
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Integrating Provenance Capture and UML with
UML2PROV: Principles and Experience

Carlos Sáenz-Adán, Beatriz Pérez, Francisco J. García-Izquierdo, Luc Moreau

Abstract—In response to the increasing calls for algorithmic accountability, UML2PROV is a novel approach to address the existing
gap between application design, where models are described by UML diagrams, and provenance design, where generated provenance
is meant to describe an application’s flows of data, processes and responsibility, enabling greater accountability of this application. The
originality of UML2PROV is that designers are allowed to follow their preferred software engineering methodology to create the UML
Diagrams for their application, while UML2PROV takes the UML diagrams as a starting point to automatically generate: (1) the design
of the provenance to be generated (expressed as PROV templates); and (2) the software library for collecting runtime values of interest
(encoded as variable-value associations known as bindings), which can be deployed in the application without developer intervention.
At runtime, the PROV templates combined with the bindings are used to generate high-quality provenance suitable for subsequent
consumption. UML2PROV is rigorously defined by an extensive set of 17 patterns mapping UML diagrams to provenance templates,
and is accompanied by a reference implementation based on Model Driven Development techniques. A systematic evaluation of
UML2PROV uses quantitative data and qualitative arguments to show the benefits and trade-offs of applying UML2PROV for software
engineers seeking to make applications provenance-aware. In particular, as the UML design drives both the design and capture of
provenance, we discuss how the levels of detail in UML designs affect aspects such as provenance design generation, application
instrumentation, provenance capability maintenance, storage and run-time overhead, and quality of the generated provenance. Some
key lessons are learned such as: starting from a non-tailored UML design leads to the capture of more provenance than required to
satisfy provenance requirements and therefore, increases the overhead unnecessarily; alternatively, if the UML design is tailored to
focus on addressing provenance requirements, only relevant provenance gets to be collected, resulting in lower overheads.

Index Terms—provenance, PROV, provenance generation, template

F

1 INTRODUCTION

P ROVENANCE has been defined by the W3C as “the
record about entities, activities, and people involved in

producing a piece of data or thing, which can be used to
form assessments about its quality, reliability or trustwor-
thiness” [1]. Harnessing the potential of provenance allows
a great number of benefits such as making systems account-
able –e.g., by explaining how decisions were reached– or
verifying and reproducing a data product [2]. With such
tangible benefits, it is no wonder that in recent years,
provenance has rapidly gained much traction in different
application domains ranging from forest management to
climate science, from medicine to business application [2],
[3], [4]. This growing interest in provenance is evidenced by
the vast scientific literature that has been reviewed by sev-
eral surveys [2], [5] which study different solutions to make
applications provenance-aware, i.e. to design applications
keeping in mind the provenance capabilities. The traction in
provenance together with the emerging provenance-aware
systems have led the provenance community to publish the
W3C PROV family of specifications [1] in order to increase
interoperability between systems. Several toolkits have been

● Carlos Sáenz-Adán, Beatriz Pérez, and Francisco J. García-Izquierdo are
with the Department of Mathematics and Computer Science, University
of La Rioja, La Rioja, Spain.
E-mail: {carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

● Luc Moreau is with the Department of Informatics, King’s College London,
London, UK.
E-mail: luc.moreau@kcl.ac.uk

Manuscript received on Wednesday 15th January, 2020

developed supporting PROV aiming at facilitating the soft-
ware engineer’s tasks of creating, storing, reading and ex-
changing provenance [6], [7]. Nevertheless, not only do such
tools lack a way of deciding what provenance information
should be considered, but they also do not explain how soft-
ware should be designed and implemented for provenance
collection. In this context, considering the use of provenance
at design time constitutes a great advantage to support
software designers in making provenance-aware systems. In
this line, the Provenance Incorporation Methodology (PrIMe) [8]
was introduced to adapt applications to be provenance-
aware. However, whilst this methodology has demonstrated
promising results [8], PrIMe is standalone, that is, it does not
integrate with existing software engineering methodologies,
which makes it challenging to use it in practice.

In the realm of software engineering, a vast amount of
techniques have been proposed to increase the quality of
software products, while reducing their development time
and preventing failures in applications’ conception, design,
and construction. Of those techniques, the Unified Modelling
Language (UML) [9] is considered as the most widespread
standard for designing object-oriented applications in in-
dustry [10]. Although UML comprises many types of dia-
grams aiming at describing different perspectives of a sys-
tem (e.g., structural information or behaviour), it does not
provide specific support for provenance. Concretely, it lacks
specific tools to design systems that can answer questions
such as what is the set of activities that have led a particular
entity to be as it is?, or what are the previous states that the
entity has gone through? Moreover, developing or adapting

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

var:input

var:output

var:trigger

var:operation

used

wasGeneratedBy

w
as

D
er

iv
ed

Fr
om

w
as

A
ss

oc
ia

te
d
W

it
hwasAttributedTo

wasStartedBy

prov:value var:inputValue

prov:value var:outputValue

ex:inParam1

ex:outParam1

ex:toUpperCase

used

wasGeneratedBy

w
as

D
er

iv
ed

Fr
om

was
As

so
cia

te
dW

ith

wasAttributedTo

wasStartedBy

prov:value "carlos"

prov:value "CARLOS"

ex:Carlos

PROV documentPROV template Set of bindings

var:user

ex:startToUpperCase

ex:startToUpperCase

"@value": "carlos",
"@type"="xsd:String"
"@value": "CARLOS",
"@type"="xsd:String"

Fig. 1. From left to right, a graphical illustration of: a PROV template, representing the design of the provenance, a set of bindings, linking variables
from the PROV template with values, and a PROV document, resulting after expanding the previous PROV template with the set of bindings.

software applications for collecting provenance from the
design phase constitutes a cumbersome task that may entail
significant changes to the application design [8]. Thus, the
problem with the current state of the art is that designers
and developers are forced to cope with several issues such
as being knowledgeable about provenance, interweaving
provenance aspects into the application’s diagrams (usually
making them complex and unreadable), or maintaining
both application and provenance-specific code. Against this
background, PROV-Template [3] has been proposed as a
declarative approach to creating provenance compatible
with the PROV standard. It offers great benefits with re-
spect to previous proposals in terms of reduction of both
storage needs, and development and maintenance effort,
thanks to the separation of concerns between the design
of the provenance to be generated (represented by PROV
templates) and the collected provenance data (expressed by
bindings). However, the use of PROV-Template does not
free software designers from the need to be familiar with
provenance. Thus, a research question is how to facilitate the
design and collection of provenance by using as source the
application’s UML diagrams that model the functionality
of the application, while leveraging existing tools such as
PROV-Template to generate provenance. This question is to
be investigated from a software engineering perspective,
with a view to understand how a solution can facilitate
development undertaken by software engineers.

This paper’s proposal is UML2PROV, with three con-
tributions over the state of the art. First, we present
UML2PROV, a conceptual proposal that, starting from the
UML design of an application, automatically generates: (i)
the structure of the provenance to be generated (i.e. the
PROV templates), and (ii) a library to be linked with the
application to capture provenance data during the appli-
cation execution (i.e. the Bindings Generation Module, also
called BGM). Second, we give a reference implementation
of UML2PROV. Third, we demonstrate the feasibility of
UML2PROV by means of an evaluation that shows sig-
nificant benefits of the approach. These benefits, which
will appeal to designers in early stages of the develop-
ment process, are mainly related to: (1) design and devel-
opment, since we provide a way to include provenance
capabilities during the design phase without changing the
way in which software designers use UML (provenance is
handled automatically from such UML diagrams), and (2)
capture of provenance, since it is performed automatically in
a non-intrusive manner thanks to the BGM generated by
UML2PROV, and which provides clear benefits over more

traditional approaches of provenance capture. While we
partially described in previous publications [11], [12] our
first attempts towards the definition of UML2PROV, we
now provide a rigorous revision and an extended version
of those works. This paper, together with its extensive sup-
plementary material [13], explains our approach for the first
time in its entirety. More specifically, we propose a new set
of 17 patterns mapping UML diagrams to PROV templates,
which rigorously revises and reformulates those partially
presented in [11], [12]. In addition, the approach is now
accompanied by a complete reference implementation of
UML2PROV [14], which includes an event-based proposal
of BGMs. Finally, this paper comprises an extensive evalua-
tion, not included in previous works, which not only shows
the benefits and costs of using UML2PROV, but it also
analyses how different aspects regarding the UML design
(the level of detail, number of UML diagrams involved, etc.)
could affect the design and capture of provenance.

This paper is organized as follows: after the background
Section 2, Section 3 gives an overview of UML2PROV. Sec-
tion 4 describes our approach to translate UML Diagrams to
PROV templates, while the bindings generation is described
in Section 5. Section 6 explains a reference implementation
of UML2PROV. We evaluate the UML2PROV feasibility in
Section 7. Sections 8 and 9 discuss our proposal and its
threats to validity, respectively. Last Sections present related
work, conclusions and further work.

2 BACKGROUND

We assume the reader is familiar with basic terminology
of UML Sequence (SqDs), State Machine (SMDs) and Class
(CDs) Diagrams (further details we refer the reader to [9]).
As for PROV, and because of its relevance to this work, we
provide some background information regarding the PROV
Data Model (PROV-DM) [15], as well as PROV-Template [3],
focusing on those aspects involved in our proposal.

The PROV Data Model (PROV-DM) [15] is based around
three key elements, together with their relationships. Fig-
ure 1 depicts on the right-hand side a graphical example
of a PROV document, where the three key elements of
PROV are included: Entity, Activity and Agent, respectively
represented by yellow ovals, blue rectangles and orange
pentagons. PROV defines an Entity as a physical, digital,
conceptual or other kind of thing with some fixed aspects.
An Activity is defined as an occurrence of something tak-
ing place over a period of time and acting upon or with
entities. Finally, an Agent is something that bears some
form of responsibility for an activity, an entity or another

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

2

OCL
constraints

1

3

satisfy

Software
designer

Software
developer Application

(base code)

Bindings Generation Module (BGM)

Context
independent
component

Context
dependent
component

out

outin

in

in

Provenance
consumer

Bindings

PROV
templates

PROV
documents

UML
diagrams

out

out

UML2PROV Template
expander

involved tools

runtime element

design time element

Legend

Fig. 2. The architecture of UML2PROV approach

agent. These elements can be related with each other by
means of associations, among which we highlight: used,
which is the beginning of utilizing an entity by an activity;
wasGeneratedBy, which is the completion of production of
a new entity by an activity; wasDerivedFrom, which is a
transformation of an entity into another; wasAssociatedWith,
which is an assignment of responsibility to an agent for an
activity; wasAttributedTo, which is the ascribing of an entity
to an agent; and finally, wasStartedBy, which is when an
activity is deemed to have been started by an entity. In
addition, the PROV Data Model includes other relationships
(not appearing in Figure 1) of relevance to this work, such
as wasInvalidatedBy, which is the start of the destruction,
cessation or expiring of an existing entity by an activity;
specializationOf, utilised for showing an entity which shares
the aspects of another entity, but also has more aspects; and
hadMember, used for stating the members of an entity.

PROV-Template [3] builds on top of PROV as a templat-
ing system for provenance by drawing a distinction between
the provenance design and the creation of provenance data.
It is made up of three key elements. First, PROV Templates
offer a language to design the provenance to be generated.
They are mainly PROV documents containing variables
(also called placeholders). Second, Bindings are associations
between variables and values, which a provenance-aware
application is meant to construct at runtime. Finally, an
Expansion Algorithm replaces each variable from the tem-
plates with data values from the bindings, generating an
expanded PROV document. The left-hand side of Figure 1
depicts a template as a PROV document, in which the prefix
var identifies variables. This template shows an activity
var:operation, which used an entity var:input for its
execution, and generated another entity var:output (de-
rived from var:input). The activity was started by the entity
var:trigger and is associated with the agent var:user. The
entity var:trigger is also related to the agent var:user.
Based on this template, together with the values associated to
its variables given by the set of bindings collected during the
application execution (center of Figure 1), the expansion algo-
rithm generates a final PROV document (right of Figure 1).

3 UML2PROV ARCHITECTURAL OVERVIEW

Figure 2 depicts the key facets of UML2PROV and the dif-
ferent stakeholders involved in the process –the software de-
signer and the developer at the beginning, and the provenance
consumer at the end. The architecture distinguishes between

the artifacts used or created at design time, which can be doc-
uments or code (red background with a stripped texture),
from those generated at runtime (blue plain background).
The design time facets encompass three elements. First, the
UML diagrams depict the application’s design. Second, the
PROV templates form the design of the provenance to be
generated. Finally, the generated BGM has two components:
(i) the context-dependent component, which includes the code
for generating bindings, and (ii) the context-independent com-
ponent, which contains the bindings’ generation code that is
common to all applications. On the other hand, the runtime
execution facets correspond to the generated sets of bindings,
and the PROV documents containing the provenance infor-
mation suitable for consumption.

The overall process starts with the assumption that there
is already a UML design of the application we want to en-
rich with provenance capabilities. The diagrams comprising
this design can be those used to guide the development
of the application (scenario that we call proactive), or, in
the case of legacy applications built without UML, those
obtained by means of reverse engineering [16] (retroactive
scenario). Among the UML diagrams considered for data
provenance to be extracted, we have focused on those that
not only have a strong relation with provenance, but are also
mostly used by software designers [17]: (i) Sequence Diagrams
(SqDs) and State Machine Diagrams (SMDs), because they
are widely used to represent the behaviour of a system (one
of the main purposes of capturing provenance information);
and (ii) Class Diagrams (CDs), since they are the most
widely adopted formalisms for modelling the intentional
structure of a software system (that is, low level aspects
from objects’ internal status, information not given by the
considered behavioural diagrams). The consistency among
such diagrams can be checked against a set of defined
OCL [18] constraints (see details of the defined constraints
in the Supplementary Material [13]). Taking such UML
diagrams as input, UML2PROV is used (Step 1 in Figure 2) to
automatically obtain (i) the PROV templates for the concrete
application, and (ii) the BGM responsible for generating sets
of bindings during the application’s execution. In both the
retroactive and the proactive scenarios, the application is
then enriched with the BGM. To do so, the BGM is non–
intrusively integrated into the application, so no changes
to its base code are required. Subsequently, while the ap-
plication is running, the generated BGM comes into play
generating the sets of bindings with values logged from

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

the execution (Step 2). Finally, the expansion algorithm [3]
(Step 3) takes the PROV templates and the sets of bindings,
replaces the templates’ variables by the concrete values from
bindings, and generates the PROV documents for the executed
application, ready to be used by the provenance consumer.

All in all, UML2PROV provides both an automatic de-
sign of provenance (i.e., PROV templates), and an automatic
generation of the artifacts in charge of obtaining bindings
(i.e., BGM), by taking as input the design of the application
(UML diagrams). The generation of the final PROV documents
is accomplished transparently to the provenance consumer,
needing neither a provenance designer to create the PROV
templates, nor a developer with provenance capabilities to
include the required provenance instructions in the appli-
cation. Additionally, this process makes the maintenance of
the resulting provenance-aware systems a straightforward
task, since every time the design of the application changes,
both the provenance design and the artifacts for capturing
provenance can be automatically updated accordingly.

4 FROM UML TO PROV TEMPLATES

UML2PROV supports a subset of UML diagrams modelling
a system (SqDs, SMDs and CDs) and automatically trans-
forms them into PROV templates specifying the design of
the provenance to be generated for such a system. Since
UML diagrams model a system (or an excerpt of it) from
different perspectives (depending on the diagram used), the
resultant templates will represent the provenance aspects as-
sociated with the perspective at hand. For instance, SqDs are
used to model the interactions among collaborating objects
and the exchange of information between them; thus, the
templates generated from a SqD will focus on the flow of
logic within the system. SMDs specify the behaviour of
individual objects of a system; hence, the templates resulting
from a SMD will comprise information regarding the evolu-
tion of the objects’ state as modelled by the SMD. CDs model
the static structure of a system by means of UML classes and
their relationships, which classify sets of objects and specify
the features that characterise the structure and behaviour of
those objects. Thus, the templates obtained from CDs will
represent low-level aspects, comprising not only the objects’
characteristics at some point (we refer these characteristics
as status), but also the operations that has led the objects’
status to be as they are. From now on, we will use the term
state and status as follows. In SMDs, in accordance to UML
terminology, the state of an object denotes a situation during
which some invariant conditions holds [9]. In CDs, to avoid
confusion, we use the term object status with a broad scope,
referring to the values of the object’s attributes at some
moment, which particularly could correspond to a concrete
state. Although modeling different perspectives of a system,
UML diagrams can have a rich semantic overlap. Similarly,
the PROV templates generated from the UML diagrams of
a system can also share elements which enable the merging
of the associated PROV documents.

Our proposal relies on a set of transformation patterns
that ultimately associate UML elements with PROV ele-
ments. These patterns are the result of a rigorous revi-
sion and thorough reformulation of those we presented
in a semi-structured and non-systematic way in [11], [12].

Now, we have rigorously reformulated and extended them
to cover the translation of more UML elements, ensuring
that the overall set of patterns have consistent definitions.
The new description facilitates their understandability and
maintenance, enabling other researchers to replicate the
presented functionality. More specifically, we have estab-
lished a common structure for all patterns consisting of four
blocks: Context, expressed in natural language, corresponds
to a concrete situation of the system to be developed that
is addressed by the UML representation identified in the
pattern; UML diagram, which refers to a prototypical UML
design whose translation into PROV is ruled by the pattern;
Mapping to PROV, that corresponds to the PROV template
proposed as translation for the corresponding UML diagram
(or an excerpt of it); and Discussion, that presents issues
related to the transformation at hand. Concretely, our overall
approach identifies a total of 17 contexts, being 4 modelled
by SqDs, 3 by SMDs, and 10 by CDs. We note that our
intention is not covering all the UML elements that may
appear in these types of diagrams, but focusing on those
we have considered of interest for provenance purposes.
For space reasons, we do not include in this section all
patterns, but they can be consulted in the Supplementary
Material [13]. For the sake of brevity, here we illustrate the
transformation patterns with an example, slightly modified
from [19], related to the enrolment and attendance of stu-
dents to seminars that are held during a University course
(from now on University example). Herein, the SqDs, SMDs,
and CDs to PROV templates transformations are briefly
explained in Sections 4.1-4.3, and illustrated using Figure 3.
The top of each column in Figure 3 is an excerpt of a UML
diagram (corresponding to the UML diagram block in the
specification of the patterns in the Supplementary Material)
that is associated with a specific context in a pattern (Context
block). In this UML diagram, the name of the UML elements
considered in the transformation pattern are in red courier
font. The PROV template obtained after applying the corre-
sponding pattern appears under each UML diagram (Map-
ping to PROV block). The correspondence between a UML
element involved in the transformation and a PROV element
in the PROV template, is denoted by means of a numeric
identifier inside a green label id in UML diagrams, and a
purple label id in PROV templates. As for the PROV tem-
plates, the elements of type prov:Entity, prov:Activity,
and prov:Agent are identified with variables with non-
context-dependent names.

4.1 UML Sequence Diagrams

SqDs are used to model the interactions among collaborating
objects in terms of Messages exchanged over time for a
specific purpose. Thus, SqDs transformation patterns focus
on an ExecutionSpecification, representing an operation
execution, started by a Message.

To give an insight into the SqDs transformation patterns,
we explain the Sequence Diagram Pattern 2 (SeqP2). This
pattern refers to a context illustrated in our University
example by means of the excerpt of UML SqD depicted
at the top of column “UML Sequence Diagram Pattern”
in Figure 3. This diagram shows a sender component
(Lifeline 1) interacting with a recipient component by

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Agent

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

st:Student

enrolStudent(st)

Synchronous
Message s:Seminar

Reply Message

enrolStudent(boolResponse)

StateMachine*

*This is an excerpt of the SMD of each object of Seminar class

Event

Source/Target
State

1

2

4

3

5 6

var:starter

var:input

var:operation

c

wasStartedBy

var:senderObject

1

2

3

4

a

b

var:response

var:output

hadMember

5

6

f

wasGeneratedByd

wasDerivedFrome

enroling

enrolStudent

Seminar State Machine

1

3

4
5

var:postObject

var:objectSM

var:object

wasAttributedTo

var:preObject
specializationOf

var:operation

wasInvalidatedBy

3

4

5 a

c

b

d

g

f

e

specializationOf

wasDerivedFromwasGeneratedBy

used

1

2

2

Seminar

add +enrolStudent(in st: Student)2
3

1

4

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a
b

c
f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy
var:collElement

4.1.1

j hadMember

hadMember

hadMember

used
used

var:modCollAttribute

4.1

wasDerivedFrom

g

h hadMember

Class

OperationStereotype

Attributes

Input Parameter

+studentList:Student[0..*]

UML Sequence Diagram Pattern UML State Machine Diagram Pattern UML Class Diagram Pattern

hadMember

Input Argument

ExecutionSpecification

Lifeline

wasAssociatedWith

Output Argument

+seminarName:String

usedg

Fig. 3. Above, UML diagrams (SqDs, SMDs, and CDs) modelling the enrolment of a Student in a Seminar from different perspectives. Below,
the template generated from the UML diagram depicted at the top.

calling an operation (Synchronous Message 2), which
contains information to pass into the operation execution
(Input Arguments 3). The call causes the recipient to ex-
ecute the operation (ExecutionSpecification 4), which
results in a response (Reply Message 5) to the sender that
contains output information (Output Arguments 6). This
UML diagram is translated into a PROV template as follows:
1. The sender Lifeline 1 is mapped to a prov:Agent

identified by var:senderObject 1 which assumes the
responsibility for starting the operation execution.

2. The Synchronous Message 2 that initiates the
ExecutionSpecification 4 of the recipient is a
prov:Entity identified as var:starter 2 .

3. Each of the Input Arguments 3 is a separate
prov:Entity identified as var:input 3 . The relation
a prov:hadMember states that var:input is an element
of var:starter.

4. The ExecutionSpecification 4 is a prov:Activity
identified as var:operation 4 , which used
and was started by var:starter (g prov:used,
b prov:wasStartedBy). The assignment of respon-
sibility to var:senderObject for var:operation is
c prov:wasAssociatedWith.

5. The Reply Message 5 (response to the Synchronous
Message 2) is a prov:Entity with identifier
var:response 5 . This Reply Message was generated
(d prov:wasGeneratedBy) by var:operation, and de-
rived (e prov:wasDerivedFrom) from var:starter.

6. Each argument of Output Argument 6 is a separate
prov:Entity identified as var:output 6 . The relation
f prov:hadMember states that var:output is an ele-
ment of var:response.

4.2 UML State Machine Diagrams
SMDs specify the discrete behaviour of individual elements
of a system. They mainly consist of States, Transitions
and other types of vertexes called Pseudostates. Taking
this into account, the SMDs transformation patterns have
been defined based on the Transition’s source and target

elements (e.g., States or Pseudostates). To illustrate the
patterns referring to SMDs, we have chosen the State Ma-
chine Diagram Pattern 3 (StP3). StP3 addresses a context
illustrated in the University example by the excerpt of UML
SMD depicted at the top of the middle column in Figure 3.
This SMD (StateMachine 2) represents the fact that the
triggering of the event (Event 5), consequence of an opera-
tion execution, causes an object (Object 2) to change from
one source state (State 3) to a target state (State 4). The
associated PROV template is defined as follows:
1. Each Object 1 of the Class, whose behaviour is defined

by the StateMachine 2 , is mapped to a prov:Agent
identified by var:object 1 , which bears the object’s re-
sponsibilities. This fact is shown by means of the relation
a prov:wasAttributedTo between var:objectSM 2

and var:object.
2. The StateMachine 2 itself is a prov:Entity identified

by var:objectSM 2 .
3. The source State 3 is a prov:Entity identified

by var:preObject 3 , which is a specialization of
(b prov:specializationOf) var:objectSM.

4. The target State 4 is a prov:Entity identified
by var:postObject 4 . It is also a specialization of
(c prov:specializationOf) var:objectSM, derived
(d prov:wasDerivedFrom) from var:preObject.

5. The Event 5 represents the occurrence of
an operation execution. This execution is a
prov:Activity identified as var:operation 5 .
This prov:Activity: used var:preObject
(e prov:used); generated var:postObject
(f prov:wasGeneratedBy); and invalidated
var:preObject (g prov:wasInvalidatedBy).

4.3 UML Class Diagrams
Depending on their nature, operations have specific se-
mantics which can also provide information of interest
for provenance capture. More specifically, operations can
be viewed from a number of different perspectives, being
categorized by aspects such as how they access data (i.e.,

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasStartedBy
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#wasAttributedTo
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasInvalidatedBy

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

a method changes the object’s status or leaves it constant)
or their behavioral characteristics (i.e., creational, structural,
or collaborational) [20]. We have stated a taxonomy of op-
erations based on that given by Dragan et al. [20]. We have
enriched it by providing additional categorization elements
(for more details see the Supplementary Material [13]). The
resulting taxonomy is expressed as a set of UML stereotypes
(represented between guillemets, such as «add») which are
linked to the operations to categorized them. Inspired by the
semantics of the operations identified in our taxonomy, we
have defined 10 transformation patterns that give concrete
PROV templates depending on such semantics.

Below we give an insight into these transformation
patterns, by explaining the Class Diagram Pattern 10 (here-
inafter ClP10). The excerpt of UML CD diagram appearing
in the third column of Figure 3 includes a class (Class 1)
taken from our University example. This class has an opera-
tion (Operation 2) stereotyped with «add», which means
that its execution adds a new element, or elements, (Input
Parameters 3) into a collection modelled as one of the
object’s Attributes 4 . This causes a change in the object’s
status. The associated PROV template is defined as follows:

1. The object that changes its status is described in the CD
by the Class 1 , which is translated into:

1.1. a prov:Entity identified as var:preObject 1.1 that
is the object with the status before the execution of the
operation.

1.2. a prov:Entity identified as var:postObject 1.2

that is the object with the status after the execu-
tion of the operation. It derived from var:preObject
(d prov:wasDerivedFrom).

2. The Operation 2 , stereotyped with «add», is a
prov:Activity identified by var:operation 2 .
This prov:Activity: used var:preObject
(b prov:used) and generated var:postObject
(c prov:wasGeneratedBy).

3. Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input 3 . It was used by
var:operation (a prov:used), and var:postObject
was derived from it (f prov:wasDerivedFrom).

4. The Attributes 4 are separated into:
4.1. the modified collection attribute, which is

translated into the prov:Entity identified by
var:modCollAttribute 4.1 . It was generated by
var:operation (i prov:wasGeneratedBy), and is
a member of var:postObject (g prov:hadMember).
Also, the elements belonging to the collection
var:modCollAttribute consist of the new mem-
ber(s) (var:input 3), and the members preceding the
operation execution (var:collElement 4.1.1). To state
that they are members of var:modCollAttribute,
relations h prov:hadMember and j prov:hadMember
link them, respectively.

4.2. the attributes not modified by the execution of the
operation, which are mapped to a prov:Entity
identified with var:attribute 4.2 . To express that
var:attribute is an element of var:postObject,
the relation e prov:hadMember links them.

{"var" : {
 "starter" : ex:message_1"}],
 "preObject": ex:seminar1_1 "}],
 "senderObject": ex:student1 "}],
 "output": ex:boolean_1"}],
 "object": ex:seminar1 "}],
 "operation": ex:enrolStudent1"}],
 "objectSM": ex:seminar1_0"}],
 "response": ex:message_2 "}],
 "postObject": ex:seminar1_2"}],
 "input": ex:student1_1"}],

"modCollAttribute ex:seminar1_2_studentList2
"vargen":{},
 "context":{"ex" : "http://example.org/"}

}

"attribute": ex:seminar1_2_seminarName"}],
 " }]},

[{"@id":"
[{"@id":"
[{"@id":"
[{"@id":"
[{"@id":"
[{"@id":"
[{"@id":"
[{"@id":"
[{"@id":"
[{"@id":"
[{"@id":"
[{"@id":"":

Fig. 4. A set of bindings serialized in JSON for the templates in Figure 3.

5 BINDINGS GENERATION REQUIREMENTS

The capture of provenance data during the execution of an
application involves providing it with additional instruc-
tions for the generation of bindings. Aimed at making this
task transparent to software developers, UML2PROV provides
each application with a Bindings Generation Module or BGM
(see Figure 2), so that the application becomes provenance-
aware. The disparate nature of applications prevents us
from establishing one and only one module for all appli-
cations. Instead, we have stated a set of requirements for
establishing the characteristics such a module must satisfy,
independently of both the concrete nature of the application
and technologies used to develop it. These requirements are
organized into the following categories:
Manual vs. automatic. While manually adapting the source
code of an application to generate bindings could be
a valid option, it constitutes a tedious, time-consuming
and error-prone process. Software developers would have
to work hard on traversing the application’s source code,
carefully analysing it to add suitable instructions to gen-
erate the bindings structures. In addition, manual code
adaptation negatively affects the maintainability of the ap-
plication, since changes in the application code may affect
the provenance-specific code. Therefore, requirement 1 (R1)
states that the adaptation of the application to include
provenance capabilities must be carried out automatically.

Intrusive vs non-intrusive. Making an application
provenance-aware could result in provenance capture
code scattered across all its source code, fact that would
make the application maintenance a cumbersome task.
Requirement 2 (R2) states that the instructions for bindings
generation must be located apart from the application’s
source code, in an independent module, avoiding the
generation of repetitive and obfuscated code. Requirement 3
(R3) states that such a module not only has to contain
the instructions for bindings generation, but it also has
to identify the specific moments within the application’s
source code where such instructions must be executed.

Consistency. To ensure the generation of well-defined PROV
documents after expansion, consistency between the gen-
erated PROV templates and the bindings must be guar-
anteed. In our case, this consistency encompasses two
main aspects. First, requirement 4 (R4) claims that each
binding obtained from an application’s execution must be
associated with at least one PROV template generated from
the UML diagrams. Second, requirement 5 (R5) states that
the variables included in a set of bindings must correspond
with the variables in their associated PROV templates. For

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#hadMember

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

example, the set of bindings depicted in Figure 4 satisfies
R4 and R5: it has been generated during the execution
of the operation enrolStudent of our example, and it
links each variable of the templates in Figure 3 with the
corresponding value collected during such an execution.

