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Abstract: Multiresolution representations of data are known to be powerful tools in data analysis
and processing, and they are particularly interesting for data compression. In order to obtain a
proper definition of the edges, a good option is to use nonlinear reconstructions. These nonlinear
reconstruction are the heart of the prediction processes which appear in the definition of the nonlinear
subdivision and multiresolution schemes. We define and study some nonlinear reconstructions based
on the use of nonlinear means, more in concrete the so-called Generalized means. These means have
two interesting properties that will allow us to get associated reconstruction operators adapted to the
presence of discontinuities, and having the maximum possible order of approximation in smooth
areas. Once we have these nonlinear reconstruction operators defined, we can build the related
nonlinear subdivision and multiresolution schemes and prove more accurate inequalities regarding
the contractivity of the scheme for the first differences and in turn the results about stability. In this
paper, we also define a new nonlinear two-dimensional multiresolution scheme as non-separable,
i.e., not based on tensor product. We then present the study of the stability issues for the scheme
and numerical experiments reinforcing the proven theoretical results and showing the usefulness of
the algorithm.

Keywords: nonlinear; means; multiresolution; subdivision scheme; data compression; stability
analysis

1. Introduction

Multiresolution representations are one of the most efficient tools for data compression,
and in particular for image compression. The multi-scale representation of a signal is well
adapted to quantization or simple thresholding.

We start the algorithm with an input data f L, obtaining a multiresolution version of
the initial data, which is processed according to the desired application in mind. After
decoding the processed representation, we obtain a discrete set f̂ L which is expected to
be close to the original discrete set f L. In order for this to be true, some form of stability is
needed, i.e., we must require that

|| f̂ L − f L|| ≤ σ(ε0, ε1, . . . , εL),

where σ(·, . . . , ·) satisfies

lim
εl→0, 0≤l≤L

σ(ε0, ε1, . . . , εL) = 0.
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Harten’s framework for multiresolution provides an adequate setting for the design
of discrete multiresolution representations [1]. Discrete resolution levels are connected
by inter-resolution operators, named decimation (from fine (k) to coarse (k − 1)) and
prediction (from coarse to fine). These inter-scale operators are directly related to the
discretization and reconstruction operators, which act between the continuous level (where a
function f , related to the discrete data, lives) to each discrete level (where f k lives). The
greatest advantage of Harten’s general framework lies in its adaptability. The fundamental
role played by the reconstruction operator makes it possible to perform specific adaptive
treatments at singularities. In general, this involves data-dependent reconstruction operators,
which lead to nonlinear prediction schemes and, hence, to nonlinear multiresolution
decompositions [1].

Linear multiresolution schemes derived following Harten’s framework can be also
recovered from the theory of wavelets. Many applications have been found for this kind
of algorithms; see, for example, Reference [2,3]. Nonlinearity in these contexts can bring
some improvements when discontinuities are presented in the data.

Some nonlinear multiresolution schemes have been previously studied and they have
been the starting point to the improvement that we propose in this paper. In particular,
we refer to the PPH nonlinear multiresolution scheme presented in Reference [4–6], which
gives quite nice visual effects in the reconstructions. This scheme is proven to be stable
in 1D (see Reference [7]), but nothing is proven for higher dimensions. A possibility to
find nonlinear stable two-dimensional multiresolution schemes is to considered the non-
separable approach introduced in Reference [8]. But a good candidate for the prediction
operator with the right contraction properties was still to be found. In this paper, we present
subdivision and multiresolution schemes based on the use of the so-called generalized
means, which give rise to more accurate contractivity constants according to a crucial
inequality for the first differences of the proposed schemes. This fact allows us to easily
prove more accurate stability results as much in 1D as in 2D. We know some references
where the generalized means have been previously used in different practical applications
with interesting results; see, for example, Reference [9,10].

Since nonlinearity seems to be crucial to get more accurate results, it is also important
to point out the promising role that could play artificial intelligence in order to design
adapted algorithms with optimal properties; see, for example, Reference [11], for papers
on this matter.

