Perron-Frobenius Theorem for Spectral Radius Analysis*

Jose Divasón, Ondej Kunar, René Thiemann and Akihisa Yamada

December 14, 2021

Abstract

The spectral radius of a matrix A is the maximum norm of all eigenvalues of A. In previous work we already formalized that for a complex matrix A, the values in A^{n} grow polynomially in n if and only if the spectral radius is at most one. One problem with the above characterization is the determination of all complex eigenvalues. In case A contains only non-negative real values, a simplification is possible with the help of the Perron-Frobenius theorem, which tells us that it suffices to consider only the real eigenvalues of A, i.e., applying Sturm's method can decide the polynomial growth of A^{n}.

We formalize the Perron-Frobenius theorem based on a proof via Brouwer's fixpoint theorem, which is available in the HOL multivariate analysis (HMA) library. Since the results on the spectral radius is based on matrices in the Jordan normal form (JNF) library, we further develop a connection which allows us to easily transfer theorems between HMA and JNF. With this connection we derive the combined result: if A is a non-negative real matrix, and no real eigenvalue of A is strictly larger than one, then A^{n} is polynomially bounded in n.

Contents

1 Introduction

3.1 Bijections between index types of HMA and natural numbers
3.2 Transfer rules to convert theorems from JNF to HMA and vice-versa.8

[^0]4 Perron-Frobenius Theorem 24
4.1 Auxiliary Notions 24
4.2 Perron-Frobenius theorem via Brouwer's fixpoint theorem. 34
5 Roots of Unity 40
5.1 The Perron Frobenius Theorem for Irreducible Matrices 52
5.2 Handling Non-Irreducible Matrices as Well 82
6 Combining Spectral Radius Theory with Perron Frobenius theorem 97
7 The Jordan Blocks of the Spectral Radius are Largest 103
8 Homomorphisms of Gauss-Jordan Elimination, Kernel and More 124
9 Combining Spectral Radius Theory with Perron Frobenius theorem 127
10 An efficient algorithm to compute the growth rate of A^{n}. 132

1 Introduction

The spectral radius of a matrix A over \mathbb{R} or \mathbb{C} is defined as

$$
\rho(A)=\max \left\{|x| \cdot \chi_{A}(x)=0, x \in \mathbb{C}\right\}
$$

where χ_{A} is the characteristic polynomial of A. It is a central notion related to the growth rate of matrix powers. A matrix A has polynomial growth, i.e., all values of A^{n} can be bounded polynomially in n, if and only if $\rho(A) \leq 1$. It is quite easy to see that $\rho(A) \leq 1$ is a necessary criterion, ${ }^{1}$ but it is more complicated to argue about sufficiency. In previous work we formalized this statement via Jordan normal forms [4].

Theorem 1 (in JNF). The values in A^{n} are polynomially bounded in n if $\rho(A) \leq 1$.

In order to perform the proof via Jordan normal forms, we did not use the HMA library from the distribution to represent matrices. The reason is that already the definition of a Jordan normal form is naturally expressed via block-matrices, and arbitrary block-matrices are hard to express in HMA, if at all.

[^1]The problem in applying Theorem 1 in concrete examples is the determination of all complex roots of the polynomial χ_{A}. For instance, one can utilize complex algebraic numbers for this purpose, which however are computationally expensive. To avoid this problem, in this work we formalize the Perron Frobenius theorem. It states that for non-negative real-valued matrices, $\rho(A)$ is an eigenvalue of A.

Theorem 2 (in HMA). If $A \in \mathbb{R}_{\geq 0}^{k \times k}$, then $\chi_{A}(\rho(A))=0$.
We decided to perform the formalization based on the HMA library, since there is a short proof of Theorem 2 via Brouwer's fixpoint theorem [2, Section 5.2]. The latter is a well-known but complex theorem that is available in HMA, but not in the JNF library.

Eventually we want to combine both theorems to obtain:
Corollary 1. If $A \in \mathbb{R}_{\geq 0}^{k \times k}$, then the values in A^{n} are polynomially bounded in n if χ_{A} has no real roots in the interval $(1, \infty)$.

This criterion is computationally far less expensive - one invocation of Sturm's method on χ_{A} suffices. Unfortunately, we cannot immediately combine both theorems. We first have to bridge the gap between the HMA-world and the JNF-world. To this end, we develop a setup for the transfer-tool which admits to translate theorems from JNF into HMA. Moreover, using a recent extension for local type definitions within proofs [1], we also provide a translation from HMA into JNF.

With the help of these translations, we prove Corollary 1 and make it available in both HMA and JNF. (In the formalization the corollary looks a bit more complicated as it also contains an estimation of the the degree of the polynomial growth.)

2 Elimination of CARD('n)

In the following theory we provide a method which modifies theorems of the form $P\left[C A R D\left({ }^{\prime} n\right)\right]$ into $n!=0 \Longrightarrow P[n]$, so that they can more easily be applied.

Known issues: there might be problems with nested meta-implications and meta-quantification.

```
theory Cancel-Card-Constraint
imports
    HOL-Types-To-Sets.Types-To-Sets
    HOL-Library.Cardinality
begin
lemma n-zero-nonempty: n }=0\Longrightarrow{0..<n:: nat} f={} by aut
```

```
lemma type-impl-card-n: assumes \(\exists(\) Rep \(:: ~ ' a \Rightarrow\) nat) Abs. type-definition Rep
Abs \(\{0 . .<n::\) nat \(\}\)
    shows class.finite \(\left(\operatorname{TYPE}\left({ }^{\prime} a\right)\right) \wedge \operatorname{CARD}\left({ }^{\prime} a\right)=n\)
proof -
    from assms obtain rep :: ' \(a \Rightarrow\) nat and abs :: nat \(\Rightarrow{ }^{\prime} a\) where \(t\) : type-definition
rep abs \(\{0 . .<n\}\) by auto
    have \(\operatorname{card}(\) UNIV :: 'a set) \(=\operatorname{card}\{0 . .<n\}\) using \(t\) by (rule type-definition.card)
    also have \(\ldots=n\) by auto
    finally have \(b n: \operatorname{CARD}\left({ }^{\prime} a\right)=n\).
    have finite (abs ' \(\{0 . .<n\}\) ) by auto
    also have abs ' \(\{0 . .<n\}=\) UNIV using \(t\) by (rule type-definition.Abs-image)
    finally have class.finite (TYPE('a)) unfolding class.finite-def .
    with \(b n\) show ?thesis by blast
qed
```

ML-file 〈cancel-card-constraint.ML〉
end

3 Connecting HMA-matrices with JNF-matrices

The following theories provide a connection between the type-based representation of vectors and matrices in HOL multivariate-analysis (HMA) with the set-based representation of vectors and matrices with integer indices in the Jordan-normal-form (JNF) development.

3.1 Bijections between index types of HMA and natural numbers

At the core of HMA-connect, there has to be a translation between indices of vectors and matrices, which are via index-types on the one hand, and natural numbers on the other hand.

We some unspecified bijection in our application, and not the conversions to-nat and from-nat in theory Rank-Nullity-Theorem/Mod-Type, since our definitions below do not enforce any further type constraints.

```
theory Bij-Nat
imports
    HOL-Library.Cardinality
    HOL-Library.Numeral-Type
begin
lemma finite-set-to-list: \exists xs :: 'a :: finite list. distinct xs ^ set xs = Y
```

```
proof -
    have finite Y by simp
    thus ?thesis
    proof (induct Y rule: finite-induct)
        case (insert y Y)
        then obtain xs where xs: distinct xs set xs = Y by auto
        show ?case
            by (rule exI[of-y # xs], insert xs insert(2), auto)
    qed simp
qed
definition univ-list :: 'a :: finite list where
    univ-list = (SOME xs. distinct xs ^ set xs =UNIV)
lemma univ-list:distinct (univ-list :: 'a list) set univ-list = (UNIV :: 'a :: finite
set)
proof -
    let ?xs = univ-list :: 'a list
    have distinct ?xs ^ set ?xs = UNIV
        unfolding univ-list-def
        by (rule someI-ex, rule finite-set-to-list)
    thus distinct ?xs set ?xs = UNIV by auto
qed
definition to-nat :: ' }a\mathrm{ :: finite }=>\mathrm{ nat where
    to-nat a = (SOME i. univ-list ! i = a ^ i<length(univ-list :: 'a list))
definition from-nat :: nat => ' }a\mathrm{ :: finite where
    from-nat i = univ-list ! i
lemma length-univ-list-card:length (univ-list :: 'a :: finite list) = CARD('a)
    using distinct-card[of univ-list :: 'a list, symmetric]
    by (auto simp: univ-list)
```



```
list)
proof -
    let ?ul = univ-list :: 'a list
    have a-in-set: a \in set ?ul unfolding univ-list by auto
    from this [unfolded set-conv-nth]
    obtain i}\mathrm{ where i1: ?ul! i=a^i< length ?ul by auto
    show ?thesis
    proof (rule ex1I, rule i1)
        fix }
        assume ?ul! j=a^j< length ?ul
        moreover have distinct ?ul by (simp add: univ-list)
        ultimately show j=i using i1 nth-eq-iff-index-eq by blast
    qed
qed
```

```
lemma to-nat-less-card: to-nat (a :: 'a :: finite) < CARD('a)
proof -
    let ?ul = univ-list :: 'a list
    from to-nat-ex[of a] obtain }i\mathrm{ where
    i1:univ-list ! i = a ^ i<length (univ-list::'a list) by auto
    show ?thesis unfolding to-nat-def
    proof (rule someI2, rule i1)
    fix }
    assume x:?ul! x=a^x< length ?ul
    thus x<CARD ('a) using x by (simp add: univ-list length-univ-list-card)
    qed
qed
lemma to-nat-from-nat-id:
    assumes i: i< CARD('a :: finite)
    shows to-nat (from-nat i :: ' a) =i
    unfolding to-nat-def from-nat-def
proof (rule some-equality, simp)
    have l: length (univ-list::'a list) = card (set (univ-list::'a list))
        by (rule distinct-card[symmetric], simp add: univ-list)
    thus i2: i < length (univ-list::'a list)
            using i unfolding univ-list by simp
            fix n
    assume n: (univ-list::'a list)! n= (univ-list::'a list) ! i}\wedge n<length (univ-list::'a
list)
    have d: distinct (univ-list::'a list) using univ-list by simp
    show }n=i\mathrm{ using nth-eq-iff-index-eq[OF d-i2] n by auto
qed
lemma from-nat-inj: assumes i: i<CARD('a :: finite)
    and j: j < CARD('a :: finite)
    and id:(from-nat i ::'a) = from-nat }
    shows i=j
proof -
    from arg-cong[OF id, of to-nat]
    show ?thesis using ij by (simp add: to-nat-from-nat-id)
qed
lemma from-nat-to-nat-id[simp]:
    (from-nat (to-nat a)) = (a::'a :: finite)
proof -
    have a-in-set: a \in set (univ-list) unfolding univ-list by auto
    from this [unfolded set-conv-nth]
    obtain i where i1: univ-list ! i= a ^ i<length (univ-list::'a list) by auto
    show ?thesis
    unfolding to-nat-def from-nat-def
    by (rule someI2, rule i1, simp)
qed
```

```
lemma to-nat-inj[simp]: assumes to-nat a = to-nat b
    shows }a=
proof -
    from to-nat-ex[of a] to-nat-ex[of b]
    show }a=b\mathrm{ unfolding to-nat-def by (metis assms from-nat-to-nat-id)
qed
lemma range-to-nat: range (to-nat :: 'a :: finite => nat) = {0 ..< CARD('a)} (is
?l=?r)
proof -
    {
        fix }
        assume i\in?l
        hence i\in?r using to-nat-less-card[where ' }a='\mp@code{'a] by auto
    }
    moreover
    {
        fix }
        assume i\in?r
        hence i<CARD('a) by auto
        from to-nat-from-nat-id[OF this]
        have i\in?l by (metis range-eqI)
    }
    ultimately show ?thesis by auto
qed
lemma inj-to-nat: inj to-nat by (simp add: inj-on-def)
lemma bij-to-nat: bij-betw to-nat (UNIV :: 'a :: finite set) {0 ..< CARD('a)}
    unfolding bij-betw-def by (auto simp: range-to-nat inj-to-nat)
lemma numeral-nat: (numeral m1 :: nat) * numeral n1 \equiv numeral (m1 * n1)
    (numeral m1 :: nat) + numeral n1 \equiv numeral (m1 + n1) by simp-all
lemmas card-num-simps =
    card-num1 card-bit0 card-bit1
    mult-num-simps
    add-num-simps
    eq-num-simps
    mult-Suc-right mult-0-right One-nat-def add.right-neutral
    numeral-nat Suc-numeral
end
```


3.2 Transfer rules to convert theorems from JNF to HMA and vice-versa.

theory HMA-Connect
imports
Jordan-Normal-Form.Spectral-Radius
HOL-Analysis.Determinants
HOL-Analysis.Cartesian-Euclidean-Space
Bij-Nat
Cancel-Card-Constraint
HOL-Eisbach.Eisbach
begin

Prefer certain constants and lemmas without prefix.
hide-const (open) Matrix.mat
hide-const (open) Matrix.row
hide-const (open) Determinant.det
lemmas mat-def $=$ Finite-Cartesian-Product.mat-def
lemmas det-def $=$ Determinants.det-def
lemmas row-def $=$ Finite-Cartesian-Product.row-def
notation vec-index (infixl \$v 90)
notation vec-nth (infixl \$h 90)
Forget that 'a mat, 'a Matrix.vec, and 'a poly have been defined via lifting
lifting-forget vec.lifting
lifting-forget mat.lifting
lifting-forget poly.lifting
Some notions which we did not find in the HMA-world.
definition eigen-vector :: ' $a::$ comm-ring- $1^{\wedge} ' n^{\wedge} ' n \Rightarrow{ }^{\prime} a{ }^{\wedge} n \Rightarrow{ }^{\prime} a \Rightarrow$ bool where eigen-vector $A v e v=(v \neq 0 \wedge A * v v=e v * s v)$
definition eigen-value :: ' $a::$ comm-ring-1 ${ }^{\wedge} n^{\wedge}$ ' $n \Rightarrow$ ' $a \Rightarrow$ bool where eigen-value $A k=(\exists v$. eigen-vector $A v k)$
definition similar-matrix-wit
$:: ~ ' a::$ semiring- $1 \wedge^{\prime} n \wedge^{\prime} n \Rightarrow '^{\wedge} \wedge^{\prime} n{ }^{\wedge} n \Rightarrow '^{\wedge} a ' \wedge^{\wedge} n \Rightarrow{ }^{\prime} a \wedge^{\wedge} n \wedge^{\prime} n \Rightarrow$ bool where
similar-matrix-wit $A B P Q=(P * * Q=$ mat $1 \wedge Q * * P=$ mat $1 \wedge A=P$
** B ** Q)
definition similar-matrix

similar-matrix $A B=(\exists P Q$. similar-matrix-wit $A B P Q)$

```
definition spectral-radius :: complex ^' n ^' }n=>\mathrm{ real where
    spectral-radius A = Max {norm ev|v ev. eigen-vector A vev}
definition Spectrum :: ' }a::\mathrm{ field ^' }n\mp@subsup{^}{}{\wedge}'n=>'a set wher
    Spectrum A = Collect (eigen-value A)
definition vec-elements-h :: 'a ^ ' }n=>\mathrm{ 'a set where
    vec-elements-h v= range (vec-nth v)
lemma vec-elements-h-def':vec-elements-h v ={v$hi|i.True}
    unfolding vec-elements-h-def by auto
definition elements-mat-h :: 'a ^ 'nc ^'nr = 'a set where
    elements-mat-h A = range ( }\lambda(i,j).A$hi$hj
lemma elements-mat-h-def': elements-mat-h A ={A$hi$hj|ij. True}
    unfolding elements-mat-h-def by auto
definition map-vector :: (' }a=>\mathrm{ ' }b)=>\mp@subsup{)}{}{\prime}a\mp@subsup{}{}{\prime}n=>'b `' n wher
    map-vector f v\equiv\chii.f(v$hi)
```



```
    map-matrix f A \equiv\chi i.map-vector f(A$hi)
definition normbound :: 'a :: real-normed-field ^'nc ^'nr > real => bool where
    normbound A b \equiv\forallx\in elements-mat-h A. norm x \leqb
lemma spectral-radius-ev-def: spectral-radius A = Max (norm '(Collect (eigen-value
A)))
    unfolding spectral-radius-def eigen-value-def[abs-def]
    by (rule arg-cong[where f=Max], auto)
lemma elements-mat: elements-mat A={A$$(i,j)| ij.i<dim-row A}\wedgej
dim-col A}
    unfolding elements-mat-def by force
definition vec-elements :: 'a Matrix.vec = 'a set
    where vec-elements v = set [v$ i.i<-[0 ..< dim-vec v]]
lemma vec-elements:vec-elements v={v$i|i.i<dim-vec v}
    unfolding vec-elements-def by auto
context includes vec.lifting
begin
end
definition from-hmav :: 'a ^' }n=>\mp@subsup{|}{}{\prime}a\mathrm{ Matrix.vec where
```

```
    from-hma \(_{v} v=\) Matrix.vec \(\operatorname{CARD}\left({ }^{\prime} n\right)(\lambda i . v\) \$h from-nat \(i)\)
definition from-hma \(::{ }^{\prime} a{ }^{\wedge}\) ' \(n c{ }^{\wedge}\) ' \(n r \Rightarrow\) 'a Matrix.mat where
    from-hma \({ }_{m} a=\) Matrix.mat \(C A R D(' n r) C A R D\left({ }^{\prime} n c\right)(\lambda(i, j)\). a \(\$ 4\) from-nat \(i \$ h\)
from-nat j)
definition to-hmav \(::\) ' \(a\) Matrix.vec \(\Rightarrow{ }^{\prime} a{ }^{\wedge} n\) where
    to-hmav \(v=(\chi i . v \$ v\) to-nat \(i)\)
definition to-hma \(::\) ' \(a\) Matrix.mat \(\Rightarrow{ }^{\prime} a{ }^{\wedge}\) ' \(n c{ }^{\wedge}\) ' \(n r\) where
    to-hma \(a_{m} a=(\chi i j . a \$ \$(\) to-nat \(i\), to-nat j) \()\)
declare vec-lambda-eta[simp]
lemma to-hma-from-hma \([\) simp \(]:\) to-hma \(\left(\right.\) from-hma \(\left._{v} v\right)=v\)
    by (auto simp: to-hma \({ }_{v}\)-def from-hma \({ }_{v}\)-def to-nat-less-card)
lemma to-hma-from-hma \({ }_{m}[\) simp \(]\) : to-hma \(a_{m}\left(\right.\) from-hma \(\left.a_{m} v\right)=v\)
    by (auto simp: to-hma \({ }_{m}\)-def from-hma \(a_{m}\)-def to-nat-less-card)
lemma from-hma-to-hma \({ }_{v}[\) simp \(]\) :
    \(v \in\) carrier-vec \((C A R D(' n)) \Longrightarrow\) from-hma \(\left(t o-h m a_{v} v::^{\prime} a^{\wedge} ' n\right)=v\)
    by (auto simp: to-hma \({ }_{v}\)-def from-hma \({ }_{v}\)-def to-nat-from-nat-id)
lemma from-hma-to-hma \({ }_{m}[\) simp \(]\) :
    \(A \in\) carrier-mat \(\left(C A R D\left({ }^{\prime} n r\right)\right)\left(C A R D\left({ }^{\prime} n c\right)\right) \Longrightarrow\) from-hma \(_{m}\left(\right.\) to-hma \(a_{m} A::{ }^{\prime} a{ }^{\text {^ }}\)
' \(n c\) ^' \(n r\) ) \(=A\)
    by (auto simp: to-hma \(a_{m}\)-def from-hma \(a_{m}\)-def to-nat-from-nat-id)
lemma from-hma \(a_{v}-\mathrm{inj}[\operatorname{simp}]:\) from-hma \(a_{v} x=\) from-hma \(a_{v} y \longleftrightarrow x=y\)
    by (intro iffI, insert to-hma-from-hma \([\) of \(x]\), auto)
lemma from-hma \(a_{m}-i n j[s i m p]:\) from-hma \(a_{m} x=\) from-hma \(_{m} y \longleftrightarrow x=y\)
    by (intro iffI, insert to-hma-from-hma \([\) of \(x]\), auto)
definition \(H M A-V\) :: 'a Matrix.vec \(\Rightarrow{ }^{\prime} a{ }^{\wedge}\) ' \(n \Rightarrow\) bool where
    \(H M A-V=(\lambda v w \cdot v=\) from-hmav \(w)\)
definition HMA-M :: 'a Matrix.mat \(\Rightarrow{ }^{\prime} a{ }^{\wedge}\) ' \(n c\) ^' \(n r \Rightarrow\) bool where
    \(H M A-M=\left(\begin{array}{lll}\lambda & a & b . \\ & a=\text { from }-h m a_{m} b\end{array}\right)\)
definition \(H M A-I::\) nat \(\Rightarrow{ }^{\prime} n\) :: finite \(\Rightarrow\) bool where
    \(H M A-I=(\lambda i a . i=\) to-nat \(a)\)
context includes lifting-syntax
begin
lemma Domainp-HMA-V [transfer-domain-rule]:
    Domainp (HMA-V :: 'a Matrix.vec \(\Rightarrow{ }^{\prime} a{ }^{\wedge} ' n \Rightarrow\) bool \()=(\lambda v . v \in\) carrier-vec
```

```
(CARD('n )))
    by(intro ext iffI, insert from-hma-to-hmav [symmetric], auto simp: from-hmav-def
HMA-V-def)
lemma Domainp-HMA-M [transfer-domain-rule]:
    Domainp (HMA-M :: 'a Matrix.mat = ' a ^'nc ^'nr m bool)
    =(\lambda A. A E carrier-mat CARD('nr) CARD('nc))
    by (intro ext iffI, insert from-hma-to-hma m[symmetric], auto simp: from-hma m-def
HMA-M-def)
lemma Domainp-HMA-I [transfer-domain-rule]:
    Domainp (HMA-I :: nat }=>\mp@subsup{}{}{\prime}n :: finite => bool)=(\lambda i.i<CARD('n)) (is ?l =
?r)
proof (intro ext)
    fix i :: nat
    show ?l i= ?r i
        unfolding HMA-I-def Domainp-iff
        by (auto intro: exI[of - from-nat i] simp: to-nat-from-nat-id to-nat-less-card)
qed
lemma bi-unique-HMA-V [transfer-rule]: bi-unique HMA-V left-unique HMA-V
right-unique HMA-V
    unfolding HMA-V-def bi-unique-def left-unique-def right-unique-def by auto
lemma bi-unique-HMA-M [transfer-rule]: bi-unique HMA-M left-unique HMA-M
right-unique HMA-M
    unfolding HMA-M-def bi-unique-def left-unique-def right-unique-def by auto
lemma bi-unique-HMA-I [transfer-rule]: bi-unique HMA-I left-unique HMA-I right-unique
HMA-I
    unfolding HMA-I-def bi-unique-def left-unique-def right-unique-def by auto
lemma right-total-HMA-V [transfer-rule]: right-total HMA-V
    unfolding HMA-V-def right-total-def by simp
lemma right-total-HMA-M [transfer-rule]: right-total HMA-M
    unfolding HMA-M-def right-total-def by simp
lemma right-total-HMA-I [transfer-rule]: right-total HMA-I
    unfolding HMA-I-def right-total-def by simp
lemma HMA-V-index [transfer-rule]:(HMA-V ===> HMA-I ===> (=))($v)
($h)
    unfolding rel-fun-def HMA-V-def HMA-I-def from-hmav-def
    by (auto simp: to-nat-less-card)
We introduce the index function to have pointwise access to HMAmatrices by a constant. Otherwise, the transfer rule with \(\lambda A i\). (\$h) ( \(A\) \(\$ h i\) ) instead of index is not applicable.
```

```
definition index-hma \(A i j \equiv A \$ h i \$ h j\)
lemma HMA-M-index [transfer-rule]
    \((H M A-M===>H M A-I===>H M A-I===>(=))(\lambda A\) i j. A \(\$ \$(i, j))\)
index-hma
    by (intro rel-funI, simp add: index-hma-def to-nat-less-card HMA-M-def HMA-I-def
from-hma \({ }_{m}\)-def)
lemma HMA-V-0 [transfer-rule]: HMA-V ( 0 v \(\operatorname{CARD}\left({ }^{\prime} n\right)\) ) (0 :: 'a :: zero \({ }^{\text {^ }} n\) )
    unfolding HMA-V-def from-hma \({ }_{v}\)-def by auto
lemma HMA-M-0 [transfer-rule]:
```



```
    unfolding \(H M A-M\)-def from-hma \(a_{m}\) def by auto
lemma HMA-M-1 [transfer-rule]:
    HMA-M (1 \(\left.{ }_{m}\left(\operatorname{CARD}\left({ }^{\prime} n\right)\right)\right)\left(\right.\) mat 1 :: ' \(\left.a::\{z e r o, o n e\}^{\wedge} n^{\wedge} n\right)\)
    unfolding HMA-M-def
    by (auto simp add: mat-def from-hma \(a_{m}\)-def from-nat-inj)
lemma from-hma \(a_{v}\)-add: from-hmav \(v+\) from-hma \(_{v} w=\) from-hma \(_{v}(v+w)\)
    unfolding from-hma \({ }_{v}\)-def by auto
lemma HMA-V-add [transfer-rule]: (HMA-V ===> HMA-V===>HMA-V)
\((+)(+)\)
    unfolding rel-fun-def HMA-V-def
    by (auto simp: from-hma \({ }_{v}\)-add)
lemma from-hma \({ }_{v}\)-diff: from-hma \(v-\) from-hma \(_{v} w=\) from-hma \(_{v}(v-w)\)
    unfolding from-hma \(v_{v}\)-def by auto
lemma HMA-V-diff [transfer-rule]: (HMA-V ===> HMA-V ===> HMA-V)
(-) (-)
    unfolding rel-fun-def HMA-V-def
    by (auto simp: from-hma \(v_{v}\)-diff)
lemma from-hma \(a_{m}\)-add: from-hma \(a_{m} a+\) from-hma \(_{m} b=\) from-hma \(a_{m}(a+b)\)
    unfolding from-hma \({ }_{m}\)-def by auto
lemma HMA-M-add [transfer-rule]: (HMA-M ===> HMA-M ===> HMA-M)
\((+)(+)\)
    unfolding rel-fun-def HMA-M-def
    by (auto simp: from-hma \(m_{m}-a d d\) )
lemma from-hma \(a_{m}\)-diff: from-hma \(a_{m} a-\) from-hma \(_{m} b=\) from-hma \(a_{m}(a-b)\)
    unfolding from-hma \({ }_{m}\)-def by auto
lemma HMA-M-diff [transfer-rule]: (HMA-M ===> HMA-M===>HMA-M)
(-) (-)
```

unfolding rel-fun-def HMA-M-def
by (auto simp: from-hma a_{m}-diff)
lemma scalar-product: fixes $v::$ ' a :: semiring- 1 へ n shows scalar-prod (from-hma v) (from-hmav $w)=$ scalar-product $v w$ unfolding scalar-product-def scalar-prod-def from-hma ${ }_{v}$-def dim-vec by (simp add: sum.reindex [OF inj-to-nat, unfolded range-to-nat])

lemma [simp]:

from-hma $\left(y::^{\prime} a{ }^{\wedge}\right.$ 'nc ^'nr) \in carrier-mat (CARD('nr)) (CARD('nc))
dim-row (from-hma $\quad\left(y::^{\prime} a^{\wedge}\right.$ 'nc ^' $\left.\left.n r\right)\right)=C A R D(' n r)$
dim-col (from-hma ${ }_{m}\left(y::{ }^{\prime} a{ }^{\wedge}\right.$ ' $n c$ ^' $\left.\left.n r\right)\right)=C A R D(' n c)$
unfolding from-hma ${ }_{m}$-def by simp-all
lemma [simp]:
from-hma $\left(y::^{\prime} a{ }^{\text {^ }} ' n\right) \in$ carrier-vec $(C A R D(' n))$
$\operatorname{dim}-v e c\left(f r o m-h m a_{v}\left(y::{ }^{\prime} a{ }^{\wedge} ' n\right)\right)=\operatorname{CARD}\left({ }^{\prime} n\right)$
unfolding from-hma a_{v}-def by simp-all
declare rel-funI [intro!]
lemma HMA-scalar-prod [transfer-rule]:
(HMA-V ===> HMA-V ===> (=)) scalar-prod scalar-product
by (auto simp: HMA-V-def scalar-product)
lemma HMA-row [transfer-rule]: (HMA-I ===>HMA-M===>HMA-V)(λi
a. Matrix.row a i) row
unfolding HMA-M-def HMA-I-def HMA-V-def
by (auto simp: from-hma a_{m}-def from-hma a_{v}-def to-nat-less-card row-def)
lemma HMA-col [transfer-rule]: (HMA-I ===> HMA-M ===>HMA-V)(λi
a. col a i) column
unfolding HMA-M-def HMA-I-def HMA-V-def
by (auto simp: from-hma ${ }_{m}$-def from-hma ${ }_{v}$-def to-nat-less-card column-def)
definition $m k$-mat $::\left({ }^{\prime} i \Rightarrow{ }^{\prime} j \Rightarrow{ }^{\prime} c\right) \Rightarrow^{\prime} c^{\wedge} j^{\wedge} i$ where
$m k$-mat $f=(\chi i j . f i j)$
definition $m k$-vec $::\left({ }^{\prime} i \Rightarrow{ }^{\prime} c\right) \Rightarrow{ }^{\prime} c^{\wedge} i$ where
$m k$-vec $f=(\chi \quad i . f i)$
lemma HMA-M-mk-mat[transfer-rule]: $((H M A-I===>H M A-I===>(=))===>$
HMA-M)
$\left(\lambda f\right.$. Matrix.mat $\left.\left(C A R D\left({ }^{\prime} n r\right)\right)\left(C A R D\left({ }^{\prime} n c\right)\right)(\lambda(i, j) . f i j)\right)$
(mk-mat $\left.::\left(\left({ }^{\prime} n r \Rightarrow{ }^{\prime} n c \Rightarrow{ }^{\prime} a\right) \Rightarrow '^{\prime} a^{\prime \prime} n c^{\wedge \prime} n r\right)\right)$
proof-
\{
fix $x y i j$
assume $i d: \forall(y a:: ' n r)(y b:: ' n c)$. (x (to-nat ya) (to-nat $\left.y b)::{ }^{\prime} a\right)=$ y ya yb

```
        and i: i<CARD('nr) and j: j<CARD('nc)
    from to-nat-from-nat-id[OF i] to-nat-from-nat-id[OF j] id[rule-format, of from-nat
i from-nat j]
    have x ij =y (from-nat i)(from-nat j) by auto
    }
    thus ?thesis
    unfolding rel-fun-def mk-mat-def HMA-M-def HMA-I-def from-hmam-def by
auto
qed
lemma HMA-M-mk-vec[transfer-rule]: ((HMA-I ===> (=)) ===>>HMA-V)
    (\lambdaf. Matrix.vec (CARD('n)) (\lambda i.f i))
```



```
proof -
    {
    fix x y i
    assume id: }\forall(ya::'n).(x (to-nat ya) :: 'a)= y ya
        and i: i<CARD('n)
    from to-nat-from-nat-id[OF i] id[rule-format, of from-nat i]
    have xi=y(from-nat i) by auto
    }
    thus ?thesis
        unfolding rel-fun-def mk-vec-def HMA-V-def HMA-I-def from-hmav-def by
auto
qed
```

lemma mat-mult-scalar: $A * * B=m k$-mat ($\lambda i j$. scalar-product (row $i A$) (column j B)) unfolding vec-eq-iff matrix-matrix-mult-def scalar-product-def mk-mat-def by (auto simp: row-def column-def)
lemma mult-mat-vec-scalar: $A * v v=m k$-vec $(\lambda i$.scalar-product (row i A) v) unfolding vec-eq-iff matrix-vector-mult-def scalar-product-def mk-mat-def mk-vec-def by (auto simp: row-def column-def)
lemma dim-row-transfer-rule:
$H M A-M A\left(A^{\prime}::^{\prime} a{ }^{\wedge} ' n c\right.$ ^' $\left.n r\right) \Longrightarrow(=)($ dim-row $A)(C A R D(' n r))$
unfolding HMA-M-def by auto
lemma dim-col-transfer-rule:
$H M A-M A\left(A^{\prime}::{ }^{\prime} a{ }^{\wedge}\right.$ ' $\left.n c{ }^{\wedge} n r\right) \Longrightarrow(=)($ dim-col $A)(C A R D(' n c))$
unfolding $H M A-M$-def by auto
lemma HMA-M-mult [transfer-rule]: (HMA-M ===> HMA-M===>HMA-M)
$((*))((* *))$
proof -
\{
fix $A B:: ' a$:: semiring-1 mat and $A^{\prime}::^{\prime} a{ }^{\wedge} ' n \wedge^{\prime} n r$ and $B^{\prime}::^{\prime} a^{\wedge} ' n c{ }^{\wedge} n$

```
    assume 1[transfer-rule]: HMA-M A A' HMA-M B B'
    note [transfer-rule] = dim-row-transfer-rule[OF 1(1)] dim-col-transfer-rule [OF
1(2)]
    have HMA-M (A*B) (A'** B')
        unfolding times-mat-def mat-mult-scalar
        by (transfer-prover-start, transfer-step+, transfer, auto)
    }
    thus ?thesis by blast
qed
```

lemma HMA-V-smult [transfer-rule]: $((=)===>H M A-V===>H M A-V)\left({ }_{v}\right)$
$((* s))$
unfolding smult-vec-def
unfolding rel-fun-def HMA-V-def from-hma ${ }_{v}$-def
by auto
lemma HMA-M-mult-vec [transfer-rule]: $(H M A-M===>H M A-V===>H M A-V)$
$\left(\left(*_{v}\right)\right)((* v))$
proof -
\{
fix A :: ' a :: semiring-1 mat and $v::$ 'a Matrix.vec
and $A^{\prime}::{ }^{\prime} a{ }^{\wedge} ' n c$ - ' $n r$ and $v^{\prime}::{ }^{\prime} a{ }^{\wedge}$ ' $n c$
assume 1 [transfer-rule]: HMA-M A $A^{\prime} H M A-V v v^{\prime}$
note $[$ transfer-rule $]=$ dim-row-transfer-rule
have $H M A-V\left(A *_{v} v\right)\left(A^{\prime} * v v^{\prime}\right)$
unfolding mult-mat-vec-def mult-mat-vec-scalar
by (transfer-prover-start, transfer-step + , transfer, auto)
\}
thus ?thesis by blast
qed
lemma HMA-det [transfer-rule]: $(H M A-M===>(=))$ Determinant.det
(det :: ' a :: comm-ring-1 ${ }^{\text {' }} n^{\wedge}$ ' $n \Rightarrow$ ' a)
proof -
\{
fix $a::^{\prime} a{ }^{\wedge} n^{\wedge} n$
let ? $\mathrm{tn}=$ to-nat $::$ ' $n::$ finite \Rightarrow nat
let ?fn $=$ from-nat $::$ nat $\Rightarrow{ }^{\prime} n$
let $? z n=\left\{0 . .<C A R D\left({ }^{\prime} n\right)\right\}$
let ? $U=U N I V:: ' n$ set
let ?p1 $=\{p . p$ permutes ?zn\}
let ? $p 2=\{p . p$ permutes ? $U\}$
let ? $f=\lambda p i$. if $i \in$? U then? ?n $(p($?tn $i))$ else i
let ? $g=\lambda p i$. ?fn $(p(? t n i))$
have $f g: \bigwedge a b c$. (if $a \in ? U$ then b else $c)=b$ by auto
have ? $p 2=? f$ ' ? $p 1$
by (rule permutes-bij', auto simp: to-nat-less-card to-nat-from-nat-id)
hence $i d: ? p 2=? g$ ' ?p1 by simp

```
    have inj-g: inj-on ?g ?p1
```

 unfolding inj-on-def
 proof (intro ballI impI ext, auto)
 fix \(p q i\)
 assume \(p: p\) permutes ? zn and \(q: q\) permutes ?zn
 and \(i d:(\lambda i\). ?fn \((p(? t n i)))=(\lambda i\). ?fn \((q(? t n i)))\)
 \{
 fix \(i\)
 from permutes-in-image \([O F \quad p]\) have \(p i: p(\) ?tn \(i)<C A R D\left({ }^{\prime} n\right)\) by (simp
 add: to-nat-less-card)
from permutes-in-image $[O F q]$ have $q i: q(? t n i)<C A R D\left({ }^{\prime} n\right)$ by (simp
add: to-nat-less-card)
from fun-cong $[$ OF id] have ?fn $(p($?tn $i))=$ from-nat $(q($?tn $i))$.
from $\arg -c o n g[O F$ this, of ?tn] have $p(? t n i)=q(? t n i)$
by (simp add: to-nat-from-nat-id pi qi)
$\}$ note $i d=$ this
show $p i=q i$
proof (cases $i<\operatorname{CARD}\left({ }^{\prime} n\right)$)
case True
hence ?tn (?fn i) $=i$ by (simp add: to-nat-from-nat-id)
from id[of ?fn i, unfolded this] show ?thesis .
next
case False
thus ?thesis using $p q$ unfolding permutes-def by simp
qed
qed
have mult-cong: $\wedge a b c d . a=b \Longrightarrow c=d \Longrightarrow a * c=b * d$ by simp
have sum (λp.
signof $p *\left(\prod i \in\right.$?zn. a $\$ h$?fn $i \$ h$?fn ($\left.p i\right)$) ? $p 1$
$=\operatorname{sum}\left(\lambda p\right.$. of-int $\left.(\operatorname{sign} p) *\left(\prod i \in U N I V . a \$ h i \$ h p i\right)\right)$?p2
unfolding id sum.reindex[OF inj-g]
proof (rule sum.cong[OF refl], unfold mem-Collect-eq o-def, rule mult-cong)
fix p
assume p : p permutes? ?zn
let ? $q=\lambda i$. ?fn $(p(? t n i))$
from id p have q : ? q permutes ? U by auto
from p have $p p$: permutation p unfolding permutation-permutes by auto
let ?ft $=\lambda p i$. ?fn $(p($?tn $i))$
have fin: finite ?zn by simp
have sign $p=\operatorname{sign} ? q \wedge p$ permutes $? z n$
using p fin proof (induction rule: permutes-induct)
case $i d$
show ?case by (auto simp: sign-id[unfolded id-def] permutes-id[unfolded
$i d-d e f])$
next
case (swap a b p)
then have <permutation p 〉
by (auto intro: permutes-imp-permutation)
let ?sab $=$ Transposition.transpose $a b$
let ?sfab $=$ Transposition.transpose (?fn a) (?fn b)
have p-sab: permutation ?sab by (rule permutation-swap-id)
have p-sfab: permutation ?sfab by (rule permutation-swap-id)
from swap(4) have IH1: p permutes? zn and IH2: sign $p=\operatorname{sign}$ (?ft p) by auto
have sab-perm: ?sab permutes? zn using swap(1-2) by (rule permutes-swap-id)
from permutes-compose [OF IH1 this] have perm1: ?sab o p permutes?zn.
from $I H 1$ have $p-p 1: p \in ? p 1$ by simp
hence ?ft $p \in$?ft'? $p 1$ by (rule imageI)
from this[folded id] have ?ft p permutes ?U by simp
hence p-ftp: permutation (?ft p) unfolding permutation-permutes by auto \{
fix $a b$
assume $a: a \in ? z n$ and $b: b \in ? z n$
hence (?fn $a=$?fn $b)=(a=b)$ using $\operatorname{swap}(1-2)$
by (auto simp: from-nat-inj)
$\}$ note $i n j=$ this
from $\operatorname{inj}[O F \operatorname{swap}(1-2)]$ have id2: sign ?sfab $=$ sign ?sab unfolding sign-swap-id by simp
have id: ?ft (Transposition.transpose $a b \circ p$) $=$ Transposition.transpose (?fn a) (?fn b) ○ ?ft p
proof
fix c
show ?ft (Transposition.transpose $a b \circ p) c=$ (Transposition.transpose
$(? f n a)(? f n b) \circ ? f t p) c$
proof $($ cases $p(? t n c)=a \vee p(? t n c)=b)$
case True
thus ?thesis by (cases, auto simp add: swap-id-eq)
next
case False
hence neq: $p(?$ tn $c) \neq a p(? t n c) \neq b$ by auto
have $p c: p(? t n c) \in$? zn unfolding permutes-in-image[OF IH1]
by (simp add: to-nat-less-card)
from neq[folded inj[OF pc swap(1)] inj[OF pc swap(2)]]
have ?fn $(p(? t n c)) \neq$?fn a ?fn $(p(? t n c)) \neq$?fn b.
with neq show ?thesis by (auto simp: swap-id-eq)
qed
qed
show ?case unfolding $1 H 2$ id sign-compose[OF p-sab〈permutation p〉] sign-compose $[O F$ p-sfab p-ftp] id2
by (rule conjI[OF refl perm1])
qed
thus signof $p=o f-i n t(s i g n ? q)$ unfolding sign-def by auto
show $\left(\prod i=0 . .<\operatorname{CARD}\left({ }^{\prime} n\right)\right.$. a $\$ h$? $f n i \$ h$? $\left.f n(p i)\right)=$
(ПíUNIV.a\$hi\$h?qi) unfolding
range-to-nat[symmetric] prod.reindex[OF inj-to-nat]
by (rule prod.cong[OF refl], unfold o-def, simp)
qed
\}

```
    thus ?thesis unfolding HMA-M-def
    by (auto simp: from-hmam-def Determinant.det-def det-def)
qed
lemma HMA-mat[transfer-rule]: ((=)===> HMA-M) (\lambdak.k m m 1 m CARD('n))
```



```
    unfolding Finite-Cartesian-Product.mat-def[abs-def] rel-fun-def HMA-M-def
    by (auto simp: from-hmam-def from-nat-inj)
lemma HMA-mat-minus[transfer-rule]: (HMA-M===> HMA-M===> HMA-M)
    (\lambda A B. A + map-mat uminus B) ((-) :: 'a :: group-add `'}n\mp@subsup{c}{}{\wedge\prime}nr = 'a^'nc^`'nr
" 'a^'nc^`'nr)
    unfolding rel-fun-def HMA-M-def from-hma m-def by auto
definition mat2matofpoly where mat2matofpoly }A=(\chiij.[:A$i$j:]
definition charpoly where charpoly-def: charpoly A = det (mat (monom 1 (Suc
0)) - mat2matofpoly A)
```



```
    where erase-mat A ij=(\chi i'.\chi j'. if i'}=i\vee\mp@subsup{j}{}{\prime}=j\mathrm{ then 0 else A $ i'$ j')
definition sum-UNIV-type ::(' }n\mathrm{ :: finite > ' }a\mathrm{ :: comm-monoid-add) > 'n itself
=>'a}\mathrm{ where
    sum-UNIV-type f-= sum f UNIV
definition sum-UNIV-set :: (nat > ' }a\mathrm{ :: comm-monoid-add) }=>nat => 'a where
    sum-UNIV-set f n = sum f {..<n}
definition HMA-T :: nat }=>\mp@subsup{|}{}{\prime}n :: finite itself => bool wher
    HMA-T n - = ( n=CARD ('n))
lemma HMA-mat2matofpoly[transfer-rule]: (HMA-M ===> HMA-M) ( \lambdax. map-mat
(\lambdaa.[:a:]) x) mat2matofpoly
    unfolding rel-fun-def HMA-M-def from-hma m-def mat2matofpoly-def by auto
lemma HMA-char-poly [transfer-rule]:
    ((HMA-M :: ('a:: comm-ring-1 mat }=>\mp@subsup{'}{}{\prime}\mp@subsup{a}{}{\wedge\prime}n\mp@subsup{}{}{\wedge\prime}n=>\mathrm{ bool ) ) ===> (=)) char-poly
charpoly
proof -
    {
        fix }A\mathrm{ :: 'a mat and }\mp@subsup{A}{}{\prime}:: ' 'a`' n^' 
        assume [transfer-rule]: HMA-M A A'
        hence [simp]: dim-row A = CARD(' n) by (simp add: HMA-M-def)
        have [simp]: monom 1 (Suc 0) = [:0, 1 :: 'a :]
            by (simp add: monom-Suc)
```

```
    have [simp]: map-mat uminus (map-mat (\lambdaa. [:a:]) A) = map-mat (\lambdaa.[:-a:])
A
    by (rule eq-matI, auto)
    have char-poly A = charpoly A'
        unfolding char-poly-def[abs-def] char-poly-matrix-def charpoly-def[abs-def]
        by (transfer, simp)
    }
    thus ?thesis by blast
qed
```

