A DUAL-TYPE PROBLEM TO CHRISTOFFEL FUNCTION
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ABSTRACT. We study a dual-type problem to generalized Christoffel
function. The solution is connected with other extremal problems in
the H? space of analytic functions on the unit circle considered by Mac-
intyre, Rogosinski and Shapiro.

1. INTRODUCTION AND MAIN RESULTS

Let 1 be a finite positive Borel measure on the unit circle T with infinitely
many points in its support. The LP(u)- Christoffel function is defined as

Anp(p; Q) = f{(|Q[]}) + Q €T1,,Q(¢) =1}, 1< p < oo,

where ( is a complex number, II,, stands for the set of polynomials of degree
at most n, and ||Q||, = ([ |Q[P du)/P. Christoffel functions have been useful
for establishing Bernstein and Nikolskii inequalities, in estimating quadra-
ture sums, and in studying convergence of Lagrange interpolation and or-
thogonal expansions [14] [I7, I§]. These functions also play an important
role in random matrix theory (see [5]). The extremal kernel for Christoffel
functions in L is used for extensions of the conjugate gradient method for
solving linear systems with certain symmetric form (see [9]). For the history
of Christoffel functions, we refer the reader to [I3] [17, [I8] 22].

In this paper, we study the distances of certain varieties to the origin
in LP(u), with 1 < p < oo. These are dual-type problems to Christoffel
functions, and they also link with extremal problems in HP. Our results are
connected with extremal problems in H? for 1 < p < oo studied by Macin-
tyre, Rogosinski and Shapiro (see [0 [16] 20], and the references therein).

From now on, we denote by ¢ the conjugate exponent to p € [1, 0] (i.e.,
g=1lifp=o00,g=ocif p=1,and 1/p+ 1/q = 1 otherwise). Let

Vgl €)= {7 € L960) s [ QFdn=Q(Q), for every Q e 11, ).

It is a non-empty set, and has the structure of a variety in L9(u) (see the
beginning of Section . Let

(1) Qng(p, €) s= mf{[| I = f € Vaglps O},
for 1 < ¢ < co. We define Q,, 1 (1, () as the infimum of the norms || - ||;.
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Theorem 1.1. If 1 <p < oo and |(| =1, then

1
g, Q) = Mo (1.0

Now, assume that p is the normalized Lebesgue measure in the unit circle
T, which we will denote by m. In this case, we connect €2, ,(m,() (and
therefore A, ,(m, ¢)) with the following extremal problems:

I+z+--+2" dz
o= {| [ AL g s e, -1,
iz
JANS ::mf{H g +9(2) . : ge[—[q}7

where, as usual, H? stands for the Hardy space of analytic function in the
unit disc with bounded means of order p. If f(z) = >3 arz® € HP, by
the Cauchy integral formula we have

L+z+4- 42" dz <
[T e

These extremal problems were considered by Landau, Schur, Macintyre,
Rogosinski, Shapiro and other authors (see [20] and mainly |6, Chapter 8],
and the references therein). For p = oo, in ;o the supremum is taken
on C N H*, the algebra of analytic functions in the unit disc which are
continuous on the closed unit disc. The extremal problem Aj o in H?(u) is
associated with the asymptotic behavior of certain Toeplitz determinants or
the leading coefficients of orthonormal polynomials with respect to p (see,
for example, [21, Theorem 2.7.15]).

Theorem 1.2. If |¢| = 1, then Q,1(m, () < dpoo, and Qy (M, ) < 0hp,
forl <p< .

It is easy to see that d,, ) is a monotonically increasing sequence on n. Its
asymptotic behavior has been studied for p = 1 and p = co. We refer the
reader to Egervéry [7] for p = 1. This is a particular case of Carathéodory-
Fejér problem (see [1, Appendix §D]). For p = oo, see Landau [12, §2]. If
1 < p < o0, it is straightforward to verify (see Proposition that

) 1)
0 < liminf =22 < limsup —22
n—00 nl/p Nn—00 nl/p

< 00.

The paper is organized as follows. In Section [2| we prove Theorem [1.1
and show that the variety V, 4(u, () has an element of minimal norm. This
element is unique if 1 < ¢ < co. Section [3|contains the proof of Theorem
and remarks on other extremal problems for the Lebesgue measure.

