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Abstract: Broadly speaking, an adversarial example against a classification model occurs when a
small perturbation on an input data point produces a change on the output label assigned by the
model. Such adversarial examples represent a weakness for the safety of neural network applications,
and many different solutions have been proposed for minimizing their effects. In this paper, we
propose a new approach by means of a family of neural networks called simplicial-map neural networks
constructed from an Algebraic Topology perspective. Our proposal is based on three main ideas.
Firstly, given a classification problem, both the input dataset and its set of one-hot labels will be
endowed with simplicial complex structures, and a simplicial map between such complexes will
be defined. Secondly, a neural network characterizing the classification problem will be built from
such a simplicial map. Finally, by considering barycentric subdivisions of the simplicial complexes,
a decision boundary will be computed to make the neural network robust to adversarial attacks of a
given size.

Keywords: algebraic topology; neural network; adversarial examples

1. Introduction

Adversarial examples are currently one of the main problems for the robustness of
neural networks applications [1]. Broadly speaking, an adversarial example against a
classification model occurs when a small perturbation on an input data point produces a
change on its classification. Adversarial examples are usually associated with computer
vision tasks [2]. In this context, small generally refers to changes that are not appreciable
by human perception. Recently, several studies have shown that adversarial examples
also appear in other contexts such as natural language processing [3], multivariate time
series [4] or recommendation systems [5]. Therefore, the study of adversarial examples
is of an undoubted importance for building reliable models, and also leads us to wonder
about the mechanisms of our brain and the differences between artificial and natural
classification processes.

Since the discovery of adversarial examples as a weakness for the safety of neural
network models in real-world problems, many attacks and defenses have been proposed [6],
each of which builds on the other. One of the most popular approaches to study models’
robustness and adversarial examples is based on the concept of margin. From a geometrical
point of view, data are points in an d-dimensional metric space and a classifier splits such a
metric space into regions. In a classification problem, each region is associated with a label
and all the points in such a region are classified with the corresponding label. Roughly
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speaking, the margin of the model is the minimum distance between the training data
and the decision boundary (i.e., the set of regions’ boundaries). In the literature, there are
many approaches that try to maximize such a margin (see, for instance, [7]). The concept of
margin in Neural Network is strongly influenced by its use in Support Vector Machines
(SVMs) [8]. In such way, in [9], the final softmax layer of the neural network is replaced
with a linear SVM. In [10], a way of reducing empirical margin errors was proposed,
and in [11], the discriminability of Deep Neural Networks (DNNs) features is enhanced
via an ensemble strategy.

In this paper, we explore this idea of margin between regions associated with labels
from a novel point of view. To the best of our knowledge, this is the first time where
adversarial examples are studied with techniques from Algebraic Topology. Our approach
can be summarized as follows. The starting point is a classification problem where the
data are d-dimensional vectors which are mapped onto a set of k labels with a one-hot
representation. From a topological point of view, such set of instances can be seen as
the vertices of a simplicial complex embedded in a bounded polytope in Rd (details are
given below), and the set of k one-hot labels can be endowed with the structure of a k-
dimensional simplex (in fact, k + 1 labels are considered since we add an unknown label to
the set of one-hot labels). In this way, a simplicial map between both topological structures
arises in a natural manner, since each vertex in the simplicial complex corresponds to an
instance of the dataset, and it is mapped onto the vertex of the simplex that represents the
corresponding label. The second step is to apply the extended Simplicial Approximation
Theorem [12] that allows us to provide a constructive proof of the Universal Approximation
Theorem obtaining a a neural network that classifies correctly all the instances of the dataset.
As shown in [12], all the weights of such a neural network can be computed directly from
the simplicial complexes without any kind of training processes. Finally, by considering
these ideas together with a subdivision process of the simplices, a decision boundary for the
classification problem will be computed to make the neural network robust to adversarial
attacks of a given size, since the mesh of a simplicial complex can be bounded by the
number of subdivisions and the neural network obtained is based on the simplices used in
the simplicial map.

Regarding other approaches to these ideas found in the literature, in [13], the authors
proved the existence of a two-hidden-layer neural network which can approximate any
continuous multivariable function with arbitrary precision, and, in [14], they provided a
constructive method through a numerical analysis approach. Therefore, such papers can
be seen as alternative constructive proofs to the Universal Approximation Theorem where
no adversarial examples on classification problems were considered. A related approach
that uses simplicial complexes to feed a neural network, is the concept of Simplicial Neural
Network (SNN), provided in [15], that consists of a generalization of Graph Neural Networks
(GNNs) with the property that compared to GNNs, SNNs exploit higher order relationships
between the input data due to representing the data using simplicial complexes. Let us
observe that, although having a similar name, our approach has a totally different goal.

The paper is organized as follows. In Section 2, all the basic concepts needed to
understand the rest of the paper are presented. In Section 3, we introduce the concept of
simplicial-map neural networks. Their use to build neural networks for classification tasks
robust to adversarial attacks of a given size is presented in Section 4. The paper ends with
conclusions and future works listed in Section 5.

2. Background

In this section, some of the preliminary concepts from Algebraic Topology and Neural
Networks are recalled. Several useful references for this section are [16–19]. Let us notice
that, in order to provide a bridge between Algebraic Topology and Neural Network, some
concepts need to be reinterpreted.

Firstly, let us state some basic notation. Given two integers j ≤ m, let Jj, mK := {i ∈ Z :
j ≤ i ≤ m}. Hereafter, let k > 0 be an integer and let ek

0 := (0, . . . , 0) be the origin of the
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Euclidean space Rk. Let a one-hot vector of length k be denoted as ek
i = (0,

i−1· · ·, 0, 1, 0,
k−i· · ·, 0)

with i ∈ J1, kK. Let Ek := {ek
i : i ∈ J1, kK} be the set of all the one-hot vectors of length k.

Let us observe that Ek+1 = {ek
i × 0 : i ∈ J1, kK} ∪ {ek

0 × 1} where ek
i × 0 := (0,

i−1· · ·, 0, 1, 0,
k−i· · ·

, 0, 0) = ek+1
i for i ∈ J1, kK and ek

0 × 1 := (0,
k· · ·, 0, 1) = ek+1

k+1.
Now, we recall different fundamental structures such as polytopes and simplicial

complexes. Convex polytopes can be seen as a generalization in any dimension of the
notion of polygons.

Definition 1. The convex hull of a set S ⊂ Rd, denoted by conv(S), is the smallest convex set
containing S. A convex polytope P in Rd is the convex hull of a finite set of points. Besides, the set
of vertices of a convex polytope P is the minimum set VP of points in P such that P = conv(VP ).