The paper is organized as follows: In Section 2, we recall the basic concepts of point
value multiresolution in 2D. In particular, we give the two-dimensional non-separable
multiresolution algorithms to be used. In Section 3, we define and study the new particular
prediction operators based on the generalized means and prove important properties. In
Section 4, we present the stability results giving the main inequality ensuring stability.
Some numerical experiments are given in Section 5. Finally, in Section 6, we present some
conclusions and future perspectives.

2. Harten Multiresolution in 2D

We introduce in this section the basic concepts about multiresolution that we will need
for the rest of the paper. In particular, we will be working mainly in the point value setting.
We refer to the interested reader to Reference [12] for a more detailed description about
multiresolution.

Let us consider the grid in [0, 1]2 given by

Xl = {xl
i1 , xl

i2}
Jl
i1,i2=0, Jl = 2l J0, J0 integer, hl =

1
J02l ,
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and the discretization operator for point values

Dl :

 C([0, 1]2) → V l

f 7→ f l = ( f l
i1,i2

)
Jl
i1,i2=1,

(1)

where f l
i1,i2

, 0 ≤ is ≤ Jl , s = 1, 2 is defined by

f l
i1,i2 := f (xi1 , xi2). (2)

C([0, 1]2) is the space of continuous functions in [0, 1]2, and V l is the space of real
sequences of dimension (Jl + 1)2 related with the resolution of Xl .

An associated reconstruction operatorRl for this discretization is any right inverse of
Dl , which means that, for all f l ∈ V l ,Rl f l ∈ C([0, 1]2) and

f l
i1,i2 = (Rl f l)(xi1 , xi2). (3)

Thus, for the point value setting, the reconstruction operator amounts to an interpola-
tion.

The sequences {Dl} and {Rl} define a multiresolution transform, and the prediction
operator, Pl

l−1 := Dl+1Rl : V l → V l+1, defines an associated subdivision scheme. IfRl is
a nonlinear operator, then the corresponding subdivision and multiresolution schemes are
also nonlinear.

The decimation operator Dl−1
l : V l → V l−1 is always linear and, in our case, can be

expressed as
f l−1
i1,i2

= (Dl−1
l f l)i1,i2 = (Dl−1Rl f l)i1,i2 = f l

2i1,2i2 . (4)

We also need to define the errors that, in this case, are given by

el
j1,j2 := f l

j1,j2 − (Pl
l−1 f l−1)j1,j2 . (5)

It is easy to prove that the errors belong to the null space of the decimation operator;
in fact,

Dl−1
l el

2i1,2i2 = Dl−1
l ( f l

2i1,2i2 − (Pl
l−1 f l−1)2i1,2i2) = f l−1

i1,i2
− Dl−1

l (Pl
l−1 f l−1)2i1,2i2 ; (6)

therefore, taking into account that the prediction operator inherits the consistency property
from the reconstruction operator, i.e., it is a right inverse of the decimation operator, we have

el
2i1,2i2 = 0, (7)

which, in practice, means that there is redundancy in the errors, and it is sufficient to keep
the errors which are located at a position with any odd coordinate.

We now have all the needed ingredients to give the coding and decoding multiresolu-
tion algorithms. Let us denote first:

J : = {(j1, j2) : js ∈ {2is − 1, 2is}, s = 1, 2},
J′ : = J\{j1 = 2i1, j2 = 2i2}.

Then, the mentioned algorithms take the form:
These algorithms, Algorithms 1 and 2, are nothing more than another representation

of the initial data, which is better adapted to processes of compression and denoising.
These processes will be done to the multiresolution representation of the data µ( f L) before
the decompression stage. Notice that the better the nonlinear prediction the larger the
attained compression after simple truncation, since many details would be close to zero. We
would also like to emphasize a strategy that allows Algorithms 1 and 2 to control the rate of
compression, just keeping the chosen percentage of the kept details in the multiresolution
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representation, setting to zero the rest of them. If, on the contrary, one wants to monitor
the total accumulated error that will be expected after pre-processing the multiresolution
of the data and applying the decoding algorithm, then, one needs to consider Algorithm 3,
which includes some slight modifications according to the theoretical result in Theorem 1.

