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Abstract: In this work we explore how the relationship between one subordinate reporting to two
leaders influences the alignment of the latter with the company’s strategic objectives in an Industry
4.0 environment. We do this through the implementation of quantum circuits that represent decision
networks. This is done for two cases: One in which the leaders do not communicate with each
other, and one in which they do. Through the quantum simulation of strategic organizational design
configurations (QSOD) through 500 quantum circuit simulations, we conclude that in the first case
both leaders are not simultaneously in alignment, and in the second case that both reporting nodes
need to have an alignment probability higher than 90% to support the leader node.

Keywords: quantum strategic organizational design; industry 4.0; quantum circuits

1. Introduction

According to Grant [1], strategic planning in an organization consists of the principle
of the strategic process: “A dialogue through which knowledge is shared and consensus
and commitment toward action and results are achieved.” In this dialogue, described above
as Nemawashi [2] or “catch-ball” [3] by scholars, is where a balance of forces, sometimes
delicate, is sought between the interests of different organizational agents [4]. Under a
strategic organizational design paradigm [5,6], the interrelation of these interdependent
organizational elements shapes complex hierarchical networks [7] and supports decision
making in order to achieve, ideally, a coordination of efforts in pursuit of the organization’s
strategic objectives called organizational alignment. Such alignment efforts can occur in
different organizational environments, although in this paper the authors focus on complex
networked cyber-physical systems in an Industry 4.0 context.

Approaches to qualitatively model organizational alignment have been proposed by
several scholars [8–14]. Less common are approaches that allow quantifying the organiza-
tional alignment [2], where the alignment status of each node is known at each discrete
time interval. The NEMAWASHI approach, based on genetic algorithms, is however com-
putationally very expensive and therefore difficult to implement in practice. Although
the computation of the alignment state of the entire network is theoretically possible with
this method, in practice it is a challenge that leads to an exponential increase in compu-
tational time with increasing network size. For this reason, there is an urgent need to
provide organizational leaders with a fast algorithm to calculate the alignment state of
the organization.

Quantum computing is a novel computing paradigm that could be useful for this
purpose. In quantum computing, information flow and processing are considered to be
physical phenomena governed by the laws of quantum mechanics. It is possible because
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quantum computing makes use of “superposition,” that is, the ability of quantum com-
puters to be simultaneously in multiple different states [15]. Thus, quantum computing
has shown promising performance gains in solving certain problems unattainable for
classical computing. Shor’s algorithm [16] and Grover’s algorithm [17] are two paradig-
matic examples of quantum superior computational performance when compared to
classical algorithms.

Guiding an organization toward the coordinated accomplishment of strategic objec-
tives is a probabilistic process in which decision makers can never be sure that the choice
made is the right one. Decision-makers are conditioned by the simultaneous decisions
of other actors in the organization whose consequences cannot be fully foreseen a priori.
Consequently, these networks can be considered decision networks or acyclic probabilistic
directed graphical models [18] with known conditional probabilities of alignment. As with
the aforementioned genetic algorithm approach, the implementation of this problem as
a Bayesian network is computationally very expensive in the presence of a large number
of nodes.

This work is conceived as a succinct outreach of an important new application of
the previous work on Quantum Strategic Organizational Design (QSOD) [19,20], and
should be referenced as a background by the motivated reader. The QSOD permits real-
time modeling of organizational alignment conditions of complex systems in Industry
4.0. Quantum circuit simulations of QSODs as decision making networks and equivalent
quantum circuits certainly open a large scope of opportunities for the study of the design
of complex networked strategic organizations. As mentioned in the previous mentioned
documents, in this work we depict the owner of the individual process, a complex network
node in Industry 4.0 represented in the form of a decision graph [18], as a quantum
computing unit or qubit [21,22]. This qubit is allowed to have two fundamental states, one
of alignment or asymptotic stability of the Key Performance Indicators (KPIs) defining its
performance [2,23–31], represented by the state |0〉 and another of non–alignment, lack of
such stability, represented by the state |1〉. In the previous work [20], we showed how the
interaction between two agents, an industrial leader and a subordinate reporting to him,
can be interpreted as a dissipative oscillatory system in underdamped mode.

As we illustrate in Figure 1, in this work we add a twist to these configurations by
simulating the configuration in which one subordinate (sender) agent A node reports to
two others (receivers) B and C in two cases: When the nodes receiving the report do not
communicate with each other, and when they communicate with each other. These orga-
nizational configurations under study are indeed extremely relevant since they represent
basic strategic organizational design configurations such as the relationships of hierarchi-
cally related agents (vertical relationships) or supplier–customer interactions along the
value stream (horizontal relationships). In the figure we show the respective topological
equivalent configurations to each case. We aim to investigate the leader’s probability of
alignment, with the strategic objectives of the organization, depending on the state of the
subordinates and their respective conditional probabilities of alignment between them.

