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Abstract. We study a dual-type problem to generalized Christoffel
function. The solution is connected with other extremal problems in
the Hp space of analytic functions on the unit circle considered by Mac-
intyre, Rogosinski and Shapiro.

1. Introduction and main results

Let µ be a finite positive Borel measure on the unit circle T with infinitely
many points in its support. The Lp(µ)-Christoffel function is defined as

λn,p(µ, ζ) := inf{‖Q‖pp : Q ∈ Πn, Q(ζ) = 1}, 1 ≤ p <∞,

where ζ is a complex number, Πn stands for the set of polynomials of degree
at most n, and ‖Q‖p = (

∫
|Q|p dµ)1/p. Christoffel functions have been useful

for establishing Bernstein and Nikolskii inequalities, in estimating quadra-
ture sums, and in studying convergence of Lagrange interpolation and or-
thogonal expansions [14, 17, 18]. These functions also play an important
role in random matrix theory (see [5]). The extremal kernel for Christoffel
functions in L∞ is used for extensions of the conjugate gradient method for
solving linear systems with certain symmetric form (see [9]). For the history
of Christoffel functions, we refer the reader to [13, 17, 18, 22].

In this paper, we study the distances of certain varieties to the origin
in Lp(µ), with 1 ≤ p ≤ ∞. These are dual-type problems to Christoffel
functions, and they also link with extremal problems in Hp. Our results are
connected with extremal problems in Hp for 1 < p <∞ studied by Macin-
tyre, Rogosinski and Shapiro (see [6, 16, 20], and the references therein).

From now on, we denote by q the conjugate exponent to p ∈ [1,∞] (i.e.,
q = 1 if p =∞, q =∞ if p = 1, and 1/p+ 1/q = 1 otherwise). Let

Vn,q(µ, ζ) :=
{
f ∈ Lq(µ) :

∫
Qf̄ dµ = Q(ζ), for every Q ∈ Πn

}
.

It is a non-empty set, and has the structure of a variety in Lq(µ) (see the
beginning of Section 2). Let

(1) Ωn,q(µ, ζ) := inf{‖f‖pq : f ∈ Vn,q(µ, ζ)},

for 1 < q ≤ ∞. We define Ωn,1(µ, ζ) as the infimum of the norms ‖ · ‖1.
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Theorem 1.1. If 1 ≤ p <∞ and |ζ| = 1, then

Ωn,q(µ, ζ) =
1

λn,p(µ, ζ)
.

Now, assume that µ is the normalized Lebesgue measure in the unit circle
T, which we will denote by m. In this case, we connect Ωn,q(m, ζ) (and
therefore λn,p(m, ζ)) with the following extremal problems:

δn,p := sup

{∣∣∣∣∫
T

1 + z + · · ·+ zn

zn+1
f(z)

dz

2π

∣∣∣∣ : f ∈ Hp, ‖f‖p = 1

}
,

∆n,q := inf

{∥∥∥∥1 + z + · · ·+ zn

zn+1
+ g(z)

∥∥∥∥
q

: g ∈ Hq

}
,

where, as usual, Hp stands for the Hardy space of analytic function in the
unit disc with bounded means of order p. If f(z) =

∑∞
k=0 akz

k ∈ Hp, by
the Cauchy integral formula we have∫

T

1 + z + · · ·+ zn

zn+1
f(z)

dz

2πi
=

n∑
k=0

ak.

These extremal problems were considered by Landau, Schur, Macintyre,
Rogosinski, Shapiro and other authors (see [20] and mainly [6, Chapter 8],
and the references therein). For p = ∞, in δn,∞ the supremum is taken
on C ∩ H∞, the algebra of analytic functions in the unit disc which are
continuous on the closed unit disc. The extremal problem ∆1,2 in H2(µ) is
associated with the asymptotic behavior of certain Toeplitz determinants or
the leading coefficients of orthonormal polynomials with respect to µ (see,
for example, [21, Theorem 2.7.15]).

Theorem 1.2. If |ζ| = 1, then Ωn,1(m, ζ) ≤ δn,∞, and Ωn,q(m, ζ) ≤ δpn,p,
for 1 < p <∞.

It is easy to see that δn,p is a monotonically increasing sequence on n. Its
asymptotic behavior has been studied for p = 1 and p = ∞. We refer the
reader to Egerváry [7] for p = 1. This is a particular case of Carathéodory-
Fejér problem (see [1, Appendix §D]). For p = ∞, see Landau [12, §2]. If
1 < p <∞, it is straightforward to verify (see Proposition 3.7) that

0 < lim inf
n→∞

δn,p

n1/p
≤ lim sup

n→∞

δn,p

n1/p
<∞.