Algorithm 1: µ( f L) = M f L (Coding)

for l = L, . . . , 1
for i1, i2 = 0, . . . , Jl−1

f l−1
i1,i2

= f l
2i1,2i2

for (j1, j2) ∈ J′

el
j1,j2

= f l
j1,j2
− (Pl

l−1 f l−1)j1,j2
end

end
end

Algorithm 2: f L = M−1µ( f L) (Decoding)

for l = 1, . . . , L
for i1, i2 = 0, . . . , Jl−1

for (j1, j2) ∈ J′

f l
j1,j2

= (Pl
l−1 f l−1)j1,j2 + el

j1,j2
end
f l
2i1,2i2

= f l−1
i1,i2

end
end

Algorithm 1 starts descending one scale from the original data and then reorganizes the
coefficient matrix at each step in order to continue working with the significant coefficients
of the multiresolution representation to compute another scale. In Figure 1, we show a
related application in image processing of the cell average version of Algorithm 1, in which
it is easy to observe the scales and the different types of coefficients. In Figure 1, to the
right we see two scales of the multiresolution version of the data. In the upper left corner,
one can see the second step of Algorithm 1 for L = 2 applied to the significative coefficients
resulting after the first step for L = 1. In the upper right, bottom left, and bottom right
corners appear the detail coefficients, which, in some cases, are below a given tolerance
and have been set to zero (this is why they appear in black color.)

Figure 1. Multiresolution representation of the image of a cameraman using L = 2 scales. (Left)
Original image. (Right) Multiresolution representation after L = 2 scales.
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Algorithm 3: µ̃( f L) = M̃ f L (Alternative Coding to monitor the accumulated error)

Given ε
δ = ε

C̃L
for l = L, . . . , 1

for i1, i2 = 0, . . . , Jl−1
f l−1
i1,i2

= f l
2i1,2i2

for (j1, j2) ∈ J′

Compute (Pl
l−1 f l−1)j1,j2 using (9) and choosing the case

according to the index (j1, j2)
el

j1,j2
= f l

j1,j2
− (Pl

l−1 f l−1)j1,j2
end

end
ẽl = tr(el , δ)

end
µ̃( f L) = { f 0, ẽ1, . . . , ẽL}.

3. A Prediction Operator Based on the Generalized Means

Our objective in this section is the definition of an adapted nonlinear prediction
operator with desirable properties regarding to adaption to potential discontinuities, order
of approximation, and stability issues of the associated subdivision and multiresolution
schemes.

First, we define the generalized means, which appear in the definition of the new
prediction operator. The generalized means depending on m ∈ Z of n positive values
x1, x2, . . . , xn are given by

GMm(x1, x2, . . . , xn) :=


(x1x2 · · · xn)

1
n m = 0

(
1
n

n

∑
i=1

xm
i

) 1
m

m 6= 0.

We are interested in the case n = 2, since we will be working in 2D with fourth order
reconstructions, and in the value of the parameter m = −k, k ∈ N\{0}. Therefore, the
considered means read

GMk(x1, x2) := (
2xk

1xk
2

xk
1 + xk

2
)

1
k .

Notice that, in order to apply the GMk mean in the definition of the prediction operator,
we need to redefine it in R2 in the following way:

GMk(x, y) :=


sgn(x)( 2xkyk

xk+yk )
1
k if xy > 0,

0 otherwise,
(8)

where sgn(x) stands for the sign of x.
Some of the basic properties of these means appear in the following lemma,

Lemma 1. For any couples (x, y), (x′, y′) ∈ R2
+, the function GMk, with k ∈ N\{0} satisfies the

following properties:

1. GMi(x, y) ≤ GMj(x, y), if i ≤ j.

2. GM(k) = GMk(x, y), is continuous in k.
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3. GMk(x, y) = GMk(y, x).

4. GMk(−x,−y) = −GMk(x, y).

5. GMk(x, y) = 0, if xy ≤ 0.

6. min{|x|, |y|} ≤ |GMk(x, y)| ≤ max{|x|, |y|}.

We refer to three more properties of these means that will be useful later to attain
adaption in case of discontinuities, order of approximation in smooth areas, and stability
results, respectively.

Lemma 2. (Adaption to discontinuities) For any couple (x, y) ∈ R2
+, i.e., x > 0, y > 0,

|GMk(x, y)| ≤ k√2 min{|x|, |y|}.