The Bloch sphere is the standard qubit geometric representation [32]. The Z-axis
of Bloch’s sphere, of unit radius, becomes the calculation axis whose positive direction
coincides with the state |0〉, and the negative with the state |1〉. We can represent the state
of a qubit given by |Ψ〉 by means of a point on the Bloch sphere with the help of two
parameters (θ, φ), as expressed by Equation (1):

|Ψ〉 = cos
(

θ

2

)
|0〉+ eiφsin

(
θ

2

)
|1〉 . (1)

Our objective is to establish the alignment probability of agents B and C, P(B = |0〉),
and P(C = |0〉) respectively, in dependence of the alignment probability of agent A and
the conditional alignment probabilities between agents A, B, and C. This is accomplished
by simulating hundreds of different quantum circuit configurations.
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Figure 1. Quantum simulation of Strategic Organizational Design (QSOD). Case of three qubits configuration in which one
node reports to two. I. Without communication between the leaders. II. With communication between the leaders.

The work continues as follows: First, Section 2 begins with a description of the
configuration of the quantum circuit computations necessary to simulate the outlined 3–
qubit organizational design configuration. Second, Section 3 presents the two case studies
describing the two presented configurations: (I) Describing the case in which agents B
and C have no communication between each other, and (II) describing the case in which
agents B and C have communication between each other. Throughout the simulation of
numerous quantum circuits, varying the mentioned parameters, an optimal configuration
of them is sought for. Third, in Section 4 we discuss the results obtained and propose an
interpretation in perspective of previous studies and of the working hypotheses. Finally,
in Section 5 we discuss the findings and their implications in a broad context, and future
research directions and limitations are highlighted.

2. QSOD Circuits–3 Qubit Organizational Design Configurations–One Reports to Two

An initial hypothesis of this work is that the leader of the Industry 4.0 organization
benefits from knowing its alignment status with the strategic objectives of the organization.
That is why we will focus on finding answers to the question of how to maximize the
probabilities of alignment of nodes B and C, P(B = |0〉), and P(C = |0〉) respectively,
depending on the individual alignment probabilities of the root node A, as well as their
respective relative probabilities between the nodes given by different parameters in the
two announced cases of study.

2.1. Quantum Circuit–Case I–Agents B and C Have No Communication between Each Other

In this case, as shown in Figure 1I, we will represent a three-qubit system. As explained
in [19,21], this requires the use of three qubits |ΨA〉, |ΨB〉, and |ΨC〉. It should be noted that
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since the system is symmetrical, the position of the nodes (B) and (C) are interchangeable.
We are faced with a three qubit system whereby the combined state can be described as
the tensor product of the individual qubits. The multiple qubit states can be expressed as a
linear combination of the |0〉 and |1〉 states, and the aggregate state can then be represented
as in Equation (2).

|Ψ〉 = |ΨA〉 ⊗ |ΨB〉 ⊗ |ΨC〉
= a0b0c0 |000〉+ a0b0c1 |001〉+ a0b1c0 |010〉+ a0b1c1 |011〉
+ a1b0c0 |100〉+ a1b0c1 |101〉+ a1b1c0 |110〉+ a1b1c1 |111〉

(2)

where:
|ΨA〉 = a0 |0〉+ a1 |1〉 ai ∈ C2

|ΨB〉 = b0 |0〉+ b1 |1〉 bi ∈ C2

|ΨC〉 = c0 |0〉+ c1 |1〉 ci ∈ C2.

Thus it can be said that the quantum system of 3 qubits can be described by a 23-
dimensional complex unit vector |Ψ〉 ∈ C2.

To describe the case in which agents B and C have no communication between each
other we need the following parameters:

• 1− z1 = P(A = |0〉) = 1− P(A = |1〉). Probability of alignment of node A.
• x1 = P(B = |1〉 |A = |0〉). Probability of no–alignment of node B conditioned to the

state of alignment of node A.
• y1 = P(B = |1〉 |A = |1〉). Probability of no–alignment of node B conditioned to the

state of no–alignment of node A.
• x2 = P(C = |1〉 |A = |0〉). Probability of no–alignment of node C conditioned to the

state of alignment of node A.
• y2 = P(C = |1〉 |A = |1〉). Probability of no–alignment of node C conditioned to the

state of no–alignment of node A.