The paper is organized as follows. In Section 2 we prove Theorem 1.1,
and show that the variety Vn,q(µ, ζ) has an element of minimal norm. This
element is unique if 1 < q <∞. Section 3 contains the proof of Theorem 1.2
and remarks on other extremal problems for the Lebesgue measure.

2. Minimal norm in a variety

In this section we prove Theorem 1.1, and give some properties of Vn,q(µ, ζ)
and Ωn,q(µ, ζ). Mainly, the infimum that defines Ωn,q(µ, ζ) is indeed a mini-
mum, and it is attained at a unique function in Vn,q(µ, ζ) (see Proposition 2.2
below). We also obtain some characterizations of this minimal function.
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Let us start by showing that the set Vn,q(µ, ζ) has the structure of a vari-
ety. Denote by {ϕk : k = 0, 1, . . .} the sequence of orthonormal polynomials
with respect to µ with positive leading coefficients. The reproducing kernel
for µ is the function Kn(w, z) =

∑n
j=0 ϕj(w)ϕj(z). Notice that Kn(ζ, ·) is

an element in Vn,q(µ, ζ). Let

Wn,q(µ) :=

{
f ∈ Lq(µ) :

∫
Qf̄ dµ = 0, for every Q ∈ Πn

}
.

It is a subspace of Lq(µ). Therefore, Vn,p(µ, ζ) is a variety in Lq(µ) that can
be written as

Vn,p(µ, ζ) = Kn(ζ, ·) +Wn,q(µ).

For the proof of Theorem 1.1 we make use of the following lemma. Let

λ̂n,p(µ, ζ) = sup{|Q(ζ)|p : Q ∈ Πn, ‖Q‖p = 1}.

Lemma 2.1. If 1 ≤ p < ∞, then there exists a function f0 in Vn,q(µ, ζ)

such that ‖f0‖pq = λ̂n,p(µ, ζ).

Proof. Let Λ be the point evaluation functional Λ(Q) = Q(ζ), acting on
Πn. If we consider the Lp(µ)−norm in Πn, then Λ is a continuous linear

functional with ‖Λ‖p = λ̂n,p(µ, ζ). By the Hahn-Banach theorem, Λ can be

extended to a linear functional Λ̂ on Hp(µ) with the same norm. Recall that
Hp(µ) spaces are the Lp(µ)−closure of the linear space of all polynomials
(see [3] and [8, Sec. V.3]). By the Riesz duality theorem for Lp(µ), there

is a unique f0 ∈ Lq(µ) such that Λ̂(h) =
∫
h f0 dµ, for every h ∈ Hp(µ),

and ‖Λ̂‖ = ‖f0‖q. It is clear that f0 ∈ Vn,q(µ, ζ). Therefore the statement
follows joining the equalities of norms obtained. �

It is well-known (and very easy to check from definitions) that

(2) λn,p(µ, ζ) =
1

λ̂n,p(µ, ζ)
, 1 ≤ p <∞.

Proof of Theorem 1.1. As a consequence of Lemma 2.1, notice that Ωn,q(µ, ζ)

is bounded above by λ̂n,p(µ, ζ). Hölder’s inequality gives that |Q(ζ)| ≤
‖Q‖p‖g‖q for any g in Vn,q(µ, ζ) and anyQ in Πn. Then Ωn,q(µ, ζ) is bounded

below by λ̂n,p(µ, ζ). Hence, using (2), the statement follows. �

Now we focus on the study of the variety Vn,q(µ, ζ).

Proposition 2.2. If 1 ≤ p <∞, then

Ωn,q(µ, ζ) = min{‖f‖pq : f ∈ Vn,q(µ, ζ)}.
Moreover, if 1 < p < ∞, this minimum is attained at a unique function in
Vn,q(µ, ζ). If p = 1 and µ is absolutely continuous with respect to Lebesgue
measure, then this minimum is also unique.