6 IMPLEMENTATION

In this section, we discuss a reference implementation that
generates the two main key elements of the UML2PROV
architecture: PROV templates and BGM (see Figure 5).

Given the disparate nature of applications, the manual
creation of both elements is not the best option. Thus, we
have followed Model Driven Development (MDD), which
focuses on models, conforming metamodels, rather than on
computer programs [21]. Following MDD, we automatically
generate PROV Templates (text files in PROV-N [22]) and
the BGM (code) using a refinement process from the UML
diagrams modeling the system.

As for the elements involved in the generation of PROV
templates (light-grey elements in Figure 5), our implementa-
tion adopts an MDD-based tool-chain comprising two trans-
formations. The first takes as source the UML diagram models,
conforming to the UML metamodel [9], and generates the
corresponding template models, conforming the PROV meta-
model [15]. This model–to–model (M2M) transformation
has been carried out by means of the ATL Eclipse plugin [23]
(see the Supplementary Material [13] for more details).
The second transformation takes such template models as
source, and generates the final PROV templates expressed
in PROV-N [22]. This model–to–text (M2T) transformation
relies on a set of one–to–one transformations implemented
in Xtend [24], so that each element of the PROV metamodel
is linked with an element of the PROV-N text representation.

For the reference implementation of the BGM, we
have chosen the Aspect Oriented Programming paradigm
(AOP) [25] which allows us to implement the BGM accord-
ing to the requirements stated in Section 5. AOP aims at
improving the modularity of software systems, by capturing
inherently scattered functionality, often called cross-cutting
concerns (e.g., data provenance capture can be considered as
a cross-cutting concern). Concretely, we have used Eclipse
AspectJ [26], an AOP extension created for Java. Regarding
the process to automatically generate the BGM’s source
code (dark-grey elements in Figure 5), it is made up of
a single M2T transformation, implemented in Xtend, tak-
ing as source the UML diagram models, and generating
the BGM. The BGM encompasses the AspectJ code (the
context–dependent component) and Java libraries supporting
this component’s code for bindings generation (the context–
independent component).

The resulting BGM is event-based. Hence, the gener-
ation of bindings is decoupled from the management of
the corresponding provenance data regarding, for example,
volume and data storage or distribution. Thus, bindings can
be stored in different storage systems, serialized in a more
or less verbose format (e.g., CSV, JSON, XML), individually
or as sets of bindings, or even as expanded PROV doc-
uments. UML2PROV is agnostic about when to compute
the final PROV documents (lazy or eager approaches [2]).
UML2PROV facilitates decision making on these aspects.

out

AspectJ
code

Bindings Generation Module

Java
dependencies

out

(context independent
component)

used

input

wasGeneratedBy

collElements

hadMember

operation

target

source

used

wasDerivedFrom

hadMember

wasDerivedFrom

coll_new

wasGeneratedBy
hadMember

PROV-N

.uml

Seminar

add +enrolStudent(in student:Student)

search +searchStudent(in idStudent:String):Student

remove +removeStudent(in idStudent: String): Boolean

Student

+name: String
+identifier:String

constructor +Student(in identifier: String, in name:String)
get +getName():String
set +setName(in name:String)
command +modifyAll(in id:String, in name:String)

+studentList

*
*+seminarList

UML diagram
models

Bindings Generation Module
generation process

PROV template
files

PROV templates generation
process

UML2PROV

Xtend

Xtend

ATLin

(context dependent
component)

Fig. 5. MDD-based implementation proposal.

The BGM recognises the occurrence of certain circum-
stances during the execution of the instrumented applica-
tion (start and end of operations, new bindings), and conse-
quently triggers events. These events must be captured by
classes that implement the BGMEventListener interface.
There, UML2PROV users program their preferred storage
or distribution approaches, persistence system (or systems),
format, and so on. These listeners are reusable among all
applications sharing the same bindings management policy.

UML2PROV generates the BGM as a Java library (jar
file). Integrating it into the application is as easy as using
the AspectJ compiler to weave the BGM with the original
application, thus obtaining the instrumented application
ready to produce provenance data. For more information,
see the Supplementary Material [13] and the UML2PROV
User Guide [14].

7 EVALUATION

As with any other computational functionality, the prove-
nance capture has associated temporal and spatial costs [5].
The purpose of this section is to show UML2PROV bene-
fits and costs to software engineers seeking to make their
applications provenance-aware.

Since UML diagrams drive both the design and capture
of provenance, the intuition is that the systems’ diagrams
themselves have implications on the generation of prove-
nance. For reasons that will be clear later on, taking a
detailed UML design as source for UML2PROV may lead
to capture more provenance than required to satisfy certain
provenance requirements, resulting in unnecessary over-
heads. Conversely, if the UML design is tailored to address
certain provenance requirements, only relevant provenance
will be collected, thus reducing the overheads. However,
adapting the UML design to precisely fit provenance re-
quirements demands additional effort from the designer.
The more effort is devoted to tailoring the UML diagrams
to selectively expose the relevant information for certain
provenance requirements, the less provenance collected and
the less overhead in time and storage. Although other au-
thors have previously applied UML2PROV (e.g., in the field
of astronomical workflows [27]), to show the implications
of the UML design taken as source for UML2PROV, and the
trade-offs of using it, we will apply our approach both to a
legacy application built without UML (retroactive scenario),
and to an application built from a UML design (proactive
scenario). The size of both applications is intentionally dis-
parate, which allows us to study the implications of this

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Step 1 Step 2 Step 3 Step 4

Step 1.1 Crop
Step 1.2 Invert
Step 1.3 Adjust

contrast
Step 1.4 Other

operations

Step 2.1 Background
Step 2.2 Lane edition
Step 2.3 Fix reference

lanes

Step 3.1 Markers
threshold

Step 3.2 Markers
picking

Step 3.3 Migration
model

Step 4.1 Global

Step 4.2 Lane
threshold

Step 4.3 Band
picking

threshold

Image preprocessing Lane detection Band detection

Gel-image

Markers

Resulting Experiment

LanesReference
lane Reference lane Bands

Normalization

Fig. 6. Workflow of GelJ’s experiment wizard.

variable when applying UML2PROV. Our reference imple-
mentation will serve as UML2PROV tool for the evaluation.

7.1 Case studies: GelJ and the University example
For the retroactive case study we chose GelJ [28], a bioin-
formatics application used for analysing DNA fingerprint
gel-images (hereinafter gel-images), and comparing DNA
patterns; this allows the analysis of the genomic relatedness
among different samples, as well as their classification.
The analysis of DNA patterns has applications in medical
diagnosis, parentage testing, food industry, and many oth-
ers [29]. GelJ was chosen for several reasons. First, GelJ has
a community of users with needs for provenance for their
DNA analysis. Second, we have direct contact both with
its developers, who can provide us with useful background
about the tool, and with its potential users, who can assist
us to assess the quality of the provenance generated by
UML2PROV against their real needs. Lastly, GelJ lacks a
UML design, so it must be obtained, for example, auto-
matically by reverse engineering. Thus, using a retroactive
scenario in our evaluation we are considering the most
complex case of application of UML2PROV, illustrating the
effort that it may require, and offering a realistic vision of
what applying UML2PROV can entail for applications not
initially designed with UML.

The proactive case study is based on the academic appli-
cation used to illustrate Section 4. Space limitations prevent
us from including all its details in the main paper (they are
detailed in the Supplementary Material [13]).

GelJ. Briefly speaking, GelJ has an experiment wizard that, af-
ter choosing a gel-image as source, guides the user through a
four steps process (Figure 6). In Step 1, the user may preform
actions to increase the source gel-image quality. In Step 2,
GelJ automatically detects the lanes of the gel-image; then,
the user might have to perform some adjustments over the
lanes such as adding new ones, removing or editing.Among
all the detected lanes the user selects one or several as refer-
ence. In Step 3, GelJ automatically determines markers in the
reference lane; the user might have to handle these markers
by adding or removing some of them. In Step 4, GelJ
automatically detects bands inside the detected lanes; the
user might modify these bands later (e.g., adding, moving,
and removing). The result of this workflow is an experiment
consisting of the source gel-image together with a set of
detected bands. It is remarkable that GelJ’s database only
persists concrete characteristics pertaining to an experiment
(e.g., its name, the user who performed it, and biological

information like genus, species. . .). It does not store aspects
such as the steps followed during the experiment creation,
or its origin (an experiment could be created from scratch,
duplicated or imported). Hence, scientists usually have to
ask other colleagues about the process followed to create an
experiment, its authorship, or its origin.

In order to give an unbiased evaluation of our approach,
based on a representative use of GelJ, we analyse the succes-
sive actions of a user to generate 10 different experiments,
each one for a different source gel-image. While the user
worked, we wrote down the performed interactions with
GelJ for creating those experiments. Among the 10 collected
traces, we selected the one with the higher number and
diversity of interactions to be used in obtaining the data
for the performance evaluation. The selected experiment
comprises 114 interactions among the 13 substeps of the GelJ
experiment wizard, which involve the execution of about
46,000 operations in the source code (see the chosen se-
quence of interactions in the Supplementary Material [13]).

7.2 Objectives and Application Modes

Our evaluation should answer questions about the trade-
offs of using UML2PROV. How complex is the generation
of the provenance design? How does UML2PROV affect
the provenance instrumentation of the application? To what
extent the maintenance of these two previous aspects is
facilitated? What is the impact in the provenance storage
needs and run-time overhead of the application? Does the
collected provenance meet user expectations?

To evaluate these aspects we have devised three Applica-
tion Modes for UML2PROV that provide us with a basis for
benchmarking our approach. These Modes are illustrative
of a range of ways of applying UML2PROV, though they
are not the only possible, nor are they in any way strict
UML2PROV methodologies. Each Mode is characterized
by a different required effort to tailor the initial applica-
tion’s UML design before using the UML2PROV tool. Thus,
Mode 1, by tailoring the UML design before applying the
UML2PROV tool, generates provenance more adjusted to
the users needs. Conversely, Modes 2 and 3 correspond to
situations in which the UML2PROV tool is directly applied
to UML diagrams without prior preprocessing, which leads
to capture more provenance than in Mode 1. We would
like to note that, in the end, our goal is not to conduct
an analysis of the bounds of UML2PROV, but to draw
conclusions on whether those different Application Modes
result in benefits in terms of quantity and quality of the
generated provenance.

Below, a description of each Application Mode is pro-
vided, including: 1) aim for which the Mode is proposed;
2) considered UML design, i.e., the UML diagrams that will
feed the UML2PROV tool, and, depending on the Mode,
how they are tailored to generate provenance more adjusted
to users needs; and 3) required effort, in which we sum
up the required effort to perform the tasks comprising the
Application Mode. Note that assessing the level of effort, and
the time required to perform certain tasks, is difficult, and
often imprecise, because it closely depends on the software
engineer’s skills. This is why we do not provide data about
the duration of the tasks. However, it is possible to give an

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE 1
Overview of tasks in UML2PROV Application Modes.

Task App. Mode 1 App. Mode 2 App. Mode 3 App. Mode 1 App. Mode 2 App. Mode 3

T1. Identify the complete CD 8 8 8 - - -

T2. Identify provenance requirements - - - -

T3. Identify classes/operations involved in provenance requirements - - - -

T4. Discard not identified classes/operations - - - -

T5. Add stereotypes to selected operations - - - -

T6. Identify SqDs /8 8 - - -

T7. Design SMDs of selected classes - - - - -

8 Permorfed automatically | Requires manual effort | /8 Requires semi-manual effort | – Non executed task

Case study - GelJ Case study - University

insight by identifying those tasks performed manually or
automatically. The more manual tasks, the greater the effort.
Table 1 depicts the set of tasks comprising each Application
Mode, so it can be used to compare their characteristics.

Application Mode 1

Aim. Obtain a more adjusted provenance, aligned with
certain requirements, by tailoring the initial UML design.
To state these requirements the first phase of PrIMe [8]
served as inspiration. In the first case study, we involved
two GelJ users, asking them for typical questions they were
seeking to answer, and which the current system cannot
answer (task T2 in Table 1). Among these questions, we
excluded those that can be answered by using information
stored in the GelJ database; then, we refactored them in
terms of PROV. The resulting questions, shown in Table 2,
reflect the provenance requirements (called provenance use
case questions in PrIMe). The provenance questions for the
University example were adaptations of those appearing
in the First Provenance Challenge [30] (see Supplementary
Material [13]).

Considered UML design. Mode 1 is characterised by gener-
ating provenance with information about the perspectives
covered by the supported types of UML diagrams (SqD, CD,
SMD). As already mentioned, the retroactive case study did
not have an initial UML design, so the UML design tailoring
tasks were interleaved with additional reverse engineering
tasks to identify that UML design. Thus, using static reverse
engineering techniques [31] with Papyrus [32], the com-
plete GelJ’s CD was automatically obtained (task T1). Then,
inspired by the second phase of PrIMe, in collaboration
with GelJ’s developers, the classes and operations (called
actors in PrIMe) involved in answering the above questions
were identified (T3), following this procedure: for each class
included in the CD, the developers checked if the class was
involved in answering any of the identified questions; in
case of doubt, it was selected. Then, for each operation
of the selected classes, the developers confirmed if it was
involved or not in the identified questions; again, when in
doubt, it was selected. The result of tailoring task T3 was
the identification of 17 classes and 66 operations out of 279
classes and 1688 operations that compose GelJ (i.e., in this
Mode, ∼6% of the classes and ∼3.9% of the operations of
GelJ were used; the rest were discarded, T4). These classes
are shown in column “Identified classes” of Table 2, where
the names StepN_M refer to steps (N) and substeps (M) of the
GelJ’s wizard. Also, to obtain more meaningful provenance,

we assigned stereotypes to the UML operations in the GelJ’s
CD (T5). ObjectAid [33] was used to identify SqDs with the
interactions between the objects of the selected classes (T6).
Each selected operation was statically reversed engineered,
obtaining a SqD representing the interactions (including
UML lifelines, messages, etc.) where the operation was
involved. This process resulted in a set of 76 UML messages.
Regarding SMDs, to the best of our knowledge, the few ex-
isting automatic approaches [34] are not able to extract high-
level information not present in the code and only known
by the designer (e.g. the representative names for the states).
Therefore, the designers of GelJ were involved in obtaining

TABLE 2
Questions identified from Q1 to Q9 raised by GelJ users, together with

GelJ classes involved in answering those questions.

ID Provenance requirements

Q1
What is the origin of an experiment?

(from scratch, duplicated or imported)

Experiment

Step4_3

Image_Assistant

Q2
What is the set of ac�vi�es that has led an

experiment as it is?

Step1_1-Step1_4

Step2_1-Step2_3

Step3_1-Step3_3

Step4_1-Step4_3

Q3
Which background (dark or light) has been

used during an experiment construc�on?

Step1_1-Step1_4

Step2_1-Step2_3

Step3_1-Step3_3

Step4_1-Step4_3

Q4
Who is the user who has carried out a specific

step of an experiment wizard?

Step1_1-Step1_4

Step2_1-Step2_3

Step3_1-Step3_3

Step4_1-Step4_3

Q5
How many lanes have been added/removed

during an experiment’s genera�on process?
Step2_2

Q6

What is the height-threshold used for band

detec�on during the experiment's genera�on

process?

Step4_1

Image_Assistant

Q7
How many bands have been added/removed

during an experiment's genera�on process?
Step4_3

Q8

What is the detailed informa�on regarding the

pre-processing ac�vi�es (source/target states,

nested ac�vi�es called)?

Step1_1-Step1_4

Q9
What is the �me-cost of crea�ng a new

experiment?

Menu

Main

Step1_1-Step1_4

Step2_1-Step2_3

Step3_1-Step3_3

Step4_1-Step4_3

Iden�fied classes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

the SMDs (T7). They designed a SMD for each class whose
states are related to the provenance requirements. This led to
a set of 13 SMDs with 33 states and 68 transitions, modelling
the behaviour of the classes.

The proactive case study did not require reverse engi-
neering (all tasks are tailoring tasks). All the UML SqD,
CD and SMD diagrams were available at the beginning
of the evaluation, so tasks T1 and T7 were not performed
(T6 now deals with selecting the SqDs with the interactions
between the objects of the identified classes). As explained
in the Supplementary Material [13], after tasks T2-T5, ∼27%
of classes and ∼29% of operations were used. This higher
percentage with respect to the GelJ case is due to the
smaller size of the University example. With few classes,
the chances of a class/operation participating in answering
a provenance question increases, so less classes/operations
may be eliminated in the UML design tailoring.

Required Effort. The greatest effort attributable to this Mode
corresponds to the identification of the provenance require-
ments (T2) and the selection of the involved classes and
operations (T3 and T4). To perform these tasks, two users
and the two designers of GelJ were consulted. Whilst the
SMDs were handcrafted (T7), the SqDs were obtained via a
semi-automatic process (T6) consisting in manually iterating
over the selected operations from the CD, and generating for
each of them its SqDs using automatic reverse engineering.
In contrast, the CD was mostly automatically generated
(T1), except for the stereotyping task (T5), performed man-
ually based on the operations’ names, and consulting the
developers when necessary.

The effort required for the second case is substantially
the same: all automatic tasks regarding the reverse engi-
neering are not necessary, but manual tasks related to the
provenance requirements, the identification of SqDs, and the
CD tailoring remain.

Application Mode 2

Aim. Generate provenance as directly and automatically as
possible. UML diagrams were not tailored, so no require-
ments were used.

Considered UML design. This Mode involves considering only
the perspectives covered by CDs and SqDs, using these
diagrams directly, without tailoring them. Consequently, the
100% of the classes and operations were taken into account
in both case studies. In the end, this led to collecting more
provenance data than the user needed. Neither SMDs nor
the stereotyping of class operations are considered, so that
the consequences of their exclusion in the evaluation can be
checked. For GelJ, all the 279 classes and 1688 operations ob-
tained in task T1 were considered. Then, applying dynamic
reverse engineering techniques with MaintainJ [35] to every
class (considering all its operations), a set of SqDs with 133
messages were determined (T6). In the second case study,
a CD with 11 classes with 37 operations, and SqDs with 25
messages were considered.

Required effort. The effort required here was considerably
reduced: since there was no tailoring of the UML, there was
no need for manual tasks (T2-T5); task T6 was fully auto-
mated; and task T7 was excluded. Only automatic reverse
engineering tasks were performed (T1 and T6). In fact, for

the second case study, no effort at all was needed (the UML
design was processed directly with the UML2PROV tool).

Application Mode 3

Aim. Generate provenance as automatically as possible.
Use only the UML diagrams most commonly used. UML
diagrams were not tailored, so no requirements were used.

Considered UML design. The only difference from the pre-
vious Mode was that here only the perspective covered
by CDs was considered. This Mode represents many real
situations, since CDs are the most widely used UML dia-
grams [10] (even applications are often developed with the
sole help of such diagrams) and, if not available, CDs are
the most easily obtainable with reverse engineering.

Effort required. Only the automatic reverse engineering of the
CD (T1) was necessary, and solely for the GelJ case study.

7.3 Evaluation platform

The evaluation was ran on a personal computer, Intel(R)
Core(TM) i7 CPU, 2.8GHz, with Oracle JDK1.8 and a Win-
dows 10 Enterprise OS. The used BGMEventListener
performs an asynchronous recording, in which bindings are
accumulated in memory before being shipped, as sets of
bindings, to a MongoDB database [36] after finishing the
execution of each operation (bulk submission).

7.4 Analysis

7.4.1 Aspect 1: Generation of the provenance design
Prior to UML2PROV, software engineers had to manually
develop the PROV templates corresponding to the design
of the provenance to be generated. This cumbersome, time-
consuming and error-prone task was facilitated by the as-
sistance of PROV experts working closely with the appli-
cation developer or designer, to reflect the application’s
functionality in the templates [3]. To make matters worse,
this procedure does not scale up when the amount of
provenance to be designed increases. UML2PROV makes
the design of provenance straightforward, while providing
significant benefits for the software engineer. The automatic
generation of the templates avoids human intervention, thus
preventing any kind of human mistake. In addition, the
generation time for the templates, a few milliseconds per
template, may be considered negligible compared to the
hours, even days, needed to create them manually (we
omit this data in Table 3 because we consider it irrelevant).
Regarding the influence of the Application Mode followed to
tailor the UML design, it is no wonder that results collected
in Table 3 show that the closer the UML design fits the
application provenance requirements, the less templates are
generated, and the smaller their total size and the faster
their generation. Table 3 shows that Mode 1 (more adjusted
design, with less UML elements, but requiring more effort
to obtain) presents the lowest number of templates: 198 for
GelJ (25 for the University case study). In contrast, Modes 2
and 3 (less precise designs, with more elements, and auto-
matically generated), result in a higher number of templates,
1,821 (63) and 1,688 (40), respectively. These results demon-
strate that a greater initial effort to more accurately tailor
the UML according to a set of provenance requirements, as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 3
Variables evaluated for the considered UML2PROV Application Modes in both case studies.

Application Mode

(UML diagrams)

No.

templates

Total size of

templates

No.

Variables

No. Sets of

bindings

Sets of

bindings

size (MB)

Expanded

templates

size (MB)

No. executions

instrumented

operations

%

instrumented

executed

operations

Execution

time (ms)

Time

 overhead

Mode 1 (SqD, SMD, CD) 198 0.3MB 954 159 2.3 3.6 159 0.34% 9,484.72 1.26%

Mode 2 (SqD, CD) 1,821 1.48MB 5,980 46,526 64.9 109.3 46,526 100% 14,522.66 55.05%

Mode 3 (CD) 1,688 1.3MB 5,236 45,329 57.2 57.6 45,329 100% 13,904.89 48.45%

Mode 1 (SqD, SMD, CD) 25 20KB 115 687 1.4 2.3 687 41.79% 656.19 25.92%

Mode 2 (SqD, CD) 63 47KB 269 1,644 2.0 3.3 1,644 100% 802.29 53.96%

Mode 3 (CD) 40 26KB 137 1,644 1.9 2.0 1,644 100% 747.31 43.41%

GelJ

University

made in Mode 1, results in fewer templates. This positively
affects the instrumented application, and the performance
of the provenance capture. However, it has little impact in
templates size (Table 3), since the differences between the
Modes (few kilo bytes) are considered negligible.

7.4.2 Aspect 2: Instrumentation of the application
Once the templates are generated, developers have to in-
strument the application to collect bindings conforming to
these templates. As described in Section 5, UML2PROV
provides each application with an automatically generated
BGM, which must be integrated with the application.

However, the BGM changes depending on the UML
design used to generate it. As concluded from Section 7.4.1,
the more UML elements conforming the UML design, the
more templates are generated (and variables in these tem-
plates). Since assigning a value to a variable in a template
usually requires the addition of one instruction in the code,
the intuition is that the number of instructions included
in the BGM grows as the number of UML elements does.
The column “No. variables” of Table 3 corresponds to the
number of instructions for bindings generation contained in
the BGM. The strategy with least UML elements (Application
Mode 1) leads to the BGM with fewest instructions (954
for GelJ), versus Modes 2 and 3 that generate BGMs with
more instructions (5,980 and 5,236, respectively). Results are
consistent with the University case (Table 3), though the dif-
ference between Modes 2 and 3 is more pronounced because
SqDs templates, defined using more variables [13], have a
greater relative weight in this case. Again, the effort devoted
to more precisely tailoring the UML design according to the
provenance requirements results in a simplification of the
BGM, which has significant implications in the performance
(Section 9). Another result of the tailoring process of Mode 1
is the reduction of the number of instrumented operations
of the application with respect to the rest of Modes. When
GelJ was executed, Mode 1 led us to collect 159 executions of
instrumented operations (as many as sets of bindings), i.e.
0.34% of the total of operation executions. For the second
case study, a smaller application, the tailoring process did
not reject so many operations from the initial design, so the
percentage of instrumented operations was higher, a 41.79%
of the total of operation executions.

7.4.3 Aspect 3: Maintenance of provenance capabilities
To ensure that the generated provenance always describes
what the application actually does, it is necessary to study
if the PROV templates and the instrumented code have to
be updated when the application is redesigned. Moreau

et al. [3] deal with some types of template changes that
are likely to occur in practice, such as rename/add/remove
template and add/drop variables or relations, analysing their
consequences in the bindings. As stated in that work, whilst
the bindings remain correct in most cases, some modifica-
tions to templates result in a partially generated provenance,
or even in errors. UML2PROV entails huge benefits for
the compatibility and synchronisation between the UML
design and the application’s provenance facets. Every time
the UML design is updated, the templates and the BGM
can be regenerated, which guarantees the immediate and
automatic redesign of the application provenance facets.

7.4.4 Aspect 4: Storage and Run-time overhead

As the capture of provenance is an additional consideration
to the primary function of the system, it is desirable to
minimise its influence on the application execution.

The overhead attributable to provenance capture is re-
lated to the number of executions of instrumented opera-
tions (see Table 3, where the column “No. Sets of bindings”
matches this number). The higher the percentage of instru-
mented executed operations with respect to the total of
executed operations, the greater the overhead. Once again,
we note that the effort devoted to tailoring the UML design
focused on specific provenance requirements resulted in
an overhead reduction. Thus, for GelJ, Application Mode 1
yielded the best results, with the least number of sets of
bindings (159), and the least run-time overhead (1.26%)
and storage needs (2.3MB). This may be considered a low
overhead, which is aligned with similar provenance in-
strumentation made by works such as [37], [38]. Modes 2
and 3 generated more sets of bindings (46,526 and 45,329,
respectively), with a higher time overhead (55.05% and
48.45%) and storage (64.9MB and 57.2MB). These results
even constitute an improvement over other proposals where
it is common to observe overheads of up to 75% [39]. Note
that Mode 2 got the worst results because it did not discard
any class or SqD from the UML design, resulting in the
capture of provenance for all the classes and operations
appearing in those diagrams, which is much more than the
necessary to meet the application provenance requirements.
In the University case, Modes 2 and 3 behaved similarly to
those of GelJ. This result was not surprising, since in both
cases, in these Modes, 100% of executed operations were
instrumented. However, for Mode 1, the run-time overhead
(25.92%) was higher than for GelJ. The greater percentage of
instrumented executed operations with respect to the total
of executed operations commented in Section 7.4.2, 41.79%
vs. 0.34%, explains this discrepancy.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Finally, Table 3 (columns “Sets of bindings size” vs
“Expanded templates size”) shows how the use of PROV-
Templates reduced the storage requirements for the sets of
bindings compared to the expanded templates.

7.4.5 Aspect 5: Quality of provenance
Throughout this section we will focus on GelJ; the analysis
of the provenance generated from the University example is
given in the Supplementary Material. Since the different tai-
loring strategies followed produce UML designs that expose
different levels of detail about the application, a different
provenance is generated in each case. How does that level
of detail affect the quality of the obtained provenance? To
analyse this aspect, we study if the collected provenance
can answer completely (C), sufficiently (S), partially (P), or it
cannot answer (N) the questions in Table 2. We will say
that a question has been completely answered when GelJ
users indicated that the answer was more detailed than
what they expected. When the user indicated that the level
of detail was enough, we will say that the question has
been sufficiently answered. Additionally, in those cases in
which the answer did not satisfy the user, we will talk
about questions partially answered. Table 4 summarises
our conclusions, also showing, in those cases in which the
provenance can give an answer, the number of elements
(prov:Entity, prov:Activity, prov:Agent) involved in
such an answer. This information has helped us identify
three kinds of implications the used Application Mode, and
how it tailors the UML design, may have on the ability
to produce provenance answers: no effect, when the Mode
does not affect the results; more detailed information, when the
retrieved answer gives different level of detail depending on
the Mode; and crucial, when concrete information included
in the UML diagrams is crucial for responding the question.
No effect. The answer to Q3 relies upon the value of an
attribute belonging to classes StepN_M, whereas answers to
Q5 and Q7 are based on identifying the execution of certain
operations located in classes Step2_2 and Step4_3, re-
spectively. Provenance from Mode 1 answers such questions
because the mentioned classes and operations needed to
answer them were identified in the tailoring process carried
out in that Mode. Provenance from Modes 2 and 3 can also
answer the questions because these Modes include all the
classes and operations of GelJ in their class diagrams. Thus,
we can conclude that the Application Mode used does not
influence the ability to answer questions Q3, Q5, and Q7.
More detailed information. An adjusted UML design may lead
to the generation of more provenance, obtaining more de-
tailed (i.e., complete) answers. E.g., the information refering
to nested operations calls is crucial to answer Q1. Since
nested operations are specially modeled by SqDs, Mode 2,

TABLE 4
How questions Q1-Q9 of Table 2 are responded: completely (C),

sufficiently (S), partially (P) or it cannot be answered (N) (in
parenthesis, number of provenance elements involved in the response).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

S(5) S(206) S(3) S(152) S(12) S(3) S(10) S(198) S(234)

C(7) C(386) S(3) P(35) S(12) N S(10) P(155) C(483)

N C(386) S(3) P(35) S(12) N S(10) N C(489)

Mode 1
Mode 2
Mode 3

which has the most detailed SqDs, completely answers Q1.
The answers to Q2 and Q9 rely upon the operations iden-
tified in classes StepN_M; therefore, Modes 2 and 3, which
identify all the operations in classes StepN_M, answer com-
pletely, whereas Mode 1 only provides information about the
operations of classes StepN_M identified in the tailoring
process. Although, a priori, giving complete answers seems
to be a valuable fact, it is important to consider the extra
time and storage that this implies (see Section 7.4.4). Con-
sidering that Application Mode 1 has been designed precisely
to expose only the information necessary for answering the
questions, the additional provenance elements in Modes 2
and 3 could be considered unnecessary, instead of a good
characteristic of the result.
Crucial. Certain aspects of an application’s behavior are
modeled only by certain types of UML diagrams, even
by certain elements of those diagrams. E.g., the answer to
question Q6 relies upon information provided by SMDs.
As Application Mode 1 is the only one that considers SMDs,
it is the only Mode that can help answer such a question.
Similarly, to answer Q8, we need information provided by
SqDs and SMDs, a fact that explains why Mode 2, which
has SqDs but lacks SMDs, can only partially respond, and
why Mode 3, which lacks both SqDs and SMDs, cannot even
give an answer. Another example is that of the operations’
stereotypes, which explain the nuances of class operations,
thus helping to capture a more meaningful provenance
(see Section 4.3). These nuances are crucial to answer Q4.
Therefore, Mode 1, which is the only one that has stereotyped
operations, can completely respond to Q4, while Modes 2
and 3 only partially respond to it. These examples delve
into the arguments in favour of the convenience of making
a prior investment of time to conduct a detailed fine-tunning
of the application’s UML design, guided by a set of prove-
nance requirements.

