blast
            with d(2) have ?x dvd a by (metis dvd-trans)
            with dvd show ?thesis by auto
            qed
            qed auto
            hence coprime ?x a
            by (simp add: gcd-eq-1-imp-coprime)
            note this dvd
    } note hs-dvd-x = this
    from hs-dvd-x[of ?x m]
    have nmem: (?x,m) & set hs by auto
    hence eq:?x^ n*g= smult c (\prod (a,i)\inset fs. a ^ Suc i)
        unfolding sf(1) unfolding fs Suc by simp
    show ?thesis unfolding fgd unfolding square-free-factorization-def split eq0
unfolding eq
    proof (intro conjI allI impI, rule refl)
            fix ai
            assume ai: (a,i) \in set fs
            thus square-free a degree a>0 using sf(2) sfx degx unfolding fs by auto
            fix b j
    assume bj: (b,j) \in set fs and diff: (a,i) \not=(b,j)
    consider (hs-hs) (a,i) \in set hs (b,j) \in set hs
        | (hs-x) (a,i) \in set hs b =? ?
        | (x-hs) (b,j) 的 hs a=?x
        using ai bj diff unfolding fs by auto
    then show Rings.coprime a b
    proof cases
        case hs-hs
        from sf(3)[OF this diff] show ?thesis .
    next
            case hs-x
            from hs-dvd-x(1)[OF hs-x(1)] show ?thesis unfolding hs-x(2) by (simp
add: ac-simps)
    next
        case x-hs
        from hs-dvd-x(1)[OF x-hs(1)] show ?thesis unfolding x-hs(2) by simp
    qed
    next
```

```
        show g=0\Longrightarrowc=0 using sf(4) by auto
        show }g=0\Longrightarrowfs=[] using sf(4) xs Suc by aut
        show distinct fs using sf(5) nmem unfolding fs by auto
        qed
    qed
qed
end
```


11.3 Factoring Arbitrary Integer Polynomials

We combine the factorization algorithm for square-free integer polynomials with a square-free factorization algorithm to a factorization algorithm for integer polynomials which does not make any assumptions.

```
theory Factorize-Int-Poly
imports
    Berlekamp-Zassenhaus
    Square-Free-Factorization-Int
begin
hide-const coeff monom
lifting-forget poly.lifting
typedef int-poly-factorization-algorithm \(=\{\) alg.
    \(\forall(f::\) int poly \() f s\). square-free \(f \longrightarrow\) degree \(f>0 \longrightarrow \operatorname{alg} f=f s \longrightarrow\)
    \(\left(f=\right.\) prod-list \(f s \wedge\left(\forall f i \in\right.\) set fs. irreducible \(\left.\left.\left.{ }_{d} f i\right)\right)\right\}\)
    by (rule exI[of - berlekamp-zassenhaus-factorization],
        insert berlekamp-zassenhaus-factorization-irreducible \({ }_{d}\), auto)
setup-lifting type-definition-int-poly-factorization-algorithm
lift-definition int-poly-factorization-algorithm :: int-poly-factorization-algorithm
\(\Rightarrow\)
    (int poly \(\Rightarrow\) int poly list) is \(\lambda x . x\).
lemma int-poly-factorization-algorithm-irreducible : \(^{\text {: }}\)
    assumes int-poly-factorization-algorithm alg \(f=f s\)
    and square-free \(f\)
    and degree \(f>0\)
shows \(f=\) prod-list \(f s \wedge\left(\forall f i \in\right.\) set fs. irreducible \(\left._{d} f i\right)\)
    using assms by (transfer, auto)
corollary int-poly-factorization-algorithm-irreducible:
    assumes res: int-poly-factorization-algorithm alg \(f=f_{s}\)
    and \(s f\) : square-free \(f\)
    and deg: degree \(f>0\)
    and \(p r\) : primitive \(f\)
    shows \(f=\) prod-list \(f s \wedge(\forall f i \in\) set fs. irreducible \(f i \wedge\) degree \(f i>0 \wedge\) primitive
```

fi)

```
proof (intro conjI ballI)
    note * = int-poly-factorization-algorithm-irreducible }\mp@subsup{}{d}{}[OF res sf deg
    from * show f:f= prod-list fs by auto
    fix fi assume fi: fi set fs
    with primitive-prod-list[OF pr[unfolded f]] show primitive fi by auto
    from irreducible-primitive-connect[OF this] * pr[unfolded f] fi
    show irreducible fi by auto
    from * fi show degree fi>0 by (auto)
qed
lemma irreducible-imp-square-free:
    assumes irr: irreducible ( p::'a::idom poly) shows square-free p
proof(intro square-freeI)
    from irr show p0: p\not=0 by auto
    fix a assume a*a dvd p
    then obtain b where paab: p=a*(a*b) by (elim dvdE,auto)
    assume degree a>0
    then have a1: \nega dvd 1 by (auto simp: poly-dvd-1)
    then have ab1:\nega*b dvd 1 using dvd-mult-left by auto
    from paab irr a1 ab1 show False by force
qed
lemma not-mem-set-dropWhileD: }x\not\in\mathrm{ set (dropWhile P xs) }\Longrightarrowx\in set xs \Longrightarrow
x
    by (metis drop While-append3 in-set-conv-decomp)
lemma primitive-reflect-poly:
    fixes f :: 'a :: comm-semiring-1 poly
    shows primitive (reflect-poly f)= primitive f
proof-
    have (\foralla\in set (coeffs f). x dvd a)\longleftrightarrow \longleftrightarrow }\foralla\in\mathrm{ set (dropWhile ((=) 0) (coeffs
f)). x dvd a) for x
    by (auto dest: not-mem-set-drop WhileD set-dropWhileD)
    then show ?thesis by (auto simp: primitive-def coeffs-reflect-poly)
qed
lemma gcd-list-sub:
    assumes set xs\subseteq set ys shows gcd-list ys dvd gcd-list xs
    by (metis Gcd-fin.subset assms semiring-gcd-class.gcd-dvd1)
lemma content-reflect-poly:
    content (reflect-poly f)= content f(is ?l = ?r)
proof-
    have l:?l = gcd-list (dropWhile ((=) 0) (coeffs f)) (is - = gcd-list ?xs)
        by (simp add: content-def reflect-poly-def)
    have set ?xs \subseteqset (coeffs f) by (auto dest: set-dropWhileD)
    from gcd-list-sub[OF this]
```

```
    have ?r dvd gcd-list ?xs by (simp add: content-def)
    with l have rl: ?r dvd ?l by auto
    have set (coeffs f)\subseteq set (0 # ?xs) by (auto dest: not-mem-set-dropWhileD)
    from gcd-list-sub[OF this]
    have gcd-list ?xs dvd ?r by (simp add: content-def)
    with l have lr: ?l dvd ?r by auto
    from rl lr show ?l = ?r by (simp add: associated-eqI)
qed
lemma coeff-primitive-part: content f * coeff (primitive-part f) i=coeff fi
    using arg-cong[OF content-times-primitive-part[of f], of \lambdaf. coeff f -, unfolded
coeff-smult].