lemma $H M A$-eigen-vector $[$ transfer-rule $]:(H M A-M===>H M A-V===>(=))$
eigenvector eigen-vector
proof -
\{
fix A :: 'a mat and $v::$ 'a Matrix.vec
and $A^{\prime}::{ }^{\prime} a{ }^{\wedge}{ }^{\prime} n$ ' n and $v^{\prime}::{ }^{\prime} a{ }^{\wedge} ' n$ and $k::{ }^{\prime} a$
assume $1\left[\right.$ transfer-rule]: HMA-MA A^{\prime} and $2[$ transfer-rule]: HMA-V v v'
hence [simp]: dim-row $A=\operatorname{CARD}\left({ }^{\prime} n\right.$) dim-vec $v=C A R D(' n)$ by (auto simp
add: HMA-V-def HMA-M-def)
have [simp]: $v \in$ carrier-vec $C A R D(' n)$ using 2 unfolding HMA-V-def by
simp
have eigenvector $A v=$ eigen-vector $A^{\prime} v^{\prime}$
unfolding eigenvector-def[abs-def] eigen-vector-def[abs-def]
by (transfer, simp)
\}
thus ?thesis by blast
qed
lemma HMA-eigen-value [transfer-rule]: $(H M A-M===>(=)===>(=))$ eigen-
value eigen-value
proof -
\{
fix $A::^{\prime} a$ mat and $A^{\prime}::^{\prime} a{ }^{\wedge} ' n{ }^{\wedge} n$ and k
assume 1 [transfer-rule]: $H M A-M A A^{\prime}$
hence $[$ simp]: dim-row $A=C A R D(' n)$ by (simp add: HMA-M-def)
note $[$ transfer-rule $]=$ dim-row-transfer-rule $[$ OF 1(1)]
have $($ eigenvalue $A k)=\left(\right.$ eigen-value $\left.A^{\prime} k\right)$
unfolding eigenvalue-def[abs-def] eigen-value-def[abs-def]
by (transfer, auto simp add: eigenvector-def)
\}
thus ?thesis by blast
qed
lemma HMA-spectral-radius [transfer-rule]:
(HMA-M===>(=)) Spectral-Radius.spectral-radius spectral-radius
unfolding Spectral-Radius.spectral-radius-def[abs-def] spectrum-def

```
    spectral-radius-ev-def[abs-def]
    by transfer-prover
lemma HMA-elements-mat[transfer-rule]: ((HMA-M :: ('a mat 缶 'a ^'nc ^ 'nr
=> bool)) ===> (=))
    elements-mat elements-mat-h
proof -
    {
        fix y :: 'a ^'nc ^'nr and i j :: nat
        assume i: i< CARD('nr) and j:j<CARD('nc)
        hence from-hmam y $$ (i,j)\in range ( }\lambda(i,ya).y$hi$h ya
            using to-nat-from-nat-id[OF i] to-nat-from-nat-id[OF j] by (auto simp:
from-hma}m-def
    }
    moreover
    {
        fix }y:: 'a``'nc^`'nr and a
            have \existsij. y $h a $hb= from-hmam y $$ (i,j)^i<CARD('nr)^j<
CARD('nc)
            unfolding from-hmam
            by (rule exI[of - Bij-Nat.to-nat a], rule exI[of - Bij-Nat.to-nat b], auto
                    simp: to-nat-less-card)
    }
    ultimately show ?thesis
        unfolding elements-mat[abs-def] elements-mat-h-def[abs-def] HMA-M-def
        by auto
qed
lemma HMA-vec-elements[transfer-rule]: ((HMA-V :: ('a Matrix.vec = ' a ^' n =
bool)) ===> (=))
    vec-elements vec-elements-h
proof -
    {
        fix y:: 'a ^' n and }i:: na
        assume i:i<CARD('n)
        hence from-hmav y $i\in range (vec-nth y)
            using to-nat-from-nat-id[OF i] by (auto simp: from-hmav-def)
    }
    moreover
    {
        fix y:: 'a}\mp@subsup{}{}{\wedge}\n\mathrm{ and }
        have \existsi. y $h a= from-hmav y $ i^i< CARD('n)
            unfolding from-hmave-def
            by (rule exI[of-Bij-Nat.to-nat a], auto simp: to-nat-less-card)
    }
    ultimately show ?thesis
    unfolding vec-elements[abs-def] vec-elements-h-def[abs-def] rel-fun-def HMA-V-def
        by auto
qed
```

lemma norm-bound-elements-mat: norm-bound $A \quad b=(\forall x \in$ elements-mat A. norm $x \leq b$)
unfolding norm-bound-def elements-mat by auto
lemma HMA-normbound [transfer-rule]:
($\left(H M A-M ~:: ~ ' a ~:: ~ r e a l-n o r m e d-f i e l d ~ m a t ~ \Rightarrow ' a ~^{\wedge} n c{ }^{\wedge} ' n r \Rightarrow\right.$ bool $)===>(=)$
$===>(=))$
norm-bound normbound
unfolding normbound-def[abs-def] norm-bound-elements-mat[abs-def]
by (transfer-prover)
lemma HMA-map-matrix [transfer-rule]:
$((=)===>$ HMA-M $===>H M A-M)$ map-mat map-matrix
unfolding map-vector-def map-matrix-def[abs-def] map-mat-def[abs-def] HMA-M-def
from-hma ${ }_{m}$-def
by auto
lemma HMA-transpose-matrix [transfer-rule]:
(HMA-M ===> HMA-M) transpose-mat transpose
unfolding transpose-mat-def transpose-def HMA-M-def from-hma a_{m}-def by auto
lemma HMA-map-vector [transfer-rule]:
$((=)===>H M A-V===>H M A-V)$ map-vec map-vector
unfolding map-vector-def[abs-def] map-vec-def[abs-def] HMA-V-def from-hma ${ }_{v}$-def by auto
lemma HMA-similar-mat-wit [transfer-rule]:
$\left(\left(H M A-M::-\Rightarrow ' a::\right.\right.$ comm-ring- $\left.1 \wedge^{\prime} n \wedge \prime n \Rightarrow-\right)===>H M A-M===>$
$H M A-M===>H M A-M===>(=))$
similar-mat-wit similar-matrix-wit
proof (intro rel-funI, goal-cases)
case (1 a A b BcCdD)
note $[$ transfer-rule $]=$ this
hence id: dim-row $a=C A R D\left({ }^{\prime} n\right)$ by (auto simp: HMA-M-def)
have $*:\left(c * d=1_{m}(\right.$ dim-row $a) \wedge d * c=1_{m}($ dim-row $\left.a) \wedge a=c * b * d\right)=$ $(C * * D=$ mat $1 \wedge D * * C=$ mat $1 \wedge A=C * * B * * D)$ unfolding $i d$ by (transfer, simp)
show ?case unfolding similar-mat-wit-def Let-def similar-matrix-wit-def * using 1 by (auto simp: HMA-M-def)
qed
lemma HMA-similar-mat [transfer-rule]:
$\left(\left(H M A-M::-{ }^{\prime} a::\right.\right.$ comm-ring $\left.\left.-1^{\wedge} ' n{ }^{\wedge} \prime n \Rightarrow-\right)===>H M A-M===>(=)\right)$
similar-mat similar-matrix
proof (intro rel-funI, goal-cases)
case (1 a A b B)
note $[$ transfer-rule $]=$ this
hence $i d$: dim-row $a=C A R D(' n)$ by (auto simp: HMA-M-def)
\{
fix $c d$
assume similar-mat-wit $a b c d$
hence $\{c, d\} \subseteq$ carrier-mat $C A R D\left({ }^{\prime} n\right) C A R D(' n)$ unfolding similar-mat-wit-def
id Let-def by auto
\} note $*=$ this
show ?case unfolding similar-mat-def similar-matrix-def
by (transfer, insert *, blast)
qed
lemma HMA-spectrum [transfer-rule]: (HMA-M ===> (=)) spectrum Spectrum unfolding spectrum-def[abs-def] Spectrum-def[abs-def]
by transfer-prover
lemma HMA-M-erase-mat $[$ transfer-rule $]:(H M A-M===>H M A-I===>H M A-I$
$===>H M A-M)$ mat-erase erase-mat
unfolding mat-erase-def [abs-def] erase-mat-def[abs-def]
by (auto simp: HMA-M-def HMA-I-def from-hma a_{m}-def to-nat-from-nat-id intro!: eq-matI)
lemma HMA-M-sum-UNIV[transfer-rule]:
$((H M A-I===>(=))===>H M A-T===>(=))$ sum-UNIV-set sum-UNIV-type
unfolding rel-fun-def
proof (clarify, rename-tac ffTnnT)
fix f and $f T:: ' b \Rightarrow{ }^{\prime} a$ and n and $n T:: ' b$ itself
assume $f: \forall x y$. HMA-I $x y \longrightarrow f x=f T y$
and $n: H M A-T n n T$
let $? f=$ from-nat $::$ nat \Rightarrow 'b
let $? t=$ to-nat $::$ ' $b \Rightarrow$ nat
from n [unfolded $H M A-T-d e f]$ have $n: n=C A R D(' b)$.
from to-nat-from-nat-id $\left[\right.$ where ${ }^{\prime} a=' b$, folded $\left.n\right]$
have $t f: i<n \Longrightarrow$?t (?f i) $=i$ for i by auto
have sum-UNIV-set $f n=\operatorname{sum} f($?t ' ?f ' $\{. .<n\}$)
unfolding sum-UNIV-set-def
by (rule arg-cong $[$ of - sum $f]$, insert tf, force)
also have $\ldots=\operatorname{sum}(f \circ$?t) (?f ' $\{. .<n\})$
by (rule sum.reindex, insert tf n, auto simp: inj-on-def)
also have ?f ' $\{. .<n\}=U N I V$
using range-to-nat $\left[\right.$ where ${ }^{\prime} a=' b$, folded $\left.n\right]$ by force
also have sum $(f \circ$?t) UNIV $=$ sum $f T$ UNIV
proof (rule sum.cong $[$ OF refl $]$)
fix $i:: \quad b$
show ($f \circ$? t) $i=f T i$ unfolding o-def
by (rule f[rule-format], auto simp: HMA-I-def)
qed
also have $\ldots=$ sum-UNIV-type $f T n T$
unfolding sum-UNIV-type-def ..
finally show sum-UNIV-set $f n=$ sum-UNIV-type fT $n T$.

qed

end
Setup a method to easily convert theorems from JNF into HMA.

```
method transfer-hma uses rule =(
    (fold index-hma-def)?,
    transfer,
    rule rule,
    (unfold carrier-vec-def carrier-mat-def)?,
    auto)
```

Now it becomes easy to transfer results which are not yet proven in HMA, such as:
lemma matrix-add-vect-distrib: $(A+B) * v v=A * v v+B * v v$ by (transfer-hma rule: add-mult-distrib-mat-vec)
lemma matrix-vector-right-distrib: $M * v(v+w)=M * v v+M * v w$
by (transfer-hma rule: mult-add-distrib-mat-vec)
lemma matrix-vector-right-distrib-diff: ($\left.M::{ }^{\prime} a \operatorname{:~ring-1} \wedge^{\prime} n r \wedge ' n c\right) * v(v-w)$
$=M * v v-M * v w$
by (transfer-hma rule: mult-minus-distrib-mat-vec)
lemma eigen-value-root-charpoly:
eigen-value $A k \longleftrightarrow$ poly (charpoly $\left(A:: ' a::\right.$ field $\left.\left.{ }^{\wedge} ' n^{\wedge} ' n\right)\right) k=0$
by (transfer-hma rule: eigenvalue-root-char-poly)
lemma finite-spectrum: fixes $A::{ }^{\prime} a::$ field $\wedge^{\prime} n{ }^{\prime} n$
shows finite (Collect (eigen-value A))
by (transfer-hma rule: card-finite-spectrum(1)[unfolded spectrum-def])
lemma non-empty-spectrum: fixes $A::$ complex ${ }^{\wedge} n^{\wedge}$ ' n
shows Collect (eigen-value $A) \neq\{ \}$
by (transfer-hma rule: spectrum-non-empty[unfolded spectrum-def])
lemma charpoly-transpose: charpoly (transpose A :: ' $a::$ field $\left.\wedge^{\prime} n^{\wedge} ' n\right)=$ charpoly A
by (transfer-hma rule: char-poly-transpose-mat)
lemma eigen-value-transpose: eigen-value (transpose $A::^{\prime} a::$ field $\wedge^{\prime} n{ }^{\wedge} n$) $v=$ eigen-value $A v$
unfolding eigen-value-root-charpoly charpoly-transpose by simp
lemma matrix-diff-vect-distrib: $(A-B) * v v=A * v v-B * v(v:: ' a:: r i n g-1$ ^ ' n)
by (transfer-hma rule: minus-mult-distrib-mat-vec)
lemma similar-matrix-charpoly: similar-matrix $A B \Longrightarrow$ charpoly $A=$ charpoly B

```
    by (transfer-hma rule: char-poly-similar)
lemma pderiv-char-poly-erase-mat: fixes }A:: ' 'a :: idom ^' n ^' n
    shows monom 11* pderiv (charpoly A) = sum ( }\lambda\mathrm{ i.charpoly (erase-mat A i
i)) UNIV
proof -
    let ?A = from-hmam}
    let ? n = CARD(' n)
    have tA[transfer-rule]: HMA-M ?A A unfolding HMA-M-def by simp
    have tN[transfer-rule]: HMA-T ?n TYPE('n) unfolding HMA-T-def by simp
    have A: ?A \in carrier-mat ?n ?n unfolding from-hma⿱m-def by auto
    have id: sum ( }\lambdai\mathrm{ i. charpoly (erase-mat A i i)) UNIV =
        sum-UNIV-type ( }\lambda\mathrm{ i. charpoly (erase-mat A i i)) TYPE('n)
        unfolding sum-UNIV-type-def ..
    show ?thesis unfolding id
    by (transfer, insert pderiv-char-poly-mat-erase[OF A], simp add: sum-UNIV-set-def)
qed
lemma degree-monic-charpoly: fixes }A:: ' a :: comm-ring-1 ^' ' ^' n
    shows degree (charpoly A) = CARD ('n) ^ monic (charpoly A)
proof (transfer, goal-cases)
    case 1
    from degree-monic-char-poly[OF 1] show ?case by auto
qed
end
```


4 Perron-Frobenius Theorem

4.1 Auxiliary Notions

We define notions like non-negative real-valued matrix, both in JNF and in HMA. These notions will be linked via HMA-connect.

```
theory Perron-Frobenius-Aux
imports HMA-Connect
begin
```

definition real-nonneg-mat :: complex mat \Rightarrow bool where
real-nonneg-mat $A \equiv \forall a \in$ elements-mat $A . a \in \mathbb{R} \wedge$ Re $a \geq 0$
definition real-nonneg-vec :: complex Matrix.vec \Rightarrow bool where
real-nonneg-vec $v \equiv \forall a \in$ vec-elements $v . a \in \mathbb{R} \wedge \operatorname{Re} a \geq 0$
definition real-non-neg-vec :: complex ${ }^{\wedge}$ ' $n \Rightarrow$ bool where
real-non-neg-vec $v \equiv(\forall a \in$ vec-elements-h v. $a \in \mathbb{R} \wedge R e a \geq 0)$
definition real-non-neg-mat :: complex ${ }^{\wedge}$ ' $n r$ ^' $n c \Rightarrow$ bool where
real-non-neg-mat $A \equiv(\forall a \in$ elements-mat-h $A . a \in \mathbb{R} \wedge R e a \geq 0)$

```
lemma real-non-neg-matD: assumes real-non-neg-mat }
    shows A $hi $hj\in\mathbb{R Re (A$hi$hj)\geq0}00
    using assms unfolding real-non-neg-mat-def elements-mat-h-def by auto
definition nonneg-mat :: 'a :: linordered-idom mat }=>\mathrm{ bool where
    nonneg-mat A \equiv\foralla\inelements-mat A. }a\geq
definition non-neg-mat :: ' }a\mathrm{ :: linordered-idom ^ ' }nr\mathrm{ ^ ' nc m bool where
    non-neg-mat }A\equiv(\foralla\in\mathrm{ elements-mat-h A.a 
context includes lifting-syntax
begin
lemma HMA-real-non-neg-mat [transfer-rule]:
    ((HMA-M :: complex mat }=>\mathrm{ complex ^'nc ^' 'nr m bool) ===> (=))
    real-nonneg-mat real-non-neg-mat
    unfolding real-nonneg-mat-def[abs-def] real-non-neg-mat-def[abs-def]
    by transfer-prover
lemma HMA-real-non-neg-vec [transfer-rule]:
    ((HMA-V :: complex Matrix.vec = complex ^' }n=>\mathrm{ bool ) ===> (=))
    real-nonneg-vec real-non-neg-vec
    unfolding real-nonneg-vec-def[abs-def] real-non-neg-vec-def[abs-def]
    by transfer-prover
lemma HMA-non-neg-mat [transfer-rule]:
    ((HMA-M :: 'a :: linordered-idom mat => ' a ^'nc ^'nr mbool) ===> (=))
    nonneg-mat non-neg-mat
    unfolding nonneg-mat-def[abs-def] non-neg-mat-def[abs-def]
    by transfer-prover
end
primrec matpow :: 'a::semiring-1^' n ' }n=>nat => ' ' a' n '' n wher
    matpow-0: matpow A 0 = mat 1 |
    matpow-Suc:matpow A (Suc n) =(matpow A n) ** A
context includes lifting-syntax
begin
lemma HMA-pow-mat[transfer-rule]:
    ((HMA-M ::'a::{semiring-1} mat }=>\mp@subsup{'}{}{\prime}\mp@subsup{a}{}{\wedge\prime}n\mp@subsup{n}{}{\prime}n=>\mathrm{ bool })===> (=)===> HMA-M
pow-mat matpow
proof -
    {
        fix }A:: 'a mat and A' :: ' a ' ' n ^' n and n :: na
        assume [transfer-rule]: HMA-M A A'
        hence [simp]: dim-row A = CARD('n) unfolding HMA-M-def by simp
```

```
        have HMA-M (pow-mat A n) (matpow A' n)
        proof (induct n)
            case (Suc n)
            note [transfer-rule] = this
            show ?case by (simp, transfer-prover)
            qed (simp, transfer-prover)
}
    thus ?thesis by blast
qed
end
lemma trancl-image:
    (i,j) \in R'+ \Longrightarrow(fi,fj)\in(map-prod ff' R)+
proof (induct rule: trancl-induct)
    case (step jk)
    from step(2) have (fj,fk)\in map-prod ff' R by auto
    from step(3) this show ?case by auto
qed auto
lemma inj-trancl-image: assumes inj: inj f
    shows (fi,fj)\in(map-prod ff' R)+}=((i,j)\in\mp@subsup{R}{}{+})(\mathrm{ is ?l = ?r)
proof
    assume ?r from trancl-image[OF this] show ?l .
next
    assume ?l from trancl-image[OF this, of the-inv f]
    show ?r unfolding image-image prod.map-comp o-def the-inv-f-f[OF inj] by
auto
qed
lemma matrix-add-rdistrib: ((B+C)**A)=(B**A)+(C**A)
    by (vector matrix-matrix-mult-def sum.distrib[symmetric] field-simps)
lemma norm-smult: norm ((a :: real)*s x)=abs a * norm x
    unfolding norm-vec-def
    by (metis norm-scaleR norm-vec-def scalar-mult-eq-scaleR)
lemma nonneg-mat-mult:
    nonneg-mat A\Longrightarrow nonneg-mat B\LongrightarrowA\in carrier-mat nr n
    \LongrightarrowB\incarrier-mat n nc \Longrightarrow nonneg-mat (A*B)
    unfolding nonneg-mat-def
    by (auto simp: elements-mat-def scalar-prod-def intro!: sum-nonneg)
lemma nonneg-mat-power: assumes A carrier-mat n n nonneg-mat A
    shows nonneg-mat ( A ^}\mp@subsup{}{m}{}k\mathrm{ )
proof (induct k)
    case 0
    thus ?case by (auto simp: nonneg-mat-def)
next
    case (Suc k)
```

```
    from nonneg-mat-mult[OF this assms(2) - assms(1), of n] assms(1)
    show ?case by auto
qed
lemma nonneg-matD: assumes nonneg-mat A
    and i<dim-row }A\mathrm{ and }j<dim-col 
shows A $$ (i,j)\geq0
    using assms unfolding nonneg-mat-def elements-mat by auto
lemma (in comm-ring-hom) similar-mat-wit-hom: assumes
    similar-mat-wit A B C D
shows similar-mat-wit (mat h}A)(math B) (mathh C) (math D
proof -
    obtain n where n: n= dim-row A by auto
    note * = similar-mat-witD[OF n assms]
    from * have [simp]: dim-row C = n by auto
    note C=*(6) note D=*(7)
    note id = mat-hom-mult[OF C D] mat-hom-mult[OF D C]
    note ** =*(1-3)[THEN arg-cong[of - math], unfolded id]
    note mult = mult-carrier-mat[of - n n]
    note hom-mult = mat-hom-mult[of-n n-n]
    show ?thesis unfolding similar-mat-wit-def Let-def unfolding **(3) using
**(1,2)
    by (auto simp: n[symmetric] hom-mult simp:*(4-) mult)
qed
lemma (in comm-ring-hom) similar-mat-hom:
    similar-mat A B\Longrightarrow similar-mat (math A) (math B)
    using similar-mat-wit-hom[of A B CD for C D]
    by (smt similar-mat-def)
lemma det-dim-1: assumes A:A\incarrier-mat n n
    and n: n=1
shows Determinant.det A = A $$ (0,0)
    by (subst laplace-expansion-column[OF A[unfolded n], of 0], insert A n,
    auto simp: cofactor-def mat-delete-def)
lemma det-dim-2: assumes A:A\incarrier-mat n n
    and n: n=2
shows Determinant.det A =A $$ (0,0)*A$$(1,1)-A$$ (0,1)*A$$(1,0)
proof -
    have set:(\sumi<(2 :: nat). fi)=f0+f1 for f
    by (subst sum.cong[of-{0,1} ff], auto)
    show ?thesis
    apply (subst laplace-expansion-column[OF A[unfolded n], of 0], insert A n,
            auto simp: cofactor-def mat-delete-def set)
    apply (subst (1 2) det-dim-1, auto)
    done
qed
```

lemma jordan-nf-root-char-poly: fixes A :: ' $a::\{$ semiring-no-zero-divisors, idom $\}$ mat
assumes jordan-nf A n-as
and $(m, l a m) \in$ set n-as
shows poly (char-poly A) lam $=0$
proof -
from assms have $m 0: m \neq 0$ unfolding jordan-nf-def by force
from split-list[OF assms(2)] obtain as bs where nas: n-as =as @ (m,lam) \# bs by auto
show ?thesis using m0
unfolding jordan-nf-char-poly[OF assms(1)] nas poly-prod-list prod-list-zero-iff by (auto simp: o-def)
qed
lemma inverse-power-tendsto-zero:
$\left(\lambda x\right.$. inverse $\left(\left(\right.\right.$ of-nat $x::$ ' a :: real-normed-div-algebra) ${ }^{\wedge}$ Suc d $\left.)\right) \longrightarrow 0$ proof (rule filterlim-compose[OF tendsto-inverse-0],
intro filterlim-at-infinity[THEN iffD2, of 0] allI impI, goal-cases)
case (2 r)
let $? r=n a t($ ceiling $r)+1$
show? case
proof (intro eventually-sequentiallyI[of ?r], unfold norm-power norm-of-nat)
fix x
assume $r: ? r \leq x$
hence $x 1$: real $x \geq 1$ by auto
have $r \leq$ real ? r by linarith
also have $\ldots \leq x$ using r by auto
also have $\ldots \leq$ real x^{\wedge} Suc d using $x 1$ by simp
finally show $r \leq$ real x^{\wedge} Suc d.
qed
qed simp
lemma inverse-of-nat-tendsto-zero:
(λx. inverse (of-nat $x::$ ' $a::$ real-normed-div-algebra) $) \longrightarrow 0$
using inverse-power-tendsto-zero [of 0] by auto
lemma poly-times-exp-tendsto-zero: assumes b: norm (b :: 'a :: real-normed-field)
<1
shows $\left(\lambda x\right.$. of-nat $\left.x^{\wedge} k * b^{\wedge} x\right) \longrightarrow 0$
proof (cases $b=0$)
case False
define nla where nla $=$ norm b
define s where $s=s q r t$ nla
from b False have nla: $0<n l a ~ n l a<1$ unfolding nla-def by auto
hence $s: 0<s s<1$ unfolding s-def by auto
\{
fix x

```
    have s`x * s`x = sqrt (nla` (2*x))
        unfolding s-def power-add[symmetric]
        unfolding real-sqrt-power[symmetric]
        by (rule arg-cong[of - - \lambda x. sqrt (nla ^ x)], simp)
    also have ... = nla`x unfolding power-mult real-sqrt-power
        using nla by simp
    finally have nla`x}=\widehat{ \ x * s` x by simp
    } note nla-s = this
    show ( }\lambdax\mathrm{ . of-nat x `^ k* b``}x)\longrightarrow
    proof (rule tendsto-norm-zero-cancel, unfold norm-mult norm-power norm-of-nat
nla-def[symmetric] nla-s
        mult.assoc[symmetric])
    from poly-exp-constant-bound[OF s, of 1 k] obtain p where
        p:real x^ k* s`x}\leqp\mathrm{ for x by (auto simp:ac-simps)
    have norm (real x ^ k* s^x})=\mathrm{ real x^ k* s` x for x using s by auto
    with p have p: norm (real x^ k*s^ x) \leqp for x by auto
    from s have s: norm s<1 by auto
    show ( }\lambdax\mathrm{ . real x^ k*s^^x* s^x)}\longrightarrow
        by (rule lim-null-mult-left-bounded [OF - LIMSEQ-power-zero[OF s], of - p],
insert p, auto)
    qed
next
    case True
    show ?thesis unfolding True
    by (subst tendsto-cong[of - \lambdax.0], rule eventually-sequentiallyI[of 1], auto)
qed
lemma (in linorder-topology) tendsto-Min: assumes I:I\not={} and fin: finite I
    shows}(\bigwedgei.i\inI\Longrightarrow(fi\longrightarrowai)F)\Longrightarrow((\lambdax.Min ((\lambdai.fix)'I))
        (Min (a'I) :: 'a)) F
    using fin I
proof (induct rule: finite-induct)
    case (insert i I)
    hence }i:(fi\longrightarrowai)F\mathrm{ by auto
    show ?case
    proof (cases I={})
        case True
        show ?thesis unfolding True using i by auto
    next
        case False
    have *: Min (a`insert i I) = min (a i) (Min (a`I)) using False insert(1)
by auto
    have **: (\lambdax. Min ((\lambdai.fix)`insert iI)) = (\lambdax.min (fix) (Min ((\lambdai.fix)
    ` I)))
            using False insert(1) by auto
    have IH:((\lambdax. Min ((\lambdai.fix)'I))\longrightarrowMin (a'I))F
            using insert(3)[OF insert(4) False] by auto
    show ?thesis unfolding * **
```

```
        by (auto intro!: tendsto-min i IH)
    qed
qed simp
lemma tendsto-mat-mult [tendsto-intros]:
    (f\longrightarrowa)F\Longrightarrow(g\longrightarrowb)F\Longrightarrow((\lambdax.fx**gx)\longrightarrowa** b) F
    for f :: ' }a>>'b :: {semiring-1, real-normed-algebra} ^'n1 ^'n2
    unfolding matrix-matrix-mult-def[abs-def] by (auto intro!: tendsto-intros)
lemma tendsto-matpower [tendsto-intros]:(f\longrightarrowa) F\Longrightarrow((\lambdax.matpow ( }fx
n)\longrightarrow matpow a n) F
    for f ::' }a=>\mathrm{ ' }b::{\mathrm{ {semiring-1, real-normed-algebra} ^' ' ^ ' }
    by (induct n, simp-all add: tendsto-mat-mult)
lemma continuous-matpow: continuous-on R (\lambda A :: ' }a\mathrm{ :: {semiring-1, real-normed-algebra-1}
` 'n` ' n. matpow A n)
    unfolding continuous-on-def by (auto intro!: tendsto-intros)
lemma vector-smult-distrib: (A*v((a :: 'a :: comm-ring-1) *s x)) =a*s ((A*v
x)
    unfolding matrix-vector-mult-def vector-scalar-mult-def
    by (simp add: ac-simps sum-distrib-left)
instance real :: ordered-semiring-strict
    by (intro-classes, auto)
lemma poly-tendsto-pinfty: fixes p :: real poly
    assumes lead-coeff p>0 degree p\not=0
    shows poly p\longrightarrow
    unfolding Lim-PInfty
proof
    fix b
    show \existsN.\foralln\geqN. ereal b\leqereal (poly p (real n))
        unfolding ereal-less-eq using poly-pinfty-ge[OF assms, of b]
        by (meson of-nat-le-iff order-trans real-arch-simple)
qed
lemma div-lt-nat: (j :: nat) < x * y \Longrightarrow j div }x<
    by (simp add: less-mult-imp-div-less mult.commute)
```



```
    diagvector }x=(\chii.\chij. if i=j then x i else 0)
lemma diagvector-mult-vector[simp]: diagvector x *v y = (\chii.xi*y$i)
    unfolding diagvector-def matrix-vector-mult-def vec-eq-iff vec-lambda-beta
proof (rule, goal-cases)
    case (1 i)
    show ?case by (subst sum.remove[of-i], auto)
```


qed

lemma diagvector-mult-left: diagvector $x * * A=(\chi i j . x i * A \$ i \$ j)($ is ? $A=$?B)

> unfolding vec-eq-iff
proof (intro allI)
fix $i j$
show ? $A \$ h i \$ h j=? B \$ h i \$ h j$
unfolding map-vector-def diagvector-def matrix-matrix-mult-def vec-lambda-beta by (subst sum.remove[of - $i]$, auto)
qed
lemma diagvector-mult-right: $A * *$ diagvector $x=(\chi i j . A \$ i \$ j * x j)$ (is ?A $=$? B)
unfolding vec-eq-iff
proof (intro allI)
fix $i j$
show? $\$ h i \$ h j=? B \$ h i \$ h j$
unfolding map-vector-def diagvector-def matrix-matrix-mult-def vec-lambda-beta by (subst sum.remove $[$ of $-j]$, auto)
qed
lemma diagvector-mult $[$ simp $]$: diagvector $x * *$ diagvector $y=$ diagvector $(\lambda i . x i$ * $y i$)
unfolding diagvector-mult-left unfolding diagvector-def by (auto simp: vec-eq-iff)
lemma diagvector-const [simp]: diagvector $(\lambda x . k)=$ mat k
unfolding diagvector-def mat-def by auto
lemma diagvector-eq-mat: diagvector $x=$ mat $a \longleftrightarrow x=(\lambda x . a)$
unfolding diagvector-def mat-def by (auto simp: vec-eq-iff)
lemma cmod-eq-Re: assumes $\operatorname{cmod} x=\operatorname{Re} x$
shows of-real (Rex) $=x$
proof (cases Im $x=0$)
case False
hence $(\operatorname{cmod} x)^{\wedge}$ ^2 $\neq(\operatorname{Re} x)^{\wedge} 2$ unfolding norm-complex-def by simp
from this[unfolded assms] show ?thesis by auto
qed (cases x, auto simp: norm-complex-def complex-of-real-def)
hide-fact (open) Matrix.vec-eq-iff

no-notation

vec-index (infixl \$ 100)
lemma spectral-radius-ev:
\exists ev v. eigen-vector $A v$ ev \wedge norm ev $=$ spectral-radius A
proof -
from non-empty-spectrum [of A] finite-spectrum [of A] have

```
    spectral-radius A G norm'(Collect (eigen-value A))
    unfolding spectral-radius-ev-def by auto
    thus ?thesis unfolding eigen-value-def[abs-def] by auto
qed
lemma spectral-radius-max: assumes eigen-value A v
    shows norm v}\leq\mathrm{ spectral-radius A
proof -
    from assms have norm v\in norm '(Collect (eigen-value A)) by auto
    from Max-ge[OF - this, folded spectral-radius-ev-def]
        finite-spectrum[of A] show ?thesis by auto
qed
```

For Perron-Frobenius it is useful to use the linear norm, and not the Euclidean norm.
definition norm1 :: ' a :: real-normed-field ${ }^{-}$' $n \Rightarrow$ real where norm1 $v=\left(\sum i \in U N I V . \operatorname{norm}(v \$ i)\right)$
lemma norm1-ge-0: norm1 $v \geq 0$ unfolding norm1-def by (rule sum-nonneg, auto)
lemma norm1-0 $[$ simp $]$: norm1 $0=0$ unfolding norm1-def by auto
lemma norm1-nonzero: assumes $v \neq 0$
shows norm1 $v>0$
proof -
from $\langle v \neq 0\rangle$ obtain i where $v i: v \$ i \neq 0$ unfolding vec-eq-iff
using Finite-Cartesian-Product.vec-eq-iff zero-index by force
have $\operatorname{sum}(\lambda i$. norm $(v \$ i))(U N I V-\{i\}) \geq 0$
by (rule sum-nonneg, auto)
moreover have norm ($v \$ i$) >0 using vi by auto
ultimately
have $0<\operatorname{norm}(v \$ i)+\operatorname{sum}(\lambda i \operatorname{norm}(v \$ i))(U N I V-\{i\})$ by arith
also have $\ldots=$ norm1 v unfolding norm1-def
by (simp add: sum.remove)
finally show norm1 $v>0$.
qed
lemma norm1-0-iff[simp]: (norm1 $v=0)=(v=0)$
using norm1-0 norm1-nonzero by (cases $v=0$, force +)
lemma norm1-scale $R[\operatorname{simp}]$: norm1 $\left(r *_{R} v\right)=a b s r *$ norm1 v unfolding norm1-def sum-distrib-left
by (rule sum.cong, auto)
lemma abs-norm1 [simp]: abs (norm1 v) = norm1 v using norm1-ge-0[of v] by arith
lemma normalize-eigen-vector: assumes eigen-vector (A :: ' a :: real-normed-field

```
\(\left.{ }^{-} n{ }^{-} n\right) v e v\)
    shows eigen-vector \(A\left((1 / n o r m 1 v) *_{R} v\right)\) ev norm1 \(\left((1 / n o r m 1 v) *_{R} v\right)=1\)
proof -
    let \(? v=(1 / n o r m 1 v) *_{R} v\)
    from assms[unfolded eigen-vector-def]
    have \(n z: v \neq 0\) and \(i d: A * v v=e v * s v\) by auto
    from \(n z\) have norm1: norm1 \(v \neq 0\) by auto
    thus norm1 ? \(v=1\) by simp
    from norm1 \(n z\) have \(n z: ? v \neq 0\) by auto
    have \(A * v ? v=(1 / n o r m 1 v) *_{R}(A * v v)\)
        by (auto simp: vec-eq-iff matrix-vector-mult-def real-vector.scale-sum-right)
    also have \(A * v v=e v * s v\) unfolding \(i d\)..
    also have \((1 / n o r m 1 v) *_{R}(e v * s v)=e v * s ? v\)
        by (auto simp: vec-eq-iff)
    finally show eigen-vector \(A\) ?v ev using \(n z\) unfolding eigen-vector-def by auto
qed
```

lemma norm1-cont $[$ simp $]$: isCont norm1 v unfolding norm1-def $[a b s-d e f]$ by auto
lemma norm1-ge-norm: norm1 $v \geq$ norm v unfolding norm1-def norm-vec-def
by (rule L2-set-le-sum, auto)

The following continuity lemmas have been proven with hints from Fabian Immler.
lemma tendsto-matrix-vector-mult[tendsto-intros]:
$\left((* v)\left(A:: ' a::\right.\right.$ real-normed-algebra- $\left.\left.1 \wedge^{\prime} n \wedge\right) \longrightarrow A * v v\right)($ at v within $S)$ unfolding matrix-vector-mult-def[abs-def]
by (auto intro!: tendsto-intros)
lemma tendsto-matrix-matrix-mult[tendsto-intros]:
$\left((* *)\left(A::{ }^{\prime} a::\right.\right.$ real-normed-algebra-1 $\left.\left.\wedge^{\prime} n^{\wedge} k\right) \longrightarrow A * * B\right)($ at B within $S)$ unfolding matrix-matrix-mult-def[abs-def] by (auto intro!: tendsto-intros)
lemma matrix-vect-scaleR: (A :: ' a :: real-normed-algebra-1 ^' $\left.n \wedge^{\prime} k\right) * v\left(a *_{R} v\right)$ $=a *_{R}(A * v v)$
unfolding vec-eq-iff
by (auto simp: matrix-vector-mult-def scaleR-vec-def scaleR-sum-right intro!: sum.cong)
lemma (in inj-semiring-hom) map-vector-0: (map-vector hom $v=0)=(v=0)$ unfolding vec-eq-iff map-vector-def by auto
lemma (in inj-semiring-hom) map-vector-inj: (map-vector hom $v=$ map-vector hom $w)=(v=w)$
unfolding vec-eq-iff map-vector-def by auto
lemma (in semiring-hom) matrix-vector-mult-hom:

```
    (map-matrix hom A)*v (map-vector hom v)= map-vector hom (A*vv)
    by (transfer fixing: hom, auto simp: mult-mat-vec-hom)
lemma (in semiring-hom) vector-smult-hom:
    hom x*s(map-vector hom v) = map-vector hom ( }x*sv
    by (transfer fixing: hom, auto simp: vec-hom-smult)
lemma (in inj-comm-ring-hom) eigen-vector-hom:
    eigen-vector (map-matrix hom A) (map-vector hom v) (hom x) = eigen-vector A
vx
    unfolding eigen-vector-def matrix-vector-mult-hom vector-smult-hom map-vector-0
map-vector-inj
    by auto
end
```


4.2 Perron-Frobenius theorem via Brouwer's fixpoint theorem.

theory Perron-Frobenius
imports
HOL-Analysis.Brouwer-Fixpoint
Perron-Frobenius-Aux
begin