Taking into account these results, next we provide some
insight into what type of provenance questions can be
answered with what type of diagram.

8 DISCUSSION

UML2PROV is based on transformation patterns that cover a
wide range of situations and addresses different provenance
perspectives by generating PROV templates from different
types of UML diagrams. Concretely, SqDs patterns generate
PROV templates focused on the flow of logic within the sys-
tem, SMDs patterns result in PROV templates comprising
information about the evolution of objects’ state, and CDs
patterns produce PROV templates with information about
objects’ status at some point, as well as the behaviour that
led to those objects’ status. As shown above, considering
such types of diagrams covering different perspectives of a
system allows software designers to collect different prove-
nance information, which can give answer to questions
related to different aspects. For example, SqDs could serve
to answer questions regarding: (1) the entity participants
involved in interactions as well as their responsibilities
in the execution of operations, (2) the executor of opera-
tions, and who called such operations, (3) messages’ argu-
ments, representing the data that are exchanged between
the collaborating objects (such as in/out or return), and (4)

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Agent

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

the interaction process itself, including nested operations.
Provenance data registered by using SMDs can answer
questions regarding: (1) states an entity can go through
during its lifetime in response to operations’ executions, (2)
operations’ executions that trigger changes in entities’ state.
Finally, CDs could serve to answer questions regarding: (1)
entities’ status (i.e., values of the attributes) before and after
operations’ executions, and (2) entities’ internal changes, i.e.
the specific behaviour that can be triggered on individual
entities (operations’ executions), distinguishing among their
different nature as identified by our stereotypes.

We also want to point out that one of the aspects our
proposal benefits from is given by the use of the PROV-
Template approach [3]: the reduction of both spatial over-
head with respect to the expanded templates, and the de-
velopment and maintenance effort, by separating responsi-
bilities between software and provenance designers.

9 THREATS TO VALIDITY

Assumptions made by our proposal. First, our overall
proposal is based on UML, so a possible threat to va-
lidity could be related to whether it is used, even used
enough, in industry. Several studies based on personal
opinions coincide in remarking that UML may be consid-
ered complex. That is why there has been a tentative to
find the “essential UML”, analysing which types of UML
diagrams are the most used in practice, concluding that
Class, Sequence and State Machine diagrams are among
the most frequently used UML diagram types [10] (which
particularly support our decision on choosing such type of
diagrams). Several surveys had investigated the adoption
of UML in the software development community, showing
empirical evidence (e.g., 85% of the survey participants [10]
or 74% of the surveyed projects [40] use UML as modeling
language). Second, UML2PROV requires that any element
about which provenance is to be captured is present in the
UML design. In this line, it is worth noting that PrIME [8]
remarks that to address some provenance requirements, it
is needed to adapt the application in order to surface some
data. Concretely, this situation could occur when (1) a data
item may not be part of the application model (i.e., the
UML design, as we discussed early); (2) part of the desired
provenance may not be part of the adaptable application;
and (3) components that have access to a data item may not
be able to record documentation to a provenance store. Due
to UML2PROV is not about changing the application, its
users must avoid provenance requirements that require the
adaptation of the application. Thus, provenance use cases
need to be compatible with application use cases. Third, our
proposal works on the assumption that the implementation
of the application conforms to its UML design. However,
although it is not a good practice, applications that do not
strictly follow the design specified by the UML diagrams
are not unusual [41]. In these cases, users could leverage
reverse-engineering to obtain the UML design according to
the source code, as was done with GelJ. In fact, users in this
situation could apply UML2PROV in the Application Mode
that best suits their needs.
Alternatives to apply UML2PROV. In our evaluation, we
have applied UML2PROV in different ways, but always

to the whole application source code. However, a software
engineer may be interested in applying UML2PROV differ-
ently in different application’s modules to collect different
provenance information from each module. For instance,
an engineer may be interested in the provenance about
the whole application, but she/he has specific provenance
questions regarding a concrete module. In this case, our
Application Mode 1, which requires the greatest manual
effort, should be used only in the module of interest, and
use Modes 2 or 3 in the remaining modules. In this way,
users can answer their provenance questions, not needing
to devote an extra effort to apply Mode 1 to the whole
application. Similarly, in case of software engineers only
interested in the specific provenance about a concrete mod-
ule, they only need to apply UML2PROV (in different Mode
depending on their needs) to such a module, avoiding the
collection of provenance from the rest of the application.
Runtime overhead and storage needs. Our approach cap-
tures provenance at the level of operations. The literature
recognizes that this kind of approaches involves more run-
time overhead as more traced operations are executed [37],
[38]. That is why the behaviour of UML2PROV when using
Mode 1 is better than that of Modes 2 and 3. Addition-
ally, as shown in the evaluation, when using Mode 1, the
measured performance overhead grows as the percentage of
instrumented executed operations with respect to the total
of executed operations increases. Also, the nature of the
traced operations (such as the number of inputs/outputs,
type of pattern applied) affects the overhead since they
determine the number of bindings to collect, and conse-
quently, they have an impact on the performance. These
results support the well-known fact that the more detailed
provenance data is, the greater the impact recording it will
have on application performance [37]. From our evaluation
we can conclude that one way to determine how detailed
provenance data should be (affecting as little as possible
the application performance) is to formulate concrete re-
quirement questions so that we can record, at minimum,
provenance data at a level of detail great enough to answer
these questions (such as in Mode 1). This recommendation
is part of the PrIMe methodology for designing provenance-
aware applications [8]. The configuration chosen for the
BGM also affects the performance. Our evaluation followed
a bulk submission strategy, approach that is aligned with
other proposals [37], [38] that, e.g., led to savings in the
overhead of establishing extra database connections. Thus,
we recommend potential users to use bulk submission.

10 RELATED WORK

Provenance, an active topic of research within a wide range
of areas, has been analyzed by several surveys from dif-
ferent point of views such as databases, workflow man-
agement systems, Big Data, and so on. For example, in [2]
we presented a systematic literature review of provenance
systems, and defined a six-dimensional taxonomy of prove-
nance systems’ characteristics, including also an exhaustive
analysis and comparison of 25 systems attending to such a
taxonomy. Among the existing literature, we remark the Ke-
pler provenance module [42] and COMAND [43] since they
extend the well-known workflow system called Kepler [44]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

with provenance capabilities. While these works undertake
the adaptation of systems (in this case, Kepler) from scratch,
other works provide mechanisms to adapt applications from
the design phase. Among the scarce literature related to the
latter –the context in which UML2PROV is applied– the
PrIMe [8] was introduced to adapt applications to become
provenance-aware or, to design applications keeping in
mind the provenance capabilities from the design phase.
Whilst it shows efficiency in several works such as [45]
(healthcare domain), and [46] (High Performance Comput-
ing domain), it is not integrated with existing software engi-
neering methodologies and also needs a manual adaptation
of the application. At this point, it could be said that our
approach complements PrIMe, since UML2PROV uses a
well-known software engineering notation for the design of
applications (i.e. UML) in order to obtain the design of the
provenance.

As for technology aspects regarding to the capture of
provenance, different approaches may be taken into account
in order to avoid interleaving provenance generation code
into the application’s source code. Our proposal relies on
AOP which has long been used for monitoring purposes,
specially to check whether a system complies with its in-
tended behavior [47], [48]. However, to our knowledge, the
CAPS framework [49], which uses AspectJ to weave cross-
cutting concerns of provenance generation into Java appli-
cations, is the only other proposal that uses AOP to capture
provenance apart from UML2PROV. Other examples are
PASS [50], which intercepts and translates system calls into
sequences of meaningful provenance entries, or noWork-
flow tool [51], that captures provenance of experiment
scripts using a listener in the Python profiling API. Contrary
to these approaches, UML2PROV does not require a kernel
modified for automatic collecting provenance (like PASS)
and it is not restricted to a specific programming language
(such as noWorkflow or CAPS). UML2PROV is a generic
solution based on the design of the application rather than
specific technologies or programming languages.

Finally, MDD has been widely applied in industry in
a broad range of companies, in a number of different do-
mains [10], [52], and in many different ways, ranging from
industry-wide efforts to define precise models for an entire
application domain, to very restricted and limited uses such
as code generation for a single application in a single com-
pany [52]. An interesting study showing significant figures
is [53] about modelling during software development and
about any variation of Model driven engineering, which
concludes that approximately 68% of the studied sample
uses models (such as UML) during software development
and, among them, 44% generate code starting from models.
In the particular case of using MDD to generate instrumen-
tation code, we can distinguish those proposals that take as
source of the MDD process the same models (also annotated
or slightly changed) than the ones used for designing the
system (such as our proposal or [54]), from those that require
designing new models [48], [55]. Although in some of these
works the generated instrumentation code is scattered along
the system code [54], our proposal, as others such as [48],
[55] (this latter one also suggests to use AOP), bets on a sepa-
ration of concerns of the system design and instrumentation.
However, to the best of our knowledge UML2PROV is the

first contribution in using model driven instrumentation for
monitoring provenance data.

11 CONCLUSIONS AND FUTURE WORK

The gap between application design and provenance design
is an adoption hurdle for provenance technology. To address
this challenge, we presented UML2PROV, a conceptual
proposal exploiting the UML design of an application for
automatically obtaining (i) the design of the provenance to
be generated (i.e. the PROV templates), and (ii) a library to
be linked with the application to collect provenance (i.e.
the BGM). Concretely, UML2PROV is rigorously defined by
an extensive set of 17 patterns mapping UML diagrams to
templates, which are explained in a systematic way [13] to
allow other implementers to replicate the functionality.

We also gave a reference implementation of UML2PROV
and demonstrated its feasibility by means of a detailed eval-
uation that analyses its benefits and costs depending on the
UML diagrams used as source. This analysis showed that a
non-tailored UML design leads to capture more provenance
than necessary to satisfy provenance requirements and,
therefore, results in an increase of the overhead: ∼55%, in
the worst case, versus the ∼1.5% corresponding to the best
case. A particular strength of the evaluation is the range
of perspectives considered: development effort, memory
requirements, time performance, and quality of provenance.

There are a number of opportunities to build upon
UML2PROV as further work. For instance, an interesting
point would be to manage the level of detail of the prove-
nance to be captured. The defined transformation patterns
consider a high level of detail in the flow of logic within
the system (SqDs), the change of objects’ states (SMDs), or
in the objects’ status (CDs). In this line, we could adapt
the transformation patterns, by selectively discarding some
PROV elements or relations, and consequently, generating
coarser grained data provenance. Likewise, providing the
UML designer with a mechanism to specify the elements
in the UML diagrams for provenance capture would be an
interesting direction for future research. Additionally, the
implementation of UML2PROV in other languages (such as
Python), or providing UML2PROV as a service, constitute
other lines of future work. Finally, as a complement of its
evaluation, we consider interesting to compare UML2PROV
to other proposals according to our taxonomy in [2].

ACKNOWLEDGMENT

This work is partially supported by the Spanish Ministerio
de Economia y Competitividad (Project EDU2016-79838-P)
and by the University of La Rioja (Grant FPI-UR-2015).

REFERENCES

[1] P. Groth and L. Moreau (eds.), “PROV-Overview. An Overview
of the PROV Family of Documents,” World Wide Web
Consortium, W3C Working Group Note NOTE-prov-overview-
20130430, Apr. 2013. [Online]. Available: www.w3.org/TR/2013/
NOTE-prov-overview-20130430/

[2] B. Pérez, C. Sáenz-Adán, and J. Rubio, “A systematic review of
provenance systems,” Knowl. Inf. Syst., vol. 57, no. 3, pp. 495–543,
2018.

[3] L. Moreau, B. V. Batlajery, T. D. Huynh, D. T. Michaelides, and
H. S. Packer, “A templating system to generate provenance,” IEEE
Trans. Software Eng., vol. 44, no. 2, pp. 103–121, 2018.

www.w3.org/TR/2013/NOTE-prov-overview-20130430/
www.w3.org/TR/2013/NOTE-prov-overview-20130430/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

[4] F. Curbera, Y. Doganata, A. Martens, N. K. Mukhi, and A. Slomin-
ski, “Business provenance – a technology to increase traceability of
end-to-end operations,” ser. Lecture Notes in Computer Science,
vol. 5331, 2008, pp. 100–119.

[5] L. Carata, S. Akoush, N. Balakrishnan, T. Bytheway, R. Sohan,
M. Seltzer, and A. Hopper, “A primer on provenance,” Commun.
ACM, vol. 57, no. 5, pp. 52–60, 2014.

[6] ProvToolbox. [Online]. Available: lucmoreau.github.io/
ProvToolbox/

[7] ProvPy. [Online]. Available: pypi.python.org/pypi/prov
[8] S. Miles, P. T. Groth, S. Munroe, and L. Moreau, “PrIMe: A method-

ology for developing provenance-aware applications,” ACM T.
Softw. Eng. Meth., vol. 20, no. 3, pp. 8:1–8:42, 2011.

[9] OMG. (2015) Unified Modeling Language (UML), v. 2.5.
Document formal/15-03-01, March, 2015. [Online]. Available:
www.omg.org/spec/UML/2.5/

[10] J. E. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen,
“Empirical assessment of MDE in industry,” in Proc. 33rd Int. Conf.
Soft. Eng., 2011, pp. 471–480.

[11] C. Sáenz-Adán, L. Moreau, B. Pérez, S. Miles, and F. J. García-
Izquierdo, “Automating provenance capture in software engineer-
ing with UML2PROV,” in Proc. 7th Int. Provenance and Annotation
Workshop, 2018, pp. 58–70.

[12] C. Sáenz-Adán, B. Pérez, T. D. Huynh, and L. Moreau,
“UML2PROV: automating provenance capture in software engi-
neering,” in Proc. 44th Int. Conf. on Current Trends in Theory and
Practice of Computer Science, 2018, pp. 667–681.

[13] UML2PROV. Supplementary material. [Online]. Available:
uml2prov.unirioja.es/

[14] UML2PROV User Guide. [Online]. Available: https://github.
com/uml2prov/uml2prov

[15] L. Moreau and P. Missier (eds.), “PROV-DM: The PROV Data
Model,” World Wide Web Consortium, W3C Recommendation
REC-prov-dm-20130430, 2013. [Online]. Available: www.w3.org/
TR/2013/REC-prov-dm-20130430/

[16] I. D. Baxter and M. Mehlich, “Reverse engineering is reverse
forward engineering,” Sci. Comput. Program., vol. 36, no. 2, pp.
131 – 147, 2000.

[17] G. Reggio, M. Leotta, F. Ricca, and D. Clerissi, “What are the used
UML diagrams? A preliminary survey,” in Proc. 3rd Int. Workshop
on Experiences and Empirical Studies in Softw. Modeling, 2013, pp.
3–12.

[18] OMG. (2014) Object Constraint Language (v. 2.4). Formal/2014-
02-03. [Online]. Available: www.omg.org/spec/OCL/2.4/PDF

[19] M. Seidl, M. Scholz, C. Huemer, and G. Kappel, UML@Classroom:
An Introduction to Object-Oriented Modeling. Springer Publishing
Company, Incorporated, 2015.

[20] N. Dragan, M. L. Collard, and J. I. Maletic, “Automatic identifica-
tion of class stereotypes,” in Proc. 26th IEEE Int. Conf. on Software
Maintenance, 2010, pp. 1–10.

[21] C. Martínez-Costa, M. Menárguez-Tortosa, and J. T. Fernández-
Breis, “Clinical data interoperability based on archetype transfor-
mation,” J. Biomed. Inform., vol. 44, no. 5, pp. 869–880, 2011.

[22] L. Moreau and P. Missier (eds.), “PROV-N: The Provenance
Notation,” World Wide Web Consortium, W3C Recommendation
REC-prov-n-20130430, Apr. 2013. [Online]. Available: www.w3.
org/TR/2013/REC-prov-n-20130430/

[23] ATL - a model transformation technology, version 3.8. [Online].
Available: www.eclipse.org/atl/

[24] Eclipse. XTend. [Online]. Available: www.eclipse.org/xtend/
[25] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M.

Loingtier, and J. Irwin, “Aspect-oriented programming,” in Proc.
European Conf. on Object-Oriented Programming, 1997, pp. 220–242.

[26] AspectJ Project. [Online]. Available: www.eclipse.org/aspectj/
[27] M. Johnson, L. Moreau, A. Chapman, P. Gandhi, and C. Sáenz-

Adán, “Using the provenance from astronomical workflows to
increase processing efficiency,” in Proc. 7th Int. Provenance and
Annotation Workshop, 2018, pp. 101–112.

[28] J. Heras, C. Domínguez, E. Mata, V. Pascual, C. Lozano, C. Torres,
and M. Zarazaga, “GelJ – a tool for analyzing DNA fingerprint gel
images,” BMC Bioinformatics, vol. 16, no. 1, Aug 2015.

[29] M. M. Read, Trends in DNA Fingerprint Research. New York, USA:
Nova Science Publishers, Inc, 2005.

[30] L. Moreau et al., “Special issue: The first provenance challenge,”
Concurr. Comp.-Pract. E., vol. 20, no. 5, pp. 409–418, Apr. 2008.
[Online]. Available: http://dx.doi.org/10.1002/cpe.v20:5

[31] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of software
engineering (2. ed.). Prentice Hall, 2003.

[32] Papyrus, Modeling environment (v. 2.0.2). (2018, December).
[Online]. Available: eclipse.org/papyrus/

[33] The ObjectAid UML Explorer for Eclipse (v. 1.2.2). (2017,
November). [Online]. Available: www.objectaid.com/

[34] N. Walkinshaw, K. Bogdanov, S. Ali, and M. Holcombe, “Auto-
mated discovery of state transitions and their functions in source
code,” Softw. Test. Verif. Reliab., vol. 18, no. 2, pp. 99–121, 2008.

[35] MaintainJ, v. 4.2.0. (2014). [Online]. Available: maintainj.com/
[36] MongoDB Inc. (v. 4.0.2). (2018, August). [Online]. Available:

www.mongodb.org/
[37] P. Groth. (2007) The origin of data. Enabling the determination

of provenance in multi-institutional scientific systems through the
documentation of processes. University of Southampton, School
of Electronics and Computer Science, Doctoral Thesis. Retrieved
from https://eprints.soton.ac.uk/264649/.

[38] Z. Chen and L. Moreau, “Implementation and evaluation of a
protocol for recording process documentation in the presence of
failures,” in Proc. 2nd Int. Provenance and Annotation Workshop,
2008, pp. 92–105.

[39] H. Park, R. Ikeda, and J. Widom, “RAMP: A system for capturing
and tracing provenance in mapreduce workflows,” PVLDB, vol. 4,
no. 12, pp. 1351–1354, 2011.

[40] G. Scanniello, C. Gravino, and G. Tortora, “Investigating the role of
UML in the software modeling and maintenance - A preliminary
industrial survey,” in Proc. 12th Int. Conf. on Enterprise Information
Systems, 2010, pp. 141–148.

[41] P. V. Gorp, H. Stenten, T. Mens, and S. Demeyer, “Towards
automating source-consistent UML refactorings,” in Proc. 6th Int.
Conf. on The Unified Modeling Language, 2003, pp. 144–159.

[42] I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance Collection
Support in the Kepler Scientific Workflow System,” in Proc. 1st Int.
Provenance and Annotation Workshop, 2006, pp. 118–132.

[43] S. Bowers, T. M. McPhillips, and B. Ludäscher, “Provenance in
collection-oriented scientific workflows,” Concurr. Comp.-Pract. E.,
vol. 20, no. 5, pp. 519–529, 2008.

[44] The Kepler Project. [Online]. Available: kepler-project.org/
[45] S. Álvarez-Napagao, J. Vázquez-Salceda, T. Kifor, L. Z. Varga, and

S. Willmott, “Applying provenance in distributed organ transplant
management,” in Proc. 1st Int. Provenance and Annotation Workshop,
2006.

[46] V. Silva, R. Souza, J. J. Camata, D. de Oliveira, P. Valduriez,
A. L. G. A. Coutinho, and M. Mattoso, “Capturing provenance for
runtime data analysis in computational science and engineering
applications,” in Proc. Int Provenance and Annotation Workshop,
2018, pp. 183–187.

[47] I. Cassar, A. Francalanza, L. Aceto, and A. Ingólfsdóttir, “A survey
of runtime monitoring instrumentation techniques,” in Proc. 2nd
Int. Workshop on Pre- and Post-Deployment Verification Techniques,
2017, pp. 15–28.

[48] M. Boskovic, T. Warns, and W. Hasselbring, “Model Driven In-
strumentation for Relational Event Traces,” Radioelektronic and
Computer Systems, no. 6(18), 2006.

[49] P. C. Brauer, F. Fittkau, and W. Hasselbring, “The Aspect-Oriented
Architecture of the CAPS Framework for Capturing, Analyzing
and Archiving Provenance Data,” in Proc. 5th Int. Provenance and
Annotation Workshop, 2014, pp. 223–225.

[50] D. A. Holland, M. I. Seltzer, U. Braun, and K.-K. Muniswamy-
Reddy, “PASSing the provenance challenge,” Concurr. Comp.-Pract.
E., vol. 20, no. 5, pp. 531–540, 2008.

[51] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “noWorkflow:
a tool for collecting, analyzing, and managing provenance from
python scripts,” in Proc. of the VLDB Endowment, vol. 10, no. 12,
2017, pp. 1841–1844.

[52] J. Whittle, J. E. Hutchinson, and M. Rouncefield, “The state of
practice in model-driven engineering,” IEEE Software, vol. 31,
no. 3, pp. 79–85, 2014.

[53] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio,
“Relevance, benefits, and problems of software modelling and
model driven techniques - A survey in the italian industry,” Journal
of Systems and Software, vol. 86, no. 8, pp. 2110–2126, 2013.

[54] M. Funk, P. Hoyer, and S. Link, “Model-driven instrumentation
of graphical user interfaces,” in Proc. 2nd Int. Conf. on Advances in
Computer-Human Interaction, 2009, pp. 19–25.

[55] C. Momm, T. Detsch, and S. Abeck, “Model–driven instrumen-
tation for monitoring the quality of web service compositions,”

lucmoreau.github.io/ProvToolbox/
lucmoreau.github.io/ProvToolbox/
pypi.python.org/pypi/prov
www.omg.org/spec/UML/2.5/
uml2prov.unirioja.es/
https://github.com/uml2prov/uml2prov
https://github.com/uml2prov/uml2prov
www.w3.org/TR/2013/REC-prov-dm-20130430/
www.w3.org/TR/2013/REC-prov-dm-20130430/
www.omg.org/spec/OCL/2.4/PDF
www.w3.org/TR/2013/REC-prov-n-20130430/
www.w3.org/TR/2013/REC-prov-n-20130430/
www.eclipse.org/atl/
www.eclipse.org/xtend/
www.eclipse.org/aspectj/
http://dx.doi.org/10.1002/cpe.v20:5
eclipse.org/papyrus/
www.objectaid.com/
maintainj.com/
www.mongodb.org/
kepler-project.org/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

in Proc. 12th Enterprise Distributed Object Computing Conference
Workshops, 2008, pp. 58–67.

Carlos Sáenz-Adán received his B.Sc. degree
in Computer Science from the University of La
Rioja, in 2013, a Master degree in Advanced
Computer Systems from the University of País
Vasco (UPV/EHU), in 2014, and his Ph.D. in
Computer Science from the University of La
Rioja, in 2019. His research, which has been
partially supported by the University of La Rioja
grant (FPI-UR-2015), is mainly focused on Busi-
ness process modeling and provenance.

Beatriz Pérez is an Assistant Professor in Com-
puter Science at the University of La Rioja,
Spain. She received her B.Sc. degree in mathe-
matics from the University of La Rioja, Spain, in
2003, and her Ph.D. in Computer Science from
the University of Zaragoza, Spain, in 2011. Her
main research interests are in Meta-modelling,
Model-Driven Development, Business process
modeling and provenance.

Francisco J. García-Izquierdo received the
Ph.D. degree in telecommunications engineering
from the University of Zaragoza, Spain in 1999.
He is now an Assistant Professor at the Univer-
sity of La Rioja, Spain. His research interests
include technologies for web applications, mod-
eling theories, provenance and innovative ways
to teach engineering concepts.

Luc Moreau is a Professor of Computer Sci-
ence and Head of the department of Informat-
ics, at King’s College London. He was co-chair
of the W3C Provenance Working Group, which
resulted in four W3C Recommendations and
nine W3C Notes, specifying PROV, a concep-
tual data model for provenance the Web, and
its serializations in various Web languages. Pre-
viously, he initiated the successful Provenance
Challenge series, which saw the involvement
of over 20 institutions investigating provenance

inter-operability in 3 successive challenges, and which resulted in the
specification of the community Open Provenance Model (OPM).

INTEGRATING PROVENANCE CAPTURE AND UML WITH

UML2PROV: PRINCIPLES AND EXPERIENCE

SUPPLEMENTARY MATERIAL

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Francisco J. García-Izquierdo1, Luc Moreau2

1Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,
{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2Dept. of Informatics, King’s College London, London, UK,
luc.moreau@kcl.ac.uk

Table of content

• Specification of the UML to PROV patterns

• Implementation details

• Taxonomy of Class’ operations

• Sequence of interactions with GelJ

• Second Evaluation Case Study

• OCL Constraints

INTEGRATING PROVENANCE CAPTURE AND UML WITH

UML2PROV: PRINCIPLES AND EXPERIENCE

–SUPPLEMENTARY MATERIAL–

SPECIFICATION OF THE UML TO PROV PATTERNS

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Francisco J. García-Izquierdo1, Luc Moreau2

1Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,
{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2Dept. of Informatics, King’s College London, London, UK,
luc.moreau@kcl.ac.uk

1 Introduction
This specification defines in detail the patterns for translating UML into PROV. The main objective of this specification is to
provide a tool for implementing systems that include provenance capabilities during their design phase.
This document has been organized into three main parts:

• Section 2 provides an insight into the information required for the accurate understanding of this specification such as the
notational conventions used throughout the document (Section 2.1), or the description of the structure for the pattern’s
explanations (Section 2.2).

• Section 3 shows a table that associates each pattern’s identifier with the page where it is explained.

• Sections from 4 to 6 provide a systematic explanation of each pattern classified by the addressed UML diagram.

2 Before reading
As we see this document as the reference specification for UML2PROV, each pattern has been written in a self-contained way.
A reader who reads all the patterns sequentially from the first to the last will find similar explanations, even repeated ones,
in several patterns. We have preferred to make the reader suffer this small inconvenience, instead of running the risk that an
occasional reader of a particular pattern loses part of the explanations that are discussed elsewhere.
We assume that the reader is familiar with the following UML diagrams: UML Sequence Diagrams (SqDs), UML State
Machine Diagrams (SMDs), and UML Class diagrams (CDs). Readers unfamiliar with these diagrams are encouraged to read
the UML specification [1]. Additionally, due to the fact that transformations referring to CDs make use of concrete UML
stereotypes used to classify UML Class’s operations, we refer to Appendix A for an overview about them.
Likewise, we assume that the reader is knowledgeable about both the PROV data model (PROV-DM) [2], to represent
provenance information, and the PROV template approach [3], for designing provenance. If this is not the case, she/he is
referred to [2] and [3], respectively.

1

2.1 Notational conventions
More than a terminological nuance, the distinction between the state and the status of an object is fundamental to understand
this document. More specifically:

• In SMDs, in accordance to UML terminology [1], the state of an object denotes a situation during which some invariant
conditions holds.

• In CDs, we use the term object’s status with a broad scope, referring to the values of the object’s attributes at some
moment, which particularly could correspond to a concrete state but not necessarily.

The PROV templates throughout this document are represented following the PROV graph conventions given in [4].
We also use qualified names (e.g., prov:value) in accordance to PROV-DM [2]. In compliance with PROV-DM, we note
that a qualified name can be mapped to an Internationalized Resource Identifier (IRI) [5] by concatenating the IRI associated
with the prefix (e.g., prov) and the local part (e.g., value). Every qualified name with a prefix refers to the namespace of the
prefix. The following namespaces and prefixes are used throughout this document.

prefix namespace IRI definition
var http://openprovenance.org/var# The namespace for template variables
prov http://www.w3.org/ns/prov# The PROV namespace
xsd http://www.w3.org/2000/10/XMLSchema# XML Schema namespace
u2p http://uml2prov.unirioja.es/ns/u2p# UML2PROV namespace

Table 1. Prefix and Namespaces used in this specification

2.2 Structure of the patterns
We have structured the explanation of the defined patterns in the same five blocks: Identifier, Context, UML Diagram,
Mapping to PROV, and Discussion. See the explanation of each block below.

2.2.1 Identifier
Unique identifier of the transformation pattern. It is an acronym that refers to the type of UML diagram together with a numeric
identifier. The UML Sequence diagram Patterns are referred to as SeqP<N>, where N is the numeric identifier. Likewise,
StP<N> corresponds to the UML State Machine Patterns, and ClP<N> to the UML Class Diagram Patterns.