lemma smult-cancel[simp]:
    fixes c :: 'a :: idom
    shows smult c f= smult c g}\longleftrightarrowc=0\veef=
proof-
    have l: smult c f=[:c:]*f by simp
    have r: smult c g=[:c:]*g by simp
    show ?thesis unfolding l r mult-cancel-left by simp
qed
lemma primitive-part-reflect-poly:
    fixes f :: 'a :: {semiring-gcd,idom} poly
    shows primitive-part (reflect-poly f) = reflect-poly (primitive-part f) (is ?l = ?r)
    using content-times-primitive-part[of reflect-poly f]
proof-
    note content-reflect-poly[of f, symmetric]
    also have smult (content (reflect-poly f)) ?l = reflect-poly f by simp
    also have ... = reflect-poly (smult (content f) (primitive-part f)) by simp
    finally show ?thesis unfolding reflect-poly-smult smult-cancel by auto
qed
lemma reflect-poly-eq-zero[simp]:
    reflect-poly f=0\longleftrightarrowf=0
proof
    assume reflect-poly f=0
    then have coeff (reflect-poly f) 0=0 by simp
    then have lead-coeff f=0 by simp
    then show }f=0\mathrm{ by simp
qed simp
lemma irreducible d-reflect-poly-main:
    fixes f :: 'a :: {idom, semiring-gcd} poly
    assumes nz: coeff f 0}\not=
        and irr: irreducible (reflect-poly f)
    shows irreducible d}
```

```
proof
    let ?r = reflect-poly
    from irr degree-reflect-poly-eq[OF nz] show degree f > 0 by auto
    fix gh
    assume deg: degree g< degree f degree h<degree f and fgh: f=g*h
    from arg-cong[OF fgh, of \lambda f.coeff f 0] nz
    have nz': coeff g 0}\not=0\mathrm{ by (auto simp: coeff-mult-0)
    note rfgh = arg-cong[OF fgh, of reflect-poly, unfolded reflect-poly-mult[of g h]]
    from deg degree-reflect-poly-le[of g] degree-reflect-poly-le[of h] degree-reflect-poly-eq[OF
nz]
    have degree (?r h) < degree (?r f) degree (?r g) < degree (?r f) by auto
    with irr rfgh show False by auto
qed
lemma irreducible d-reflect-poly:
    fixes f :: 'a :: {idom, semiring-gcd} poly
    assumes nz: coeff f 0}=
    shows irreducible ( (reflect-poly f) = irreducible e}
proof
    assume irreducible ( (reflect-poly f)
    from irreducible e}\mp@subsup{|}{d}{}\mathrm{ -reflect-poly-main[OF nz this] show irreducible }\mp@subsup{|}{d}{}f
next
    from nz have nzr: coeff (reflect-poly f) 0 f=0 by auto
    assume irreducible d}
    with nz have irreducible (reflect-poly (reflect-poly f)) by simp
    from irreducible }\mp@subsup{}{d}{\prime}\mathrm{ -reflect-poly-main[OF nzr this]
    show irreducible}\mp@subsup{d}{d}{(reflect-poly f).
qed
lemma irreducible-reflect-poly:
    fixes }f\mathrm{ :: 'a :: {idom,semiring-gcd} poly
    assumes nz: coeff f 0}\not=
    shows irreducible (reflect-poly f)= irreducible f (is ?l = ?r)
proof (cases degree f=0)
    case True then obtain f0 where f=[:f0:] by (auto dest: degree0-coeffs)
    then show ?thesis by simp
next
    case deg: False
    show ?thesis
    proof (cases primitive f)
    case False
    with deg irreducible-imp-primitive[of f] irreducible-imp-primitive[of reflect-poly
f] nz
    show ?thesis unfolding primitive-reflect-poly by auto
    next
    case cf:True
    let ?r = reflect-poly
    from nz have nz': coeff (?r f) 0}\not=0\mathrm{ by auto
    let ?ir = irreducible }\mp@subsup{}{d}{
```

```
    from irreducible d-reflect-poly[OF nz] irreducible d-reflect-poly[OF nz] nz
    have ?ir f \longleftrightarrow ?ir (reflect-poly f) by auto
    also have ... \longleftrightarrow irreducible (reflect-poly f)
    by (rule irreducible-primitive-connect, unfold primitive-reflect-poly, fact cf)
    finally show ?thesis
        by (unfold irreducible-primitive-connect[OF cf], auto)
    qed
qed
lemma reflect-poly-dvd: (f :: 'a :: idom poly) dvd g\Longrightarrow reflect-poly f dvd reflect-poly
g
    unfolding dvd-def by (auto simp: reflect-poly-mult)
lemma square-free-reflect-poly: fixes f :: 'a :: idom poly
    assumes sf: square-free f
    and nz: coeff f 0}\not=
shows square-free (reflect-poly f) unfolding square-free-def
proof (intro allI conjI impI notI)
    let ?r = reflect-poly
    from sf[unfolded square-free-def]
    have f0:f\not=0 and sf:\bigwedgeq. 0< degree q\Longrightarrowq* qdvd f\Longrightarrow False by auto
    from f0 nz show ?r f = 0 \Longrightarrow False by auto
    fix q
    assume 0:0<degree q and dvd:q*qdvd ?r f
    from dvd have qdvd ?r f by auto
    then obtain x where id: ?r f=q*x by fastforce
    {
        assume coeff q 0=0
        hence coeff (?r f) 0 = 0 using id by (auto simp: coeff-mult)
        with nz have False by auto
    }
    hence nzq: coeff q 0 F=0 by auto
    from dvd have ?r ( q*q)dvd ?r (?r f) by (rule reflect-poly-dvd)
    also have ?r (?r f) =f using nz by auto
    also have ?r (q*q)=?r q*?r q by (rule reflect-poly-mult)
    finally have ?r q* ?r q dvd f.