Mathematically speaking, we intend to find the values of (x1, y1, x2, y2, z1) that maxi-
mize the functions P(B = |0〉) = f I(x1, y1, x2, y2, z1) and P(C = |0〉) = gI(x1, y1, x2, y2, z1).
In other words, our challenge reduces to finding the values of [x1, y1, x2, y2, z1]all ∈ [0, 1]
that maximize Equations (3) and (4):

P(B = |0〉) = f I(x1, y1, x2, y2, z1) = ||a0b0c0||2 + ||a0b0c1||2 + ||a1b0c0||2 + ||a1b0c1||2 (3)

P(C = |0〉) = gI(x1, y1, x2, y2, z1) = ||a0b0c0||2 + ||a0b1c0||2 + ||a1b0c0||2 + ||a1b1c0||2. (4)

Based on the principles of quantum circuit design exposed in [19], we present the quan-
tum circuit that represents the interactions of the decision network exposed in Figure 1I
expressed by Equation (5):
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P(B = |0〉) = f I(x1, y1, x2, y2, z1) = (a1b1c1)
2 + (a1b1c2)

2 + (a2b1c1)
2 + (a2b1c2)

2 (3)

P(C = |0〉) = gI(x1, y1, x2, y2, z1) = (a1b1c1)
2 + (a1b2c1)

2 + (a2b1c1)
2 + (a2b2c1)

2 (4)

Based on the principles of quantum circuit design exposed in [1], we present the quantum circuit89

that represents the interactions of the decision network exposed in Figure 1I expressed by Equation 5:90

|ΨC〉 |0〉 U3(
θy2
2 , 0, 0) U3(

−θy2
2 , 0, 0)

|ΨB〉 |0〉 U3(
θy1
2 , 0, 0) U3(

−θy1
2 , 0, 0) U3(

θx1
2 , 0, 0) U3(

−θx1
2 , 0, 0)

|ΨA〉 |0〉 U3(θz1 , 0, 0) • • U3(π, −π
2 , π

2 ) • •

|ΨC〉 U3(
θz2
2 , 0, 0) U3(

−θz2
2 , 0, 0)

|ΨB〉

|ΨA〉 U3(π, −π
2 , π

2 ) •
• • •

(5)
This circuit presents three qubits |ΨA〉, |ΨB〉 and |ΨC〉 which are rotated through quantum91

operators. The respective interpretation of these rotations and the equations to calculate them are92

described in Table 1.93

Table 1. Qubit angles of rotation

Qubit Interpretation Equation

|ΨA〉 The conditional probability z1 = P(A = |1〉) of qubit |ΨA〉 to be in
not–alignment translates into the rotation angle θz1 .

θz1 = 2 arctan
√

z1
1−z1

|ΨB〉 The conditional probability x1 = P(B = |1〉 |A = |0〉) of qubit |ΨB〉 to be in
not–alignment depending on the probability of |ΨA〉 to be in the state |0〉
translates into rotation angle θx1 .

θx1 = 2 arctan
√

x1
1−x1

The conditional probability y1 = P(B = |1〉 |A = |1〉) of qubit |ΨB〉 to be in
not–alignment depending on the probability of |ΨA〉 to be in the state |1〉
translates into rotation angle θy1 .

θy1 = 2 arctan
√

y1
1−y1

|ΨC〉 The conditional probability x2 = P(C = |1〉 |A = |0〉) of qubit |ΨC〉 to be in
not–alignment depending on the probability of |ΨA〉 to be in the state |0〉
translates into rotation angle θx2 .

θx2 = 2 arctan
√

x2
1−x2

The conditional probability y2 = P(C = |1〉 |A = |1〉) of qubit |ΨC〉 to be in
not–alignment depending on the probability of |ΨA〉 to be in the state |1〉
translates into rotation angle θy2 .

θy2 = 2 arctan
√

y2
1−y2

2.2. Quantum Circuit – Case II – Agents B and C have communication between each other.94

In this case, as shown in Figure 1II, we will represent a three-qubit system. As explained in [1,4],95

this requires the use of an additional ancilla-qubit q∗, whose state is given by |Ψ∗〉, that will allow us96

to use certain quantum operations that would otherwise be unfeasible. As a consequence, we are97

faced with a four qubit system whose aggregate state can be expressed as the tensorial product of the98

(5)
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This circuit presents three qubits |ΨA〉, |ΨB〉, and |ΨC〉 which are rotated through
quantum operators. The respective interpretation of these rotations and the equations to
calculate them are described in Table 1.

Table 1. Qubit angles of rotation.

Qubit Interpretation Equation

|ΨA〉
The probability z1 = P(A = |1〉) of qubit |ΨA〉

to be in not–alignment translates into the
rotation angle θz1 .

θz1 = 2 arctan
√

z1
1−z1

|ΨB〉

The conditional probability
x1 = P(B = |1〉 |A = |0〉) of qubit |ΨB〉 to be in
not–alignment depending on the probability of
|ΨA〉 to be in the state |0〉 translates into rotation

angle θx1 .

θx1 = 2 arctan
√

x1
1−x1

The conditional probability
y1 = P(B = |1〉 |A = |1〉) of qubit |ΨB〉 to be in
not–alignment depending on the probability of
|ΨA〉 to be in the state |1〉 translates into rotation

angle θy1 .