We follow the textbook proof of Serre [2, Theorem 5.2.1].

```
context
    fixes }A\mathrm{ :: complex ^ ' }n\mathrm{ ^' }n\mathrm{ :: finite
    assumes rnnA: real-non-neg-mat A
begin
private abbreviation(input) sr where sr \equivspectral-radius A
private definition max-v-ev :: (complex^' }n)\times\mathrm{ complex where
    max-v-ev = (SOME v-ev. eigen-vector A (fst v-ev) (snd v-ev)
    ^norm (snd v-ev) = sr)
private definition max-v = (1/ norm1 (fst max-v-ev)) *R fst max-v-ev
private definition max-ev = snd max-v-ev
private lemma max-v-ev:
    eigen-vector A max-v max-ev
    norm max-ev = sr
    norm1 max-v = 1
proof -
    obtain v ev where id: max-v-ev = (v,ev) by force
    from spectral-radius-ev[of A] someI-ex[of \lambda v-ev. eigen-vector A (fst v-ev) (snd
v-ev)
    ^norm (snd v-ev) = sr, folded max-v-ev-def, unfolded id]
```

have v : eigen-vector $A v e v$ and $e v$: norm $e v=s r$ by auto
from normalize-eigen-vector $[O F v]$ ev
show eigen-vector A max-v max-ev norm max-ev $=$ sr norm1 max-v $=1$
unfolding max-v-def max-ev-def id by auto
qed
In the definition of S, we use the linear norm instead of the default euclidean norm which is defined via the type-class. The reason is that S is not convex if one uses the euclidean norm.
private definition $B::$ real ${ }^{\wedge} n^{\wedge} n$ where $B \equiv \chi i j$. Re $(A \$ i \$ j)$
private definition S where $S=\left\{v::\right.$ real $\wedge^{\wedge} n . n o r m 1 v=1 \wedge(\forall i . v \$ i \geq$ 0) \wedge

$$
(\forall i .(B * v v) \$ i \geq s r *(v \$ i))\}
$$

private definition $f::$ real ${ }^{\wedge}$ ' $n \Rightarrow$ real ${ }^{\wedge}$ ' n where

$$
f v=(1 / \operatorname{norm} 1(B * v v)) *_{R}(B * v v)
$$

private lemma closedS: closed S
unfolding S-def matrix-vector-mult-def [abs-def]
proof (intro closed-Collect-conj closed-Collect-all closed-Collect-le closed-Collect-eq) show continuous-on UNIV norm1
by (simp add: continuous-at-imp-continuous-on)
qed (auto intro!: continuous-intros continuous-on-component)
private lemma bounded S : bounded S
proof -
\{ fix $v::$ real ${ }^{\wedge} ' n$ from norm1-ge-norm [of v] have norm1 $v=1 \Longrightarrow$ norm $v \leq 1$ by auto
\}
thus ?thesis
unfolding S-def bounded-iff
by (auto intro!: exI[of-1])
qed
private lemma compactS: compact S
using bounded S closed S
by (simp add: compact-eq-bounded-closed)
private lemmas $r n n=$ real-non-neg-matD $[O F r n n A]$
lemma B-norm: $B \$ i \$ j=\operatorname{norm}(A \$ i \$ j)$
using $\operatorname{rnn}[$ of $i j]$
by (cases $A \$ i \$ j$, auto simp: B-def)
lemma mult-B-mono: assumes $\bigwedge i . v \$ i \geq w \$ i$
shows $(B * v v) \$ i \geq(B * v w) \$ i$ unfolding matrix-vector-mult-def vec-lambda-beta
by (rule sum-mono, rule mult-left-mono[OF assms], unfold B-norm, auto)

```
private lemma non-emptyS: \(S \neq\{ \}\)
proof -
    let \(? v=(\chi\) i. norm \((\operatorname{max-v} \$ i))::\) real \({ }^{\wedge}\) ' \(n\)
    have norm1 max-v \(=1\) by (rule max-v-ev(3))
    hence nv: norm1 ?v = 1 unfolding norm1-def by auto
    \{
        fix \(i\)
        have \(s r *(? v \$ i)=s r *\) norm \((\max -v \$ i)\) by auto
        also have \(\ldots=(\) norm max-ev \() *\) norm (max-v \(\$ i)\) using max-v-ev by auto
        also have \(\ldots=\) norm \(((\max -e v * s \max -v) \$ i)\) by (auto simp: norm-mult)
    also have max-ev *s max-v \(=A * v\) max-v using max-v-ev(1)[unfolded eigen-vector-def]
by auto
    also have norm \(((A * v \max -v) \$ i) \leq(B * v ? v) \$ i\)
        unfolding matrix-vector-mult-def vec-lambda-beta
        by (rule sum-norm-le, auto simp: norm-mult B-norm)
    finally have \(s r *(? v \$ i) \leq(B * v ? v) \$ i\).
    \(\}\) note \(l e=t h i s\)
    have ? \(v \in S\) unfolding \(S\)-def using \(n v\) le by auto
    thus ?thesis by blast
qed
private lemma convexS: convex \(S\)
proof (rule convexI)
    fix \(v w a b\)
    assume \(*: v \in S w \in S 0 \leq a 0 \leq b a+b=(1::\) real \()\)
    let ?lin \(=a *_{R} v+b *_{R} w\)
    from * have 1: norm1 \(v=1\) norm1 \(w=1\) unfolding \(S\)-def by auto
    have norm1 ? lin \(=a *\) norm1 \(v+b *\) norm1 \(w\)
    unfolding norm1-def sum-distrib-left sum.distrib[symmetric]
    proof (rule sum.cong)
    fix \(i:: \quad n\)
    from \(*\) have \(v \$ i \geq 0 w \$ i \geq 0\) unfolding \(S\)-def by auto
    thus norm (?lin \$ i) \(=a * \operatorname{norm}(v \$ i)+b * \operatorname{norm}(w \$ i)\)
            using \(*(3-4)\) by auto
    qed \(\operatorname{simp}\)
    also have \(\ldots=1\) using \(*(5) 1\) by auto
    finally have norm1: norm1 ?lin \(=1\).
    \{
    fix \(i\)
    from \(*\) have \(0 \leq v \$ i s r * v \$ i \leq(B * v v) \$ i\) unfolding \(S\)-def by auto
    with \(\langle a \geq 0\rangle\) have \(a: a *(s r * v \$ i) \leq a *(B * v v) \$ i\) by (intro mult-left-mono)
    from \(*\) have \(0 \leq w \$ i s r * w \$ i \leq(B * v w) \$ i\) unfolding \(S\)-def by auto
            with \(\langle b \geq 0\rangle\) have \(b: b *(s r * w \$ i) \leq b *(B * v w) \$ i\) by (intro
mult-left-mono)
    from \(a b\) have \(a *(s r * v \$ i)+b *(s r * w \$ i) \leq a *(B * v v) \$ i+b *\)
\((B * v w) \$ i\) by auto
    \} note le \(=\) this
    have switch[simp]: \(\bigwedge x y . x * a * y=a * x * y \bigwedge x y . x * b * y=b * x * y\)
by auto
```

```
    have [simp]: x { {v,w}\Longrightarrowa*(r*x$hi)=r*(a*x$hi) for arix by
auto
    show }a\mp@subsup{*}{R}{}v+b\mp@subsup{*}{R}{}w\inS\mathrm{ using * norm1 le unfolding S-def
    by (auto simp: matrix-vect-scaleR matrix-vector-right-distrib ring-distribs)
qed
private abbreviation (input) r :: real }=>\mathrm{ complex where
    r\equivof-real
private abbreviation rv :: real ``}n=>\mathrm{ complex `'}n\mathrm{ where
    rvv\equiv\chii.r(v$i)
private lemma rv-0:(rv v=0) =(v=0)
    by (simp add: of-real-hom.map-vector-0 map-vector-def vec-eq-iff)
private lemma rv-mult: A*v rv v =rv(B*vv)
proof -
    have map-matrix r B = A
    using rnnA unfolding map-matrix-def B-def real-non-neg-mat-def map-vector-def
elements-mat-h-def
        by vector
    thus ?thesis
        using of-real-hom.matrix-vector-mult-hom[of B, where ' }a=\mathrm{ complex]
        unfolding map-vector-def by auto
qed
context
    assumes zero-no-ev: \}v.v\inS\LongrightarrowA*vrvv\not=
begin
private lemma normB-S: assumes v:v\inS
    shows norm1 ( }B*vv)\not=
proof -
    from zero-no-ev[OF v, unfolded rv-mult rv-0]
    show ?thesis by auto
qed
private lemma image-f: f'S\subseteqS
proof -
    {
        fix v
        assume v:}v\in
    hence norm: norm1 v=1 and ge: \bigwedgei.v$i\geq0 \i.sr*v$i\leq(B*vv)
$ i unfolding S-def by auto
    from normB-S[OF v] have normB: norm1 ( }B*vv)>0\mathrm{ using norm1-nonzero
by auto
    have fv: fv=(1 / norm1 (B*vv)) **R (B*vv) unfolding f}f\mathrm{ -def by auto
    from normB have Bv0: B*v v\not=0 unfolding norm1-0-iff[symmetric] by
linarith
    have norm: norm1 ( fv)=1 unfolding fv using normB Bv0 by simp
```

```
    define c}\mathrm{ where }c=(1/\operatorname{norm1}(B*vv)
    have c:c>0 unfolding c-def using normB by auto
    {
        fix }
        have 1:fv $ i\geq0 unfolding fv c-def[symmetric] using c ge
        by (auto simp: matrix-vector-mult-def sum-distrib-left B-norm intro!: sum-nonneg)
        have id1: \bigwedge i. (B*vfv)$i=c*((B*v(B*vv))$ i)
            unfolding f-def c-def matrix-vect-scaleR by simp
        have id3: \ i.sr*fv$ i=c*((B*v(sr*R v))$ i)
            unfolding f-def c-def[symmetric] matrix-vect-scaleR by auto
        have 2: sr*fv$i\leq(B*vfv)$i unfolding id1 id3
            unfolding mult-le-cancel-iff2[OF<c>0>]
            by (rule mult-B-mono, insert ge(2), auto)
        note 1 2
    }
    with norm have fv\inS unfolding S-def by auto
    }
    thus ?thesis by blast
qed
private lemma cont-f: continuous-on S f
    unfolding f-def[abs-def] continuous-on using normB-S
    unfolding norm1-def
    by (auto intro!: tendsto-eq-intros)
qualified lemma perron-frobenius-positive-ev:
    \exists}\mathrm{ v. eigen-vector A v (r sr)^ real-non-neg-vec v
proof -
    from brouwer[OF compactS convexS non-emptyS cont-f image-f]
        obtain v where v:v\inS and fv: fv=v by auto
    define ev where ev = norm1 ( }B*vv
    from normB-S[OF v] have ev =0 unfolding ev-def by auto
    with norm1-ge- 0[of B *v v, folded ev-def] have norm: ev>0 by auto
    from arg-cong[OF fv[unfolded f-def], of \lambda (w :: real ^' n). ev * *R w] norm
    have ev: B*v v=ev*s v unfolding ev-def[symmetric] scalar-mult-eq-scaleR
by simp
    with v[unfolded S-def] have ge: \i.sr*v$i\leqev*v$ i by auto
    have }A*vrv v=rv(B*vv) unfolding rv-mult ..
    also have ... =ev*s rv v unfolding ev vec-eq-iff
        by (simp add: scaleR-conv-of-real scaleR-vec-def)
    finally have ev:}A*vrvv=ev*srvv
    from v have v0:v\not=0 unfolding S-def by auto
    hence rv v\not=0 unfolding rv-0 .
    with ev have ev: eigen-vector A (rv v) ev unfolding eigen-vector-def by auto
    hence eigen-value A ev unfolding eigen-value-def by auto
    from spectral-radius-max[OF this] have le: norm (rev)\leqsr.
    from v0 obtain i where v$i\not=0 unfolding vec-eq-iff by auto
    from v}\mathrm{ have v$ i \0 unfolding S-def by auto
    with }\langlev$i\not=0\rangle\mathrm{ have v$i>0 by auto
```

```
    with ge[of i] have ge: sr \leqev by auto
    with le have sr:r sr = ev by auto
    from v have *: real-non-neg-vec (rv v) unfolding S-def real-non-neg-vec-def
vec-elements-h-def by auto
    show ?thesis unfolding sr
        by (rule exI[of - rv v], insert * ev norm, auto)
qed
end
qualified lemma perron-frobenius-both:
    \exists
proof (cases }\forallv\inS.A*v rv v\not=0
    case True
    show ?thesis
        by (rule Perron-Frobenius.perron-frobenius-positive-ev[OF rnnA], insert True,
auto)
next
    case False
    then obtain v where v:v\inS and A0:A*vrvv=0 by auto
    hence id:A*v rv v=0*s rv v and v0:v\not=0 unfolding S-def by auto
    from v0 have rv v\not=0 unfolding rv-0 .
    with id have ev: eigen-vector A (rv v) 0 unfolding eigen-vector-def by auto
    hence eigen-value A 0 unfolding eigen-value-def ..
    from spectral-radius-max[OF this] have 0:0\leqsr by auto
    from v[unfolded S-def] have ge: \bigwedgei.sr*v$i\leq(B*vv)$i by auto
    from v[unfolded S-def] have rnn: real-non-neg-vec (rv v)
        unfolding real-non-neg-vec-def vec-elements-h-def by auto
    from v0 obtain i where v$i\not=0 unfolding vec-eq-iff by auto
    from v}\mathrm{ have v$i 
    with }\langlev$i\not=0\rangle\mathrm{ have vi:v $ i>0 by auto
    from rv-mult[of v, unfolded A0] have rv (B*vv)=0 by simp
    hence B*v v=0 unfolding rv-0 .
    from ge[of i, unfolded this] vi have ge: sr \leq 0 by (simp add: mult-le-0-iff)
    with <0 \leq sr> have sr=0 by auto
    show ?thesis unfolding <sr = 0` using rnn ev by auto
qed
end
```

Perron Frobenius: The largest complex eigenvalue of a real-valued nonnegative matrix is a real one, and it has a real-valued non-negative eigenvector.
lemma perron-frobenius:
assumes real-non-neg-mat A
shows $\exists v$. eigen-vector $A v(o f$-real (spectral-radius $A)) \wedge$ real-non-neg-vec v
by (rule Perron-Frobenius.perron-frobenius-both [OF assms])
And a version which ignores the eigenvector.
lemma perron-frobenius-eigen-value:
assumes real-non-neg-mat A

$$
\text { shows eigen-value } A \text { (of-real (spectral-radius } A))
$$

using perron-frobenius [OF assms] unfolding eigen-value-def by blast
end

5 Roots of Unity

```
theory Roots-Unity
imports
    Polynomial-Factorization.Order-Polynomial
    HOL-Computational-Algebra.Fundamental-Theorem-Algebra
    Polynomial-Interpolation.Ring-Hom-Poly
begin
lemma cis-mult-cmod-id: cis (Arg x)* of-real (cmod x) =x
    using rcis-cmod-Arg[unfolded rcis-def] by (simp add:ac-simps)
```

lemma rcis-mult-cis[simp]: rcis n $a *$ cis $b=$ rcis $n(a+b)$ unfolding cis-rcis-eq rcis-mult by simp
lemma rcis-div-cis[simp]: rcis nalcis b=rcis $n(a-b)$ unfolding cis-rcis-eq rcis-divide by simp
lemma cis-plus-2pi[simp]: cis $(x+2 * p i)=$ cis x by (auto simp: complex-eq-iff)
lemma cis-plus-2pi-neq-1: assumes $x: 0<x x<2 * p i$ shows cis $x \neq 1$

proof -

from x have $\cos x \neq 1$ by (smt cos-2pi-minus cos-monotone-0-pi cos-zero)
thus ?thesis by (auto simp: complex-eq-iff)
qed
lemma cis-times-2pi[simp]: cis (of-nat $n * 2 * p i)=1$
proof (induct n)
case (Suc n)
have of-nat $(S u c n) * 2 * p i=o f-n a t n * 2 * p i+2 * p i$ by (simp add:
distrib-right)
also have cis ... = 1 unfolding cis-plus-2pi Suc ..
finally show ?case .
qed simp
lemma cis-add-pi[simp]: cis $(p i+x)=-$ cis x by (auto simp: complex-eq-iff)
lemma cis-3-pi-2[simp]: cis $(p i * 3 / 2)=-\mathrm{i}$
proof -
have cis $(p i * 3 / 2)=c i s(p i+p i / 2)$
by (rule arg-cong[of - cis], simp)
also have $\ldots=-$ i unfolding cis-add-pi by simp
finally show? thesis.
qed
lemma rcis-plus-2pi[simp]: rcis $y(x+2 * p i)=$ rcis $y x$ unfolding rcis-def by simp
lemma rcis-times-2pi[simp]: rcis r (of-nat $n * 2 * p i)=o f$-real r unfolding rcis-def cis-times-2pi by simp
lemma arg-rcis-cis: assumes $n: n>0$ shows $\operatorname{Arg}($ rcis $n x)=\operatorname{Arg}($ cis $x)$ using Arg-bounded cis-Arg-unique cis-Arg complex-mod-rcis n rcis-def sgn-eq by auto
lemma $\arg -e q D$: assumes $\operatorname{Arg}($ cis $x)=\operatorname{Arg}($ cis $y)-p i<x x \leq p i-p i<y y \leq$ pi shows $x=y$
using assms(1) unfolding cis-Arg-unique[OF sgn-cis assms(2-3)] cis-Arg-unique [OF sgn-cis assms(4-5)].
lemma rcis-inj-on: assumes $r: r \neq 0$ shows inj-on (rcis r) $\{0 . .<2 * p i\}$
proof (rule inj-onI, goal-cases)
case ($1 x y$)
from $\arg -\operatorname{cong}[$ OF $1(3)$, of $\lambda x . x / r]$ have cis $x=$ cis y using r by (simp add: rcis-def)
from arg-cong $[$ OF this, of λx. inverse $x]$ have cis $(-x)=$ cis $(-y)$ by simp
from arg-cong[OF this, of uminus $]$ have $*$: cis $(-x+p i)=$ cis $(-y+p i)$
by (auto simp: complex-eq-iff)
have $-x+p i=-y+p i$
by (rule arg-eqD[OF arg-cong[OF *, of Arg]], insert 1(1-2), auto)
thus? case by simp
qed
lemma cis-inj-on: inj-on cis $\{0 . .<2 * p i\}$
using rcis-inj-on[of 1] unfolding rcis-def by auto
definition root-unity $::$ nat \Rightarrow ' a :: comm-ring-1 poly where
root-unity $n=$ monom $1 n-1$
lemma poly-root-unity: poly (root-unity n) $x=0 \longleftrightarrow x \wedge n=1$
unfolding root-unity-def by (simp add: poly-monom)
lemma degree-root-unity $[$ simp $]$: degree (root-unity $n)=n($ is degree ? $p=-)$
proof -
have $p: ? p=$ monom $1 n+(-1)$ unfolding root-unity-def by auto
show ?thesis
proof (cases n)
case 0
thus ?thesis unfolding p by simp
next
case (Suc m)
show ?thesis unfolding p unfolding Suc
by (subst degree-add-eq-left, auto simp: degree-monom-eq)

```
    qed
qed
lemma zero-root-unit[simp]: root-unity }n=0\longleftrightarrown=0 (is ? p = 0 \longleftrightarrow -)
proof (cases n=0)
    case True
    thus ?thesis unfolding root-unity-def by simp
next
    case False
    from degree-root-unity[of n] False
    have degree ?p \not=0 by auto
    hence ?p \not=0 by fastforce
    thus ?thesis using False by auto
qed
definition prod-root-unity :: nat list 盾'a :: idom poly where
    prod-root-unity ns = prod-list (map root-unity ns)
```

lemma poly-prod-root-unity: poly (prod-root-unity ns) $x=0 \longleftrightarrow\left(\exists k \in\right.$ set ns. x^{\wedge}
$k=1$)
unfolding prod-root-unity-def
by (simp add: poly-prod-list prod-list-zero-iff o-def image-def poly-root-unity)
lemma degree-prod-root-unity $[$ simp $]: 0 \notin$ set $n s \Longrightarrow$ degree (prod-root-unity $n s)=$
sum-list ns
unfolding prod-root-unity-def
by (subst degree-prod-list-eq, auto simp: o-def)
lemma zero-prod-root-unit[simp]: prod-root-unity $n s=0 \longleftrightarrow 0 \in$ set ns
unfolding prod-root-unity-def prod-list-zero-iff by auto
lemma roots-of-unity: assumes $n: n \neq 0$
shows $(\lambda i$. (cis (of-nat $i * 2 * p i / n))$)' $\{0 . .<n\}=\left\{x::\right.$ complex. $x^{\wedge} n=$
1\} (is ?prod = ?Roots)
$\{x$. poly (root-unity n) $x=0\}=\left\{x\right.$:: complex. $\left.x^{\wedge} n=1\right\}$
card $\left\{x\right.$:: complex. $\left.x^{\wedge} n=1\right\}=n$
proof (atomize(full), goal-cases)
case 1
let ?one $=1$:: complex
let ? $p=$ monom ?one $n-1$
have deg M : degree (monom ?one n) $=n$ by (rule degree-monom-eq, simp)
have degree ? $p=$ degree (monom ?one $n+(-1)$) by simp
also have $\ldots=$ degree (monom ?one n)
by (rule degree-add-eq-left, insert n, simp add: $\operatorname{deg} M$)
finally have degp: degree ? $p=n$ unfolding $\operatorname{deg} M$.
with n have $p: ? p \neq 0$ by auto
have roots: ?Roots $=\{x$. poly ? $p x=0\}$
unfolding poly-diff poly-monom by simp
also have finite ... by (rule poly-roots-finite[OF p])

```
    finally have fin: finite ?Roots .
    have sub: ?prod \subseteq?Roots
    proof
        fix }
    assume x\in?prod
    then obtain }i\mathrm{ where x: x = cis (real i*2 * pi/n) by auto
    have }\mp@subsup{x}{}{\wedge}n=cis(real i*2*pi) unfolding x DeMoivre using n by simp
    also have ... = 1 by simp
    finally show }x\in\mathrm{ ?Roots by auto
    qed
    have Rn: card ?Roots }\leqn\mathrm{ unfolding roots
    by (rule poly-roots-degree[of ?p, unfolded degp, OF p])
have ... = card {0 ..<n} by simp
also have ... = card ?prod
proof (rule card-image[symmetric], rule inj-onI, goal-cases)
    case (1 x y)
    {
        fix m
        assume m<n
        hence real m< real n by simp
        from mult-strict-right-mono[OF this, of 2 * pi / real n] n
        have real m*2 * pi / real n<real n*2* pi / real n by simp
        hence real m*2* pi / real n<2* pi using n by simp
    } note [simp] = this
    have 0:(1 :: real)}\not=0\mathrm{ using }n\mathrm{ by auto
    have real x*2 * pi / real n = real y * 2* pi / real n
        by (rule inj-onD[OF rcis-inj-on 1(3)[unfolded cis-rcis-eq]], insert 1(1-2),
auto)
    with n show }x=y\mathrm{ by auto
    qed
    finally have cn: card ?prod = n ..
    with Rn have card ?prod \geq card ?Roots by auto
    with card-mono[OF fin sub] have card: card ?prod = card ?Roots by auto
    have ?prod = ?Roots
    by (rule card-subset-eq[OF fin sub card])
    from this roots[symmetric] cn[unfolded this]
    show ?case unfolding root-unity-def by blast
qed
lemma poly-roots-dvd: fixes p :: 'a :: field poly
    assumes }p\not=0\mathrm{ and degree }p=
    and card {x.poly p x=0}\geqn and {x. poly p x=0}\subseteq{x.poly q x = 0}
shows p dvd q
proof -
    from poly-roots-degree[OF assms(1)] assms(2-3) have card {x. poly p x = 0}
= n by auto
    from assms(1-2) this assms(4)
    show ?thesis
    proof (induct n arbitrary: p q)
```

```
    case (0 p q)
    from is-unit-iff-degree[OF O(1)] O(2) show ?case by blast
next
    case (Suc n pq)
    let ?P = {x. poly p x=0}
    let ?}Q={x.poly q x=0
    from Suc(4-5) card-gt-0-iff[of ?P] obtain x where
        x: poly p x = 0 poly q x=0 and fin: finite ?P by auto
    define }r\mathrm{ where }r=[:-x,1:
    from x[unfolded poly-eq-0-iff-dvd r-def[symmetric]] obtain p' q' where
        p:p=r*\mp@subsup{p}{}{\prime}\mathrm{ and q: q=r* q}\mp@subsup{q}{}{\prime}\mathrm{ unfolding dvd-def by auto}
    from Suc(2) have degree p = degree r + degree p' unfolding p
        by (subst degree-mult-eq, auto)
    with Suc(3) have deg: degree p}\mp@subsup{p}{}{\prime}=n\mathrm{ unfolding r-def by auto
    from Suc(2) p have p'0: p'\not=0 by auto
    let ?P'}={x\mathrm{ . poly p'x=0}
    let ?Q' }={x.poly \mp@subsup{q}{}{\prime}x=0
    have P: ?P = insert x ? P' unfolding p poly-mult unfolding r-def by auto
    have Q: ?Q = insert x ? Q' unfolding q poly-mult unfolding r-def by auto
    {
        assume x }\in\mathrm{ ? P'
        hence ?P = ?P' unfolding P by auto
        from arg-cong[OF this, of card, unfolded Suc(4)] deg have False
            using poly-roots-degree[OF p'0] by auto
    } note }x\mp@subsup{p}{}{\prime}=thi
    hence }x\mp@subsup{P}{}{\prime}:x\not\in?\mp@subsup{P}{}{\prime}\mathrm{ by auto
    have card ?P = Suc (card ? P') unfolding P
        by (rule card-insert-disjoint[OF - xP`], insert fin[unfolded P], auto)
    with Suc(4) have card: card ?P' = n by auto
    from Suc(5)[unfolded P Q] x\mp@subsup{P}{}{\prime}}\mathrm{ have ? }\mp@subsup{P}{}{\prime}\subseteq??\mp@subsup{Q}{}{\prime}\mathrm{ by auto
    from Suc(1)[OF p'0 deg card this]
    have IH: p' dvd q}\mp@subsup{q}{}{\prime}
    show ?case unfolding pq using IH by simp
    qed
qed
lemma root-unity-decomp: assumes n: n}\not=
    shows root-unity n=
        prod-list (map (\lambda i. [:-cis (of-nat i*2* pi/n), 1:]) [0 ..<n]) (is ?u = ?p)
proof -
    have deg: degree ?u = n by simp
    note main = roots-of-unity[OF n]
    have dvd:?u dvd?p
    proof (rule poly-roots-dvd[OF - deg])
        show }n\leq\mathrm{ card {x. poly ?u x = 0} using main by auto
        show ?u\not=0 using n by auto
        show {x. poly ?u x = 0}\subseteq{x. poly ?p x=0}
            unfolding main(2) main(1)[symmetric] poly-prod-list prod-list-zero-iff by
auto
```

```
    qed
    have deg': degree ?p = n
    by (subst degree-prod-list-eq, auto simp: o-def sum-list-triv)
    have mon: monic ?u using deg unfolding root-unity-def using n by auto
    have mon': monic ?p by (rule monic-prod-list, auto)
    from dvd[unfolded dvd-def] obtain }f\mathrm{ where puf:?p =?u*f by auto
    have degree ?p = degree ? u + degree f using mon' n unfolding puf
    by (subst degree-mult-eq, auto)
    with deg deg' have degree f=0 by auto
    from degree0-coeffs[OF this] obtain a where f:f=[:a:] by blast
    from arg-cong[OF puf, of lead-coeff] mon mon'
    have }a=1\mathrm{ unfolding puff by (cases }a=0\mathrm{ , auto)
    with f have f:f=1 by auto
    with puf show ?thesis by auto
qed
lemma order-monic-linear: order x [:y,1:] = (if y+x=0 then 1 else 0)
proof (cases }y+x=0\mathrm{ )
    case True
    hence poly [:y,1:] x=0 by simp
    from this[unfolded order-root] have order x [:y,1:] \not=0 by auto
    moreover from order-degree[of [:y,1:] x] have order x [:y,1:]\leq1 by auto
    ultimately show ?thesis unfolding True by auto
next
    case False
    hence poly [:y,1:] x\not=0 by auto
    from order-0I[OF this] False show ?thesis by auto
qed
lemma order-root-unity: fixes }x:: complex assumes n: n\not=
    shows order x (root-unity n)}=(\mathrm{ if }x`n=1 then 1 else 0)
    (is order - ?u = -)
proof (cases x`n=1)
    case False
    with roots-of-unity(2)[OF n] have poly ?u x\not=0 by auto
    from False order-OI[OF this] show ?thesis by auto
next
    case True
    let ?phi=\lambda i:: nat. i*2* pi/n
    from True roots-of-unity(1)[OF n] obtain i where i: i<n
        and x:x=cis (?phi i) by force
    from i have n-split: [0 ..<n]=[0 ..< i] @ i# [Suc i ..< n]
        by (metis le-Suc-ex less-imp-le-nat not-le-imp-less not-less0 upt-add-eq-append
upt-conv-Cons)
    {
        fix }
        assume j:j<n\veej<i and eq: cis (?phi i) = cis (?phi j)
        from inj-onD[OF cis-inj-on eq] ij n have i = j by (auto simp: field-simps)
    } note inj = this
```

```
    have order x ?u = 1 unfolding root-unity-decomp[OF n]
    unfolding x n-split using inj
    by (subst order-prod-list, force, fastforce simp: order-monic-linear)
    with True show ?thesis by auto
qed
lemma order-prod-root-unity: assumes 0:0 # set ks
    shows order (x :: complex) (prod-root-unity ks) = length (filter (\lambda k. x^k=1)
ks)
proof -
    have order x (prod-root-unity ks)=(\sumk\leftarrowks. order x (root-unity k))
        unfolding prod-root-unity-def
        by (subst order-prod-list, insert 0, auto simp: o-def)
    also have ... = (\sumk\leftarrowks. (if }x^k=1\mathrm{ then 1 else 0))
    by (rule arg-cong, rule map-cong, insert 0, force, intro order-root-unity, metis)
    also have ... = length (filter ( }\lambdak.x`k=1) ks
        by (subst sum-list-map-filter'[symmetric], simp add: sum-list-triv)
    finally show ?thesis .
qed
lemma root-unity-witness: fixes xs :: complex list
    assumes prod-list (map (\lambdax.[:-x,1:]) xs)=monom 1 n-1
    shows }x`n=1\longleftrightarrowx\in\mathrm{ set }x
proof -
    from assms have n0: n\not=0 by (cases n=0, auto simp: prod-list-zero-iff)
    have }x\in\mathrm{ set }xs\longleftrightarrow\mathrm{ poly (prod-list (map ( }\lambdax.[:-x,1:]) xs)) x=
        unfolding poly-prod-list prod-list-zero-iff by auto
    also have ... \longleftrightarrow x^n=1 using roots-of-unity(2)[OF n0] unfolding assms
root-unity-def by auto
    finally show ?thesis by auto
qed
lemma root-unity-explicit: fixes x :: complex
    shows
        (x^1=1)\longleftrightarrowx=1
        (x^2=1) \longleftrightarrow(x\in{1,-1})
    (x^3=1)\longleftrightarrow(x\in{1, Complex (-1/2) (sqrt 3 / 2), Complex (-1/2) (-
sqrt 3 / 2)})
    (x^4=1)\longleftrightarrow(x\in{1,-1, i, - i })
proof -
    show ( }\mp@subsup{x}{}{\wedge}1=1)\longleftrightarrowx=
    by (subst root-unity-witness[of [1]], code-simp, auto)
    show (x^2 = 1) \longleftrightarrow(x\in{1, -1})
    by (subst root-unity-witness[of [1,-1]], code-simp, auto)
    show }(x^4=1)\longleftrightarrow(x\in{1,-1, i, - i}
    by (subst root-unity-witness[of [1,-1, i, - i]], code-simp, auto)
    have 3:3=Suc (Suc (Suc 0)) 1= [:1:] by auto
    show (x^ 3 = 1) \longleftrightarrow(x\in{1,Complex (-1/2)(sqrt 3 / 2), Complex (-1/2)
(- sqrt 3 / 2)})
```

```
    by (subst root-unity-witness[of
    [1, Complex (-1/2) (sqrt 3 / 2), Complex (-1/2) (- sqrt 3 / 2)]],
    auto simp: }3\mathrm{ monom-altdef complex-mult complex-eq-iff)
qed
definition primitive-root-unity :: nat }=>\mp@subsup{}{}{\prime}'a:: power => bool where
```



```
1))
lemma primitive-root-unityD: assumes primitive-root-unity k x
    shows }k\not=0x`k=1\mp@subsup{k}{}{\prime}\not=0\Longrightarrow\mp@subsup{x}{}{\wedge}\mp@subsup{k}{}{\prime}=1\Longrightarrowk\leq\mp@subsup{k}{}{\prime
proof -
    note * = assms[unfolded primitive-root-unity-def]
    from * have **: }\mp@subsup{k}{}{\prime}<k\Longrightarrow\mp@subsup{k}{}{\prime}\not=0\Longrightarrow\mp@subsup{x}{}{`}\mp@subsup{k}{}{\prime}\not=1\mathrm{ by auto
    show }k\not=0 \mp@subsup{x}{}{\wedge}k=1 using * by aut
    show }\mp@subsup{k}{}{\prime}\not=0\Longrightarrow\mp@subsup{x}{}{\wedge}\mp@subsup{k}{}{\prime}=1\Longrightarrowk\leq\mp@subsup{k}{}{\prime}\mathrm{ using ** by force
qed
lemma primitive-root-unity-exists: assumes }k\not=0\mp@subsup{x}{}{\wedge}k=
    shows \exists}\mp@subsup{k}{}{\prime}.\mp@subsup{k}{}{\prime}\leqk\wedge primitive-root-unity k'
proof -
    let ?P = \lambdak. x^k=1^k\not=0
    define k' where }\mp@subsup{k}{}{\prime}=(LEASTk.?P k
    from assms have Pk: \existsk.?P k by auto
    from LeastI-ex[OF Pk, folded k'-def]
    have }\mp@subsup{k}{}{\prime}\not=0\mp@subsup{x}{}{`}\mp@subsup{k}{}{\prime}=1\mathrm{ by auto
    with not-less-Least[of - ?P, folded k'-def]
    have primitive-root-unity }\mp@subsup{k}{}{\prime}x\mathrm{ unfolding primitive-root-unity-def by auto
    with primitive-root-unityD(3)[OF this assms]
    show ?thesis by auto
qed
lemma primitive-root-unity-dvd: fixes }x\mathrm{ :: complex
    assumes k: primitive-root-unity kx
    shows }\mp@subsup{x}{}{\wedge}n=1\longleftrightarrowkdvd
proof
    assume k dvd n then obtain j where n: n=k*j unfolding dvd-def by auto
    have }\mp@subsup{x}{}{`}n=(\mp@subsup{x}{}{`}k)^ j unfolding n power-mult by sim
    also have \ldots=1 unfolding primitive-root-unityD[OF k] by simp
    finally show }\mp@subsup{x}{}{`}n=1
next
    assume n: x^ n=1
    note k = primitive-root-unityD[OF k
    show k dvd n
    proof (cases n=0)
    case n0: False
    from k(3)[OF n0] n have nk: n\geqk by force
    from roots-of-unity[OF k(1)] k(2) obtain i :: nat where xk:x=cis (i*2*
pi / k)
```

and $i k: i<k$ by force
from roots-of-unity[OF n0] n obtain $j::$ nat where $x n: x=$ cis $(j * 2 * p i /$ n)
and $j n: j<n$ by force
have cop: coprime $i k$
proof (rule gcd-eq-1-imp-coprime)
from $k(1)$ have gcd $i k \neq 0$ by auto
from gcd-coprime-exists[OF this] this obtain $i^{\prime} k^{\prime} g$ where
$*: i=i^{\prime} * g k=k^{\prime} * g g \neq 0$ and $g: g=g c d i k$ by blast
from $*(2) k(1)$ have $k^{\prime}: k^{\prime} \neq 0$ by auto
have $x=$ cis $(i * 2 * p i / k)$ by fact
also have $i * 2 * p i / k=i^{\prime} * 2 * p i / k^{\prime}$ unfolding $*$ using $*(3)$ by auto
finally have $x^{\wedge} k^{\prime}=1$ by (simp add: DeMoivre k^{\prime})
with $k(3)[O F k]$ have $k^{\prime} \geq k$ by linarith
moreover with $* k(1)$ have $g=1$ by auto
then show $g c d i k=1$ by (simp add: g)
qed
from inj-onD[OF cis-inj-on xk[unfolded $x n]] n 0 k(1) i k j n$
have $j *$ real $k=i *$ real n by (auto simp: field-simps)
hence real $(j * k)=\operatorname{real}(i * n)$ by simp
hence eq: $j * k=i * n$ by linarith
with cop show $k d v d n$
by (metis coprime-commute coprime-dvd-mult-right-iff dvd-triv-right) qed auto
qed
lemma primitive-root-unity-simple-computation:
primitive-root-unity $k x=($ if $k=0$ then False else $\left.x^{\wedge} k=1 \wedge\left(\forall i \in\{1 . .<k\} . x^{\wedge} i \neq 1\right)\right)$
unfolding primitive-root-unity-def by auto
lemma primitive-root-unity-explicit: fixes x :: complex
shows primitive-root-unity $1 x \longleftrightarrow x=1$
primitive-root-unity $2 x \longleftrightarrow x=-1$
primitive-root-unity $3 x \longleftrightarrow(x \in\{$ Complex (-1/2) (sqrt $3 / 2)$, Complex
$(-1 / 2)(-\operatorname{sqrt} 3 / 2)\})$
primitive-root-unity $4 x \longleftrightarrow(x \in\{\mathrm{i},-\mathrm{i}\})$
proof (atomize(full), goal-cases)
case 1
\{
fix P :: nat \Rightarrow bool
have $*:\{1 . .<2:: n a t\}=\{1\}\{1 . .<3::$ nat $\}=\{1,2\}\{1 . .<4::$ nat $\}=$ \{1,2,3\} by code-simp+
have $(\forall i \in\{1 . .<2\} . P i)=P 1(\forall i \in\{1 . .<3\} . P i) \longleftrightarrow P 1 \wedge P 2$ $(\forall i \in\{1 . .<4\} . P i) \longleftrightarrow P 1 \wedge P 2 \wedge P 3$
unfolding $*$ by auto
\} note $*=$ this
show ?case unfolding primitive-root-unity-simple-computation root-unity-explicit
by (auto simp: complex-eq-iff)
qed
function decompose-prod-root-unity-main ::

$$
\text { ' } a:: \text { field poly } \Rightarrow \text { nat } \Rightarrow \text { nat list } \times \text { 'a poly } \text { where }
$$

decompose-prod-root-unity-main $p k=($

$$
\text { if } k=0 \text { then }([], p) \text { else }
$$

let $q=$ root-unity k in if q dvd p then if $p=0$ then $([], 0)$ else
map-prod (Cons k) id (decompose-prod-root-unity-main (p div q) k) else
decompose-prod-root-unity-main $p(k-1))$
by pat-completeness auto
termination by (relation measure ($\lambda(p, k)$. degree $p+k$), auto simp: degree-div-less)
declare decompose-prod-root-unity-main.simps[simp del]
lemma decompose-prod-root-unity-main: fixes p :: complex poly
assumes $p: p=$ prod-root-unity $k s * f$
and d: decompose-prod-root-unity-main p $k=\left(k s^{\prime}, g\right)$
and $f: \bigwedge x . \operatorname{cmod} x=1 \Longrightarrow$ poly $f x \neq 0$
and $k: \bigwedge k^{\prime} . k^{\prime}>k \Longrightarrow \neg$ root-unity k^{\prime} dvd p
shows $p=$ prod-root-unity $k s^{\prime} * f \wedge f=g \wedge$ set $k s=$ set $k s^{\prime}$
using $d p k$
proof (induct $p k$ arbitrary: $k s k^{\prime}$ rule: decompose-prod-root-unity-main.induct)
case ($1 \quad p k k s k s$)
note $p=1$ (4)
note $k=1$ (5)
from $k[$ of Suc $k]$ have $p 0: p \neq 0$ by auto
hence $p=0 \longleftrightarrow$ False by auto
note $d=1$ (3)[unfolded decompose-prod-root-unity-main.simps $[$ of $p k]$ this if-False
Let-def]
from $p 0$ [unfolded $p]$ have $k s 0: 0 \notin$ set ks by simp
from $f[$ of 1] have $f 0: f \neq 0$ by auto
note $I H=1(1)[O F-r e f l-p 0] 1(2)[O F-r e f l]$
show ?case
proof (cases $k=0$)
case True
with $p k$ [unfolded this, of hd ks] p0 have $k s=[]$
by (cases ks, auto simp: prod-root-unity-def)
with $d p$ True show? ?hesis by (auto simp: prod-root-unity-def)
next
case k0: False
note $I H=I H[O F k 0]$
from $k 0$ have $k=0 \longleftrightarrow$ False by auto
note $d=d$ [unfolded this if-False]
let ? $u=$ root-unity $k::$ complex poly
show ?thesis
proof (cases ?u dvd p)

```
    case True
    note IH = IH(1)[OF True]
    let ?call = decompose-prod-root-unity-main (p div ?u) k
    from True d obtain Ks where rec: ?call = (Ks,g) and ks': ks' = (k# Ks)
    by (cases ?call, auto)
    from True have ?u dvd p\longleftrightarrow True by simp
    note d}=d[unfolded this if-True rec]
    let ?}x=cis(2*pi/k
    have rt: poly ?u ?x = 0 unfolding poly-root-unity using cis-times-2pi[of 1]
    by (simp add: DeMoivre)
    with True have poly p ?x = 0 unfolding dvd-def by auto
    from this[unfolded p] f[of ?x] rt have poly (prod-root-unity ks) ?x = 0
    unfolding poly-root-unity by auto
    from this[unfolded poly-prod-root-unity] ks0 obtain k' where k': k'
    and rt:?x^ k'=1 and k}\mp@subsup{k}{}{\prime}0:\mp@subsup{k}{}{\prime}\not=0\mathrm{ by auto
    let ? }\mp@subsup{u}{}{\prime}=\mathrm{ root-unity }\mp@subsup{k}{}{\prime}:: complex poly
    from k' rt k'0 have rtk': poly ? 'u' ?x = 0 unfolding poly-root-unity by auto
    {
        let ?phi= k'*(2*pi/k)
    assume k}\mp@subsup{k}{}{\prime}<
    hence 0< ?phi ?phi<2* pi using k0 k'0 by (auto simp: field-simps)
    from cis-plus-2pi-neq-1[OF this] rtk'
    have False unfolding poly-root-unity DeMoivre ..
    }
    hence }k\mp@subsup{k}{}{\prime}:k\leq\mp@subsup{k}{}{\prime}\mathrm{ by presburger
    {
    assume k'>k
    from }k[OF this, unfolded p
    have \neg? ?u' dvd prod-root-unity ks using dvd-mult2 by auto
    with }\mp@subsup{k}{}{\prime}\mathrm{ have False unfolding prod-root-unity-def
        using prod-list-dvd[of ?u' map root-unity ks] by auto
    }
    with }k\mp@subsup{k}{}{\prime}\mathrm{ have }k\mp@subsup{k}{}{\prime}:\mp@subsup{k}{}{\prime}=k\mathrm{ by presburger
    with }\mp@subsup{k}{}{\prime}\mathrm{ have }k\in\mathrm{ set ks by auto
    from split-list[OF this] obtain ks1 ks2 where ks: ks = ks1 @ k # ks2 by
auto
    hence p div ?u = (?u * (prod-root-unity (ks1 @ ks2) * f)) div ?u
    by (simp add: ac-simps p prod-root-unity-def)
    also have ... = prod-root-unity (ks1 @ ks2) *f
    by (rule nonzero-mult-div-cancel-left, insert k0, auto)
    finally have id: p div ?u = prod-root-unity (ks1 @ ks2) *f .
    from d have ks': ks'}=k#Ks\mathrm{ by auto
    have k< k'\Longrightarrow \neg root-unity k' dvd p div ?u for k'
        using k[of k] True by (metis dvd-div-mult-self dvd-mult2)
    from IH[OF rec id this]
    have id: p div root-unity k= prod-root-unity Ks *f and
        *:f=g^ set (ks1@ ksQ) = set Ks by auto
    from arg-cong[OF id, of \lambda x. x* ?u] True
    have p = prod-root-unity Ks *f* root-unity k by auto
```

```
        thus ?thesis using * unfolding ks ks' by (auto simp: prod-root-unity-def)
    next
        case False
        from d False have decompose-prod-root-unity-main p (k-1) = (ks',g) by
auto
    note IH=IH(2)[OF False this p]
    have k:k-1<\mp@subsup{k}{}{\prime}\Longrightarrow\neg root-unity }\mp@subsup{k}{}{\prime}\mathrm{ dvd p for }\mp@subsup{k}{}{\prime}\mathrm{ using False k[of k] k0
            by (cases }\mp@subsup{k}{}{\prime}=k\mathrm{ ,auto)
        show ?thesis by (rule IH, insert False k, auto)
    qed
    qed
qed
definition decompose-prod-root-unity p = decompose-prod-root-unity-main p (degree
p)
lemma decompose-prod-root-unity: fixes p :: complex poly
    assumes p: p = prod-root-unity ks *f
    and d: decompose-prod-root-unity p = (ks',g)
    and f: ^x.cmod x=1\Longrightarrow poly f x\not=0
    and p0:p\not=0
shows p= prod-root-unity ks'*f}\wedgef=g\wedge set ks= set ks
proof (rule decompose-prod-root-unity-main[OF p d[unfolded decompose-prod-root-unity-def]
f])
    fix }
    assume deg: degree p<k
    hence degree p < degree (root-unity k) by simp
    with p0 show \neg root-unity k dvd p
        by (simp add: poly-divides-conv0)
qed
lemma (in comm-ring-hom) hom-root-unity: map-poly hom (root-unity n)=root-unity
n
proof -
    interpret p: map-poly-comm-ring-hom hom ..
    show ?thesis unfolding root-unity-def
        by (simp add: hom-distribs)
qed
lemma (in idom-hom) hom-prod-root-unity: map-poly hom (prod-root-unity n) =
prod-root-unity n
proof -
    interpret p: map-poly-comm-ring-hom hom ..
    show?thesis unfolding prod-root-unity-def p.hom-prod-list map-map o-def hom-root-unity
..
qed
lemma (in field-hom) hom-decompose-prod-root-unity-main:
decompose-prod-root-unity-main (map-poly hom p) \(k=\) map-prod id (map-poly
```

```
hom)
    (decompose-prod-root-unity-main p k)
proof (induct p k rule: decompose-prod-root-unity-main.induct)
    case (1 pk)
    let ?h = map-poly hom
    let ?p = ?h p
    let ?u = root-unity k :: 'a poly
    let ? 'u'= root-unity k :: 'b poly
    interpret p: map-poly-inj-idom-divide-hom hom ..
    have }\mp@subsup{u}{}{\prime}:??\mp@subsup{u}{}{\prime}=?h??u unfolding hom-root-unity ..
    note simp = decompose-prod-root-unity-main.simps
    let ?rec1 = decompose-prod-root-unity-main (p div ?u) }
    have 0:?p=0\longleftrightarrowp=0 by simp
    show ?case
        unfolding simp[of ?p k] simp[of pk] if-distrib[of map-prod id ?h] Let-def u'
        unfolding 0 p.hom-div[symmetric] p.hom-dvd-iff
        by (rule if-cong[OF refl], force, rule if-cong[OF refl if-cong[OF refl]], force,
        (subst 1(1), auto, cases ?rec1, auto)[1],
        (subst 1(2), auto))
qed
lemma (in field-hom) hom-decompose-prod-root-unity:
    decompose-prod-root-unity (map-poly hom p) = map-prod id (map-poly hom)
    (decompose-prod-root-unity p)
    unfolding decompose-prod-root-unity-def
    by (subst hom-decompose-prod-root-unity-main, simp)
end
```