    from sf[OF - this] 0 nzq show False by simp
qed
lemma gcd-reflect-poly: fixes f :: 'a :: {factorial-ring-gcd, semiring-gcd-mult-normalize}
poly
    assumes nz: coeff f 0}=0\mathrm{ coeff g 0}\not=
    shows gcd (reflect-poly f) (reflect-poly g) = normalize (reflect-poly (gcd f g))
proof (rule sym, rule gcdI)
    have gcd fg dvd f by auto
    from reflect-poly-dvd[OF this]
    show normalize (reflect-poly (gcd fg)) dvd reflect-poly f by simp
    have gcd f g dvd g by auto
```

from reflect-poly-dvd[OF this]
show normalize (reflect-poly $(g c d f g)$) dvd reflect-poly g by simp
show normalize (normalize (reflect-poly $(g c d f g))$) $=$ normalize (reflect-poly (gcd $f g)$) by auto
fix h
assume $h f$: h dvd reflect-poly f and $h g$: h dvd reflect-poly g
from $h f$ obtain k where reflect-poly $f=h * k$ unfolding dvd-def by auto
from arg-cong[OF this, of λf. coeff $f 0$, unfolded coeff-mult- 0$] n z(1)$ have h :
coeff $h 0 \neq 0$ by auto
from reflect-poly-dvd[OF hf] reflect-poly-dvd[OF hg]
have reflect-poly h dvd f reflect-poly h dvd g using $n z$ by auto
hence reflect-poly h dvd gcd $f g$ by auto
from reflect-poly-dvd[OF this] h have h dvd reflect-poly $(g c d f g)$ by auto
thus h dvd normalize (reflect-poly $(g c d f g)$) by auto
qed
lemma linear-primitive-irreducible:
fixes $f::$ ' a :: \{comm-semiring-1,semiring-no-zero-divisors $\}$ poly
assumes deg: degree $f=1$ and $c f$: primitive f
shows irreducible f
proof (intro irreducibleI)
fix $a b$ assume fab: $f=a * b$
with deg have $a 0: a \neq 0$ and $b 0: b \neq 0$ by auto
from deg[unfolded fab] degree-mult-eq[OF this] have degree $a=0 \vee$ degree $b=$
0 by auto
then show $a d v d 1 \vee b$ dvd 1
proof
assume degree $a=0$
then obtain $a 0$ where $a: a=[: a 0:]$ by (auto dest:degree0-coeffs)
with fab have $c \in \operatorname{set}($ coeffs $f) \Longrightarrow a 0 d v d c$ for c by (cases a0 $=0$, auto simp: coeffs-smult)
with $c f$ show ?thesis by (auto dest: primitiveD simp: a)
next
assume degree $b=0$
then obtain $b 0$ where $b: b=[: b 0:]$ by (auto dest:degree 0 -coeffs)
with fab have $c \in \operatorname{set}($ coeffs $f) \Longrightarrow b 0 d v d c$ for c by (cases $b 0=0$, auto simp: coeffs-smult)
with of show ?thesis by (auto dest: primitiveD simp: b)
qed
qed (insert deg, auto simp: poly-dvd-1)
lemma square-free-factorization-last-coeff-nz:
assumes sff: square-free-factorization $f(a, f s)$
and mem: $(f, i) \in$ set $f s$
and $n z$: coeff f $0 \neq 0$
shows coeff fi $0 \neq 0$
proof
assume f : coeff fi $0=0$
note sff-list $=$ square-free-factorization-prod-list[OF sff]
note $s f f=$ square-free-factorizationD $[O F$ sff]
from sff-list have coeff f $0=a *$ coeff $\left(\prod(a, i) \leftarrow f s . a^{\wedge}\right.$ Suc i) 0 by simp with split-list[OF mem] f have coeff f $0=0$
by (auto simp: coeff-mult)
with $n z$ show False by simp
qed

context

fixes alg :: int-poly-factorization-algorithm
begin
definition main-int-poly-factorization :: int poly \Rightarrow int poly list where
main-int-poly-factorization $f=($ let $d f=$ degree f in if $d f=1$ then $[f]$ else if abs (coeff f0)<abs (coeff $f d f$) - take reciprocal polynomial, if $f(0)<l c(f)$ then map reflect-poly (int-poly-factorization-algorithm alg (reflect-poly f)) else int-poly-factorization-algorithm alg f)
definition internal-int-poly-factorization $::$ int poly \Rightarrow int $\times($ int poly \times nat $)$ list where

```
internal-int-poly-factorization f}=
    case square-free-factorization-int f of
        (a,gis) }=>(a,[(h,i).(g,i)\leftarrowgis,h\leftarrow main-int-poly-factorization g])
)
```

lemma internal-int-poly-factorization-code[code]: internal-int-poly-factorization $f=$ (
case square-free-factorization-int f of $(a, g i s) \Rightarrow$
$(a, \operatorname{concat}(\operatorname{map}(\lambda(g, i) .(\operatorname{map}(\lambda f .(f, i))($ main-int-poly-factorization $g))) g i s)))$
unfolding internal-int-poly-factorization-def by auto
definition factorize-int-last-nz-poly :: int poly \Rightarrow int $\times($ int poly \times nat $)$ list where factorize-int-last-nz-poly $f=($ let $d f=$ degree f in if $d f=0$ then (coeff $f 0,[])$ else if $d f=1$ then (content $f,[($ primitive-part f,0)]) else internal-int-poly-factorization f)
definition factorize-int-poly-generic $::$ int poly \Rightarrow int $\times($ int poly \times nat $)$ list where factorize-int-poly-generic $f=($ case x-split f of (n, g) - extract x ^n \Rightarrow if $g=0$ then $(0,[])$ else case factorize-int-last-nz-poly g of $(a, f s)$ \Rightarrow if $n=0$ then $(a, f s)$ else ($a,($ monom $11, n-1) \# f s)$)
lemma factorize-int-poly- $0[$ simp $]$: factorize-int-poly-generic $0=(0,[])$
unfolding factorize-int-poly-generic-def x-split-def by simp
lemma main-int-poly-factorization:
assumes res: main-int-poly-factorization $f=f s$
and sf: square-free f
and $d f$: degree $f>0$
and $n z$: coeff f $0 \neq 0$
shows $f=$ prod-list $f s \wedge\left(\forall f i \in\right.$ set fs. irreducible $\left.e_{d} f\right)$
proof (cases degree $f=1$)
case True
with res[unfolded main-int-poly-factorization-def Let-def]
have $f s=[f]$ by auto
with True show ?thesis by auto
next
case False
hence $*$: (if degree $f=1$ then $t::$ int poly list else $e)=e$ for $t e$ by auto
note res $=$ res[unfolded main-int-poly-factorization-def Let-def *]
show ?thesis
proof (cases abs (coeff f0)<abs (coefff(degree f)))
case False
with res have int-poly-factorization-algorithm alg $f=f_{s}$ by auto
from int-poly-factorization-algorithm-irreducible ${ }_{d}[O F$ this sf df] show?thesis.