2.2.2 Context
The behaviour addressed by the pattern. In order to give a free of context explanation, being as agnostic as possible about
the modeling language used to represent such a behaviour, we will use the natural language including well-known software
engineering terminology (e.g., object, operation. . .), to identify the part of the domain for which the corresponding pattern
proposes a translation.
Each pattern context block will include a detailed description of its key elements. When necessary, we will use nested elements
to describe the different alternatives through which certain key elements participate in the context. We remark that not all the
identified key elements explicitly appear in the context. Some patterns identify specific key elements that are inferred from the
context because they play an important role in the pattern.

2.2.3 UML Diagram
This block will depict the excerpt of the UML diagram with the elements that model the previous key elements. In addition, we
provide a table, whose structure is illustrated below, that explains the representation of each key element, by means of UML
elements. Additionally, we assign a green label containing a numeric identifier to each UML element, which makes it easier its
location in the UML diagram.

Key Element UML Rationale
Name of the element UML element id The fundamental reasons serving to account for the use of the UML

element for modelling the key element.

2/74

2.2.4 Mapping to PROV
This block contains the PROV template generated from the previous excerpt of UML Diagram, together with a explanation
about the transformation, that is, the PROV elements, attributes, and PROV relations generated from the UML elements in the
UML Diagram. We assign a numeric identifier to each PROV element that corresponds to the identifier of the UML element
from which it comes from. Additionally, each relation among PROV elements appearing in the PROV template is labeled with
a letter that helps link such a relation with its description. The structure used to specify this block is the following:

PROV elements

UML PROV / id Rationale
UML element id PROV element id /

var:<identifier>

The explanation of the mapping between UML element and PROV ele-
ment.

Attributes

PROV Element Attribute / Value Description
PROV element id name of attribute /

assigned value
The description of the meaning of the attribute and its value.

Note: Throughout this specification, we have included the attributes tmpl:startTime and tmpl:endTime associated with
Activities because we consider such an information very useful from a provenance point of view. Nevertheless, both
attributes are optional and the user is free to include them.

PROV relations

PROV Relation Description

PROV relation id Description of the relation.

Note: In PROV, two relationships of the form (B, prov:used, A) and (C, prov:wasGeneratedBy, B) may be enriched
with (C, prov:wasDerivedFrom, A) to express the dependency of C on A. This structure is a provenance construction
called use-generate-derive triangle [3] which explicitly connects a generated prov:Entity to a used prov:Entity. In the
realm of this work, it may be applied in those templates in which a prov:Entity is used by a prov:Activity, and such
a prov:Activity generated another prov:Entity. However, aiming at avoiding the overburden of the PROV template
explanations with information that can be inferred, we have decided to include the relation prov:wasDerivedFrom only
when the context of the pattern explicitly refers to such a derivation.

2.2.5 Discussion
Issues related to the transformation of UML to PROV. Concretely, we will focus on the explanation and justification of our
transformation decisions together with alternative solutions (if any), and some questions that are likely to come up to the reader.

3/74

3 Index of patterns

Modelled by means of UML Sequence Diagrams
Pattern
identifier

Context Page

SeqP1 A participant (the sender) interacts with another participant (the recipient) by calling an operation in the recipient,
and then, it continues immediately. The call causes the recipient to execute the operation.

6

SeqP2 A participant (the sender) interacts with another participant (the recipient) by calling an operation in the recipient
and waiting for a response. The call causes the recipient to execute the operation and to respond the sender after the
execution.

9

SeqP3 During the execution of an operation (main operation), a nested operation call is made. After this call, the execution
of the main operation can either continue immediately or wait for the response of that nested operation call. This
way, this pattern complements SeqP1 and SeqP2.

12

SeqP4 During the execution of an operation (main operation), a response of a previously issued nested operation call
is received. The main operation’s execution uses this response to complete its behaviour. This way, this pattern
complements SeqP1 and SeqP2 with additional information regarding the response to the nested operation call
(addressed by SeqP3).

15

Modelled by means of UML State Machine Diagrams
Pattern
identifier

Context Page

StP1 As a consequence of the execution of an operation, an object is created in its first state. This operation is usually the
constructor of the object.

19

StP2 As a consequence of the execution of an operation, the behaviour of an object is completed. 23
StP3 As a consequence of the execution of an operation, an object changes its state. 27

Modelled by means of UML Class Diagrams
Pattern
identifier

Context Page

ClP1 The execution of an operation provokes the creation of a new object. 33
ClP2 The execution of an operation provokes the destruction of an object. 36

ClP3 The execution of an operation on an object returns values of concrete object’s attributes. The values are returned as
they are, without any further processing. This execution does not provoke the change of the object’s status.

38

ClP4 The execution of an operation on an object returns values that are computed based on the object’s status as a whole
(the values of concrete attributes involved in the computation are unknown or irrelevant). This execution does not
provoke the change of the object’s status.

41

ClP5 The execution of an operation on an object returns values that are computed based on values of concrete object’s
attributes. This execution does not provoke the change of the object’s status.

44

ClP6 The execution of an operation on an object changes the object’s status as a whole (the concrete modified attributes
are unknown or irrelevant).

48

ClP7 The execution of an operation on an object directly sets the information passed to the operation as values of concrete
object’s attributes, thus provoking a change in the object’s status.

53

ClP8 The execution of an operation on an object changes the values of concrete object’s attributes, thus provoking a
change in the object’s status.

58

ClP9 The execution of an operation on an object removes element(s) from a concrete object’s collection attribute, thus
provoking a change in the object’s status.

63

ClP10 The execution of an operation on an object directly adds the information passed to the operation as new element(s)
of a concrete object’s collection attribute, thus provoking a change in the object’s status.

68

4/74

4 UML Sequence Diagrams

Pattern
identifier

Context Page

SeqP1 A participant (the sender) interacts with another participant (the recipient) by calling an operation in
the recipient, and then, it continues immediately. The call causes the recipient to execute the operation.

6

SeqP2 A participant (the sender) interacts with another participant (the recipient) by calling an operation in
the recipient and waiting for a response. The call causes the recipient to execute the operation and to
respond the sender after the execution.

9

SeqP3 During the execution of an operation (main operation), a nested operation call is made. After this call,
the execution of the main operation can either continue immediately or wait for the response of that
nested operation call. This way, this pattern complements SeqP1 and SeqP2.

12

SeqP4 During the execution of an operation (main operation), a response of a previously issued nested
operation call is received. The main operation’s execution uses this response to complete its behaviour.
This way, this pattern complements SeqP1 and SeqP2 with additional information regarding the
response to the nested operation call (addressed by SeqP3).

15

5/74

Identifier Sequence diagram Pattern 1 (SeqP1)

Context

A participant (the sender) interacts with another participant (the recipient) by calling an operation in the recipient, and then, it
continues immediately. The call causes the recipient to execute the operation.

Key elements

Sender The participant that makes the operation call.

Operation call The call that starts the execution of the operation.

Input data The information (if any) passed to the operation through the Operation call.

Operation execution The execution of the operation.

UML Diagram

Key Element UML Rationale
Sender Lifeline 1 It models the Sender participant involved in the interaction.
Operation call Asynchronous Message 2 It models the Operation call when the Sender does not

wait for a response, but instead continues immediately after
sending the message.

Input data Input Arguments 3 They specify the information passed to the operation through
the Operation call.

Operation execution ExecutionSpecification 4 It shows the period of time that the recipient’s participant
devotes to the Operation execution.

:Lifeline1 :Lifeline2

asynch(inArgs)

1

3

4
2

Figure 1. UML representation that models the context given by SeqP1

Mapping to PROV

var:starter

var:input

hadMember

prov:type u2p:RequestMessage

var:operation

wasAssociatedWithc

wasStartedBy

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

var:senderObject

1
2

3

4

a

b

u2p:className var:className

usedd

prov:value var:inputValue
u2p:className var:inputType

Figure 2. PROV template generated from the UML representation used in SeqP1 (Figure 1)

Sequence diagram Pattern 1 (SeqP1) 6/74

PROV elements

UML PROV / id Rationale
Lifeline 1 prov:Agent 1 /

var:senderObject

The sender Lifeline 1 is mapped to a prov:Agent

identified by var:senderObject. It assumes the respon-
sibility for starting the ExecutionSpecification 4 .

Asynchronous Message 2 prov:Entity 2 /
var:starter

The Asynchronous Message 2 that initiates the
ExecutionSpecification 4 of the recipient is a
prov:Entity with identifier var:starter.

Input Arguments 3 prov:Entity 3 /
var:input

Each argument of Input Arguments 3 is a separate
prov:Entity identified as var:input.

ExecutionSpecification 4 prov:Activity 4 /
var:operation

The ExecutionSpecification 4 is a
prov:Activity with identifier var:operation.

Attributes

PROV Element Attribute / Value Description
var:senderObject 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which the var:senderObject 1 belongs.

var:starter 2 prov:type /
u2p:RequestMessage

The value u2p:RequestMessage shows that
var:starter 2 is a request message.

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
class to which var:input 3 belongs.

var:operation 4 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 4 .

tmpl:startTime /
var:operationStartTime

var:operationStartTime is an xsd:dateTime value for
the start of var:operation 4 .

tmpl:endTime /
var:operationEndTime

var:operationEndTime is an xsd:dateTime value for the
end of var:operation 4 .

PROV relations

PROV Relation Description
a prov:hadMember It states that var:input is one of the elements in var:starter.
b prov:wasStartedBy var:operation is deemed to have been started by var:starter.
c prov:wasAssociatedWith It is the assignment of responsibility to var:senderObject for

var:operation.
d prov:used It is the beginning of utilizing var:starter by var:operation.

Discussion

• Figure 2 depicts the responsibility of the Sender lifeline (var:senderObject) for the recipient lifeline to execute the
operation (var:operation). However, the recipient lifeline is not modelled in this PROV template, even though it is
the participant that executes the operation. This decision is based on other patterns’ better ability to both (1) identify the
participant responsible for executing that operation, and (2) give a more detailed information about the implications that the
execution of that operation has in the recipient participant. More specifically, these patterns are: StP1-StP3, which mainly
focus on representing possible changes in an object’s state caused by an Operation execution; and patterns ClP1-ClP10,
which put more stress on how the execution affects the status of the object responsible for performing such an execution.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the Operation call lacks Input

Sequence diagram Pattern 1 (SeqP1) 7/74

data, the UML representation in Figure 1 will not include Input Arguments 3 . As a consequence, the resulting PROV
template in Figure 2 will also lack var:input 3 and its associated PROV relations. Finally, we remark that the resulting
PROV template does not reflect the usage of var:input 3 by var:operation 4 because SqDs stick to the flow of
information, not its usage. Patterns addressing CDs (ClP1-ClP10) are better suited for this purpose.

Sequence diagram Pattern 1 (SeqP1) 8/74

Identifier Sequence diagram Pattern 2 (SeqP2)

Context

A participant (the sender) interacts with another participant (the recipient) by calling an operation in the recipient and waiting
for a response. The call causes the recipient to execute the operation and to respond the sender after the execution.

Key elements

Sender The participant that makes the operation call.

Operation call The call that starts the execution of the operation.

Input data The information (if any) passed to the operation through the Operation call.

Operation execution The execution of the operation.

Response The recipient’s response to the Operation call.

Output data The information contained in the Response.

UML Diagram

Key Element UML Rationale
Sender Lifeline 1 It models the Sender participant involved in the interaction.
Operation call Synchronous Message 2 It models the Operation call when the Sender waits for a

response.
Input data Input Arguments 3 They specify the information passed to the operation through

the Operation call.
Operation execution ExecutionSpecification 4 It shows the period of time that the recipient’s participant

devotes to the Operation execution.
Response Reply Message 5 It specifies the response to the Operation call.
Output data Output Arguments 6 They specify the information contained in the Response.

:Lifeline1 :Lifeline2

synch(inArgs)

1

3

4

2

synch(outArgs)
6

5

Figure 3. UML representation that models the context given by SeqP2

Sequence diagram Pattern 2 (SeqP2) 9/74

Mapping to PROV

var:starter

var:input

hadMember

prov:type u2p:RequestMessage

prov:value var:inputValue
u2p:className var:inputType

var:operation

wasAssociatedWithc

wasStartedBy
prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

var:senderObject

1
2

3

4

a

b

var:response

var:output

hadMember

prov:type u2p:ReplyMessage

prov:value var:outputValue
u2p:className var:outputType

5

6

f

wasGeneratedByd

wasDerivedFrome

u2p:className var:className

usedg

Figure 4. PROV template generated from the UML representation used in SeqP2 (Figure 3)

PROV elements

UML PROV / id Rationale
Lifeline 1 prov:Agent 1 /

var:senderObject

The sender Lifeline 1 is mapped to a prov:Agent

identified by var:senderObject. It assumes the respon-
sibility for starting the ExecutionSpecification 4 .

Synchronous Message 2 prov:Entity 2 /
var:starter

The Synchronous Message 2 that initiates the
ExecutionSpecification 4 of the recipient is a
prov:Entity with identifier var:starter.

Input Arguments 3 prov:Entity 3 /
var:input

Each argument of Input Arguments 3 is a separate
prov:Entity identified as var:input.

ExecutionSpecification 4 prov:Activity 4 /
var:operation

The ExecutionSpecification 4 is a
prov:Activity with identifier var:operation.

Reply Message 5 prov:Entity 5 /
var:response

The Reply Message 5 that responds to the
Synchronous Message 2 is a prov:Entity with
identifier var:response.

Output Arguments 6 prov:Entity 6 /
var:output

Each argument of Output Arguments 6 is a separate
prov:Entity identified as var:output.

Sequence diagram Pattern 2 (SeqP2) 10/74

Attributes

PROV Element Attribute / Value Description
var:senderObject 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which the var:senderObject 1 belongs.

var:starter 2 prov:type /
u2p:RequestMessage

The value u2p:RequestMessage shows that
var:starter 2 is a request message.

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
class to which the var:input 3 belongs.

var:operation 4 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 4 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 4 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 4 .

var:response 5 prov:type /
u2p:ReplyMessage

The value u2p:ReplyMessage shows that var:response 5

is a reply message.
var:output 6 prov:value /

var:outputValue

The value var:outputValue is the direct representation of
var:output 6 .

u2p:typeName /
var:outputType

The value var:outputType is a string with the name of the
class to which var:output 6 belongs.

PROV relations

PROV Relation Description
a prov:hadMember It states that var:input is one of the elements in var:starter.
b prov:wasStartedBy var:operation is deemed to have been started by var:starter.
c prov:wasAssociatedWith It is the assignment of responsibility to var:senderObject for

var:operation.
d prov:wasGeneratedBy It is the completion of production of var:response by var:operation.
e prov:wasDerivedFrom It is the construction of var:response based on var:starter reception.
f prov:hadMember It states that var:output is one of the elements in var:response.
g prov:used It is the beginning of utilizing var:starter by var:operation.

Discussion

• Figure 4 depicts the responsibility of the Sender lifeline (var:senderObject) for executing the operation (var:operation)
in a recipient lifeline. However, the recipient lifeline is not modelled in this PROV template, even though it is the participant
that executes the operation. This decision is based on other patterns’ better ability to both (1) identify the participant
responsible for executing that operation, and (2) give a more detailed information about the implications that the execution
of that operation has in the recipient participant. More specifically, these patterns are: StP1-StP3, which mainly focus on
representing possible changes in an object’s state caused by an Operation execution; and patterns ClP1-ClP10, which put
more stress on how the execution affects the status of the object responsible for performing such an execution.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the Operation call lacks Input
data, the UML representation in Figure 3 will not include Input Arguments 3 . As a consequence, the resulting PROV
template in Figure 4 will also lack var:input 3 and its associated PROV relations. Finally, we remark that the resulting
PROV template does not reflect the usage of var:input 3 by var:operation 4 because SqDs stick to the flow of
information, not its usage. Patterns addressing CDs (ClP1-ClP10) are better suited for this purpose.

Sequence diagram Pattern 2 (SeqP2) 11/74

Identifier Sequence diagram Pattern 3 (SeqP3)

Context

During the execution of an operation (main operation), a nested operation call is made. After this call, the execution of the
main operation can either continue immediately or wait for the response of that nested operation call. This way, this pattern
complements SeqP1 and SeqP2.

Key elements

(Main) Operation execution The execution of the main operation.

(Nested) Operation call The nested operation call sent during the Main operation execution.

UML Diagram

Key Element UML Rationale
Main operation exe-
cution

ExecutionSpecification 1 It shows the period of time that takes the Main operation
execution.

Nested operation call Synchronous Message 2 or
Asynchronous Message 2

It models the Nested operation call either when its sender waits
for a response, or when it does not wait for a response, but
instead continues immediately after sending the message.

a/synch(inArgs)2

SeqP2

:Lifeline2

1

:Lifeline1 :Lifeline2

asynch(args)

SeqP1

SeqP3

:Lifeline1

synch(args)
SeqP3

1
a/synch(inArgs)2

Figure 5. The left hand side is the UML representation of SeqP1 complemented by SeqP3, whereas the right hand side is the
UML representation of SeqP2 complemented by SeqP3. Only the shaded areas correspond to the UML elements contributed by
this pattern.

Sequence diagram Pattern 3 (SeqP3) 12/74

Mapping to PROV

1

var:input

var:starter

hadMember

prov:type u2p:RequestMessage

wasStartedBy

var:senderObject

SeqP1

SeqP3

var:starter

var:input

hadMember

var:operation

var:senderObject

var:response

hadMember

prov:value var:inputValue
u2p:className var:inputType

prov:type u2p:RequestMessage

prov:value var:outputValue
u2p:className var:outputType

wasGeneratedBy

var:nestedRequest

wasGeneratedBy

wasDerivedFrom

SeqP2

SeqP3

2

2

a

a

var:nestedRequest

wasGeneratedBy

prov:type u2p:RequestMessage

1

var:operation
1

used

used

prov:value var:inputValue
u2p:className var:inputType

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:className var:className

prov:type u2p:RequestMessage

prov:type u2p:RequestMessage

u2p:className var:className

wasStartedBy

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

wasAssociatedWith

wasAssociatedWith

var:output

Figure 6. At the top, it is a PROV template generated from the UML representation in the left side of Figure 5. At the bottom,
it is a PROV template generated from the UML representation in the right side of Figure 5. Only the shaded areas correspond to
the PROV elements contributed by this pattern.

PROV elements

UML PROV / id Rationale
ExecutionSpecification 1 prov:Activity 1 /

var:operation

The ExecutionSpecification 1 is a
prov:Activity with identifier var:operation.

Synchronous Message 2 or
Asynchronous Message 2

prov:Entity 2 /
var:nestedRequest

The Synchronous Message or
Asynchronous Message 2 sent from the
ExecutionSpecification 1 is a prov:Entity

with identifier var:nestedRequest.

Sequence diagram Pattern 3 (SeqP3) 13/74

Attributes

PROV Element Attribute / Value Description
var:operation 1 prov:type /

var:operationName

The value var:operationName is the name of the operation
var:operation 1

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime

value for the start of var:operation 4 .
tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value
for the end of var:operation 4 .

var:nestedRequest 2 prov:type /
u2p:RequestMessage

The value u2p:RequestMessage shows that
var:nestedRequest 5 is a request message.

PROV relations

PROV Relation Description
a prov:wasGeneratedBy It is the completion of production of var:nestedRequest by var:operation.

Discussion

• The same element (‘request message’ in this case) appears in different patterns playing different roles. In SeqP3 the request
message models the call started from an ExecutionSpecification. However, in SeqP1 and SeqP2, this same request
message models the call that starts an ExecutionSpecification. The former way of looking at the request message
is translated into var:nestedRequest (in SeqP3), and the latter is translated into var:starter (in SeqP1 and SeqP2).
Consequently, despite var:nestedRequest and var:starter being two different elements of type prov:Entity

appearing in two different PROV templates, both must be assigned to the same value during the execution of the application.
Therefore, after merging all the expanded PROV templates, a single prov:Entity will be generated.

Sequence diagram Pattern 3 (SeqP3) 14/74

Identifier Sequence diagram Pattern 4 (SeqP4)

Context

During the execution of an operation (main operation), a response of a previously issued nested operation call is received. The
main operation’s execution uses this response to complete its behaviour. This way, this pattern complements SeqP1 and SeqP2
with additional information regarding the response to the nested operation call (addressed by SeqP3).

Key elements

(Main) Operation execution The execution of the main operation.

(Nested) Response The response to a nested operation call.

(Main) Response The response of the Main operation execution. This element is only identified when this
pattern complements SeqP2.

UML Diagram

Key Element UML Rationale
Main operation execution ExecutionSpecification 1 It shows the period of time that takes the Main operation

execution.
Nested response Reply Message 2 It specifies the response received in the Main operation

execution.
Main response Reply Message 3 In case of complementing SeqP2, it specifies the response

of the Main operation execution.

:Lifeline1:Lifeline1

asynch1(inArgs)

synch2(outArgs)

synch2(inArgs)

synch2(outArgs)synch1(outArgs)

:Lifeline2

synch1(inArgs)
synch2(inArgs)

1 3
2

SeqP1

SeqP4

SeqP2

SeqP4

2

1

:Lifeline2

Figure 7. The left hand side is the UML representation that models the context given by SeqP1 complemented by SeqP4,
wheres the right hand side is the UML representation that models the context given by SeqP2 complemented by SeqP4. Only
the shaded areas correspond to the UML elements contributed by this pattern.

Sequence diagram Pattern 4 (SeqP4) 15/74

Mapping to PROV

var:starter

var:input

hadMember

prov:type u2p:RequestMessage
wasAssociatedWith

wasStartedBy

var:senderObject

used

SeqP1

SeqP4

prov:type u2p:ReplyMessage

a

2

var:senderObject

used

var:starter

var:input

hadMember

prov:type u2p:RequestMessage

var:operation

wasStartedBy

var:response

hadMember

wasGeneratedBy

wasDerivedFrom

1

SeqP2

SeqP4

var:output

a

prov:type u2p:ReplyMessage

var:nestedResponse

wasDerivedFromb

2

3

u2p:className var: className

u2p:className var: className

wasAssociatedWith

prov:value var:inputValue
u2p:className var:inputType

prov:value var:inputValue
u2p:className var:inputType

prov:value var:outputValue
u2p:className var:outputType

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

var:operation

1

prov:type u2p:ReplyMessage

var:nestedResponse

2

used

used

Figure 8. At the top, it is the PROV template generated from the UML representation in the left side of Figure 7. At the
bottom, it is a PROV template generated from the UML representation in the right side of Figure 7. Only the shaded areas
correspond to the PROV elements contributed by this pattern.

Sequence diagram Pattern 4 (SeqP4) 16/74

PROV elements

UML PROV / id Rationale
ExecutionSpecification 1 prov:Activity 1 /

var:operation

The ExecutionSpecification 1 is a
prov:Activity with identifier var:operation.

Reply Message 2 prov:Entity 2 /
var:nestedResponse

The Reply Message 2 that is received in the
ExecutionSpecification 1 is a prov:Entity with
identifier var:nestedResponse.

Reply Message 3 prov:Entity 3 /
var:response

In case of complementing SeqP2, the Reply Message
3 sent from the ExecutionSpecification 1 is a
prov:Entity with identifier var:response. For details,
see SeqP2.

Attributes

PROV Element Attribute / Value Description
var:operation 1 prov:type /

var:operationName

The value var:operationName is the name of the op-
eration var:operation 1 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime

value for the start of var:operation 1 .
tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime

value for the end of var:operation 1 .
var:nestedResponse 2 prov:type /

u2p:ReplyMessage

The value u2p:ReplyMessage shows that
var:response 2 is a reply message.

var:response 3 prov:type /
u2p:ReplyMessage

The value u2p:ReplyMessage shows that
var:response 3 is a reply message.

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:nestedResponse by var:operation.
b prov:wasDerivedFrom It is the construction of var:response based on var:nestedResponse.

Discussion

• As it could be inferred from the context, a requirement for this pattern to be applied is that the Main operation execution
uses the Nested response during its execution. This causes the relations a prov:used and b prov:wasDerivedFrom

to appear in the template; the former showing that when the ExecutionSpecification 1 receives the nested Reply

Message 2 , it utilises that Reply Message 2 to complete its behaviour; and the latter showing that the main Reply

Message 3 is influenced by the nested Reply Message 2 (this last one can only be applied if the Main operation
execution is triggered by a synchronous message, i.e. when SeqP4 complements SeqP2). If a specific scenario does not
meet the aforementioned requirement, i.e., the Main operation execution does not use the Nested response or it is not worth
recording such a dependency, this pattern should not be applied. Even in this case, the provenance about the nested operation
call and its corresponding response would be captured thanks to SeqP1 and SeqP2, respectively.

Sequence diagram Pattern 4 (SeqP4) 17/74

5 UML State Machine Diagrams

Pattern
identifier

Context Page

StP1 As a consequence of the execution of an operation, an object is created in its first state. This operation
is usually the constructor of the object.

19

StP2 As a consequence of the execution of an operation, the behaviour of an object is completed. 23
StP3 As a consequence of the execution of an operation, an object changes its state. 27

18/74

Identifier State machine diagram Pattern 1 (StP1)

Context

As a consequence of the execution of an operation, an object is created in its first state. This operation is usually the constructor
of the object.

Key elements

Object The object created as a consequence of the execution of the operation.

First object’s state The first state after the object creation. This is the first state the object may
undergo during its lifetime.

Object creation The execution of the operation that creates the object.

UML Diagram

Key Element UML Rationale
Object Object 1 It represents the created object.

Note: since Object lacks a graphical representation in UML State Ma-
chine diagrams, Figure 9 does not depict this element.

StateMachine 2 In UML, a StateMachine represents the set of states an Object can go
through during its lifetime in response to events.

Object creation Initial

Pseudostate 3

It refers to the execution of the operation that creates the Object, leading
it to its first state.

First object’s state State 4 It models the first state of the Object.

State Machine2

State

43

Figure 9. UML representation that models the context given by StP1

Mapping to PROV

var:postObject

var:objectSM

var:object

wasAttributedTo

prov:type u2p:StateMachine

var:operation

4

3

a

c

b

specializationOf

wasGeneratedBy

prov:type var:className
u2p:state var:targetState

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

1

2

u2p:typeName var:typeName

Figure 10. PROV template generated from the UML representation used in StP1 (Figure 9)

State machine diagram Pattern 1 (StP1) 19/74

PROV elements

UML PROV / id Rationale
Object 1 prov:Agent 1 /

var:object

The Object 1 bears some form of responsibility for the existence
of the StateMachine 2 , since the existence of StateMachine 2

does not make sense without an Object 1 . To reflect this fact, the
Object 1 is mapped to a prov:Agent identified by var:object.

StateMachine 2 prov:Entity 2 /
var:objectSM

The StateMachine 2 is a prov:Entity identified by
var:objectSM. It reflects the abstraction of the object’s states, which
will be specialized by each concrete state the object goes through.

Initial

Pseudostate 3

prov:Activity 3 /
var:operation

The Initial Pseudostate 3 , referring to the execution of the
operation that creates the Object 1 , is a prov:Activity with the
identifier var:operation.

State 4 prov:Entity 4 /
var:postObject

The State 4 is a prov:Entity identified by var:postObject. We
use this name for this identifier because it corresponds to the state of
the Object 1 after (post) the object creation.

Attributes

PROV Element Attribute / Value Description
var:object 1 u2p:typeName /

var:className

The value var:className is the string with the name of the class
to which var:object 1 belongs.

var:objectSM 2 prov:type /
u2p:StateMachine

The value u2p:StateMachine shows that var:objectSM 2 is
a state machine.

var:operation 3 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 3

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value for
the start of var:operation 3 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 3 .

var:postObject 4 prov:type /
var:className

The value var:className is the name of the class to which the
object in the state var:postObject 4 belongs.

u2p:state /
var:targetState

The value var:targetState is the string with the name of the
state var:postObject 4 .

PROV relations

PROV Relation Description
a prov:wasAttributedTo It is the assignment of responsibility to var:object for var:objectSM.
b prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
c prov:specializationOf var:postObject is a specialization of var:objectSM.

Discussion

• Note that Figure 9 only contains simple states. We do not deal with composite or submachine states, and focus only on simple
states, because the former may be transformed into the latter by resorting to a flattening process consisting of removing
composite states as well as submachine states. In fact, to flatten State Machine diagrams is a very common approach in
contexts such as model checking and code generation [6]. However, the user might be interested in representing composite
states directly into the PROV templates, perhaps because she/he is interested in collecting information about them, or just
because she/he does not want to flatten the State Machine diagram. We can give an insight into how composite states can
be mapped to PROV by placing the elements from Figure 9 inside a Composite State 5 (see Figure 11). A reader
familiar with the UML specification will realize that the semantics of the Initial Pseudostate 3 in Figures 9 and 11

State machine diagram Pattern 1 (StP1) 20/74

are different, but these semantic nuances would have no effect on the PROV transformation. The transformation of Figure 11
is shown in Figure 12. Both Figure 11 and 12 highlight the added elements by blurring the elements coming from Figure 9
and Figure 10, respectively. Briefly speaking, the new Composite State 5 is translated into a prov:Entity identified
by var:compState 5 , which is associated with var:objectSM 2 and var:targetState 4 by means of the relations
d prov:specializationOf and e prov:hadMember, respectively. At this point, it is also worth remarking that for
this example we have used a simple composite state (i.e., Composite State 5), which means that only one substate is
active at a given time within such a state; but we could have used orthogonal composite states instead, which means that
within such a state several substates are active at the same time. Note that both types of composite states would be translated
into the same PROV template (see Figure 12); nevertheless, the generated bindings would be different. In case of a simple
composite state, as there can be only one active substate at the same time, there would be only one value associated with
the variable var:postObject 4 . Conversely, in case of an orthogonal composite state, var:postObject 4 will be
associated with several values (as many as active states).