θy1 = 2 arctan
√

y1
1−y1

|ΨC〉

The conditional probability
x2 = P(C = |1〉 |A = |0〉) of qubit |ΨC〉 to be in
not–alignment depending on the probability of
|ΨA〉 to be in the state |0〉 translates into rotation

angle θx2 .

θx2 = 2 arctan
√

x2
1−x2

The conditional probability
y2 = P(C = |1〉 |A = |1〉) of qubit |ΨC〉 to be in
not–alignment depending on the probability of
|ΨA〉 to be in the state |1〉 translates into rotation

angle θy2 .

θy2 = 2 arctan
√

y2
1−y2

2.2. Quantum Circuit–Case II–Agents B and C Have Communication between Each Other

In this case, as shown in Figure 1II, we will represent a three-qubit system. As
explained in [19,21], this requires the use of an additional ancilla-qubit q∗, whose state is
given by |Ψ∗〉, that will allow us to use certain quantum operations that would otherwise
be unfeasible. As a consequence, we are faced with a four qubit system whose aggregate
state can be expressed as the tensorial product of the individual qubits. The multiple qubit
state can be expressed as a linear combination of the |0〉 and |1〉 states, then the aggregated
state can be represented as in Equation (6).

|Ψ〉 = |ΨA〉 ⊗ |ΨB〉 ⊗ |ΨC〉 ⊗ |Ψ∗〉
= a0b0c0d0 |0000〉+ a0b0c0d1 |0001〉+ a0b0c1d0 |0010〉+ a0b0c1d1 |0011〉
+ a0b1c0d0 |0100〉+ a0b1c0d1 |0101〉+ a0b1c1d0 |0110〉+ a0b1c1d1 |0111〉
+ a1b0c0d0 |1000〉+ a1b0c0d1 |1001〉+ a1b0c1d0 |1010〉+ a1b0c1d1 |1011〉
+ a1b1c0d0 |1100〉+ a1b1c0d1 |1101〉+ a1b1c1d0 |1110〉+ a1b1c1d1 |1111〉

(6)

where:
|ΨA〉 = a0 |0〉+ a1 |1〉 ai ∈ C2

|ΨB〉 = b0 |0〉+ b1 |1〉 bi ∈ C2

|ΨC〉 = c0 |0〉+ c1 |1〉 ci ∈ C2

|Ψ∗〉 = d0 |0〉+ d1 |1〉 di ∈ C2.

Thus it can be said that the quantum system of 4 qubits can be described by a 24-
dimensional complex unit vector |Ψ〉 ∈ C2.
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To describe the case in which agents B and C have communication between each other
we need following parameters:

• 1− z11 = P(A = |0〉) = 1− P(A = |1〉). Probability of alignment of node A.
• z21 = P(B = |1〉 |A = |1〉). Probability of no–alignment of node B conditioned to the

state of no–alignment of node A.
• z22 = P(B = |1〉 |A = |0〉). Probability of no–alignment of node B conditioned to the

state of alignment of node A.
• x11 = P(C = |1〉 |A, B = |11〉). Probability of no–alignment of node C conditioned to

the state |11〉 of the waveform |ΨA〉 ⊗ |ΨB〉.
• y11 = P(C = |1〉 |A, B = |10〉). Probability of no–alignment of node C conditioned to

the state |10〉 of the waveform |ΨA〉 ⊗ |ΨB〉.
• x21 = P(C = |1〉 |A, B = |00〉). Probability of no–alignment of node C conditioned to

the state |00〉 of the waveform |ΨA〉 ⊗ |ΨB〉.
• y21 = P(C = |1〉 |A, B = |01〉). Probability of no–alignment of node C conditioned to

the state |01〉 of the waveform |ΨA〉 ⊗ |ΨB〉.
Mathematically speaking, we intend to find the values of (x11, y11, x21, y21, z11, z21, z22)

that maximize the functions P(B = |0〉) = f I I(x11, y11, x21, y21, z11, z21, z22) and P(C =
|0〉) = gI I(x11, y11, x21, y21, z11, z21, z22). In other words, our challenge reduces to finding
the values of [x11, y11, x21, y21, z11, z21, z22]all ∈ [0, 1] that maximize Equations (7) and (8):

P(B = |0〉) = f I I(x11, y11, x21, y21, z11)

= ||a0b0c0d0||2 + ||a0b0c0d1||2

+ ||a0b0c1d0||2 + ||a1b0c0d0||2

+ ||a0b0c1d1||2 + ||a1b0c0d1||2

+ ||a1b0c1d0||2 + ||a1b0c1d1||2

(7)

P(C = |0〉) = gI I(x11, y11, x21, y21, z11)

= ||a0b0c0d0||2 + ||a0b0c0d1||2

+ ||a0b1c0d0||2 + ||a1b0c0d0||2

= ||a1b1c0d0||2 + ||a1b0c0d1||2

= ||a0b1c0d1||2 + ||a1b1c0d1||2.