next
case True
let $? f=$ reflect-poly f
from square-free-reflect-poly $[O F$ sf $n z]$ have sf: square-free ?f .
from $n z d f$ have $d f$: degree ?f >0 by simp
from True res obtain $g s$ where $f s$: $f s=$ map reflect-poly gs and $g s$: int-poly-factorization-algorithm alg (reflect-poly f) $=g s$ by auto
from int-poly-factorization-algorithm-irreducible ${ }_{d}[$ OF gs sf df $]$
have id: reflect-poly ?f = reflect-poly (prod-list gs) ?f = prod-list gs and irr: \bigwedge gi. gi \in set gs \Longrightarrow irreducible $_{d} g i$ by auto
from $i d(1)$ have $f-f s: f=$ prod-list $f s$ unfolding $f s$ using $n z$ by (simp add: reflect-poly-prod-list)
\{
fix f
assume $f i \in$ set $f s$
from this[unfolded $f s]$ obtain $g i$ where $g i: g i \in$ set $g s$ and $f: f i=$ reflect-poly gi by auto
\{
assume coeff gi $0=0$
with id(2) split-list [OF gi] have coeff ?f $0=0$
by (auto simp: coeff-mult)
with $n z$ have False by auto
\}
hence nzg: coeff gi $0 \neq 0$ by auto
from irreducible $_{d}$-reflect-poly $\left[\right.$ OF nzg] irr $\left[\right.$ OF gi] have irreducible $_{d} f$ unfolding $f i$ by simp

```
    }
    with f-fs show ?thesis by auto
    qed
qed
lemma internal-int-poly-factorization-mem:
    assumes f: coeff f 0}\not=
    and res: internal-int-poly-factorization f}=(c,fs
    and mem:}(f,i)\in\mathrm{ set fs
    shows irreducible fi irreducible }\mp@subsup{|}{d}{}f\mathrm{ and primitive fi and degree fi}\not=
proof -
    obtain a psi where a-psi: square-free-factorization-int f=(a,psi)
    by force
    from square-free-factorization-int[OF this]
    have sff:square-free-factorization f (a, psi)
    and cnt: \ fi i. (f, i) \in set psi\Longrightarrow primitive fi by blast+
    from square-free-factorization-last-coeff-nz[OF sff - f]
    have nz-fi: \bigwedgefi i. (fi,i) \in set psi\Longrightarrow coeff fi 0}=0\mathrm{ by auto
    note res = res[unfolded internal-int-poly-factorization-def a-psi Let-def split]
    obtain fact where fact: fact = (\lambda (q,i:: nat). (map (\lambda f. (f,i)) (main-int-poly-factorization
q))) by auto
    from res[unfolded split Let-def]
    have c:c=a and fs: fs=concat (map fact psi)
        unfolding fact by auto
    note sff' = square-free-factorizationD[OF sff]
    from mem[unfolded fs, simplified] obtain d j where psi:(d,j) \in set psi
        and fi:(fi,i)\in set (fact (d,j)) by auto
    obtain hs where d: main-int-poly-factorization d =hs by force
    from fi[unfolded d split fact] have fi: fi\in set hs by auto
    from main-int-poly-factorization[OF d - nz-fi[OF psi]] sff'(2)[OF psi] cnt[OF
psi]
    have main: d = prod-list hs }\\mathrm{ fi. fi set hs ב irreducible d fi by auto
    from main split-list[OF fi] have content fi dvd content d by auto
    with cnt[OF psi] show cnt: primitive fi by simp
    from main(2)[OF fi] show irr: irreducible d fi .
    show irreducible fi
        using irreducible-primitive-connect[OF cnt] irr by blast
    from irr show degree fi\not=0 by auto
qed
lemma internal-int-poly-factorization:
    assumes f: coeff f 0}\not=
    and res: internal-int-poly-factorization f}=(c,fs
    shows square-free-factorization f (c,fs)
proof -
    obtain a psi where a-psi: square-free-factorization-int f = (a,psi)
        by force
    from square-free-factorization-int[OF this]
    have sff:square-free-factorization f (a, psi)
```

and $p r: \bigwedge f i .(f i, i) \in$ set $p s i \Longrightarrow$ primitive $f i$ by blast +
obtain fact where fact: fact $=(\lambda(q, i::$ nat $) .(\operatorname{map}(\lambda f .(f, i))$ (main-int-poly-factorization q))) by auto
from res[unfolded split Let-def]
have $c: c=a$ and $f s: f s=$ concat (map fact psi)
unfolding fact internal-int-poly-factorization-def a-psi by auto
note $s f f$ ' $=$ square-free-factorizationD[OF sff]
show ?thesis unfolding square-free-factorization-def split
proof (intro conjI impI allI)
show $f=0 \Longrightarrow c=0 f=0 \Longrightarrow f s=[]$ using $s f f^{\prime}(4)$ unfolding $c f s$ by auto \{
fix $a i$
assume $(a, i) \in \operatorname{set} f s$
from irreducible-imp-square-free internal-int-poly-factorization-mem[OF fres
this]
show square-free a degree $a>0$ by auto
\}
from square-free-factorization-last-coeff-nz[OF sff - f]
have $n z: \bigwedge f i .(f i, i) \in$ set psi \Longrightarrow coeff $f i \neq 0$ by auto
have eq: $f=$ smult $c\left(\prod(a, i) \leftarrow f s . a^{\wedge}\right.$ Suc $\left.i\right)$ unfolding
prod.distinct-set-conv-list[OF sff '(5)]
sff ${ }^{\prime}(1) c$
proof (rule arg-cong[where $f=$ smult a], unfold f s, insert sff'(2) nz, induct psi)
case (Cons pi psi)
obtain $p i$ where $p i$: $p i=(p, i)$ by force
obtain $g s$ where $g s$: main-int-poly-factorization $p=g s$ by auto
from Cons(2)[of $p i]$ have p : square-free p degree $p>0$ unfolding $p i$ by auto
from Cons(3)[of pi] have nz: coeff $p 0 \neq 0$ unfolding pi by auto
from main-int-poly-factorization $[O F$ gs $p n z]$ have $p g s: p=p r o d-l i s t ~ g s ~ b y ~$ auto
have fact: fact $(p, i)=\operatorname{map}(\lambda g .(g, i))$ gs unfolding fact split gs by auto
have cong: $\Lambda x y X Y . x=X \Longrightarrow y=Y \Longrightarrow x * y=X * Y$ by auto
show ? case unfolding pi list.simps prod-list.Cons split fact concat.simps prod-list.append
map-append
proof (rule cong)
show p^{\wedge} Suc $i=\left(\prod(a, i) \leftarrow \operatorname{map}(\lambda g .(g, i)) g s . a^{\wedge} S u c i\right)$ unfolding pgs
by (induct gs, auto simp: ac-simps power-mult-distrib)
show $\left(\Pi(a, i) \leftarrow\right.$ psi. a^{\wedge} Suc $\left.i\right)=\left(\Pi(a, i) \leftarrow\right.$ concat (map fact psi). a^{\wedge} Suc
i)
by (rule Cons(1), insert Cons(2-3), auto)
qed
qed simp
\{
fix $i j l f$
assume $*: j<l e n g t h ~ p s i l<l e n g t h(f a c t(p s i!j))$ fact $(p s i!j)!l=(f i, i)$
from $*$ have $p s i: p s i!j \in$ set $p s i$ by auto
obtain $d k$ where $d k$: psi! $j=(d, k)$ by force
with $*$ have psij: psi ! $j=(d, i)$ unfolding fact split by auto
from $s f f^{\prime}(2)[O F$ psi[unfolded psij]] have d : square-free d degree $d>0$ by auto
from $n z[O F$ psi[unfolded psij]] have d0: coeff $d 0 \neq 0$.