Accordingly, a convex polytopeP = conv(S) is a closed bounded subset of Rd, and the
set of vertices VP of a convex polytope P always exists and it is unique. A particular case
of convex polytopes are simplices. Geometrically, a simplex is a generalization of a triangle
to any dimension. For example, a 0-simplex is a point, a 1-simplex is a line segment, a 2-
simplex is a triangle, a 3-simplex is a tetrahedron, and so on. In this paper, all the considered
simplicial complexes have their vertices in the Euclidean space Rd. Nevertheless, simplicial
complexes can be defined abstractly.

Definition 2. Let us consider a finite set V whose elements will be called vertices. A simplicial
complex K consists of a finite collection of nonempty subsets (called simplices) of V such that:

1. Any subset of V with exactly one point of V is a simplex of K called 0-simplex or vertex.
2. Any nonempty subset of a simplex σ is a simplex, called a face of σ.

A simplex σ with exactly k + 1 points is called a k-simplex. We also say that the dimension
of σ is k and write dim σ = k. A maximal simplex of K is a simplex that is not face of any other
simplex in K. The dimension of K is denoted by dim K and it is the maximum dimension of its
maximal simplices. The set of vertices of a simplicial complex K will be denoted by K(0). For a vertex
v of V, the star of v is the set of simplices having v as a face and it is denoted by st v. A simplicial
complex K is pure if all its maximal simplices have the same dimension.

Let us consider a simplicial complex K whose vertices are in Rd. If a k-simplex σ
of K satisfies that it is a set of affinely independent points, then its realization |σ| is the
convex polytope |σ| = conv(σ), which is the convex hull of its k + 1 vertices. If all the
simplices of K have a realization in Rd satisfying that the intersection of two realizations is
the realization of a simplex of K, then the union of their realizations is a subspace of Rd

denoted by |K| and called the embedding of K in Rd.
Next, the definition of triangulation of a convex polytope is recalled.

Definition 3. A triangulation of a convex polytope P is a simplicial complex K such that |K| = P .

Let us recall that given a set S = {p1, . . . , pn} of points in Rd, its barycenter, denoted by
bar S, is bar S := 1

n ∑i∈J1,nK pi ∈ Rd. In particular, bar{p} = p for p ∈ Rd. The barycentric
subdivision of a simplicial complex will be the main tool to refine the neural network in the
next sections and consists of getting a new simplicial complex by splitting the simplices
in a standard way (see Figure 1). The t-th iteration of the barycentric subdivision of a
simplicial complex K will be denoted by Sdt K being Sd0 K := K. Next definition provides
a formalization of this idea.
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Figure 1. Example of a barycentric subdivision. Let V = {a, b, c} be the set of the three vertices
(in blue) of the triangle depicted on the left. Let K = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
From left to right: |K|, | Sd K|, and | Sd2 K| are shown.

Definition 4. Let K be a simplicial complex with vertices in Rd. The barycentric subdivision
Sd K is the simplicial complex defined as follows. The set (Sd K)(0) of vertices of Sd K is the set
of barycenters of all the simplices of K. The simplices of Sd K are the finite nonempty collections
of (Sd K)(0) which are totally ordered by the face relation in K. That is, any k-simplex σ of Sd K
can be written as an ordered set {w0, . . . , wk} such that wi = bar µi being µi a face of µj ∈ K for
i, j ∈ J0, kK and i < j. In particular, if σ is maximal then there exists a k-simplex {u0, . . . , uk} ∈ K
satisfying that wi = bar{u0, . . . , ui} for i ∈ J0, kK.

Let us recall the definition of the Voronoi diagram of a set of points.

Definition 5. Let S = {p1, . . . , pn} be a set of points in Rd. The Voronoi cell V(pi, S) is defined as:

V(pi, S) :=
{

x ∈ Rd : ||x− pi|| ≤ ||x− pj||, ∀pj ∈ S
}

.

Then, the Voronoi diagram of S, denoted as V(S), is the set of Voronoi cells:

V(S) :=
{
V(p1, S), . . . ,V(pn, S)

}
.

From the Voronoi diagram V(S), a particular simplicial complex, called the Delaunay
complex of S and denoted as D(S), can be constructed. Both structured can be computed
in time Θ(n log n + nd

d
2 e) (see [17], Chapter 4).

Definition 6. Given a finite set of points S = {p1, . . . , pn} in Rd and its Voronoi diagram
V(S) = {V(p1, S), . . . ,V(psn, S)}, the Delaunay complex of S can be defined as:

D(S) :=
{

ς ⊆ S : ∩p∈ςV(p, S) 6= ∅
}

.

The Delaunay complex is a well-defined concept in the sense that D(S) is always
a simplicial complex [17]. Usually, a finite set of points S ⊂ Rd is said to be in general
position when any subset of S with size at most d + 1 is a set of affinely independent points.
When the set of points S ⊂ Rd is in general position, then the embedding of the Delaunay
complex D(S) in Rd is a triangulation of P = conv(S). In Figure 2, an example of the
computation of a triangulation of a convex polytope P , being the Delaunay complex of the
set of vertices of P together with a labelled dataset lying in the interior of P , is provided.
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(a) Labelled dataset D (b) Convex polytope P (c) Simplicial complex K

Figure 2. Given a labelled dataset D, a convex polytope P containing D can be computed. Then,
the simplicial complex K can be obtained using the Delaunay triangulation of all the points of D and
the vertices of P .

Let us see now how to define maps between simplicial complexes.

Definition 7. Given two simplicial complexes K and L, a vertex map ϕ(0) : K(0) → L(0) is a
function from the vertices of K to the vertices of L such that for any simplex σ ∈ K, the set

ϕ(σ) := {v ∈ L(0) : ∃ u ∈ σ, ϕ(0)(u) = v}

is a simplex of L.

Let us observe that ϕ(u) = ϕ(0)(u) if u ∈ K(0) and the composition of vertex maps is
a vertex map. Let us see now that a vertex map ϕ(0) : K(0) → L(0) can always be extended
to a continuous function ϕc : |K| → |L| satisfying that if x = bar σ then ϕc(x) = bar ϕ(σ).

Definition 8. The simplicial map ϕc : |K| → |L| induced by the vertex map ϕ(0) : K(0) → L(0)

is a continuous function defined as follows. Let x ∈ |K|. Then,

ϕc(x) := ∑
i∈J0,kK

λi ϕ
(0)(ui),

being λi ≥ 0, for all i ∈ J0, kK, such that

∑
i∈J0,kK

λi = 1 and x = ∑
i∈J0,kK

λiui,

where σ = {u0, . . . , uk} is a simplex of K such that x ∈ |σ|.