(8)

Based on the principles of quantum circuit design exposed in [19], we present the quan-
tum circuit that represents the interactions of the decision network exposed in Figure 1II
expressed by Equation (9):
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Based on the principles of quantum circuit design exposed in [1], we present the quantum circuit124

that represents the interactions of the decision network exposed in Figure 1II expressed by Equation 9:125

|ΨC〉 |0〉 U3(
θy21

2 , 0, 0) U3(
−θy21

2 , 0, 0)

|Ψ∗〉 |0〉 • •

|ΨB〉 |0〉 U3(
θz21

2 , 0, 0) U3(
−θz21

2 , 0, 0) U3(
θz22

2 , 0, 0) U3(
−θz22

2 , 0, 0)

|ΨA〉 |0〉 U3(θz11 , 0, 0) • • U3(π, −π
2 , π

2 ) • • •

|ΨC〉 U3(
θx21

2 , 0, 0) U3(
−θx21

2 , 0, 0) U3(
θy11

2 , 0, 0) U3(
−θy11

2 , 0, 0)

|Ψ∗〉 • • • •

|ΨB〉 • U3(π, −π
2 , π

2 ) • • U3(π, −π
2 , π

2 ) •

|ΨA〉 • U3(π, −π
2 , π

2 ) • • U3(π, −π
2 , π

2 ) U3(π, −π
2 , π

2 ) •

|ΨC〉 U3(
θy21

2 , 0, 0) U3(
−θy21

2 , 0, 0)

|Ψ∗〉 • •

|ΨB〉 • U3(π, −π
2 , π

2 ) • • U3(π, −π
2 , π

2 )

|ΨA〉 • U3(π, −π
2 , π

2 ) • •
• • •

This circuit presents four qubits |ΨA〉, |ΨB〉, |ΨC〉, |Ψ∗〉 which are rotated through quantum126

operators. The respective interpretation of these rotations and the equations to calculate them are127

described in Table 2.128

Table 2. Qubit angles of rotation

Qubit Interpretation Equation

|ΨA〉 The conditional probability z11 = P(A = |1〉) of qubit |ΨA〉 to be in
not–alignment translates into the rotation angle θz11 .

θz11 = 2 arctan
√

z11
1−z11

|ΨB〉 The conditional probability z21 = P(B = |1〉 |A = |1〉) of qubit |ΨB〉 to be
in not–alignment depending on the probability of |ΨA〉 to be in the state
|1〉 translates into rotation angle θz21 .

θz21 = 2 arctan
√

z21
1−z21

The conditional probability z22 = P(B = |1〉 |A = |0〉) of qubit |ΨB〉 to be
in not–alignment depending on the probability of |ΨA〉 to be in the state
|0〉 translates into rotation angle θz22 .

θz22 = 2 arctan
√

z22
1−z22

|ΨC〉 The conditional probability x11 = P(C = |1〉 |A, B = |11〉) of qubit |ΨC〉
to be in not–alignment depending on the probability of the waveform
|ΨA〉 ⊗ |ΨB〉 to be in the state |11〉 translates into rotation angle θx11.

θx11 = 2 arctan
√

x11
1−x11

The conditional probability y11 = P(C = |1〉 |A, B = |10〉) of qubit |ΨC〉
to be in not–alignment depending on the probability of the waveform
|ΨA〉 ⊗ |ΨB〉 to be in the state |10〉 translates into rotation angle θy11 .

θy11 = 2 arctan
√

y11
1−y11

The conditional probability x21 = P(C = |1〉 |A, B = |00〉) of qubit |ΨC〉
to be in not–alignment depending on the probability of the waveform
|ΨA〉 ⊗ |ΨB〉 to be in the state |00〉 translates into rotation angle θx21.

θx21 = 2 arctan
√

x21
1−x21

The conditional probability y21 = P(C = |1〉 |A, B = |01〉) of qubit |ΨC〉
to be in not–alignment depending on the probability of the waveform
|ΨA〉 ⊗ |ΨB〉 to be in the state |01〉 translates into rotation angle θy21 .

θy21 = 2 arctan
√

y21
1−y21

|Ψ∗〉 The ancilla qubit |Ψ∗〉 is a support qubit and as such is not subject to any
conditional probability rotation.

3. Case study129

In the following case study we move on to simulate thousands of configurations of the parameters130

presented in the quantum circuit Equation 5 and Equation 9 to understand those that provide a131

maximization of the alignment probabilities of agents B and C, P(B = |0〉) and P(C = |0〉), given by132

(9)



Entropy 2021, 23, 374 7 of 14

This circuit presents four qubits |ΨA〉, |ΨB〉, |ΨC〉, and |Ψ∗〉 which are rotated through
quantum operators. The respective interpretation of these rotations and the equations to
calculate them are described in Table 2.