from $*$ psij fact
have bz: main-int-poly-factorization $d=\operatorname{map} f s t(f a c t(p s i!j))$ by (auto simp: o-def)
from main-int-poly-factorization[OF bz d d0] pr[OF psi[unfolded dk]]
have dhs: $d=$ prod-list (map fst $(f a c t(p s i!j))$) by auto
from $*$ have mem: $f i \in \operatorname{set}(m a p ~ f s t(f a c t ~(p s i!j)))$
by (metis fst-conv image-eqI nth-mem set-map)
from mem dhs psij d have $\exists d . f i \in \operatorname{set}(\operatorname{map} f s t(f a c t(p s i!j))) \wedge$
$d=\operatorname{prod}-l i s t($ map fst $($ fact $($ psi $!j))) \wedge$
$p s i!j=(d, i) \wedge$
square-free d by blast
$\}$ note deconstruct $=$ this
\{
fix $k K f i{ }_{i} F i$
assume k : $k<$ length $f s K<$ length $f s$ and $f: f s!k=(f i, i) f s!K=(F i, I)$
and diff: $k \neq K$
from nth-concat-diff[OF $k[$ unfolded $f s]$ diff, folded $f s$, unfolded length-map]
obtain $j l J L$ where diff: $(j, l) \neq(J, L)$
and $j: j<$ length psi $J<$ length psi
and $l: l<$ length (map fact psi ! j) $L<$ length (map fact psi! J)
and $f s: f s!k=$ map fact $p s i!j!l f s!K=$ map fact $p s i!J!L$ by blast +
hence psij: psi ! $j \in$ set psi by auto
from j have id: map fact psi ! $j=$ fact ($p s i!j$) map fact psi ! $J=$ fact (p si
! J) by auto
note $l=l[$ unfolded $i d]$ note $f s=f s[$ unfolded $i d]$
from j have $p s i: p s i!j \in$ set psi psi $!J \in$ set psi by auto
from deconstruct $[O F j(1) l(1) f s(1)$ [unfolded f, symmetric]]
obtain d where mem: $f i \in \operatorname{set}(\operatorname{map} f s t(f a c t(p s i!j)))$
and $d: d=$ prod-list $($ map fst $($ fact $(p s i!j)))$ psi $!j=(d, i)$ square-free d by blast
from deconstruct $[O F j$ (2) $l($ (2) $f s(2)[u n f o l d e d ~ f, ~ s y m m e t r i c]] ~$
obtain D where Mem: Fi $\in \operatorname{set}($ map fst $(f a c t(p s i!J)))$
and $D: D=$ prod-list $($ map fst $(f a c t(p s i!J)))$ psi! $J=(D, I)$ square-free
D by blast
from $\operatorname{pr}[$ OF psij[unfolded $d(2)]]$ have cnt: primitive d.
have coprime fi Fi
proof (cases $J=j$)
case False
from sff ${ }^{\prime}(5)$ False j have $(d, i) \neq(D, I)$
unfolding distinct-conv-nth d(2)[symmetric] D (2)[symmetric] by auto
from $s f f^{\prime}(3)[$ OF psi[unfolded d(2) $D(2)]$ this]
have cop: coprime $d D$ by auto
from prod-list-dvd[OF mem, folded $d(1)]$ have $f i d: f i d v d d$ by auto
from prod-list-dvd[OF Mem, folded D(1)] have FiD: Fi dvd D by auto
from coprime-divisors[OF fid FiD] cop show ?thesis by simp next
case True note $i d=$ this
from id diff have diff: $l \neq L$ by auto
obtain $b z$ where $b z: b z=$ map fst $(f a c t(p s i!j))$ by auto
from $f_{s}[$ unfolded $f] l$
have $f i: f i=b z!l F i=b z!L$
unfolding id bz by (metis fst-conv nth-map)+
from $d[$ folded $b z]$ have $s f$: square-free (prod-list $b z$) by auto
from $d[$ folded bz] cnt have cnt: content (prod-list bz) $=1$ by auto
from l have $l: l<$ length $b z L<$ length $b z$ unfolding $b z$ id by auto
from $l f i$ have $f i \in$ set $b z$ by auto
from content-dvd- 1 [OF cnt prod-list-dvd[OF this $]]$ have cnt: content $f i=1$
obtain g where $g: g=g c d f i$ Fi by auto
have $g^{\prime}: g d v d f i g d v d F i$ unfolding g by auto
define bef where bef $=$ take $l b z$
define aft where aft $=d r o p$ (Suc l) bz
from id-take-nth-drop $[O F l(1)] l$ have $b z: b z=b e f @ f i$ aft and bef:
length bef $=l$
unfolding bef-def aft-def f by auto
with l diff have mem: Fi \in set (bef @ aft) unfolding $f(2)$ by (auto simp: nth-append)
from split-list [OF this] obtain Bef Aft where ba: bef @ aft = Bef @ Fi \# Aft by auto
have prod-list bz=fi*prod-list (bef @ aft) unfolding bz by simp
also have prod-list (bef @ aft) =Fi*prod-list (Bef @ Aft) unfolding ba by auto
finally have $f i * F i d v d$ prod-list bz by auto
with g^{\prime} have $g * g d v d$ prod-list bz by (meson dvd-trans mult-dvd-mono)
with $s f[$ unfolded square-free-def] have deg: degree $g=0$ by auto
from content-dvd-1[OF cnt $\left.g^{\prime}(1)\right]$ have cnt: content $g=1$.