5.1 The Perron Frobenius Theorem for Irreducible Matrices

```
theory Perron-Frobenius-Irreducible
```

theory Perron-Frobenius-Irreducible
imports
imports
Perron-Frobenius
Perron-Frobenius
Roots-Unity
Roots-Unity
Rank-Nullity-Theorem.Miscellaneous
Rank-Nullity-Theorem.Miscellaneous
begin
begin
lifting-forget vec.lifting
lifting-forget vec.lifting
lifting-forget mat.lifting
lifting-forget mat.lifting
lifting-forget poly.lifting
lifting-forget poly.lifting
lemma charpoly-of-real: charpoly (map-matrix complex-of-real A) = map-poly of-real
lemma charpoly-of-real: charpoly (map-matrix complex-of-real A) = map-poly of-real
(charpoly A)
(charpoly A)
by (transfer-hma rule: of-real-hom.char-poly-hom)
by (transfer-hma rule: of-real-hom.char-poly-hom)
context includes lifting-syntax
context includes lifting-syntax
begin

```
begin
```

```
lemma HMA-M-smult \([\) transfer-rule \(]:((=)===>H M A-M===>H M A-M)\left(\cdot{ }_{m}\right)\)
\(((* k))\)
    unfolding smult-mat-def
    unfolding rel-fun-def HMA-M-def from-hma \({ }_{m}\)-def
    by (auto simp: matrix-scalar-mult-def)
end
lemma order-charpoly-smult: fixes \(A\) :: complex \({ }^{\wedge} n{ }^{\wedge} \mid n\)
    assumes \(k: k \neq 0\)
    shows order \(x(\) charpoly \((k * k A))=\operatorname{order}(x / k)(\) charpoly \(A)\)
    by (transfer fixing: \(k\), rule order-char-poly-smult \([O F-k]\) )
lemma smult-eigen-vector: fixes \(a\) :: ' \(a\) :: field
    assumes eigen-vector \(A v x\)
    shows eigen-vector \((a * k A) v(a * x)\)
proof -
    from assms[unfolded eigen-vector-def] have \(v: v \neq 0\) and \(i d: A * v v=x * s v\)
by auto
    from \(\arg -c o n g[O F i d\), of \((* s) a]\) have \(i d:(a * k A) * v v=(a * x) * s v\)
        unfolding scalar-matrix-vector-assoc by simp
        thus eigen-vector \((a * k A) v(a * x)\) using \(v\) unfolding eigen-vector-def by
auto
qed
lemma smult-eigen-value: fixes \(a\) :: ' \(a\) :: field
    assumes eigen-value \(A x\)
    shows eigen-value \((a * k A)(a * x)\)
    using assms smult-eigen-vector \([o f A-x a]\) unfolding eigen-value-def by blast
locale fixed-mat \(=\) fixes \(A::{ }^{\prime} a::\) zero \({ }^{\wedge} n{ }^{\wedge} ' n\)
begin
definition \(G::\) ' \(n\) rel where
    \(G=\{(i, j) . A \$ i \$ j \neq 0\}\)
definition irreducible :: bool where
    irreducible \(=\left(U N I V \subseteq G^{\wedge}+\right)\)
end
lemma \(G\)-transpose:
    fixed-mat. \(G(\) transpose \(A)=((\text { fixed-mat. } G A))^{\wedge}-1\)
    unfolding fixed-mat. \(G\)-def by (force simp: transpose-def)
lemma \(G\)-transpose-trancl:
    \((\text { fixed-mat. } G(\text { transpose } A))^{\wedge}+=\left((\text { fixed-mat. } G A)^{\wedge}+\right)^{\wedge}-1\)
    unfolding \(G\)-transpose trancl-converse by auto
locale \(p f\)-nonneg-mat \(=\) fixed-mat \(A\) for
    \(A\) :: ' \(a\) :: linordered-idom \({ }^{\text {^ }} n{ }^{\wedge}\) ' \(n+\)
```

assumes non-neg-mat: non-neg-mat A

begin

lemma nonneg: $A \$ i \$ j \geq 0$
using non-neg-mat unfolding non-neg-mat-def elements-mat-h-def by auto
lemma nonneg-matpow: matpow A $n \$ i \$ j \geq 0$
by (induct n arbitrary: $i j$, insert nonneg,
auto intro!: sum-nonneg simp: matrix-matrix-mult-def mat-def)
lemma G-relpow-matpow-pos: $(i, j) \in G \leadsto n \Longrightarrow$ matpow $A n \$ i \$ j>0$
proof (induct n arbitrary: $i j$)
case (0i)
thus ?case by (auto simp: mat-def)
next
case (Suc $n i j$)
from $\operatorname{Suc}(2)$ have $(i, j) \in G{ }^{\sim} n O G$ by (simp add: relpow-commute)
then obtain k where $i k: A \$ k \$ j \neq 0$ and $k j:(i, k) \in G \leadsto n$ by (auto simp: G-def)
from $i k$ nonneg $[o f k j$] have $i k$: $A \$ k \$ j>0$ by auto
from $\operatorname{Suc}(1)[O F k j]$ have $I H$: matpow $A n \$ h i \$ h k>0$.
thus ? case using ik by (auto simp: nonneg-matpow nonneg matrix-matrix-mult-def
intro!: sum-pos2 [of - k] mult-nonneg-nonneg)
qed
lemma matpow-mono: assumes $B: \bigwedge i j . B \$ i \$ j \geq A \$ i \$ j$
shows matpow $B n \$ i \$ j \geq$ matpow $A n \$ i \$ j$
proof (induct n arbitrary: $i j$)
case (Suc $n i j$)
thus ?case using B nonneg-matpow[of n] nonneg
by (auto simp: matrix-matrix-mult-def intro!: sum-mono mult-mono')
qed simp
lemma matpow-sum-one-mono: matpow $(A+$ mat 1$)(n+k) \$ i \$ j \geq$ matpow ($A+$ mat 1) $n \$ i \$ j$
proof (induct k)
case (Suc k)
have (matpow ($A+$ mat 1$)(n+k) * * A) \$ h i \$ h j \geq 0$ unfolding ma-trix-matrix-mult-def
using order.trans[OF nonneg-matpow matpow-mono[of $A+$ mat $1 n+k]]$
by (auto intro!: sum-nonneg mult-nonneg-nonneg nonneg simp: mat-def)
thus ?case using Suc by (simp add: matrix-add-ldistrib matrix-mul-rid)
qed simp
lemma G-relpow-matpow-pos-ge:
assumes $(i, j) \in G \leadsto m n \geq m$
shows matpow $(A+$ mat 1$) n \$ i \$ j>0$
proof -

```
    from assms(2) obtain k where n: n=m+k using le-Suc-ex by blast
    have 0< matpow A m $ i$j by (rule G-relpow-matpow-pos[OF assms(1)])
    also have .. S matpow (A+ mat 1) m $i$j
    by (rule matpow-mono, auto simp: mat-def)
    also have ... \leq matpow (A + mat 1) n $ i $ j unfolding n using mat-
pow-sum-one-mono .
    finally show ?thesis.
qed
end
locale perron-frobenius = pf-nonneg-mat A
    for }A\mathrm{ :: real^' }n\mp@subsup{`}{}{\wedge}n
    assumes irr: irreducible
begin
definition N where N=(SOME N.\forallij.\existsn\leqN.ij\inG^n)
lemma N:\exists n\leqN.ij\inG^~
proof -
    {
        fix }i
        have ij \in G`+ using irr[unfolded irreducible-def] by auto
        from this[unfolded trancl-power] have }\existsn.ij\inG~~n by blas
    }
    hence }\forallij.\existsn.ij\inG ^n by aut
    from choice[OF this] obtain f where f:\bigwedgeij.ij\inG^~(fij) by auto
    define N where N:N=Max (range f)
    {
        fix ij
        from f[of ij] have ij }\inG~~ fij
        moreover have f ij \leqN unfolding N
            by (rule Max-ge, auto)
        ultimately have }\existsn\leqN.ij\inG^~n by blas
    } note main = this
    let ?P=\lambdaN.\forallij.\existsn\leqN.ij\inG\leadston
    from main have ?P N by blast
    from someI[of ?P, OF this, folded N-def]
    show ?thesis by blast
qed
lemma irreducible-matpow-pos: assumes irreducible
    shows matpow (A+mat 1) N$i$j>0
proof -
    from N obtain n where n: n\leqN and reach: (i,j) \inG~~n by auto
    show ?thesis by (rule G-relpow-matpow-pos-ge[OF reach n])
qed
lemma pf-transpose: perron-frobenius (transpose A)
proof
```

```
    show fixed-mat.irreducible (transpose A)
    unfolding fixed-mat.irreducible-def G-transpose-trancl using irr[unfolded irre-
ducible-def]
    by auto
qed (insert nonneg, auto simp: transpose-def non-neg-mat-def elements-mat-h-def)
abbreviation le-vec :: real ^'n }n\mathrm{ real ^' }n=>\mathrm{ bool where
    le-vec x y \equiv(\forall i. }x$i\leqy$i
abbreviation lt-vec :: real ^' }n=>\mathrm{ real ^' }n=>\mathrm{ bool where
    lt-vec x y \equiv(\forall i. x$ i<y$i)
definition A1n = matpow (A+mat 1) N
lemmas A1n-pos = irreducible-matpow-pos[OF irr, folded A1n-def]
definition r :: real ` ' }n=>\mathrm{ real where
    rx= Min {(A*vx)$j/x$j|j.x$j\not=0}
definition }X::(real ^' n)set wher
    X={x.le-vec 0 x ^ x\not=0}
lemma nonneg-Ax: x }\inX\Longrightarrow\mathrm{ le-vec 0(A*v x)
    unfolding X-def using nonneg
    by (auto simp: matrix-vector-mult-def intro!: sum-nonneg)
lemma A-nonzero-fixed-i: \exists j. A $ i$j\not=0
proof -
    from irr[unfolded irreducible-def] have (i,i) \inG`+ by auto
    then obtain j where (i,j) \inG by (metis converse-tranclE)
    hence Aij:A $ i$j\not=0 unfolding G-def by auto
    thus ?thesis ..
qed
lemma A-nonzero-fixed-j: \exists i. A $i$j\not=0
proof -
    from irr[unfolded irreducible-def] have (j,j) \inG`+ by auto
    then obtain }i\mathrm{ where ( }i,j)\inG\mathrm{ by (cases, auto)
    hence Aij:A $i$j\not=0 unfolding G-def by auto
    thus ?thesis ..
qed
lemma Ax-pos: assumes x:lt-vec 0 x
    shows lt-vec 0( }A*vx
proof
    fix }
    from A-nonzero-fixed-i[of i] obtain j where A$i$j\not=0 by auto
    with nonneg[of i j] have A: A $ i$ j>0 by simp
    from x have }x$j\geq0\mathrm{ for j by (auto simp:order.strict-iff-order)
```

```
    note nonneg = mult-nonneg-nonneg[OF nonneg[of i] this]
    have (A*vx)$i=(\sumj\inUNIV.A$i$j*x$j)
    unfolding matrix-vector-mult-def by simp
    also have ... = A$i$j*x$j+(\sumj\inUNIV - {j}. A$i$j*x$j)
    by (subst sum.remove, auto)
    also have ...>0 + 0
    by (rule add-less-le-mono, insert A x[rule-format] nonneg,
    auto intro!: sum-nonneg mult-pos-pos)
    finally show 0 $ i< (A*vx) $ i by simp
qed
lemma nonzero-Ax: assumes }x:x\in
    shows A*v x\not=0
proof
    assume 0: A*vx=0
    from x[unfolded X-def] have x:le-vec 0x x =0 by auto
    from x(2) obtain j where xj: x $j\not=0
        by (metis vec-eq-iff zero-index)
    from A-nonzero-fixed-j[of j] obtain i where Aij: A $i$j\not=0 by auto
    from arg-cong[OF 0, of \lambda v.v $ i, unfolded matrix-vector-mult-def]
    have 0=(\sumk\inUNIV.A $hi$hk*x$hk) by auto
    also have ... = A $hi$hj*x$hj+(\sumk\inUNIV - {j}. A $hi$hk*x
$h k)
    by (subst sum.remove[of - j], auto)
    also have .. > 0 + 0
        by (rule add-less-le-mono, insert nonneg[of i] Aij x(1) xj,
    auto intro!: sum-nonneg mult-pos-pos simp: dual-order.not-eq-order-implies-strict)
    finally show False by simp
qed
lemma r-witness: assumes x: x\inX
    shows }\existsj.x$j>0\wedgerx=(A*vx)$j/x$
proof -
    from x[unfolded X-def] have x: le-vec 0 x x =0 by auto
    let ?A = {( A*v x)$ j/x$j|j. x$j\not=0}
    from x(2) obtain j where x $ j\not=0
        by (metis vec-eq-iff zero-index)
    hence empty: ?A}\not={}\mathrm{ by auto
    from Min-in[OF - this, folded r-def]
    obtain j where x $j\not=0 and rx: r x = (A*v x) $j/x$j by auto
    with x have x $j>0 by (auto simp:dual-order.not-eq-order-implies-strict)
    with rx show ?thesis by auto
qed
lemma rx-nonneg: assumes x: x 
    shows r x \geq0
proof -
```

```
    from x[unfolded X-def] have x:le-vec 0 x x =0 by auto
    let ?A={(A*vx)$j/x$j|j. x$j\not=0}
    from r-witness[OF <x 伩]
    have empty:?A }\not={}\mathrm{ by force
    show ?thesis unfolding r-def X-def
    proof (subst Min-ge-iff, force, use empty in force, intro ballI)
    fix }
    assume y\in?A
    then obtain j where y=(A*vx)$j/x$j and x$j\not=0 by auto
    from nonneg-Ax[OF}\langlex\inX\rangle] this 
    show 0}\leqy\mathrm{ by simp
    qed
qed
lemma rx-pos: assumes x:lt-vec 0 x
    shows rx>0
proof -
    from Ax-pos[OF x] have lt:lt-vec 0 (A*vx).
    from x have }\mp@subsup{x}{}{\prime}:x\inX\mathrm{ unfolding X-def order.strict-iff-order by auto
    let ?A = {(A*vx)$j/x$j|j. x$j\not=0}
    from r-witness[OF \langlex\inX\rangle]
    have empty: ?A \not={} by force
    show ?thesis unfolding r-def X-def
    proof (subst Min-gr-iff, force, use empty in force, intro ballI)
    fix }
    assume y\in?A
    then obtain j where y=(A*vx)$j/ x $j and x $j\not=0 by auto
    from lt this x show 0<y by simp
    qed
qed
lemma rx-le-Ax: assumes }x:x\in
    shows le-vec (rx*s x) (A*vx)
proof (intro allI)
    fix }
    show (rx*s x) $hi\leq(A*vx)$hi
    proof (cases x $i=0)
        case True
        with nonneg-Ax[OF x] show ?thesis by auto
    next
        case False
        with x[unfolded X-def] have pos: x $ i>0
            by (auto simp: dual-order.not-eq-order-implies-strict)
    from False have (A*v x)$hi/x$i\in{(A*vx)$j/x$j|j.x$j\not=0
} by auto
    hence }(A*vx)$hi/x$i\geqrx\mathrm{ unfolding r-def by simp
    hence }x$i*rx\leqx$i*((A*vx)$hi/x$i)\mathrm{ unfolding mult-le-cancel-left-pos[OF
pos] .
    also have \ldots= (A*vx)$hi using pos by simp
```

```
    finally show ?thesis by (simp add: ac-simps)
    qed
qed
lemma rho-le-x-Ax-imp-rho-le-rx: assumes x:x\inX
    and \varrho:le-vec (\varrho *s x) (A*v x)
shows }\varrho\leqr
proof -
    from r-witness[OF x] obtain }j\mathrm{ where
        rx: rx = (A*v x)$ j/ x $ j and xj: x$ j>0 x $ j\geq0 by auto
    from divide-right-mono[OF @[rule-format, of j] xj(2)]
    show ?thesis unfolding rx using xj by simp
qed
lemma rx-Max: assumes }x:x\in
    shows rx=Sup {\varrho.le-vec (\varrho *s x) (A*v x) } (is - = Sup ?S)
proof -
    have r x ? S using rx-le-Ax[OF x] by auto
    moreover {
        fix y
        assume y \in?S
        hence y:le-vec (y*s x) (A*vx) by auto
        from rho-le-x-Ax-imp-rho-le-rx[OF x this]
        have y \leqrx .
    }
    ultimately show ?thesis by (metis (mono-tags, lifting) cSup-eq-maximum)
qed
lemma r-smult: assumes }x:x\in
    and a:a>0
shows r(a*s x)=rx
    unfolding r-def
    by (rule arg-cong[of - - Min], unfold vector-smult-distrib, insert a, simp)
definition X1 =(X\cap{x.norm x = 1})
lemma bounded-X1: bounded X1 unfolding bounded-iff X1-def by auto
lemma closed-X1: closed X1
proof -
    have X1: X1 = {x.le-vec 0 x ^ norm x=1}
        unfolding X1-def X-def by auto
    show ?thesis unfolding X1
        by (intro closed-Collect-conj closed-Collect-all closed-Collect-le closed-Collect-eq,
            auto intro: continuous-intros)
qed
lemma compact-X1: compact X1 using bounded-X1 closed-X1
    by (simp add: compact-eq-bounded-closed)
```

```
lemma continuous-pow-A-1: continuous-on \(R\) pow- \(A\)-1
    unfolding pow-A-1-def continuous-on
    by (auto intro: tendsto-intros)
definition \(Y=\) pow- \(A-1\) ' \(X 1\)
lemma compact- \(Y\) : compact \(Y\)
    unfolding \(Y\)-def using compact-X1 continuous-pow- \(A\)-1 [of X1]
    by (metis compact-continuous-image)
lemma \(Y\)-pos-main: assumes \(y: y \in\) pow- \(A-1\) ' \(X\)
    shows \(y \$ i>0\)
proof -
    from \(y\) obtain \(x\) where \(x: x \in X\) and \(y: y=\) pow-A-1 \(x\) unfolding \(Y\)-def
X1-def by auto
    from r-witness \([O F x]\) obtain \(j\) where \(x j: x \$ j>0\) by auto
    from \(x[\) unfolded \(X\)-def] have \(x i: x \$ i \geq 0\) for \(i\) by auto
    have nonneg: \(0 \leq A 1 n \$ i \$ k * x \$ k\) for \(k\) using \(A 1 n\)-pos \([o f i k] x i[o f k]\) by
auto
    have \(y \$ i=\left(\sum j \in U N I V\right.\). A1n \(\left.\$ i \$ j * x \$ j\right)\)
        unfolding y pow-A-1-def matrix-vector-mult-def by simp
    also have \(\ldots=A 1 n \$ i \$ j * x \$ j+\left(\sum j \in U N I V-\{j\} . A 1 n \$ i \$ j * x \$ j\right)\)
        by (subst sum.remove, auto)
    also have \(\ldots>0+0\)
        by (rule add-less-le-mono, insert xj A1n-pos nonneg,
        auto intro!: sum-nonneg mult-pos-pos simp: dual-order.not-eq-order-implies-strict)
    finally show?thesis by simp
qed
lemma \(Y\)-pos: assumes \(y: y \in Y\)
    shows \(y \$ i>0\)
    using \(Y\)-pos-main \([o f y i] y\) unfolding \(Y\)-def X1-def by auto
lemma \(Y\)-nonzero: assumes \(y: y \in Y\)
    shows \(y \$ i \neq 0\)
    using \(Y\)-pos \([O F y\), of \(i]\) by auto
definition \(r^{\prime}::\) real \({ }^{\wedge} n \Rightarrow\) real where
    \(r^{\prime} x=\operatorname{Min}(\) range \((\lambda j .(A * v x) \$ j / x \$ j))\)
lemma \(r^{\prime}-r\) : assumes \(x: x \in Y\) shows \(r^{\prime} x=r x\)
    unfolding \(r^{\prime}\)-def \(r\)-def
proof (rule arg-cong[of - - Min])
    have range \((\lambda j .(A * v x) \$ j / x \$ j) \subseteq\{(A * v x) \$ j / x \$ j \mid j . x \$ j \neq 0\}\) (is
```

```
?L\subseteq?R)
    proof
        fix }
        assume y \in?L
        then obtain j where y=(A*vx)$j/ x $j by auto
        with Y-pos[OF x, of j] show }y\in?R\mathrm{ by auto
    qed
    moreover have ?L \ ?R by auto
    ultimately show ?L = ?R by blast
qed
lemma continuous-Y-r: continuous-on Y r
proof -
    have *: (\forally\inY. P y (ry)) =( }\forally\inY.Py(\mp@subsup{r}{}{\prime}y))\mathrm{ for P using r'-r by auto
    have continuous-on Yr=continuous-on Y r'
        by (rule continuous-on-cong[OF refl r'-r[symmetric]])
    also have ..
        unfolding continuous-on r'-def using Y-nonzero
        by (auto intro!: tendsto-Min tendsto-intros)
    finally show ?thesis.
qed
lemma X1-nonempty: X1 }={
proof -
    define }x\mathrm{ where }x=((\chi\mathrm{ i. if i=undefined then 1 else 0) :: real ^' }n
    {
        assume }x=
        from arg-cong[OF this, of \lambda x. x $ undefined] have False unfolding x-def by
auto
    }
    hence }x:x\not=0\mathrm{ by auto
    moreover have le-vec 0x unfolding x-def by auto
    moreover have norm x = 1 unfolding norm-vec-def L2-set-def
        by (auto, subst sum.remove[of - undefined], auto simp: x-def)
    ultimately show ?thesis unfolding X1-def X-def by auto
qed
lemma }Y\mathrm{ -nonempty: }Y\not={
    unfolding Y-def using X1-nonempty by auto
definition z where z=(SOME z. z\inY\wedge(\forally\inY.ry\leqrz))
abbreviation sr\equivrz
lemma z:z\inY and sr-max- Y: \bigwedgey.y\inY\Longrightarrowry\leqsr
proof -
    let ?P = \lambdaz. z\inY\wedge(\forally\inY.ry\leqrz)
    from continuous-attains-sup[OF compact- Y Y-nonempty continuous- Y-r]
    obtain y where ?P y by blast
```

```
    from someI[of ?P, OF this, folded z-def]
    show }z\inY\bigwedgey.y\inY\Longrightarrowry\leqrz\mathrm{ by blast +
qed
lemma Y-subset-X: Y\subseteqX
proof
    fix }
    assume y }\in
    from Y-pos[OF this] show }y\inX\mathrm{ unfolding X-def
        by (auto simp: order.strict-iff-order)
qed
lemma zX:z}\in
    using z(1) Y-subset- }X\mathrm{ by auto
lemma le-vec-mono-left: assumes B: \bigwedgeij.B$i$j\geq0
    and le-vec x y
shows le-vec (B*vx)(B*vy)
proof (intro allI)
    fix }
    show (B*v x) $ i\leq(B*vy)$ i unfolding matrix-vector-mult-def using B[of
i] assms(2)
    by (auto intro!: sum-mono mult-left-mono)
qed
```

lemma matpow-1-commute: matpow $\left(A+\right.$ mat 1) $n * * A=A{ }^{* *}$ matpow $(A+$
mat 1) n
by (induct n, auto simp: matrix-add-rdistrib matrix-add-ldistrib matrix-mul-rid
matrix-mul-lid
matrix-mul-assoc[symmetric])
lemma $A 1 n$-commute: $A 1 n * * A=A * * A 1 n$
unfolding $A 1 n$-def by (rule matpow-1-commute)
lemma le-vec-pow- A-1: assumes le: le-vec (rho *s $x)(A * v x)$
shows le-vec (rho *s pow-A-1 x) $(A * v$ pow- $A-1 x)$
proof -
have $A 1 n \$ i \$ j \geq 0$ for $i j$ using $A 1 n-p o s[o f i j]$ by auto
from le-vec-mono-left[OF this le]
have le-vec $(A 1 n * v(r h o * s x))(A 1 n * v(A * v x))$.
also have $A 1 n * v(A * v x)=(A 1 n * * A) * v x$ by (simp add: matrix-vector-mul-assoc)
also have $\ldots=A * v(A 1 n * v x)$ unfolding $A 1 n$-commute by (simp add:
matrix-vector-mul-assoc)
also have $\ldots=A * v($ pow- $A-1 x)$ unfolding pow-A-1-def ..
also have $A 1 n * v(r h o * s x)=r h o * s(A 1 n * v x)$ unfolding vector-smult-distrib
also have $\ldots=$ rho $*$ s pow- $A-1 x$ unfolding pow- $A-1$-def ..
finally show le-vec (rho *s pow- $A-1 x)(A * v$ pow- $A-1 x)$.

```
lemma r-pow-A-1: assumes }x:x\in
    shows rx\leqr(pow-A-1 x)
proof -
    let ?y = pow-A-1 x
    have ?y \in pow-A-1' }X\mathrm{ using }x\mathrm{ by auto
    from Y-pos-main[OF this]
    have y: ?y \inX unfolding X-def by (auto simp: order.strict-iff-order)
    let ?A ={\varrho. le-vec (\varrho*s x) (A*v x)}
    let ?B}={\varrho.le-vec (\varrho *s pow-A-1 x) (A*v pow-A-1 x)
    show ?thesis unfolding rx-Max[OF x] rx-Max[OF y]
    proof (rule cSup-mono)
        show bdd-above ?B using rho-le-x-Ax-imp-rho-le-rx[OF y] by fast
        show ?A }\not={}\mathrm{ using rx-le-Ax[OF x] by auto
        fix rho
        assume rho \in?A
        hence le-vec (rho*s x) (A*vx) by auto
        from le-vec-pow-A-1[OF this] have rho }\in?B\mathrm{ by auto
        thus \existsrho' }\in\mathrm{ ?B. rho }\leqrho' by aut
    qed
qed
lemma sr-max: assumes x: x \in X
    shows rx\leqsr
proof -
    let ?n = norm x
    define }\mp@subsup{x}{}{\prime}\mathrm{ where }\mp@subsup{x}{}{\prime}=\mathrm{ inverse ? n *s x
    from x[unfolded X-def] have x0:x}=0\mathrm{ by auto
    hence n: ? n>0 by auto
    have }\mp@subsup{x}{}{\prime}:\mp@subsup{x}{}{\prime}\inX1 \mp@subsup{x}{}{\prime}\inX\mathrm{ using x n unfolding X1-def X-def x'-def by (auto
simp: norm-smult)
    have id: r x = r x' unfolding }\mp@subsup{x}{}{\prime}\mathrm{ -def
        by (rule sym, rule r-smult [OF x], insert n, auto)
    define }y\mathrm{ where }y=\mathrm{ pow-A-1 x'
    from }\mp@subsup{x}{}{\prime}\mathrm{ have y:y}\inY\mathrm{ unfolding Y-def y-def by auto
    note id
    also have r x'}\leqry\mathrm{ using r-pow-A-1[OF x'(2)] unfolding y-def .
    also have ... \leqrz using sr-max-Y[OF y].
    finally show rx\leqrz.
qed
lemma z-pos: z $ i>0
    using Y-pos[OF z(1)] by auto
lemma sr-pos: sr>0
    by (rule rx-pos, insert z-pos, auto)
context fixes u
```

```
    assumes }u:u\inX\mathrm{ and ru:r u=sr
begin
lemma sr-imp-eigen-vector-main: sr *s u = A*vu
proof (rule ccontr)
    assume *: sr *s u\not=A *v u
    let ?}x=A*vu-sr*s
    from * have 0: ? 
    let ?y = pow-A-1 u
    have le-vec (sr*s u) (A*v u) using rx-le-Ax[OF u] unfolding ru .
    hence le:le-vec 0 ?x by auto
    from 0 le have x: ?x \inX unfolding X-def by auto
    have y-pos:lt-vec 0 ?y using Y-pos-main[of ?y] u by auto
    hence y: ?y }\inX\mathrm{ unfolding X-def by (auto simp: order.strict-iff-order)
    from Y-pos-main[of pow-A-1 ?x] x
    have lt-vec 0 (pow-A-1 ?x) by auto
    hence lt:lt-vec (sr*s?y) (A*v ?y) unfolding pow-A-1-def matrix-vector-right-distrib-diff
    matrix-vector-mul-assoc A1n-commute vector-smult-distrib by simp
    let ?f = (\lambdai. (A*v?y - sr*s?y)$ i / ?y $ i)
    let ?U = UNIV :: 'n set
    define eps where eps=Min(?f'?U)
    have }U\mathrm{ : finite (?f '?U) ?f' ?U }\not={}\mathrm{ by auto
    have eps: eps>0 unfolding eps-def Min-gr-iff[OF U]
    using lt sr-pos y-pos by auto
    have le:le-vec ((sr +eps)*s?y) (A*v?y)
    proof
    fix }
    have ((sr +eps)*s?y)$ i=sr*?y$i+eps* ?y $ i
        by (simp add: comm-semiring-class.distrib)
    also have ... \leqsr*?y$ i+?f i*?y$i
    proof (rule add-left-mono[OF mult-right-mono])
        show 0\leq?y $ i using y-pos[rule-format, of i] by auto
        show eps \leq ?f i unfolding eps-def by (rule Min-le, auto)
    qed
    also have \ldots. = (A*v?y)$i using sr-pos y-pos[rule-format, of i]
        by simp
    finally
    show ((sr +eps)*s ?y) $ i\leq (A*v?y)$ i.
    qed
    from rho-le-x-Ax-imp-rho-le-rx[OF y le]
    have r?y\geqsr+eps.
    with sr-max[OF y] eps show False by auto
qed
lemma sr-imp-eigen-vector: eigen-vector A u sr
    unfolding eigen-vector-def sr-imp-eigen-vector-main using u unfolding X-def
by auto
lemma sr-u-pos:lt-vec 0 u
```

```
proof -
    let ?y = pow-A-1 u
    define }n\mathrm{ where }n=
    define }c\mathrm{ where }c=(sr+1)^
    have c:c>0 using sr-pos unfolding c-def by auto
    have lt-vec 0 ?y using Y-pos-main[of ?y] u by auto
    also have ?y = A1n *v u unfolding pow-A-1-def ..
    also have ... = c*su unfolding c-def A1n-def n-def[symmetric]
    proof (induct n)
        case (Suc n)
        then show ?case
            by (simp add: matrix-vector-mul-assoc[symmetric] algebra-simps vec.scale
                    sr-imp-eigen-vector-main [symmetric])
    qed auto
    finally have lt:lt-vec 0 (c*s u).
    have 0<u$ i for i using lt[rule-format, of i] c by simp (metis zero-less-mult-pos)
    thus lt-vec 0 u by simp
qed
end
lemma eigen-vector-z-sr: eigen-vector A z sr
    using sr-imp-eigen-vector[OF zX refl] by auto
lemma eigen-value-sr: eigen-value A sr
    using eigen-vector-z-sr unfolding eigen-value-def by auto
abbreviation c\equiv complex-of-real
abbreviation cA\equiv map-matrix c A
abbreviation norm-v \equiv map-vector (norm :: complex }=>\mathrm{ real)
lemma norm-v-ge-0: le-vec 0 (norm-v v) by (auto simp: map-vector-def)
lemma norm-v-eq-0: norm-v v=0 \longleftrightarrowv=0 by (auto simp: map-vector-def
vec-eq-iff)
lemma cA-index: cA $i$j=c(A$i$j)
    unfolding map-matrix-def map-vector-def by simp
lemma norm-cA[simp]: norm (cA$ i$j)=A$ i$j
    using nonneg[of ij] by (simp add: cA-index)
context fixes \alpha v
    assumes ev: eigen-vector cA v\alpha
begin
lemma evD: \alpha*s v=cA*v vv\not=0
    using ev[unfolded eigen-vector-def] by auto
lemma ev-alpha-norm-v: norm-v (\alpha*s v)=(norm \alpha *s norm-v v)
    by (auto simp: map-vector-def norm-mult vec-eq-iff)
```

```
lemma ev-A-norm-v: norm-v (cA*vv)$j\leq(A*v norm-v v)$j
proof -
    have norm-v (cA*vv)$j=norm (\sumi\inUNIV.cA$j$i*v$ i)
        unfolding map-vector-def by (simp add: matrix-vector-mult-def)
    also have ...\leq(\sumi\inUNIV.norm (cA$j$i*v$i)) by (rule norm-sum)
    also have ... = (\sumi\inUNIV. A $j$i* norm-v v$i)
    by (rule sum.cong[OF refl], auto simp: norm-mult map-vector-def)
    also have ... = (A*v norm-v v) $ j by (simp add: matrix-vector-mult-def)
    finally show ?thesis.
qed
lemma ev-le-vec:le-vec (norm \alpha *s norm-v v) (A*v norm-v v)
    using arg-cong[OF evD(1), of norm-v, unfolded ev-alpha-norm-v] ev-A-norm-v
by auto
lemma norm-v-X: norm-v v }\in
    using norm-v-ge-0[of v] evD(2) norm-v-eq- 0[of v] unfolding X-def by auto
lemma ev-inequalities: norm \alpha \leqr(norm-v v)r(norm-vv)\leqsr
proof -
    have v: norm-v v\inX by (rule norm-v-X)
    from rho-le-x-Ax-imp-rho-le-rx[OF v ev-le-vec]
    show norm \alpha \leqr (norm-v v).
    from sr-max[OF v]
    show r (norm-v v)\leqsr.
qed
lemma eigen-vector-norm-sr: norm \alpha \leqsr using ev-inequalities by auto
end
lemma eigen-value-norm-sr: assumes eigen-value cA \alpha
    shows norm \alpha \leqsr
    using eigen-vector-norm-sr[of-\alpha] assms unfolding eigen-value-def by auto
lemma le-vec-trans:le-vec x y \Longrightarrowle-vec y u \Longrightarrowle-vec x u
    using order.trans[of x $ iy$iu$ i for i] by auto
lemma eigen-vector-z-sr-c: eigen-vector cA (map-vector c z) (c sr)
    unfolding of-real-hom.eigen-vector-hom by (rule eigen-vector-z-sr)
lemma eigen-value-sr-c: eigen-value cA (c sr)
    using eigen-vector-z-sr-c unfolding eigen-value-def by auto
definition w = perron-frobenius.z (transpose A)
lemma w: transpose A*v w=sr *s wlt-vec 0 w perron-frobenius.sr (transpose
A) =sr
```

```
proof -
    interpret t: perron-frobenius transpose A
        by (rule pf-transpose)
    from eigen-vector-z-sr-c t.eigen-vector-z-sr-c
    have ev: eigen-value cA (c sr) eigen-value t.cA (c t.sr)
        unfolding eigen-value-def by auto
    {
        fix }
        have eigen-value (t.cA) x = eigen-value (transpose cA) }
            unfolding map-matrix-def map-vector-def transpose-def
            by (auto simp: vec-eq-iff)
        also have ... = eigen-value cA x by (rule eigen-value-transpose)
        finally have eigen-value (t.cA) x= eigen-value cAx .
    } note ev-id = this
    with ev have ev: eigen-value t.cA (c sr) eigen-value cA (c t.sr) by auto
    from eigen-value-norm-sr[OF ev(2)] t.eigen-value-norm-sr[OF ev(1)]
    show id:t.sr = sr by auto
    from t.eigen-vector-z-sr[unfolded id, folded w-def] show transpose A *v w=sr
*S w
        unfolding eigen-vector-def by auto
    from t.z-pos[folded w-def] show lt-vec 0 w by auto
qed
lemma c-cmod-id: }a\in\mathbb{R}\LongrightarrowRe a\geq0\Longrightarrowc(cmod a)=a by (auto simp
Reals-def)
lemma pos-rowvector-mult-0: assumes lt: lt-vec 0 x
    and 0:(rowvector x :: real ^' }n\mp@subsup{^}{}{\wedge}'n)*vy=0(is ? x *v-=0) and le:le-vec 0
y
shows }y=
proof -
    {
        fix }
        assume y $i\not=0
        with le have yi:y $i>0 by (auto simp: order.strict-iff-order)
        have 0}=(?x*vy)$i\mathrm{ unfolding 0 by simp
        also have ... = (\sumj\inUNIV. x$j*y$j)
            unfolding rowvector-def matrix-vector-mult-def by simp
        also have .. > > 
            by (rule sum-pos2[of - i], insert yi lt le, auto intro!: mult-nonneg-nonneg
            simp: order.strict-iff-order)
        finally have False by simp
    }
    thus ?thesis by (auto simp: vec-eq-iff)
qed
lemma pos-matrix-mult-0: assumes le: \bigwedgeij. B$i$j\geq0
    and lt:lt-vec 0x
    and}0:B*vx=
```

```
shows B=0
proof -
    {
        fix ij
        assume B$i$j\not=0
        with le have gt: B $ i $ j> 0 by (auto simp: order.strict-iff-order)
        have 0= (B*vx)$ i unfolding 0 by simp
        also have ... = (\sumj\inUNIV.B$i$j*x$j)
            unfolding matrix-vector-mult-def by simp
        also have .. > > 0
            by (rule sum-pos2[of - j], insert gt lt le, auto intro!: mult-nonneg-nonneg
            simp: order.strict-iff-order)
        finally have False by simp
    }
    thus B=0 unfolding vec-eq-iff by auto
qed
lemma eigen-value-smaller-matrix: assumes B: \bigwedgeij.0\leqB$i$j^B$i$j
\leqA$i$j
    and AB:A\not=B
    and ev: eigen-value (map-matrix c B) sigma
shows cmod sigma < sr
proof -
    let ?B = map-matrix c B
    let ?sr = spectral-radius ?B
    define }\sigma\mathrm{ where }\sigma=\mathrm{ ?sr
    have real-non-neg-mat ?B unfolding real-non-neg-mat-def elements-mat-h-def
    by (auto simp: map-matrix-def map-vector-def B)
    from perron-frobenius[OF this, folded \sigma-def] obtain x where ev-sr: eigen-vector
?B x (c \sigma)
    and rnn: real-non-neg-vec x by auto
    define }y\mathrm{ where }y=norm-v
    from rnn have xy: x = map-vector c y
        unfolding real-non-neg-vec-def vec-elements-h-def y-def
    by (auto simp: map-vector-def vec-eq-iff c-cmod-id)
    from spectral-radius-max[OF ev, folded \sigma-def] have sigma-sigma: cmod sigma }
\sigma
    from ev-sr[unfolded xy of-real-hom.eigen-vector-hom]
    have ev-B: eigen-vector B y \sigma.
    from ev-B[unfolded eigen-vector-def] have ev-B': B*v y =\sigma*s y by auto
    have ypos: y $ i\geq0 for i unfolding y-def by (auto simp: map-vector-def)
    from ev-B this have y:y\inX unfolding eigen-vector-def X-def by auto
    have BA: (B*vy)$i\leq(A*vy)$ i for i
        unfolding matrix-vector-mult-def vec-lambda-beta
        by (rule sum-mono, rule mult-right-mono, insert B ypos, auto)
    hence le-vec:le-vec ( }\sigma*sy)(A*vy)\mathrm{ unfolding ev-B' by auto
    from rho-le-x-Ax-imp-rho-le-rx[OF y le-vec]
    have \sigma}\leqry\mathrm{ by auto
```

```
    also have ... \leqsr using y by (rule sr-max)
    finally have sig-le-sr: }\sigma\leqsr
    {
        assume }\sigma=s
        hence r-sr: ry=sr and sr-sig:sr=\sigma using \langle\sigma}\leqry\rangle\langlery\leqsr\rangle\mathrm{ by auto
        from sr-u-pos[OF y r-sr] have pos:lt-vec 0 y .
        from sr-imp-eigen-vector[OF y r-sr] have ev': eigen-vector A y sr.
        have (A-B)*vy=A*vy-B*v y unfolding matrix-vector-mult-def
        by (auto simp: vec-eq-iff field-simps sum-subtractf)
    also have }A*vy=sr*sy\mathrm{ using ev'[unfolded eigen-vector-def] by auto
    also have B*v y =sr*s y unfolding ev-B' sr-sig ..
    finally have id: (A-B)*v y=0 by simp
    from pos-matrix-mult- O[OF - pos id] assms(1-2) have False by auto
}
with sig-le-sr sigma-sigma show ?thesis by argo
qed
lemma charpoly-erase-mat-sr: 0 < poly (charpoly (erase-mat A i i)) sr
proof -
    let ?A = erase-mat A i i
    let ?pos = poly (charpoly ?A) sr
    {
        from A-nonzero-fixed-j[of i] obtain k where A $k$i\not=0 by auto
        assume A=?A
        hence }A$k$i=?A$k$i\mathrm{ by simp
        also have ?A $k$i=0 by (auto simp: erase-mat-def)
        also have }A$k$i\not=0\mathrm{ by fact
        finally have False by simp
}
hence AA:A\not=?A by auto
have le: 0\leq?A $ i$ j^?A$ i$ j\leqA$ i$ j for ij
    by (auto simp: erase-mat-def nonneg)
    note ev-small = eigen-value-smaller-matrix[OF le AA]
    {
    fix rho :: real
    assume eigen-value ?A rho
    hence ev: eigen-value (map-matrix c ?A) (c rho)
            unfolding eigen-value-def using of-real-hom.eigen-vector-hom[of ?A - rho]
by auto
    from ev-small[OF this] have abs rho < sr by auto
} note ev-small-real = this
have pos0:?pos }=
    using ev-small-real[of sr] by (auto simp: eigen-value-root-charpoly)
    {
    define }p\mathrm{ where }p=\mathrm{ charpoly ?A
    assume pos: ?pos < 0
    hence neg: poly p sr < 0 unfolding p-def by auto
    from degree-monic-charpoly[of ?A] have mon: monic p and deg: degree p}\not=
unfolding p-def by auto
```

```
    let ?f = poly p
    have cont: continuous-on {a..b} ?f for a b by (auto intro:continuous-intros)
    from pos have le: ?f sr \leq 0 by (auto simp: p-def)
    from mon have lc: lead-coeff p>0 by auto
    from poly-pinfty-ge[OF this deg, of 0] obtain z where lez: \x.z\leqx\Longrightarrow0
\leq?f }x\mathrm{ by auto
    define }y\mathrm{ where }y=\operatorname{max}zs
    have yr: y \geqsr and y\geqz unfolding y-def by auto
    from lez[OF this(2)] have y0: ?f y \geq0.
    from IVT'[of ?f, OF le y0 yr cont] obtain }x\mathrm{ where ge: }x\geqsr\mathrm{ and rt:?f }
= 0
            unfolding p-def by auto
    hence eigen-value ?A x unfolding p-def by (simp add: eigen-value-root-charpoly)
    from ev-small-real[OF this] ge have False by auto
    }
    with pos0 show ?thesis by argo
qed
lemma multiplicity-sr-1: order sr (charpoly A) = 1
proof -
    {
        assume poly (pderiv (charpoly A)) sr = 0
        hence 0 = poly (monom 11* pderiv (charpoly A)) sr by simp
        also have ... = sum ( }\lambda\mathrm{ i. poly (charpoly (erase-mat A i i)) sr) UNIV
            unfolding pderiv-char-poly-erase-mat poly-sum ..
        also have .. > > 
            by (rule sum-pos, (force simp: charpoly-erase-mat-sr)+)
        finally have False by simp
    }
    hence nZ: poly (pderiv (charpoly A)) sr }\not=0\mathrm{ and }n\mp@subsup{Z}{}{\prime}: pderiv (charpoly A) \not=
by auto
    from eigen-vector-z-sr have eigen-value A sr unfolding eigen-value-def ..
    from this[unfolded eigen-value-root-charpoly]
    have poly (charpoly A) sr = 0 .
    hence order sr (charpoly A)}\not=0\mathrm{ unfolding order-root using nZ' by auto
    from order-pderiv[OF nZ' this] order-OI[OF nZ]
    show ?thesis by simp
qed
lemma sr-spectral-radius: sr = spectral-radius cA
proof -
    from eigen-vector-z-sr-c have eigen-value cA (c sr)
        unfolding eigen-value-def by auto
    from spectral-radius-max[OF this]
    have sr:sr \leq spectral-radius cA by auto
    with spectral-radius-ev[of cA] eigen-vector-norm-sr
    show ?thesis by force
qed
```