State Machine2

State2

4

Composite State5

3

Figure 11. Excerpt of a UML State Machine diagram locating the UML elements from StP1 in a simple composite state.

var:postObject

var:objectSM

wasAttributedTovar:operation

4

3

a

d

b

specializationOf

wasGeneratedBy

1

2

e hadMember

var:compState

5

var:object
prov:type var: operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:className
u2p:state var:targetState

prov:type u2p:StateMachine

u2p:state var:compStateName

u2p:typeName var:typeName

Figure 12. PROV template generated from the UML diagram in Figure 11

PROV elements

UML PROV / id Rationale
Composite State 5 prov:Entity 5 /

var:compState

The Composite State 5 is a prov:Entity identified by
var:compState.

Attributes

PROV Element Attribute / Value Description
var:compState 5 u2p:state /

var:compStateName

The value var:compStateName is the string with the name of
the state var:compState 5

State machine diagram Pattern 1 (StP1) 21/74

PROV relations

PROV Relation Description
d prov:specializationOf var:compState is a specialization of var:objectSM.
e prov:hadMember It states that var:postObject is one of the elements in var:compState.

State machine diagram Pattern 1 (StP1) 22/74

Identifier State machine diagram Pattern 2 (StP2)

Context

As a consequence of the execution of an operation, the behaviour of an object is completed.

Key elements

Object The object that completes its behaviour.

Pre-operation object’s state The state of the object before the execution of the operation. This is
one of the states the object may undergo during its lifetime.

Final object’s state The state that represents that the object’s behaviour is completed.

Operation execution The execution of the operation that leads the object to complete its behaviour.

UML Diagram

Key Element UML Rationale
Object Object 1 It represents the object whose behaviour is completed.

Note: since Object lacks a graphical representation in UML State
Machine diagrams, Figure 13 does not depict this element.

StateMachine 2 In UML, a StateMachine can be used to express the set of states
through which the Object goes during its lifetime in response to events.

Pre-operation object’s
state

State 3 It models the state of the Object before the Operation execution.

Final object’s state FinalState 4 It models the state of the Object after the Operation execution.
Operation execution Event 5 It specifies that the Operation execution that triggers the change in the

Object’s state has taken place.

State Machine2

State1

3 45
event

Figure 13. UML representation that models the context given by StP2

Mapping to PROV

var:preObject

var:operation

wasInvalidatedByc

b used
var:objectSM

var:object

wasAttributedTo

prov:type var:className
u2p:state var:sourceState

a

d specializationOf

1

2

3

5

prov:type u2p:StateMachine

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:typeName var:typeName

Figure 14. PROV template generated from the UML representation used in StP2 (Figure 13)

State machine diagram Pattern 2 (StP2) 23/74

PROV elements

UML PROV / id Rationale
Object 1 prov:Agent 1 /

var:object

The Object 1 bears some form of responsibility for the existence
of the StateMachine 2 , since the existence of StateMachine 2

does not make sense without an Object 1 . To reflect this fact, the
Object 1 is mapped to a prov:Agent identified by var:object.

StateMachine 2 prov:Entity 2 /
var:objectSM

The StateMachine 2 is a prov:Entity identified by
var:objectSM. It reflects the abstraction of the object’s states, which
will be specialized by each state the object goes through.

State 3 prov:Entity 3 /
var:preObject

The State 3 is a prov:Entity identified by var:preObject. We
use this name for this identifier because it corresponds to the state of
the Object 1 before (pre) the execution of the operation.

FinalState 4 None / Without mapping (see the discussion block for an explanation about
this decision).

Event 5 prov:Activity 5 /
var:operation

The Event 5 represents that the execution of an operation has taken
place. Such an execution is a prov:Activity with the identifier
var:operation.

Attributes

PROV Element Attribute / Value Description
var:object 1 u2p:typeName /

var:className

The value var:className is the string with the name of the class
to which var:object 1 belongs.

var:objectSM 2 prov:type /
u2p:StateMachine

The value u2p:StateMachine shows that var:objectSM 2 is
a state machine.

var:preObject 3 prov:type /
var:className

The value var:className is the string with the name of the class
to which the object in the state var:preObject 3 belongs.

u2p:state /
var:sourceState

The value var:sourceState is the string with the name of the
state var:preObject 3 .

var:operation 5 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 5 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value for
the start of var:operation 5 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 5 .

PROV relations

PROV Relation Description
a prov:wasAttributedTo It is the assignment of responsibility to var:object for var:objectSM.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasInvalidatedBy It shows that var:preObject is not longer available for use.
d prov:specializationOf var:preObject is a specialization of var:objectSM.

Discussion

• This pattern is consistent with ClP2 because the completion of the object’s behaviour usually involves its destruction. Among
the different reasons why an Object can complete its behaviour, we can distinguish its destruction, from the remainder cases.
In order to be consistent with ClP2 (that addresses the execution of an operation which provokes the destruction of an object),
we have decided not to explicitly map the FinalState 4 in the PROV template but including its semantics (the completion
of the object’s behaviour) by the relation c prov:wasInvalidatedBy showing that var:preObject 3 is not longer

State machine diagram Pattern 2 (StP2) 24/74

available. However, if the user is interested in explicitly representing the FinalState 4 into the PROV templates, we refer
him/her to StP3, where the state of the Object before and after an Operation execution is included.

• Figure 13 only contains simple states. We do not deal with composite or submachine states, and focus only on simple
states, because the former may be transformed into the latter by resorting to a flattening process consisting of removing
composite states as well as submachine states. In fact, to flatten State Machine diagrams is a very common approach in
contexts such as model checking and code generation [6]. However, the user might be interested in representing composite
states directly into the PROV templates, perhaps because she/he is interested in collecting information about them, or just
because she/he does not want to flatten the State Machine diagram. We can give an insight into how composite states can
be mapped to PROV by placing the elements from Figure 13 inside a Composite State 5 (see Figure 15). A reader
familiar with the UML specification will realize that the semantics of the FinalState 4 in Figures 13 and 15 are different,
but these semantic nuances would have no effect on the PROV transformation. The transformation of Figure 15 is shown
in Figure 16. Both Figure 15 and 16 highlight the added elements by blurring the elements coming from Figure 13 and
Figure 14, respectively. Briefly speaking, the new Composite State 6 is translated into a prov:Entity identified
by var:compState 6 , which is associated with var:objectSM 2 and var:preObject 3 by means of the relations
f prov:specializationOf and e prov:hadMember, respectively. At this point, it is also worth remarking that for
this example we have used a simple composite state (i.e., Composite State 6), which means that only one substate is
active at a given time within such a state; but we could have used orthogonal composite states instead, which means that
within such a state several substates are active at the same time. Note that both types of composite states would be translated
into the same PROV template (see Figure 16); nevertheless, the generated bindings would be different. In case of a simple
composite state, as there can be only one active substate at the same time, there would be only one value associated with the
variable var:preObject 3 . Conversely, in case of an orthogonal composite state, var:preObject 3 will be associated
with several values (as many as active states).

State Machine2

State1

3 4
Composite State6

event

5

Figure 15. Excerpt of a UML State Machine diagram locating the UML elements from StP2 in a simple composite state.

var:preObject

var:operation

wasInvalidatedByc

b used

var:objectSM

var:object

wasAttributedToa

specializationOf

u2p:state var:compStateName

1

2

3

5

var:compState
hadMembere

f6

prov:type u2p:StateMachine

prov:type var:className
u2p:state var:sourceState

prov:type var: operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:typeName var:typeName

Figure 16. PROV template generated from the UML diagram in Figure 15

PROV elements

UML PROV / id Rationale
Composite State 6 prov:Entity 6 /

var:compState

The Composite State 6 is a prov:Entity identified by
var:compState.

State machine diagram Pattern 2 (StP2) 25/74

Attributes

PROV Element Attribute / Value Description
var:compState 6 u2p:state /

var:compStateName

The value var:compStateName is the string with the name of
the state var:compState 6

PROV relations

PROV Relation Description
e prov:hadMember It states that var:preObject is one of the elements in var:compState.
f prov:specializationOf var:compState is a specialization of var:objectSM.

State machine diagram Pattern 2 (StP2) 26/74

Identifier State machine diagram Pattern 3 (StP3)

Context

As a consequence of the execution of an operation, an object changes its state.

Key elements

Object The object that changes its state.

Pre-operation object’s state The state of the object before the execution of the operation. This is
one of the states the object may undergo during its lifeline.

Post-operation object’s state The state of the object after the execution of the operation. This is one
of the states the object may undergo during its lifeline.

Operation execution The execution of the operation that leads a change in the Object’s state.

UML Diagram

Key Element UML Rationale
Object Object 1 It represents the object that changes its state.

Note: since Object lacks a graphical representation in UML State Ma-
chine diagrams, Figure 17 does not depict this element.

StateMachine 2 In UML, a StateMachine can be used to express the set of object’s states
through which the Object goes during its lifetime in response to events.

Pre-operation object’s
state

State 3 It models the state of the Object before the Operation execution.

Post-operation ob-
ject’s state

State 4 It models the state of the Object after the Operation execution.

Operation execution Event 5 It specifies that the Operation execution that triggers the change in the
Object’s state has taken place.

State1
event

State Machine2

3 5

State2

4

Figure 17. UML representation that models the context given by StP3

State machine diagram Pattern 3 (StP3) 27/74

Mapping to PROV

var:postObject

var:objectSM

var:object

wasAttributedTo

prov:type u2p:StateMachine

var:preObject specializationOf

var:operation

wasInvalidatedBy

3

4

5

a

c

b

d

g

f

e

specializationOf

wasDerivedFrom
wasGeneratedBy

used

1

2

prov:type var: className
u2p:state var:sourceState

prov:type var: className
u2p:state var:targetState

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:typeName var:typeName

Figure 18. PROV template generated from the UML representation used in StP3 (Figure 17)

PROV elements

UML PROV / id Rationale
Object 1 prov:Agent 1 /

var:object

The Object 1 bears some form of responsibility for the existence
of the StateMachine 2 , since the existence of StateMachine 2

does not make sense without an Object 1 . To reflect this fact, the
Object 1 is mapped to a prov:Agent identified by var:object.

StateMachine 2 prov:Entity 2 /
var:objectSM

The StateMachine 2 is a prov:Entity identified by
var:objectSM. It reflects the abstraction of the object’s states, which
will be specialized by each state the object goes through.

State 3 prov:Entity 3 /
var:preObject

The State 3 is a prov:Entity identified by var:preObject. We
use this name for this identifier because it corresponds to the state of
the Object 1 before (pre) the execution of the operation.

State 4 prov:Entity 4 /
var:postObject

The State 4 is a prov:Entity identified by var:postObject. We
use this name for this identifier because it corresponds to the state of
the Object 1 after (post) the execution of the operation.

Event 5 prov:Activity 5 /
var:operation

The Event 5 represents that the execution of an operation has taken
place. Such an execution is a prov:Activity with the identifier
var:operation.

State machine diagram Pattern 3 (StP3) 28/74

Attributes

PROV Element Attribute / Value Description
var:object 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which var:object 1 belongs.

var:objectSM 2 prov:type /
u2p:StateMachine

The value u2p:StateMachine shows that var:objectSM 2

is a state machine.
var:preObject 3 prov:type /

var:className

The value var:className is the name of the class to which
the object in the state var:preObject 3 belongs.

u2p:state /
var:sourceState

The value var:sourceState is the string with the name of
the state var:preObject 3 .

var:postObject 4 prov:type /
var:className

The value var:className is the name of the class to which
the object in the state var:postObject 4 belongs.

u2p:state /
var:targetState

The value var:targetState is the string with the name of
the state var:postObject 4 .

var:operation 5 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 5 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 5 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 5 .

PROV relations

PROV Relation Description
a prov:wasAttributedTo It is the assignment of responsibility to var:object for var:objectSM.
b prov:specializationOf var:preObject is a specialization of var:objectSM.
c prov:specializationOf var:postObject is a specialization of var:objectSM.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:used It is the beginning of utilizing var:preObject by var:operation.
f prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
g prov:wasInvalidatedBy It shows that var:preObject is not longer available for use.

Discussion

• Figure 17 only contains simple states. We do not deal with composite or submachine states, and focus only on simple states,
because the former may be transformed into the latter by resorting to a flattening process consisting of removing composite
states as well as submachine states. In fact, to flatten State Machine diagrams is a very common approach in contexts such as
model checking and code generation [6]. However, the user might be interested in representing composite states directly into
the PROV templates, perhaps because she/he is interested in collecting information about them, or just because she/he does
not want to flatten the State Machine diagram. We can give an insight into how composite states can be mapped to PROV
by placing the elements from Figure 17 inside a Composite State 5 (see Figure 19). A reader familiar with the UML
specification will realize that the semantics of the UML representation in Figures 17 and 19 are different, but these semantic
nuances would have no effect on the PROV transformation. The transformation of Figure 19 is shown in Figure 20. Both
Figure 19 and 20 highlight the added elements by blurring the elements coming from Figure 17 and Figure 18, respectively.
Briefly speaking, the new Composite State 6 is translated into a prov:Entity identified by var:compState 6 ,
which is associated with var:objectSM 2 , var:preObject 3 , and var:postObject 4 by means of the relations
j prov:specializationOf, h prov:hadMember, and i prov:hadMember, respectively. At this point, it is also

worth remarking that for this example we have used a simple composite state (i.e., Composite State 6), which means
that only one substate is active at a given time within such a state; but we could have used orthogonal composite states
instead, which means that within such a state several substates are active at the same time. Note that both types of composite
states would be translated into the same PROV template (see Figure 20); nevertheless, the generated bindings would be

State machine diagram Pattern 3 (StP3) 29/74

different. In case of a simple composite state, as there can be only one active substate at the same time, there would be
only one value associated with the variable var:preObject 3 and another value with var:postObject 4 . Conversely,
in case of an orthogonal composite state, var:preObject 3 and var:postObject 4 will be associated with several
values (as many as active states).

State1
event

State Machine2

3 5

State2

4

Composite State6

Figure 19. Excerpt of a UML State Machine diagram locating the UML elements from StP3 in a simple composite state.

var:postObject

var:objectSM

var:object

wasAttributedTo

prov:type u2p:StateMachine
var:preObject

hadMember

var:operation

wasInvalidatedBy

3

4

5
a

i

h

d

g

f

e

prov:type var:className
u2p:state var:sourceState

hadMember

wasGeneratedBy

prov:type var:className
u2p:state var:targetState

used

1

2

var:compState

6

specializationOfj

wasDerivedFrom

prov:type var: operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:state var:compStateName

u2p:typeName var:typeName

Figure 20. PROV template generated from the UML diagram in Figure 19

PROV elements

UML PROV / id Rationale
Composite State 6 prov:Entity 6 /

var:compState

The Composite State 6 is a prov:Entity identified by
var:compState.

Attributes

PROV Element Attribute / Value Description
var:compState 6 u2p:state /

var:compStateName

The value var:compStateName is the string with the name of
the state var:compState 6

State machine diagram Pattern 3 (StP3) 30/74

PROV relations

PROV Relation Description
h prov:hadMember It states that var:preObject is one of the elements in var:compState.
i prov:hadMember It states that var:postObject is one of the elements in var:compState.
j prov:specializationOf var:compState is a specialization of var:objectSM.

State machine diagram Pattern 3 (StP3) 31/74

6 UML Class Diagrams

Pattern
identifier

Context Page

ClP1 The execution of an operation provokes the creation of a new object. 33
ClP2 The execution of an operation provokes the destruction of an object. 36
ClP3 The execution of an operation on an object returns values of concrete object’s attributes. The values

are returned as they are, without any further processing. This execution does not provoke the change of
the object’s status.

38

ClP4 The execution of an operation on an object returns values that are computed based on the object’s status
as a whole (the values of concrete attributes involved in the computation are unknown or irrelevant).
This execution does not provoke the change of the object’s status.

41

ClP5 The execution of an operation on an object returns values that are computed based on values of concrete
object’s attributes. This execution does not provoke the change of the object’s status.

44

ClP6 The execution of an operation on an object changes the object’s status as a whole (the concrete modified
attributes are unknown or irrelevant).

48

ClP7 The execution of an operation on an object directly sets the information passed to the operation as
values of concrete object’s attributes, thus provoking a change in the object’s status.

53

ClP8 The execution of an operation on an object changes the values of concrete object’s attributes, thus
provoking a change in the object’s status.

58

ClP9 The execution of an operation on an object removes element(s) from a concrete object’s collection
attribute, thus provoking a change in the object’s status.

63

ClP10 The execution of an operation on an object directly adds the information passed to the operation as new
element(s) of a concrete object’s collection attribute, thus provoking a change in the object’s status.

68

32/74

Identifier Class diagram Pattern 1 (ClP1)

Context

The execution of an operation provokes the creation of a new object.

Key elements

Object The object created as a consequence of the execution of the operation.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Object’s attributes The characteristics of the Object.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the Object
after the execution of the operation.

Operation execution Operation 2

«create»
The Operation 2 stereotyped by «create» represents the exe-
cuted operation that creates the Object.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

create +operationName(in param1: Type2, in param2:Type3)2
3

1

4

Figure 21. UML representation that models the context given by ClP1

Mapping to PROV

var:attribute

var:operation

var:postObject

var:input

2

3

a

b

c

d

wasGeneratedBy

hadMember

wasDerivedFrom

prov:value var:inputValue
u2p:typeName var:inputType

used

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:type var:operationName

u2p:typeName var:className
prov:type u2p:Object

1

4

Figure 22. PROV template generated from the UML representation used in ClP1 (Figure 21)

Class diagram Pattern 1 (ClP1) 33/74

PROV elements

UML PROV / id Rationale
Class 1 prov:Entity 1 /

var:postObject

The Class 1 that models the object that is created by the operation
is a prov:Entity identified as var:postObject. We use the
prefix post in this identifier because the object is the result of the
executed operation.

Operation 2

«create»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «create» is a
prov:Activity identified by var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4 prov:Entity 4 /
var:attribute

Each attribute of Attributes 4 is a separate prov:Entity with
identifier var:attribute.

Attributes

PROV Element Attribute / Value Description
var:postObject 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which var:postObject 1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:postObject is an
object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value
for the end of var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
type of var:input 3 .

var:attribute 4 prov:type /
u2p:Attribute

The value u2p:Attribute shows that var:attribute 4

is an attribute.
prov:value /
var:attributeValue

The value var:attributeValue is the direct representation
of var:attribute 4 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with the name
of var:attribute 4 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with the name
of the type of var:attribute 4 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
c prov:wasDerivedFrom It is the construction of var:postObject based on var:input.
d prov:hadMember It states that var:attribute is one of the elements in var:postObject.

Discussion

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the operation that creates the object

Class diagram Pattern 1 (ClP1) 34/74

lacks Input data, the UML representation in Figure 21 will not include Input Parameters 3 . As a consequence, the
resulting PROV template in Figure 22 will also lack var:input 3 and its associated PROV relations.

Class diagram Pattern 1 (ClP1) 35/74

Identifier Class diagram Pattern 2 (ClP2)

Context

The execution of an operation provokes the destruction of an object.

Key elements

Object The object destroyed as a consequence of the execution of the operation.

Operation execution The execution of the operation.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour by means

of classes. Thus, we use Class 1 to represent the destroyed Object.
Operation execution Operation 2

«destroy»
The Operation 2 stereotyped by «destroy» represents the executed op-
eration that destroys the Object.

Class
+attributeName: Type

destroy +operationName()2

1

Figure 23. UML representation that models the context given by ClP2

Mapping to PROV

var:operationvar:preObject

2

a wasInvalidatedBy

u2p:typeName var:className
prov:type u2p:Object

1

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

Figure 24. PROV template generated from the UML representation used in ClP2 (Figure 23)

PROV elements

UML PROV / id Rationale
Class 1 prov:Entity 1 /

var:preObject

The Class 1 that models the object that is destroyed by the operation is a
prov:Entity identified as var:preObject. We use the prefix pre in this
identifier because it is the object before the execution of the operation.

Operation 2

«destroy»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «destroy» is a
prov:Activity identified by var:operation.

Class diagram Pattern 2 (ClP2) 36/74

Attributes

PROV Element Attribute / Value Description
var:preObject 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which var:preObject 1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject 1 is an
object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 2 .

PROV relations

PROV Relation Description
a prov:wasInvalidatedBy It shows that var:preObject is not longer available for use.

Discussion

• This pattern is consistent with ClP2 because the completion of the object’s behaviour usually involves its destruction.

Class diagram Pattern 2 (ClP2) 37/74

Identifier Class diagram Pattern 3 (ClP3)

Context

The execution of an operation on an object returns values of concrete object’s attributes. The values are returned as they are,
without any further processing. This execution does not provoke the change of the object’s status.

Key elements

Object The object on which the operation is executed.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Output data The information obtained from the Operation execution.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the
Object on which the operation is executed.

Operation execution Operation 2

«get»/«search»
The Operation 2 stereotyped by «get»/«search» repre-
sents the executed operation. Concretely, operations stereotyped
by «get» return values of concrete Object’s attributes, whereas
«search» is used when the operation returns elements belonging
to a collection attribute of the Object.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Output data Output Parameters 4 They depict the information obtained from the Operation execution.

Class

+operationName(in param1: Type2, in param2:Type3):Type42
3

1

4
 «get»/«search»

+attributeName: Type1

Figure 25. UML representation that models the context given by ClP3

Mapping to PROV

used

var:input

var:operation

var:response

hadMember

prov:value var:outputValue
u2p:typeName var:outputType

wasGeneratedBy

wasDerivedFrom

2

var:output

b

c

d

var:preObject

useda

e

u2p:typeName var:className
prov:type u2p:Object

3

4.1

4.2tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

1
prov:value var:inputValue
u2p:typeName var:inputType

Figure 26. PROV template generated from the UML representation used in ClP3 (Figure 25)

Class diagram Pattern 3 (ClP3) 38/74

PROV elements

UML PROV / id Rationale
Class 1 prov:Entity 1 /

var:preObject

The Class 1 that models the object on which the operation is
executed is a prov:Entity identified as var:preObject. We
use the prefix pre in this identifier because it is the object before the
execution of the operation.

Operation 2

«get»/«search»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by
«get»/«search» is a prov:Activity identified by
var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Output Parameters 4
prov:Entity 4.1 /
var:response

The information obtained by the execution of the operation is a
prov:Entity identified by var:response. See the discussion
block for an explanation about the existence of var:response.

prov:Entity 4.2 /
var:output

Each parameter of Output Parameters 4 is a separate
prov:Entity identified as var:output.

Attributes

PROV Element Attribute / Value Description
var:preObject 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which var:preObject 1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject 1 is an
object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
Operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
type of var:input 3 .

var:output 4.2 prov:value /
var:outputValue

The value var:outputValue is the direct representation of
var:output 4.2 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the
type of var:output 4.2 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:preObject by var:operation.
b prov:used It is the beginning of utilizing var:input by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:response by var:operation.
d prov:wasDerivedFrom It is the construction of var:response based on var:input.
e prov:hadMember It states that var:output is one of the elements in var:response.

Discussion

Class diagram Pattern 3 (ClP3) 39/74

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input
data, the UML representation in Figure 25 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 26 will also lack var:input 3 and its associated PROV relations.

• In order to homogenise the UML Class representations in ClP1-ClP10, Output data have been specified by Output

Parameters with return direction. Nevertheless, these Output Parameters could have been modelled with either inout
or out directions, having no effect in their transformation to PROV.

• A concrete nuance in this pattern is that the Output data (var:output) are not computed by the Operation execution
(var:operation); that is, these data already existed before the Operation execution. Thus, a prov:wasGeneratedBy
relation between var:output and var:operation does not make sense in this pattern (in contrast to ClP4-ClP6, and
ClP7-ClP10 when they consider Output data). To reflect this pattern’s nuance in the PROV template and taking into account
the consistency between the different kinds of patterns, we have taken inspiration from how UML sequence diagram patterns
(e.g., SeqP2) address the Output data. We have made this decision because the semantics of the sequence diagrams patterns
(in terms of Output data) bears a strong resemblance with this pattern. Thus, we have included a prov:Entity identified by
var:response 4.1 related to (1) var:operation 2 , by means of c prov:wasGeneratedBy (to represent the fact that
it is the response who is generated by the Operation execution), and (2) var:output 4.2 , through e prov:hadMember

(to show that such a response is composed by the concrete output values).

Class diagram Pattern 3 (ClP3) 40/74

Identifier Class diagram Pattern 4 (ClP4)

Context

The execution of an operation on an object returns values that are computed based on the object’s status as a whole (the values
of concrete attributes involved in the computation are unknown or irrelevant). This execution does not provoke the change of
the object’s status.

Key elements

Object The object on which the operation is executed.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Output data The information obtained from the Operation execution.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the
Object on which the operation is executed.

Operation execution Operation 2

«process»
The Operation 2 stereotyped by «process» represents
the executed operation. Concretely, operations stereotyped by
«process» return values that are computed based on the object’s
status as a whole.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Output data Output Parameters 4 They depict the information obtained from the Operation execution.

Class
+attributeName: Type1

process +operationName(in param1: Type2, in param2:Type3):Type42
3

1

4

Figure 27. UML representation that models the context given by ClP4

Class diagram Pattern 4 (ClP4) 41/74

Mapping to PROV

used

var:input

var:operation

var:outputwasDerivedFrom

wasGeneratedBy

wasDerivedFrom

2
b

c

d

var:preObject

useda

e

u2p:typeName var:className
prov:type u2p:Object

3

4

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

1

prov:value var:inputValue
u2p:typeName var:inputType

prov:value var:outputValue
u2p:typeName var:outputType

Figure 28. PROV template generated from the UML representation used in ClP4 (Figure 27)

PROV elements

UML PROV / id Rationale
Class 1 prov:Entity 1 /

var:preObject

The Class 1 that models the object on which the operation is
executed is a prov:Entity identified as var:preObject. We
use the prefix pre in this identifier because it is the object before
the execution of the operation.

Operation 2

«process»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «process» is
a prov:Activity identified by var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Output Parameters 4 prov:Entity 4 /
var:output

Each parameter of Output Parameters 4 is a separate
prov:Entity identified as var:output.

Class diagram Pattern 4 (ClP4) 42/74

Attributes

PROV Element Attribute / Value Description
var:preObject 1 u2p:typeName /

var:className

The value var:className is the name of the class to which
var:preObject 1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject 1 is an
object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
Operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
type of var:input 3 .

var:output 4 prov:value /
var:outputValue

The value var:outputValue is the direct representation of
var:output 4 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the
type of var:output 4 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:preObject by var:operation.
b prov:used It is the beginning of utilizing var:input by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
d prov:wasDerivedFrom It is the construction of var:output based on var:input.
e prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Discussion

• Among the Class Diagrams patterns, both ClP4 and ClP5 address the execution of an operation that returns values computed
based on information included on an object. While ClP4 considers the object’s status as a whole (without taking into account
the concrete attributes’ values considered for its computation), ClP5 identifies the concrete attributes used to compute such
information. Thus, ClP4 gives a coarser grained provenance than ClP5.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input
data, the UML representation in Figure 27 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 28 will also lack var:input 3 and its associated PROV relations.

• In order to homogenise the UML Class representations in ClP1-ClP10, Output data have been specified by Output

Parameters with return direction. Nevertheless, these Output Parameters could have been modelled with either inout
or out directions, having no effect in their transformation to PROV.

Class diagram Pattern 4 (ClP4) 43/74

Identifier Class diagram Pattern 5 (ClP5)

Context

The execution of an operation on an object returns values that are computed based on values of concrete object’s attributes.
This execution does not provoke the change of the object’s status.

Key elements

Object The object on which the operation is executed.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Output data The information obtained from the Operation execution.

Source Object’s attributes The concrete characteristics of the Object that are used to compute the Output data.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour by

means of classes. Thus, we use Class 1 to represent the Object on
which the operation is executed.

Operation exe-
cution

Operation 2

«predicate»/
«property»/
«void-accessor»

The Operation 2 stereotyped by «predicate»/«property»/
«void-accessor» represents the executed operation. Each stereotype
denotes a behaviour with specific nuances (see the discussion block); nev-
ertheless, all of them process the Output data based on values of concrete
object’s attributes without modifying the object’s status.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Output data Output Parameters 4 They depict the information obtained from the Operation execution.
Source Object’s
attributes

Attributes 5 They represent the characteristics of the Object, whose values are used to
compute the Output data.

Class

+operationName(in param1: Type2, in param2:Type3):Type42
3

1

4
«predicate»/«property»/«void-accessor»

5 +attributeName: Type1

Figure 29. UML representation that models the context given by ClP5

Class diagram Pattern 5 (ClP5) 44/74

Mapping to PROV

used

var:input

var:operation

var:output

wasDerivedFrom

wasGeneratedBy

wasDerivedFrom

2

var:sourceAttribute

b

c

d

var:preObject

useda

e

u2p:typeName var:className
prov:type u2p:Object

3

4

5

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

1
prov:value var:inputValue
u2p:typeName var:inputType

prov:value var:outputValue
u2p:typeName var:outputType

prov:type u2p:Attribute
prov:value var:sourceAttributeValue
u2p:attributeName var:sourceAttributeName
u2p:typeName var:sourceAttributeType

Figure 30. PROV template generated from the UML representation used in ClP5 (Figure 29)

PROV elements

UML PROV / id Rationale
Class 1 prov:Entity 1 /

var:preObject

The Class 1 that models the object on which the operation is
executed is a prov:Entity identified as var:preObject. We
use the prefix pre in this identifier because it is the object before
the execution of the operation.

Operation 2

«predicate»/
«property»/
«void-accessor»

prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by
«predicate»/ «property»/ «void-accessor» is
a prov:Activity identified by var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Output Parameters 4 prov:Entity 4 /
var:output

Each parameter of Output Parameters 4 is a separate
prov:Entity identified as var:output.

Attributes 5 prov:Entity 5 /
var:sourceAttribute

Each attribute of Attributes 5 is a separate prov:Entity

identified by var:sourceAttribute.