from degree0-coeffs[OF deg] obtain c where $g c: g=[: c:]$ by auto
from cnt[unfolded gc content-def, simplified] have abs c=1
by (cases $c=0$, auto)
with g gc have $g c d f i F i \in\{1,-1\}$ by fastforce
thus coprime fi Fi
by (auto intro!: gcd-eq-1-imp-coprime)
(metis dvd-minus-iff dvd-refl is-unit-gcd-iff one-neq-neg-one)
qed
\} note cop $=$ this
show dist: distinct fs unfolding distinct-conv-nth
proof (intro impI allI)
fix $k K$
assume $k: k<$ length $f s K<$ length $f s$ and diff: $k \neq K$
obtain f_{i} i Fi I where $f: f_{s}!k=(f i, i) f s!K=(F i, I)$ by force+
from $\operatorname{cop}[O F k f$ diff $]$ have cop: coprime $f i$ Fi.
from $k(1) f(1)$ have $(f, i) \in$ set fs unfolding set-conv-nth by force
from internal-int-poly-factorization-mem[OF assms(1) res this] have degree

```
\(f i>0\) by auto
    hence \(\neg\) is-unit fi by (simp add: poly-dvd-1)
    with cop coprime-id-is-unit \([\) of \(f i]\) have \(f i \neq F i\) by auto
    thus \(f s!k \neq f s\) ! \(K\) unfolding \(f\) by auto
    qed
    show \(f=\) smult \(c\left(\prod(a, i) \in\right.\) set \(f s . a^{\wedge}\) Suc \(\left.i\right)\) unfolding eq
        prod.distinct-set-conv-list[OF dist] by simp
    fix \(f i\) Fi \(I\)
    assume mem: \((f, i) \in \operatorname{set} f s(F i, I) \in \operatorname{set} f s\) and diff: \((f, i) \neq(F i, I)\)
    then obtain \(k K\) where \(k: k<\) length \(f s K<\) length \(f s\)
        and \(f: f s!k=(f i, i) f s!K=(F i, I)\) unfolding set-conv-nth by auto
    with diff have diff: \(k \neq K\) by auto
    from \(\operatorname{cop}[O F k f\) diff \(]\) show Rings.coprime \(f i\) Fi by auto
    qed
qed
lemma factorize-int-last-nz-poly: assumes res: factorize-int-last-nz-poly \(f=(c, f s)\)
    and \(n z\) : coeff f \(0 \neq 0\)
shows square-free-factorization \(f(c, f s)\)
    \((f i, i) \in\) set \(f s \Longrightarrow\) irreducible \(f i\)
    \((f i, i) \in\) set \(f s \Longrightarrow\) degree \(f i \neq 0\)
proof (atomize(full))
    from \(n z\) have \(l z\) : lead-coeff \(f \neq 0\) by auto
    note res \(=\) res[unfolded factorize-int-last-nz-poly-def Let-def]
    consider ( 0 ) degree \(f=0\)
        (1) degree \(f=1\)
        (2) degree \(f>1\) by linarith
    then show square-free-factorization \(f(c, f s) \wedge((f i, i) \in\) set \(f s \longrightarrow\) irreducible \(f i)\)
\(\wedge((f, i) \in\) set \(f s \longrightarrow\) degree \(f i \neq 0)\)
    proof cases
        case 0
        from degree 0 -coeffs[OF 0] obtain \(a\) where \(f: f=[: a\) : \(]\) by auto
        from res show ?thesis unfolding square-free-factorization-def \(f\) by auto
    next
        case 1
        then have irr: irreducible (primitive-part f)
            by (auto intro!: linear-primitive-irreducible content-primitive-part)
    from irreducible-imp-square-free[OF irr] have sf: square-free (primitive-part f)
        from 1 have \(f 0: f \neq 0\) by auto
            from res irr sf f0 show ?thesis unfolding square-free-factorization-def by
(auto simp: 1)
    next
        case 2
        with res have internal-int-poly-factorization \(f=(c, f s)\) by auto
    from internal-int-poly-factorization[OF nz this] internal-int-poly-factorization-mem [OF
nz this]
    show ?thesis by auto
    qed
```


qed

lemma factorize-int-poly: assumes res: factorize-int-poly-generic $f=(c, f s)$
shows square-free-factorization $f(c, f s)$

$$
(f i, i) \in \text { set } f s \Longrightarrow \text { irreducible } f i
$$

$(f, i) \in$ set $f s \Longrightarrow$ degree $f i \neq 0$
proof (atomize(full))
obtain $n g$ where xs: x-split $f=(n, g)$ by force
obtain $d h s$ where fact: factorize-int-last-nz-poly $g=(d, h s)$ by force
from res[unfolded factorize-int-poly-generic-def xs split fact]
have res: (if $g=0$ then ($0,[])$ else if $n=0$ then (d, hs) else (d, (monom 11, $n-1) \# h s))=(c, f s)$.
note $x s=x$-split $[$ OF $x s]$
show square-free-factorization $f(c, f s) \wedge((f, i) \in$ set $f s \longrightarrow$ irreducible $f i) \wedge((f, i)$
\in set $f s \longrightarrow$ degree $f(\neq 0)$
proof (cases $g=0$)
case True
hence $f=0 c=0 f s=[]$ using res xs by auto
thus ?thesis unfolding square-free-factorization-def by auto
next
case False
with $x s$ have \neg monom 11 dvd g by auto
hence coeff g $0 \neq 0$ by (simp add: monom-1-dvd-iff ')
note fact $=$ factorize-int-last-nz-poly[OF fact this]
let $? x=$ monom 11 :: int poly
have x : content $? x=1 \wedge$ lead-coeff $? x=1 \wedge$ degree $? x=1$
by (auto simp add: degree-monom-eq monom-Suc content-def)
from res False have res: (if $n=0$ then $(d, h s)$ else $(d,(? x, n-1) \# h s))=$
$\left(c, f_{s}\right)$ by auto
show ?thesis
proof (cases n)
case 0
with res $x s$ have $i d: f s=h s c=d f=g$ by auto
from fact show ?thesis unfolding id by auto
next
case (Suc m)
with res have $i d: c=d f s=(? x, m) \# h s$ by auto
from Suc xs have fg: $f=$ monom 1 (Suc m) $* g$ and $d v d: \neg ? x d v d g$ by auto
from x linear-primitive-irreducible $[o f$? $x]$ have irr: irreducible ? x by auto from irreducible-imp-square-free $[O F$ this $]$ have sfx: square-free ? x.