Table 2. Qubit angles of rotation.

Qubit Interpretation Equation

|ΨA〉
The probability z11 = P(A = |1〉) of qubit |ΨA〉 to be in

not–alignment translates into the rotation angle θz11 . θz11 = 2 arctan
√

z11
1−z11

|ΨB〉
The conditional probability z21 = P(B = |1〉 |A = |1〉)
of qubit |ΨB〉 to be in not–alignment depending on the
probability of |ΨA〉 to be in the state |1〉 translates into

rotation angle θz21 .

θz21 = 2 arctan
√

z21
1−z21

The conditional probability z22 = P(B = |1〉 |A = |0〉)
of qubit |ΨB〉 to be in not–alignment depending on the
probability of |ΨA〉 to be in the state |0〉 translates into

rotation angle θz22 .

θz22 = 2 arctan
√

z22
1−z22

|ΨC〉

The conditional probability
x11 = P(C = |1〉 |A, B = |11〉) of qubit |ΨC〉 to be in
not–alignment depending on the probability of the

waveform |ΨA〉 ⊗ |ΨB〉 to be in the state |11〉 translates
into rotation angle θx11.

θx11 = 2 arctan
√

x11
1−x11

The conditional probability
y11 = P(C = |1〉 |A, B = |10〉) of qubit |ΨC〉 to be in
not–alignment depending on the probability of the

waveform |ΨA〉 ⊗ |ΨB〉 to be in the state |10〉 translates
into rotation angle θy11 .

θy11 = 2 arctan
√

y11
1−y11

The conditional probability
x21 = P(C = |1〉 |A, B = |00〉) of qubit |ΨC〉 to be in
not–alignment depending on the probability of the

waveform |ΨA〉 ⊗ |ΨB〉 to be in the state |00〉 translates
into rotation angle θx21.

θx21 = 2 arctan
√

x21
1−x21

The conditional probability
y21 = P(C = |1〉 |A, B = |01〉) of qubit |ΨC〉 to be in
not–alignment depending on the probability of the

waveform |ΨA〉 ⊗ |ΨB〉 to be in the state |01〉 translates
into rotation angle θy21 .

θy21 = 2 arctan
√

y21
1−y21

|Ψ∗〉 The ancilla qubit |Ψ∗〉 is a support qubit and as such is
not subject to any conditional probability rotation.

3. Case Study

In the following case study we move on to simulate thousands of configurations of
the parameters presented in the quantum circuit Equations (5) and (9) to understand those
that provide a maximization of the alignment probabilities of agents B and C, P(B = |0〉),
and P(C = |0〉), given by Equations (7) and (8) respectively. The circuits were simulated
on a qiskit tool, a Python-based [33] quantum computing platform developed by IBM [34],
and the code and additional results can be accessed in this Open Access Repository. We
will evaluate these results in Section 4.

3.1. Simulation–Case I–Agents B and C Have No Communication between Each Other

As shown in Equation (5), in the case of agents B and C with no communication
between each other, we find five variables. As a consequence of Equation (2), the sample
space is too large to use brute force to explore the phase space associated with the solutions
and therefore we will proceed to set one or more variables and see how the others behave
by means of exploratory graphs.

https://osf.io/dg4q9/?view_only=a8348bdee16f4a82b577a8040ad12311
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First of all we investigate the relationship between the alignment of agents B and C
when the alignment of A changes.

In Figure 2 we show the results of the simulations obtained by representing the
alignment probabilities of agents B and C, P(B = |0〉), and P(C = |0〉), for each value
of z1 = P(A = |1〉) ∈ ξ1 and all possible combinations of {x1, y1, x2, y2} ∈ ξ1, whereas
ξ1 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
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Figure 2. Correlation between P(B = |0〉) and P(C = |0〉) for different values of z1 = P(A = |1〉) ∈ ξ1 for the case of no
communication between B and C.

Next we show how the alignment of agents B and C changes when the alignment
probability of A changes, when the relative probability of not–alignment of B and C
conditioned to the not–alignment state of A are the same.

In Figure 3 we show the results of the simulations obtained by representing the
alignment probabilities of agents B and C, P(B = |0〉) and P(C = |0〉), for each value of
y1 = P(B = |1〉 |A = |1〉) = y2 = P(C = |1〉 |A = |1〉) ∈ ξ2, and all possible combinations
of {z1, x1, x2} ∈ ξ2, whereas ξ2 = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

In order to compare these results with those of Section 3.2. The results of Figures 2 and 3
are summarized in 3D in Figure 4a,b respectively.
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Figure 3. Correlation between P(B = |0〉) and P(C = |0〉) for different values of y1 = P(B = |1〉 |A = |1〉) = y2 = P(C =

|1〉 |A = |1〉) ∈ ξ2 for the case of no communication between B and C.