2. MINIMAL NORM IN A VARIETY

In this section we prove Theorem and give some properties of V,, 4(x, ¢)
and Qy, 4(¢, ). Mainly, the infimum that defines 2, 4(4, ) is indeed a mini-
mum, and it is attained at a unique function in V;, 4(p, ¢) (see Proposition
below). We also obtain some characterizations of this minimal function.
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Let us start by showing that the set V;, 4(u, ¢) has the structure of a vari-
ety. Denote by {¢r : £ =0,1,...} the sequence of orthonormal polynomials
with respect to p with positive leading coefficients. The reproducing kernel

for w is the function Ky (w,2) = 377 @;(w)p;(2). Notice that Ky ((,) is
an element in Vj, 4(u, ¢). Let

Wiq(p) := {f € Li(p) : /Qfdu =0, for every Q € Hn} .

It is a subspace of L9(p). Therefore, V,, ,(p1, ¢) is a variety in L9(p) that can
be written as
anp(:uv C) = Kn(§) ) + Wn,q(,“)-
For the proof of Theorem [I.I] we make use of the following lemma. Let

(€)= sup{|QUOP : Q € I, [|Qll, = 1}.
Lemma 2.1. If 1 < p < oo, then there exists a function fy in V, 4(u, Q)
such that || foll = Anp(1, €)-

Proof. Let A be the point evaluation functional A(Q) = Q((), acting on
IT,,. If we consider the LP(y)—norm in II,, then A is a continuous linear

~

functional with ||A||” = Xy, p(1, ¢). By the Hahn-Banach theorem, A can be

~

extended to a linear functional A on HP(u) with the same norm. Recall that
HP(u) spaces are the LP(u)—closure of the linear space of all polynomials
(see [3] and [8, Sec. V.3]). By the Riesz duality theorem for LP(u), there

is a unique fo € L9(p) such that A(h) = [ h fodp, for every h € HP(u),

and ||A|| = | follg- It is clear that fy € Vj, 4(p, (). Therefore the statement
follows joining the equalities of norms obtained. O

It is well-known (and very easy to check from definitions) that

(2) )\n,p(#, ()= ma

Proof of Theorem[1.1. As a consequence of Lemma notice that ,, 4(u, ¢)

is bounded above by /)\\n,p(u, ¢). Holder’s inequality gives that |Q(C)] <
1Qllpllgllq for any g in V;, 4(, ¢) and any Q in IT,,. Then Q,, 4(p, ¢) is bounded

below by Ay, p(p, (). Hence, using , the statement follows. O

1 <p< oo

Now we focus on the study of the variety V}, 4(1, ¢).
Proposition 2.2. If1 < p < oo, then

Qn g1, ¢) = min{|[| f[|7 : f € Vo g(p, O}

Moreover, if 1 < p < oo, this minimum is attained at a unique function in
Vg, Q). If p =1 and p is absolutely continuous with respect to Lebesgue
measure, then this minimum is also unique.

Proof. As an immediate consequence of Theorem|[I.1]and Lemma[2.1] we ob-
tain the existence of the minimum in Proposition Indeed, it is attained
for the function fy given in Lemma If 1 < p < o0, the space LP(u) is a
strictly convex. Since Vj, ,(1, () is a closed variety on it, the uniqueness in
Proposition follows for this case. Our proof of the uniqueness for p = 1
relies on the next fact, valid for any p in [1, 00).
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Claim. There exists a unique polynomial Qx in II,, such that

~

[Qxllp = 1, Qx(¢() >0, and Qx(¢)P = Mup(p, Q).

Indeed, there exists a unique polynomial P in II, such that P(¢) = 1
and ||P||h = Anp(p, ¢). The existence can be easily proved by compactness
arguments (see [I7, p. 106]). The uniqueness of this polynomial follows for
p > 1 from the strict convexity of the space LP; for p = 1, see, for example,
[11]. Take Q4(z) = aP(2)/||P||p for an appropriate « in the unit circle to
complete the proof of the claim.

Now, let p =1, and let g be any function in V}, o (x, ¢) such that

9llco = f{|[flloo = f € Vioo(1t,¢)} = Qoo (115 €).
Take Q4 as in the claim. That is, Q4 is a polynomial in II, such that

Q4] = 1, and Q4 (¢) = [|gllec- Since g € Vi o(p1,¢) and Qg € Iy, we
have

/ Qugdp = Qu(C) = llgllooll Q.

Thus, equality holds for Holder’s inequality in L*(p)— L (u)—norm. There-
fore, if u is absolutely continuous, we obtain that

(3) g = gl sign (@), m—a.e.
Recall that the sign function is defined as sign(z) = z/|z| if z # 0, and

sign (0) = 0. This shows the uniqueness of the function g (since the right
hand side above is fixed), and the proof of Proposition is complete. [

Remark 2.3. Notice that gives an explicit formula, in terms of the
polynomial @4, for the unique element in V;, o (p, ¢) with minimal norm.