from irr fact have one: $(f, i) \in$ set $f s \longrightarrow$ irreducible $f i \wedge$ degree $f i \neq 0$
unfolding id by (auto simp: degree-monom-eq)
have $f g$: $f=? x^{\wedge} n * g$ unfolding $f g$ Suc by (metis x-pow- n)
from x have degx: degree ? $x=1$ by simp
note $s f=$ square-free-factorizationD[OF fact(1)]
\{
fix $a i$
assume $a i:(a, i) \in$ set $h s$
with $s f(4)$ have $g 0: g \neq 0$ by auto
from split-list $[O F a i]$ obtain $y s z s$ where $h s: h s=y s @(a, i) \# z s$ by auto have a dvd g unfolding square-free-factorization-prod-list[OF fact(1)] hs by (rule dvd-smult, simp add: ac-simps)
moreover have \neg ? x dvd g using xs[unfolded Suc] by auto
ultimately have dvd: ᄀ?x dvd a using dvd-trans by blast
from $s f($ 2) $[O F$ ai $]$ have $a \neq 0$ by auto
have $1=g c d$? x a
proof (rule $g c d I$)
fix d
assume $d: d$ dvd ? x d dvd a
from content-dvd-contentI[OF $d(1)] x$ have cnt: is-unit (content d) by
auto
show is-unit d
proof (cases degree $d=1$)
case False
with divides-degree $[$ OF $d(1)$, unfolded degx] have degree $d=0$ by auto
from degree 0 -coeffs $[$ OF this $]$ obtain c where $d c: d=[: c:]$ by auto
from cnt[unfolded dc] have is-unit c by (auto simp: content-def, cases $c=0$, auto)
hence $d * d=1$ unfolding $d c$ by (auto, cases $c=-1$; cases $c=1$,
thus is-unit d by (metis dvd-triv-right)
next
case True
from $d(1)$ obtain e where $x d e: ? x=d * e$ unfolding $d v d$-def by auto from arg-cong[OF this, of degree] degx have degree $d+$ degree $e=1$ by (metis True add.right-neutral degree-0 degree-mult-eq one-neq-zero) with True have degree $e=0$ by auto
from degree 0 -coeffs[OF this] xde obtain e where $x d e: ? x=[: e:] * d$ by
auto
from arg-cong[OF this, of content, unfolded content-mult $] x$
have content $[: e:]$ * content $d=1$ by auto
also have content $[: e:]=$ abs e by (auto simp: content-def, cases $e=$
0, auto)
finally have $|e| *$ content $d=1$.
from pos-zmult-eq-1-iff-lemma[OF this] have $e * e=1$ by (cases $e=$ 1 ; cases $e=-1$, auto)
with arg-cong[OF xde, of smult e] have $d=? x *[: e:]$ by auto
hence ?x dvd d unfolding dvd-def by blast
with $d(2)$ have ?x dvd a by (metis dvd-trans)
with dvd show ?thesis by auto
qed
qed auto
hence coprime ? x a
by (simp add: gcd-eq-1-imp-coprime)
note this dvd
\} note $h s-d v d-x=t h i s$
from $h s$-dvd-x[of ? $x ~ m]$

```
    have nmem: (?x,m) & set hs by auto
    hence eq: ? x^ n*g= smult d (\Pi (a,i)\inset fs.a^ Suc i)
        unfolding sf(1) unfolding id Suc by simp
    have eq0:? ? ^ n*g=0 \longleftrightarrowg=0 by simp
    have square-free-factorization f (d,fs) unfolding fg id(1) square-free-factorization-def
split eq0 unfolding eq
        proof (intro conjI allI impI, rule reff)
            fix a i
            assume ai: (a,i)\in set fs
            thus square-free a degree a>0 using sf(2) sfx degx unfolding id by auto
            fix bj
            assume bj: (b,j) \in set fs and diff: (a,i) \not=(b,j)
            consider (hs-hs) (a,i) & set hs (b,j) \in set hs
                | (hs-x) (a,i) & set hs b=?x
            | (x-hs) (b,j)\in set hs a=?x
            using ai bj diff unfolding id by auto
            thus Rings.coprime a b
            proof cases
            case hs-hs
            from sf(3)[OF this diff] show ?thesis.
            next
            case hs-x
            from hs-dvd-x(1)[OF hs-x(1)] show ?thesis unfolding hs-x(2)
                by (simp add: ac-simps)
            next
                case x-hs
                from hs-dvd-x(1)[OF x-hs(1)] show ?thesis unfolding x-hs(2)
                by simp
            qed
        next
            show g=0\Longrightarrowd=0 using sf(4) by auto
            show g=0\Longrightarrowfs=[] using sf(4) xs Suc by auto
            show distinct fs using sf(5) nmem unfolding id by auto
        qed
        thus?thesis using one unfolding id by auto
    qed
    qed
qed
end
lift-definition berlekamp-zassenhaus-factorization-algorithm :: int-poly-factorization-algorithm is berlekamp-zassenhaus-factorization
using berlekamp-zassenhaus-factorization-irreducible \(e_{d}\) by blast
abbreviation factorize-int-poly where
factorize-int-poly \(\equiv\) factorize-int-poly-generic berlekamp-zassenhaus-factorization-algorithm
end
```


11.4 Factoring Rational Polynomials

We combine the factorization algorithm for integer polynomials with Gauss Lemma to a factorization algorithm for rational polynomials.