Proof. As an immediate consequence of Theorem 1.1 and Lemma 2.1, we ob-
tain the existence of the minimum in Proposition 2.2. Indeed, it is attained
for the function f0 given in Lemma 2.1. If 1 < p <∞, the space Lp(µ) is a
strictly convex. Since Vn,p(µ, ζ) is a closed variety on it, the uniqueness in
Proposition 2.2 follows for this case. Our proof of the uniqueness for p = 1
relies on the next fact, valid for any p in [1,∞).
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Claim. There exists a unique polynomial Q# in Πn such that

‖Q#‖p = 1, Q#(ζ) > 0, and Q#(ζ)p = λ̂n,p(µ, ζ).

Indeed, there exists a unique polynomial P in Πn such that P (ζ) = 1
and ‖P‖pp = λn,p(µ, ζ). The existence can be easily proved by compactness
arguments (see [17, p. 106]). The uniqueness of this polynomial follows for
p > 1 from the strict convexity of the space Lp; for p = 1, see, for example,
[11]. Take Q#(z) = αP (z)/‖P‖p for an appropriate α in the unit circle to
complete the proof of the claim.

Now, let p = 1, and let g be any function in Vn,∞(µ, ζ) such that

‖g‖∞ = inf{‖f‖∞ : f ∈ Vn,∞(µ, ζ)} = Ωn,∞(µ, ζ).

Take Q# as in the claim. That is, Q# is a polynomial in Πn such that
‖Q#‖1 = 1, and Q#(ζ) = ‖g‖∞. Since g ∈ Vn,∞(µ, ζ) and Q# ∈ Πn, we
have ∫

Q#g dµ = Q#(ζ) = ‖g‖∞‖Q#‖1.

Thus, equality holds for Hölder’s inequality in L1(µ)−L∞(µ)−norm. There-
fore, if µ is absolutely continuous, we obtain that

(3) g = ‖g‖∞ sign
(
Q#

)
, m− a.e.

Recall that the sign function is defined as sign (z) = z/|z| if z 6= 0, and
sign (0) = 0. This shows the uniqueness of the function g (since the right
hand side above is fixed), and the proof of Proposition 2.2 is complete. �

Remark 2.3. Notice that (3) gives an explicit formula, in terms of the
polynomial Q#, for the unique element in Vn,∞(µ, ζ) with minimal norm.

In the following result, we connectQ# with the unique element in Vn,q(µ, ζ)
with minimal norm, for 1 < q <∞.

Proposition 2.4. Let 1 < p < ∞ and let f0 be the element of Vn,q(µ, ζ)
with minimal norm. Then

(4) ‖f0‖qq|Q#(t)|p = |f0(t)|q, µ− a.e.

Moreover,

(5) Q#(t)f0(t) ≥ 0 µ− a.e.

Proof. By definitions of Q# and f0, and Lemma 2.1, we have
∫
Q#f0 dµ =

Q#(ζ) = ‖f0‖q. Hölder’s inequality gives that
∫
|Q#f0| dµ ≤ ‖f0‖q. There-

fore
∫
Q#f0 dµ =

∫
|Q#f0| dµ. This implies (5). Moreover, since we have

obtained the equality in Hölder’s inequality, this means that there exist
constants α and β, which depend on n and p but not on t, such that
α|Q#(t)|p = β|f0(t)|q, µ-almost every t in the support of µ. Integrating
both sides of this equality, we get that α = β ‖f0‖qq. Hence (4) follows. �

In the next proposition, we give a characterization of the element of min-
imal norm in Vn,q(µ, ζ), for 1 < q <∞.

Proposition 2.5. Let f be a function in Vn,q(µ, ζ), and let 1 < q < ∞.
The following statements are equivalent.

(i) f has minimal norm among the elements of Vn,q(µ, ζ).
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(ii) ‖f‖q = inf{‖Kn(ζ, ·)− g‖q : g ∈Wn,q(µ)}.
(iii) For any g ∈Wn,q(µ),∫

T
g(t)|f(t)|p−1 sign (f(t)) dµ(t) = 0.

Proof. Since Vn,q(µ, ζ) = Kn(ζ, ·) +Wn,q(µ), we have

Ωn,q(µ, ζ) = inf{‖Kn(ζ, ·)− g‖q : g ∈Wn,q(µ)},
which implies the equivalence between (i) and (ii). Since Kn(ζ, ·) and f be-
long to Vn,q(µ, ζ), we obtain that Kn(ζ, ·)−f belongs to Wn,q(µ). Therefore
the equivalence between (ii) and (iii) follows using [23, Theorem 1.11]. �

Propositions 2.4 and 2.5 suggest the study of the zeros of Q#. This is
done in the next result. Given a polynomial P of degree n, we denote by
P ∗ the polynomial P ∗(z) = zn P (1/z̄).