Next, we recall one of the key ideas in this paper. Simplicial maps can be used to
approximate continuous functions as closed as desired.

Definition 9. Let K and L be simplicial complexes and g : |K| → |L| a continuous function.
A simplicial map ϕc : |K| → |L| induced by a vertex map ϕ(0) : K(0) → L(0) is a simplicial
approximation of g if

g(| st v|) ⊆ | st ϕ(v)|

for each vertex v of K.

Let us notice that | st x| is thought here as an open set of points. That is, | st x| := ∪σ∈st x
int σ.
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Theorem 1. Simplicial Approximation Theorem ([20], p. 56) If g : |K| → |L| is a continuous
function between the underlying spaces of two simplicial complexes K and L, then there is a
sufficiently large integer t > 0 such that ϕc : |SdtK| → |L| is a simplicial approximation of g.

In Figure 3, an example of a simplicial approximation is provided. Theorem 1 was
extended in [12] by introducing a bound to the distance between the continuous function
and its simplicial approximation.

Figure 3. On the top, we can see a 1-simplex with two iterated applications of the barycentric
subdivision. On the bottom, a continuous function was applied to the straight line and a simpli-
cial approximation (in red) is provided. The star condition is satisfied and no more barycentric
subdivisions are needed.

Proposition 1 (Simplicial Approximation Theorem Extension [12]). Given ε > 0 and a
continuous function g : |K| → |L| between the underlying spaces of two simplicial complexes K
and L, there exists s, t > 0 such that ϕc : | Sds K| → | Sdt L| is a simplicial approximation of g and
||g− ϕc|| ≤ ε.

Once concepts from Algebraic Topology have been stated, let us provide the definition
of neural network, and a connection between these two fields using results from [12].

Definition 10 (adapted from [19]). Given d, k > 0, a multi-layer feed-forward network defined
between spaces X ⊆ Rd and Y ⊆ Rk is a function N : X → Y composed by m + 1 functions:

N = fm+1 ◦ fm ◦ · · · ◦ f1

where the integer m > 0 is the number of hidden layers and, for i ∈ J1, m + 1K, the function
fi : Xi−1 → Xi is defined as

fi(y) := φi(W(i); y; bi)

where X0 = X, Xm+1 = Y, and Xi ⊆ Rdi for i ∈ J1, mK; d0 = d, dm+1 = k, and di > 0 being
an integer for i ∈ J1, mK (called the width of the i-th hidden layer); W(i) ∈ Mdi−1×di

being a
real-valued di−1 × di matrix (called the matrix of weights of N ); bi being a point in Rdi (called the
bias term); and φi being a function (called the activation function).

In the literature, many other definitions of neural networks are available. The field
is continuously adding new ideas and there is not a general definition which covers all
the possible approaches, but many of the problems where neural networks are applied are
based on the idea of finding a set of weights and bias where the remaining features of the
neural network (number of hidden layers, their dimension, and activation functions) are
settled at the beginning of the problem. As usual, such set of features of the neural network
beyond the weights and the bias, will be called the architecture of the neural network. A
constructive method for approximating multidimensional functions with neural networks
was provided in [12]. Such networks have two hidden layers and the weights are not
obtained by a training method, but they are determined by a given simplicial map.



Mathematics 2021, 9, 169 7 of 16

Theorem 2 (Theorem 4 of [12]). Let us consider a simplicial map ϕc : |K| → |L| between the
embedding of two finite pure simplicial complexes K and L of dimension d and k, respectively. Then
a two-hidden-layer feed-forward networkNϕ : |K| → |L| such thatNϕ(x) = ϕc(x) for all x ∈ |K|
can be explicitly defined.

The construction of the neural network given in [12] to prove Theorem 2 gives rise to
the concept of simplicial-map neural network introduced in the next section.

3. Simplicial-Map Neural Networks

The explicit construction of the neural network given in [12] is the main tool used in
this paper for computing neural networks robust to adversarial attacks. Such a concrete
construction is called simplicial-map neural network.

Definition 11. Let K and L be two finite pure simplicial complexes of dimension d and k,
respectively. Let us consider the simplicial map ϕc : |K| → |L| induced by a vertex map
ϕ(0) : K(0) → L(0). Let

{
σ1, . . . σn

}
be the maximal simplices of K, where σs =

{
us

0, . . . , us
d
}

and us
h ∈ Rd for s ∈ J1, nK and h ∈ J0, dK. Let

{
µ1, . . . , µm

}
be the maximal simplices of L,

where µj =
{

vj
0, . . . , vj

k
}

and vj
h ∈ Rk for j ∈ J1, mK and h ∈ J0, kK. The simplicial-map neural

network induced by ϕc is a two-hidden-layer feed-forward neural network denoted by Nϕ with the
following architecture:

• an input layer composed of d0 = d neurons;
• a first hidden layer composed of d1 = n(d + 1) neurons;
• a second hidden layer composed of d2 = m(k + 1) neurons; and
• an output layer with d3 = k neurons.

Then, Nϕ = f3 ◦ f2 ◦ f1 being

fi(y) = φi(W(i); y; bi), for i ∈ J1, 3K.

Firstly, W(1) =


W(1)

1
...

W(1)
n

 ∈ Mn(d+1)×d being

(
W(1)

i

∣∣ Bi

)
=

(
us

0 · · · us
d

1 · · · 1

)−1

∈ M(d+1)×(d+1)

where W(1)
i ∈ M(d+1)×d and Bi ∈ Rd+1. The bias term b1 ∈ Rn(d+1) is b1 =

B1
...

Bn

 and the

function φ1 is then defined as:

φ1(W(1); y; b1) := W(1)y + b1.

Secondly, W(2) =
(
W(2)

h,`

)
∈ Mm(k+1)×n(d+1) where

W(2)
h,` :=

{
1 if ϕ(0)(us

t) = vj
r,

0 otherwise;

being h = j(r + 1) and ` = s(t + 1) for s ∈ J1, nK; j ∈ J1, mK; t ∈ J0, dK; and r ∈ J0, kK. The bias
term b2 ∈ Rm(k+1) is null and the function φ2 is defined as:

φ2(W(2); y; b2) := W(2)y.

Thirdly, W(3) =
(

W(3)
1 · · · W(3)

m

)
∈ Mk×m(k+1) being

W(3)
j :=

(
vj

0 · · · vj
k

)
for j ∈ J1, mK,
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the bias term b3 is null, and φ3 is defined as:

φ3(W(3); y; b3) :=
∑j∈J1,`K zjψ(yj)

∑j∈J1,`K ψ(yj)

being zj := W(3)
j yj for y =

y1

...
ym

 ∈ Mm·(k+1) and

ψ(yj) :=
{

1 if all the coordinates of yj are ≥ 0,
0 otherwise.