```
theory Factorize-Rat-Poly
imports
    Factorize-Int-Poly
begin
```

interpretation content-hom: monoid-mult-hom
content::'a:: \{factorial-semiring, semiring-gcd, normalization-semidom-multiplicative\}
poly \Rightarrow -
by (unfold-locales, auto simp: content-mult)
lemma prod-dvd-1-imp-all-dvd-1:
assumes finite X and prod $f X d v d 1$ and $x \in X$ shows $f x d v d 1$
proof (insert assms, induct rule:finite-induct)
case $I H:\left(\right.$ insert $\left.x^{\prime} X\right)$
show ?case
proof (cases $x=x^{\prime}$)
case True
with $I H$ show ?thesis using dvd-trans[of $\left.f x^{\prime} f x^{\prime} *-1\right]$
by (metis dvd-triv-left prod.insert)
next
case False
then show ?thesis using $I H$ by (auto intro!: $I H(3)$ dvd-trans[of prod $f X-*$
$\operatorname{prod} f X_{1} 1$)
qed
qed simp
context
fixes alg :: int-poly-factorization-algorithm
begin
definition factorize-rat-poly-generic :: rat poly \Rightarrow rat $\times($ rat poly \times nat $)$ list where
factorize-rat-poly-generic $f=$ (case rat-to-normalized-int-poly f of
$(c, g) \Rightarrow$ case factorize-int-poly-generic alg g of $(d, f s) \Rightarrow(c *$ rat-of-int d,
$\operatorname{map}(\lambda(f i, i)$. (map-poly rat-of-int fi,i)) fs $)$)
lemma factorize-rat-poly- $0[$ simp $]$: factorize-rat-poly-generic $0=(0,[])$
unfolding factorize-rat-poly-generic-def rat-to-normalized-int-poly-def by simp
lemma factorize-rat-poly:
assumes res: factorize-rat-poly-generic $f=(c, f s)$
shows square-free-factorization $f(c, f s)$
and $(f i, i) \in$ set $f s \Longrightarrow$ irreducible $f i$
proof(atomize(full), cases $f=0$, goal-cases)
case 1 with res show ?case by (auto simp: square-free-factorization-def)
next

```
case 2 show ?case
proof (unfold square-free-factorization-def split, intro conjI impI allI)
    let ?r = rat-of-int
    let ?rp = map-poly ?r
    obtain dg}g\mathrm{ where ri: rat-to-normalized-int-poly f}=(d,g)\mathrm{ by force
    obtain e gs where fi: factorize-int-poly-generic alg g=(e,gs) by force
    from res[unfolded factorize-rat-poly-generic-def ri fi split]
    have c:c=d*?r e and fs: fs = map (\lambda (fi,i). (?rp fi,i)) gs by auto
    from factorize-int-poly[OF fi]
    have irr: (fi,i) set gs \Longrightarrow irreducible fi}\wedge\mathrm{ content fi=1 for fi i
        using irreducible-imp-primitive[of fi] by auto
    note sff = factorize-int-poly(1)[OF fi]
    note sff' = square-free-factorizationD[OF sff]
    {
        fix nf
        have ?rp (f`n) = (?rp f)^n
            by (induct n, auto simp: hom-distribs)
    } note exp = this
    show dist: distinct fs using sff'(5) unfolding fs distinct-map inj-on-def by
auto
    interpret mh: map-poly-inj-idom-hom rat-of-int..
    have f= smult d (?rp g) using rat-to-normalized-int-poly[OF ri] by auto
    also have ... = smult d (?rp (smult e (\prod(a,i)\inset gs. a ^ Suc i))) using
sff}\mp@subsup{f}{}{\prime}(1)\mathrm{ by simp
    also have ... = smult c (?rp (\prod(a,i)\inset gs. a}^^\mp@code{Suc i)) unfolding c by
(simp add: hom-distribs)
    also have ?rp (\prod(a,i)\inset gs. a ^ Suc i)=(\prod(a,i)\inset fs. a ^ Suc i)
    unfolding prod.distinct-set-conv-list[OF sff'(5)] prod.distinct-set-conv-list[OF
dist]
            unfolding fs
            by (insert exp, auto intro!: arg-cong[of - - \lambdax. prod-list (map x gs)] simp:
hom-distribs of-int-poly-hom.hom-prod-list)
    finally show f:f= smult c (\prod(a,i)\inset fs. a ^ Suc i) by auto
    {
        fix a i
        assume ai: (a,i)\in set fs
        from ai obtain A where a: a = ?rp A and A: (A,i)\in set gs unfolding fs
by auto
    fix b j
    assume (b,j) \in set fs and diff: (a,i) \not=(b,j)
    from this(1) obtain B where b: b=?rp B and B:(B,j)\in set gs unfolding
fs by auto
    from diff[unfolded a b] have (A,i)\not=(B,j) by auto
    from sff'(3)[OF A B this]
    show Rings.coprime a b
        by (auto simp add: coprime-iff-gcd-eq-1 gcd-rat-to-gcd-int a b)
}
{
    fix fi
```

```
    assume (fi,i) \in set fs
    then obtain gi where fi: fi=?rp gi and gi:(gi,i)\in set gs unfolding fs
by auto
    from irr[OF gi] have cf-gi: primitive gi by auto
    then have primitive (?rp gi) by (auto simp: content-field-poly)
    note [simp] = irreducible-primitive-connect[OF cf-gi] irreducible-primitive-connect[OF
this]
    show irreducible fi
    using irr[OF gi] fi irreducibled-int-rat[of gi,simplified] by auto
    then show degree fi>0 square-free fi unfolding fi
            by (auto intro: irreducible-imp-square-free)
    }
    {
    assume f=0 with ri have *:d=1g=0 unfolding rat-to-normalized-int-poly-def
by auto
        with sff'(4)[OF *(2)] show c=0 fs=[] unfolding c fs by auto
    }
    qed
qed
end
abbreviation factorize-rat-poly where
    factorize-rat-poly \equivfactorize-rat-poly-generic berlekamp-zassenhaus-factorization-algorithm
end
```


References

[1] G. Barthe, B. Grégoire, S. Heraud, F. Olmedo, and S. Z. Béguelin. Verified indifferentiable hashing into elliptic curves. In POST 2012, volume 7215 of $L N C S$, pages 209-228, 2012.
[2] E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Technical Journal, 46:1853-1859, 1967.
[3] D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields. Math. Comput., 36(154):587-592, 1981.
[4] J. R. Cowles and R. Gamboa. Unique factorization in ACL2: Euclidean domains. In Proceedings of the sixth international workshop on the ACL2 theorem prover and its applications, pages 21-27. ACM, 2006.
[5] B. Huffman and O. Kunčar. Lifting and transfer: A modular design for quotients in Isabelle/HOL. In CPP 2013, volume 8307 of $L N C S$, pages 131-146, 2013.
[6] B. Kirkels. Irreducibility Certificates for Polynomials with Integer Coefficients. PhD thesis, Radboud Universiteit Nijmegen, 2004.
[7] D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms, 2nd Edition. Addison-Wesley, 1981.
[8] H. Kobayashi, H. Suzuki, and Y. Ono. Formalization of Hensel's lemma. In Theorem Proving in Higher Order Logics: Emerging Trends Proceedings, volume 1, pages 114-118, 2005.
[9] O. Kunčar and A. Popescu. From types to sets by local type definitions in higher-order logic. In ITP 2016, volume 9807 of $L N C S$, pages 200-218, 2016.
[10] É. Martin-Dorel, G. Hanrot, M. Mayero, and L. Théry. Formally verified certificate checkers for hardest-to-round computation. Journal of Automated Reasoning, 54(1):1-29, 2015.
[11] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
[12] R. Thiemann and A. Yamada. Algebraic numbers in Isabelle/HOL. In ITP 2016, volume 9807 of LNCS, pages 391-408, 2016.
[13] H. Zassenhaus. On Hensel factorization, I. Journal of Number Theory, 1(3):291-311, 1969.

[^0]: *Supported by FWF (Austrian Science Fund) project Y757.

[^1]: ${ }^{1}$ Our algorithm starts with step 4 , so that section numbers and step-numbers coincide.