Class diagram Pattern 5 (ClP5) 45/74

Attributes

PROV Element Attribute / Value Description
var:preObject 1 u2p:typeName /

var:className

The value var:className is the string with the name
of the class to which var:preObject 1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject
1 is an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the
operation Operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime

value for the end of var:operation 2 .
var:input 3 prov:value /

var:inputValue

The value var:inputValue is the direct representa-
tion of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name
of the type of var:input 3 .

var:output 4 prov:value /
var:outputValue

The value var:outputValue is the direct representa-
tion of var:output 4 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the
name of the type of var:output 4 .

var:sourceAttribute 5 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:sourceAttribute 5 is an attribute.

prov:value /
var:sourceAttributeValue

The value var:sourceAttributeValue is the di-
rect representation of var:sourceAttribute 5 .

u2p:attributeName /
var:sourceAttributeName

The value var:sourceAttributeName is the string
with the name of var:sourceAttribute 5 .

u2p:typeName /
var:sourceAttributeType

The value var:sourceAttributeType is
the string with the name of the type of
var:sourceAttribute 5 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:preObject by var:operation.
b prov:used It is the beginning of utilizing var:input by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
d prov:wasDerivedFrom It is the construction of var:output based on var:input.
e prov:wasDerivedFrom It is the construction of var:output based on var:sourceAttribute.

Discussion

• Among the Class Diagrams patterns, both ClP5 and ClP4 address the execution of an operation that returns values computed
based on information included on an object. While ClP5 identifies the concrete attributes used to compute such information,
ClP4 considers the object’s status as a whole (without taking into account the concrete attributes’ values considered for its
computation). Thus, ClP5 gives a finer grained provenance than ClP4.

• A question that might arise is why in Figure 30 var:sourceAttribute 5 is not associated with var:preObject 1

(which represents the object with the status before the execution of the operation) by means of a prov:hadMember relation,
whether var:sourceAttribute 5 is an attribute of var:preObject 1 . We have made this decision because an object
that acts as a var:preObject in an operation execution, was a var:postObject (which represents the object with the

Class diagram Pattern 5 (ClP5) 46/74

status after the execution of the operation) in a previous operation execution. Thus, the attributes associated to such an object
in a var:preObject were registered when it previously played the role of var:postObject.

• The stereotypes «predicate», «property», and «void-accessor» denote behaviours with specific nuances.
Nevertheless, these nuances do not have impact in the translation into PROV since all of them compute Output data based on
concrete object’s attributes without modifying the object’s status. Concretely, «predicate» denotes that the operation
returns boolean values, «property» does not restrict the type of the returned values, and «void-accessor» returns
the information through a parameter. As we said previously, there is no distinction in the transformation into PROV; however,
some of the nuances given by the stereotypes will be included in the generated provenance through the values assigned
to the template’s variables. For instance, «predicate» defines the Output data as boolean, fact that is included in the
provenance through the value assigned to var:outputType in var:output 4 .

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input
data, the UML representation in Figure 29 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 30 will also lack var:input 3 and its associated PROV relations.

Class diagram Pattern 5 (ClP5) 47/74

Identifier Class diagram Pattern 6 (ClP6)

Context

The execution of an operation on an object changes the object’s status as a whole (the concrete modified attributes are unknown
or irrelevant).

Key elements

Object The object on which the operation is executed.

Pre-operation object The object with the status before the execution of the operation.
Post-operation object The object with the status after the execution of the operation.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Object’s attributes All the characteristics of the Object.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the
Object both before and after the execution of the operation (Pre-
operation object and Post-operation object, respectively).

Operation execution Operation 2

«command»/
«non-void-command»

The Operation 2 stereotyped by «command»/
«non-void-command» represents the executed operation.
These stereotypes denote that the object changes its status, without
considering the concrete modified attributes. They differ in that
an operation stereotyped by «non-void-command» returns
information, while a «command» stereotyped operation does not.
Note: the PROV template depicted in Figure 32 corresponds to
an operation stereotyped by «command» (see the discussion
block for an explanation of the transformation of the operations
stereotyped by «non-void-command»).

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

command +operationName(in param1: Type2, in param2:Type3)2
3

1

4

Figure 31. UML representation that models the context given by ClP6

Class diagram Pattern 6 (ClP6) 48/74

Mapping to PROV

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4

a

b

c

f

e

d u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

hadMember

wasDerivedFrom

prov:value var:inputValue
u2p:typeName var:inputType used

used

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

u2p:typeName var:className
prov:type u2p:Object

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

Figure 32. PROV template generated from the UML representation used in ClP6 (Figure 31)

PROV elements

UML PROV / id Rationale

Class 1
prov:Entity 1.1 /
var:preObject

The Pre-operation object, i.e. the object with the status before the
execution of the operation, which is represented by Class 1 , is a
prov:Entity identified as var:preObject.

prov:Entity 1.2 /
var:postObject

The Post-operation object, i.e. the object with the status after the
execution of the operation, which is represented by Class 1 , is a
prov:Entity identified as var:postObject.

Operation 2

«command»/
«non-void-command»

prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by
«command»/«non-void-command» is a prov:Activity

identified by var:operation.
Input Parameters 3 prov:Entity 3 /

var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4 prov:Entity 4 /
var:attribute

Each attribute of Attributes 4 is mapped to a separate
prov:Entity identified by var:attribute.

Class diagram Pattern 6 (ClP6) 49/74

Attributes

PROV Element Attribute / Value Description
var:preObject 1.1 u2p:typeName /

var:className

The value var:className is the name of the class to which
var:preObject 1.1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject 1.1 is
an object.

var:postObject 1.2 u2p:typeName /
var:className

The value var:className is the name of the class to which
var:postObject 1.2 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:postObject 1.2 is
an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value
for the end of var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
type of var:input 3 .

var:attribute 4 prov:type /
u2p:Attribute

The value u2p:Attribute shows that var:attribute 4

is an attribute.
prov:value /
var:attributeValue

The value var:attributeValue is the direct representation
of attribute 4 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with the name
of attribute 4 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with the name
of the type of var:attribute 4 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:hadMember It states that var:attribute is one of the elements in var:postObject.
f prov:wasDerivedFrom It is the construction of var:postObject based on var:input.

Discussion

• Among the Class Diagrams patterns, patterns from ClP6 to ClP10 address the execution of operations that change an object’s
status. While, ClP6 changes the object’s status as a whole (being the concrete modified attributes unknown or irrelevant),
in patterns ClP7-ClP10 the concrete attributes modified by the Operation execution are explicitly known. In contrast to
ClP7 which directly sets the information passed into the Operation execution as values of concrete object’s attributes, the
other mentioned patterns use such information to change the object’s status as a whole or the values of concrete object’s
attributes. It must also be noted that patterns ClP9 and ClP10 address the execution of operations which remove or add
elements from/into an object’s collection attribute, while patterns ClP7 and ClP8 affect either a univalued attribute or a
collection attribute as a whole.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we do not
consider this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input

Class diagram Pattern 6 (ClP6) 50/74

data, the UML representation in Figure 31 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 32 will also lack var:input 3 and its associated PROV relations.

• A question that might arise is why in Figure 32 var:attribute 4 is associated with var:postObject 1.2 (which
represents the object with the status after the execution of the operation), but it is not associated with var:preObject 1.1

(the object with the status before the execution). We have made this decision because an object that acts as a var:preObject
in an operation execution, was a var:postObject in a previous operation execution. Thus, the attributes associated to such
an object in a var:preObject were registered when it previously played the role of var:postObject.

• Stereotypes «command» and «non-void-command» denote that the operation performs a change to the object’s status as
a whole. They differ in that an operation stereotyped by «non-void-command» returns information, while a «command»
stereotyped operation does not. Due to the fact that the context of this pattern does not explicitly state that output data
are obtained from the Operation execution, we represented this context in UML using the stereotype «command» (see
Figure 31).

Aiming at giving an insight into how the inclusion of Output data affects both the UML representation and the resulting
PROV template, Figure 33 depicts a UML representation with (1) the stereotype «non-void-command» and (2) Output
data modelled as Output Parameters 5 (in this case with return direction, though the translation of inout and out
directions would be equivalent). Figure 34 depicts its transformation into PROV. Both Figure 33 and 34 highlight the
elements related to the inclusion of the Output data by blurring the elements coming from Figure 31 and 32, respectively.

Class
+attributeName: Type1

2
3

1

4

5
Type4+operationName(in param1: Type2, in param2:Type3):non-void-command

Figure 33. UML representation that models the context given by ClP6, including Output Parameters.

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4

a

b

c

f

e

d u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

hadMember

wasDerivedFrom

prov:value var:inputValue
u2p:typeName var:inputType used

used

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

u2p:typeName var:className
prov:type u2p:Object

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

var:outputg wasDerivedFrom

h wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

i wasDerivedFrom

5

Figure 34. PROV template generated from the UML representation used in ClP6, including Output Parameters

(Figure 33)

PROV elements

UML PROV / id Rationale
Output Parameters 5 prov:Entity 5 /

var:output

Each parameter of Output Parameters 5 is a separate
prov:Entity identified as var:output.

Class diagram Pattern 6 (ClP6) 51/74

PROV relations

PROV Relation Description
g prov:wasDerivedFrom It is the construction of var:output based on var:input.
h prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
i prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Attributes

PROV Element Attribute / Value Description
var:output 5 prov:value /

var:outputValue

The value var:outputValue is the direct representation of var:output 5 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the type of
var:output 5 .

Class diagram Pattern 6 (ClP6) 52/74

Identifier Class diagram Pattern 7 (ClP7)

Context

The execution of an operation on an object directly sets the information passed to the operation as values of concrete object’s
attributes, thus provoking a change in the object’s status.

Key elements

Object The object on which the operation is executed.

Pre-operation object The object with the status before the execution of the operation.
Post-operation object The object with the status after the execution of the operation.

Operation execution The execution of the operation.

Input data The information passed into the Operation execution.

Object’s attributes All the characteristics of the Object. Since, as a consequence of the Operation execution, the values of
some attributes change, we have identified:

Modified attributes The modified Object’s attributes.
Unmodified attributes The not modified Object’s attributes.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the Object
both before and after the execution of the operation (Pre-operation
object and Post-operation object, respectively).

Operation execution Operation 2

«set»
The Operation 2 stereotyped by «set» represents the executed
operation. Concretely, the stereotype «set» denotes that Input data
are directly set as values of concrete attributes of the object.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

set +operationName(in param1: Type2, in param2:Type3)2
3

1

4

Figure 35. UML representation that models the context given by ClP7

Class diagram Pattern 7 (ClP7) 53/74

Mapping to PROV

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a b

c
f

e d

u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

hadMember

hadMember

u2p:typeName var:className
prov:type u2p:Object

used
used

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:value var:inputValue
u2p:typeName var:inputType
prov:type u2p:Attribute
u2p:attributeName var:attributeName

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

Figure 36. PROV template generated from the UML representation used in ClP7 (Figure 35)

PROV elements

UML PROV / id Rationale

Class 1
prov:Entity 1.1 /
var:preObject

The Pre-operation object, i.e. the object with the status before the
execution of the operation, which is represented by Class 1 , is a
prov:Entity identified as var:preObject.

prov:Entity 1.2 /
var:postObject

The Post-operation object, i.e. the object with the status after the
execution of the operation, which is represented by Class 1 , is a
prov:Entity identified as var:postObject.

Operation 2

«set»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «set» is a
prov:Activity identified by var:operation.

Input Parameters 3 prov:Entiy 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4
None / The Modified attributes (belonging to Attributes 4) are already

mapped to var:input. For further information, see the discussion.
prov:Entity 4.2 /
var:attribute

Each Unmodified attribute (belonging to Attributes 4) is mapped
to a separate prov:Entity with identifier var:attribute.

Class diagram Pattern 7 (ClP7) 54/74

Attributes

PROV Element Attribute / Value Description
var:preObject 1.1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which var:preObject 1.1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject 1.1 is
an object.

var:postObject 1.2 u2p:typeName /
var:className

The value var:className is the string with the name of the
class to which var:postObject 1.2 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:postObject 1.2 is
an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value
for the end of var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
type of var:input 3 .

prov:type /
u2p:Attribute

The value u2p:Attribute shows that var:input 3 is an
attribute.

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with the name
of the attribute var:input 3 .

var:attribute 4.2 prov:type /
u2p:Attribute

The value u2p:Attribute shows that var:attribute 4.2

is an attribute.
prov:value /
var:attributeValue

The value var:attributeValue is the direct representation
of var:attribute 4.2 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with the name
of var:attribute 4.2 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with the name
of the type of var:attribute 4.2 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:hadMember It states that var:attribute is one of the elements in var:postObject.
f prov:hadMember It states that var:input is one of the elements in var:postObject. This is due

to the fact that in this context the input information is directly set as values of
certain attributes of the Object.

Discussion

• Among the Class Diagrams patterns, patterns from ClP6 to ClP10 address the execution of operations that change an object’s
status. While, ClP6 changes the object’s status as a whole (being the concrete modified attributes unknown or irrelevant),
in patterns ClP7-ClP10 the concrete attributes modified by the Operation execution are explicitly known. In contrast to
ClP7 which directly sets the information passed into the Operation execution as values of concrete object’s attributes, the

Class diagram Pattern 7 (ClP7) 55/74

other mentioned patterns use such information to change the object’s status as a whole or the values of concrete object’s
attributes. It must also be noted that patterns ClP9 and ClP10 address the execution of operations which remove or add
elements from/into an object’s collection attribute, while patterns ClP7 and ClP8 affect either a univalued attribute or a
collection attribute as a whole.

• A question that might arise is why in Figure 36 var:attribute 4.2 is associated with var:postObject 1.2 (which
represents the object with the status after the execution of the operation), but it is not associated with var:preObject 1.1

(the object with the status before the execution). We have made this decision because an object that acts as a var:preObject
in an operation execution, was a var:postObject in a previous operation execution. Thus, the attributes associated to such
an object in a var:preObject were registered when it previously played the role of var:postObject.

• This context states that the Input data are directly set as values of certain object’s attributes, which means that the Input
data correspond directly to the Modified attributes. This fact is represented in the PROV template by means of the
pair attribute/value prov:type/u2p:Attribute of var:input 3 , and the relation f prov:hadMember between
var:postObject 1.2 and var:input 3 . Additionally, var:input 3 has the attribute u2p:attributeName whose
value var:attributeName denotes the name of the modified attribute.

• Although the context of this pattern does not explicitly state that output data should be obtained from the Operation execution,
this could be the case. However, we do not include this output data in this pattern description to avoid overburden both the
UML and PROV explanations with information out of the scope of the context.

Aiming at giving an insight into how the inclusion of Output data affects both the UML representation and the resulting
PROV template, Figure 37 depicts a UML representation with the Output data modelled as Output Parameters 5 (in
this case with return direction, though the translation of inout and out directions would be equivalent). Figure 38 depicts
its transformation into PROV. Both Figure 37 and 38 highlight the elements related to the inclusion of the Output data by
blurring the elements coming from Figure 35 and 36, respectively.

Class
+attributeName: Type1

set +operationName(in param1: Type2, in param2:Type3): 2
3

1

4

5
Type4

Figure 37. UML representation that models the context given by ClP7, including Output Parameters.

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a b

c
f

e
d

u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

hadMember

hadMember

u2p:typeName var:className
prov:type u2p:Object

used
used

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:value var:inputValue
u2p:typeName var:inputType
prov:type u2p:Attribute
u2p:attributeName var:attributeName

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

var:outputg wasDerivedFrom

h wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

i wasDerivedFrom

5

Figure 38. PROV template generated from the UML representation used in ClP7, including Output Parameters

(Figure 37)

Class diagram Pattern 7 (ClP7) 56/74

PROV elements

UML PROV / id Rationale
Output Parameters 5 prov:Entity 5 /

var:output

Each parameter of Output Parameters 5 is a separate
prov:Entity identified as var:output.

PROV relations

PROV Relation Description
g prov:wasDerivedFrom It is the construction of var:output based on var:input.
h prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
i prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Attributes

PROV Element Attribute / Value Description
var:output 5 prov:value /

var:outputValue

The value var:outputValue is the direct representation of var:output 5 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the type of
var:output 5 .

Class diagram Pattern 7 (ClP7) 57/74

Identifier Class diagram Pattern 8 (ClP8)

Context

The execution of an operation on an object changes the values of concrete object’s attributes, thus provoking a change in the
object’s status.

Key elements

Object The object on which the operation is executed.

Pre-operation object The object with the status before the execution of the operation.
Post-operation object The object with the status after the execution of the operation.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Object’s attributes All the characteristics of the Object. Since, as a consequence of the Operation execution, the values
of some attributes change, we have identified:

Modified attributes The modified Object’s attributes.
Unmodified attributes The not modified Object’s attributes.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the Object
both before and after the execution of the operation (Pre-operation
object and Post-operation object, respectively).

Operation execution Operation 2

«modify»
The Operation 2 stereotyped by «modify» represents the executed
operation. Concretely, the stereotype «modify» denotes that concrete
attributes of the object are modified.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

modify +operationName(in param1: Type2, in param2:Type3)2
3

1

4

Figure 39. UML representation that models the context given by ClP8

Class diagram Pattern 8 (ClP8) 58/74

Mapping to PROV

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

prov:type u2p:Attribute
prov:value var:modifiedAttrValue
u2p:attributeName var:modifiedAttrName
u2p:typeName var:modifiedAttrType

hadMember

hadMember

used

used

u2p:typeName var:className
prov:type u2p:Object

var:modifiedAttribute

4.1

wasDerivedFrom

g

h wasDerivedFrom

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:ypeName var:attributeClass

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

prov:value var:inputValue
u2p:typeName var:inputType

Figure 40. PROV template generated from the UML representation used in ClP8 (Figure 39)

PROV elements

UML PROV / id Rationale

Class 1
prov:Entity 1.1 /
var:preObject

The Pre-operation object, i.e. the object with the status before the
execution of the operation, which is represented by Class 1 , is
a prov:Entity identified as var:preObject.

prov:Entity 1.2 /
var:postObject

The Post-operation object, i.e. the object with the status after the
execution of the operation, which is represented by Class 1 , is
a prov:Entity identified as var:postObject.

Operation 2

«modify»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «modify» is a
prov:Activity identified by var:operation.

Input Parameters 3 prov:Entiy 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4
prov:Entity 4.1 /
var:modifiedAttribute

Each Modified attribute (belonging to Attributes 4)
is mapped to a separate prov:Entity with identifier
var:modifiedAttribute.

prov:Entity 4.2 /
var:attribute

Each Unmodified attribute (belonging to Attributes 4)
is mapped to a separate prov:Entity with identifier
var:attribute.

Class diagram Pattern 8 (ClP8) 59/74

Attributes

PROV Element Attribute / Value Description
var:preObject 1.1 u2p:typeName /

var:className

The value var:className is the string with the name
of the class to which var:preObject 1.1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject
1.1 is an object.

var:postObject 1.2 u2p:typeName /
var:className

The value var:className is the string with the name
of the class to which var:postObject 1.2 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:postObject
1.2 is an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the
operation var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime

value for the end of var:operation 2 .
var:input 3 prov:value /

var:inputValue

The value var:inputValue is the direct representa-
tion of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name
of the type of var:input 3 .

var:modifiedAttribute 4.1 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:modifiedAttribute 4.1 is an attribute.

prov:value /
var:modifiedAttrValue

The value var:attributeValue is the direct repre-
sentation of var:modifiedAttribute 4.1 .

u2p:attributeName /
var:modifiedAttrName

The value var:modifiedAttrName is the string with
the name of var:modifiedAttribute 4.1 .

u2p:typeName /
var:modifiedAttrType

The value var:attributeType is the string with the
name of the type of var:modifiedAttribute 4.1 .

var:attribute 4.2 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:attribute 4.2 is an attribute.

prov:value /
var:attributeValue

The value var:attributeValue is the direct repre-
sentation of var:attribute 4.2 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with the
name of var:attribute 4.2 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with the
name of the type of var:attribute 4.2 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:hadMember It states that var:attribute is one of the elements in var:postObject.
f prov:wasDerivedFrom It is the construction of var:postObject based on var:input.
g prov:hadMember It states that var:modifiedAttribute is one of the elements in

var:postObject.
h prov:wasDerivedFrom It is the construction of var:modifiedAttribute based on var:input.
i prov:wasGeneratedBy It is the completion of production of var:modifiedAttribute by

var:operation.

Class diagram Pattern 8 (ClP8) 60/74

Discussion

• Among the Class Diagrams patterns, patterns from ClP6 to ClP10 address the execution of operations that change an object’s
status. While, ClP6 changes the object’s status as a whole (being the concrete modified attributes unknown or irrelevant),
in patterns ClP7-ClP10 the concrete attributes modified by the Operation execution are explicitly known. In contrast to
ClP7 which directly sets the information passed into the Operation execution as values of concrete object’s attributes, the
other mentioned patterns use such information to change the object’s status as a whole or the values of concrete object’s
attributes. It must also be noted that patterns ClP9 and ClP10 address the execution of operations which remove or add
elements from/into an object’s collection attribute, while patterns ClP7 and ClP8 affect either a univalued attribute or a
collection attribute as a whole.

• A question that might arise is why in Figure 40 var:attribute 4.2 is associated with var:postObject 1.2 (which
represents the object with the status after the execution of the operation), but it is not associated with var:preObject 1.1

(the object with the status before the execution). We have made this decision because an object that acts as a var:preObject
in an operation execution, was a var:postObject in a previous operation execution. Thus, the attributes associated to such
an object in a var:preObject were registered when it previously played the role of var:postObject.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we do not to
consider this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input
data, the UML representation in Figure 39 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 40 will also lack var:input 3 and its associated PROV relations.

• Although the context of this pattern does not explicitly state that output data should be obtained from the Operation execution,
this could be the case. However, we do not include this output data in this pattern description to avoid overburden both the
UML and PROV explanations with information out of the scope of the context.

Aiming at giving an insight into how the inclusion of Output data affects both UML representation and the resulting PROV
template, Figure 41 depicts a UML representation with the Output data modelled as Output Parameters 5 (in this
case with return direction, though the translation of inout and out directions would be equivalent). Figure 42 depicts its
transformation into PROV. Both Figure 41 and 42 highlight the elements related to the inclusion of the Output data by
blurring the elements coming from Figure 39 and 40, respectively.

Class
+attributeName: Type1

modify +operationName(in param1: Type2, in param2:Type3): 2
3

1

4

5
Type4

Figure 41. UML representation that models the context given by ClP8, including Output Parameters.

Class diagram Pattern 8 (ClP8) 61/74

var:output
wasDerivedFromj

wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

k
wasDerivedFroml

5

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

prov:type u2p:Attribute
prov:value var:modifiedAttrValue
u2p:attributeName var:modifiedAttrName
u2p:typeName var:modifiedAttrType

hadMember

hadMember

used

used

u2p:typeName var:className
prov:type u2p:Object

var:modifiedAttribute

4.1

wasDerivedFrom

g

h wasDerivedFrom

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:ypeName var:attributeClass

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

prov:value var:inputValue
u2p:typeName var:inputType

Figure 42. PROV template generated from the UML representation used in ClP8, including Output Parameters

(Figure 41)

PROV elements

UML PROV / id Rationale
Output Parameters 5 prov:Entity 5 /

var:output

Each parameter of Output Parameters 5 is a separate
prov:Entity identified as var:output.

PROV relations

PROV Relation Description
j prov:wasDerivedFrom It is the construction of var:output based on var:input.
k prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
l prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Attributes

PROV Element Attribute / Value Description
var:output 5 prov:value /

var:outputValue

The value var:outputValue is the direct representation of
var:output 5 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the
type of var:output 5 .

Class diagram Pattern 8 (ClP8) 62/74

Identifier Class diagram Pattern 9 (ClP9)

Context

The execution of an operation on an object removes element(s) from a concrete object’s collection attribute, thus provoking a
change in the object’s status.

Key elements

Object The object on which the operation is executed.

Pre-operation object The object with the status before the execution of the operation.
Post-operation object The object with the status after the execution of the operation.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Object’s attributes All the characteristics of the Object. Since, as a consequence of the Operation execution, a concrete
collection attribute changes, we have identified:

Modified collection attribute The modified Object’s attribute.
Unmodified attributes The not modified Object’s attributes.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the Object
both before and after the execution of the operation (Pre-operation
object and Post-operation object, respectively).

Operation execution Operation 2

«remove»
The Operation 2 stereotyped by «remove» represents the exe-
cuted operation. Concretely, the stereotype «remove» denotes that an
element (or elements) of a concrete collection attribute is removed.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

remove +operationName(in param1: Type2, in param2:Type3)2
3

1

4

Figure 43. UML representation that models the context given by ClP9

Class diagram Pattern 9 (ClP9) 63/74

Mapping to PROV

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

var:collElement

4.1.1

j hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:typeName var:inputType

used

used

var:modCollAttribute

4.1

wasDerivedFrom

g

h wasDerivedFrom

u2p:typeName var:className
prov:type u2p:Object

u2p:typeName var:className
prov:type u2p:Object

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

l

Figure 44. PROV template generated from the UML representation used in ClP9 (Figure 43)

PROV elements

UML PROV / id Rationale

Class 1
prov:Entity 1.1 /
var:preObject

The Pre-operation object, i.e. the object with the status be-
fore the execution of the operation, which is represented by
Class 1 , is a prov:Entity identified as var:preObject.

prov:Entity 1.2 /
var:postObject

The Post-operation object, i.e. the object with the status after the
execution of the operation, which is represented by Class 1 ,
is a prov:Entity identified as var:postObject.

Operation 2

«remove»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «remove» is
a prov:Activity identified by var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4
prov:Entity 4.1 /
var:modCollAttribute

The Modified collection attribute (belonging to
Attributes 4) is a prov:Entity with identifier
var:modCollAttribute.
Additionally, each element in this collection is a separate
prov:Entity identified by var:collElement 4.1.1

prov:Entity 4.2 /
var:attribute

Each Unmodified attribute (belonging to Attributes 4)
is mapped to a separate prov:Entity with identifier
var:attribute.

Class diagram Pattern 9 (ClP9) 64/74

Attributes

PROV Element Attribute / Value Description
var:preObject 1.1 u2p:typeName /

var:className

The value var:className is the string with the
name of the class to which var:preObject 1.1

belongs.
prov:type /
u2p:Object

The value u2p:Object shows that
var:preObject 1.1 is an object.

var:postObject 1.2 u2p:typeName /
var:className

The value var:className is the string with the
name of the class to which var:postObject 1.2

belongs.
prov:type /
u2p:Object

The value u2p:Object shows that
var:postObject 1.2 is an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of
the operation var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an
xsd:dateTime value for the end of
var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct represen-
tation of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the
name of the type of var:input 3 .

var:modCollAttribute 4.1 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:modCollAttribute 4.1 is an attribute.

prov:value /
var:modCollAttributeValue

The value var:modCollAttributeValue is the
direct representation of var:modCollAttribute
4.1 .

u2p:attributeName /
var:modCollAttributeName

The value var:modCollAttributeName is the
string with the name of var:modCollAttribute
4.1 .

u2p:typeName /
var:modCollAttributeType

The value var:modCollAttributeType is
the string with the name of the type of
var:modCollAttribute 4.1 .

var:attribute 4.2 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:attribute 4.2 is an attribute.

prov:value /
var:attributeValue

The value var:attributeValue is the direct rep-
resentation of var:attribute 4.2 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with
the name of var:attribute 4.2 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with
the name of the type of var:attribute 4.2 .

Class diagram Pattern 9 (ClP9) 65/74

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:hadMember It states that var:attribute is one of the elements in var:postObject.
f prov:wasDerivedFrom It is the construction of var:postObject based on var:input.
g prov:hadMember It states that var:modCollAttribute is one of the elements in

var:postObject.
h prov:wasDerivedFrom It is the construction of var:modCollAttribute based on var:input.
i prov:wasGeneratedBy It is the completion of production of var:modCollAttribute by

var:operation.
j prov:hadMember It states that var:collElement is one of the elements in

var:modCollAttribute.

Discussion

• Among the Class Diagrams patterns, patterns from ClP6 to ClP10 address the execution of operations that change an object’s
status. While, ClP6 changes the object’s status as a whole (being the concrete modified attributes unknown or irrelevant),
in patterns ClP7-ClP10 the concrete attributes modified by the Operation execution are explicitly known. In contrast to
ClP7 which directly sets the information passed into the Operation execution as values of concrete object’s attributes, the
other mentioned patterns use such information to change the object’s status as a whole or the values of concrete object’s
attributes. It must also be noted that patterns ClP9 and ClP10 address the execution of operations which remove or add
elements from/into an object’s collection attribute, while patterns ClP7 and ClP8 affect either a univalued attribute or a
collection attribute as a whole.

• A question that might arise is why in Figure 44 var:attribute 4.2 is associated with var:postObject 1.2 (which
represents the object with the status after the execution of the operation), but it is not associated with var:preObject 1.1

(the object with the status before the execution). We have made this decision because an object that acts as a var:preObject
in an operation execution, was a var:postObject in a previous operation execution. Thus, the attributes associated to such
an object in a var:preObject were registered when it previously played the role of var:postObject.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input
data, the UML representation in Figure 43 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 44 will also lack var:input 3 and its associated PROV relations.

• Although the context of this pattern does not explicitly state that output data should be obtained from the Operation execution,
this could be the case. However, we have decided not to include this output data in this pattern description to avoid overburden
both the UML and PROV explanations with information out of the scope of the context.

Aiming at giving an insight into how the inclusion of Output data affects both UML representation and the resulting PROV
template, Figure 45 depicts a UML representation with the Output data modelled as Output Parameters 5 (in this
case with return direction, though the translation of inout and out directions would be equivalent). Figure 46 depicts its
transformation into PROV. Both Figure 45 and 46 highlight the elements related to the inclusion of the Output data by
blurring the elements coming from Figure 43 and 44, respectively.