In [12], it is proven that Nϕ(x) and ϕc(x) coincide for all x ∈ |K|.

Proposition 2 ([12]). Let K and L be two finite pure simplicial complexes of dimension d > 0
and k > 0, respectively. Let us consider the simplicial map ϕc : |K| → |L| induced by a vertex
map ϕ(0) : K(0) → L(0). Then, the simplicial-map neural network Nϕ : |K| → |L| induced by the
simplicial map ϕc satisfies that Nϕ(x) = ϕc(x) for all x ∈ |K|.

4. Classification with Simplicial-Map Neural Networks

In this section, simplicial-map neural networks are considered as tools for classification
tasks and for the study of adversarial examples. As usual, the classification problem will
consist of finding a set of weights adapted to a labelled dataset given a fixed architecture.

Definition 12. Let n, d, k > 0 be integers. A labelled dataset D is a finite set of pairs

D =
{
(pj, `j) : j ∈ J1, nK, pj ∈ Rd, `j ∈ Ek}

where, for j, h ∈ J1, nK, pj 6= ph if j 6= h, and `j represents a one-hot vector. We say that `j is the
label of pj or, equivalently, that pj belongs to the class `j. Besides, we will denote by DP the ordered
set of points 〈pj〉j.

The concept of supervised classification problem for neural networks can be defined
as follows.

Definition 13. Given a labelled dataset D ⊂ Rd ×Ek, an integer m > 0, and activation functions
φi for i ∈ J1, mK, a supervised classification problem consists of looking for the weights W(i) and
bias terms bi for i ∈ J1, mK, such that the associated neural network N : X → Y, with X ⊆ Rd,
Y ⊆ Rk and D ⊆ X×Y, satisfies:

• N (p) = ` for all (p, `) ∈ D.
• N maps x ∈ X to a vector of scores N (x) = (y1, . . . , yk) ∈ Y such that yi ∈ [0, 1] for

i ∈ J1, nK and ∑i∈J1,nK yi = 1.

If such a neural network N exists, we will say that N characterizes D, or, equivalently, that
N correctly classifies D.

Let us remark that the success of a classification model as a neural network is not
usually measured on the correct classification on the input dataset, but on the correct
classification of unseen examples, (that is, pairs not in D), collected in a test set. In this
paper, we chose such a restrictive definition since we are more interested in dealing with
the problem of the robustness of neural networks against adversarial attacks than in the
problem of overfitting. Besides, let us observe that, as usual, the scores can be interpreted
as a probability distribution over the labels.

Remark 1. It is known that some functions like the logistic sigmoid, the softmax or the softplus
satisfy the properties of a probability distribution and they are broadly applied in deep learning
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models. Our function also behaves like a probability distribution which is adequate for multiclassifi-
cation tasks.

Next, we provide the definition of some of the main concepts in this paper, the con-
fidence set TN , the classified set CN , and the decision boundary ΓN of N . The intuition
behind these concepts is that x belongs to the confidence set ofN if the outputN (x) is one
of the possible one-hot vectors. If the output is a vector where the maximum is reached
in exactly one coordinate, we say that x belongs to the classified set of N . Otherwise,
the output is a vector where the maximum is reached in two or more coordinates, i.e., the
instance has equal probability to belong to two or more output classes, then we say that x
belongs to the decision boundary of N . Let us observe that TN ⊆ CN and CN t ΓN = X.

Definition 14. Let d, k > 0 be integers. Let D ⊂ Rd ×Ek be a labelled dataset and N : X → Y
a neural network that characterizes D. Let x ∈ X, with N (x) = (y1, . . . , yk) ∈ Y. If there
exists j ∈ J1, kK such that yj > max{yi : i ∈ J1, kK, i 6= j}, then we say that x belongs to the

set Cj
N and it has label ej ∈ Ek (with probability yj). Moreover, we define CN to be the union

of the sets Cj
N for j ∈ J0, kK. Besides, when yj = 1, we say that x belong to the confidence set

TN . Finally, we say that x belongs to the decision boundary ΓN if there exists j ∈ J1, nK such that
yj = max{yi : i ∈ J1, kK, i 6= j}.

The following is a key result to define a simplicial-map neural network that character-
izes a given labelled dataset.

Proposition 3. Let d, k > 0 be integers. Let L be the simplicial complex with only one maximal
k-simplex σ = {v0, . . . , vk} with vi = ek

i × 0 for i ∈ J1, kK and v0 = ek
0 × 1. Let D ⊂ Rd × Ek

be a labelled dataset and let VP be the vertices of a convex polytope P such that DP ⊂ P . Let us
assume that DP is in general position. Let K = D(DP ∪VP ). Then, the map ϕ(0) : K(0) → L(0)

defined as follows is a vertex map:

ϕ(0)(u) :=
{

`× 0 if (u, `) ∈ D,
v0 if u ∈ VP .

Proof. L is composedof a maximal simplex. Any subset of vertices of a simplex is a simplex
by definition. Then, any map between vertices of K(0) to L(0) is a vertex map. Specifically,
ϕ(0) is a vertex map.

By abuse of notation, we will say that a point y ∈ Rk with barycentric coordinates
(y0, . . . , yk) has label j ∈ J0, kK if yj > max{yi : i ∈ J0, kK, i 6= j}. Let us notice that an
unknown label has been assigned to the vertex v0 of L.

Proposition 4. Let ϕ(0) : K(0) → L(0) be the vertex map defined in Proposition 3. Then,
the simplicial-map neural network Nϕ : |K| → |L| induced by the simplicial map ϕc character-
izes D.

Proof. By Proposition 2, the neural network Nϕ satisfies that Nϕ(x) = ϕc(x) for all x ∈
|D(DP ∪VP )|. Besides, let us observe that the Cartesian coordinates ofNϕ(x) coincide with
its barycentric coordinates. Moreover, for all x ∈ DP, Nϕ(x) = ϕ(0)(x) and, by definition,
ϕ(0)(x) = `× 0 when (x, `) ∈ D. Then, we can conclude that Nϕ characterizes D.

Again, by abuse of notation, when Nϕ is a simplicial-map neural network, we will
denote by Tϕ, Cϕ, and Γϕ, its confidence set, classified set and decision boundary, respec-
tively.