lemma le-vec- A-mu: assumes $y: y \in X$ and le: le-vec $(A * v y)(m u * s y)$ shows $s r \leq m u l t$-vec $0 y$

$$
m u=s r \vee A * v y=m u * s y \Longrightarrow m u=s r \wedge A * v y=m u * s y
$$

proof -
let ? $w=$ rowvector w
let ? $w^{\prime}=$ columnvector w
have ? $w * * A=$ transpose (transpose (? $w * * A$))
unfolding transpose-transpose by simp
also have transpose $(? w * * A)=$ transpose $A * *$ transpose ? w by (rule matrix-transpose-mul)
also have transpose ? $w=$ columnvector w by (rule transpose-rowvector)
also have transpose $A * * \ldots=$ columnvector (transpose $A * v w$)
unfolding dot-rowvector-columnvector[symmetric] ..
also have transpose $A * v w=s r * s w$ unfolding w by simp
also have transpose (columnvector ...) $=$ rowvector $(s r * s w)$
unfolding transpose-def columnvector-def rowvector-def vector-scalar-mult-def
by auto
finally have 1: ? $w * * A=$ rowvector $(s r * s w)$.
have $s r * s(? w * v y)=? w * * A * v y$ unfolding 1
by (auto simp: rowvector-def vector-scalar-mult-def matrix-vector-mult-def vec-eq-iff sum-distrib-left mult.assoc)
also have $\ldots=? w * v(A * v y)$ by (simp add: matrix-vector-mul-assoc)
finally have eq1:sr*s (rowvector $w * v y)=$ rowvector $w * v(A * v y)$.
have le-vec (rowvector $w * v(A * v y))(? w * v(m u * s y))$
by (rule le-vec-mono-left $[O F-l e]$, insert $w(2)$, auto simp: rowvector-def or-der.strict-iff-order)
also have ? $w * v(m u * s y)=m u * s(? w * v y)$ by (simp add: algebra-simps vec.scale)
finally have le1: le-vec (rowvector $w * v(A * v y))(m u * s(? w * v y))$.
from le1[unfolded eq1[symmetric]]
have 2: le-vec $(s r * s(? w * v y))(m u * s(? w * v y))$.
\{
from y obtain i where $y i: y \$ i>0$ and $y: \bigwedge j . y \$ j \geq 0$ unfolding X-def
by (auto simp: order.strict-iff-order vec-eq-iff)
from $w(2)$ have $w i: w \$ i>0$ and $w: \wedge j . w \$ j \geq 0$
by (auto simp: order.strict-iff-order)
have $(? w * v y) \$ i>0$ using yi y wi w
by (auto simp: matrix-vector-mult-def rowvector-def
intro!: sum-pos2[of - i] mult-nonneg-nonneg)
moreover from 2[rule-format, of i] have $s r *(? w * v y) \$ i \leq m u *(? w * v$
y) $\$ i$ by simp
ultimately have $s r \leq m u$ by simp
\}
thus $*: s r \leq m u$.
define $c c$ where $c c=(m u+1)^{\wedge} N$
define n where $n=N$
from $* s r$-pos have $m u: m u \geq 0 m u>0$ by auto
hence $c c$: $c c>0$ unfolding $c c$-def by simp
from y have pow $-A-1 y \in$ pow- $A-1$ ' X by auto
from Y-pos-main[OF this] have $l t: 0<(A 1 n * v y) \$ i$ for i by (simp add: pow-A-1-def)
have le: le-vec $(A 1 n * v y)(c c * s y)$ unfolding $c c$-def A1n-def n-def[symmetric] proof (induct n)
case (Suc n)
let ? An $=$ matpow $(A+$ mat 1) n
let ? $m u=(m u+1)$
have id': matpow $(A+$ mat 1) (Suc $n) * v y=A * v(? A n * v y)+? A n * v y$ (is $? a=? b+? c$)
by (simp add: matrix-add-ldistrib matrix-mul-rid matrix-add-vect-distrib mat-pow-1-commute matrix-vector-mul-assoc [symmetric])
have le-vec ?b (?mu^n *s $(A * v y)$)
using le-vec-mono-left[OF nonneg Suc] by (simp add: algebra-simps vec.scale)
moreover have le-vec (?mu^n *s $(A * v y))(? m u \wedge n * s(m u * s y))$ using le mu by auto
moreover have $i d$: ? $m u \widehat{\wedge} n * s(m u * s y)=(? m u \wedge n * m u) * s y$ by simp
from le-vec-trans[OF calculation[unfolded id]]
have le1: le-vec ?b ((?mu $n * m u) * s y)$.
from Suc have le2: le-vec ?c $((m u+1) \wedge n * s y)$.
have le: le-vec ?a ((?mu^n*mu)*s y + ?mu^n *s y)
unfolding $i d^{\prime}$ using add-mono[OF le1[rule-format] le2[rule-format]] by auto
have $i d^{\prime \prime}:(? m u \wedge n * m u) * s y+? m u \wedge n * s y=? m u$ SSuc $n * s y$ by (simp add: algebra-simps)
show ?case using le unfolding $i d^{\prime \prime}$.
qed (simp add: matrix-vector-mul-lid)
have $l t$: $0<c c * y \$ i$ for i using $l t[o f i] l e[r u l e-f o r m a t$, of $i]$ by auto
have $y \$ i>0$ for i using $l t[o f i] c c$ by (rule zero-less-mult-pos)
thus lt-vec $0 y$ by auto
assume $* *: m u=s r \vee A * v y=m u * s y$
\{
assume $A * v y=m u * s y$
with y have eigen-vector A y mu unfolding X-def eigen-vector-def by auto
hence eigen-vector $c A$ (map-vector $c y$) ($c m u$) unfolding of-real-hom.eigen-vector-hom
from eigen-vector-norm-sr[OF this] $*$ have $m u=s r$ by auto
\}
with $* *$ have $m u-s r: m u=s r$ by auto
from eq1 [folded vector-smult-distrib]
have 0: ? $w * v(s r * s y-A * v y)=0$
unfolding matrix-vector-right-distrib-diff by simp
have le 0 : le-vec $0(s r * s y-A * v y)$ using assms(2)[unfolded mu-sr] by auto
have $s r * s y-A * v y=0$ using pos-rowvector-mult- $0[O F w(2) 0$ le0].
hence $e v-y$: $A * v y=s r * s y$ by auto
show $m u=s r \wedge A * v y=m u * s y$ using ev-y mu-sr by auto
qed
lemma nonnegative-eigenvector-has-ev-sr: assumes eigen-vector $A v m u$ and $l e$:
le-vec $0 v$

```
    shows mu =sr
proof -
    from assms(1)[unfolded eigen-vector-def] have v:v\not=0 and ev:A*vv=mu
*sv by auto
    from le v have v:v\inX unfolding X-def by auto
    from ev have le-vec (A*vv) (mu*sv) by auto
    from le-vec-A-mu[OF v this] ev show ?thesis by auto
qed
lemma similar-matrix-rotation: assumes ev: eigen-value cA \alpha and \alpha: cmod \alpha =
sr
    shows similar-matrix (cis (Arg \alpha) *k cA) cA
proof -
    from ev obtain y where ev: eigen-vector cA y \alpha unfolding eigen-value-def by
auto
    let ?y = norm-v y
    note maps = map-vector-def map-matrix-def
    define yp where yp=norm-v y
    let ?yp = map-vector c yp
    have yp:yp\inX unfolding yp-def by (rule norm-v-X[OF ev])
    from ev[unfolded eigen-vector-def] have ev-y:cA*v y=\alpha*s y by auto
    from ev-le-vec[OF ev, unfolded \alpha, folded yp-def]
    have 1:le-vec (sr*s yp) ( A*v yp) by simp
    from rho-le-x-Ax-imp-rho-le-rx[OF yp 1] have sr \leqr yp by auto
    with ev-inequalities[OF ev, folded yp-def]
    have 2: r yp = sr by auto
    have ev-yp:}A*v yp=sr*s y
        and pos-yp:lt-vec 0 yp
        using sr-imp-eigen-vector-main[OF yp 2] sr-u-pos[OF yp 2] by auto
    define D where D = diagvector ( }\lambdaj\mathrm{ . cis (Arg (y$j)))
    define inv-D where inv-D = diagvector ( }\lambdaj\mathrm{ . cis ( }-\operatorname{Arg}(y$j))
    have DD: inv-D ** D = mat 1 D ** inv-D = mat 1 unfolding D-def inv-D-def
    by (auto simp add: diagvector-eq-mat cis-mult)
    {
        fix }
        have (D*v ?yp)$i=cis (Arg (y$i))*c(cmod (y$i))
        unfolding D-def yp-def by (simp add: maps)
        also have ... = y $ i by (simp add: cis-mult-cmod-id)
    also note calculation
}
hence }y\mathrm{ -D-yp: y=D*v ?yp by (auto simp: vec-eq-iff)
define }\varphi\mathrm{ where }\varphi=\operatorname{Arg}
let ? }\varphi=\mathrm{ cis (- 
have [simp]: cis (- \varphi)* rcis sr }\varphi=sr\mathrm{ unfolding cis-rcis-eq rcis-mult by simp
have \alpha: \alpha= rcis sr }\varphi\mathrm{ unfolding }\varphi\mathrm{ -def }\alpha[\mathrm{ [symmetric] rcis-cmod-Arg ..
define F where F =? }\varphi*k(inv-D** cA ** D
have cA*v(D*v ?yp)=\alpha*s y unfolding y-D-yp[symmetric] ev-y by simp
also have inv-D*v \ldots=\alpha = *s ?yp
    unfolding vector-smult-distrib y-D-yp matrix-vector-mul-assoc DD matrix-vector-mul-lid
```

```
    also have ? }\varphi*s\ldots=sr*s\mathrm{ ? yp unfolding }\alpha\mathrm{ by simp
    also have ... = map-vector c (sr *s yp) unfolding vec-eq-iff by (auto simp:
maps)
    also have ... = cA*v ?yp unfolding ev-yp[symmetric] by (auto simp: maps
matrix-vector-mult-def)
    finally have F:F*v ?yp=cA*v ?yp unfolding F-def matrix-scalar-vector-ac[symmetric]
        unfolding matrix-vector-mul-assoc[symmetric] vector-smult-distrib.
    have prod: inv-D ** cA** D = (\chiij. cis (- Arg (y$ i))*cA$ i$j* cis
(Arg (y$j)))
        unfolding inv-D-def D-def diagvector-mult-right diagvector-mult-left by simp
    {
        fix ij
        have cmod (F$i$j)=\operatorname{cmod}(?\varphi*cA$hi$hj*(cis (-Arg (y$hi))*cis
(Arg (y $h j))))
            unfolding F-def prod vec-lambda-beta matrix-scalar-mult-def
            by (simp only: ac-simps)
        also have \ldots. . = A $i$j unfolding cis-mult unfolding norm-mult by simp
        also note calculation
    }
    hence FA: map-matrix norm F=A unfolding maps by auto
    let ?F = map-matrix c (map-matrix norm F)
    let ?G = ?F - F
    let ?Re = map-matrix Re
    from F[folded FA] have 0:?G*v ?yp = 0 unfolding matrix-diff-vect-distrib by
simp
    have ?Re ?G *v yp = map-vector Re(?G *v ?yp)
        unfolding maps matrix-vector-mult-def vec-lambda-beta Re-sum by auto
    also have ... = 0 unfolding 0 by (simp add: vec-eq-iff maps)
    finally have 0: ?Re ?G *v yp = 0 .
    have ?Re ?G = 0
        by (rule pos-matrix-mult-0[OF - pos-yp 0], auto simp: maps complex-Re-le-cmod)
    hence ?F =F by (auto simp: maps vec-eq-iff cmod-eq-Re)
    with FA have AF:cA=F by simp
    from arg-cong[OF this, of \lambda A. cis }\varphi*kA
    have sim: cis }\varphi*kcA=inv-D**cA** D unfolding F-def matrix.scale-scale
cis-mult
        by simp
    have similar-matrix (cis \varphi*kcA) cA unfolding similar-matrix-def similar-matrix-wit-def
        sim
    by (rule exI[of - inv-D], rule exI[of - D], auto simp: DD)
    thus ?thesis unfolding \varphi-def .
qed
lemma assumes \(e v:\) eigen-value \(c A \alpha\) and \(\alpha: \operatorname{cmod} \alpha=s r\)
    shows maximal-eigen-value-order-1: order \alpha (charpoly cA) = 1
    and maximal-eigen-value-rotation: eigen-value cA (x*\operatorname{cis}(\operatorname{Arg}\alpha))=eigen-value
cA x
    eigen-value cA (x / cis (Arg \alpha)) = eigen-value cA x
```

```
proof -
    let ?a = cis ( }\operatorname{Arg}\alpha
    let ?p = charpoly cA
    from similar-matrix-rotation[OF ev \alpha]
    have similar-matrix (?a *k cA) cA .
    from similar-matrix-charpoly[OF this]
    have id: charpoly (?a*k cA) = ?p .
    have }a:?a\not=0\mathrm{ by simp
    from order-charpoly-smult[OF this, of - cA, unfolded id]
    have order-neg: order x ?p = order (x / ?a) ?p for x .
    have order-pos: order x ?p = order (x*?a) ?p for x
        using order-neg[symmetric, of x*?a] by simp
    note order-neg[of \alpha]
    also have id: \alpha / ?a = sr unfolding \alpha[symmetric]
        by (metis a cis-mult-cmod-id nonzero-mult-div-cancel-left)
    also have sr: order ... ?p = 1 unfolding multiplicity-sr-1[symmetric] char-
poly-of-real
    by (rule map-poly-inj-idom-divide-hom.order-hom, unfold-locales)
    finally show *: order \alpha ? p=1.
    show eigen-value cA (x*?a) = eigen-value cA x using order-pos
        unfolding eigen-value-root-charpoly order-root by auto
    show eigen-value cA (x/?a) = eigen-value cA x using order-neg
        unfolding eigen-value-root-charpoly order-root by auto
qed
lemma maximal-eigen-values-group: assumes M:M ={ev :: complex. eigen-value
cA ev ^cmod ev = sr}
    and a: rcis sr \alpha\inM
    and b: rcis sr }\beta\in
shows rcis sr (\alpha+\beta)\inM rcis sr (\alpha-\beta)\inM rcis sr 0}\in
proof -
    {
        fix }
        assume *: rcis sr a\inM
        have id: cis (Arg (rcis sr a)) = cis a
            by (smt * M mem-Collect-eq nonzero-mult-div-cancel-left of-real-eq-0-iff
                rcis-cmod-Arg rcis-def sr-pos)
    from *[unfolded assms] have eigen-value cA (rcis sr a) cmod (rcis sr a) = sr
by auto
            from maximal-eigen-value-rotation[OF this, unfolded id]
            have eigen-value cA (x* cis a)= eigen-value cA x
                eigen-value cA (x/ cis a)= eigen-value cA x for x by auto
    } note * = this
    from *(1)[OF b, of rcis sr \alpha] a show rcis sr (\alpha+\beta)\inM unfolding M by
auto
    from *(2)[OF a, of rcis sr \alpha] a show rcis sr 0 \inM unfolding M by auto
    from *(2)[OF b, of rcis sr \alpha] a show rcis sr (\alpha-\beta)\inM unfolding M by
auto
qed
```

```
lemma maximal-eigen-value-roots-of-unity-rotation:
    assumes \(M: M=\{e v::\) complex. eigen-value \(c A e v \wedge c m o d e v=s r\}\)
    and \(k M: k=\operatorname{card} M\)
shows \(k \neq 0\)
    \(k \leq C A R D(' n)\)
    \(\exists f\). charpoly \(A=(\) monom \(1 k-[: s r \wedge k:]) * f\)
        \(\wedge(\forall x\). poly (map-poly cf) \(x=0 \longrightarrow \operatorname{cmod} x<s r)\)
    \(M=(*)(c\) sr \() '(\lambda i .(\) cis \((\) of-nat \(i * 2 * p i / k))) '\{0 . .<k\}\)
    \(M=(*)(c\) sr \()\) ' \(\left\{x::\right.\) complex. \(\left.x^{\wedge} k=1\right\}\)
    (*) (cis \((2 * p i / k))\) 'Spectrum \(c A=\) Spectrum \(c A\)
    unfolding \(k M\)
proof -
    let \(? M=\operatorname{card} M\)
    note fin \(=\) finite-spectrum \([\) of \(c A]\)
    note char \(=\) degree-monic-charpoly \([o f ~ c A]\)
    have \(? M \leq \operatorname{card}(\) Collect \((\) eigen-value \(c A))\)
        by (rule card-mono[OF fin], unfold \(M\), auto)
    also have Collect (eigen-value \(c A)=\{x\). poly \((\) charpoly \(c A) x=0\}\)
        unfolding eigen-value-root-charpoly by auto
    also have card \(\ldots \leq\) degree (charpoly cA)
        by (rule poly-roots-degree, insert char, auto)
    also have \(\ldots=\operatorname{CARD}\left({ }^{\prime} n\right)\) using char by simp
    finally show ? \(M \leq C A R D(' n)\).
    from finite-subset[OF - fin, of \(M\) ]
    have finM: finite \(M\) unfolding \(M\) by blast
    from finite-distinct-list[OF this]
    obtain \(m\) where \(M m\) : \(M=\) set \(m\) and dist: distinct \(m\) by auto
    from \(M m\) dist have card: ? \(M=\) length \(m\) by (auto simp: distinct-card)
    have \(s r\) : sr \(\in\) set \(m\) using eigen-value-sr-c sr-pos unfolding Mm[symmetric] \(M\)
by auto
    define \(s\) where \(s=\) sort-key Arg \(m\)
    define \(a\) where \(a=\) map Arg \(s\)
    let \(? k=\) length \(a\)
    from dist \(M m\) card \(s r\) have \(s: M=\) set \(s\) distinct \(s\) sr \(\in\) set \(s\)
        and card: ? \(M=? k\)
        and sorted: sorted a
        unfolding \(s\)-def a-def by auto
    have map-s: map \(((*)(c\) sr)) (map cis a) \(=s\) unfolding map-map o-def \(a\)-def
    proof (rule map-idI)
        fix \(x\)
        assume \(x \in\) set \(s\)
        from this[folded \(s(1)\), unfolded \(M]\)
        have \(i d\) : \(\operatorname{cmod} x=s r\) by auto
        show \(s r * \operatorname{cis}(\operatorname{Arg} x)=x\)
            by (subst (5) rcis-cmod-Arg[symmetric], unfold id[symmetric] rcis-def, simp)
    qed
    from \(s(2)[\) folded map-s, unfolded distinct-map] have a: distinct a inj-on cis (set
a) by auto
```

from $s(3)$ obtain $a a a^{\prime}$ where a-split: $a=a a \# a^{\prime}$ unfolding a-def by (cases s, auto)
from Arg-bounded have bounded: $x \in$ set $a \Longrightarrow-p i<x \wedge x \leq p i$ for x unfolding a-def by auto
from bounded [of aa, unfolded a-split] have $a a$: $-p i<a a \wedge a a \leq p i$ by auto
let ? $a a=a a+2 * p i$
define args where args $=a @[? a a]$
let ?diff $=\lambda i$.args $!$ Suc $i-\operatorname{args}!i$
have bnd: $x \in$ set $a \Longrightarrow x<$? aa for x using aa bounded $[$ of $x]$ by auto
hence $a a-a$: ? $a a \notin$ set a by fast
have sorted: sorted args unfolding args-def using sorted unfolding sorted-append
by (insert bnd, auto simp: order.strict-iff-order)
have dist: distinct args using a aa-a unfolding args-def distinct-append by auto
have sum: $\left(\sum i<? k\right.$. ?diff $\left.i\right)=2 * p i$
unfolding sum-lessThan-telescope args-def a-split by simp
have $k: ? k \neq 0$ unfolding a-split by auto
let $? A=$? diff ' $\{. .<? k\}$
let $?$ Min $=$ Min $? A$
define Min where Min =?Min
have ? Min $=(? k *$? Min $) / ? k$ using k by auto
also have ? $k *$? Min $=\left(\sum i<? k\right.$. ?Min $)$ by auto
also have $\ldots /$? $k \leq\left(\sum i<\right.$? k. ?diff $\left.i\right) /$? k
by (rule divide-right-mono[OF sum-mono[OF Min-le]], auto)
also have $\ldots=2 * p i / ? k$ unfolding sum ..
finally have Min: Min $\leq 2 * p i / ? k$ unfolding Min-def by auto
have $l t: i<? k \Longrightarrow$ args $!i<\operatorname{args}!($ Suc $i)$ for i
using sorted[unfolded sorted-iff-nth-mono, rule-format, of i Suc i]
dist $[$ unfolded distinct-conv-nth, rule-format, of Suc $i i]$ by (auto simp: args-def)
let $? c=\lambda i$. rcis sr (args $!i)$
have $h d a[$ simp $]: h d a=a a$ unfolding a-split by simp
have Min0: Min > 0 using lt unfolding Min-def by (subst Min-gr-iff, insert k, auto)
have Min-A: Min $\in ?$ A unfolding Min-def by (rule Min-in, insert k, auto)
\{
fix i :: nat
assume $i: i<$ length args
hence ?c $i=r c i s ~ s r ~((a @[h d a])!i)$
by (cases $i=? k$, auto simp: args-def nth-append rcis-def)
also have $\ldots \in \operatorname{set}(\operatorname{map}(r c i s ~ s r)(a @[h d a]))$ using i
unfolding args-def set-map unfolding set-conv-nth by auto
also have $\ldots=$ rcis sr'set a unfolding a-split by auto
also have $\ldots=M$ unfolding $s(1)$ map-s[symmetric $]$ set-map image-image by (rule image-cong[OF refl], auto simp: rcis-def)
finally have ?c $i \in M$ by auto
\} note $c i M=$ this
\{
fix $i::$ nat
assume $i: i<? k$
hence $i<$ length args Suc $i<$ length args unfolding args-def by auto
from maximal-eigen-values-group[OF M ciM[OF this(2)] ciM[OF this(1)]] have rcis sr (?diff $i) \in M$ by simp \}
hence Min-M: rcis sr Min $\in M$ using Min-A by force
have rcisM: rcis sr (of-nat $n * M i n) \in M$ for n
proof (induct n)
case 0
show ?case using sr Mm by auto
next
case (Suc n)
have $*$: rcis sr (of-nat (Suc n) $*$ Min) $=$ rcis sr (of-nat $n * M i n) *$ cis Min by (simp add: rcis-mult ring-distribs add.commute)
from maximal-eigen-values-group(1)[OF M Suc Min-M]
show ?case unfolding * by simp
qed
let ?list $=\operatorname{map}($ rcis sr $)(\operatorname{map}(\lambda i$. of-nat $i * \operatorname{Min})[0 . .<? k])$
define list where list $=$? list
have len: length ?list $=? M$ unfolding card by simp
from $s r$-pos have $s r 0: s r \neq 0$ by auto
\{
fix i
assume $i: i<? k$
hence $*$: $0 \leq$ real $i *$ Min using Min0 by auto
from i have real $i<$ real ? k by auto
from mult-strict-right-mono[OF this Min0]
have real $i *$ Min $<$ real ? $k *$ Min by simp
also have $\ldots \leq$ real ? $k *(2 *$ pi / real ? $k)$
by (rule mult-left-mono[OF Min], auto)
also have $\ldots=2 * p i$ using k by simp
finally have real $i * \operatorname{Min}<2 * p i$.
note $*$ this
$\}$ note prod-pi $=$ this
have dist: distinct ?list
unfolding distinct-map[of rcis sr]
proof (rule conjI[OF - inj-on-subset[OF rcis-inj-on[OF sr0]]])
show distinct (map (λ i. of-nat $i * \operatorname{Min}$) $[0 . .<? k]$) using Min0
by (auto simp: distinct-map inj-on-def)
show set $($ map $(\lambda i$. real $i * \operatorname{Min})[0 . .<? k]) \subseteq\{0 . .<2 * p i\}$ using prod-pi by auto
qed
with len have card $^{\prime}:$ card (set ?list) $=$? M using distinct-card by fastforce
have listM: set ?list $\subseteq M$ using rcis M by auto
from card-subset-eq[OF finM listM card']
have M-list: $M=$ set ?list ..
let ? $p i M=2 * p i / ? M$
\{
assume $\operatorname{Min} \neq ? p i M$
with Min have $l t: \operatorname{Min}<2 * p i / ? k$ unfolding card by simp
from k have $0<$ real ? k by auto
from mult-strict-left-mono[OF lt this] k Min0
have $k: 0 \leq ? k * \operatorname{Min} ? k * \operatorname{Min}<2 * p i$ by auto
from rcisM[of ?k, unfolded M-list] have rcis sr $(? k *$ Min $) \in$ set ?list by auto
then obtain i where $i: i<? k$ and $i d:$ rcis sr $(? k *$ Min $)=\operatorname{rcis} s r(i * \operatorname{Min})$ by auto
from inj-onD[OF inj-on-subset[OF rcis-inj-on[OF sr0], of $\{? k *$ Min, $i * \operatorname{Min}\}]$ id]
prod-pi[OF $i] k$
have $? k *$ Min $=i *$ Min by auto
with Min0 i have False by auto
\}
hence Min: Min $=$? piM by auto
show $c M: ? M \neq 0$ unfolding card using k by auto
let ?f $=(\lambda i$. cis (of-nat $i * 2 * p i / ? M))$
note M-list
also have set ?list $=(*)(c$ sr $)$ ' $(\lambda i$. cis $(o f-n a t i * M i n))$ ' $\{0 \quad . .<? k\}$
unfolding set-map image-image
by (rule image-cong, insert sr-pos, auto simp: rcis-mult rcis-def)
finally show M-cis: $M=(*)(c s r)$ '?f' $\{0$.. $<$? $M\}$
unfolding card Min by (simp add: mult.assoc)
thus M-pow: $M=(*)(c$ sr $) ‘\left\{x::\right.$ complex. $\left.x^{\wedge} ? M=1\right\}$ using roots-of-unity[OF $c M]$ by simp
let ?rphi $=$ rcis sr $(2 * p i / ? M)$
let ?phi $=$ cis $(2 * p i / ? M)$
from Min-M[unfolded Min]
have ev: eigen-value $c A$? $r p h i$ unfolding M by auto
have $c m$: cmod ? rphi $=s r$ using $s r$-pos by simp
have id: cis (Arg ? rphi) = cis (Arg?phi) * cmod ?phi
unfolding arg-rcis-cis[OF sr-pos] by simp
also have $\ldots=$? phi unfolding cis-mult-cmod-id ..
finally have id: cis $($ Arg ? rphi $)=$? phi .
define $p h i$ where $p h i=$? $p h i$
have $p h i$: phi $\neq 0$ unfolding phi-def by auto
note max = maximal-eigen-value-rotation[OF ev cm, unfolded id phi-def[symmetric]]
have $((*) p h i)$ 'Spectrum $c A=$ Spectrum $c A($ is $? L=? R)$
proof -
\{
fix x
have $*: x \in ? L \Longrightarrow x \in ? R$ for x using $\max (2)[o f x]$ phi unfolding
Spectrum-def by auto

moreover

\{
assume $x \in ? R$
hence eigen-value $c A x$ unfolding Spectrum-def by auto
from this[folded max(2)[of x]] have $x / p h i \in ? R$ unfolding Spectrum-def by auto
from imageI[OF this, of (*) phi]
have $x \in$? L using phi by auto
\}

```
    note this *
    }
    thus ?thesis by blast
qed
from this[unfolded phi-def]
show (*)(cis (2 * pi / real (card M)))'Spectrum cA = Spectrum cA .
let ?p = monom 1 k - [:sr^k:]
let ?cp= monom 1 k-[:(c sr)^k:]
let ?one = 1 :: complex
let ?list = map (rcis sr) (map (\lambda i. of-nat i * ?piM) [0 ..< card M])
interpret c: field-hom c ..
interpret p: map-poly-inj-idom-divide-hom c ..
have cp: ?cp = map-poly c ?p by (simp add: hom-distribs)
have M-list: M = set ?list using M-list[unfolded Min card[symmetric]] .
have dist: distinct ?list using dist[unfolded Min card[symmetric]] .
have k0:k\not=0 using k[folded card] assms by auto
have ?cp = (monom 1 k+(- [:(c sr)^k:])) by simp
also have degree ... = k
    by (subst degree-add-eq-left, insert k0, auto simp: degree-monom-eq)
finally have deg: degree?cp =k.
from deg k0 have cp0:?cp}\not=0\mathrm{ by auto
have {x. poly ?cp x = 0} ={x. x`k=(c sr)`k} unfolding poly-diff poly-monom
    by simp
also have ...\subseteqM
proof -
    {
        fix }
        assume id: x^k=(csr)^k
        from sr-pos k0 have (c sr)^ k}\not=0\mathrm{ by auto
        with arg-cong[OF id, of \lambdax.x / (c sr )^k]
        have (x/c sr)^k=1
            unfolding power-divide by auto
        hence c sr* (x / c sr) \inM
            by (subst M-pow, unfold kM[symmetric], blast)
        also have csr*(x/c sr) =x using sr-pos by auto
        finally have }x\inM\mathrm{ .
    }
    thus ?thesis by auto
qed
finally have cp-M: {x. poly ?cp x = 0}\subseteqM .
have k= card (set ?list) unfolding distinct-card[OF dist] by (simp add: kM)
also have ... \leq card {x. poly ?cp x = 0}
proof (rule card-mono[OF poly-roots-finite[OF cp0]])
    {
        fix }
    assume x\in set ?list
    then obtain i where x:x=rcis sr (real i* ?piM) by auto
```


by simp (metis mult.assoc of-real-power rcis-times-2pi)
hence poly ? cp $x=0$ unfolding poly-diff poly-monom by simp
\}
thus set ?list $\subseteq\{x$. poly ?cp $x=0\}$ by auto
qed
finally have k-card: $k \leq$ card $\{x$. poly ? $c p x=0\}$.
from k-card $c p-M$ fin M have M-id: $M=\{x$. poly ?cp $x=0\}$
unfolding $k M$ by (metis card-seteq)
have dvdc: ?cp dvd charpoly $c A$
proof (rule poly-roots-dvd[OF cp0 deg k-card $]$)
from $c p-M$
show $\{x$. poly ? $c p x=0\} \subseteq\{x$. poly $($ charpoly $c A) x=0\}$
unfolding M eigen-value-root-charpoly by auto
qed
from this[unfolded charpoly-of-real cp p.hom-dvd-iff]
have $d v d$: ?p dvd charpoly A.
from this[unfolded dvd-def] obtain f where
decomp: charpoly $A=? p * f$ by blast
let $? f=$ map-poly $c f$
have decompc: charpoly $c A=$?cp * ?f unfolding charpoly-of-real decomp p.hom-mult $c p$..
show $\exists f$. charpoly $A=\left(\right.$ monom $\left.1 ? M-\left[: s r^{\wedge} ? M:\right]\right) * f \wedge(\forall$ x. poly (map-poly
$c f) x=0 \longrightarrow \operatorname{cmod} x<s r)$
unfolding $k M$ [symmetric]
proof (intro exI conjI allI impI, rule decomp)
fix x
assume f : poly ?f $x=0$
hence ev: eigen-value $c A x$
unfolding decompc p.hom-mult eigen-value-root-charpoly by auto
hence le: cmod $x \leq s r$ using eigen-value-norm-sr by auto \{
assume max: cmod $x=s r$
hence $x \in M$ unfolding M using $e v$ by auto
hence poly ? $c p x=0$ unfolding M-id by auto
hence dvd1: [: $-x, 1:]$ dvd ? $c p$ unfolding poly-eq- $0-i f f-d v d$ by auto
from f [unfolded poly-eq-0-iff-dvd]
have dvd2: [: $-x, 1$:] dvd ?f by auto
from char have 0 : charpoly $c A \neq 0$ by auto
from mult-dvd-mono[OF dvd1 dvd2] have $[:-x, 1:] \wedge 2 d v d(c h a r p o l y ~ c A)$
unfolding decompc power2-eq-square.
from order-max[OF this 0] maximal-eigen-value-order-1[OF ev max]
have False by auto
\}
with le show cmod $x<s r$ by argo
qed
qed
lemmas $p f$-main $=$
eigen-value-sr eigen-vector-z-sr

```
eigen-value-norm-sr
z-pos
multiplicity-sr-1
nonnegative-eigenvector-has-ev-sr
maximal-eigen-value-order-1
maximal-eigen-value-roots-of-unity-rotation
```

```
lemmas pf-main-connect = pf-main(1,3,5,7,8-10)[unfolded sr-spectral-radius]
    sr-pos[unfolded sr-spectral-radius]
end
end
```


5.2 Handling Non-Irreducible Matrices as Well

theory Perron-Frobenius-General
imports Perron-Frobenius-Irreducible
begin

We will need to take sub-matrices and permutations of matrices where the former can best be done via JNF-matrices. So, we first need the PerronFrobenius theorem in the JNF-world. So, we first define irreducibility of a JNF-matrix.

definition graph-of-mat where

```
graph-of-mat A = (let n= dim-row }A;U={..<n} in
    {ij.A$$ ij\not=0}\capU\timesU)
```

definition irreducible-mat where
irreducible-mat $A=$ (let $n=$ dim-row A in $\left.\left(\forall i j . i<n \longrightarrow j<n \longrightarrow(i, j) \in(\text { graph-of-mat } A)^{\wedge}+\right)\right)$
definition nonneg-irreducible-mat $A=($ nonneg-mat $A \wedge$ irreducible-mat $A)$
Next, we have to install transfer rules

context

includes lifting-syntax
begin
lemma HMA-irreducible[transfer-rule]: ((HMA-M::- $\boldsymbol{-}^{-}$- $n{ }^{-}$' $\left.n \Rightarrow-\right)===>$ (=))
irreducible-mat fixed-mat.irreducible
proof (intro rel-funI, goal-cases)
case (1 a A)
interpret fixed-mat A.
let ?t $=$ Bij-Nat.to-nat $:: ~ ' n \Rightarrow$ nat
let ?f $=$ Bij-Nat.from-nat $::$ nat \Rightarrow 'n
from 1 [unfolded HMA-M-def]
have a : $a=$ from- $h m a_{m} A$ (is $-=? A$) by auto
let $? n=C A R D\left({ }^{\prime} n\right)$
have dim: dim-row $a=$? n unfolding a by simp
have $i d:\{. .<? n\}=\{0 . .<? n\}$ by auto
have $A i j$: $A \$ i \$ j=$? $A \$ \$($? $t i$, ?t j) for $i j$
by (metis (no-types, lifting) to-hma m_{m}-def to-hma-from-hma ${ }_{m}$ vec-lambda-beta)
have graph: graph-of-mat $a=$
$\{(? t i, ? t j) \mid i j . A \$ i \$ j \neq 0\}$ (is ? $G=-$) unfolding graph-of-mat-def dim Let-def id range-to-nat[symmetric]
unfolding a Aij by auto
have irreducible-mat $a=\left(\forall i j . i \in\right.$ range ? $t \longrightarrow j \in$ range ? $t \longrightarrow(i, j) \in$? $\left.G^{\wedge}+\right)$
unfolding irreducible-mat-def dim Let-def range-to-nat by auto
also have $\ldots=(\forall i j$. (?t i, ?t $j) \in$? $\left.G^{\wedge}+\right)$ by auto
also note part1 $=$ calculation
have G : ? $G=$ map-prod ?t ?t ' G unfolding graph G-def by auto
have part2: $($?t i, ?t $j) \in$? $G^{\wedge}+\longleftrightarrow(i, j) \in G^{\wedge}+$ for $i j$
unfolding G by (rule inj-trancl-image, simp add: inj-on-def)
show ?case unfolding part1 part2 irreducible-def by auto
qed
lemma HMA-nonneg-irreducible-mat[transfer-rule]: (HMA-M ===> (=)) non-neg-irreducible-mat perron-frobenius
unfolding perron-frobenius-def pf-nonneg-mat-def perron-frobenius-axioms-def nonneg-irreducible-mat-def
by transfer-prover
end
The main statements of Perron-Frobenius can now be transferred to JNF-matrices
lemma perron-frobenius-irreducible: fixes A :: real Matrix.mat and $c A$:: complex Matrix.mat
assumes $A: A \in$ carrier-mat $n n$ and $n: n \neq 0$ and nonneg: nonneg-mat A
and irr: irreducible-mat A
and $c A: c A=$ map-mat of-real A
and $s r: s r=$ Spectral-Radius.spectral-radius $c A$
shows
eigenvalue A sr
order sr $($ char-poly $A)=1$
$0<s r$
eigenvalue $c A \alpha \Longrightarrow$ cmod $\alpha \leq s r$
eigenvalue $c A \alpha \Longrightarrow$ cmod $\alpha=s r \Longrightarrow$ order $\alpha($ char-poly $c A)=1$
$\exists k f . k \neq 0 \wedge k \leq n \wedge$ char-poly $A=($ monom $1 k-[: s r \wedge k:]) * f \wedge$ ($\forall x$. poly (map-poly complex-of-real f) $x=0 \longrightarrow \operatorname{cmod} x<s r$)
proof (atomize (full), goal-cases)
case 1
from nonneg irr have irr: nonneg-irreducible-mat A unfolding nonneg-irreducible-mat-def
by auto
note main $=$ perron-frobenius.pf-main-connect[untransferred, cancel-card-constraint,
OF A irr,
folded sr $c A$]

from $\operatorname{main}(5,6,7)[$ OF refl refl $n]$

have $\exists k f . k \neq 0 \wedge k \leq n \wedge$ char-poly $A=($ monom $1 k-[: s r \wedge k:]) * f \wedge$
($\forall x$. poly (map-poly complex-of-real f) $x=0 \longrightarrow$ cmod $x<s r$) by blast with $\operatorname{main}(1,3,8)[O F n] \operatorname{main}(2)[O F-n] \operatorname{main}(4)[O F-n]$ show ?case by auto
qed
We now need permutations on matrices to show that a matrix if a matrix is not irreducible, then it can be turned into a four-block-matrix by a permutation, where the lower left block is 0 .
definition permutation-mat $::$ nat $\Rightarrow(n a t \Rightarrow n a t) \Rightarrow{ }^{\prime} a$:: semiring-1 mat where permutation-mat $n p=$ Matrix.mat $n n(\lambda(i, j) .($ if $i=p j$ then 1 else 0$))$
no-notation m-inv (inv1 - [81] 80)
lemma permutation-mat-dim[simp]: permutation-mat $n p \in$ carrier-mat $n n$ dim-row (permutation-mat $n p)=n$
dim-col $($ permutation-mat n p) $=n$
unfolding permutation-mat-def by auto
lemma permutation-mat-row $[$ simp $]$: p permutes $\{. .<n\} \Longrightarrow i<n \Longrightarrow$ Matrix.row (permutation-mat n p) $i=$ unit-vec $n($ inv $p i)$
unfolding permutation-mat-def unit-vec-def by (intro eq-vecI, auto simp: per-mutes-inverses)
lemma permutation-mat-col[simp]: p permutes $\{. .<n\} \Longrightarrow i<n \Longrightarrow$
Matrix.col (permutation-mat n p) $i=$ unit-vec $n\left(\begin{array}{l}p\end{array}\right)$
unfolding permutation-mat-def unit-vec-def by (intro eq-vecI, auto simp: per-
mutes-inverses)
lemma permutation-mat-left: assumes $A: A \in$ carrier-mat $n n c$ and $p: p$ permutes $\{. .<n\}$
shows permutation-mat $n p * A=$ Matrix.mat $n n c(\lambda(i, j)$. $A \$ \$($ inv $p i, j))$
proof -
\{
fix $i j$
assume $i j: i<n j<n c$
from $p i j(1)$ have i : inv $p i<n$ by (simp add: permutes-def)
have (permutation-mat $n p * A) \$(i, j)=$ scalar-prod (unit-vec $n($ inv $p i))$ ($\operatorname{col} A j$) by (subst index-mult-mat, insert ij A p, auto)
also have $\ldots=A \$ \$($ inv $p i, j)$
by (subst scalar-prod-left-unit, insert A ij i, auto)
also note calculation
\}
thus ?thesis using A
by (intro eq-matI, auto)
qed
lemma permutation-mat-right: assumes $A: A \in$ carrier-mat $n r n$ and $p: p$ permutes $\{. .<n\}$
shows $A *$ permutation-mat $n p=$ Matrix.mat $n r n(\lambda(i, j) . A \$ \$(i, p j))$
proof -
\{
fix $i j$
assume $i j: i<n r j<n$
from $p i j$ (2) have $j: p j<n$ by (simp add: permutes-def)
have $(A *$ permutation-mat $n p) \$ \$(i, j)=$ scalar-prod (Matrix.row A) (unit-vec
$n(p j))$
by (subst index-mult-mat, insert ij A p, auto)
also have $\ldots=A \$ \$(i, p j)$
by (subst scalar-prod-right-unit, insert A ij j, auto)
also note calculation
\}
thus ?thesis using A
by (intro eq-matI, auto)
qed
lemma permutes-lt: p permutes $\{. .<n\} \Longrightarrow i<n \Longrightarrow p i<n$
by (meson lessThan-iff permutes-in-image)
lemma permutes-iff: p permutes $\{. .<n\} \Longrightarrow i<n \Longrightarrow j<n \Longrightarrow p i=p j \longleftrightarrow$
$i=j$
by (metis permutes-inverses(2))
lemma permutation-mat-id-1: assumes $p: p$ permutes $\{. .<n\}$
shows permutation-mat $n p *$ permutation-mat $n($ inv $p)=1_{m} n$
by (subst permutation-mat-left $[O F-p$, of - $n]$, force, unfold permutation-mat-def, rule eq-matI,
auto simp: permutes-lt[OF permutes-inv[OF p]] permutes-iff[OF permutes-inv[OF p]])
lemma permutation-mat-id-2: assumes $p: p$ permutes $\{. .<n\}$
shows permutation-mat n (inv p) * permutation-mat $n p=1_{m} n$
by (subst permutation-mat-right $[O F-p$, of $-n]$, force, unfold permutation-mat-def, rule eq-matI,
insert p, auto simp: permutes-lt $[$ OF $p]$ permutes-inverses)
lemma permutation-mat-both: assumes $A: A \in \operatorname{carrier-mat} n n$ and $p: p$ permutes $\{. .<n\}$
shows permutation-mat $n p *$ Matrix.mat $n n(\lambda(i, j) . A \$ \$(p i, p j)) *$ permu-tation-mat $n($ inv $p)=A$
unfolding permutation-mat-left[OF mat-carrier $p]$
by (subst permutation-mat-right $[O F-$ permutes-inv $[O F ~ p]$, of - $n]$, force, insert A p,
auto intro!: eq-matI simp: permutes-inverses permutes-lt[OF permutes-inv[OF p]])
lemma permutation-similar-mat: assumes $A: A \in$ carrier-mat $n n$ and $p: p$ permutes $\{. .<n\}$
shows similar-mat $A($ Matrix.mat $n n(\lambda(i, j) . A \$ \$(p i, p j)))$
by (rule similar-matI[OF - permutation-mat-id-1 [OF p] permutation-mat-id-2[OF p]
permutation-mat-both[symmetric, OF A p]], insert A, auto)
lemma det-four-block-mat-lower-left-zero: fixes $A 1$:: 'a :: idom mat
assumes A1: A1 \in carrier-mat $n n$
and A2: A2 \in carrier-mat $n m$ and A30: A3 $=0_{m} m n$
and $A 4: A_{4} \in$ carrier-mat $m m$
shows Determinant.det (four-block-mat A1 A2 A3 A4) $=$ Determinant.det A1 *
Determinant.det A_{4}
proof -
let ?det $=$ Determinant.det
let ? $t=$ transpose-mat
let ? A = four-block-mat A1 A2 A3 A4
let $? k=n+m$
have A3: A3 \in carrier-mat $m n$ unfolding A30 by auto
have $A: ? A \in$ carrier-mat ? k ? k
by (rule four-block-carrier-mat[OF A1 A4])
have ?det ? A = ? det (?t ?A)
by (rule sym, rule Determinant.det-transpose $[O F A]$)
also have ?t ?A $=$ four-block-mat (?t A1) $($?t A3) $($?t A2) $($?t A4)
by (rule transpose-four-block-mat[OF A1 A2 A3 A4])
also have ? det $\ldots=$? $\operatorname{det}(? t$ A1) $*$? det (?t A4)
by (rule det-four-block-mat-upper-right-zero $[o f-n-m]$, insert A1 A2 A30 A4, auto)
also have ? det $(? t$ A1) $=$? det $A 1$
by (rule Determinant.det-transpose[OF A1])
also have ? det (?t $\left.A_{4}\right)=$? det A_{4}
by (rule Determinant.det-transpose[OF A4])
finally show ?thesis.