(a) For different values of z1 = P(A = |1〉) ∈ ξ1 for the case of no
communication between B and C.

(b) For different values of y1 = P(B = |1〉 |A = |1〉) = y2 =

P(C = |1〉 |A = |1〉) ∈ ξ2 for the case of no communication
between B and C.

Figure 4. Correlation between P(B = |0〉) and P(C = |0〉).
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3.2. Simulation–Case II–Agents B and C Have Communication between Each Other

As shown in Equation (9), in the case of agents B and C with communication between
each other, we find seven variables. As a consequence of Equation (6), the sample space is
too large to use brute force to explore the phase space associated with the solutions.

As in the previous case, we intend to investigate the behavior of the alignment
probabilities of agents B and C, P(B = |0〉) and P(C = |0〉). The results obtained in [20]
indicate that the alignment probability of P(A = |0〉) that allows for an alignment of the
higher nodes is greater or equal than 90%.

Therefore we set the value of z11 = P(A = |1〉) ∈ [0.01, 0.1], and vary accordingly
the values of z21 = P(B = |1〉 |A = |1〉 = z22 = P(B = |1〉 |A = |0〉)both ∈ [0.01, 0.9],
with changing values of x11 = x21 = x21 = y21, to observe the change in the alignment
probabilities of agents B and C, P(B = |0〉) and P(C = |0〉).

This is shown in Figure 5:

• Figure 5a, and its equivalent in 3D Figure 5b, for P(B = |0〉) and P(C = |0〉) with
fixed z21 = P(B = |1〉 |A = |1〉 = z22 = P(B = |1〉 |A = |0〉)both ∈ [0.01, 0.1],

• Figure 5c, and its equivalent in 3D Figure 5d, for P(B = |0〉) and P(C = |0〉) with
fixed z21 = P(B = |1〉 |A = |1〉 = z22 = P(B = |1〉 |A = |0〉)both ∈ [0.2, 0.5], and

• Figure 5e, and its equivalent in 3D Figure 5f, for P(B = |0〉) and P(C = |0〉) with fixed
z21 = P(B = |1〉 |A = |1〉 = z22 = P(B = |1〉 |A = |0〉)both ∈ [0.6, 0.9].

(a) Fixed z21 = z22both ∈ [0.01, 0.1] (b) Fixed z21 = z22both ∈ [0.01, 0.1]

(c) Fixed z21 = z22both ∈ [0.2, 0.5] (d) Fixed z21 = z22both ∈ [0.2, 0.5]

Figure 5. Cont.
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(e) Fixed z21 = z22both ∈ [0.6, 0.9] (f) Fixed z21 = z22both ∈ [0.6, 0.9]

Figure 5. Alignment Probabilities of P(A = |0〉), P(B = |0〉) and P(C = |0〉) with z11 = P(A = |1〉) ∈ [0.01, 0.1] for different
values of fixed z21 = P(B = |1〉 |A = |1〉) = z22 = P(B = |1〉 |A = |0〉), and combinations of x11 = x21 = x21 = y21.

4. Discussion

In Section 4 we proceed to discuss the results R obtained from the simulations.

4.1. Discussion–Case I–Agents B and C Have No Communication between Each Other

In the case in which agents B and C have no communication between each other, we
can derive following results:

• R1. Agents B and C have an antagonistic alignment probability. The two never have
a high probability of alignment simultaneously. In Figure 2 we can see how, for both
high and low values of alignment for node A, P(A = |0〉) = 0.9 or P(A = |0〉) = 0.1
respectively, the alignment probabilities of agents B and C have a negative correlation.
When one of the two has high alignment probabilities, the other has low ones.

• R2. Agents B and C only agree by chance. In Figure 2 we can see how, as agent A
approaches its random alignment probability of 50%, the alignment probabilities of B
and C become homogeneous until reaching the 50% value as well.

• R3. Quantum phase transition with 90% alignment probability of node A. The
representations of Figure 3 are particular cases of the general solution of Figure 2. In
both we can observe a sharp change of slope of the regression between the alignment
probabilities of B and C. This clearly indicates a quantum phase change at the point
where the probability of non–alignment of agent A is 10%, P(A = |1〉) = 0.1. In more
detail, the observed results show:

– As shown in Figure 3, if the alignment probability of A is very high, P(A =
|0〉) > 0.9 (or P(A = |1〉) < 0.1), and the probability that B and C are in non–
alignment, provided that A is in non–alignment, are equal, y1 = P(B = |1〉 |A =
|1〉) = y2 = P(C = |1〉 |A = |1〉), then the alignment probability of C is very low
and does not vary with the alignment probability of B;

– As shown in Figure 3, if the alignment probability of A is not high, 0.15 <
P(A = |1〉) < 0.90, and the probability that B and C are in non–alignment,
provided that A is in non–alignment, are equal, y1 = P(B = |1〉 |A = |1〉) =
y2 = P(C = |1〉 |A = |1〉), then the alignment probability of B and C present a
positive correlation.