Remark 2. Firstly, let us observe that, with the assumptions of Proposition 3, if x ∈ Rd belongs
to the decision boundary Γϕ then x ∈ |σ| for some σ ∈ K satisfying that there are at least two
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vertices in σ having different labels. Moreover, x ∈ |µ| for some µ ∈ Sd K with all its vertices
in Γϕ. Secondly, if σ is a d-simplex in Sd K, then either all its vertices belong to the confidence
set Tϕ or σ = σ1 ∪ σ2 with σ1, σ2 ∈ Sd K satisfying that |σ1| ⊆ Γϕ and |σ2| ⊆ Tϕ. Finally,
if σ is a d-simplex in Sdt K for t > 0 then either all its vertices belong to the classified subset
Cj

ϕ for some j ∈ J0, kK, or σ = σ1 ∪ σ2 with σ1, σ2 ∈ Sdt K satisfying that |σ1| ⊆ Γϕ and

∅ 6= |σ| \ |σ1| ⊆ Cj
ϕ.

As the following result states, when K = D(DP ∪ VP ), we can obtain a vertex map
ϕ
(0)
t from (Sdt K)(0) to (Sdt L)(0) applying the barycentric subdivision, inducing a neural

network Nϕt that coincides with Nϕ for any integer t > 0. Figure 4 illustrates these con-
cepts.

Figure 4. Let K = D(DP ∪VP ) be the Delaunay complex of DP ∪VP where DP is the set {A, B, C}
of red and blue points, and VP are the green vertices (depicted in the center). Let L be the simplicial
complex with one maximal simplex σ = {v0 = (0, 0, 1), v1 = (0, 1, 0), v2 = (1, 0, 0)} (pictured on the
right). Let us consider the vertex map ϕ(0) that sends the blue points A, B to v1, the red point C to v2,
and the green points (labelled as unknown) to v0. Then, ϕ(0) gives rise to the simplicial map ϕc and
the simplicial-map neural network Nϕ. The decision boundary of Nϕ is pictured on the center as
the set of points in the boundary of the red, blue or green region. For example, Nϕ(D) = ( 1

3 , 1
3 , 1

3 ),
Nϕ(F) = ( 1

2 , 1
2 , 0) and Nϕ(G) = (0, 1

2 , 1
2 ). Let us consider now the barycenter subdivision of K

shown on the left and the simplicial map ωc which relates both simplicial complexes. The decision
boundary of Nϕ◦ω is the gray zone on the left picture.

Lemma 1. Let ϕ
(0)
0 := ϕ(0) be the vertex map defined in Proposition 3. For an integer t > 1

and any v ∈ (Sdt K)(0), there exists µ ∈ Sdt−1 K such that w = bar µ. Then, the map ϕ
(0)
t :

(Sdt K)(0) → (Sdt L)(0) defined as:

ϕ
(0)
t (w) := bar ϕt−1(µ)

is a vertex map inducing a neural network Nϕt that coincides with Nϕ for any integer t ≥ 0.

Proof. Let t > 0 be an integer. Let us observe that ϕ
(0)
0 is a vertex map. By induction,

let us assume that ϕ
(0)
t−1 : (Sdt−1 K)(0) → (Sdt−1 L)(0) is a vertex map. Let σ ∈ Sdt K.

By definition of barycentric subdivision, we can assume that

σ = {w0, . . . , wk} with wi = bar µi, being µi a face of µj ∈ Sdt−1 K for i, j ∈ J0, kK and i < j.

Then,
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{v ∈ Sdt L : ∃w ∈ σ, ϕ
(0)
t (w) = v} = {ϕ

(0)
t (wi) : i ∈ J0, kK} = {bar ϕt−1(µi) : i ∈ J0, kK}.

Since ϕ
(0)
t−1 is a vertex map, then ϕt−1(µi) is a simplex of Sdt−1 L and ϕt−1(µi) is a

face of ϕt−1(µj) for all i, j ∈ J0, kK with i < j, by definition of ϕt−1. Then, {bar ϕt−1(µi):
i ∈ J0, kK} is a simplex of Sdt L.

Now, let us see that Nϕt = Nϕ. By induction, let us prove that Nϕt = Nϕt−1 . Let
x ∈ |K|. Then, there exist a d-simplex µ = {w0, . . . , wd} ∈ Sdt K and a d-simplex σ =
{u0, . . . , ud} ∈ Sdt−1 K such that x ∈ |µ| ⊂ |σ| and wi = bar{u0, . . . , ui} for all i ∈ J0, dK.

Then,

Nϕt(x) = ϕc
t (x) = ∑

i∈J0,dK
λi ϕ

(0)
t (wi)

being λi ∈ [0, 1] for all i ∈ J0, dK and ∑i∈J0,dK λi = 1. Therefore,

Nϕt(x) = ∑
i∈J0,dK

λi ∑
j∈J0,iK

1
i + 1

ϕ
(0)
t (uj) = ∑

i∈J0,dK
λ′i ϕ

(0)
t (ui)

being λ′i = ∑j∈Ji,dK
λj

j+1 . Let us observe that

∑
i∈J0,dK

λ′i = ∑
i∈J0,dK

(i + 1)
λi

i + 1
= ∑

i∈J0,dK
λi = 1.

Now, let us observe that

λ′i = ∑
j∈Ji,dK

λj

j + 1
≥ 0 and ∑

j∈Ji,dK

λj

j + 1
≤ 1

i + 1 ∑
j∈Ji,dK

λj ≤
1

i + 1
≤ 1,

for all i ∈ J0, dK. Then, for all x ∈ |K|,

Nϕt(x) = ∑
i∈J0,dK

λ′i ϕ
(0)
t (ui) = Nϕt−1(x),

with λ′i ∈ [0, 1] for all i ∈ J0, dK and ∑i∈J0,dK λ′i = 1, concluding the proof.

Computing Simplicial-Map Neural Networks Robust to Adversarial Attacks

In this subsection, the main result of the paper is provided. It states that we can always
compute a neural network characterizing a given labelled dataset, and being robust to
adversarial attacks of a given size. Firstly, let us define the concepts of adversarial example
and robustness of neural networks against adversarial attacks. Some interesting references
on these concepts are [21,22].

Definition 15. Let d, k > 0 be integers. Let D ⊂ Rd × Ek be a labelled dataset and N a neural
network that characterizes D. Let B(r) = {α ∈ Rd: ||α|| ≤ r} being || · || a norm on Rd. Let us
suppose that x ∈ Rd has label `. Then, an adversarial example of size r is defined as x′ = x + α
with α ∈ B(r) such that x′ has label `′ with `′ 6= `. A neural network is called robust to adversarial
attacks of size r if no labelled point x ∈ Rd has an adversarial example of size r.

Proposition 5. With the assumptions of Proposition 4, we have thatNϕ is not robust to adversarial
attacks of size r for 0 < r < d(Tϕ, Γϕ).