qed

lemma char-poly-matrix-four-block-mat: assumes
A1: A1 \in carrier-mat $n n$
and A2: A2 \in carrier-mat $n m$
and A3:A3 \in carrier-mat $m n$
and $A 4: A 4 \in$ carrier-mat $m m$
shows char-poly-matrix (four-block-mat A1 A2 A3 A4) =
four-block-mat (char-poly-matrix A1) (map-mat (λ x. [:-x:]) A2)
(map-mat ($\lambda x .[:-x:])$ A3) (char-poly-matrix A4)
proof -
from $A_{1} A_{4}$
have $\operatorname{dim}[\operatorname{simp}]$: dim-row $A 1=n \operatorname{dim}-\operatorname{col} A 1=n$
dim-row $A_{4}=m$ dim-col $A_{4}=m$ by auto
show ?thesis
unfolding char-poly-matrix-def four-block-mat-def Let-def dim

```
    by (rule eq-matI, insert A2 A3, auto)
qed
lemma char-poly-four-block-mat-lower-left-zero: fixes A :: 'a :: idom mat
    assumes A:A = four-block-mat B C (0m m n) D
    and B:B\in carrier-mat n n
    and C:C\incarrier-mat n m
    and D:D\incarrier-mat m m
shows char-poly A = char-poly B* char-poly D
    unfolding A char-poly-def
    by (subst char-poly-matrix-four-block-mat[OF B C - D], force,
        rule det-four-block-mat-lower-left-zero[of - n-m], insert B C D, auto)
lemma elements-mat-permutes: assumes p:p permutes {..< n}
    and A:A\incarrier-mat n n
    and B: B = Matrix.mat n n (\lambda (i,j). A $$ (pi,p j))
shows elements-mat }A=\mathrm{ elements-mat }
proof -
    from A B have [simp]: dim-row }A=n\mathrm{ dim-col }A=n\mathrm{ dim-row }B=n\mathrm{ dim-col
B=n by auto
    {
        fix ij
        assume ij:i<nj<n
        let ? p = inv p
        from permutes-lt[OF p] ij have *: pi<n pj<n by auto
        from permutes-lt[OF permutes-inv[OF p]] ij have **: ?p i<n ?p j<n by
auto
    have \exists i' j'.B$$(i,j)=A$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\wedge\mp@subsup{i}{}{\prime}<n\wedge\mp@subsup{j}{}{\prime}<n
                \exists \mp@subsup{i}{}{\prime}\mp@subsup{j}{}{\prime}.A$$(i,j)=B$$(\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime})\wedge\mp@subsup{i}{}{\prime}<n\wedge\mp@subsup{j}{}{\prime}<n
            by (rule exI[of-pi], rule exI[of - pj], insert ij *, simp add: B,
        rule exI[of - ?p i], rule exI[of - ?p j], insert ** p, simp add: B permutes-inverses)
    }
    thus ?thesis unfolding elements-mat by auto
qed
lemma elements-mat-four-block-mat-supseteq:
    assumes A1:A1 \in carrier-mat n n
    and A2: A2 \in carrier-mat n m
    and A3:A3 \in carrier-mat m n
    and A4:A4 \in carrier-mat m m
shows elements-mat (four-block-mat A1 A2 A3 A4) \supseteq
    (elements-mat A1 \cup elements-mat A2 \cup elements-mat A3 \cup elements-mat A4)
proof
    let ?A = four-block-mat A1 A2 A3 A4
    have A: ?A E carrier-mat (n+m) (n+m) using A1 A2 A3 A4 by simp
    from A1 A4
    have dim[simp]: dim-row A1 = n dim-col A1 = n
        dim-row A4 =m dim-col A4 =m by auto
    fix }
```

```
    assume x: x \in elements-mat A1 \cup elements-mat A2 \cup elements-mat A3 \cup
elements-mat A4
    {
        assume }x\in\mathrm{ elements-mat A1
        from this[unfolded elements-mat] A1 obtain ij where x: x=A1 $$ (i,j) and
            ij: i<nj< n by auto
    have }x=?A$$(i,j) using ij unfolding x four-block-mat-def Let-def by simp
    from elements-matI[OF A - this] ij have x\in elements-mat ?A by auto
    }
    moreover
    {
    assume x elements-mat A2
    from this[unfolded elements-mat] A2 obtain ij where x: x=A2 $$ (i,j) and
        ij:i<nj<m by auto
    have }x=\mathrm{ ?A $$ (i,j + n) using ij unfolding x four-block-mat-def Let-def by
simp
    from elements-matI[OF A - this] ij have }x\in\mathrm{ elements-mat ?A by auto
    }
    moreover
    {
    assume x elements-mat A3
    from this[unfolded elements-mat] A3 obtain ij where x: x=A3 $$ (i,j) and
        ij:i<mj<n by auto
    have }x=?A$$(i+n,j)\mathrm{ using ij unfolding x four-block-mat-def Let-def by
simp
    from elements-matI[OF A - this] ij have x elements-mat ?A by auto
    }
    moreover
    {
    assume x elements-mat A4
    from this[unfolded elements-mat] A4 obtain ij where x: x=A4$$(i,j) and
        ij:i<mj<m by auto
    have x=?A $$(i+n,j+n) using ij unfolding x four-block-mat-def Let-def
by simp
    from elements-matI[OF A - this] ij have x elements-mat ?A by auto
    }
    ultimately show }x\in\mathrm{ elements-mat ?A using }x\mathrm{ by blast
qed
lemma non-irreducible-mat-split:
    fixes }A:: 'a :: idom ma
    assumes A:A\incarrier-mat n n
    and not: ᄀ irreducible-mat A
    and n:n>1
```

shows \exists n1 n2 B B1 B2 B4. similar-mat $A B \wedge$ elements-mat $A=$ elements-mat $B \wedge$
$B=$ four-block-mat B1 B2 (0_{m} n2 n1) B4 \wedge
B1 \in carrier-mat n1 n1 \wedge B2 \in carrier-mat n1 n2 \wedge B4 \in carrier-mat n2 n2 ^
$0<n 1 \wedge n 1<n \wedge 0<n 2 \wedge n 2<n \wedge n 1+n 2=n$
proof -
from A have $[$ simp $]$: dim-row $A=n$ by auto
let ? $G=$ graph-of-mat A
let ? reachp $=\lambda i j .(i, j) \in$? $G^{\wedge}+$
let ? reach $=\lambda i j .(i, j) \in$? $G^{\wedge} *$
have $\exists i j . i<n \wedge j<n \wedge \neg$? reach $i j$
proof (rule ccontr)
assume \neg ?thesis
hence reach: $\bigwedge i j . i<n \Longrightarrow j<n \Longrightarrow$?reach $i j$ by auto
from not[unfolded irreducible-mat-def Let-def]
obtain $i j$ where $i: i<n$ and $j: j<n$ and nreach: \neg ? reachp $i j$ by auto
from reach[OF $i j]$ nreach have $i j: i=j$ by (simp add: rtrancl-eq-or-trancl)
from $n j$ obtain k where $k: k<n$ and diff: $j \neq k$ by auto
from reach $[$ OF $j k]$ diff reach $[O F k j]$
have ? reachp j j by (simp add: rtrancl-eq-or-trancl)
with nreach ij show False by auto
qed
then obtain $i j$ where $i: i<n$ and $j: j<n$ and nreach: \neg ? reach $i j$ by auto define I where $I=\{k . k<n \wedge$? reach $i k\}$
have $i I: i \in I$ unfolding I-def using nreach i by auto
have $j I: j \notin I$ unfolding I-def using nreach j by auto
define f where $f=(\lambda$. if $i \in I$ then 1 else $0::$ nat $)$
let ? $x s=[0 . .<n]$
from mset-eq-permutation[OF mset-sort, of ?xs f] obtain p where $p: p$ permutes $\{. .<n\}$
and perm: permute-list p ? xs $=$ sort-key f ? xs by auto
from p have $l t[$ simp $]: i<n \Longrightarrow p i<n$ for i by (rule permutes-lt)
let $? p=i n v p$
have ip: ? p permutes $\{. .<n\}$ using permutes-inv $[$ OF $p]$.
from $i p$ have $i l t[\operatorname{simp}]: i<n \Longrightarrow$? $p i<n$ for i by (rule permutes-lt)
let ? $B=$ Matrix.mat $n n(\lambda(i, j)$. $A \$ \$(p i, p j))$
define B where $B=$? B
from permutation-similar-mat $[O F A p]$ have sim: similar-mat $A B$ unfolding $B-d e f$.
let $? y s=$ permute-list p ?xs
define $y s$ where $y s=$? ys
have len-ys: length ys $=n$ unfolding ys-def by simp
let $? k=$ length $($ filter $(\lambda i . f i=0) y s)$
define k where $k=? k$
have $k n$: $k \leq n$ unfolding k-def using len-ys
using length-filter-le[of - ys] by auto
have $y s-p: i<n \Longrightarrow y s!i=p i$ for i unfolding ys-def permute-list-def by simp

```
have ys: ys \(=\operatorname{map}(\lambda i . y s!i)[0 . .<n]\) unfolding len-ys[symmetric]
    by (simp add: map-nth)
also have \(\ldots=\operatorname{map} p[0 . .<n]\)
    by (rule map-cong, insert ys-p, auto)
also have \([0 . .<n]=[0 . .<k] @[k . .<n]\) using \(k n\)
    using le-Suc-ex upt-add-eq-append by blast
finally have ys: ys \(=\operatorname{map} p[0 . .<k] @ \operatorname{map} p[k . .<n]\) by simp
\{
    fix \(i\)
    assume \(i: i<n\)
    let \(? g=(\lambda i . f i=0)\)
    let \(? f=\) filter ?g
    from \(i\) have \(p i: p i<n\) using \(p\) by simp
    have \(k=\) length (?f ys) by fact
    also have ?f \(y s=\) ?f \((\operatorname{map} p[0 . .<k]) @\) ?f (map \(p[k . .<n])\) unfolding ys
by \(\operatorname{simp}\)
    also note \(k=\) calculation
    finally have True by blast
    from perm [symmetric, folded ys-def]
    have sorted (map fys) using sorted-sort-key by metis
    from this[unfolded ys map-append sorted-append set-map]
    have sorted: \(\bigwedge x y . x<k \Longrightarrow y \in\{k . .<n\} \Longrightarrow f(p x) \leq f(p y)\) by auto
    have \(0: \forall i<k . f(p i)=0\)
    proof (rule ccontr)
        assume \(\neg\) ?thesis
        then obtain \(i\) where \(i: i<k\) and zero: \(f(p i) \neq 0\) by auto
        hence \(f(p i)=1\) unfolding \(f\)-def by (auto split: if-splits)
        from sorted \([O F i\), unfolded this \(]\) have \(1: j \in\{k . .<n\} \Longrightarrow f(p j) \geq 1\) for \(j\)
by auto
            have \(l e: j \in\{k . .<n\} \Longrightarrow f(p j)=1\) for \(j\) using \(1[o f j]\) unfolding \(f\)-def
                by (auto split: if-splits)
            also have ?f ( map \(p[k . .<n])=[]\) using le by auto
            from \(k[\) unfolded this \(]\) have length \((? f(\operatorname{map} p[0 . .<k]))=k\) by \(\operatorname{simp}\)
            from length-filter-less[of pi map p \([0 . .<k]\) ? \(g\), unfolded this] i zero
            show False by auto
    qed
    hence ?f \((\operatorname{map} p[0 . .<k])=\operatorname{map} p[0 . .<k]\) by auto
    from arg-cong[OF \(k\) [unfolded this, simplified], of set]
    have 1: \(\bigwedge i . i \in\{k . .<n\} \Longrightarrow f(p i) \neq 0\) by auto
    have \(1: i<n \Longrightarrow \neg i<k \Longrightarrow f(p i) \neq 0\) for \(i\) using \(1[\) of \(i]\) by auto
    have \(0: i<n \Longrightarrow(f(p i)=0)=(i<k)\) for \(i\) using 1 [of \(i\) ] 0 [rule-format,
of \(i\) ] by blast
    have main: \((f i=0)=(? p i<k)\) using \(0[o f ? p i] i p\)
    by (auto simp: permutes-inverses)
    have \(i \in I \longleftrightarrow f i \neq 0\) unfolding \(f\)-def by simp
    also have \((f i=0) \longleftrightarrow\) ? \(p i<k\) using main by auto
    finally have \(i \in I \longleftrightarrow\) ?p \(i \geq k\) by auto
\(\}\) note main \(=\) this
from \(\operatorname{main}[O F j] j I\)
```

```
    have k0: k\not=0 by auto
    from iI main[OF i] have ?p i\geqk by auto
    with ilt[OF i] have kn: }k<n\mathrm{ by auto
    {
    fix ij
    assume i:i<n and ik:k\leqi and jk:j<k
    with kn have j:j<n by auto
    have jI: pj\not\inI
        by (subst main, insert jk j p, auto simp: permutes-inverses)
    have iI: pi\inI
        by (subst main, insert i ik p, auto simp: permutes-inverses)
    from ij have B$$(i,j)=A$$(pi,pj) unfolding B-def by auto
    also have ... = 0
    proof (rule ccontr)
    assume A $$ (pi,pj)\not=0
        hence (p i, p j) \in?G unfolding graph-of-mat-def Let-def using ij p by
auto
    with iI j have pj\inI unfolding I-def by auto
        with jI show False by simp
    qed
    finally have B $$ (i,j)=0.
    } note zero = this
    have }\operatorname{dim}B[simp]: dim-row B = n dim-col B=n unfolding B-def by aut
    have dim: dim-row }B=k+(n-k) dim-col B=k+(n-k) using kn by
auto
    obtain B1 B2 B3 B4 where spl: split-block B k k=(B1,B2,B3,B4) (is ?tmp
=-) by (cases ?tmp, auto)
    from split-block[OF this dim] have
        Bs: B1 \in carrier-mat k k B2 \in carrier-mat k ( }n-k
            B3 \in carrier-mat (n-k)kB4 \in carrier-mat (n-k) (n-k)
        and B: B = four-block-mat B1 B2 B3 B4 by auto
    have B3: B3 = Om
(-,-,B,-). B, unfolded split]
    unfolding split-block-def Let-def split
    by (rule eq-matI, auto simp: kn zero)
    from elements-mat-permutes[OF p A B-def]
    have elem: elements-mat A = elements-mat B .
    show ?thesis
        by (intro exI conjI, rule sim, rule elem, rule B[unfolded B3], insert Bs k0 kn,
auto)
qed
lemma non-irreducible-nonneg-mat-split:
    fixes }A\mathrm{ :: ' }a\mathrm{ :: linordered-idom mat
    assumes A:A\incarrier-mat n n
    and nonneg: nonneg-mat A
    and not: ᄀ irreducible-mat A
    and n:n>1
shows \exists n1 n2 A1 A2. char-poly A = char-poly A1 * char-poly A2
```

```
    ^ nonneg-mat A1 ^ nonneg-mat A2
    A1 \in carrier-mat n1 n1 ^ A2 \in carrier-mat n2 n2
    \wedge0<n1^n1<n^0<n2 ^ n2 < n ^ n1 + n2 = n
proof -
    from non-irreducible-mat-split[OF A not n]
    obtain n1 n2 B B1 B2 B4
        where sim: similar-mat A B and elem: elements-mat A = elements-mat }
            and B: B = four-block-mat B1 B2 (0m n2 n1) B4
            and Bs: B1 G carrier-mat n1 n1 B2 \in carrier-mat n1 n2 B4 \in carrier-mat
n2 n2
            and n:0<n1 n1<n0<n2 n2 < n n1 + n2 = n by auto
    from char-poly-similar[OF sim]
    have AB: char-poly }A=\mathrm{ char-poly B .
    from nonneg have nonneg: nonneg-mat B unfolding nonneg-mat-def elem by
auto
    have cB: char-poly B = char-poly B1 * char-poly B4
        by (rule char-poly-four-block-mat-lower-left-zero[OF B Bs])
    from nonneg have B1-B4: nonneg-mat B1 nonneg-mat B4 unfolding B non-
neg-mat-def
        using elements-mat-four-block-mat-supseteq[OF Bs(1-2) - Bs(3), of 0m n2
n1] by auto
    show ?thesis
        by (intro exI conjI, rule AB[unfolded cB], rule B1-B4, rule B1-B4,
            rule Bs, rule Bs, insert n, auto)
qed
```

The main generalized theorem. The characteristic polynomial of a nonnegative real matrix can be represented as a product of roots of unitys (scaled by the the spectral radius sr) and a polynomial where all roots are smaller than the spectral radius.

```
theorem perron-frobenius-nonneg: fixes \(A\) :: real Matrix.mat
    assumes \(A: A \in\) carrier-mat \(n n\) and pos: nonneg-mat \(A\) and \(n: n \neq 0\)
    shows \(\exists\) sr \(k s f\).
        \(s r \geq 0 \wedge\)
        \(0 \notin\) set \(k s \wedge k s \neq[] \wedge\)
        char-poly \(A=\) prod-list \((\operatorname{map}(\lambda k\) monom \(1 k-[: s r \wedge k:]) k s) * f \wedge\)
        ( \(\forall\) x. poly (map-poly complex-of-real f) \(x=0 \longrightarrow \operatorname{cmod} x<s r\) )
proof -
    define \(p\) where \(p=(\lambda\) sr \(k\). monom \(1 k-[:(s r::\) real \() ~ へ ~ k:])\)
    let ?small \(=\lambda f\) sr. \((\forall x\). poly (map-poly complex-of-real \(f) x=0 \longrightarrow \operatorname{cmod} x\)
\(<s r\) )
    let ? wit \(=\lambda\) A sr ksf.sr \(\geq 0 \wedge 0 \notin\) set \(k s \wedge k s \neq[] \wedge\)
        char-poly \(A=\) prod-list ( \(\operatorname{map}(p s r) k s) * f \wedge\) ?small \(f s r\)
    let \(? c=\) complex-of-real
    interpret \(c\) : field-hom ?c ..
    interpret \(p\) : map-poly-inj-idom-divide-hom?c ..
    have map-p: map-poly ?c (p sr \(k)=(\) monom \(1 k-[: ? c\) sr^k:]) for \(s r k\)
        unfolding \(p\)-def by (simp add: hom-distribs)
    \{
```

```
    fix kx sr
    assume 0: poly (map-poly ?c (p sr k)) x=0 and k:k\not=0 and sr: sr \geq0
    note 0 also note map-p
    finally have }x`k=(?c sr)^k by (simp add: poly-monom
    from arg-cong[OF this, of \lambda c. root k (cmod c), unfolded norm-power] }
    have cmod x = cmod (?c sr) using real-root-pos2 by auto
    also have ... = sr using sr by auto
    finally have cmod x =sr.
} note p-conv= this
have }\exists\mathrm{ sr ks f. ?wit A sr ks f using A pos n
proof (induct n arbitrary: A rule: less-induct)
    case (less n A)
    note pos=less(3)
    note A = less(2)
    note IH = less(1)
    note n=less(4)
    from n
    consider (1) n=1
        | (irr) irreducible-mat A
        | (red) ᄀ irreducible-mat A n>1
        by force
    thus \exists sr ks f. ?wit A sr ks f
    proof cases
        case irr
        from perron-frobenius-irreducible(3,6)[OF A n pos irr refl refl]
        obtain srkf where
            *: sr>0k\not=0 char-poly A=p sr k*f?small f sr unfolding p-def
            by auto
    hence ?wit A sr [k]f by auto
    thus ?thesis by blast
    next
    case red
    from non-irreducible-nonneg-mat-split[OF A pos red] obtain n1 n2 A1 A2
        where char: char-poly A = char-poly A1 * char-poly A2
            and pos: nonneg-mat A1 nonneg-mat A2
            and A:A1 \in carrier-mat n1 n1 A2 \in carrier-mat n2 n2
            and n:n1<n n2 < n
            and n0: n1 \not=0 n2 \not=0 by auto
    from IH[OF n(1) A(1) pos(1) n0(1)] obtain sr1 ks1 f1 where 1: ?wit A1
sr1 ks1 f1 by blast
    from IH[OF n(2) A(2) pos(2) nO(2)] obtain sr2 ks2 f2 where 2: ?wit A2
sr2 ks2 f2 by blast
    have \exists A1 A2 sr1 ks1 f1 sr2 ks2 f2. ?wit A1 sr1 ks1 f1 ^ ?wit A2 sr2 ks2 f2
^
        sr1 \geq sr2 ^ char-poly A = char-poly A1 * char-poly A2
    proof (cases sr1 \geq sr2)
        case True
        show ?thesis unfolding char
            by (intro exI, rule conjI[OF 1 conjI[OF 2]], insert True, auto)
```

```
    next
            case False
            show ?thesis unfolding char
                by (intro exI, rule conjI[OF 2 conjI[OF 1]], insert False, auto)
    qed
    then obtain A1 A2 sr1 ks1 f1 sr2 ks2 f2 where
            1: ?wit A1 sr1 ks1 f1 and 2: ?wit A2 sr2 ks2 f2 and
            sr:sr1 \geqsr2 and char: char-poly A = char-poly A1 * char-poly A2 by
blast
    show ?thesis
    proof (cases sr1 = sr2)
            case True
            have ?wit A sr2 (ks1@ @s\mathcal{O})(f1*f2) unfolding char
            by(insert 1 2 True, auto simp: True p.hom-mult)
            thus ?thesis by blast
    next
            case False
            with sr have sr1:sr1 > sr2 by auto
            have lt: poly (map-poly ?c (p sr2 k)) x=0\Longrightarrowk\in set ks2 \Longrightarrow cmod x<
sr1 for kx
                using sr1 p-conv[of sr2 k x] 2 by auto
            have ?wit A sr1 ks1 (f1 * f2 * prod-list (map (p sr2) ks2)) unfolding char
                by (insert 1 2 sr1 lt, auto simp: p.hom-mult p.hom-prod-list
                poly-prod-list prod-list-zero-iff)
            thus ?thesis by blast
            qed
    next
            case 1
            define a where a=A $$ (0,0)
            have A:A = Matrix.mat 1 1 ( }\lambda\mathrm{ x.a)
                by (rule eq-matI, unfold a-def, insert A 1(1), auto)
            have char: char-poly A=[:-a,1 :] unfolding A
                by (auto simp: Determinant.det-def char-poly-def char-poly-matrix-def)
            from pos A have a: a\geq0 unfolding nonneg-mat-def elements-mat by auto
                    have ?wit A a [1] 1 unfolding char using a by (auto simp: p-def monom-Suc)
            thus ?thesis by blast
    qed
qed
then obtain sr ks f where wit: ?wit A sr ks f by blast
thus ?thesis using wit unfolding p-def by auto
qed
```

And back to HMA world via transfer.
theorem perron-frobenius-non-neg: fixes $A::$ real ${ }^{\wedge} n^{\wedge}$ ' n
assumes pos: non-neg-mat A
shows \exists sr ks f.
$s r \geq 0 \wedge$
$0 \notin$ set $k s \wedge k s \neq[] \wedge$
charpoly $A=$ prod-list $(\operatorname{map}(\lambda k$. monom $1 k-[: s r \wedge k:]) k s) * f \wedge$

```
    ( \(\forall\) x. poly (map-poly complex-of-real f) \(x=0 \longrightarrow\) cmod \(x<s r\) )
    using pos
proof (transfer, goal-cases)
    case (1 A)
    from perron-frobenius-nonneg[OF 1]
    show ?case by auto
qed
```

We now specialize the theorem for complexity analysis where we are mainly interested in the case where the spectral radius is as most 1 . Note that this can be checked by tested that there are no real roots of the characteristic polynomial which exceed 1 .

Moreover, here the existential quantifier over the factorization is replaced by decompose-prod-root-unity, an algorithm which computes this factorization in an efficient way.
lemma perron-frobenius-for-complexity: fixes $A::$ real ${ }^{\prime} n^{\wedge} n$ and $f::$ real poly

```
defines cA \equiv map-matrix complex-of-real A
defines cf \equiv map-poly complex-of-real f
assumes pos: non-neg-mat A
    and sr: \bigwedgex. poly (charpoly A) x=0\Longrightarrowx\leq1
    and decomp: decompose-prod-root-unity (charpoly A) = (ks,f)
shows 0 & set ks
    charpoly A = prod-root-unity ks *f
    charpoly cA = prod-root-unity ks*cf
    \x.poly (charpoly cA) x=0\Longrightarrowcmod x \leq 1
    \x.poly cf x = 0 \Longrightarrow cmod x<1
    \ x . c m o d ~ x = 1 \Longrightarrow ~ o r d e r ~ x ~ ( c h a r p o l y ~ c A ) = ~ l e n g t h ~ [ k \leftarrow k s . ~ x ` ` k = 1 ]
    \x.cmod x=1\Longrightarrow poly (charpoly cA) x=0 \ m k\in set ks. x^k=1
    unfolding cf-def cA-def
proof (atomize(full), goal-cases)
    case 1
    let ?c = complex-of-real
    let ?cp = map-poly ?c
    let ?A = map-matrix ?c A
    let ?wit = \lambda ksf.0\not\in set ks ^
        charpoly A = prod-root-unity ks *f ^
        charpoly ?A = prod-root-unity ks * map-poly of-real f ^
        (\forall x. poly (charpoly?A) }x=0\longrightarrow\operatorname{cmod}x\leq1)
        (\forallx.poly (?cp f) x=0 \longrightarrow cmod x<1)
    interpret field-hom ?c ..
    interpret p: map-poly-inj-idom-divide-hom?c ..
    {
        from perron-frobenius-non-neg[OF pos] obtain sr ks f
            where *:sr\geq00 & set ks ks \not=[]
                and cp: charpoly A = prod-list (map ( }\lambda\mathrm{ k. monom 1 k- [:sr^ k:]) ks) *f
        and small: \ x.poly (?cpf) x=0\Longrightarrow cmod x < sr by blast
```

 from arg-cong[OF \(c p\), of map-poly ?c]
    ```
    have cpc: charpoly ?A = prod-list (map (\lambda k.monom 1 k - [:?c sr^ k:]) ks) *
map-poly ?c f
    by (simp add: charpoly-of-real hom-distribs p.prod-list-map-hom[symmetric]
o-def)
    have sr-le-1:sr \leq 1
        by (rule sr, unfold cp, insert *, cases ks, auto simp: poly-monom)
    {
        fix }
        note [simp] = prod-list-zero-iff o-def poly-monom
        assume poly (charpoly ?A) }x=
        from this[unfolded cpc poly-mult poly-prod-list] small[of x]
        consider (lt)cmod x<sr|(mem) k where k\in set ks x^^k=(?c sr)^k
by force
        hence }\operatorname{cmod}x\leqs
        proof (cases)
            case (mem k)
            with * have k: k\not=0 by metis
            with arg-cong[OF mem(2), of \lambda x. root k (cmod x), unfolded norm-power]
                real-root-pos2[of k]*(1)
            have cmod x sr br by auto
            thus ?thesis by auto
        qed simp
    } note root = this
    have \exists ks f. ? wit ks f
    proof (cases sr = 1)
        case False
        with sr-le-1 have *: cmod x \leqsr \Longrightarrowcmod x < 1 cmod x \leqsr mcmod x
\leq for x by auto
        show ?thesis
            by (rule exI[of - Nil], rule exI[of - charpoly A], insert * root,
            auto simp: prod-root-unity-def charpoly-of-real)
    next
        case sr: True
        from * cp cpc small root
        show ?thesis unfolding sr root-unity-def prod-root-unity-def by (auto simp:
pCons-one)
    qed
}
then obtain Ks F where wit: ?wit Ks F by auto
    have cA0: charpoly ?A \not=0 using degree-monic-charpoly[of ?A] by auto
    from wit have id: charpoly ?A = prod-root-unity Ks* ?cp F by auto
    from of-real-hom.hom-decompose-prod-root-unity[of charpoly A, unfolded decomp]
    have decompc: decompose-prod-root-unity (charpoly ?A) = (ks, ?cp f)
    by (auto simp: charpoly-of-real)
    from wit have small: cmod x = 1 \Longrightarrow poly (?cp F) x =0 for x by auto
    from decompose-prod-root-unity[OF id decompc this cA0]
    have id: charpoly ?A = prod-root-unity ks * ?cp F F = f set Ks = set ks by auto
    have ?cp (charpoly A) = ?cp (prod-root-unity ks *f) unfolding id
    unfolding charpoly-of-real[symmetric] id p.hom-mult of-real-hom.hom-prod-root-unity
```

```
hence idr: charpoly A = prod-root-unity ks*f by auto
have wit: ?wit ks f and idc: charpoly ?A = prod-root-unity ks * ?cp f
    using wit unfolding id idr by auto
{
    fix }
    assume cmod x=1
    from small[OF this, unfolded id] have poly (?cp f) x\not=0 by auto
    from order-OI[OF this] this have ord: order x (?cp f)=0 and cf0: ?cp f}\not
0 \text { by auto}
    have order x (charpoly ?A) = order x (prod-root-unity ks) unfolding idc
        by (subst order-mult, insert cf0 wit ord, auto)
    also have ... = length [k\leftarrowks. x^k=1]
        by (subst order-prod-root-unity, insert wit, auto)
    finally have ord: order x (charpoly ?A) = length [k\leftarrowks. x^ k=1].
    {
        assume poly (charpoly ?A) }x=
        with cA0 have order x (charpoly ?A) }=0\mathrm{ unfolding order-root by auto
        from this[unfolded ord] have \exists k\in set ks. x^ k=1
            by (cases [k\leftarrowks. x^k=1], force+)
    }
    note this ord
}
with wit show ?case by blast
qed
    and convert to JNF-world
lemmas perron-frobenius-for-complexity-jnf =
    perron-frobenius-for-complexity[unfolded atomize-imp atomize-all,
    untransferred, cancel-card-constraint, rule-format]
end
```


6 Combining Spectral Radius Theory with Perron Frobenius theorem

theory Spectral-Radius-Theory
imports
Polynomial-Factorization.Square-Free-Factorization
Jordan-Normal-Form.Spectral-Radius
Jordan-Normal-Form.Char-Poly
Perron-Frobenius
HOL-Computational-Algebra.Field-as-Ring
begin
abbreviation spectral-radius where spectral-radius \equiv Spectral-Radius.spectral-radius
hide-const (open) Module.smult

Via JNFs it has been proven that the growth of A^{k} is polynomially bounded, if all complex eigenvalues have a norm at most 1, i.e., the spectral
radius must be at most 1. Moreover, the degree of the polynomial growth can be bounded by the order of those roots which have norm 1 , cf. $\llbracket ? A \in$ carrier-mat ?n ?n; Spectral-Radius-Theory.spectral-radius ? A $\leq 1 ; ~ \bigwedge e v k$. \llbracket poly $($ char-poly ? A) ev $=0 ; \operatorname{cmod}$ ev $=1 \rrbracket \Longrightarrow$ order ev $($ char-poly ? A) \leq $? d \rrbracket \Longrightarrow \exists c 1 c \mathcal{Z} . \forall k$. norm-bound $\left(? A \widehat{m}_{m} k\right)\left(c 1+c \mathcal{Z} *(\text { real } k)^{?} d-1\right)$.

Perron Frobenius theorem tells us that for a real valued non negative matrix, the largest eigenvalue is a real non-negative one. Hence, we only have to check, that all real eigenvalues are at most one.

We combine both theorems in the following. To be more precise, the setbased complexity results from JNFs with the type-based Perron Frobenius theorem in HMA are connected to obtain a set based complexity criterion for real-valued non-negative matrices, where one only investigated the real valued eigenvalues for checking the eigenvalue-at-most- 1 condition. Here, in the precondition of the roots of the polynomial, the type-system ensures that we only have to look at real-valued eigenvalues, and can ignore the complex-valued ones.

The linkage between set-and type-based is performed via HMA-connect.

```
lemma perron-frobenius-spectral-radius-complex: fixes A :: complex mat
    assumes A:A\incarrier-mat n n
    and real-nonneg: real-nonneg-mat A
    and ev-le-1: \ x. poly (char-poly (map-mat Re A)) x=0\Longrightarrowx\leq1
    and ev-order: }\x. norm x=1\Longrightarrow order x (char-poly A) \leqd
    shows \existsc1 c\mathcal{L}.\forallk.norm-bound ( }A\mp@subsup{\widehat{m}}{m}{k})(c1+c2*\operatorname{real}k``(d-1)
proof (cases n=0)
    case False
    hence n: n>0 n\not=0 by auto
    define sr where sr = spectral-radius A
    note sr = spectral-radius-mem-max[OF A n(1), folded sr-def]
    show ?thesis
    proof (rule spectral-radius-poly-bound[OF A], unfold sr-def[symmetric])
        let ?cr = complex-of-real
            here is the transition from type-based perron-frobenius to set-based
    from perron-frobenius[untransferred, cancel-card-constraint, OF A real-nonneg
n(2)]
            obtain v where v:v\incarrier-vec n and ev: eigenvector A v (?cr sr) and
            rnn: real-nonneg-vec v unfolding sr-def by auto
    define B where B = map-mat Re A
    let ?A = map-mat ?cr B
    have }AB:A=?A\mathrm{ unfolding B-def
    by (rule eq-matI, insert real-nonneg[unfolded real-nonneg-mat-def elements-mat-def],
auto)
    define w where w= map-vec Re v
    let ?v = map-vec ?cr w
    have vw: v=?v unfolding w-def
```

by (rule eq-vecI, insert rnn[unfolded real-nonneg-vec-def vec-elements-def], auto)
have $B: B \in$ carrier-mat $n n$ unfolding B-def using A by auto
from $A B v w$ ev have ev: eigenvector ? A ? v (?cr sr) by simp
have eigenvector B wr
by (rule of-real-hom.eigenvector-hom-rev[OF Bev])
hence eigenvalue B sr unfolding eigenvalue-def by blast
from ev-le-1 [folded B-def, OF this[unfolded eigenvalue-root-char-poly[OF B]]]
show sr ≤ 1.
next
fix $e v$
assume cmod ev=1
thus order ev (char-poly A) $\leq d$ by (rule ev-order)
qed
next
case True
with A show ?thesis
by (intro exI[of - 0], auto simp: norm-bound-def)
qed
The following lemma is the same as $\llbracket ? A \in$ carrier-mat ? n ? n; real-nonneg-mat ? $A ; \wedge x$. poly (char-poly (map-mat Re ? $A)) x=0 \Longrightarrow x \leq 1 ; \bigwedge x . \operatorname{cmod} x=$ $1 \Longrightarrow$ order $x($ char-poly ? $A) \leq$? $d \rrbracket \Longrightarrow \exists c 1$ c2. $\forall k$. norm-bound (? $A \widehat{m}_{m}$ $k)\left(c 1+c 2 *(\text { real } k)^{? d-1}\right)$, except that now the type real is used instead of complex.
lemma perron-frobenius-spectral-radius: fixes A :: real mat
assumes $A: A \in$ carrier-mat $n n$
and nonneg: nonneg-mat A
and ev-le-1: $\forall x$. poly (char-poly A) $x=0 \longrightarrow x \leq 1$
and ev-order: $\forall x::$ complex. norm $x=1 \longrightarrow$ order x (map-poly of-real (char-poly
A)) $\leq d$
shows $\exists c 1 c 2 . \forall k a . a \in$ elements-mat $\left(A \widehat{m}_{m} k\right) \longrightarrow a b s a \leq(c 1+c 2 *$ real $\left.k^{\wedge}(d-1)\right)$
proof -
let ?cr $=$ complex-of-real
let $? B=$ map-mat $? c r A$
have $B: ? B \in$ carrier-mat $n n$ using A by auto
have rnn: real-nonneg-mat ?B using nonneg unfolding real-nonneg-mat-def nonneg-mat-def
by (auto simp: elements-mat-def)
have id: map-mat Re ? $B=A$
by (rule eq-matI, auto)
have $\exists c 1 c 2 . \forall k$. norm-bound $\left(? B{ }_{m} k\right)(c 1+c 2 *$ real $k \wedge(d-1))$
by (rule perron-frobenius-spectral-radius-complex[OF B rnn], unfold id, insert ev-le-1 ev-order, auto simp: of-real-hom.char-poly-hom[OF A])
then obtain $c 1 c \mathcal{L}$ where $n b: \bigwedge k$. norm-bound $\left(? B^{\widehat{m}_{m}} k\right)\left(c 1+c \mathcal{2} *\right.$ real $k{ }^{\wedge}$ $(d-1))$ by auto
show ?thesis
proof (rule exI[of - c1], rule exI[of $-c 2]$, intro allI impI)
fix $k a$
assume $a \in$ elements-mat $\left(A \widehat{m}_{m} k\right)$
with pow-carrier-mat $[O F A]$ obtain $i j$ where $a: a=\left(A \widehat{{ }_{m}} k\right) \$ \(i, j) and $i j: i<n j<n$
unfolding elements-mat by force
from ij $n b[o f k] A$ have norm $\left(\left(? B \mathcal{r}_{m} k\right) \$ \$(i, j)\right) \leq c 1+c 2 *$ real $k \wedge(d-$ 1)
unfolding norm-bound-def by auto
also have $\left(? B \widehat{m}_{m} k\right) \$ \$(i, j)=$? cr a
unfolding of-real-hom.mat-hom-pow[OF A, symmetric] a using ij A by auto
also have norm (?cr a) = abs a by auto
finally show abs $a \leq\left(c 1+c 2 *\right.$ real $\left.k^{\wedge}(d-1)\right)$.
qed
qed
We can also convert the set-based lemma $\llbracket ? A \in$ carrier-mat $? n$? n; nonneg-mat ? $A ; \forall x$. poly (char-poly ?A) $x=0 \longrightarrow x \leq 1 ; \forall x . c m o d x=1$ \longrightarrow order x (map-poly complex-of-real (char-poly ? A)) \leq ? $d \rrbracket \Longrightarrow \exists c 1$ c2. $\forall k a . a \in$ elements-mat $\left(? A \widehat{m}_{m} k\right) \longrightarrow|a| \leq c 1+c 2 *(\text { real } k)^{?} d-1$ to a type-based version.
lemma perron-frobenius-spectral-type-based:
assumes non-neg-mat ($A::$ real $\wedge^{\prime} n \wedge^{\prime} n$)
and $\forall x$. poly (charpoly A) $x=0 \longrightarrow x \leq 1$
and $\forall x::$ complex. norm $x=1 \longrightarrow$ order $x($ map-poly of-real $($ charpoly $A)) \leq$ d
shows $\exists c 1 c 2 . \forall k a . a \in$ elements-mat-h (matpow $A k) \longrightarrow a b s a \leq(c 1+c 2$

* real $k \wedge(d-1))$
using assms perron-frobenius-spectral-radius
by (transfer, blast)
And of course, we can also transfer the type-based lemma back to a set-based setting, only that - without further case-analysis - we get the additional assumption $n \neq 0$.