Proof. Without lost of generality, we consider x < y:

GMk(x, y) = k

√
2xkyk

xk + yk = x k

√
2yk

xk + yk

≤ k√2 k

√
yk

xk + yk x ≤ k√2 min{x, y}.

Lemma 3. (Order of approximation) For any couple (x, y) ∈ R2
+, i.e., x > 0, y > 0, satisfying

x = O(1), y = O(1), and |x− y| = O(h), then

|GMk(x, y)− x + y
2
| = O(h2).

Proof. In order to get this result, it will be useful to rewrite the GMk means as

GMk(x, y) := (
2xkyk

xk + yk )
1
k = (

xk + yk

2
)(1− (

xk − yk

xk + yk )
2)

1
k .

Then, our proof is based on the following observations:

(a)

| 2xkyk

xk + yk −
xk + yk

2
| = O(h2).

(b) If A > 0, B > 0, satisfy |A− B| = O(h2), then

|A
1
k − B

1
k | = O(h2),

(c)

| x
k + yk

2
− (

x + y
2

)k| = O(h2).

The proof of the first observation comes from the fact that

2xkyk

xk + yk =
xk + yk

2
(1− (

xk − yk

xk + yk )
2);
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hence,

| 2xkyk

xk + yk −
xk + yk

2
| = | − xk + yk

2
(
(x− y)(xk−1 + xk−2y + . . . + yk−1)

xk + yk )2| = O(h2).

For the second observation, we simply apply the basic Lagrange theorem to the
function f (x) = x

1
k ; thus,

|A
1
k − B

1
k | = |1

k
c

1
k−1(A− B)| = O(h2),

with c an intermediate point between A and B, and then c = O(1).
Finally, to prove the third observation, we use the following developments using the

Newton binomial theorem,

(
x + y

2
)k =

1
2k (

k

∑
j=0

(
k
j

)
xjyk−j),

xk + yk

2
=

1
2k ((1 + 1)k−1xk + (1 + 1)k−1yk)

=
1
2k (

k−1

∑
j=0

(
k− 1

j

)
xk +

k−1

∑
j=0

(
k− 1

j

)
yk).

Using the following very well known properties of the combinatorial numbers(
k
j

)
=

(
k− 1

j

)
+

(
k− 1
k− j

)
and

(
k− 1

j

)
=

(
k− 1
k− j

)
,

we can regroup terms and get

| x
k + yk

2
− (

x + y
2

)k| =
1
2k (

k−1

∑
j=1

(
k− 1

j

)
xj(xk−j − yk−j) +

(
k− 1
k− j

)
yk−j(yj − xj))

=
1
2k (

k−1

∑
j=1

(
k− 1

j

)
(xj − yj)(xk−j − yk−j)) = O(h2),

since xs − ys = (x− y)(xs−1 + xs−2y + . . . + xys−2 + ys−1).
Finally, combining the three observations, it is trivial to finish the proof.

Lemma 4. (Lipchitz, needed for stability reasons) For any couples (x, y), and (x′, y′) ∈ R2,

|GMk(x, y)− GMk(x′, y′)| ≤ k√2 max{|x− x′|, |y− y′|}.

Proof. The property is trivial if xy ≤ 0 and x′y′ ≤ 0.
Let us consider now the case xy > 0 and x′y′ ≤ 0, and let us suppose, without lost of
generality, xx′ ≤ 0; then,

|GMk(x, y)− GMk(x′, y′)| = |GMk(x, y)| ≤ k√2|x| ≤ k√2|x− x′|
≤ k√2 max{|x− x′|, |y− y′|}.

The same arguments are true for the case xy ≤ 0 and x′y′ > 0.
If xy > 0 and x′y′ > 0 with xx′ > 0, we can use the mean value theorem for several
variables, and we directly get

|GMk(x, y)− GMk(x′, y′)| ≤ ||∇GMk(θ)||∞ max{|x− x′|, |y− y′|},
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where θ is a point in the segment between (x, y) and (x′, y′). Therefore, the proof will be
finished for this case just by getting a suitable bound in the infinity norm for the gradient.
Computing ∂xGMk, we get