Class diagram Pattern 9 (ClP9) 66/74

Class
+attributeName: Type1

remove +operationName(in param1: Type2, in param2:Type3): 2
3

1

4

5
Type4

Figure 45. UML representation that models the context given by ClP9, including Output Parameters.

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

var:collElement

4.1.1

j hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:typeName var:inputType

used

used

var:modCollAttribute

4.1

wasDerivedFrom

g

h wasDerivedFrom

u2p:typeName var:className
prov:type u2p:Object

u2p:typeName var:className
prov:type u2p:Object

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

var:output
k wasDerivedFrom

l wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

m wasDerivedFrom

5

Figure 46. PROV template generated from the UML representation used in ClP9, including Output Parameters

(Figure 45)

PROV elements

UML PROV / id Rationale
Output Parameters 5 prov:Entity 5 /

var:output

Each parameter of Output Parameters 5 is a separate
prov:Entity identified as var:output.

PROV relations

PROV Relation Description
k prov:wasDerivedFrom It is the construction of var:output based on var:input.
l prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
m prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Attributes

PROV Element Attribute / Value Description
var:output 5 prov:value /

var:outputValue

The value var:outputValue is the direct representation of var:output 5 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the type of
var:output 5 .

Class diagram Pattern 9 (ClP9) 67/74

Identifier Class diagram Pattern 10 (ClP10)

Context

The execution of an operation on an object directly adds the information passed to the operation as new element(s) of a concrete
object’s collection attribute, thus provoking a change in the object’s status.

Key elements

Object The object to which the operation to be executed belongs.

Pre-operation object The object with the status before the execution of the operation.
Post-operation object The object with the status after the execution of the operation.

Operation execution The execution of the behaviour specified by the operation.

Input data The information passed into the Operation execution.

Object’s attributes All the characteristics of the Object. Since, as a consequence of the Operation execution, a concrete
collection attribute changes, we have identified:

Modified collection attribute The modified Object’s attribute.
Unmodified attributes The not modified Object’s attributes.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the Object
both before and after the execution of the operation (Pre-operation
object and Post-operation object, respectively).

Operation execution Operation 2

«add»
The Operation 2 stereotyped by «add» represents the executed op-
eration. Concretely, the stereotype «add» denotes that a new element
(or elements) is directly added to a concrete collection attribute.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

add +operationName(in param1: Type2, in param2:Type3) 2
3

1

4

Figure 47. UML representation that models the context given by ClP10

Class diagram Pattern 10 (ClP10) 68/74

Mapping to PROV

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

var:collElement

4.1.1

j hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:typeName var:inputType

used

used

u2p:typeName var:typeName
prov:type u2p:Object

u2p:typeName var:typeName
prov:type u2p:Object

var:modCollAttribute

4.1

wasDerivedFrom

g

h hadMember

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

Figure 48. PROV template generated from the UML representation used in ClP10 (Figure 47)

PROV elements

UML PROV / id Rationale

Class 1
prov:Entity 1.1 /
var:preObject

The Pre-operation object, i.e. the object with the status be-
fore the execution of the operation, which is represented by
Class 1 , is a prov:Entity identified as var:preObject.

prov:Entity 1.2 /
var:postObject

The Post-operation object, i.e. the object with the status after the
execution of the operation, which is represented by Class 1 ,
is a prov:Entity identified as var:postObject.

Operation 2

«add»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «add» is a
prov:Activity identified by var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4
prov:Entity 4.1 /
var:modCollAttribute

The Modified collection attribute (belonging to
Attributes 4) is a prov:Entity with identifier
var:modCollAttribute.
Additionally, each element in this collection is a separate
prov:Entity identified by var:collElement 4.1.1

prov:Entity 4.2 /
var:attribute

Each Unmodified attribute (belonging to Attributes 4)
is mapped to a separate prov:Entity with identifier
var:attribute.

Class diagram Pattern 10 (ClP10) 69/74

Attributes

PROV Element Attribute / Value Description
var:preObject 1.1 u2p:typeName /

var:className

The value var:className is the string with the
name of the class to which var:preObject 1.1

belongs.
prov:type /
u2p:Object

The value u2p:Object shows that
var:preObject 1.1 is an object.

var:postObject 1.2 u2p:typeName /
var:className

The value var:className is the string with the
name of the class to which var:postObject 1.2

belongs.
prov:type /
u2p:Object

The value u2p:Object shows that
var:postObject 1.2 is an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of
the operation var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an
xsd:dateTime value for the end of
var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct represen-
tation of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the
name of the type of var:input 3 .

var:modCollAttribute 4.1 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:modCollAttribute 4.1 is an attribute.

prov:value /
var:modCollAttributeValue

The value var:modCollAttributeValue

is the direct representation of
var:modCollAttribute 4.1 .

u2p:attributeName /
var:modCollAttributeName

The value var:modCollAttributeName is the
string with the name of var:modCollAttribute
4.1 .

u2p:typeName /
var:modCollAttributeType

The value var:modCollAttributeType is
the string with the name of the type of
var:modCollAttribute 4.1 .

var:attribute 4.2 prov:type /
u2p:Attribute

The value u2p:Attribute shows that attribute
4.2 is an attribute.

prov:value /
var:attributeValue

The value var:attributeValue is the direct rep-
resentation of attribute 4.2 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with
the name of attribute 4.2 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with
the name of the type of attribute 4.2 .

Class diagram Pattern 10 (ClP10) 70/74

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:hadMember It states that var:attribute is one of the elements in var:postObject.
f prov:wasDerivedFrom It is the construction of var:postObject based on var:input.
g prov:hadMember It states that var:modCollAttribute is one of the elements in

var:postObject.
h prov:hadMember It states that var:input is one of the elements in var:modCollAttribute.

This is due to the fact that in this context the input information is directly added to
the object’s collection attribute.

i prov:wasGeneratedBy It is the completion of production of var:modCollAttribute by
var:operation.

j prov:hadMember It states that var:collElement is one of the elements in
var:modCollAttribute.

Discussion

• Among the Class Diagrams patterns, patterns from ClP6 to ClP10 address the execution of operations that change an object’s
status. While, ClP6 changes the object’s status as a whole (being the concrete modified attributes unknown or irrelevant),
in patterns ClP7-ClP10 the concrete attributes modified by the Operation execution are explicitly known. In contrast to
ClP7 which directly sets the information passed into the Operation execution as values of concrete object’s attributes, the
other mentioned patterns use such information to change the object’s status as a whole or the values of concrete object’s
attributes. It must also be noted that patterns ClP9 and ClP10 address the execution of operations which remove or add
elements from/into an object’s collection attribute, while patterns ClP7 and ClP8 affect either a univalued attribute or a
collection attribute as a whole.

• A question that might arise is why in Figure 48 var:attribute 4.2 is associated with var:postObject 1.2 (which
represents the object with the status after the execution of the operation), but it is not associated with var:preObject 1.1

(the object with the status before the execution). We have made this decision because an object that acts as a var:preObject
in an operation execution, was a var:postObject in a previous operation execution. Thus, the attributes associated to such
an object in a var:preObject were registered when it previously played the role of var:postObject.

• Although the context of this pattern does not explicitly state that output data should be obtained from the Operation execution,
this could be the case. However, we do not include this output data in this pattern description to avoid overburden both the
UML and PROV explanations with information out of the scope of the context.

Aiming at giving an insight into how the inclusion of Output data affects both UML representation and the resulting PROV
template, Figure 49 depicts a UML representation with the Output data modelled as Output Parameters 5 (in this
case with return direction, though the translation of inout and out directions would be equivalent). Figure 50 depicts its
transformation into PROV. Both Figure 49 and 50 highlight the elements related to the inclusion of the Output data by
blurring the elements coming from Figure 47 and 48, respectively.

Class
+attributeName: Type1

add +operationName(in param1: Type2, in param2:Type3): 2
3

1

4

5
Type4

Figure 49. UML representation that models the context given by ClP10, including Output Parameters.

Class diagram Pattern 10 (ClP10) 71/74

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

var:collElement

4.1.1

j hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:typeName var:inputType

used

used

u2p:typeName var:typeName
prov:type u2p:Object

u2p:typeName var:typeName
prov:type u2p:Object

var:modCollAttribute

4.1

wasDerivedFrom

g

h hadMember

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

var:output
k wasDerivedFrom

l wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

m wasDerivedFrom

5

Figure 50. PROV template generated from the UML representation used in ClP10, including Output Parameters

(Figure 49)

PROV elements

UML PROV / id Rationale
Output Parameters 5 prov:Entity 5 /

var:output

Each parameter of Output Parameters 5 is a separate
prov:Entity identified as var:output.

PROV relations

PROV Relation Description
k prov:wasDerivedFrom It is the construction of var:output based on var:input.
l prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
m prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Attributes

PROV Element Attribute / Value Description
var:output 5 prov:value /

var:outputValue

The value var:outputValue is the direct representation of var:output 5 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the type of
var:output 5 .

Class diagram Pattern 10 (ClP10) 72/74

References
[1] OMG, “Unified Modeling Language (UML). Version 2.5,” 2015. Document formal/15-03-01, March, 2015.

[2] L. Moreau and P. Missier (eds.), “PROV-DM: The PROV Data Model,” W3C Recommendation REC-prov-dm-20130430,
World Wide Web Consortium, 2013.

[3] N. Kwasnikowska, L. Moreau, and J. V. D. Bussche, “A formal account of the open provenance model,” ACM Trans. Web,
vol. 9, pp. 10:1–10:44, May 2015.

[4] PROV Graph Conventions. Available at www.w3.org/2011/prov/wiki/Diagrams. Last accessed April, 2019.

[5] M. Dürst and M. Suignard., “Internationalized Resource Identifiers (IRIs) (RFC 3987).” January, 2005.

[6] A. Knapp and S. Merz, “Model checking and code generation for uml state machines and collaborations,” Proc. 5th Wsh.
Tools for System Design and Verification, pp. 59–64, 2002.

[7] N. Dragan, M. L. Collard, and J. I. Maletic, “Automatic identification of class stereotypes,” in Proceedings of the 26th
IEEE International Conference on Software Maintenance, pp. 1–10, 2010.

73/74

Appendix A Taxonomy of Class’ operations
Depending on their nature, operations implicitly have specific semantics that can also provide information of interest for
provenance capture. In order to provide UML Class diagrams with such additional semantics to be included in the generated
PROV templates, we have stated a taxonomy of operations given by a set of stereotypes to be included in such diagrams. The
taxonomy is based on that given by Dragan et al. [7], which has been enriched with additional stereotypes aimed at identifying
extra/further operation’s semantics not considered in [7] (marked with an asterisk in Table 2).

Table 2. Extension of the taxonomy given in [7] showing the categories of UML Class’s operations considered in our proposal.
Stereotypes with an asterisk denote those included by our proposal.

Category Stereotype
name Description

Creational create The operation creates an object.
destroy The operation destroys an object.

Structural
Accessor

get The operation returns values of concrete attributes of an object.
search* The operation returns elements belonging to a concrete collection attribute of an object.
process* The operation returns values that are computed based the object’s status as a whole

(the specific attributes used for the calculation are not relevant).
predicate The operation returns boolean values that are computed based on concrete attributes

of an object.
property The operation returns values (of any type) that are computed based on concrete

attributes of an object.
void-accessor The operation returns values (of any type) that are computed based on concrete

attributes of an object. These values are returned by means of parameters.

Structural
Mutator

command The operation changes the status of an object as a whole (the modified attributes are
unknown or irrelevant). It does not return information.

non-void-command The operation changes the status of an object as a whole (the modified attributes are
unknown or irrelevant). It does return information.

set The operation directly sets the information passed to the operation as values of concrete
attributes of an object.

modify* The operation modifies concrete attributes of an object.
remove* The operation removes an element from a concrete collection attribute of an object.
add* The operation adds an element on a concrete collection attribute of an object.

74/74

INTEGRATING PROVENANCE CAPTURE AND UML WITH

UML2PROV: PRINCIPLES AND EXPERIENCE

IMPLEMENTATION DETAILS

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Francisco J. García-Izquierdo1, Luc Moreau2

1Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,

{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2Dept. of Informatics, King’s College London, London, UK,

luc.moreau@kcl.ac.uk

This appendix provides a detailed description of the Model Driven Development (MDD) approach we have followed

for implementing UML2PROV, which we succinctly explained in the paper [1]. This approach is presented schemat-

ically in Figure 1, below. MDD focuses on models, rather than on computer programs, so that the code programs

are automatically generated from them by using a refinement process [2]. This process could entail one or various

transformations that describe the way in which a source model is translated into another final target. Depending on the

type of source and target elements of the transformation, we can distinguish between model to model transformations

(M2M), in which both are models, and model to text transformations, which define transformations from a model to a

final text.

Our solution for implementing UML2PROV following an MDD approach comprises both M2M and M2T transfor-

mations. Among the different existing tools to implement M2M and M2T transformations, we have used the Atlas

Transformation Language (ATL) [3] and Xtend [4]. On the one hand, in case of M2M transformations, we have used

out

AspectJ
code

Bindings Generation Module

Java
dependencies

out

(context independent
component)

used

input

wasGeneratedBy

collElements

hadMember

operation

target

source

used

wasDerivedFrom

hadMember

wasDerivedFrom

coll_new

wasGeneratedBy
hadMember

PROV-N

.uml

Seminar

add +enrolStudent(in student:Student)

search +searchStudent(in idStudent:String):Student

remove +removeStudent(in idStudent: String): Boolean

Student

+name: String
+identifier:String

constructor +Student(in identifier: String, in name:String)
get +getName():String
set +setName(in name:String)
command +modifyAll(in id:String, in name:String)

+studentList

*
*+seminarList

UML diagram
models

Bindings Generation Module
generation process

PROV template
files

PROV templates generation
process

UML2PROV

Xtend

Xtend

ATLin

(context dependent
component)

Figure 1: Our MDD-based implementation proposal.

ATL [3] for being one of the most widely used M2M transformation languages, in addition to provide an IDE devel-

oped on top of Eclipse. On the other hand, M2T transformations have been implemented by means of Xtend [4] for

several reasons, among which we note that it integrates seamlessly with the Eclipse Java IDE, and that it has a large

user community and a significant number of available examples.

Next, in Section 1, we explain the MDD transformations we have defined to implement our UML to PROV tem-

plates transformation patterns. Later, in Section 2, we first give details regarding our strategy to implement the BGM

(Bindings Generation Module) for an application and, second, we provide our MDD-based proposal to automatically

generate it.

1 Automatization of the UML to PROV Templates transformation patterns

Generally speaking, our proposal for implementing our transformation patterns takes as source the UML diagram

models of the application and automatically generates the PROV template files (Figure 1). Instead of performing a

one-step direct transformation between such source and target elements, we have decided to define an intermediate

step by means of which UML diagram models are first translated into a transitional model (template models) which will

be finally translated into the PROV template files in PROV-N. This strategy allows us to draw a distinction between the

translation from UML diagram models into template models, and the way in which the template models are serialised,

in this case PROV-N. As a result, our proposal follows an MDD-based tool chain that comprises two transformations

(see Figure 2): first, an M2M transformation identified by T1, whose implementation is explained in Subsection 1.1,

and second, an M2T transformation identified by T2, which is explained in Subsection 1.2.

in out
T1 T2

inout

used

input

wasGeneratedBy

collElements

hadMember

operation

target

source

used

wasDerivedFrom

hadMember

wasDerivedFrom

coll_new

wasGeneratedBy
hadMember

PROV-N.uml

Seminar

add +enrolStudent(in student:Student)

search +searchStudent(in idStudent:String):Student

remove +removeStudent(in idStudent: String): Boolean

Student

+name: String
+identifier:String

constructor +Student(in identifier: String, in name:String)
get +getName():String
set +setName(in name:String)
command +modifyAll(in id:String, in name:String)

+studentList

*
*+seminarList

UML diagram
models

PROV template
files

.xmi

template
models

conforms to

PROV
metamodel

UML
metamodel

conforms to

UML2PROV

XtendATL

Figure 2: Detailed MDD-based implementation of the PROV templates generation process

1.1 Transformation T1: from UML diagram models to template models

This M2M transformation takes as source the UML diagram models, conforming to the UML metamodel [5], and

generates the corresponding template models, conforming to the PROV metamodel [6]. To that end, our transformation

patterns [7] serve as the basis for the definition of an ATL module made up of a set of ATL rules. Each rule addresses

one transformation pattern describing how the UML elements identified by the pattern are mapped to the specific

PROV elements, and their relations, constituting a template model.

As an example of such ATL rules, Table 1 shows how an excerpt of the ATL rule defined to implement the ClP1 pattern

looks like. Such a pattern deals with operations that construct an object. This table depicts, per each fragment of the

2

Table 1: An excerpt of the ATL rule implementing ClP1. For each fragment in the excerpt (“ATL source code”

column), the PROV elements it generates are provided (“Template model” column) together with a description of the

transformation (“Description” column) as well as the graphical notation of the template model (last column).

ATL source code Template model

rule Operation2Document{

from
 operation: UML!Operation(
 operation.hasStereotype('create'))

[...]

postObjectEn: PROV!Entity (
id <- 'var:postObject',

 ...),

operationAct: PROV!Activity (
id <- 'var:operation',

 ...),

wgb: PROV!Generation (
entity <- postObjectEnID,
activity <- operationActID),

to

do{

if(existIn){
thisModule.newEnt('var:input', doc);

thisModule.genDer('var:postObject',
 'var:input', doc);

thisModule.genU('var:input', '
 var:operation', doc);
}

if(hasAttr){
 thisModule.newEnt('var:attribute',

 doc);

thisModule.genMe('var:attribute',
 'var:postObject',
 doc);
}

<document id= "....">

<entity id="var:postObject"/>

<activity id="var:operation"/>

<wasGeneratedBy>
 <entity ref="var:postObject"/>
 <activity ref="var:operation"/>
</activity>

<entity id="var:input"/>

<used>
 <activity ref="var:operation"/>
 <entity ref="var:input"/>
</used>

<wasDerivedFrom>
 <generatedEntity ref="var:postObject"/>
 <usedEntity ref="var:input"/>
</wasDerivedFrom>

<entity id="var:attribute"/>

<hadMember>
 <collection ref="var:postObject"/>
 <entity ref="var:attribute"/>
</hadMember>

wasGeneratedBy

var:operation

wasDerivedFrom

wasGeneratedBy

var:input

used

var:operation

var:postObject

var:operation

var:postObject

var:postObject

Description

This excerpt is in charge of generating an
<activity> identified by var:operation.

This excerpt is responsible for linking
var:postObject with var:operation
by means of the PROV relation
<wasGeneratedBy>.

In case there are UML Input Parameters, it
creates an <entity> identified by
var:input*, and its relations
<wasDerivedFrom> and <used> with
var:postObject and var:operation,
respectively.

If there are UML Attributes in the class to
which the operation belongs, it generates
an <entity> identified by
var:attribute*, and the PROV relation
<hadMember> between
var:postObject and var:attribute.

It states that the rule is applied to all the
UML operations to which ClP1 refers. That
is, those operations with the stereotype
«create»

It creates an <entity> with identifier
var:postObject.

var:attribute

hadMemberwasDerivedFrom

wasGeneratedBy

var:input

used

var:operation var:postObject

</document>[...]

It creates the PROV <document>.

*Although ClP1 states that each attribute/input parameter is a separate prov:Entity identified as var:attribute/var:input, we have decided to merge all the entities
with the same identifier. Nevertheless, this decision does not have any effect on the bindings, since each var:input and var:attribute will be given several values
(one for each input parameter and attribute, respectively).

Graphical representation of
the template model

rule (see first column), the PROV elements/relations in the template that are generated by such a fragment (see column

“Template model”). We can see how PROV elements such as document, entity and activity, as well as PROV relations

such as used and wasGeneratedBy, appear in the column as <document> , <entity> , <activity> , <used> , and

<wasGeneratedBy> . Additionally, the description of the transformation together with the graphical notation of the

template model being generated are given in the two right-hand columns.

1.2 Transformation T2: from template models to PROV template files

T2 corresponds to an M2T transformation that takes as source the template models resulting from T1, and generates the

PROV template files in PROV-N format. This transformation is implemented in an Xtend class (see Figure 3) which

contains template expressions that associate each PROV element/relation with its associated PROV-N representation.

Among the defined Xtend template expressions (declared by the explicit keyword def), there is a main template (line 2)

which is in charge of translating each PROV <document> appearing in the template models into a PROV template,

defined as a .provn extension text file. This PROV-N document will include not only fixed text (shown in green

in Figure 3), but also the text resulting from instantiating those Xtend templates in charge of translating the PROV

elements/relations included in the <document> (lines from 3 to 15). As a way of example, Figure 3 also depicts the

Xtend template (line 16) which translates each <entity> into the corresponding prov:Entity in PROV-N.

3

class PROVNGenerator {

 def manageDocument(Document doc, PrintStream o) {
 o.println('

document
prefix prov <http://www.w3.org/ns/prov#>
prefix tmpl <http://openprovenance.org/tmpl#>
prefix var <http://openprovenance.org/var#>
prefix exe <http://example.org/>
prefix u2p <http://uml2prov.org/>

bundle exe:bundle1
')

 for (entity : doc.entity) {o.println(manageEntity(entity))}
 for (agent : doc.agent) {o.println(manageAgent(agent))}
 for (activity : doc.activity) {o.println(manageActivity(activity))}
 for (wsb : doc.wasStartedBy) {o.println(wStartedByTemplate(wsb))}
 for (wgb : doc.wasGeneratedBy) {o.println(wgbTemplate(wgb))}
 for (u : doc.used) {o.println(usedTemplate(u))}
 for (wInfB : doc.wasInformedBy) {o.println(wInfByTemplate(wInfB))}
 for (wInvB : doc.wasInvalidatedBy) {o.println(wibTemplate(wInvB))}
 for (wdf : doc.wasDerivedFrom) {o.println(wdfTemplate(wdf))}
 for (hm : doc.hadMember) {o.println(hmTemplate(hm))} //
 for (so : doc.specializationOf) {o.println(spOTemplate(so))} //
 for (wat : doc.wasAttributedTo) {o.println(watTemplate(wat))}
 for (waw : doc.wasAssociatedWith) {o.println(wawTemplate(waw))}

 o.println('

endBundle
endDocument');

 }

 def manageEntity(Entity entity) {

 '''entity(«entity.id», «entityAttributeTemplate(entity)»)'''
 }

...
}

1:

Fixed
text

Fixed
text

2:

3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

16:

Figure 3: Xtend class including the template defined for each <document> and <entity> in the template models.

2 BGM generation automation

Here, we explain in detail a reference implementation for the automatic generation of the BGM corresponding to a

certain application, starting from its UML design. Below, we will explain our strategy for implementing the BGM for

a concrete application starting from its UML design (Subsection 2.1), and later we move on to describe the process we

have defined to automatically generate a BGM (Subsection 2.2).

2.1 Towards an implementation of the BGM

Aimed at providing an implementation of a BGM, there are several issues a developer may consider to manage the

provenance data for creating bindings. The first one is referred to when and how the bindings are generated and stored.

For example, applications may store the provenance data using usual logs, delaying the construction of bindings

4

until after runtime. Alternatively, applications could directly construct the bindings at runtime. The second aspect

refers to when provenance documents are generated and which storage system is used. For example, the bindings

could be accumulated locally in memory, delaying the generation of the provenance documents (i.e., the expansion of

templates), and thus their storage (e.g., database, files,. . .) until after runtime. Alternatively, the strategy could be to

expand the templates with the accumulated bindings on runtime, storing the provenance documents as the application

is executed.

Taking into account these issues, we have defined a generic event-driven proposal to implement the BGMs. Events are

notable occurrences that happen while the application is running, whereas listeners contain the behaviour for process-

ing the events. Concretely, our proposal for capturing the provenance data is driven by the execution of operations, for

this reason, we have identified four notable types of occurrences that take place during the execution of an operation,

and which correspond to four types of events, respectively. Two of these events are related to the start and end of an

operation, whereas the two remaining event types refer to the collection of values associated with the two types of

variables stated in [9] (group variables and statement-level variable). On the one hand, a group variable is a type of

variable that occurs in a mandatory identifier position. On the other hand, a statement-level variable is a variable that

occurs in an attribute-value pair (either in attribute position or in value position), or that occurs in optional identifier

position. So as to give an insight into them, Figure 4 shows a prov:Activity in PROV-N with variables ocurring in

different positions.

In this context, the event types we have identified are the following:

• (1) operationStart and (2) operationEnd. These types of events refer to the start and end of an operation exe-

cution, respectively. They are of interest when developers want to create and store sets of bindings associated

with a concrete operation execution, instead of storing each binding independently.

• (3) newBinding. This type of event refers to the occurrence of the collection of a provenance value associated

with a group variable. For instance, the collection of a value associated with the variable var:operation in

Figure 4 will trigger an event of type newBinding since var:operation occurs in an identifier position.

• (4) newValueBinding. This type of event refers to the occurrence of the collection of a prove-

nance value associated with a statement-level variable. For instance, the collection of values linked

with var:operationStartTime and var:operationName in Figure 4 fires newValueBinding events due to

var:operationStartTime occurring in an optional position, and var:operationName occurring in a value

position.

Our reference implementation of BGM is made up of four main components written in Java (see Figure 5) which are

divided into two main groups. The first group, which is referred to as context independent components, is made up

activity(var:operation, var:operationStartTime, var:operationEndTime, [prov:type=var:operationName])

mandatory
position optional position optional position value position

Figure 4: PROV activity in PROV-N [8] with different types of variables. Additionally, it is shown a table associating

each variable with its type.

5

Application

BGMEvent
+executionID:String
+className:String
+executionIdMethod:String
+varName:String
+value:String
+state:String

BGMEventInstrumenter

BGMEventManager

+addListener(listenerBGMListener): void
+removeListener(listenerBGMListener): void
+disseminateEvent(event:String, e:BGMEvent):void

<<interface>>
BGMEventListener

+operationStart(e:BGMEvent):void
+operationEnd(e:BGMEvent):void
+newValueBinding(e:BGMEvent):void
+newBinding(e:BGMEvent):void

-getExecutionID():String
-getClassName(): String
-getExecutionIDMethod(): String
-getVarName(): String
-getValue(): String
-getState(): String

<<aspect>>

*+listListeners

1

Figure 5: UML CD depicting our reference implementation for the BGM.

of those elements that do not depend on the source UML diagram models, and therefore, they are the same in all the

BGMs. This group is made up of the BGMEventListener, BGMEvent, and BGMEventManager (see components in

white background in Figure 5). The second group, called context dependent components, consists of those elements

whose implementation depends on the source UML diagram models. In our reference implementation the only element

included in this group is the BGMEventInstrumenter (depicted in grey background in Figure 5).

• BGMEventListener. It is an interface that defines four operations for managing each type of event (operationStart,

operationEnd, newBinding, and newValueBinding). These operations have an input parameter of type BGMEvent

(see below) that contains the provenance data to be processed. The implementation of these operations constitutes

the mechanism used by a class implementing the listener interface to generate, manage, and store the bindings.

As commented before, the developer just needs to choose the mechanisms that best suits her/his requirements by

developing classes implementing the BGMEventListener interface. Later, in Section 2.1.1, we will give a reference

implementation of this interface. At this point, we remark that with the aim of simplifying the design, we group

all the operations for managing the abovementioned event types in the same interface (BGMEventListener). In

case a developer is not interested in handling a concrete event, she/he can leave empty the implementation of its

corresponding operation.

• BGMEvent. This component is used to carry information about the occurrence of an event. We have decided to use

the same class BGMEvent to contain information about the four event types (operationStart, operationEnd, new-

Binding, newValueBinding) because this information can be stored using the same structure. Concretely, this struc-

ture will contain the provenance data necessary for constructing the bindings. Among them, we remark the attribute

6

public aspect BGMEventInstrumenter {

Object around(): initialization(<object>.new(..)) || call(* <object>.<operation>(..)){

behaviourBeforeExecution();

Object rtn = proceed();

behaviourAfterExecution();

return rtn;
 }
}

Pointcuts

advice
aspect

Custom behaviour executed
before the actual behaviour

Custom behaviour executed
after the actual behaviour

Actual behaviour

Figure 6: Structure overview of a reference implementation of the BGMEventInstrumenter in AspectJ

varName for the name of the variable, and the attribute value for the value associated with such a variable. See

Figure 5. For instance, in case of an operationStart event, a BGMEvent object could have an attribute varName con-

taining the value "var:operationStartTime", and an attribute value with the value "2018-12-20T12:54:20". An-

other example could be a BGMEvent object with information about a newBinding event. It could contain an attribute

varName with the value "var:operation", and the attribute value containing "exe:nameOfOperation-300691".

• BGMEventManager. In some cases, to have only one listener for generating, managing, and storing bindings could

be not enough, and the same happens with the mechanisms for generating and storing provenance. For instance, one

provenance consumer may be interested in replicating the information by storing both the provenance data, and the

bindings generated from them in different storage systems. Aiming at addressing these scenarios, we have included

the BGMEventManager with two responsibilities: to manage a list of subscribed listeners, and to disseminate the

objects of type BGMEvent among them.

• BGMEventInstrumenter. As we stated in the paper [1], to manually adapt the source code of an application would

be a valid option to capture provenance data. However, this option would require to traverse the whole code of the

concrete application identifying the classes that will be the source of the events, and additionally, those places inside

these classes where events will be fired. Then, the manual adaptation of the source code would need to include in

those places instructions for constructing BGMEvent objects with the provenance data, and disseminating them

among the listeners. This task constitutes a tedious, time-consuming and error-prone process. What is worse, the

manual adaptation could incur in such provenance capture code instructions scattered across all the application

classes, making their maintenance a cumbersome task.