4.2. Discussion–Case II–Agents B and C Have Communication between Each Other

In the case in which agents B and C have communication between each other, we can
derive following results:
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• R4. When B and C are entangled, they work as one. As shown in Figure 5a, when
x11 = x21 = x21 = y21 = z21 = z22 all ∈]0, 0.1] ∪ [0.9, 1[, the quantum circuit is
identical to that of one qubit reporting to other qubit shown in [20], and behaves in a
similar manner.

• R5. Agents B and C interchange energy. Lowering the probability of alignment
of node B, P(B = |0〉), which can be understood as its energy, while maintaining
P(A = |1〉) ∈ [0.01, 0.1], shows how P(C = |0〉) behaves with changing x11 = x21 =
x21 = y21 = z21 = z22. The curves shown quantify this interaction.

5. Conclusions, Limitations and Further Steps
5.1. Conclusions–Case I–Agents B and C Have No Communication between Each Other

M1. The management conclusion derived from R1 for subordinate agent A is stag-
gering and somehow tragic: If the two bosses do not communicate with each other, A will
never be able to serve them in such a way that both are simultaneously in alignment. It
does not matter what A does. This could lead one to believe that agent A’s motivation to
provide a contribution to the value chain may be diminished due to the very organizational
structure in which they are immersed, regardless of capabilities, skills, or attitudes. The
organizational design would therefore impose undesirable boundary conditions for the
adequate development of the activity of the subordinate node.

M2. The conclusions derived from the R2 result are not very encouraging for manage-
ment either. In case the two superior agents do not communicate between them, their joint
alignment is always around the point of equilibrium, which is the probability given by the
chance. As long as the subordinate node has a higher or lower probability of alignment,
their positions will be more or less differentiated. This would imply that the node would
tend not to position itself with either of the two nodes to which it reports and the expected
behavior on its part would be one of a lack of decision-making that could potentially
jeopardize the efficiency of the associated value creation processes.

M3. The conclusions derived from the R3 confirm the results obtained in [20]: Only a
strong alignment probability at lower reporting levels enables alignment at higher levels.
It seems that empirically the threshold is set by 90%. To grow the organizational network
towards strategic objectives, it is necessary to ensure asymptotic stability at the operational
levels of the organization. These lower levels are generally the levels closest to the creation
of value and it seems logical that they are the sustaining base of the organizational structure.

5.2. Conclusions–Case II–Agents B and C Have Communication between Each Other

M4. The conclusions derived from the R4 result is that high levels of alignment
in both reporting agents A and B do not imply a high level of alignment of node C.
In the case in which B and C high levels of alignment in node C are only attained for
an entangled system in which A, B, and C are highly dependent, given the condition
x11 = x21 = x21 = y21 = z21 = z22 all ∈]0, 0.1] ∪ [0.9, 1[.

M5. The conclusions derived from R5 show that the interaction between the superior
agents B and C becomes manifest when the alignment probability of A is fixed at values
higher than 90%. Both superior agents B and C present a non-linear interaction, and
depending on what agent should be prioritized, strategies can be then taken towards one
or toward other.

The proposed approach can be useful to provide knowledge in different areas, such as
project management. For example, this work shows a situation where project specialists
are responsible to two managers. Case I would reflect projects that operate between the
boundaries of divisions with poor communication and inefficient information exchange.
On the other hand, Case II would simulate projects operating in a more participating
environment. In summary, QSOD could help to simulate a number of different organization
designs to better understand how they impact on the achievement of the project objectives
and to orientate the project organization accordingly. Thus, it could be used as a project
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management tool since it enables the assessment of the project development in the context
of several different scenarios.

This study’s major shortcoming is that it deals solely with two of all possible configu-
rations involving three agents. Furthermore, quantum circuit simulations were made in a
classical computer simulator. This reduces certainly their statistical significance, however,
this circumstance is irrelevant for our study at this time and can be neglected.

The results obtained studying the QSOD case of 3 qubits, in which one reports to
two, and leads to new and challenging research questions. To continue providing valuable
contributions to Industry 4.0 leaders as well as members of the research community in
general, future efforts on this research line will concentrate on studying the behavior of
more complex QSOD configurations. For instance, the strategic design of organizations in
Industry 4.0 environments is reinforced with the new knowledge derived from the analyses
and results obtained in this work, since these allow a better understanding of basic motives
that will later be added to explain classic organizational structures such as the matrix form.
To do this, these results must be extended to configurations with 4 qubits.
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