∂xGMk =
1
k
(

2xkyk

xk + yk )
1
k−1(

2kxk−1yk(xk + yk)− 2kxk−1xkyk

(xk + yk)2 ),

and simplifying the last expression ∂xGMk = k
√

2 yk+1

(xk+yk)
1
k +1

. By symmetry, we also have

∂yGMk =
k
√

2 xk+1

(xk+yk)
1
k +1

. Thus,

|∂xGMk|+ |∂yGMk| =
k√2(| yk

xk + yk
y

(xk + yk)
1
k
|+ | xk

xk + yk
x

(xk + yk)
1
k
|) ≤ k√2,

and this finishes the proof of this case.
The remaining case is when xy > 0, x′y′ > 0 and xx′ < 0. We can proceed as follows:

|GMk(x, y)− GMk(x′, y′)| ≤ |GMk(x, y)|+ |GMk(x′, y′)| ≤ k√2|x|+ k√2|x′|
=

k√2|x− x′| ≤ k√2 max{|x− x′|, |y− y′|}.

For the upcoming proofs, we will also need the following Lemma.

Lemma 5. The function Z defined in R3 by Z(x, y, z) = x
2 −

1
8 (GMk(x, y) + GMk(x, z)) satis-

fies the following properties:

1. |Z(x, y, z)| ≤ |x|2 ,
2. sign(Z(x, y, z) = sign(x).

Proof. The proof for the first point comes from the fact that |GMK(x, y)| ≤ k
√

2|x| and
|GMK(x, z)| ≤ k

√
2|x| according to property 6 of Lemma 1 and Lemma 2. Thus,

|1
8
(GMk(x, y) + GMk(x, z))| ≤

k
√

2
4
|x| ≤ 1

2
|x| for k ≥ 1.

Therefore, |Z(x, y, z)| ≤ |x|2 , and the first affirmation is proven. Then, second point is
trivially true just by using the previous point.

We now use these properties of the Generalized means for our purposes.

Definition 1. Given the uniform grid X = (xk
j )j ∈ Z at scale L with grid spacing h, we define the

prediction operator GL+1
L based on the generalized means by GL+1

L : l∞ → l∞,

f L+1 = GL+1
L f L :=


f L+1
2j = f L

j ,

f L+1
2j+1 =

f L
j + f L

j+1
2 − h2

4 GMk(D f L
j , D f L

j+1),

where D f L
s :=

f L
s−1−2 f L

s + f L
s+1

2h2 stands for the second order divided difference.

In Reference [4], it is proven that the replacement of the arithmetic mean in (1) for an
adequate nonlinear mean gives rise to desirable properties regarding adaption to potential
singularities, while maintaining the approximation order. The gain using the generalized
means instead of only the Harmonic mean (which coincides with GM1) as in Reference [4]
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is noticeable both in practice, giving better adaption to potential singularities (see Lemma
2), and in theory, obtaining better Lipchitz constants (see Lemma 4), which gives rise to
a better stability behavior and simpler stability results. We are going to focus now in
what concerns stability results. To start with, we can introduce the following proposition,
which is the basis of the stability proofs for the associated subdivision schemes in 1D (see
Reference [13]), and it will be also needed for the 2D non-separable multiresolution that
we present.

Proposition 1. If, removing L for simplicity, f̂ = GL+1
L f , ĝ = GL+1

L g, then

1. ‖D f̂ ‖∞ ≤ 1
2‖D f ‖∞,

2. || f̂ − ĝ||∞ ≤ || f − g||∞ +
k√2
4 h2||D f − Dg||∞,

3. • |D( f̂ j − ĝj)| ≤
k√2
4 ‖D( f − g)‖∞, for j = 2n + 1,

• |D( f̂ j − ĝj)| ≤ 2+ k√2
4 |D( f − g)‖∞, for j = 2n.

Proof. Let us prove the first point. Considering the indexes j = 2n, we have, using
Definition 1,

D f̂2n =
f̂2n−1 − 2 f̂2n + f̂2n+1

2h2

=
fn−1+ fn

2 − h2

4 GMk(D fn−1, D fn)− 2 fn +
fn+ fn+1

2 − h2

4 GMk(D fn, D fn+1)

2h2

=
D fn

2
− 1

8
(GMk(D fn, D fn−1) + GMk(D fn, D fn+1)).