```
lemma assumes \(A \in\) carrier-mat \(n n\)
    and nonneg-mat \(A\)
    and \(\forall x\). poly \((\) char-poly \(A) x=0 \longrightarrow x \leq 1\)
    and \(\forall x::\) complex. norm \(x=1 \longrightarrow\) order \(x(\) map-poly of-real \((\) char-poly \(A)) \leq\)
\(d\)
    and \(n \neq 0\)
    shows \(\exists c 1 c 2 . \forall k a . a \in\) elements-mat \(\left(A \widehat{m}_{m} k\right) \longrightarrow a b s a \leq(c 1+c 2 *\) real
\(\left.k^{\wedge}(d-1)\right)\)
    using perron-frobenius-spectral-type-based[untransferred, cancel-card-constraint,
OF assms].
```

Note that the precondition eigenvalue-at-most-1 can easily be formulated as a cardinality constraints which can be decided by Sturm's theorem. And in order to obtain a bound on the order, one can perform a square-free-factorization (via Yun's factorization algorithm) of the characteristic polynomial into $f_{1}^{1} \ldots f_{d}^{d}$ where each f_{i} has precisely the roots of order i.

context

fixes $A::$ real mat and $c::$ real and fis and $n::$ nat
assumes $A: A \in$ carrier-mat $n n$
and nonneg: nonneg-mat A
and yun: yun-factorization gcd (char-poly $A)=(c, f i s)$
and ev-le-1: card $\{x$. poly (char-poly $A) x=0 \wedge x>1\}=0$
begin
Note that yun-factorization has an offset by 1 , so the pair $\left(f_{i}, i\right) \in$ set $f i s$ encodes $f_{i}{ }^{\text {Suc }}{ }^{i}$.
lemma perron-frobenius-spectral-radius-yun:
assumes bnd: $\bigwedge f_{i} i .\left(f_{i}, i\right) \in$ set fis
$\Longrightarrow\left(\exists x::\right.$ complex. poly (map-poly of-real $\left.f_{i}\right) x=0 \wedge$ norm $\left.x=1\right)$
\Longrightarrow Suc $i \leq d$
shows $\exists c 1 c \mathcal{2} . \forall k a . a \in$ elements-mat $\left(A \widehat{m}_{m} k\right) \longrightarrow a b s a \leq(c 1+c \mathcal{2} *$ real
$\left.k^{\wedge}(d-1)\right)$
proof (rule perron-frobenius-spectral-radius[OF A nonneg]; intro allI impI)
let ?cr $=$ complex-of-real
let ?cp $=$ map-poly ? $c r($ char-poly A)
fix x :: complex
assume x : norm $x=1$
have A0: char-poly $A \neq 0$ using degree-monic-char-poly $[O F A]$ by auto
interpret field-hom-0' ?cr by (standard, auto)
from $A 0$ have $c p 0: ? c p \neq 0$ by auto
obtain $o x$ where ox: order x ? $c p=o x$ by blast
note sff $=$ square-free-factorization-order-root $[$ OF yun-factorization $(1)[O F$
yun-factorization-hom[of char-poly A, unfolded yun map-prod-def split]] cp0, of
x ox, unfolded ox]
show order x ? $c p \leq d$ unfolding $o x$
proof (cases ox)
case (Suc oo)
with sff obtain $f i$ where mem: $(f i, o o) \in$ set fis and rt: poly (map-poly ?cr fi) $x=0$ by auto
from $b n d[$ OF mem exI $[$ of $-x]$, OF conjI[OF rt $x]$]
show $o x \leq d$ unfolding Suc .
qed auto
next
let $? L=\{x$. poly (char-poly $A) x=0 \wedge x>1\}$
fix x :: real
assume rt: poly (char-poly A) $x=0$
have finite ? L
by (rule finite-subset[OF - poly-roots-finite[of char-poly A]],
insert degree-monic-char-poly[OF A], auto)
with ev-le-1 have $? L=\{ \}$ by simp
with r show $x \leq 1$ by auto
qed
Note that the only remaining problem in applying ($\bigwedge f_{i} i . \llbracket\left(f_{i}, i\right) \in$ set fis; $\exists x$. poly (map-poly complex-of-real $\left.f_{i}\right) x=0 \wedge \operatorname{cmod} x=1 \rrbracket \Longrightarrow$ Suc i $\leq ? d) \Longrightarrow \exists c 1 c 2 . \forall k a . a \in$ elements-mat $\left(A{ }_{m} k\right) \longrightarrow|a| \leq c 1+c 2 *$
$(\text { real } k)^{?} d-1$ is to check the condition $\exists x$. poly (map-poly complex-of-real $\left.f_{i}\right) x=0 \wedge c \bmod x=1$. Here, there are at least three possibilities. First, one can just ignore this precondition and weaken the statement. Second, one can apply Sturm's theorem to determine whether all roots are real. This can be done by comparing the number of distinct real roots with the degree of f_{i}, since f_{i} is square-free. If all roots are real, then one can decide the criterion by checking the only two possible real roots with norm equal to 1 , namely 1 and -1 . If on the other hand there are complex roots, then we loose precision at this point. Third, one uses a factorization algorithm (e.g., via complex algebraic numbers) to precisely determine the complex roots and decide the condition.

The second approach is illustrated in the following theorem. Note that all preconditions - including the ones from the context - can easily be checked with the help of Sturm's method. This method is used as a fast approximative technique in CeTA [3]. Only if the desired degree cannot be ensured by this method, the more costly complex algebraic number based factorization is applied.
lemma perron-frobenius-spectral-radius-yun-real-roots:
assumes bnd: $\bigwedge f_{i} i .\left(f_{i}, i\right) \in$ set fis
\Longrightarrow card $\left\{x\right.$. poly $\left.f_{i} x=0\right\} \neq$ degree $f_{i} \vee$ poly $f_{i} 1=0 \vee$ poly $f_{i}(-1)=0$
\Longrightarrow Suc $i \leq d$
shows $\exists c 1 c \mathcal{L} . \forall k a . a \in$ elements-mat $(A \widehat{m} k) \longrightarrow a b s a \leq(c 1+c \mathcal{Z} *$ real $\left.k^{\wedge}(d-1)\right)$
proof (rule perron-frobenius-spectral-radius-yun)
fix $f i$
let ?cr $=$ complex-of-real
let ? $c p=$ map-poly ? cr
assume f : $(f, i) \in$ set fis and $\exists x$. poly (map-poly ?cr fi) $x=0 \wedge$ norm $x=1$
then obtain x where rt: poly (?cp fi) $x=0$ and x : norm $x=1$ by auto
show Suc $i \leq d$
proof (rule bnd[OF fi])
consider $(c) x \notin \mathbb{R}|(1) x=1|(m 1) x=-1 \mid(r) x \in \mathbb{R} x \notin\{1,-1\}$ by (cases $x \in \mathbb{R}$; auto)
thus card $\{x$. poly $f i x=0\} \neq$ degree $f i \vee$ poly $f i=0 \vee$ poly $f i(-1)=0$ proof (cases)
case 1
from rt have poly fi $1=0$
unfolding 1 by simp thus ?thesis by simp next
case $m 1$
have $i d$: $-1=$? cr (-1) by simp
from $r t$ have poly $f(-1)=0$
unfolding m1 id of-real-hom.hom-zero[where ' $a=$ complex,symmetric]
of-real-hom.poly-map-poly by simp thus ?thesis by simp

```
    next
            case r
            then obtain }y\mathrm{ where xy: x = of-real y unfolding Reals-def by auto
            from r(2)[unfolded xy] have y: y}\not\in{1,-1} by aut
            from x[unfolded xy] have abs y=1 by auto
            with y have False by auto
            thus ?thesis ..
    next
            case c
            from yun-factorization(2)[OF yun] fi have monic fi by auto
            hence fi: ?cp fi\not=0 by auto
                            hence fin: finite {x. poly (?cp fi) x=0} by (rule poly-roots-finite)
                            have ?cr' {x. poly (?cp fi)(?cr x)=0}\subset{x.poly (?cp fi) x=0} (is ?l }
?r)
            proof (rule, force)
            have }x\in\mathrm{ ?r using rt by auto
            moreover have }x\not\in?l\mathrm{ l using c unfolding Reals-def by auto
            ultimately show ?l \not= ?r by blast
            qed
            from psubset-card-mono[OF fin this] have card ?l < card ?r .
            also have ... \leq degree (?cp fi) by (rule poly-roots-degree[OF fi])
            also have ... = degree fi by simp
            also have ?l = ?cr' ' {x. poly fi x = 0} by auto
            also have card ... = card {x. poly fi x = 0}
            by (rule card-image, auto simp: inj-on-def)
            finally have card {x. poly fix=0}\not= degree fi by simp
            thus ?thesis by auto
        qed
    qed
qed
end
end
```


7 The Jordan Blocks of the Spectral Radius are Largest

Consider a non-negative real matrix, and consider any Jordan-block of any eigenvalues whose norm is the spectral radius. We prove that there is a Jordan block of the spectral radius which has the same size or is larger.

```
theory Spectral-Radius-Largest-Jordan-Block
imports
    Jordan-Normal-Form.Jordan-Normal-Form-Uniqueness
    Perron-Frobenius-General
    HOL-Real-Asymp.Real-Asymp
```

begin

```
lemma poly-asymp-equiv: \((\lambda x\). poly \(p(\) real \(x)) \sim[\) at-top \(](\lambda x\). lead-coeff \(p *\) real \(x\)
    - (degree \(p\) ))
proof (cases degree \(p=0\) )
    case False
    hence \(l c\) : lead-coeff \(p \neq 0\) by auto
    have \(1: 1=\left(\sum n \leq\right.\) degree \(p\). if \(n=\) degree \(p\) then \((1::\) real \()\) else 0\()\) by simp
    from False show ?thesis
    proof (intro asymp-equivI', unfold poly-altdef sum-divide-distrib,
        subst 1, intro tendsto-sum, goal-cases)
        case (1 n)
        hence \(n=\) degree \(p \vee n<\) degree \(p\) by auto
        thus ?case
        proof
            assume \(n=\) degree \(p\)
            thus ?thesis using False lc
                by (simp, intro LIMSEQ-I exI[of - Suc 0], auto)
        qed (insert False lc, real-asymp)
    qed
next
    case True
    then obtain \(c\) where \(p: p=[: c:]\) by (metis degree-eq-zeroE)
    show ?thesis unfolding \(p\) by simp
qed
lemma sum-root-unity: fixes \(x::{ }^{\prime} a\) :: \{comm-ring,division-ring \(\}\)
    assumes \(x\) n \(=1\)
    shows \(\operatorname{sum}(\lambda i . x \widehat{i})\{. .<n\}=(\) if \(x=1\) then of-nat \(n\) else 0\()\)
proof (cases \(x=1 \vee n=0\) )
    case \(x\) : False
    from \(x\) obtain \(m\) where \(n: n=\) Suc \(m\) by (cases \(n\), auto)
    have \(i d:\{. .<n\}=\{0 . . m\}\) unfolding \(n\) by auto
    show ?thesis using assms \(x n\) unfolding \(i d\) sum-gp by (auto simp: divide-inverse)
qed auto
lemma sum-root-unity-power-pos-implies-1:
    assumes sumpos: \(\bigwedge k\). \(\operatorname{Re}(\operatorname{sum}(\lambda i . b i * x i \wedge k) I)>0\)
    and root-unity: \(\wedge i . i \in I \Longrightarrow \exists d . d \neq 0 \wedge x i^{\wedge} d=1\)
shows \(1 \in x^{\prime} I\)
proof (rule ccontr)
    assume \(\neg\) ?thesis
    hence \(x: i \in I \Longrightarrow x i \neq 1\) for \(i\) by auto
    from sumpos[of 0 ] have \(I\) : finite \(I I \neq\{ \}\)
        using sum.infinite by fastforce+
    have \(\forall i . \exists d . i \in I \longrightarrow d \neq 0 \wedge x i \wedge d=1\) using root-unity by auto
    from choice \([O F\) this \(]\) obtain \(d\) where \(d: \wedge i . i \in I \Longrightarrow d i \neq 0 \wedge x i^{\wedge}(d i)\)
\(=1\) by auto
    define \(D\) where \(D=\operatorname{prod} d I\)
    have \(D 0: 0<D\) unfolding \(D\)-def
```

```
    by (rule prod-pos, insert d, auto)
have \(0<\operatorname{sum}\left(\lambda k . \operatorname{Re}\left(\operatorname{sum}\left(\lambda i . b i * x i^{\wedge} k\right) I\right)\right)\{. .<D\}\)
    by (rule sum-pos[OF - sumpos], insert D0, auto)
also have \(\ldots=\operatorname{Re}\left(\operatorname{sum}\left(\lambda k . \operatorname{sum}\left(\lambda i . b i * x i^{\wedge} k\right) I\right)\{. .<D\}\right)\) by auto
also have \(\operatorname{sum}(\lambda k\). sum \((\lambda i . b i * x i \wedge k) I)\{. .<D\}\)
    \(=\operatorname{sum}\left(\lambda i \operatorname{sum}\left(\lambda k . b i * x i^{\wedge} k\right)\{. .<D\}\right) I\) by (rule sum.swap)
also have \(\ldots=\operatorname{sum}(\lambda i . b i * \operatorname{sum}(\lambda k . x i \wedge k)\{. .<D\}) I\)
    by (rule sum.cong, auto simp: sum-distrib-left)
also have \(\ldots=0\)
proof (rule sum.neutral, intro ballI)
    fix \(i\)
    assume \(i: i \in I\)
    from \(d\left[\right.\) OF this] \(x[\) OF this \(]\) have \(d: d i \neq 0\) and rt-unity: \(x{ }^{\wedge}{ }^{\wedge} d i=1\)
        and \(x\) : \(x i \neq 1\) by auto
    have \(\exists C . D=d i * C\) unfolding \(D\)-def
        by (subst prod.remove[of - \(i\) ], insert \(i I\), auto)
    then obtain \(C\) where \(D: D=d i * C\) by auto
    have image: \((\bigwedge x . f x=x) \Longrightarrow\{. .<D\}=f\) ' \(\{. .<D\}\) for \(f\) by auto
    let ? \(g=(\lambda(a, c) \cdot a+d i * c)\)
    have \(\{. .<D\}=? g^{\prime}(\lambda j\). \((j \bmod d i, j\) div \(d i))\) ' \(\{. .<d i * C\}\)
    unfolding image-image split \(D[\) symmetric \(]\) by (rule image, insert \(d\) mod-mult-div-eq,
blast)
    also have \((\lambda j .(j \bmod d i, j\) div \(d i)) '\{. .<d i * C\}=\{. .<d i\} \times\{. .<C\}\)
(is ? \(f\) '? \(A=\) ? \(B\) )
    proof -
        \{
            fix \(x\)
            assume \(x \in ? B\) then obtain \(a c\) where \(x: x=(a, c)\) and \(a: a<d i\) and
\(c: c<C\) by auto
            hence \(a+c * d i<d i *(1+c)\) by simp
            also have \(\ldots \leq d i * C\) by (rule mult-le-mono2, insert \(c\), auto)
            finally have \(a+c * d i \in\) ?A by auto
            hence ?f \((a+c * d i) \in\) ?f ' ?A by blast
            also have ?f \((a+c * d i)=x\) unfolding \(x\) using \(a\) by auto
            finally have \(x \in\) ? \(f\) '? \(A\).
            \}
            thus ?thesis using \(d\) by (auto simp: div-lt-nat)
        qed
        finally have \(D:\{. .<D\}=(\lambda(a, c) . a+d i * c)\) '? \(B\) by auto
        have inj: inj-on ? \(g\) ?B
        proof -
            \{
            fix a1 a2 c1 c2
            assume \(i d: ? g(a 1, c 1)=? g(a 2, c 2)\) and \(*:(a 1, c 1) \in ? B(a 2, c 2) \in ? B\)
            from arg-cong \([O F\) id, of \(\lambda x\). \(x\) div \(d i] *\) have \(c: c 1=c 2\) by auto
            from arg-cong \([O F\) id, of \(\lambda x\). \(x \bmod d i] *\) have \(a: a 1=a 2\) by auto
            note \(a c\)
            \}
            thus ?thesis by (smt SigmaE inj-onI)
```

```
    qed
    have sum (\lambdak.x i^ k){..< D} = sum (\lambda(a,c). x i^ (a+di* c)) ?B
        unfolding D by (subst sum.reindex, rule inj, auto intro!: sum.cong)
    also have . . = sum ( }\lambda(a,c).xi^a) ?
        by (rule sum.cong, auto simp: power-add power-mult rt-unity)
    also have ... = 0 unfolding sum.cartesian-product[symmetric] sum.swap[of
- {..<C}]
    by (rule sum.neutral, intro ballI, subst sum-root-unity[OF rt-unity], insert x,
auto)
    finally
    show bi* sum (\lambdak. x i^ k) {..< D} = 0 by simp
    qed
    finally show False by simp
qed
fun j-to-jb-index :: (nat }\times\mp@subsup{}{}{\prime}a)list => nat => nat \times nat where
    j-to-jb-index ((n,a) # n-as) i}=(\mathrm{ if }i<n\mathrm{ then ( }0,i) els
        let rec =j-to-jb-index n-as (i-n) in (Suc (fst rec), snd rec))
fun jb-to-j-index :: (nat }\times\mp@subsup{}{}{\prime}a)\mathrm{ list }=>\mathrm{ nat }\times\mathrm{ nat }=>\mathrm{ nat where
    jb-to-j-index n-as (0,j) = j
| jb-to-j-index ((n,-) # n-as) (Suc i,j)=n + jb-to-j-index n-as (i,j)
lemma j-to-jb-index: assumes i< sum-list (map fst n-as)
    and j < sum-list (map fst n-as)
    and j-to-jb-index n-as i = (bi,li)
    and j-to-jb-index n-as j = (bj,lj)
    and n-as!bj = (n,a)
shows ((jordan-matrix n-as) \widehat{m}}\mp@subsup{}{m}{*})$$(i,j)=(if bi=bj then ((jordan-block n a),
    _ m
    \wedge(bi=bj\longrightarrowli<n\wedgelj<n\wedge bj< length n-as ^(n,a)\in set n-as)
    unfolding jordan-matrix-pow using assms
proof (induct n-as arbitrary: i j bi bj)
    case (Cons mb n-as i j bi bj)
    obtain mb where mb: mb=(m,b) by force
    note Cons = Cons[unfolded mb]
    have [simp]: dim-col (case x of ( }n,a)=>\mp@subsup{1}{m}{\prime}n)=fst x for x by (cases x,auto
    have [simp]: dim-row (case x of ( }n,a)=>\mp@subsup{1}{m}{\prime}n)=fstx\mathrm{ for }x\mathrm{ by (cases x, auto)
    have [simp]: dim-col (case x of (n, a) => jordan-block n a \widehat{m}}r\mathrm{ ) =fst x for x
by (cases x, auto)
    have [simp]: dim-row (case x of ( }n,a)=>\mathrm{ jordan-block n a \ m}r\mathrm{ ) = fst x for x
by (cases x, auto)
    consider (UL) i<mj<m|(UR) i<mj\geqm|(LL) i\geqmj<m
        | (LR) i\geqmj\geqm by linarith
    thus?case
    proof cases
        case UL
        with Cons(2-) show ?thesis unfolding mb by (auto simp: Let-def)
    next
```

case $U R$
with Cons(2-) show ?thesis unfolding mb by (auto simp: Let-def dim-diag-block-mat $o-d e f)$
next
case $L L$
with Cons(2-) show ?thesis unfolding mb by (auto simp: Let-def dim-diag-block-mat $o-d e f)$
next
case $L R$
let $? i=i-m$
let ? $j=j-m$
from $L R$ Cons(2-) have $b i$: j-to-jb-index n-as $? i=(b i-1, l i) b i \neq 0$ by (auto simp: Let-def)
from $L R \operatorname{Cons(2-)~have~} b j: j$-to-jb-index n-as $? j=(b j-1, l j) b j \neq 0$ by (auto simp: Let-def)
from $L R$ Cons(2-) have i : ? $i<s u m-l i s t$ (map fst n-as) by auto
from $L R$ Cons(2-) have $j: ? j<$ sum-list (map fst n-as) by auto
from $L R$ Cons(2-) $b j(2)$ have nas: n-as ! $(b j-1)=(n, a)$ by (cases $b j$, auto)
from $b i(2) b j(2)$ have $i d:(b i-1=b j-1)=(b i=b j)$ by auto
note $I H=\operatorname{Cons}(1)[$ OF $i j b i(1) b j(1)$ nas, unfolded $i d]$
have id: diag-block-mat (map (λ a. case a of ($n, a) \Rightarrow$ jordan-block $n a{ }_{m} r$) $(m b \# n-a s)) \$ \(i, j)
$=$ diag-block-mat (map (λ a. case a of $(n, a) \Rightarrow$ jordan-block $\left.n a{ }_{m} r\right) n$-as)
$\$ \$(? i, ? j)$
using $i j$ LR unfolding $m b$ by (auto simp: Let-def dim-diag-block-mat o-def) show ?thesis using $I H$ unfolding id by auto
qed
qed auto
lemma j-to- $j b$-index-rev: assumes j : j-to-jb-index n-as $i=(b i, l i)$
and $i: i<$ sum-list (map fst n-as)
and $k: k \leq l i$
shows $l i \leq i \wedge j$-to-jb-index n-as $(i-k)=(b i, l i-k) \wedge($
j-to-jb-index n-as $j=(b i, l i-k) \longrightarrow j<$ sum-list (map fst n-as $) \longrightarrow j=i-k$) using $j i$
proof (induct n-as arbitrary: i bi j)
case (Cons mb n-as i bi j)
obtain $m b$ where $m b$: $m b=(m, b)$ by force
note Cons $=$ Cons[unfolded mb]
show ? case
proof (cases $i<m$)
case True
thus ?thesis unfolding $m b$ using Cons(2-) by (auto simp: Let-def)
next
case i-large: False
let ? $i=i-m$
have i : ? $i<$ sum-list (map fst n-as) using Cons(2-) i-large by auto
from Cons(2-) i-large have $j: j$-to-jb-index n-as ? $i=(b i-1, l i)$

```
            and bi: bi\not=0 by (auto simp: Let-def)
    note IH=Cons(1)[OF ji]
    from IH have IH1:j-to-jb-index n-as (i-m-k)=(bi-1,li-k) and
        li:li\leqi-m by auto
    from li have aim1:li\leqi by auto
    from li k i-large have i-k\geqm}\mathrm{ by auto
    hence aim2: j-to-jb-index (mb #n-as) (i-k)=(bi,li-k)
        using IH1 bi by (auto simp: mb Let-def add.commute)
    {
        assume *: j-to-jb-index (mb # n-as) j = (bi,li - k)
            j< sum-list (map fst (mb # n-as))
    from * bi have j: j\geqm unfolding mb by (auto simp: Let-def split: if-splits)
        let ? j = j-m
        from j * have jj:?j < sum-list (map fst n-as) unfolding mb by auto
        from j* have **: j-to-jb-index n-as (j - m) = (bi - 1,li - k) using bi mb
            by (cases j-to-jb-index n-as (j - m), auto simp: Let-def)
            from IH[of ?j] jj** have j-m=i-m-k by auto
            with j i-large k have j=i-k using <m \leqi-k> by linarith
    } note aim3 = this
    show ?thesis using aim1 aim2 aim3 by blast
    qed
qed auto
locale spectral-radius-1-jnf-max =
    fixes }A\mathrm{ :: real mat and n m :: nat and lam :: complex and n-as
    assumes A:A\incarrier-mat n n
    and nonneg: nonneg-mat A
    and jnf: jordan-nf (map-mat complex-of-real A) n-as
    and mem: (m,lam) \in set n-as
    and lam1: cmod lam = 1
    and sr1: \bigwedgex.poly (char-poly A) x=0 \Longrightarrowx\leq1
    and max-block: \k la. (k,la) \in set n-as \Longrightarrowcmod la \leq 1 ^(cmod la = 1 \longrightarrow
k\leqm)
begin
lemma n-as0:0 # fst'set n-as
    using jnf[unfolded jordan-nf-def] ..
lemma m0:m\not=0 using mem n-as0 by force
abbreviation cA where cA\equiv map-mat complex-of-real }
abbreviation }J\mathrm{ where }J\equiv\mathrm{ jordan-matrix n-as
lemma sim-A-J: similar-mat cA J
    using jnf[unfolded jordan-nf-def] ..
lemma sumlist-nf: sum-list (map fst n-as) = n
proof -
```

```
    have sum-list (map fst n-as) = dim-row (jordan-matrix n-as) by simp
    also have ... = dim-row cA using similar-matD[OF sim-A-J] by auto
    finally show ?thesis using A by auto
qed
definition p :: nat }=>\mathrm{ real poly where
    ps=(\prodi=0..<s.[: - of-nat i / of-nat (s-i),1 / of-nat (s-i) :])
lemma p-binom: assumes sk: s \leqk
    shows of-nat (k choose s) = poly (p s) (of-nat k)
    unfolding binomial-altdef-of-nat[OF assms] p-def poly-prod
    by (rule prod.cong[OF refl], insert sk, auto simp: field-simps)
lemma p-binom-complex: assumes sk: s\leqk
    shows of-nat (k choose s) = complex-of-real (poly (p s) (of-nat k))
    unfolding p-binom[OF sk, symmetric] by simp
lemma deg-p: degree ( }p\mathrm{ s) =s unfolding p-def
    by (subst degree-prod-eq-sum-degree, auto)
lemma lead-coeff-p:lead-coeff (p s)=(\prodi=0..<s.1 / (of-nat s - of-nat i))
    unfolding p-def lead-coeff-prod
    by (rule prod.cong[OF refl], auto)
lemma lead-coeff-p-gt-0: lead-coeff ( }ps\mathrm{ ) > 0 unfolding lead-coeff-p
    by (rule prod-pos, auto)
definition c = lead-coeff (p(m-1))
lemma c-gt-0: c>0 unfolding c-def by (rule lead-coeff-p-gt-0)
lemma c0:c\not=0 using c-gt-0 by auto
definition PP where PP=(SOME PP. similar-mat-wit cA J (fst PP) (snd PP))
definition P where P=fst PP
definition iP where iP= snd PP
lemma JNF:P carrier-mat n n iP G carrier-mat n n J carrier-mat n n
    P*iP=1m niP*P=1m ncA=P*J*iP
proof (atomize (full), goal-cases)
    case 1
    have n: n = dim-row cA using }A\mathrm{ by auto
    from sim-A-J[unfolded similar-mat-def] obtain Q iQ
        where similar-mat-wit cA J Q iQ by auto
    hence similar-mat-wit cA J (fst (Q,iQ)) (snd (Q,iQ)) by auto
    hence similar-mat-wit cA J P iP unfolding PP-def iP-def P-def
        by (rule someI)
    from similar-mat-witD[OF n this]
    show ?case by auto
```


qed

definition C :: nat set where

$$
\begin{aligned}
& C=\{j \mid j b j l j n n l a . j<n \wedge j \text {-to-jb-index } n \text {-as } j=(b j, l j) \\
& \wedge n \text {-as }!b j=(n n, l a) \wedge \operatorname{cmod} l a=1 \wedge n n=m \wedge l j=n n-1\}
\end{aligned}
$$

```
lemma \(C\)-nonempty: \(C \neq\{ \}\)
proof -
    from split-list [OF mem] obtain as bs where n-as: n-as \(=a s @(m, l a m) \# b s\)
by auto
    let \(? i=\) sum-list \((\) map fst as \()+(m-1)\)
    have \(j\)-to-jb-index \(n\)-as \(? i=(\) length \(a s, m-1)\)
        unfolding \(n\)-as by (induct as, insert m0, auto simp: Let-def)
    with lam1 have ? \(i \in C\) unfolding \(C\)-def unfolding sumlist-nf[symmetric] \(n\)-as
using \(m 0\) by auto
    thus ?thesis by blast
qed
```

lemma C - $n: C \subseteq\{. .<n\}$ unfolding C-def by auto
lemma root-unity-cmod-1: assumes $l a: l a \in s n d ' s e t n-a s$ and $1: c m o d ~ l a=1$
shows $\exists d . d \neq 0 \wedge l a \wedge d=1$
proof -
from $l a$ obtain k where $k l a:(k, l a) \in$ set n-as by force
from n-as 0 kla have $k 0: k \neq 0$ by force
from split-list $[O F$ kla] obtain as bs where nas: n-as $=a s @(k, l a) \# b s$ by
auto
have rt: poly (char-poly cA) la=0 using $k 0$
unfolding jordan-nf-char-poly[OF jnf] nas poly-prod-list prod-list-zero-iff by
auto
obtain $k s f$ where decomp: decompose-prod-root-unity (char-poly $A)=(k s, f)$
by force
from sumlist-nf[unfolded nas] $k 0$ have $n 0: n \neq 0$ by auto
note $p f=$ perron-frobenius-for-complexity-jnf(1,7)[OF A n0 nonneg sr1 decomp,
simplified]
from $p f(1) p f(2)[$ OF $1 r t]$ show $\exists d . d \neq 0 \wedge l a \wedge d=1$ by metis
qed
definition d where $d=(S O M E d . \forall l a . l a \in \operatorname{snd}$ 'set n-as $\longrightarrow \operatorname{cmod} l a=1 \longrightarrow$
$d l a \neq 0 \wedge l a \wedge(d l a)=1)$
lemma d : assumes $(k, l a) \in$ set n-as cmod $l a=1$
shows $l a \wedge(d l a)=1 \wedge d l a \neq 0$
proof -
let $? P=\lambda d . \forall l a . l a \in \operatorname{snd} '$ set n-as $\longrightarrow \operatorname{cmod} l a=1 \longrightarrow$
$d l a \neq 0 \wedge l a \wedge(d l a)=1$
from root-unity-cmod-1 have $\forall l a . \exists d . l a \in$ snd'set n-as $\longrightarrow c m o d ~ l a=1$
$d \neq 0 \wedge l a \wedge d=1$ by blast
from choice $[O F$ this $]$ have $\exists d$. ?P d.
from someI-ex $[O F$ this] have ?P d unfolding d-def .
from this[rule-format, of la, OF - assms(2)] assms(1) show ?thesis by force qed
definition D where $D=\operatorname{prod-list}(\operatorname{map}(\lambda n a$. if $\operatorname{cmod}(\operatorname{snd} n a)=1$ then d (snd na) else 1) n-as)
lemma $D 0: D \neq 0$ unfolding D-def
by (unfold prod-list-zero-iff, insert d, force)
definition f where f off $k=D * k+(m-1)+o f f$
lemma mono-f: strict-mono (f off) unfolding strict-mono-def f-def using DO by auto
definition inv-op where inv-op off $k=$ inverse $(c * \operatorname{real}(f$ off $k) \wedge(m-1))$
lemma limit-jordan-block: assumes $k l a:(k, l a) \in$ set n-as
and $i j: i<k j<k$
shows $\left(\lambda N\right.$. (jordan-block k la $\widehat{m}_{m}(f$ off $\left.N)\right) \$ \$(i, j) *$ inv-op off $\left.N\right)$
$\longrightarrow($ if $i=0 \wedge j=k-1 \wedge \operatorname{cmod} l a=1 \wedge k=m$ then la^off else 0$)$
proof -
let ?c $=$ of-nat $::$ nat \Rightarrow complex
let $? r=$ of-nat $::$ nat \Rightarrow real
let ?cr $=$ complex-of-real
from $i j$ have $k 0: k \neq 0$ by auto
from jordan-nf-char-poly[OF jnf] have $c A$: char-poly $c A=\left(\prod(n, a) \leftarrow n\right.$-as. [:$a, 1:]{ }^{\wedge} n$.
from degree-monic-char-poly $[O F A]$ have degree (char-poly A) $=n$ by auto
have deg: degree (char-poly $c A$) $=n$ using A by (simp add: degree-monic-char-poly)
from this[unfolded $c A]$ have $n=$ degree $\left(\prod(n, a) \leftarrow n\right.$-as. $\left.[:-a, 1:] ~ n\right)$ by auto
also have $\ldots=\operatorname{sum}$-list (map degree (map $\left(\lambda(n, a) \cdot[:-a, 1:]^{\wedge} n\right) n$-as) $)$
by (subst degree-prod-list-eq, auto)
also have $\ldots=$ sum-list (map fst n-as)
by (rule arg-cong[of - - sum-list], auto simp: degree-linear-power)
finally have sum: sum-list (map fst n-as) $=n$ by auto
with split-list $[O F$ kla] $k 0$ have $n 0: n \neq 0$ by auto
obtain $k s$ small where decomp: decompose-prod-root-unity $($ char-poly $A)=(k s$, small) by force
note $p f=$ perron-frobenius-for-complexity-jnf[OF A n0 nonneg sr1 decomp]
define $j i$ where $j i=j-i$
have $j i: j-i=j i$ unfolding $j i$-def by auto
let ?f $=\lambda N . c *($?r $N) \uparrow(m-1)$
let ? $j b=\lambda N$. (jordan-block k la $\left.\widehat{m}_{m} N\right) \$ \(i, j)
let ? jbc $=\lambda N$. (jordan-block k la $\left.{ }_{m} N\right) \$ \$(i, j) /$?f N
define e where $e=($ if $i=0 \wedge j=k-1 \wedge \operatorname{cmod} l a=1 \wedge k=m$ then la off else 0)

```
    let ?e1 = \lambda N :: nat. ?cr (poly (p (j - i)) (?r N))*la^ (N + i - j)
    let ?e2 = \lambdaN. ?cr (poly (p ji) (?r N)/ ?f N)*la^ (N+i-j)
    define e2 where e2 =? e2
    let ?e3 = \lambda N. poly (p ji) (?r N)/ (c* ?r N^ (m-1))* cmod la^ (N+i
-j)
    define e3 where e3 = ? e3
    define e e3' where e3'=(\lambdaN. (lead-coeff (p ji)*(?r N)^ ji) / (c* ?r N^ (m
-1))* cmod la ^}(N+i-j)
    {
        assume }i\mp@subsup{j}{}{\prime}:i\leqj\mathrm{ and la0:la}\not=
        {
            fix N
            assume N\geqk
            with ij ij' have ji: j-i\leqN and id: N+i-j=N-ji unfolding ji-def
by auto
            have ?jb N = (?c ( N choose (j-i))*la^ (N+i-j))
                unfolding jordan-block-pow using ij ij' by auto
            also have ... = ?e1 N by (subst p-binom-complex[OF ji], auto)
            finally have id: ?jb N=?e1 N .
            have ? jbc N = e2 N
            unfolding id e2-def ji-def using c-gt-0 by (simp add: norm-mult norm-divide
norm-power)
    } note jbc = this
    have cmod-e2-e3: (\lambda n.cmod (e2 n)) ~[at-top] e3
    proof (intro asymp-equivI LIMSEQ-I exI[of - ji] allI impI)
        fix nr
        assume n: n\geqji
        have cmod (e2 n) = |poly (p ji)(?r n)/ (c* ?r n^^(m-1))|*cmod la ^
(n+i-j)
            unfolding e2-def norm-mult norm-power norm-of-real by simp
            also have |poly (p ji) (?r n)/ (c* ?r n^ (m-1))| = poly (p ji) (?r n) /
(c* real n^ (m-1))
            by (intro abs-of-nonneg divide-nonneg-nonneg mult-nonneg-nonneg, insert
c-gt-0, auto simp: p-binom[OF n, symmetric])
    finally have cmod (e2 n)=e3 n unfolding e3-def by auto
    thus r>0\Longrightarrownorm ((if cmod (e2 n)=0\wedgee3 n=0 then 1 else cmod (e2
n) ( e3 n) - 1) < r by simp
    qed
    have e3': e3 ~[at-top] e3' unfolding e3-def e3'-def
    by (intro asymp-equiv-intros, insert poly-asymp-equiv[of p ji], unfold deg-p)
    {
        assume e3' }\longrightarrow
        hence e3:e3\longrightarrow0 using e3' by (meson tendsto-asymp-equiv-cong)
            have e2 \longrightarrow0
            by (subst tendsto-norm-zero-iff[symmetric], subst tendsto-asymp-equiv-cong[OF
cmod-e2-e3], rule e3)
    } note e2-via-e3 = this
    have (e2 o f off) }\longrightarrow
```

```
    proof (cases cmod la = 1 ^k=m^i= 0^j=k-1)
    case False
    then consider (0) la=0 ( (small) la \not=0 cmod la<1|
        (medium) cmod la = 1 k<m\veei\not=0\veej\not=k-1
        using max-block[OF kla] by linarith
    hence main: e2 \longrightarrowe
    proof cases
        case 0
        hence e0: e=0 unfolding e-def by auto
        show ?thesis unfolding e0 0 LIMSEQ-iff e2-def ji
        proof (intro exI[of - Suc j] impI allI, goal-cases)
            case (1 r n) thus ?case by (cases n +i-j, auto)
        qed
    next
        case small
        define d}\mathrm{ where d=cmod la
        from small have d: 0<d d< 1 unfolding d-def by auto
        have e0: e=0 using small unfolding e-def by auto
        show ?thesis unfolding e0
        by (intro e2-via-e3, unfold e3'-def d-def[symmetric], insert d c0, real-asymp)
    next
    case medium
    with max-block[OF kla] have k\leqm by auto
    with ij medium have ji: ji<m-1 unfolding ji-def by linarith
    have e0:e=0 using medium unfolding e-def by auto
    show ?thesis unfolding e0
        by (intro e2-via-e3, unfold e3'-def medium power-one mult-1-right, insert
ji c0, real-asymp)
    qed
    show (e2 of off) \longrightarrowe
        by (rule LIMSEQ-subseq-LIMSEQ[OF main mono-f])
    next
    case True
    hence large: cmod la = 1k=mi=0j=k-1 by auto
    hence e: e= la`off and ji:ji=m-1 unfolding e-def ji-def by auto
    from large k0 have m0:m\geq1 by auto
    define m1 where m1=m-1
        have id: (real (m-1) - real ia) = ?r m-1 - ?r ia for ia using m0
unfolding m1-def by auto
    define q}\mathrm{ where q=pm1 - monom c m1
    hence pji: p ji=q+monom c m1 unfolding q-def ji m1-def by simp
    let ?e&a = \lambda x. (complex-of-real (poly q(real x)/(c* real x^m1)) ) *la^
(x+i-j)
    let ?e&b = \lambda x.la ^(x+i-j)
    {
        fix x :: nat
        assume x: x\not=0
        have e2x=? e& a x ? ? e&b x
            unfolding e2-def pji poly-add poly-monom m1-def[symmetric] using c0 x
```

by (simp add: field-simps)
$\}$ note $e 2-e 4=$ this
have e2-e4: $\forall_{F} x$ in sequentially. (e2 ofoff) $x=($? e 4 a of off $) x+($? $e \nless b$ o f off) x unfolding o-def
by (intro eventually-sequentiallyI[of Suc 0], rule e2-e4, insert D0, auto simp: f-def)
have (e2 of off) $\longrightarrow 0+e$
unfolding tendsto-cong[OF e2-e4]
proof (rule tendsto-add, rule LIMSEQ-subseq-LIMSEQ[OF - mono-f]) show ? $e 4 a \longrightarrow 0$
proof (subst tendsto-norm-zero-iff [symmetric],
unfold norm-mult norm-power large power-one mult-1-right norm-divide norm-of-real tendsto-rabs-zero-iff)
have deg-q: degree $q \leq m 1$ unfolding q-def using deg-p[of m1]
by (intro degree-diff-le degree-monom-le, auto)
have coeff- q-m1: coeff $q m 1=0$ unfolding q-def c-def $m 1$-def[symmetric] using deg-p[of m1] by simp
from deg- q coeff- $q-m 1$ have deg: degree $q<m 1 \vee q=0$ by fastforce
have eq: $(\lambda n$. poly $q($ real $n) /(c *$ real $n \wedge m 1)) \sim[$ at-top $]$
(λn. lead-coeff $q *$ real $n{ }^{\wedge}$ degree $q /(c *$ real $n \wedge m 1)$)
by (intro asymp-equiv-intros poly-asymp-equiv)
show $(\lambda n$. poly $q($? $r n) /(c *$?r $n \wedge m 1)) \longrightarrow 0$
unfolding tendsto-asymp-equiv-cong[OF eq] using deg by (standard, insert c0, real-asymp, simp)
qed
next
have $i d$: $D * x+(m-1)+$ off $+i-j=D * x+o f f$ for x
unfolding $j i[$ symmetric $] j i$-def using $i j$ ' by auto
from $d\left[\right.$ OF kla large (1)] have $1: l a{ }^{\wedge} d l a=1$ by auto
from split-list $[O F k l a]$ obtain as bs where n-as: n-as $=a s @(k, l a) \# b s$ by auto
obtain C where $D: D=d l a * C$ unfolding D-def unfolding n-as using large by auto
show (?e4b of off) $\longrightarrow e$
unfolding e f-def o-def id
unfolding power-add power-mult D 1 by auto
qed
thus ?thesis by simp
qed
also have $((e 2$ of off $) \longrightarrow e)=((? j b c$ o f off $) \longrightarrow e)$
proof (rule tendsto-cong, unfold eventually-at-top-linorder, rule exI $[o f-k]$, intro allI impI, goal-cases)
case (1 n)
from mono-f[of off] 1 have f off $n \geq k$ using le-trans seq-suble by blast from $j b c[O F$ this $]$ show ?case by (simp add: o-def)
qed
finally have (?jbc of off) $\longrightarrow e$.
$\}$ note part1 $=$ this

```
    {
    assume i>j\veela=0
    hence e:e=0 and jbn:N\geqk\Longrightarrow?jbc N=0 for N
    unfolding jordan-block-pow e-def using ij by auto
    have ?jbc\longrightarrowe unfolding e LIMSEQ-iff by (intro exI[of - k] allI impI,
subst jbn, auto)
    from LIMSEQ-subseq-LIMSEQ[OF this mono-f]
    have (?jbc o f off) }\longrightarrowe 
    } note part2 = this
    from part1 part2 have (?jbc o f off) \longrightarrowe by linarith
    thus ?thesis unfolding e-def o-def inv-op-def by (simp add: field-simps)
qed
definition lambda where lambda i= snd (n-as!fst (j-to-jb-index n-as i))
lemma cmod-lambda: i CC\Longrightarrowcmod (lambda i)=1
    unfolding C-def lambda-def by auto
lemma R-lambda: assumes i: i\inC
    shows (m, lambda i) \in set n-as
proof -
    from i[unfolded C-def]
    obtain bi li la where i: i<n and jb: j-to-jb-index n-as i=(bi,li)
        and nth: n-as!bi=(m,la) and cmod la = 1^li=m-1 by auto
    hence lam: lambda i=la unfolding lambda-def by auto
    from j-to-jb-index[of - n-as, unfolded sumlist-nf, OF i i jb jb nth] lam
    show ?thesis by auto
qed
lemma limit-jordan-matrix: assumes ij: i<nj<n
shows ( }\lambdaN.(J\mp@subsup{\widehat{m}}{m}{}(f\mathrm{ off N)) $$ (i,j)*inv-op off N)
    \longrightarrow ( \text { if } j \in C \wedge i = j - ( m - 1 ) ~ t h e n ( l a m b d a ~ j ) ` o f f ~ e l s e ~ 0 ) )
proof -
    obtain bi li where bi: j-to-jb-index n-as i=(bi,li) by force
    obtain bj lj where bj: j-to-jb-index n-as j = (bj,lj) by force
    define la where la =snd ( }n\mathrm{ -as!fst (j-to-jb-index n-as j))
    obtain nn where nbj: n-as!bj = (nn,la) unfolding la-def bj fst-conv by (metis
prod.collapse)
    from j-to-jb-index[OF ij[folded sumlist-nf] bi bj nbj]
    have eq: bi=bj\Longrightarrowli<nn\wedgelj<nn\wedgebj<length n-as ^ (nn,la) \in set n-as
and
    index: (J -}\mp@subsup{}{m}{}r)$$(i,j)
    (if bi = bj then (jordan-block nn la _m r)$$(li,lj) else 0) for r
    by auto
    note index-rev = j-to-jb-index-rev[OF bj, unfolded sumlist-nf, OF ij(2) le-refl]
    show ?thesis
    proof (cases bi=bj)
    case False
    hence id: (bi=bj)= False by auto
```

```
    {
        assume j\inCi=j-(m-1)
        from this[unfolded C-def] bj nbj have i=j -lj by auto
        from index-rev[folded this] bi False have False by auto
    }
    thus ?thesis unfolding index id if-False by auto
    next
    case True
    hence id: (bi=bj)=True by auto
    from eq[OF True] have eq: li < nn lj < nn (nn,la) \in set n-as bj < length n-as
by auto
    have ( }\lambdaN.(J\mp@subsup{\widehat{m}}{m}{(f off N))$$(i,j) * inv-op off N)
        \longrightarrow ( i f ~ l i = 0 \wedge l j = n n - 1 \wedge ~ c m o d ~ l a = 1 \wedge n n = m ~ t h e n ~ l a ` o f f ~ e l s e ~ 0 )
        unfolding index id if-True using limit-jordan-block[OF eq(3,1,2)].
    also have (li=0^lj=nn-1^cmod la = 1^nn=m)=(j\inC\wedgei=
j-(m-1))(is ?l = ?r)
    proof
        assume ?r
        hence j\inC ..
        from this[unfolded C-def] bj nbj
        have *: nn =m cmod la = 1 lj=nn-1 by auto
        from \langle?r\rangle * have i=j-lj by auto
        with * have li=0 using index-rev bi by auto
        with * show ?l by auto
    next
        assume ?l
        hence jI: j }\inC\mathrm{ using bj nbj ij by (auto simp: C-def)
        from 〈?l` have li=0 by auto
        with index-rev[of i] bi ij(1)\?l` True
        have i=j-(m-1) by auto
        with jI show ?r by auto
    qed
    finally show ?thesis unfolding la-def lambda-def .
    qed
qed
declare sumlist-nf[simp]
```



```
proof (induct k)
    case 0
    show ?case using A JNF by simp
next
    case (Suc k)
    have cA \widehat{m}}\mathrm{ Suc k*P=cA 㐌k*cA*P by simp
    also have ... = cA 䣽 k*(P*J*iP)*P using JNF by simp
    also have }\ldots.=(cA\mp@subsup{\widehat{m}}{m}{}k*P)*(J*(iP*P)
    using A JNF(1-3) by (simp add: assoc-mult-mat[of - nn-n-n])
    also have J*(iP*P)=J unfolding JNF using JNF by auto
```

```
    finally show ?case unfolding Suc
    using A JNF(1-3) by (simp add: assoc-mult-mat[of-n n-n-n])
qed
```

lemma inv-op-nonneg: inv-op off $k \geq 0$ unfolding inv-op-def using c-gt- 0 by
auto
lemma P-nonzero-entry: assumes $j: j<n$
shows $\exists i<n . P \$ \$(i, j) \neq 0$
proof (rule ccontr)
assume \neg ?thesis
hence $0: \wedge i . i<n \Longrightarrow P \$ \$(i, j)=0$ by auto
have $1=(i P * P) \$ \(j, j) using j unfolding $J N F$ by auto
also have $\ldots=\left(\sum i=0 . .<n . i P \$ \$(j, i) * P \$ \$(i, j)\right)$
using $j J N F(1-2)$ by (auto simp: scalar-prod-def)
also have $\ldots=0$ by (rule sum.neutral, insert 0, auto)
finally show False by auto
qed
definition j where $j=(S O M E j . j \in C)$
lemma $j: j \in C$ unfolding j-def using C-nonempty some-in-eq by blast
lemma j - n : $j<n$ using j unfolding C-def by auto
definition $i=(S O M E i . i<n \wedge P \$ \$(i, j-(m-1)) \neq 0)$
lemma $i: i<n$ and $P-i j 0: P \$ \$(i, j-(m-1)) \neq 0$
proof -
from j - n have $l t: j-(m-1)<n$ by auto
show $i<n P \$ \$(i, j-(m-1)) \neq 0$
unfolding i-def using someI-ex[OF P-nonzero-entry[OF lt]] by auto
qed
definition $w=P *_{v}$ unit-vec $n j$
lemma $w: w \in$ carrier-vec n using JNF unfolding w-def by auto
definition $v=$ map-vec $\operatorname{cmod} w$
lemma $v: v \in$ carrier-vec n unfolding v-def using w by auto
definition u where $u=i P *_{v}$ map-vec of-real v
lemma $u: u \in$ carrier-vec n unfolding u-def using $J N F(2) v$ by auto
definition a where $a j=P \$ \$(i, j-(m-1)) * u \$ v j$ for j
lemma main-step: $0<\operatorname{Re}\left(\sum j \in C . a j * \operatorname{lambda} j^{\wedge} l\right)$