In the following result, we connect Q% with the unique element in V;, 4(x, ¢)
with minimal norm, for 1 < g < co.

Proposition 2.4. Let 1 < p < oo and let fo be the element of V,, 4(u, ()
with minimal norm. Then

(4) 1foll§lQu ()P = [fo)|?, 1 — ae.
Moreover,
(5) Qu(t)fo(t) >0 p—ae.

Proof. By definitions of ()% and fo, and Lemma we have [ Q#% du =
Q4(C) = |l follg- Holder’s inequality gives that [[|Qufoldu < | follg- There-
fore [Qufodu = [|Q4foldp. This implies (F]). Moreover, since we have
obtained the equality in Holder’s inequality, this means that there exist
constants « and [, which depend on n and p but not on ¢, such that
a|lQu(t)[P = B|fo(t)]?, p-almost every t in the support of p. Integrating
both sides of this equality, we get that o = 3 || f0||g. Hence follows. O

In the next proposition, we give a characterization of the element of min-
imal norm in V;, 4(p, ¢), for 1 < ¢ < oo.

Proposition 2.5. Let f be a function in Vy4(1,C), and let 1 < g < oo.
The following statements are equivalent.

(i) f has minimal norm among the elements of Vi, ¢(1,C).
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(ii) [[fllq = inf{[|Kn(C,-) —gllq : 9 € Whq(p)}-
(ili) For any g € Wi q(p),

/T g(O1F(1)P~ sign (F(t)) du(t) = 0.

Proof. Since VTMJ(:U’ ¢) = Kun(¢,") + Wn,q(:u)> we have

Qg ¢) = LK (S, ) = gllg 2 9 € Whg(w)},
which implies the equivalence between (i) and (ii). Since K, ((,-) and f be-

long to V;, 4(1t, (), we obtain that K, (,-) — f belongs to W, 4(). Therefore
the equivalence between (ii) and (iii) follows using [23, Theorem 1.11]. O

Propositions [2.4] and suggest the study of the zeros of Q4. This is
done in the next result. Given a polynomial P of degree n, we denote by
P* the polynomial P*(z) = 2" P(1/z).

Proposition 2.6. If [(| =1, then Q% = ("Qu. In particular, the zeros of
Q4 are symmetric with respect to the unit circle.

Moreover, if ( = 1, then Q4 has real coefficients, and its zeros are further
symmetric with respect to the real line.

Proof. Obviously, @7, has degree n and C‘”Q;&({) = Qx(¢) = Qx(¢), be-
cause Qx(C) > 0. Since [(T"Q%(2)| = |@4(2)| for every z in the unit circle,
17" Q%lp = [|Q4llp- Using the uniqueness of Qy, we have (T"Q} = Q.
Now consider the case { = 1. Let P be the polynomial whose coefficients
are the conjugate coefficients of Q4. Then P has degree n and P(1) =
Qx(1). Since |P(2)| = |Q«(2)| for every z in the unit circle, || P||, = ||Qllp-
Using the uniqueness of ) again, we have P = Q4. O

3. EXTREMAL PROBLEM IN THE UNIT CIRCLE

In this section, we consider p as the normalized Lebesgue measure in the
unit circle, and we denote it by m. In other words,

IR 1 [ f(»)
d = — Ndt = — | =22 dz.
LG = o [ petar = o [ £
We shall prove Theorem and its consequences. To this end, consider the
extremal problem

. l+z+---42" g(1/z)
Y, 4 = inf {H s, + f(z) + )

p

:f,geH"},

q

for 1 < ¢ < oo. If ¢ = 1, we define Y,,; as the infimum of norms ||-[|; as
above. Notice that taking g = 0 in the definition of Y, ,, the following result
is trivial.

Proposition 3.1. If 1 < q < oo, then Y, , is bounded above by AL .. If
q =1, then Y, 1 is bounded above by Ay ;.

Remark 3.2. Observe that 1,2 = A%Q = n + 1, since for p = 2 the
trigonometric system is orthonormal.

Lemma 3.3. For 1 < ¢ < oo we have Qyp q(m, () =T, 4.
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Proof. For the Lebesgue measure m the reproducing kernel is given by
Kn(C,2) = 327_o(C2)?. Note that

Vg(m, €) = Kn(C,2) + {z"+1g<z> MLCLI H} |

Indeed, if 1 < ¢ < oo, this follows from the convergence of Fourier series
in LI(m). If ¢ = 1, the statement follows from the density of trigonometric
polynomials in L!(m).