Using now property 1 of Lemma 5, we get |D f̂2n| ≤ |D fn |
2 .

For the case j = 2n + 1, we have

D f̂2n+1 =
f̂2n − 2 f̂2n+1 + f̂2n+2

2h2

=
fn − 2( fn+ fn+1

2 − h2

4 GMk(D fn, D fn+1)) + fn+1

2h2

=
GMk(D fn, D fn+1)

4
.

Using property 6 of Lemma 1, |D f̂2n+1| ≤ 1
4 max{|D fn|, |D fn+1|}.

Thus, ||D f̂ ||∞ ≤ 1
2 ||D f ||∞.

Let us prove now the second point. Again, we consider separately the indexes j = 2n
and j = 2n + 1. For j = 2n, we have

| f̂2n − ĝ2n| = | fn − gn|;

therefore, | f̂2n − ĝ2n| ≤ || f − g||∞.
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For j = 2n + 1,

| f̂2n+1 − ĝ2n+1| = | fn + fn+1

2
− h2

4
GMk(D fn, D fn+1)

−( gn + gn+1

2
− h2

4
GMk(Dgn, Dgn+1))|

≤ | fn − gn|+ | fn+1 − gn+1|
2

+
h2

4
|GMk(D fn, D fn+1)− GMk(Dgn, Dgn+1)|

≤ || f − g||∞ +
k
√

2
4

h2max{|D fn − Dgn|, |D fn+1 − Dgn+1|}

≤ || f − g||∞ +
k
√

2
4

h2||D f − Dg||∞.

Finally, to prove the third point, we also consider j = 2n and j = 2n + 1. For j = 2n,

|D( f̂ j − ĝj)| = | f̂2n−1 − 2 f̂2n + f̂2n+1

2h2 − ĝ2n−1 − 2ĝ2n + ĝ2n+1

2h2 |

= |D fn

2
− 1

8
(GMk(D fn, D fn−1) + GMk(D fn, D fn+1))

−(Dgn

2
− 1

8
(GMk(Dgn, Dgn−1) + GMk(Dgn, Dgn+1)))|

=
|D fn − Dgn|

2
+

1
8
|GMk(D fn, D fn−1)− GMk(Dgn, Dgn−1)|

+
1
8
|GMk(D fn, D fn+1)− GMk(Dgn, Dgn+1)|

≤ ||D f − Dg||∞
2

+
k
√

2
8

max{|D fn − Dgn|, |D fn−1 − Dgn−1|}

+
k
√

2
8

max{|D fn − Dgn|, |D fn+1 − Dgn+1|}

≤ 2 + k
√

2
4
||D f − Dg||∞.

For j = 2n + 1,

|D( f̂ j − ĝj)| = |GMk(D fn, D fn+1)

4
− GMk(Dgn, Dgn+1)

4
|

≤
k
√

2
4

max{|D fn − Dgn|, |D fn+1 − Dgn+1|}

≤
k
√

2
4
||D f − Dg||∞.

Notice that ρ = 2+ k√2
4 < 1 occurs for k > 1, which lets outside of the upcoming

stability results to the previous PPH reconstruction operator which is recovered in this
setting for k = 1. This means that, for k > 1, we get the contractivity of the second order
differences in only one step of subdivision, and this simplifies in a great measure the theory
and allows us to obtain stability also for two dimensions in an easy way, as shown in next
section.

4. Stability Results for a Non Separable Multiresolution in 2D

Let us consider the non-separable multiresolution transformations given by Algo-
rithms 1 and 2 in Section 2. These algorithms are quite general and valid for a large range
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of prediction operators. But, in order to apply the coming stability theorem, we need to
define a prediction operator PL+1

L which satisfies several properties. These properties are
the following:

•
||(PL+1

L f L)− (PL+1
L gL)||∞ ≤ || f L − gL||∞ + C||δ( f L − gL)||∞,

where δ is a linear operator verifying the contraction property in the next point.
•

||δ(PL+1
L f L − PL+1

L gL)||∞ ≤ ρ||δ( f L − gL)||∞
with ρ < 1.