Proof. By Remark 2, consider σ ∈ K such that there exist v and w being two vertices of
σ with different labels. Let z = bar{v, w}. Then z is in the decision boundary of |K| and
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{v, z}, {z, w} are edges of Sd K. Let x = (1− a)z + av where a = r
2d(z,v) . Then x has the

same label as v and d(x, z) = r
2 . Let x′ = (1− a′)z + a′w where a′ = r

2d(z,w)
. Then x′ has

the same label as w and d(z, x′) = r
2 . Then, d(x, x′) = d(x, z) + d(z, x′) = r concluding that

x′ is an adversarial example of size r and 0 < r < d(Tϕ, Γϕ).

Example 1. Let d = k = 2. Let us consider the labelled dataset D = {
(

A = (4, 8), (0, 1, 0)
)
,(

B = (8, 4), (1, 0, 0)
)
} and the convex polytope P with vertices {C = (5, 10), D = (0, 0),

E = (15, 0)}. Then, K = D(DP ∪VP ) is composed by five maximal 2-simplices and L by just one
maximal 2-simplex. This way, Sd K and Sd L are composed by the maximal 2-simplices showed
in Figure 5. Let x = (6− a, 6 + a) ∈ |K|, with a ∈ (0, 2], be in the geometric realization of the
segment with endpoints {(4, 8), (8, 4)}. Then, ϕc(x) = (c, d, 0) with 0 ≤ c < 1

2 and 1
2 < d ≤ 1.

Therefore, x is classified as (0, 1, 0) with probability d. Take z = (6, 6). Then, z belongs to the
decision boundary since ϕc(z) = ( 1

2 , 1
2 , 0). Take x′ = (6 + a, 6− a). Then, ϕc(x) = (c′, d′, 0)

with 1
2 < c′ ≤ 1 and 0 ≤ d′ < 1

2 . Therefore, x′ is classified as (1, 0, 0) with probability d′.
Since d(x, z) = a

√
2 = d(x′, z) and a ∈ (0, 2], then Nϕ is not robust to adversarial attacks

of any size r with 0 < r ≤ 4
√

2. See Figure 5.

Figure 5. An adversarial example x for the simplicial-map neural network Nϕ : |K| → |L|.

Let us now introduce the main result of this paper stating that there exists a two-
hidden-layer neural network characterizing a given labelled dataset and being robust to
adversarial attacks of size r > 0 for r being small enough. In order to define such a neural
network robust to adversarial examples, we will construct a continuous function from
|K| to |K| with the idea of later applying the Simplicial Approximation Theorem and the
composition of simplicial maps to obtain a simplicial map from |K| to |L| that will give rise
to a neural network robust to adversarial attacks of a given size r > 0. Let us observe that,
to be able to compute such a robust neural network, the size r should be smaller than the
distance between the decision boundary and the confidence set.

Theorem 3. Let n, d, k > 0 be integers. Let D = {(pj, `j): j ∈ J1, nK, pj ∈ Rd, `j ∈ Ek} be a
labelled dataset. Then, there exists a two-hidden-layer neural network N characterizing D and
robust to adversarial attacks of size r > 0, for r being small enough.

Proof. Let us consider a convex polytope P such that the points of DP are inside P . Then,
we can compute the Delaunay complex D(DP ∪VP ) that will be denoted simply by K (see
Figure 4), and a simplicial complex L composed of just one maximal k-simplex. As claimed
in Proposition 4, a simplicial map ϕc can be defined between |K| and |L| giving rise to a
neural network Nϕ that characterizes D (see Proposition 2). However, Nϕ is not robust to
adversarial attacks (see Proposition 5). Our goal is to define a new simplicial map such
that its associated simplicial-map neural network is robust to adversarial attacks. To reach
that aim, we need r to be small enough, that is, 0 < r < d(Tϕ, Γϕ), where d(Tϕ, Γϕ) =
min{d(p, q) : p ∈ Tϕ, q ∈ Γϕ}, so adversarial attacks will be placed between the confidence
set Tϕ and the decision boundary Γϕ. Then, a continuous function g : | Sd K| → | Sd K|



Mathematics 2021, 9, 169 13 of 16

will be defined depending on such r, to later apply the Simplicial Approximation Theorem
Extension (Proposition 1), obtaining a simplicial approximation ωc : Sds K → Sdt K of g
as close to g as desired. Then, ϕc

t ◦ωc : |K| → |L| will be a simplicial map giving rise to a
simplicial-map neural network Nϕt◦ω robust to adversarial attacks of size r.

Let us define now the continuous function g : | Sd K| → | Sd K|. Let σ = {u0, . . . , ud}
be a d-simplex of Sd K. Let us observe that, by Remark 2, the vertices of σ satisfy the
following property:

• All the vertices of σ are in Tϕ. Then, |σ| ⊆ Tϕ.
• Otherwise, σ = σ1 ∪ σ2 being ∅ 6= |σ1| ⊆ Γϕ and ∅ 6= |σ2| ⊆ Tϕ.

In the latter case, let us define the continuous function g : |σ| → |σ| as follows.
Without loss of generality, let us assume that σ1 = {u0, . . . , uh} with h ∈ J0, dK.

Let us compute the set of points of |σ| at distance less than r to |σ1| and let us send,
by g, such points to points in |σ1|.

Let x be a point of |σ| with barycentric coordinates (x0, . . . , xd) with respect to σ.
Let λ = ∑i∈J0,hK xi.
Let z1 ∈ Rd be the projection of x in |σ1| whose barycentric coordinates with respect

to σ are:

(z0, . . . , zh, 0, . . . , 0), where zi =
xi
λ for i ∈ J0, hK.

Let z2 be the point in |σ2| with barycentric coordinates (0, . . . , 0, zh+1, . . . , zd) with
respect to σ, aligned with x and z1. Then,

xi−zi
xi

=
xj

xj−zj
for i ∈ J0, hK and j ∈ Jh + 1, dK.

So, zj =
xj

1−λ for j ∈ Jh + 1, dK.
Now, x = (1− a)z1 + az2 for a ∈ [0, 1].
Then, d(x, σ1) ≤ d(x, z1) = a · d(z1, z2).
Let ε = r

d(z1,z2)
. Then, d(x, σ1) ≤ r if a ≤ ε. Then,

g(x) :=

{
z1 if a ∈ [0, ε],
(1− a′)z1 + a′z2 if a ∈ [ε, 1] with a′ = a−ε

1−ε .