```
proof -
    let ?c = complex-of-real
    let ?cv = map-vec ?c
    let ?cm = map-mat ?c
    let ?v = ?cv v
    define cc where
        cc=(\lambda jj. ((\sumk=0..<n. (if k=jj-(m-1) then P $$ (i,k) else 0))*u
$vjj))
    {
        fix off
        define G where G=( }\lambdak.(A\mp@subsup{\widehat{m}}{m}{}f\mathrm{ off }k\mp@subsup{*}{v}{}v)$vi*inv-op off k
        define F where F = (\sumj\inC.aj*lambda j^off)
        {
            fix kk
            define }k\mathrm{ where }k=f\mathrm{ off }k
```



```
inv-op off kk)) by simp
            also have ?c (((A\widehat{m}}k)*vv)$ i * inv-op off kk)=?.cv ((A\widehat{m}k) *vv)$ 
i* ?c (inv-op off kk)
            using i A by simp
            also have ?cv ((A\widehat{m}k) *vv)=(?cm (A\widehat{m}k) *v ?v) using A
            by (subst of-real-hom.mult-mat-vec-hom[OF - v], auto)
                            also have ... = (cA \widehat{m}k k *v ?v)
            by (simp add: of-real-hom.mat-hom-pow[OF A])
                            also have ... = (cA \widehat{m}k\mp@subsup{*}{v}{}((P*iP) * *v ?v)) unfolding JNF using v by
auto
            also have ... = (cA \widehat{m}k k *v (P *v u)) unfolding u-def
                by (subst assoc-mult-mat-vec, insert JNF v, auto)
            also have \ldots. = (P* J \widehat{m}k k*v u) unfolding A-power-P[symmetric]
            by (subst assoc-mult-mat-vec, insert u JNF (1) A, auto)
            also have \ldots. = (P *v (J \mp@subsup{}{m}{}k*vu))
            by (rule assoc-mult-mat-vec, insert u JNF(1) A, auto)
```



```
$ i*inv-op off kk) by simp
    also have ... = Re (\sumjj=0..<n.
                P$$(i,jj)* (\sumia=0..<n. (J\mp@subsup{}{m}{}k)$$(jj,ia)*u$via*inv-op off
kk))
            by (subst index-mult-mat-vec, insert JNF(1) i u, auto simp: scalar-prod-def
sum-distrib-right[symmetric]
                mult.assoc[symmetric])
            finally have ( }A\mp@subsup{\widehat{m}}{m}{}k\mp@subsup{*}{v}{}v)$vi*\mathrm{ inv-op off kk=
            Re (\sumjj=0..<n.P $$ (i,jj)* (\sumia=0..<n. (J `}\mp@subsup{m}{m}{*})$$(jj,ia)*inv-o
off kk*u $via))
            unfolding k-def
            by (simp only: ac-simps)
        } note A-to-u = this
        have G\longrightarrow
            Re (\sumjj=0..<n.P $$ (i,jj)*
                    (\sumia=0..<n. (if ia }\inC\wedgejj=ia-(m-1) then(lambda ia)^off els
```

```
0)*u$via))
    unfolding A-to-u G-def
    by (intro tendsto-intros limit-jordan-matrix, auto)
    also have (\sumjj = 0..<n. P $$ (i,jj) *
        (\sumia=0..<n. (if ia }\inC\wedgejj=ia-(m-1) then(lambda ia)^off els
0)*u$via))
    =(\sumjj = 0..<n. (\sumia\inC. (if ia }\inC\wedgejj=ia-(m-1) then P $$(i
jj) else 0) * ((lambda ia)`off *u$v ia)))
    by (rule sum.cong[OF refl], unfold sum-distrib-left, subst (2) sum.mono-neutral-left[of
{0..<n}],
insert C-n, auto intro!: sum.cong)
    also have ... = (\sumia\inC. (\sumjj=0..<n. (if jj = ia - (m-1) then P $$
(i,jj) else 0)) * ((lambda ia)^off *u$v ia))
    unfolding sum.swap[of-C] sum-distrib-right
    by (rule sum.cong[OF refl], auto)
    also have ... = (\sumia\inC.cc ia * (lambda ia)^off) unfolding cc-def
    by (rule sum.cong[OF refl], simp)
    also have ... = F unfolding cc-def a-def F-def
    by (rule sum.cong[OF refl], insert C-n, auto)
    finally have tend3: G\longrightarrowRe F .
from j j-n have jR: j\inC and j: j<n by auto
let ? exp = \lambda k.sum (\lambda ii. P $$ (i,ii)* (J 和k)$$ (ii,j)) {..<n}
define M where M = (\lambdak.cmod (?exp (f off k)*inv-op off k))
{
    fix }k
    define k where k=f off kk
    define cAk where cAk=cA \widehat{m}
    have cAk:cAk carrier-mat n n unfolding cAk-def using A by auto
    have ((A\widehat{ }\mp@subsup{}{m}{k})\mp@subsup{*}{v}{}v)$i=((\mathrm{ map-mat cmod cAk) *v map-vec cmod w)$i}
        unfolding v-def[symmetric] cAk-def
        by (rule arg-cong[of - - \lambda x. (x*vv) $ i],
            unfold of-real-hom.mat-hom-pow[OF A, symmetric],
        insert nonneg-mat-power[OF A nonneg, of k], insert i j,
        auto simp: nonneg-mat-def elements-mat-def)
    also have ... \geqcmod ((cAk*v w)$ i)
    by (subst (1 2) index-mult-mat-vec, insert i cAk w, auto simp: scalar-prod-def
        intro!: sum-norm-le norm-mult-ineq)
    also have cAk *v w = (cAk*P) *v unit-vec n j
        unfolding w-def using JNF cAk by simp
    also have ... = P *v (J \mp@subsup{}{m}{}k\mp@subsup{*}{v}{}\mathrm{ unit-vec n j) unfolding cAk-def A-power-P}
        using JNF by (subst assoc-mult-mat-vec[of-n n-n], auto)
    also have J 唈 k *v unit-vec n j = col ( J \widehat{m}k) j
        by (rule eq-vecI, insert j, auto)
```



```
        by (subst index-mult-mat-vec, insert i JNF, auto)
    also have ... = sum ( }\lambda\mathrm{ ii. P $$ (i,ii)* (J -}\mp@subsup{m}{m}{k})$$(ii,j)){..<n
        unfolding scalar-prod-def by (rule sum.cong, insert i j JNF(1), auto)
```

```
    finally have ( }A\mp@subsup{\widehat{m}}{m}{}k\mp@subsup{*}{v}{}v)$vi\geq\operatorname{cmod}(?\operatorname{exp}k)
    from mult-right-mono[OF this inv-op-nonneg]
    have (A\widehat{m}k*vv)$vi*inv-op off kk\geq cmod (?exp k*inv-op off kk)
unfolding norm-mult
        using inv-op-nonneg by auto
    }
    hence ge:(A ^}\mp@subsup{}{m}{f}foff k*vv)$vi*inv-op off k\geqMk for k unfolding M-def
by auto
    from j have mem: j - (m-1) \in{..<n} by auto
    have ( }\lambdak.\mathrm{ ? exp (f off k)* inv-op off k)}
        (\sumii<n.P $$ (i,ii)* (if j\inC^ii=j-(m-1) then lambda j^off else
0))
    (is - \longrightarrow? sum)
    unfolding sum-distrib-right mult.assoc
    by (rule tendsto-sum, rule tendsto-mult, force, rule limit-jordan-matrix[OF -
j], auto)
    also have ?sum = P $$ (i,j - (m-1)) * lambda j^ off
        by (subst sum.remove[OF - mem], force, subst sum.neutral, insert jR, auto)
    finally have tend1:(\lambda k. ?exp (f off k)*inv-op off k)\longrightarrowP $$ (i,j - (m
- 1)) * lambda j ^off .
    have tend2: M\longrightarrowcmod (P$$ (i,j - (m-1)) * lambda j^off) unfolding
M-def
    by (rule tendsto-norm, rule tend1)
define B where B = cmod (P$$ (i,j-(m-1))) / 2
have B:0<B unfolding B-def using P-ij0 by auto
{
    from P-ij0 have 0: P $$ (i,j-(m-1)) =0 by auto
    define E where E=cmod (P$$ (i,j - (m-1))*lambda j^off)
    from cmod-lambda[OF jR] 0 have E: E / 2 > 0 unfolding E-def by auto
    from tend2[folded E-def] have tend2: M\longrightarrowE .
    from ge have ge: Gk\geqMk for k unfolding G-def .
    from tend2[unfolded LIMSEQ-iff, rule-format, OF E]
    obtain }\mp@subsup{k}{}{\prime}\mathrm{ where diff: \ k. k \ k' ב norm (M k - E)<E / 2 by auto
    {
        fix }
        assume k\geq\mp@subsup{k}{}{\prime}
        from diff[OF this] have norm: norm (Mk-E)<E / 2.
        have Mk\geq0 unfolding M-def by auto
        with E norm have Mk\geqE/2
            by (smt real-norm-def field-sum-of-halves)
        with ge[of k] E have Gk\geqE/2 by auto
        also have E / 2 = B unfolding E-def B-def j norm-mult norm-power
            cmod-lambda[OF jR] by auto
        finally have G k\geqB.
    }
    hence }\exists\mp@subsup{k}{}{\prime}.\forallk.k\geq\mp@subsup{k}{}{\prime}\longrightarrowGk\geqB\mathrm{ by auto
}
hence Bound: \existsk'.}\forallk\geq\mp@subsup{k}{}{\prime}.B\leqGk\mathrm{ by auto
from tend3[unfolded LIMSEQ-iff,rule-format, of B / 2] B
```

```
    obtain kk where kk:\bigwedgek. k\geqkk\Longrightarrownorm (Gk-Re F)<B/2 by auto
    from Bound obtain }k\mp@subsup{k}{}{\prime}\mathrm{ where }k\mp@subsup{k}{}{\prime}:\bigwedgek.k\geqk\mp@subsup{k}{}{\prime}\LongrightarrowB\leqGk\mathrm{ by auto
    define k where k= max kk kk'
    with kk kk' have 1: norm (Gk-Re F)<B/2 B\leqGk by auto
    with B have Re F>0 by (smt real-norm-def field-sum-of-halves)
}
    thus ?thesis by blast
qed
lemma main-theorem: (m, 1)\in set n-as
proof -
    from main-step have pos: 0<Re(\sumi\inC.ai*lambda i^l) for l by auto
    have 1 \in lambda ' C
    proof (rule sum-root-unity-power-pos-implies-1[of a lambda C,OF pos])
        fix i
        assume i\inC
        from d[OF R-lambda[OF this] cmod-lambda[OF this]]
        show \existsd. d\not=0^ lambda i^ d=1 by auto
    qed
    then obtain i where i:i\inC and lambda i=1 by auto
    with R-lambda[OF i] show ?thesis by auto
qed
end
lemma nonneg-sr-1-largest-jb:
    assumes nonneg: nonneg-mat A
    and jnf: jordan-nf (map-mat complex-of-real A) n-as
    and mem: (m,lam) \in set n-as
    and lam1:cmod lam=1
    and sr1: \bigwedgex. poly (char-poly A) x=0 \Longrightarrow x \leq 1
    shows }\existsM.M\geqm\wedge(M,1)\in\mathrm{ set n-as
proof -
    note jnf' = jnf[unfolded jordan-nf-def]
    from jnf' similar-matD[OF jnf'[THEN conjunct2]] obtain n
        where A:A\incarrier-mat n n and n-as0: 0 #fst'set n-as by auto
    let ?M = {m.\exists lam. (m,lam) \in set n-as ^cmod lam = 1}
    have m:m}\in\mathrm{ ?M using mem lam1 by auto
    have fin: finite ?M
        by (rule finite-subset[OF - finite-set[of map fst n-as]], force)
    define }M\mathrm{ where M=Max ?M
    have M\in?M using fin m unfolding M-def using Max-in by blast
    then obtain lambda where M:(M,lambda) \in set n-as cmod lambda = 1 by
auto
    from m fin have mM:m\leqM unfolding M-def by simp
    interpret spectral-radius-1-jnf-max A n M lambda
    proof (unfold-locales, rule A, rule nonneg, rule jnf, rule M, rule M, rule sr1)
        fix kla
        assume kla: (k,la)\in set n-as
```

with fin have $1:$ cmod $l a=1 \longrightarrow k \leq M$ unfolding M-def using $M a x-g e$ by blast
obtain $k s f$ where decomp: decompose-prod-root-unity (char-poly $A)=(k s, f)$ by force
from n-as0 kla have $k 0: k \neq 0$ by force
let ?c $A=$ map-mat complex-of-real A
from split-list $[$ OF kla] obtain as bs where nas: n-as $=a s @(k, l a) \# b s$ by auto
have rt: poly (char-poly ?cA) la $=0$ using $k 0$
unfolding jordan-nf-char-poly[OF jnf] nas poly-prod-list prod-list-zero-iff by
auto
have sumlist-nf: sum-list (map fst n-as) $=n$
proof -
have sum-list (map fst n-as) $=$ dim-row (jordan-matrix n-as) by simp
also have $\ldots=$ dim-row ?cA using similar-matD[OF jnf'[THEN conjunct2]]
by auto
finally show ?thesis using A by auto
qed
from this[unfolded nas] $k 0$ have $n 0: n \neq 0$ by auto
from perron-frobenius-for-complexity-jnf(4)[OF A n0 nonneg sr1 decomp rt]
have cmod la ≤ 1.
with 1 show $\operatorname{cmod} l a \leq 1 \wedge(\operatorname{cmod} l a=1 \longrightarrow k \leq M)$ by auto
qed
from main-theorem
show ?thesis using $m M$ by auto
qed
hide-const(open) spectral-radius
lemma (in ring-hom) hom-smult-mat: mat $_{h}(a \cdot m A)=$ hom a $\cdot m$ mat $_{h} A$ by (rule eq-matI, auto simp: hom-mult)
lemma root-char-poly-smult: fixes A :: complex mat
assumes $A: A \in$ carrier-mat $n n$
and $k: k \neq 0$
shows $($ poly $($ char-poly $(k \cdot m A)) x=0)=($ poly $($ char-poly $A)(x / k)=0)$
using order-char-poly-smult[OF A k, of $x]$
by (metis A degree-0 degree-monic-char-poly monic-degree-0 order-root smult-carrier-mat)
theorem real-nonneg-mat-spectral-radius-largest-jordan-block:
assumes real-nonneg-mat A
and jordan-nf A n-as
and $(m, l a m) \in$ set n-as
and cmod lam $=$ spectral-radius A
shows $\exists M \geq m$. (M, of-real (spectral-radius $A)) \in$ set n-as
proof -
from similar-matD[OF assms(2)[unfolded jordan-nf-def, THEN conjunct2]] obtain n where

A: A carrier-mat $n n$ by auto
let $? c=$ complex-of-real
define B where $B=$ map-mat Re A
have $B: B \in$ carrier-mat $n n$ unfolding B-def using A by auto
have $A B: A=$ map-mat ?c B unfolding B-def using assms(1)
by (auto simp: real-nonneg-mat-def elements-mat-def)
have nonneg: nonneg-mat B using assms(1) unfolding $A B$
by (auto simp: real-nonneg-mat-def elements-mat-def nonneg-mat-def)
let ?sr $=$ spectral-radius A
show ?thesis
proof (cases ?sr $=0$)
case False
define isr where isr $=$ inverse ?sr
let ?nas $=\operatorname{map}(\lambda(n, a) .(n$, ?c isr $* a)) n$-as
from False have isr0: isr $\neq 0$ unfolding isr-def by auto
hence cisr0: ?c isr $\neq 0$ by auto
from False assms(4) have isr-pos: isr >0 unfolding isr-def
by (smt norm-ge-zero positive-imp-inverse-positive)
define C where $C=i s r \cdot{ }_{m} B$
have C : $C \in$ carrier-mat $n n$ using B unfolding C-def by auto
have $B C: B=$? sr $\cdot{ }_{m} C$ using isr0 unfolding C-def isr-def by auto
have nonneg: nonneg-mat C unfolding C-def using isr-pos nonneg unfolding nonneg-mat-def elements-mat-def by auto
from jordan-nf-smult[OF assms(2)[unfolded AB] cisr0]
have jnf: jordan-nf (map-mat ?c C) ?nas unfolding C-def by (auto simp: of-real-hom.hom-smult-mat)
from $\operatorname{assms}(3)$ have mem: $(m$, ?c isr $*$ lam $) \in$ set ?nas by auto
have 1: cmod $(? c$ isr $*$ lam $)=1$ using False isr-pos unfolding isr-def norm-mult assms(4)
by (smt mult.commute norm-of-real right-inverse)
\{
fix x
have B^{\prime} : map-mat ?c $B \in$ carrier-mat $n n$ using B by auto
assume poly (char-poly C) $x=0$
hence poly (char-poly (map-mat ?c C)) (?c $x)=0$ unfolding of-real-hom.char-poly-hom $[O F$
$C]$ by auto
hence poly (char-poly $A)(? c x / ? c$ isr $)=0$ unfolding C-def of-real-hom.hom-smult-mat $A B$
unfolding root-char-poly-smult[OF B^{\prime} cisr0].
hence eigenvalue $A(? c x /$?c isr) unfolding eigenvalue-root-char-poly[OF
A] .
hence mem: cmod (? $c x / ? c$ isr $) \in$ cmod' spectrum A unfolding spectrum-def by auto
from Max-ge[OF finite-imageI this]
have $\operatorname{cmod}(? c x / ? c$ isr) \leq ?sr unfolding Spectral-Radius.spectral-radius-def
using A card-finite-spectrum(1) by blast
hence $\operatorname{cmod}(? c \quad x) \leq 1$ using isr0 isr-pos unfolding isr-def
by (auto simp: field-simps norm-divide norm-mult)
hence $x \leq 1$ by auto
$\}$ note $s r=t h i s$
from nonneg-sr-1-largest-jb[OF nonneg jnf mem 1 sr$]$ obtain M where

```
            M:M\geqm(M,1)\in set ?nas by blast
    from M(2) obtain a where mem: (M,a)\in set n-as and 1 =?c isr*a by
auto
    from this(2) have a: a=?c ?sr using isr0 unfolding isr-def by (auto simp:
field-simps)
    show ?thesis
        by (intro exI[of - M], insert mem a M(1), auto)
    next
        case True
        from jordan-nf-root-char-poly[OF assms(2,3)]
    have eigenvalue A lam unfolding eigenvalue-root-char-poly[OF A].
    hence cmod lam \incmod'spectrum A unfolding spectrum-def by auto
    from Max-ge[OF finite-imageI this]
    have cmod lam \leq?sr unfolding Spectral-Radius.spectral-radius-def
        using A card-finite-spectrum(1) by blast
    from this[unfolded True] have lam0: lam = 0 by auto
    show ?thesis unfolding True using assms(3)[unfolded lam0] by auto
    qed
qed
end
```


8 Homomorphisms of Gauss-Jordan Elimination, Kernel and More

```
theory Hom-Gauss-Jordan
    imports Jordan-Normal-Form.Matrix-Kernel
    Jordan-Normal-Form.Jordan-Normal-Form-Uniqueness
begin
lemma (in comm-ring-hom) similar-mat-wit-hom: assumes
    similar-mat-wit A B C D
shows similar-mat-wit (math A) (math B) (math}\mp@subsup{\mp@code{m}}{h}{}C)(\mp@subsup{math}{h}{}D
proof -
    obtain n where n: n= dim-row A by auto
    note }*=\mathrm{ similar-mat-witD[OF n assms]
    from * have [simp]: dim-row C = n by auto
    note C=*(6) note D=*(7)
    note id = mat-hom-mult[OF C D] mat-hom-mult[OF D C]
    note ** = *(1-3)[THEN arg-cong[of - math], unfolded id]
    note mult = mult-carrier-mat[of - n n]
    note hom-mult = mat-hom-mult[of - n n - n]
    show ?thesis unfolding similar-mat-wit-def Let-def unfolding **(3) using
**(1,2)
    by (auto simp: n[symmetric] hom-mult simp:*(4-) mult)
qed
lemma (in comm-ring-hom) similar-mat-hom:
```

```
similar-mat A B \Longrightarrow similar-mat (math A) (math B)
using similar-mat-wit-hom[of A B C D for C D]
by (smt similar-mat-def)
```


context field-hom

begin
lemma hom-swaprows: $i<$ dim-row $A \Longrightarrow j<$ dim-row $A \Longrightarrow$ swaprows $i j\left(\right.$ mat $\left._{h} A\right)=\operatorname{mat}_{h}$ (swaprows $i j A$)
unfolding mat-swaprows-def by (rule eq-matI, auto)
lemma hom-gauss-jordan-main: $A \in$ carrier-mat $n r n c \Longrightarrow B \in$ carrier-mat $n r$
nc2 \Longrightarrow
gauss-jordan-main $\left(\right.$ mat $\left._{h} A\right)\left(\right.$ mat $\left._{h} B\right) i j=$
map-prod mat $_{h}$ mat $_{h}$ (gauss-jordan-main A Bij)
proof (induct A B ij rule: gauss-jordan-main.induct)
case ($1 A B i j$)
note $I H=1(1-4)$
note $A B=1(5-6)$
from $A B$ have dim: dim-row $A=n r \operatorname{dim}-\operatorname{col} A=n c$ by auto
let $? h=$ mat $_{h}$
let $? h p=$ map-prod mat $_{h}$ mat $_{h}$
show ?case unfolding gauss-jordan-main.simps[of A B ij] gauss-jordan-main.simps[of
?h $A-i j$]
index-map-mat Let-def if-distrib[of ?hp] dim
proof (rule if-cong[OF refl], goal-cases)
case 1
note $I H=I H[O F \operatorname{dim}[$ symmetric $] 1$ refl $]$
from 1 have $i j: i<n r j<n c$ by auto
hence hij: (?h A) $\$ \$(i, j)=\operatorname{hom}(A \$ \$(i, j))$ using $A B$ by auto
define $i x s$ where $i x s=\operatorname{concat}\left(\operatorname{map}\left(\lambda i^{\prime}\right.\right.$. if $A \$ \$\left(i^{\prime}, j\right) \neq 0$ then [$\left.i\right\rceil$ else [])
[Suc i..<nr])
have id: map $\left(\lambda i^{\prime}\right.$. if mat $_{h} A \$ \$\left(i^{\prime}, j\right) \neq 0$ then $\left[i^{\prime}\right]$ else []$)[$ Suc $i . .<n r]=$
map $\left(\lambda i^{\prime}\right.$. if $A \$ \$\left(i^{\prime}, j\right) \neq 0$ then $[i]$ else []) $[$ Suc $i . .<n r]$
by (rule map-cong[OF refl], insert ij AB, auto)
show ?case unfolding hij hom-0-iff hom-1-iff id ixs-def[symmetric]
proof (rule if-cong[OF refl - if-cong[OF refl]], goal-cases)
case 1
note $I H=I H(1,2)[O F 1$, folded ixs-def]
show ? case
proof (cases ixs)
case Nil
show ?thesis unfolding Nil using $I H(1)[O F$ Nil $A B]$ by auto
next
case (Cons I ix)
hence $I \in$ set ixs by auto
hence $I: I<n r$ unfolding ixs-def by auto
from $A B$ have swap: swaprows i I $A \in$ carrier-mat nr nc swaprows i I $B \in$
carrier-mat nr nc2
by auto
show ?thesis unfolding Cons list.simps IH(2)[OF Cons swap,symmetric] using $A B i j I$
by (auto simp: hom-swaprows)
qed
next
case 2
from $A B$ have elim: eliminate-entries $(\lambda i . A \$ \$(i, j)) A i j \in$ carrier-mat $n r n c$
eliminate-entries $(\lambda i . A \$ \$(i, j)) B i j \in$ carrier-mat nr nc2
unfolding eliminate-entries-gen-def by auto
show ?case unfolding $I H(3)[O F 2$ refl elim, symmetric]

intro eq-matI, insert $A B$ ij, auto simp: eliminate-entries-gen-def hom-minus
hom-mult)
next
case 3
from $A B$ have mult: multrow $i($ inverse $(A \$ \$(i, j))) A \in$ carrier-mat nr nc multrow i (inverse $(A \$ \$(i, j))) B \in$ carrier-mat nr nc2 by auto
show ?case unfolding $I H(4)[O F 3$ refl mult, symmetric $]$
by (rule arg-cong2[of $-\cdots \lambda$ y. gauss-jordan-main x y i j];
intro eq-matI, insert $A B i j$, auto simp: hom-inverse hom-mult)
qed
qed auto
qed
lemma hom-gauss-jordan: $A \in$ carrier-mat nr nc $\Longrightarrow B \in$ carrier-mat nr nc2 \Longrightarrow gauss-jordan $\left(\right.$ mat $\left._{h} A\right)\left(\right.$ mat $\left._{h} B\right)={\text { map-prod } \text { mat }_{h} \text { mat }_{h}(\text { gauss-jordan A B) }}^{\text {B }}$ unfolding gauss-jordan-def using hom-gauss-jordan-main by blast
lemma hom-gauss-jordan-single $[$ simp $]:$ gauss-jordan-single $\left(\right.$ mat $\left._{h} A\right)=$ mat $_{h}($ gauss-jordan-single A)
proof -
let $? n r=\operatorname{dim}-r o w A$ let $? n c=\operatorname{dim}-\operatorname{col} A$
have $0: 0_{m}$?nr $0 \in$ carrier-mat ?nr 0 by auto
have dim: dim-row $\left(\operatorname{mat}_{h} A\right)=$? $n r$ by auto
have hom0: math $_{h}\left(0_{m}\right.$?nr 0$)=0_{m}$? $n r 0$ by auto
have $A: A \in$ carrier-mat ?nr ?nc by auto
from hom-gauss-jordan[OF A 0] A
show? ?thesis unfolding gauss-jordan-single-def dim hom0 by (metis fst-map-prod)
qed
lemma hom-pivot-positions-main-gen: assumes $A: A \in$ carrier-mat nr nc shows pivot-positions-main-gen $0\left(\right.$ mat $\left._{h} A\right) n r n c i j=$ pivot-positions-main-gen
0 A nr nc $i j$
proof (induct rule: pivot-positions-main-gen.induct $\left[\begin{array}{llll}\text { of } n r & \text { nc } & A & 0\end{array}\right]$)
case ($1 i j$)
note $I H=$ this
show ? case unfolding pivot-positions-main-gen.simps[of - nr nc i j]
proof (rule if-cong[OF refl if-cong[OF refl - refl] refl], goal-cases)
case 1
with A have $i d:\left(\operatorname{mat}_{h} A\right) \$ \$(i, j)=\operatorname{hom}(A \$ \$(i, j))$ by simp
note $I H=I H[O F 1]$
show ?case unfolding id hom-0-iff
by (rule if-cong[OF refl $I H(1)]$, force, subst $I H(2)$, auto)
qed
qed
lemma hom-pivot-positions $[$ simp $]$: pivot-positions $\left(\right.$ mat $\left._{h} A\right)=$ pivot-positions A unfolding pivot-positions-def by (subst hom-pivot-positions-main-gen, auto)
lemma hom-kernel-dim[simp]: kernel-dim $\left(\operatorname{mat}_{h} A\right)=$ kernel-dim A unfolding kernel-dim-code by simp
lemma hom-char-matrix: assumes $A: A \in$ carrier-mat $n n$ shows char-matrix $\left(\right.$ mat $\left._{h} A\right)($ hom $x)=$ mat $_{h}($ char-matrix $A x)$ unfolding char-matrix-def by (rule eq-matI, insert A, auto simp: hom-minus)
lemma hom-dim-gen-eigenspace: assumes $A: A \in$ carrier-mat $n n$ shows dim-gen-eigenspace $\left(\right.$ mat $\left._{h} A\right)($ hom $x)=$ dim-gen-eigenspace $A x$ proof (intro ext)
fix k
show dim-gen-eigenspace $\left(\right.$ mat $\left._{h} A\right)$ (hom $\left.x\right) k=$ dim-gen-eigenspace $A x k$ unfolding dim-gen-eigenspace-def hom-char-matrix [OF A]
mat-hom-pow[OF char-matrix-closed $[O F A]$, symmetric $]$ by simp
qed
end
end

9 Combining Spectral Radius Theory with Perron Frobenius theorem

```
theory Spectral-Radius-Theory-2
imports
    Spectral-Radius-Largest-Jordan-Block
    Hom-Gauss-Jordan
begin
hide-const(open) Coset.order
lemma jnf-complexity-generic: fixes A :: complex mat
    assumes A:A\in carrier-mat n n
    and sr: \bigwedge x. poly (char-poly A) x=0\Longrightarrowcmod x\leq1
    and 1: \x. poly (char-poly A) x=0\Longrightarrowcmod x=1\Longrightarrow
        order x (char-poly A)>d+1\Longrightarrow
        (\forall bsize }\in\mathrm{ fst' set (compute-set-of-jordan-blocks A x). bsize }\leqd+1
shows \existsc1 c2. }\forallk\mathrm{ . norm-bound ( }A\widehat{\mp@subsup{`}{m}{}}k)(c1+c2* of-nat k^d
```

```
proof -
    from char-poly-factorized[OF A] obtain as where cA: char-poly A = (\proda\leftarrowas.
[:-a, 1:])
    and lenn: length as =n by auto
    from jordan-nf-exists[OF A cA] obtain n-xs where jnf: jordan-nf A n-xs ..
    have }dd:\mp@subsup{x}{}{`}d=x`((d+1)-1) for x by sim
    show ?thesis unfolding dd
    proof (rule jordan-nf-matrix-poly-bound[OF A - jnf])
        fix nx
        assume nx: (n,x)\in set n-xs
        from jordan-nf-block-size-order-bound[OF jnf nx]
        have no: n\leq order x (char-poly A) by auto
        {
            assume 0<n
            with no have order x (char-poly A)}\not=0\mathrm{ by auto
            hence rt: poly (char-poly A) x = 0 unfolding order-root by auto
            from sr[OF this] show cmod x\leq1.
            note rt
    } note sr = this
    assume c1: cmod x = 1
    show }n\leqd+
    proof (rule ccontr)
            assume \neg n \leqd + 1
            hence lt: n>d+1 by auto
            with sr have rt: poly (char-poly A) x=0 by auto
            from lt no have ord: d + < order x (char-poly A) by auto
            from 1[OF rt c1 ord, unfolded compute-set-of-jordan-blocks[OF jnf]] nx lt
            show False by force
        qed
    qed
qed
lemma norm-bound-complex-to-real: fixes A :: real mat
    assumes A: A\in carrier-mat n n
    and bnd: \existsc1 c2. }\forallk.norm-bound ((map-mat complex-of-real A) \widehat{m}k) (c1
c2 * of-nat k ^d)
    shows \existsc1 c2. \forallk a. a \in elements-mat (A \widehat{m}k)\longrightarrowabs a\leq(c1 + c2 *of-nat
k^d)
proof -
    let ?B}=\mathrm{ map-mat complex-of-real }
    from bnd obtain c1 c\mathcal{L}\mathrm{ where nb: \ k. norm-bound (?B \}\mp@subsup{m}{}{\prime}k)(c1+c\mathcal{L}*\mathrm{ real}
k ^d) by auto
    show ?thesis
    proof (rule exI[of - c1], rule exI[of - c2], intro allI impI)
    fix }k
    assume a elements-mat ( A\widehat{ }
    with pow-carrier-mat[OF A] obtain i j where a: a = (A\widehat{m}k)$$ (i,j) and
ij:i<nj<n
            unfolding elements-mat by force
```



```
            unfolding norm-bound-def by auto
        also have (?B`\mp@subsup{}{m}{\prime}k)$$(i,j)=of-real a
            unfolding of-real-hom.mat-hom-pow[OF A, symmetric] a using ij A by auto
    also have norm (complex-of-real a) = abs a by auto
    finally show abs a\leq(c1+c2* real k^d).
    qed
qed
lemma dim-gen-eigenspace-max-jordan-block: assumes jnf: jordan-nf A n-as
    shows dim-gen-eigenspace A ld = order l (char-poly A) \longleftrightarrow
        (\forall n. (n,l) \in set n-as \longrightarrow n\leqd)
proof -
    let ?list = [(n,e)\leftarrown-as.e=l]
    define list where list = [na\leftarrown-as. snd na=l]
    have list: ?list = list unfolding list-def by (induct n-as, force+)
    have id: (\foralln. (n,l)\in\operatorname{set n-as \longrightarrown\leqd)=(}|n\in\operatorname{set}(map fst list). n\leqd)
        unfolding list-def by auto
    define ns where ns = map fst list
    show ?thesis
    unfolding dim-gen-eigenspace[OF jnf] jordan-nf-order[OF jnf] list list-def[symmetric]
id
    unfolding ns-def[symmetric]
    proof (induct ns)
    case (Cons nns)
    show ?case
    proof (cases n\leqd)
            case True
            thus?thesis using Cons by auto
    next
            case False
            hence n>d by auto
            moreover have sum-list (map (min d) ns) \leq sum-list ns by (induct ns, auto)
            ultimately show?thesis by auto
        qed
    qed auto
qed
lemma jnf-complexity-1-complex: fixes A :: complex mat
    assumes A:A\incarrier-mat n n
    and nonneg: real-nonneg-mat A
    and sr: \ x.poly (char-poly A) }x=0\Longrightarrow\operatorname{cmod}x\leq
    and 1: poly (char-poly A) 1=0\Longrightarrow
    order 1 (char-poly A)>d+1\Longrightarrow
    dim-gen-eigenspace A 1 (d+1)=order 1(char-poly A)
shows \existsc1 c2. }\forallk\mathrm{ . norm-bound (A 㐌k) (c1 + c2 * of-nat k^d)
proof -
    from char-poly-factorized[OF A] obtain as where cA: char-poly A = (\proda\leftarrowas.
[:- a, 1:])
```

and lenn: length as $=n$ by auto
from jordan-nf-exists[OF A cA] obtain n-as where jnf: jordan-nf A n-as .. have $d d: x^{\wedge} d=x \Upsilon((d+1)-1)$ for x by simp
let $? n=n$
show ?thesis unfolding $d d$
proof (rule jordan-nf-matrix-poly-bound $[O F A-$-jnf])
fix $n a$
assume na: $(n, a) \in$ set n-as
from jordan-nf-root-char-poly[OF jnf na]
have r : poly (char-poly A) $a=0$ by auto
with degree-monic-char-poly[OF A] have n0: ? $n>0$
by (cases? n, auto dest: degree0-coeffs)
from $\operatorname{sr}[O F r t]$ show $\operatorname{cmod} a \leq 1$.
assume a : $\operatorname{cmod} a=1$
from $r t$ have $a \in$ spectrum A using A spectrum-root-char-poly by auto
hence 11: $1 \in$ cmod' spectrum A using a by auto
note spec $=$ spectral-radius-mem-max $[$ OF A n0]
from $\operatorname{spec}(2)[O F 11]$ have $l e: 1 \leq \operatorname{spectral-radius~} A$.
from spec(1)[unfolded spectrum-root-char-poly[OF A]] sr have spectral-radius
$A \leq 1$ by auto
with le have sr: spectral-radius $A=1$ by auto
show $n \leq d+1$
proof (rule ccontr)
assume \neg ? thesis
hence $n d: n>d+1$ by auto
from real-nonneg-mat-spectral-radius-largest-jordan-block[OF nonneg jnf na, unfolded sr a]
obtain N where $N: N \geq n$ and mem: $(N, 1) \in$ set n-as by auto
from jordan-nf-root-char-poly[OF jnf mem] have rt: poly (char-poly A) $1=$ 0 .
from jordan-nf-block-size-order-bound[OF jnf mem] have $N \leq$ order 1 (char-poly A) .
with $N n d$ have $d+1<$ order 1 (char-poly A) by simp
from $1[O F$ rt this, unfolded dim-gen-eigenspace-max-jordan-block[OF jnf]] mem N nd
show False by force
qed
qed
qed
lemma jnf-complexity-1-real: fixes A :: real mat
assumes $A: A \in$ carrier-mat $n n$
and nonneg: nonneg-mat A
and $s r: \bigwedge x$. poly (char-poly A) $x=0 \Longrightarrow x \leq 1$
and jb: poly (char-poly A) $1=0 \Longrightarrow$
order $1($ char-poly $A)>d+1 \Longrightarrow$
dim-gen-eigenspace $A 1(d+1)=$ order $1($ char-poly $A)$
shows $\exists c 1 c 2 . \forall k a . a \in$ elements-mat $\left(A \widehat{m}_{m} k\right) \longrightarrow|a| \leq c 1+c 2 *$ real $k{ }^{\wedge} d$ proof -
let $? c=$ complex-of-real
let ? $A=$ map-mat ?c A
have $A^{\prime}: ? A \in$ carrier-mat $n n$ using A by auto
have nn: real-nonneg-mat ?A using nonneg A unfolding nonneg-mat-def real-nonneg-mat-def

```
    by (force simp: elements-mat)
have 1: 1 = ?c 1 by auto
note cp =of-real-hom.char-poly-hom[OF A]
have hom: map-poly-inj-idom-divide-hom complex-of-real ..
show ?thesis
    proof (rule norm-bound-complex-to-real[OF A jnf-complexity-1-complex[OF A'
nn]],
            unfold cp of-real-hom.poly-map-poly-1, unfold 1
            of-real-hom.hom-dim-gen-eigenspace[OF A]
            map-poly-inj-idom-divide-hom.order-hom[OF hom], goal-cases)
    case 2
    thus ?case using jb by auto
next
    case (1 x)
    let ?cp= char-poly A
    assume rt: poly (map-poly ?c ?cp) x=0
    with degree-monic-char-poly[OF A', unfolded cp] have n0: n}=
        using degree0-coeffs[of ?cp] by (cases n, auto)
    from perron-frobenius-nonneg[OF A nonneg n0]
    obtain sr ks f where sr0:0\leqsr and ks:0 # set ks ks \not= []
        and cp:?cp=(\prodk\leftarrowks.monom 1k-[:sr^k:])*f
        and rtf: poly (map-poly ?c f) x=0\Longrightarrow cmod x < sr by auto
    have sr-rt: poly?cp sr = 0 unfolding cp poly-prod-list-zero-iff poly-mult-zero-iff
using ks
    by (cases ks, auto simp: poly-monom)
    from sr[OF sr-rt] have sr1:sr\leq1.
    interpret c: map-poly-comm-ring-hom?c ..
    from rt[unfolded cp c.hom-mult c.hom-prod-list poly-mult-zero-iff poly-prod-list-zero-iff]
    show cmod x \leq 1
    proof (standard, goal-cases)
        case 2
        with rtf sr1 show ?thesis by auto
    next
        case 1
        from this ks obtain p}\mathrm{ where p:p}\mathrm{ { set ks
            and rt: poly (map-poly ?c (monom 1 p- [:sr^p:])) x=0 by auto
            from pks(1) have p:p\not=0 by metis
        from rt have }\widehat{x>}=(\begin{array}{l}{\mathrm{ ?c sr \ ` p unfolding c.hom-minus}}
            by (simp add: poly-monom of-real-hom.map-poly-pCons-hom)
    hence cmod x = cmod (?c sr) using p power-eq-imp-eq-norm by blast
    with sr0 sr1 show cmod x}\leq1\mathrm{ by auto
    qed
qed
```


10 An efficient algorithm to compute the growth rate of A^{n}.

```
theory Check-Matrix-Growth
imports
    Spectral-Radius-Theory-2
    Sturm-Sequences.Sturm-Method
begin
hide-const (open) Coset.order
definition check-matrix-complexity :: real mat }=>\mathrm{ real poly }=>\mathrm{ nat }=>\mathrm{ bool where
    check-matrix-complexity A cp d = (count-roots-above cp 1 = 0
        \wedge (poly cp 1 = 0 \longrightarrow (let ord = order 1 cp in
            d + < ord \longrightarrow kernel-dim ((A - 1m (dim-row A)) \mp@subsup{}{m}{m}(d+1))=ord)))
```

lemma check-matrix-complexity: assumes $A: A \in$ carrier-mat $n n$ and $n n$: non-neg-mat A
and check: check-matrix-complexity A (char-poly A) d
shows $\exists c 1 c 2 . \forall k a . a \in$ elements-mat $\left(A \widehat{m}_{m} k\right) \longrightarrow a b s a \leq(c 1+c \mathcal{2} *$ of-nat $k^{\wedge} d$)
proof (rule jnf-complexity-1-real[OF A nn])
have id: dim-gen-eigenspace $A 1(d+1)=$ kernel-dim $\left(\left(A-1_{m}(\operatorname{dim}-r o w ~ A)\right)\right.$ $\left.\widehat{m}_{m}(d+1)\right)$
unfolding dim-gen-eigenspace-def
by (rule arg-cong[of - $-\lambda x$. kernel-dim $\left.\left(x_{m}(d+1)\right)\right]$, unfold char-matrix-def, insert A, auto)
note check $=$ check[unfolded check-matrix-complexity-def
Let-def count-roots-above-correct, folded id]
have fin: finite $\{x$. poly (char-poly A) $x=0\}$
by (rule poly-roots-finite, insert degree-monic-char-poly[OF A], auto)
from check have card $\{x .1<x \wedge$ poly (char-poly A) $x=0\}=0$ by auto
from this[unfolded card-eq-O-iff] fin
have $\{x .1<x \wedge$ poly (char-poly A) $x=0\}=\{ \}$ by auto
thus poly (char-poly A) $x=0 \Longrightarrow x \leq 1$ for x by force
assume poly $($ char-poly A) $1=0 d+1<$ order $1($ char-poly $A)$
with check show dim-gen-eigenspace $A 1(d+1)=$ order 1 (char-poly $A)$ by auto
qed
end

Acknowledgements We thank Fabian Immler for an introduction to continuity proving using HMA.

References

[1] O. Kunar and A. Popescu. From types to sets by local type definitions in higher-order logic. In Proc. ITP 2016. Springer, 2016. To appear.
[2] D. Serre. Matrices: Theory and Applications. Graduate texts in mathematics. Springer, 2002.
[3] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proc. TPHOLs'09, LNCS 5674, pages 452-468. Springer, 2009.
[4] R. Thiemann and A. Yamada. Formalizing Jordan normal forms in Isabelle/HOL. In Proc. CPP 2016, pages 88-99. ACM, 2016.

[^0]: *Supported by FWF (Austrian Science Fund) project Y757.

[^1]: ${ }^{1}$ Let λ and v be some eigenvalue and eigenvector pair such that $|\lambda|>1$. Then $\left|A^{n} v\right|=$ $\left|\lambda^{n} v\right|=|\lambda|^{n}|v|$ grows exponentially in n, where $|w|$ denotes the component-wise application of $|\cdot|$ to vector elements of w.