We easily define our prediction operator in 2D in the following way. Supposing the
data at scale f L is already known, we compute the data at scale f L+1 using the proposed
GL+1

L one-dimensional prediction operator defined in Section 3. Since our one-dimensional
prediction is local, it is the two-dimensional prediction, as well. In Figure 2, we can see
the disposition of the considered cells in order to compute the proposed 2D prediction
operator GL+1

L .

Figure 2. Disposition of the cells to compute the prediction operator GL+1
L .

If we suppose that we have the values f L
i,j, then we propose the following calculations

to get the needed values f L+1
2i+1,2j, f L+1

2i+1,2j+2, f L+1
2i,2j+1, f L+1

2i+2,2j+1, f L+1
2i+1,2j+1 :

(1) 1
2 ( f L

i,j + f L
i+1,j)−

h2

4 GMk(Dx,j f L
i , Dx,j f L

i+1),

(2) 1
2 ( f L

i,j+1 + f L
i+1,j+1)−

h2

4 GMk(Dx,j+1 f L
i , Dx,j+1 f L

i+1),

(3) 1
2 ( f L

i,j + f L
i,j+1)−

h2

4 GMk(Di,y f L
j , Di,y f L

j+1),

(4) 1
2 ( f L

i+1,j + f L
i+1,j+1)−

h2

4 GMk(Di+1,y f L
j , Di+1,y f L

j+1),

(9)

(5) 1
4 ((1) + (2) + (3) + (4)). (10)

Of course, the values at the positions (2i, 2j) are just projections from the coarser level,
i.e., f L+1

2i,2j = f L
i,j.

Notice that, from the definition, we immediately get that the required properties for

the prediction operator are satisfied, just by using Proposition 1. In fact, ρ = 2+ k√2
4 < 1 for

k > 1, δ = h2D, ||δ||∞ = 2, C =
k√2
4 .

With all these ingredients, we can give now the following Theorem regarding the
stability of the 2D multiresolution transform coming from the use of the 2D prediction
operator associated to GL+1

L defined through the use of the Generalized means (8) for k > 1.



Mathematics 2021, 9, 533 12 of 15

Theorem 1. The 2D non-separable multiresolution transform associated with the prediction opera-
tor GL+1

L related with the Generalized means GMk for k > 1 satisfies

|| f L − gL||∞ ≤ C̃(|| f 0 − g0||∞ +
L

∑
l=1
||e( f )l − e(g)l ||∞),

where C̃ = 1 + C||δ||∞
1−ρ = 4− k√2

4−2 k√2
. Therefore, we get the stability of the decoding multiresolution

transformation.

The proof of this theorem is a particularization of a general proof for prediction
operators that contract in one step that can be found in Reference [8].

4.1. A Specific Coding Algorithm Controlling the Committed Error

Given a prescribed tolerance ε, using Theorem 1, one can control how to carry out the
truncation of the details at each scale of the multiresolution pyramid in order to ensure this
requirement, that is, having the final committed error bounded by the specified ε. In this
case, one loses control of how much compression is attained in favor of controlling the final
error at the decompression stage. We now give a slightly modified version of Algorithm 1
such that the total accumulated error is under control as explained above. Notice that, in
order to decompress the signal, one just needs to follow the same decompression Algorithm
2 without any change applied to the truncated version of the multiresolution representation
of the data µ̃( f L). We use the following truncation operator ẽ = tr(e, δ), defined as follows:

tr(e, δ)j :=
{

ej if |ej| ≥ δ,
0 otherwise,

for all entries ẽj of the vector ẽ.

5. Numerical Experiments

In this section, we offer some numerical tests to compare our proposed 2D non-
separable multiresolution algorithm with other existing multiresolution transformations
in the literature. At the same time, we will verify the numerical stability and the overall
performance of the schemes. Let us consider a discrete uniform grid with 65× 65 points in
the rectangle [−5, 5]× [−5, 5] and the function

f (x, y) :=


3 cos ( x2+y2

3 )

3+x2+y2 , if x ≤ 1
2

3 cos ( x2+y2
3 )

3+x2+y2 + 10, otherwise.

Since f (x, y) is a discontinuous function with a jump along a curve (the straight line x = 1
2 ),

we can expect that nonlinear methods will work much better in this case than their linear
counterparts, which are known to produce artificial maxima and minima around the jump
discontinuity. These artificial maxima and minima are not reduced by taking smaller grid
sizes when using linear methods. These undesirable features are widely known as Gibbs
effects [14].