Let us observe that a′ ∈ [0, 1] and for a = ε, we have that a′ = 0 so (1− a′)z1 + a′z2 = z1.
Besides, for a = 1, we have that a′ = 1 so (1− a′)z1 + a′z2 = z2.
Let us prove that g is continuous at any point x ∈ |K|.
Let us observe that, by construction, g is continuous in the interior of |σ| of every

d-simplex σ ∈ Sd K.
Let x be a point in |σ ∩ µ| for some d-simplices σ, µ ∈ Sd K.
Let σ = σ1 ∪ σ2 and µ = µ1 ∪ µ2 with |σ1|, |µ1| ⊆ Γϕ and |σ2|, |µ2| ⊆ Tϕ. Let γ ∈ Sd K

be the simplex with lower dimension such that x ∈ |γ|. Then, by definition of simplicial
complex, γ ⊆ σ ∩ µ and the barycentric coordinates of x with respect to σ and µ coincide.

By Remark 2, we have to consider two cases:

(1) All the vertices of γ belong to Tϕ. Then γ ⊆ σ2 ∩ µ2 and g(x) = x.
(2) γ = γ1 ∪ γ2 with |γ1| ⊆ Γϕ and |γ2| ⊆ Tϕ. Then γ1 ⊆ σ1 ∩ µ1 and γ2 ⊆ σ2 ∩ µ2 so

the definition of g(x) with respect to σ and µ coincides.

Now, by Proposition 1, given r1 > 0, there exist s, t > 0 and a simplicial map ωc :
| Sds K| → | Sdt K| such that ||g− ωc|| < r1. By Lemma 1, ϕ

(0)
t : (Sdt K)(0) → (Sdt L)(0)

is a vertex map. Since the composition of simplicial maps is a simplicial map, then
ϕc

t ◦ωc : | Sds K| → | Sdt L| is a simplicial map, concluding that Nϕt◦ω is a simplicial-map
neural network.

Let us prove now that Nϕt◦ω is robust to adversarial attacks of size r. First of all,
the following properties holds:
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(1) If x ∈ Cj
ϕt◦ω then ωc(x) ∈ Cj

ϕt , being j ∈ J0, kK.

(2) Let v ∈ (Sdt K)(0) and z ∈ | st v|. If v ∈ Cj
ϕt then z ∈ Cj

ϕt , being j ∈ J0, kK.
Since z ∈ | st v| then z ∈ |σ| for a d-simplex σ ∈ Sdt K with v ∈ σ. Then, by Remark 2,
σ = σ1 ∪ σ2, with σ1 ∈ Γϕt and σ2 ∈ Cj

ϕt . Besides, since v ∈ σ2 then z 6∈ |σ1|, therefore

z ∈ |σ| \ |σ1 ⊆ Cj
ϕt .

(3) If x ∈ Cj
ϕt◦ω then g(x) ∈ Cj

ϕt , being j ∈ J0, kK.

If x ∈ Cj
ϕt◦ω then there exists v ∈ Cj

ϕt◦ω such that x ∈ | st v|. Then, ω(v) ∈ Cj
ϕt by (0).

Now, since g(| st v|) ⊆ | st ω(v)|, then g(x) ∈ Cj
ϕt by (1).

(4) Let x ∈ | Sds K|. If g(x) ∈ Γϕt then x ∈ Γϕt◦ω.

By contradiction, let us assume that g(x) ∈ Γϕt and x ∈ Cj
ϕt◦ω for some j ∈ J0, kK.

Then, g(x) ∈ Cj
ϕt by (2), leading to a contradiction.

(5) Let x ∈ | Sds K|. If g(x) ∈ Cj
ϕt with probability yj and x ∈ Cj′

ϕt◦ω then j = j′ and
|yj − y′j| < r1. This last statement is a consequence of (2) and that ||g−ωc|| < r1.

Now, let x ∈ Cj
ϕt◦ω being j ∈ J0, kK. Let α ∈ Rd with ||α|| < r and let x′ := x + α. Let

us prove that x′ ∈ Γϕt◦ω or x′ ∈ Cj
ϕt◦ω.

On one hand, if g(x′) ∈ Γϕt then x′ ∈ Γϕt◦ω by (4). On the other hand, if g(x′) ∈ Cj
ϕt

then x′ ∈ Cj
ϕt◦ω or x′ ∈ Γϕt◦ω by (3), concluding the proof.

Example 2. Let us consider a labelled dataset D = {(p, 1)} with p ∈ R composed of just one
point. Let P be a segment with endpoints p1 and p2 in R such that p1 < p < p2. Let r ∈ R such
that 0 < r < min{|p1 − p|, |p2 − p|}. Let K be the Delaunay complex of {p, p1, p2} that consists
of just the two maximal simplices {p, p1} and {p, p2}. Let L be a simplicial complex composed by a
maximal 1-simplex with endpoints v0 = (0, 1) and v1 = (1, 0). Then, a simplicial map ϕc can be
defined as in Proposition 3 together with a neural network Nϕ as in Proposition 4. However, Nϕ

is not robust to attacks of size r as it has been proved in Proposition 5. Then, following the proof
of Theorem 3, in Figure 6, we have computed barycentric subdivisions on K until we approximate
g by the simplicial map ωc : | Sd3 K| → | Sd2 K|. Finally, the neural network induced by the
composition ϕc

2 ◦ωc is robust to adversarial attacks of size r.

Figure 6. Three simplicial complexes with simplicial maps ωc and ϕc
2 between them are shown

illustrating a neural network Nϕ2◦ω robust to adversarial attacks of size r.

5. Conclusions and Future Work

Neural networks are one of the most promising tools in artificial intelligence and,
currently, with the big success on real-world problem of Deep Learning architectures, it has
become one of the most widely used. From a mathematical point of view, neural network
can be seen as the composition of a big amount of simple functions, mainly from linear
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algebra, and the so-called activation functions. Since the efficiency of such neural networks
depends of the choice of an appropriate set of parameters, most of the efforts in the study of
such networks has been focused on optimization techniques. After a first wave of research
based on these optimization techniques, many researchers are considering the study of
neural networks by using different mathematical techniques as analysis, geometry or, as in
this paper, algebraic topology.

Specifically, in this paper, we have presented a family of neural networks, called
simplicial-map neural networks, that are robust to adversarial examples. The main con-
tribution of the paper is a constructive proof that shows how to define a neural network
robust to adversarial attacks of a given size. This result is proven thanks to the connection
of neural networks with concepts from Algebraic Topology. By endowing the set of in-
stances of a classification problem with the structure of simplicial complex and considering
the set of one-hot labels as a simplex, provides a new point of view that allows to find
the exact values of the weights of the associated network without any kind of training or
optimization process.