In contrast, we propose to use the Aspect Oriented Programming (AOP) [10] paradigm for implementing what we

have named BGMEventInstrumenter. AOP aims at improving the modularity of software systems, by capturing

inherently scattered functionality, often called cross-cutting concerns, (e.g., the capture of provenance), and placing

that functionality apart from the actual application’s source code. Our reference implementation is developed in

AspectJ, an AOP extension created for Java [11], and it consists of an aspect which is made up of an advice with

pointcuts (see Figure 6). On the one hand, the pointcuts identify locations within the application code where a

concern may be included. In our case, we identify operation calls and constructor invocations from which we

want to fire events (i.e., to collect provenance). On the other hand, the advice is the behaviour executed when the

pointcuts are matched. In AspectJ, advices can be executed at three different places: before, around, and after the

pointcuts. Due to the fact that our identified events can occur both before and after operations calls and constructors

7

invocations, we have used an around advice for executing custom behaviours before and after the actual behaviour.

These custom behaviours consist of constructing objects of type BGMEvent and disseminating them to the listeners

(by invoking the disseminateEvent operation from BGMEventManager). In the end, as a pre-compilation step, the

AspectJ weaver automatically integrates the behaviour from the aspects into the locations specified by the pointcuts

at compilation time. In this way, our AOP approach does not require a manual intervention for adapting the source

code, and automatically collects provenance data in a transparent way for software developers, which directly incurs

in fulfilling the requirements R1-R3 stated in the paper [1].

2.1.1 Example of a class implementing the BGMEventListener

Taking into account the structure depicted in Figure 5, we provide the users with a concrete implementation of the

interface BGMEventListener (class that we name ConcreteBGMEventListener). This class implements the four oper-

ations defined in the BGMEventListener so that the bindings are generated and accumulated in memory, and when the

execution of each tracked operation finishes, they are shipped to the MongoDB database. Thus, this implementation

is only in charge of generating and storing bindings, delaying the expansion of templates. In this way, the users can

decide not only which templates to expand, but also when to expand them.

2.2 Automatization of the implementation of the BGM

The BGM for an application is automatically generated by means of an M2T transformation referred to as T3 in

Figure 7. Such a transformation has been implemented by means of an Xtend class that takes as source the application’s

UML diagram models, conforming the UML metamodel [5], and generates the java code of the BGM.

in out
T3

.uml

Seminar

add +enrolStudent(in student:Student)

search +searchStudent(in idStudent:String):Student

remove +removeStudent(in idStudent: String): Boolean

Student

+name: String
+identifier:String

constructor +Student(in identifier: String, in name:String)
get +getName():String
set +setName(in name:String)
command +modifyAll(in id:String, in name:String)

+studentList

*
*+seminarList

UML diagram
models

.xmi

UML
metamodel

conforms to

UML2PROV

Xtend

Figure 7: Detailed MDD-based implementation of the BGM for an application.

As we stated previously, the source code of the context independent components (i.e., BGMEvent, BGMEventMan-

ager, and BGMEventListener) is the same for all the BGMs; thus, it does not depend on the UML diagram models

used as input in the transformation. Conversely, the implementation of the context dependent component (i.e., BG-

MEventInstrumenter) depends on the source UML diagram models.

Our strategy for automatically generating the BGM is to implement an Xtend class that (1) directly creates all the

context independent components, and (2) generates the BGMEventInstrumenter based on the source UML design.

Whilst we could have provided users with a separate library including all the context independent components, we

have made the decision of generating them automatically together with the BGMEventInstrumenter in order to reduce

the code dependencies.

8

In particular, the Xtend class generates the BGMEventInstrumenter so that its pointcuts identify the calls to operations

and invocations of constructors. Concretely, these pointcuts correspond to (1) the invocations of the constructors

of classes involved in the UML design, and (2) calls of operations that are involved in the source: SqDs (i.e., the

operations whose calls are modelled by means of UML Messages), SMDs (i.e., the operations whose occurrences are

associated with UML Events), and CDs, (i.e., the operations that are modelled by UML Operations). The remainder

source code of the BGMEventInstrumenter (that is, the advise) is also shared by all the BGMs.

2.3 Fulfilment of BGM requirements

The reference implementation of the BGMs given in this document fulfils the five requirement stated in the paper [1]

(identified from R1 to R5). As we previously stated, requirements from R1 to R3 have been met thanks to the AOP

implementation of the BGMEventInstrumenter explained in Section 2.1. Regarding the requirements R4 and R5, we

note that they have been satisfied because of the suitable ad hoc implementation of the BGMEventInstrumenter for a

concrete application (explained in Section 2.2). On the one hand, the automatically generated pointcuts inside the BG-

MEventInstrumenter ensures that the collected bindings are associated with at least one PROV template (requirement

R4). This is because the pointcuts correspond to operations calls and constructors invocations that are modelled in the

UML design, and therefore they have an associated PROV template. On the other hand, the requirement R5 is fulfilled

since the transformation T3 has been implemented so that it respects the names of the variables appearing in the PROV

templates generated by the chain of transformations T1-T2.

References

[1] C. Sáenz-Adán, B. Pérez, F. J. García-Izquierdo, and L. Moreau, “Integrating Provenance Capture and UML

with UML2PROV: Principles and Experience,” submitted for publication in IEEE Transactions on Software

Engineering.

[2] B. Selic, “The pragmatics of model-driven development,” IEEE software, vol. 20, no. 5, pp. 19–25, 2003.

[3] ATL - a model transformation technology, version 3.8. Available at http://www.eclipse.org/atl/. Last

visited on January 2020.

[4] Xtend, “General-purpose high-level programming language.” Available at https://www.eclipse.org/

xtend/. Last visited on January 2020.

[5] OMG, “Unified Modeling Language (UML). Version 2.5,” 2015. Document formal/15-03-01, March, 2015.

[6] L. Moreau, P. Missier (eds.), K. Belhajjame, R. B’Far, J. Cheney, S. Coppens, S. Cresswell, Y. Gil, P. Groth,

G. Klyne, T. Lebo, J. McCusker, S. Miles, J. Myers, S. Sahoo, and C. Tilmes, “PROV-DM: The PROV Data

Model,” W3C Recommendation REC-prov-dm-20130430, World Wide Web Consortium, 2013.

[7] Supplementary material for the paper entitled “Supplementary material of Integrating Provenance Capture and

UML with UML2PROV: Principles and Experience” containing the Description of patterns, submitted for pub-

lication in IEEE Transactions on Software Engineering. Available at https://uml2prov.unirioja.es/. Last

visited on January 2020.

9

[8] L. Moreau, P. Missier (eds.), J. Cheney, and S. Soiland-Reyes, “PROV-N: The Provenance Notation,” W3C

Recommendation REC-prov-n-20130430, World Wide Web Consortium, Apr. 2013.

[9] D. Michaelides, T. D. Huynh, and L. Moreau, “PROV-TEMPLATE: A Template System for PROV Documents,”

2014. Available at https://provenance.ecs.soton.ac.uk/prov-template. Last visited on January 2020.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented

programming,” in Proc. of the European Conference on Object-Oriented Programming (ECOOP 1997), (Berlin,

Heidelberg), pp. 220–242, 1997.

[11] The AspectJ Project. Available at www.eclipse.org/aspectj/. Last visited on January 2020.

10

INTEGRATING PROVENANCE CAPTURE AND UML WITH

UML2PROV: PRINCIPLES AND EXPERIENCE

TAXONOMY OF CLASS’ OPERATIONS

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Francisco J. García-Izquierdo1, Luc Moreau2

1Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,

{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2Dept. of Informatics, King’s College London, London, UK,

luc.moreau@kcl.ac.uk

1 Introduction

Depending on their nature, operations have specific semantics which can also produce information of interest for

provenance capture. For instance, the key factors involved in the execution of an operation such as getName (accessing

an object’s attribute) are different from the ones related to setName (modifying an object’s attribute), and consequently,

the provenance information captured from the execution of both operations must be different. Taking this into account,

we are interested in identifying a taxonomy of operations which covers the vast varied range of operation’s types of

interest for provenance capture. Based on this taxonomy, we can define our CDs to PROV template patterns so that

the generated templates can provide concrete provenance information depending on the operation’s semantics.

2 A taxonomy of operations

To define our taxonomy, we undertook a literature search looking for different categorizations of operations based

on their behaviours. We distinguished the approaches that present a more general classification of operations such

as [3], from those that provide a more fine grained taxonomy of operations such as [1] or, more remarkably, the

work presented by Dragan et al. in [2], which is one of the most complete. Dragan et al.’s taxonomy is based

both on how an operation accesses data (i.e., an operation changes the object’s status or leaves it unchanged), and

on its behavioural characteristics (i.e., creational, structural. . .). Such a taxonomy is expressed as a classification of

operations’ Stereotypes. These UML Stereotypes are extension mechanisms that allow us to complement each CD’s

operation with specific semantic information regarding its category within the taxonomy, thus linking the operation

with its corresponding semantics. The notation for a Stereotype is a string with the stereotype name between a pair

of guillemets (e.g., «add»).

This taxonomy define five categories: (1) Creational refers to operations responsible for creating or destroying objects

of the class. (2) Structural Accessor refers to operations that return information regarding the attributes of the object

to which it belongs, without changing the state of the object. (3) Structural Mutator corresponds to operations that

change the state of the object to which it belongs. (4) Collaborational which helps define the communication between

objects and how objects are controlled in the system. Finally, (5) Degenerate corresponds to operations which give us

little information about.

Our proposal (see Table 1), which is inspired from the Dragan et al.’s one [2], includes additional stereotypes (marked

with an asterisk) not initially considered in the original taxonomy: the search, add and remove stereotypes, which

cover operations for the management of collection attributes (such as search, addition or removal, respectively); the

process stereotype, for operations returning information based on the whole object’s internal structure; and modify,

for operations that modify a specific attribute without setting an input value directly. We have not considered the

categories collaborational and degenerate since they represent behaviours already modelled by SqDs (such as the

communication between objects, given by collaborational), or reflect aspects that cannot be tackled without checking

the source code (e.g., degenerate category). Below, we explain the behaviour represented by each stereotype.

2

Table 1: Extension of the taxonomy given in [2] showing the categories of UML Class’ operations considered in our

proposal. Stereotypes with an asterisk denote those included by our proposal.

Category
Stereotype

name
Description

Creational
create The operation creates an object.

destroy The operation destroys an object.

Structural

Accessor

get The operation returns values of concrete attributes of an object.

search* The operation returns elements belonging to a concrete collection attribute of

an object.

process* The operation returns values that are computed based the object’s status as a

whole.

predicate The operation returns boolean values that are computed based on concrete

attributes of an object.

property The operation returns values (of any type) that are computed based on con-

crete attributes of an object.

void-accessor The operation, by means of a parameter, returns values (of any type) that are

computed based on concrete attributes of an object.

Structural

Mutator

command The operation changes the status of an object as a whole (the modified at-

tributes are unknown or irrelevant). It does not return information.

non-void-command The operation changes the status of an object as a whole (the modified at-

tributes are unknown or irrelevant). It does return information.

set The operation directly sets the information passed to the operation as values

of concrete attributes of an object.

modify* The operation modifies concrete attributes of an object.

remove* The operation removes an element from a concrete collection attribute of an

object.

add* The operation adds an element on a concrete collection attribute of an object.

3

References

[1] P. Clarke, B. Malloy, and P. Gibson. Using a taxonomy tool to identify changes in OO software. In Proceedings

of the 7th European Conference on Software Maintenance and Reengineering, (CSMR’03), pages 213–222, 2003.

[2] N. Dragan, M. L. Collard, and J. I. Maletic. Automatic identification of class stereotypes. In Proceedings of the

26th IEEE International Conference on Software Maintenance, pages 1–10, 2010.

[3] OMG. Unified Modeling Language (UML). Version 2.5, 2015. Document formal/15-03-01, March, 2015.

4

INTEGRATING PROVENANCE CAPTURE AND UML WITH

UML2PROV: PRINCIPLES AND EXPERIENCE

SEQUENCE OF INTERACTIONS WITH GELJ

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Francisco J. García-Izquierdo1, Luc Moreau2

1Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,

{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2Dept. of Informatics, King’s College London, London, UK,

luc.moreau@kcl.ac.uk

In this document, we show the sequence of interactions (see Figure 1) among the 13 substeps of the experiment wizard

of GelJ, which has been selected to conduct the evaluation of UML2PROV as unbiased as possible. Each rounded

rectangle in Figure 1 corresponds to a task performed by the user. Each task is named using the label provided by the

GelJ interface (e.g., corp for cropping the image). Empty rounded rectangles mean that no tasks are performed in that

step. Additionally, rounded rectangles with associated text may include a label at the right top, denoting the number

of times that such a task has been performed. Finally, we use green arrows to specify that the user has proceeded to

the next step, or red arrows to show that the user goes back to the previous step.

cr
op n

ex
t

u
n
d
o

in
ve

rt

cr
op

in
ve

rt

au
to

in
ve

rt

au
to

h
or

iz
on

ta
l

fl
ip

ro
ta

te
9
0

h
or

iz
on

ta
l

fl
ip

h
or

iz
on

ta
l

fl
ip

d
el

et
e

ad
d

M
ov

in
g
 s

lid
e

b
ar

 t
h
e

fu
rt

h
es

t
le

ft

ad
d

d
el

et
e

S
te

p
 1

.1

S
te

p
 1

.2

S
te

p
 1

.3

S
te

p
 1

.4

S
te

p
 2

.1

S
te

p
 2

.2

S
te

p
 2

.3

S
te

p
 3

.1

S
te

p
 3

.2

S
te

p
 3

.3

S
te

p
 4

.1

S
te

p
 4

.2

S
te

p
 4

.3

n
ex

t

n
ex

t

n
ex

t

n
ex

t
n
ex

t

n
ex

t

n
ex

t

n
ex

t

n
ex

t

n
ex

t
n
ex

t

n
ex

t

n
ex

t

n
ex

t
n
ex

t

n
ex

t

n
ex

t

n
ex

t

n
ex

t

b
ac

k

b
ac

k

b
ac

k

b
ac

k
b
ac

k

b
ac

k

n
ex

t

b
ac

k
b
ac

k

b
ac

k

b
ac

k

2
0

2

1
0

1
0

1

1
0

6
6

5
5

N
o

ta
sk

s
p
er

fo
rm

ed

T
as

kN
am

e

T
as

kN
am

eN

L
E

G
E

N
D

T
as

kN
am

e
h
as

 b
ee

n
 p

er
fo

rm
ed

Ta
sk

 T
as

kN
am

e
h
as

 b
ee

n
 p

er
fo

rm
ed

N

 t
im

es

Figure 1: Sequence of interactions used to perform the evaluation.

2

INTEGRATING PROVENANCE CAPTURE AND UML WITH

UML2PROV: PRINCIPLES AND EXPERIENCE

CASE STUDY: UNIVERSITY EXAMPLE

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Francisco J. García-Izquierdo1, Luc Moreau2

1Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,

{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2Dept. of Informatics, King’s College London, London, UK,

luc.moreau@kcl.ac.uk

The results presented in this appendix are part of the evaluation we have made to show the feasibility of our proposal

UML2PROV presented in the paper [1]. In that paper, we show the evaluation we have made of our proposal by

applying it both to a legacy application named GelJ [2] built without UML (retroactive scenario) and to an academic

application built from a UML design (proactive scenario). While in [2] we mainly focus on the GelJ case study because

it is more complex, here we describe in detail the application of UML2PROV to the proactive scenario, the University

example, using the same evaluation aspects we have taken into account in the paper [1]. We would like to note that, in

contrast to the GelJ case study, in the academic University example we play the role of software designers, developers,

provenance consumers and potential users.

The University case study correspond to an example, slightly modified from [3], related to the enrolment and atten-

dance of students to seminars that are held during a University course. This application mainly allows users to perform

three actions in the context of a university. The first allows administrative staff to check if a student can apply for a

given seminar. The second offers the possibility of enrolling a student in a seminar. Finally, the third is related to

the overall process which encompasses the evaluation of students’ performance in such seminars through exams, con-

sidering from the time an exam is prepared until the student is informed of her/his mark. It is worth noting that the

University application’s database only contains information about specific characteristics of the elements conforming

the system (e.g., students, seminars, exams, and so on). It does not keep information about the requests for checking

if it is possible to apply for a seminar, or for example, the specific process of preparing and taking an exam, and

informing about the mark.

In order to give an unbiased evaluation of our approach, based on a representative use of the University system,

we have defined an example execution considering several scenarios (see Algorithm 1). Concretely, this execution is

divided in two phases: in the first phase (lines from 2 to 9), 25 students ask for enrolling into a seminar (line 4), after the

affirmative response, they are enrolled into the seminar (line 6), and finally, the student’ performance evaluation begins

by proceeding with an exam (line 7). In the second phase (lines 10-13), another 25 students (already enrolled) proceed

with an exam (line 12). Consequently, the defined benchmark involves the execution of the three cited functionalities

of the application. The performance of this example execution incurs in the execution of about 1700 operations in the

tool’s source code.

1 seminar← findSeminar(idSeminar);

2 for i← 0 to 24 do

3 student← findStudent(i);

4 allowEnrol← askStaffForEnrolling (student, seminar);

5 if allowEnrol then

6 enrolStudent (student, seminar);

7 proceedWithExam (student, seminar);

8 end

9 end

10 for i← 25 to 49 do

11 student← findStudent(i);

12 proceedWithExam (student, seminar);

13 end
Algorithm 1: Example execution algorithm in pseudocode

The evaluation was run in the same personal computer and under the same conditions as in the GelJ case study.

1 Particularities of the application modes in this case study

In Table 1 we show the tasks comprising each application mode for this case study. This information can be used to

compare the characteristics of each mode.

Table 1: Overview of tasks in UML2PROV Application Modes.

Task App. Mode 1 App. Mode 2 App. Mode 3

T1. Identify the complete CD - - -

T2. Identify provenance requirements - -

T3. Identify classes/operations involved in provenance requirements - -

T4. Discard not identified classes/operations - -

T5. Add stereotypes to selected operations - -

T6. Identify SqDs - -

T7. Design SMDs of selected classes - - -

8 Permorfed automatically | Requires manual effort | /8 Requires semi-manual effort | – Non executed task

Case study - University

Application Mode 1

Regarding task T2, since in this case study there are no final users interested in the generated provenance, it is not

possible to obtain the provenance requirements from them. For this reason, as described previously, we have simulated

that we are the final users that raised the provenance questions that serve as requirements. To conduct an unbiased

2

evaluation, we have not defined the questions from scratch, but we have drawn inspiration from the questions appearing

in the First Provenance Challenge [4], adapting them to obtain questions regarding the performance of exams. The

resulting questions, depicted in Table 2, represent the provenance requirements (called provenance use case questions

in PrIMe).

Table 2: Questions identified from Q1 to Q5 about the University case study, together with University classes involved

in answering those questions.

ID Ques�on Iden�fied Classes

Q1
What is the set of ac�vi�es that has led an

exam as it is?

Exam

Teacher

Student

Q2 How many answers have an exam? Exam

Q3
When is the student informed about the mark

of an exam?
Exam

Q4 Who has signed the exam?
Exam

Student

Q5 What is the date of an exam? Exam

In this case study, all the UML CD, SqD and SMD diagrams are available at the beginning of the evaluation. Thus,

all the performed tasks are tailoring tasks. Neither to reverse engineer the CD (T1) nor to design the SMDs (T7)

are required. Similarly, it is not necessary to reverse engineer SqD. We just have to select the SqDs related to the

provenance requirements (T6).

Inspired by the second phase of PrIMe, from the UML design we have identified those classes and operations (called

actors in PrIMe) involved in answering the identified questions (T3), following the same procedure described for

GelJ. The result was the identification of 3 classes and 11 operations out of 11 classes and 37 operations that compose

University application (i.e., ∼27% of the classes and ∼29% of the operations of the University application were used.

The rest of classes/operations were discarded (T4). These classes are shown in column “Identified Classes” of Table 2.

In addition, to obtain more meaningful provenance, we assigned stereotypes to the UML operations in class diagram

(T5). As for SqDs, we selected those related to the provenance requirements. This task resulted in a set of 25 messages.

Regarding SMDs, we used the UML SMDs for those classes whose states are related to the provenance requirements.

This led to 2 SMDs with 7 states, and 9 transitions.

As in the GelJ case study, the greatest effort goes into identifying the provenance requirements (T2) and selecting the

classes and operations involved (T3 and T4).

Application Modes 2 and 3

In these modes no tasks are performed, so no effort has been made. More specifically, we have taken the original SqDs

and CDs without tailoring them (CDs, in both modes and SqDs, in Mode 2). Concretely, the UML design encompasses

a CD with 11 classes and 37 operations, and a set of SqDs with 25 messages in total.

1.1 Analysis

Next, we analyse those evaluation aspects explicitly related to the University case study.

3

Table 3: Variables evaluated for the considered UML2PROV Application Modes in the University case study.

Application Mode

(UML diagrams)

No.

templates

Total size of

templates

No.

Variables

No. Set of

bindings

Sets of

bindings

size (MB)

Expanded

templates

size (MB)

No. executions

instrumented

operations

%

instrumented

executed

operations

Execution

time (ms)

Time

 overhead

Mode 1 (SqD, SMD, CD) 25 20KB 115 687 1,4 2,3 687 41,79% 656,19 25,92%

Mode 2 (SqD, CD) 63 47KB 269 1.644 2,0 3,3 1.644 100% 802,29 53,96%

Mode 3 (CD) 40 26KB 137 1.644 1,9 2,0 1.644 100% 747,31 43,41%

1.1.1 Aspect 1: Generation of the provenance design

In line with the results obtained for GelJ, the time-cost for generating the templates, a few milliseconds per template,

is considered negligible compared to the time-cost of performing this task manually (this information is not depicted

in Table 3 because we consider it trivial). As for the implications of the followed mode, the results show that the closer

the UML design fits the application provenance requirements, the less templates are generated and consequently, the

smaller their total size and the faster their generation. Table 3 shows that Mode 1 (with a tailored UML design), results

in the lowest number of templates (25). However, Modes 2 and 3 present a higher number of templates (63 and 40,

respectively). These figures confirm that a greater initial effort to more accurately tailor the UML according to a set of

provenance requirements, results in fewer templates.

1.1.2 Aspect 2: Instrumentation of the application

The column “No. variables” of Table 3 depicts the number of instructions included in the BGM for bindings generation.

Mode 1, with least UML elements, leads to the BGM with fewest instructions (115) against Modes 2 and 3 that generate

BGMs with more instructions within (269 and 137, respectively). Given these results, we can see that although Mode 1

has fewer number of instructions, the difference with Mode 3 is relatively small (115 vs 137 instructions). This small

difference is because of three main reasons. First, due to the small difference between the considered operations in

Mode 1 (11 operations, see Table 1), and Mode 3 (37 operations). Second, because Mode 1 generates templates from

SqDs and SMDs, unlikely Mode 3. Third, since Mode 1 considers CDs with stereotypes, which incurs in templates

with more variables.

Nevertheless, these results are in the line of those obtained from GelJ [1]: the effort devoted to more precisely tailor the

UML design according to the provenance requirements results in a simplification of the BGM, which has significant

implications in the performance.

1.1.3 Aspect 4: Storage and Run-time overhead

The overhead attributable to provenance capture is associated with the number of executions of instrumented opera-

tions (see Table 3, where column “No. set of bindings” matches this number). In this case study, Mode 1 generates

the least number of set of bindings (687), and consequently, led to the least run-time overhead (25.92%) and storage

needs (1.4MB). Conversely, Modes 2 and 3 generated more set of bindings (1,644 both of them), and yielded the more

time overhead (53.96% and 43.41%, respectively) and storage needs (2MB and 1.9MB). Mode 2 will always require

more storage since it takes into account the whole Class diagram (unlike Mode 1) and additionally, it does not discard

the Sequence diagrams (in contrast to Mode 3).

4

Table 4: For each mode, it is indicated if questions Q1-Q5 of Table 2 can be answered completely (C), sufficiently (S),

partially (P) or cannot be answered (N). If a question can be answered, the number of elements of the provenance

involved in its answer appears in brackets.

Q1 Q2 Q3 Q4 Q5

Mode 1 S(5) S(6) S(3) S(3) S(2)

Mode 2 C(12) S(6) N S(3) S(2)

Mode 3 C(12) S(6) N S(3) S(2)

Finally, the difference between column “Set of bindings size” and “Expanded templates size” in Table 3 confirms how

the use of the PROV-Template approach for generating provenance reduces the storage requirements for the set of

bindings compared to the expanded templates.

1.1.4 Aspect 5: Quality of provenance

In this section we will focus on the quality of the provenance generated from the University example. To analyse this

aspect, we study if the collected provenance answers completely (C), sufficiently (S), partially (P) or it cannot answer

(N) the questions in Table 2.

Completely When the user indicated that the answer was more detailed that what she/he expected.

Sufficiently When the user indicated that the level of detail was enough.

Partially When the answer did not satisfy the user.

No When it was not possible to answer the question.

Table 4 summarizes our conclusions, showing the number of elements (prov:Entity, prov:Activity, and

prov:Agent) involved in such an answer, when it can be responded (i.e., when the response is not classified as N).

Based on these results, we identified three kind of implications the mode used to tailor the UML design may have on

the answers.

No effect. The followed mode had no effect on the ability to answer to questions Q2 and Q5. More specifically, the

answer to questions Q2 and Q5 relies upon the values of attributes belonging to the class Exam. Since the three modes

take into account a CD with all the attributes of class Exam, the provenance obtained from can answer these questions.

More detailed information. The answer to Q1 relies upon the operations identified in classes Exam, Teacher, and

Student. Mode 1, which only identifies a set of operations, answers Q1 with a sufficient number of elements (5).

However, Modes 2 and 3, encompassing the whole operations, answers Q1 with more elements than necessary (12

both of them).

Crucial. The UML diagrams supported by UML2PROV model only certain aspects of an application’s behaviour.

Consequently, the generated provenance will contain information about these aspects. The answer to question Q3

relies upon information provided by SMDs; thus, Mode 1, which is the only one considering SMDs, is the unique

mode capable for answering Q3.

5

References

[1] C. Sáenz-Adán, B. Pérez, F. J. García-Izquierdo, and L. Moreau, “Integrating Provenance Capture and UML

with UML2PROV: Principles and Experience,” submitted for publication in IEEE Transactions on Software

Engineering.

[2] J. Heras, C. Domínguez, E. Mata, V. Pascual, C. Lozano, C. Torres, and M. Zarazaga, “GelJ – a tool for analyzing

DNA fingerprint gel images,” BMC Bioinformatics, vol. 16, Aug 2015.

[3] M. Seidl, M. Scholz, C. Huemer, and G. Kappel, UML@Classroom: An Introduction to Object-Oriented Model-

ing. Springer Publishing Company, Incorporated, 2015.

[4] L. Moreau et al., “Special issue: The first provenance challenge,” Concurr. Comput. : Pract. Exper., vol. 20,

pp. 409–418, Apr. 2008.

6

INTEGRATING PROVENANCE CAPTURE AND UML WITH

UML2PROV: PRINCIPLES AND EXPERIENCE

OCL CONSTRAINTS

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Francisco J. García-Izquierdo1, Luc Moreau2

1Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,

{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2Dept. of Informatics, King’s College London, London, UK,

luc.moreau@kcl.ac.uk

These constraints (from OCL1 to OCL5) mainly impose interconnections among (OCL1 and OCL2) senders/receivers

in SqD and objects modelled by SMD, (OCL3 and OCL4) incoming/outgoing messages in SqD with events/actions in

SMD, and (OCL5) incoming messages in SqD with methods in objects modelled by SMD.

(OCL1-2) Each sender of a message in an interaction of a SqD must be an object modelled by a SMD. The same

constraint is defined for a receiver, changing sender by receiver.

context: Interaction

inv: self.message.sender.base.behavior âĂŘ> notEmpty ()

(OCL3) Incoming messages to an object within a SqD are events in a SMD.

context: Message

inv: self.receiver.base.behavior.region.transition.trigger->exists(e|e.name=self.name)

(OCL4) Outgoing messages of an object within a SqD are actions in a SMD.

context: Message

inv: self.sender.base.behavior.region.transition.effect->exists(e|e.name=self.name)

(OCL5) Incoming messages of an object (receiver) within SqD must be object’s methods.

context: Message

inv: let rec:ClassifiedRole = self.receiver in

let ops:Operation = rec.base.ownedOperation in

ops -> exists(oper| oper.name = self.name)

	uml2prov-tse2020
	Introduction
	Background
	UML2PROV Architectural Overview
	From UML to PROV templates
	UML Sequence Diagrams
	UML State Machine Diagrams
	UML Class Diagrams

	Bindings Generation Requirements
	Implementation
	Evaluation
	Case studies: GelJ and the University example
	Objectives and Application Modes
	Evaluation platform
	Analysis
	Aspect 1: Generation of the provenance design
	Aspect 2: Instrumentation of the application
	Aspect 3: Maintenance of provenance capabilities
	Aspect 4: Storage and Run-time overhead
	Aspect 5: Quality of provenance

	Discussion
	Threats to Validity
	Related work
	Conclusions and Future work
	References
	Biographies
	Carlos Sáenz-Adán
	Beatriz Pérez
	Francisco J. García-Izquierdo
	Luc Moreau

	UML2PROV-SupplementaryMaterial
	Introduction
	Background
	UML2PROV Architectural Overview
	From UML to PROV templates
	UML Sequence Diagrams
	UML State Machine Diagrams
	UML Class Diagrams

	Bindings Generation Requirements
	Implementation
	Evaluation
	Case studies: GelJ and the University example
	Objectives and Application Modes
	Evaluation platform
	Analysis
	Aspect 1: Generation of the provenance design
	Aspect 2: Instrumentation of the application
	Aspect 3: Maintenance of provenance capabilities
	Aspect 4: Storage and Run-time overhead
	Aspect 5: Quality of provenance

	Discussion
	Threats to Validity
	Related work
	Conclusions and Future work
	References
	Biographies
	Carlos Sáenz-Adán
	Beatriz Pérez
	Francisco J. García-Izquierdo
	Luc Moreau