Proposition 2.6. If |ζ| = 1, then Q∗# = ζnQ#. In particular, the zeros of
Q# are symmetric with respect to the unit circle.

Moreover, if ζ = 1, then Q# has real coefficients, and its zeros are further
symmetric with respect to the real line.

Proof. Obviously, Q∗# has degree n and ζ−nQ∗#(ζ) = Q#(ζ) = Q#(ζ), be-

cause Q#(ζ) > 0. Since |ζ−nQ∗#(z)| = |Q#(z)| for every z in the unit circle,

‖ζ−nQ∗#‖p = ‖Q#‖p. Using the uniqueness of Q#, we have ζ−nQ∗# = Q#.
Now consider the case ζ = 1. Let P be the polynomial whose coefficients

are the conjugate coefficients of Q#. Then P has degree n and P (1) =
Q#(1). Since |P (z)| = |Q#(z̄)| for every z in the unit circle, ‖P‖p = ‖Q#‖p.
Using the uniqueness of Q# again, we have P = Q#. �

3. Extremal problem in the unit circle

In this section, we consider µ as the normalized Lebesgue measure in the
unit circle, and we denote it by m. In other words,∫

T
f(z) dm(z) =

1

2π

∫ 2π

0
f(eit) dt =

1

2πi

∫
T

f(z)

z
dz.

We shall prove Theorem 1.2 and its consequences. To this end, consider the
extremal problem

Υn,q = inf

{∥∥∥∥1 + z + · · ·+ zn

zn+1
+ f(z) +

g(1/z)

zn+2

∥∥∥∥p
q

: f, g ∈ Hq

}
,

for 1 < q ≤ ∞. If q = 1, we define Υn,1 as the infimum of norms ‖·‖1 as
above. Notice that taking g = 0 in the definition of Υn,q, the following result
is trivial.

Proposition 3.1. If 1 < q ≤ ∞, then Υn,q is bounded above by ∆p
n,q. If

q = 1, then Υn,1 is bounded above by ∆n,1.

Remark 3.2. Observe that Υn,2 = ∆2
n,2 = n + 1, since for p = 2 the

trigonometric system is orthonormal.

Lemma 3.3. For 1 ≤ q <∞ we have Ωn,q(m, ζ) = Υn,q.
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Proof. For the Lebesgue measure m the reproducing kernel is given by
Kn(ζ, z) =

∑n
j=0(ζz)j . Note that

Vn,q(m, ζ) = Kn(ζ, z) +

{
zn+1g(z) +

h(1/z)

z
: g, h ∈ Hq

}
.

Indeed, if 1 < q < ∞, this follows from the convergence of Fourier series
in Lq(m). If q = 1, the statement follows from the density of trigonometric
polynomials in L1(m).

Setting w = ζz, we have∥∥∥∥Kn(ζ, z) + zn+1g(z) +
h(1/z)

z

∥∥∥∥
q

=

∥∥∥∥∥∥
n∑
j=0

wj + (ζw)n+1g(ζw) +
h(1/ζw)

ζw

∥∥∥∥∥∥
q

=

∥∥∥∥kn(w) + ζn+1g(ζw) +
h(1/(ζw))

ζwn+2

∥∥∥∥
q

,

where kn(z) = (1 + z + · · ·+ zn)/zn+1. This equality immediately gives the
desired result. �

Proof of Theorem 1.2. In [6, Theorem 8.1] is given the duality relation

(6) δn,p = ∆n,q.

Now Theorem 1.2 follows from Lemma 3.3, Proposition 3.1, and (6). �

For historical remarks on the extremal problems (6), we refer the reader
to the notes at the end of Chapter 8 of [6].

Let us observe now a connection between Υn,q and the extremal problem

Θn,q = inf

{∥∥∥∥1 + z + · · ·+ zn

zn+1
+ f(z) +

f(1/z)

zn+2

∥∥∥∥p
q

: f ∈ Hq

}
1 < q ≤ ∞.

If q = 1, we define Θn,1 as the infimum of norms ‖·‖1 as above.

Proposition 3.4. Υn,q = Θn,q.

Proof. Changing z by z−1 we obtain∥∥∥∥kn(z) + f(z) +
g(1/z)

zn+2

∥∥∥∥
q

=

∥∥∥∥zn+2

(
kn(z) +

f(1/z)

zn+2
+ g(z)

)∥∥∥∥
q

=

∥∥∥∥kn(z) +
f(1/z)

zn+2
+ g(z)

∥∥∥∥
q

.