Setting w = (z, we have

h(1 S h(1
Koty + 510+ P 97wt (cuiglen) + L)
z q = Cw
q
h(1/(Cw))

— n+1

= ||kn(w) +¢"g(Cw) + Tt )
where k,(2) = (1 4+ 2+ ---+ 2")/2"TL. This equality immediately gives the
desired result. O
Proof of Theorem[1.2 In [0, Theorem 8.1] is given the duality relation
(6) 5”71’ = Aan'

Now Theorem follows from Lemma Proposition and @ U

For historical remarks on the extremal problems @, we refer the reader
to the notes at the end of Chapter 8 of [6].
Let us observe now a connection between T, , and the extremal problem

@n,qunf{Hl"‘Z‘f‘"'-l-Z”+f(z)+f(1/z)

sn+l1 Zn—i—?

p

:fqu} 1<g< o0
q

If ¢ =1, we define ©,,; as the infimum of norms ||-||; as above.

Proposition 3.4. 1, , = 0,,,.

L we obtain

Proof. Changing z by 2z~
_ Zn+2 (k:n(z) + f(l/z) +g(2)>

‘ 9(1/2)
:

n+2
Therefore, g(z) = f(z) for the optimal function O

Ba2) + £(2) + i

bal2) + 2002 4 g(2)

q q

q

Remark 3.5. We have shown the following:
1

An,p (m, Q)

The asymptotic behavior of the Chritoffel functions A, ; is a cornerstone in
many application as it was said in the introduction. Let us state a beautiful
result of this type obtained by Levin and Lubinsky [15]. Let

&=t { [ ifPas ez -1,

—00

- Qn’q(m’ ()= Tng=6ng< Ag,q = 5£,p.
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where the Paley-Wiener space L consists of all the entire functions f such

that
[sora<o o lpe) <ot

—0o0
for some constant C' = C(f) > 0, and for every z € C. Levin and Lubinsky
proved that if p is a regular measure in the sense of Stahl-Totik, and p’ is
continuous at ¢ (with |(] = 1), then

(7) HILH;O n/\mp(ﬂa ()= 277517/1/(()'

Several authors have studied &, (see [I5] and the references therein, and
[19]). While there are estimates of &£,, it seems that there is no explicit
formula for it.

Lemma 3.6 (see [2, Lemma 2.1]). If1 < ¢ < oo and |¢| =1, then

el = ([ K

as n — oo, where Cy = (£ [7°[$2L]7 qt)

1 q—1

sin ((n + 1)t/2) )‘1 _ anq% T o(n'T),

sin(t/2)

"a
2

1/q

Recall that the reproducing kernel for the Lebesgue measure can be writ-
ten in terms of the Dirichlet kernel. Indeed, if ¢ = €"® and z = €%, with tg
and t real numbers, then

oSy = G T e 2sin (04 Dt +1)/2)
Kn(¢,2) =) (C2Y T St

J=0

Proposition 3.7. If 1 < p < oo, then

On 0.
< Tims P np .
0<1/Cp < hnrgmf p = 1171111_>sol<1>p ip = Cy <
Proof. By the definition of 4, ; and Holder’s inequality, it is immediate that

Onp < ||Kn(1,-)]lq- Hence, using Lemma we obtain the desired upper
bound. If we take f(z) = K, (1,2)/||Kn(1,)|p, by the definition of dy, ,,

/1+z—i—-~-+z” dz n+1
T

> ar T o = Rl

(57’L,p jll

Therefore, using Lemma |3.6] again, we obtain the desired lower bound. [

Remark 3.8. From , Remark and Proposition we deduce that
&, is bounded below by 1/(27CF), for 1 < p < co. Moreover, using that
dn1/n ~2/m (see Egervary [7]), it follows that & is bounded below by 1/4.
This result, however, is not relevant, since Korevaar [10] proved in 1949 (see
also [4, Theorem 6.7.17]) that £, > 1/p for p > 1. In particular, & > 1.

Remark 3.9. Some of the previous statements for p = 2 can be formulated
for general measures, but this is out of the scope of this paper. Here we
only give a result for the Jacobi measure in the interval (—1,1) for the case
p=2 Ifa,f > —1, and f is a function in L2((—1,1), (1 — 2)*(1 + z)? dx)
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such that [1, Q(z)f(z)(1 — z)*(1 + 2)° dz = Q(1), for every Q € II,,, then

1
/_ @R =21+ 2) do

F'n+a+p+2)'(n+a+2)
Fla+ DI (a+2)T(n+1DI'(n+8+1)

This follows immediately from Bessel’s inequality and [24, formula (4.5.8)].

2 2—0{—5—1
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