Finally, we plan to provide an implementation of our methods that takes into account
the efficiency issues that arise in creating neural networks following our approach. We
believe that this point of view opens a new bridge between Neural Network and Alge-
braic Topology which can lead to a fruitful flow of concepts, problems and solutions in
both directions.

Author Contributions: Conceptualization, R.G.-D., M.A.G.-N., J.H. and E.P.-H.; methodology,
R.G.-D., M.A.G.-N., J.H. and E.P.-H.; formal analysis, R.G.-D., M.A.G.-N., J.H. and E.P.-H.; investiga-
tion, R.G.-D., M.A.G.-N., J.H. and E.P.-H.; writing—original draft preparation, R.G.-D., M.A.G.-N.,
J.H. and E.P.-H.; writing—review and editing, R.G.-D., M.A.G.-N., J.H. and E.P.-H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by MICINN, FEDER/UE under grant PID2019-107339GB-100.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.

arXiv 2013, arXiv:cs.CV/1312.6199.
2. Fezza, S.A.; Bakhti, Y.; Hamidouche, W.; Déforges, O. Perceptual Evaluation of Adversarial Attacks for CNN-based Image

Classification. In Proceedings of the Eleventh International Conference on Quality of Multimedia Experience (QoMEX),
Berlin, Germany, 5–7 June 2019; pp. 1–6. [CrossRef]

3. Garg, S.; Ramakrishnan, G. BAE: BERT-based Adversarial Examples for Text Classification. arXiv 2020, arXiv:cs.CL/2004.01970.
4. Karim, F.; Majumdar, S.; Darabi, H. Adversarial Attacks on Time Series. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 1. [CrossRef]

[PubMed]
5. Christakopoulou, K.; Banerjee, A. Adversarial Attacks on an Oblivious Recommender. In Proceedings of the 13th ACM

Conference on Recommender Systems, Association for Computing Machinery, Copenhagen, Denmark, 20 September 2019;
pp. 322–330. [CrossRef]

6. Xu, H.; Ma, Y.; Liu, H.; Deb, D.; Liu, H.; Tang, J.; Jain, A.K. Adversarial Attacks and Defenses in Images, Graphs and Text: A
Review. Int. J. Autom. Comput. 2020, 17, 151–178. [CrossRef]

7. Yan, Z.; Guo, Y.; Zhang, C. Adversarial Margin Maximization Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 1. [CrossRef]
[PubMed]

8. Cortes, C.; Vapnik, V. Support Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
9. Tang, Y. Deep Learning using Linear Support Vector Machines. arXiv 2013, arXiv:cs.LG/1306.0239.
10. Sun, S.; Chen, W.; Wang, L.; Liu, X.; Liu, T. On the Depth of Deep Neural Networks: A Theoretical View. In Proceedings of the

Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Schuurmans, D., Wellman, M.P.,
Eds.; AAAI Press: Palo Alto, CA, USA, 2016; pp. 2066–2072.

11. Wang, X.; Zhang, S.; Lei, Z.; Liu, S.; Guo, X.; Li, S.Z. Ensemble Soft-Margin Softmax Loss for Image Classification.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, Stockholm, Sweden, 13–19 July 2018;
AAAI Press: Palo Alto, CA, USA, 2018; pp. 992–998.

http://doi.org/10.1109/QoMEX.2019.8743213
http://dx.doi.org/10.1109/TPAMI.2020.2986319
http://www.ncbi.nlm.nih.gov/pubmed/32286957
http://dx.doi.org/10.1145/3298689.3347031
http://dx.doi.org/10.1007/s11633-019-1211-x
http://dx.doi.org/10.1109/TPAMI.2019.2948348
http://www.ncbi.nlm.nih.gov/pubmed/31634825
http://dx.doi.org/10.1007/BF00994018


Mathematics 2021, 9, 169 16 of 16

12. Paluzo-Hidalgo, E.; Gonzalez-Diaz, R.; Gutiérrez-Naranjo, M.A. Two-hidden-layer feed-forward networks are universal
approximators: A constructive approach. Neural Netw. 2020, 131, 29–36. [CrossRef] [PubMed]

13. Ismailov, V.E. On the approximation by neural networks with bounded number of neurons in hidden layers. J. Math. Anal. Appl.
2014, 417, 963–969. [CrossRef]

14. Guliyev, N.J.; Ismailov, V.E. Approximation capability of two hidden layer feedforward neural networks with fixed weights.
Neurocomputing 2018, 316, 262–269. [CrossRef]

15. Ebli, S.; Defferrard, M.; Spreemann, G. Simplicial Neural Networks. arXiv 2020, arXiv:cs.LG/2010.03633.
16. Spanier, E.H. Algebraic Topology; Springer: New York, NY, USA, 1995.
17. Boissonnat, J.D.; Chazal, F.; Yvinec, M. Geometric and Topological Inference; Cambridge Texts in Applied Mathematics; Cambridge

University Press: Cambridge, UK, 2018. [CrossRef]
18. Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S.N.; Kendall, D.G. Definitions and Basic Properties of Voronoi Diagrams. In Spatial

Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed.; John Wiley & Sons: Chichester, UK, 2000; pp. 43–112. [CrossRef]
19. Hornik, K. Approximation Capabilities of Multilayer Feedforward Networks. Neural Netw. 1991, 4, 251–257. [CrossRef]
20. Edelsbrunner, H.; Harer, J. Computational Topology—An Introduction; American Mathematical Society: Providence, RI, USA, 2010;

pp. 1–241.
21. Lecuyer, M.; Atlidakis, V.; Geambasu, R.; Hsu, D.; Jana, S. Certified Robustness to Adversarial Examples with Differential Privacy.

In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–19 May 2019; pp. 656–672.
[CrossRef]

22. Yuan, X.; He, P.; Zhu, Q.; Li, X. Adversarial Examples: Attacks and Defenses for Deep Learning. IEEE Trans. Neural Netw. Learn. Syst.
2019, 30, 2805–2824. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.neunet.2020.07.021
http://www.ncbi.nlm.nih.gov/pubmed/32739651
http://dx.doi.org/10.1016/j.jmaa.2014.03.092
http://dx.doi.org/10.1016/j.neucom.2018.07.075
http://dx.doi.org/10.1017/9781108297806
http://dx.doi.org/10.1002/9780470317013.ch2
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1109/SP.2019.00044
http://dx.doi.org/10.1109/TNNLS.2018.2886017
http://www.ncbi.nlm.nih.gov/pubmed/30640631

	Introduction
	Background
	Simplicial-Map Neural Networks
	Classification with Simplicial-Map Neural Networks
	Conclusions and Future Work
	References