Therefore, g(z) = f(z) for the optimal function �

Remark 3.5. We have shown the following:

1

λn,p(m, ζ)
= Ωn,q(m, ζ) = Υn,q = Θn,q ≤ ∆p

n,q = δpn,p.

The asymptotic behavior of the Chritoffel functions λn,p is a cornerstone in
many application as it was said in the introduction. Let us state a beautiful
result of this type obtained by Levin and Lubinsky [15]. Let

Ep := inf

{∫ ∞
−∞
|f(t)|p dt : f ∈ Lpπ, f(0) = 1

}
,
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where the Paley-Wiener space Lpπ consists of all the entire functions f such
that ∫ ∞

−∞
|f(t)|p dt <∞ and |f(z)| ≤ Ceπ|z|,

for some constant C = C(f) > 0, and for every z ∈ C. Levin and Lubinsky
proved that if µ is a regular measure in the sense of Stahl-Totik, and µ′ is
continuous at ζ (with |ζ| = 1), then

(7) lim
n→∞

nλn,p(µ, ζ) = 2πEpµ′(ζ).

Several authors have studied Ep (see [15] and the references therein, and
[19]). While there are estimates of Ep, it seems that there is no explicit
formula for it.

Lemma 3.6 (see [2, Lemma 2.1]). If 1 < q <∞ and |ζ| = 1, then

‖Kn(ζ, ·)‖q =

(∫ 2π

0

∣∣∣∣sin ((n+ 1)t/2)

sin(t/2)

∣∣∣∣q dt

2π

) 1
q

= Cqn
q−1
q + oq(n

q−1
q ),

as n→∞, where Cq =
(

2
π

∫∞
0

∣∣ sin t
t

∣∣q dt)1/q.
Recall that the reproducing kernel for the Lebesgue measure can be writ-

ten in terms of the Dirichlet kernel. Indeed, if ζ = eit0 and z = eit, with t0
and t real numbers, then

Kn(ζ, z) =

n∑
j=0

(ζz)j =
(ζz)n+1 − 1

(ζz)− 1
= ein(t0+t)/2 sin ((n+ 1)(t0 + t)/2)

sin ((t0 + t)/2)
.

Proposition 3.7. If 1 < p <∞, then

0 < 1/Cp ≤ lim inf
n→∞

δn,p

n1/p
≤ lim sup

n→∞

δn,p

n1/p
≤ Cq <∞.

Proof. By the definition of δn,p and Hölder’s inequality, it is immediate that
δn,p ≤ ‖Kn(1, ·)‖q. Hence, using Lemma 3.6 we obtain the desired upper
bound. If we take f(z) = Kn(1, z)/‖Kn(1, ·)‖p, by the definition of δn,p,

δn,p ≥
∣∣∣∣∫

T

1 + z + · · ·+ zn

zn+1
f(z)

dz

2π

∣∣∣∣ =
n+ 1

‖Kn(1, ·)‖p
.

Therefore, using Lemma 3.6 again, we obtain the desired lower bound. �

Remark 3.8. From (7), Remark 3.5, and Proposition 3.7, we deduce that
Ep is bounded below by 1/(2πCpq ), for 1 < p < ∞. Moreover, using that
δn,1/n ∼ 2/π (see Egerváry [7]), it follows that E1 is bounded below by 1/4.
This result, however, is not relevant, since Korevaar [10] proved in 1949 (see
also [4, Theorem 6.7.17]) that Ep ≥ 1/p for p ≥ 1. In particular, E1 ≥ 1.

Remark 3.9. Some of the previous statements for p = 2 can be formulated
for general measures, but this is out of the scope of this paper. Here we
only give a result for the Jacobi measure in the interval (−1, 1) for the case
p = 2. If α, β > −1, and f is a function in L2((−1, 1), (1− x)α(1 + x)β dx)
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such that
∫ 1
−1Q(x)f(x)(1− x)α(1 + x)β dx = Q(1), for every Q ∈ Πn, then∫ 1

−1
|f(x)|2(1− x)α(1 + x)β dx

≥ 2−α−β−1 Γ(n+ α+ β + 2)Γ(n+ α+ 2)

Γ(α+ 1)Γ(α+ 2)Γ(n+ 1)Γ(n+ β + 1)
.

This follows immediately from Bessel’s inequality and [24, formula (4.5.8)].
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