We consider the discretization of the function by point values F = ( fi,j) in the given
rectangle. From these data, we will perform a multiresolution decomposition, we will
keep a percentage of the details, and then we will decode the processed multiresolution
version of the data to obtain an approximation to the original data. We take into account
the following prediction operators:

• LAG stands for the tensor product multiresolution transform based on fourth order
accurate Lagrange prediction operator. This transform is linear and, therefore, stable,
but it does not adapt to discontinuities.
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• ENO stands for the tensor product multiresolution transform based on fourth order
accurate ENO prediction operator. This transform is nonlinear and obtains acceptable
resolution of the edges when noise is not present, and the discontinuities are well
defined. However, it presents stability problems, forcing to keep the majority of the
details to get a appropriate performance.

• GM1 stands for the proposed non-separable multiresolution scheme with k = 1.
• GM2 stands for the proposed non-separable multiresolution scheme with k = 2.
• GM3 stands for the proposed non-separable multiresolution scheme with k = 3.

The last three considered multiresolution transforms GM1, GM2, GM3 are nonlinear
by definition and theoretically stable, as proven in Theorem 1.

In our experiment, we have descended two scales in the multiresolution algorithm, and
we have kept only 7% of the details. In Figure 3, we see the original function to the top-left,
and the obtained reconstruction using LAG to the top-right, using ENO to the bottom-left
and using GM1 to the bottom-right. It is immediate to see how the nonlinear scheme GM1
performs better. Gibbs effects are observed in the reconstruction LAG. Stability problems
are present for ENO, which traduce in undesirable visual effects around the discontinuity.
In Figure 4, we see how the algorithms GM2 and GM3 improve progressively the accuracy
in the definition of the discontinuity. This fact comes from property of Lemma 2. All
these visual appreciations can be reinforced with the numerical results offered in Table 1.
In particular, we clearly see the Gibbs effects of LAG, the instabilities of ENO, and the
improvement of GMk with increasing k by paying attention to the fourth column, where
the infinity norm of the errors between the original signal and the reconstructed signal
are shown. All these computations and graphical representations were carried out using
MATLAB under an Intel(R) Core(TM) i7-3770 @ 3.40 GHz processor with 8.00 Gb of RAM
memory.

Table 1. Obtained quality after the compression (93%) and decompression process using 2 scales of
different MR algorithms: LAG, ENO, GM1, GM2, GM3 without error control strategies.

%COM 93%

Norm ||F− F̃||1 ||F− F̃||2 ||F− F̃||∞
LAG 0.16049 0.07714 0.98302
ENO 0.17761 0.13827 2.07510
GM1 0.05075 0.00436 0.18657
GM2 0.05379 0.00453 0.18561
GM3 0.05140 0.00429 0.17322

Figure 3. Cont.
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Figure 3. Obtained reconstructions after the compression (93%) and decompression process using 2 scales of different MR
algorithms. Top-left: Original, Top-right: LAG, Bottom-left: ENO, Bottom-right: GM1.

Figure 4. Obtained reconstructions after the compression (93%) and decompression process using 2 scales of different MR
algorithms. Top-left: Original, Top-right: GM1, Bottom-left: GM2, Bottom-right: GM3.

Remark 1. This test could simulate the compression of real geographical data, elevations, or depths
of difficult access areas, for instance, in oceanography. The presented methods are designed to work
well, especially where cliffs and similar terrain irregularities are encountered.

6. Conclusions and Perspectives

We have defined a new nonlinear reconstruction operator adapted to singularities
which is based on the Generalized means GMk for k ≥ 1. Using a non-separable strategy,
we have defined new nonlinear non-separable 2D multiresolution schemes for which the
stability is easy to prove (see Reference [8]). In fact, we give a specific stability result for
all these presented schemes. The validity of the theoretical results has been tested in a
numerical experiment, where one can observe certain improvements for k increasing. This
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improvement is in agreement with the better obtained theoretical bounds, since the larger k
the lower k

√
2. The overall performance of the schemes is quite acceptable, avoiding Gibbs

effects and instabilities due to the presence of discontinuities in the original data.
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