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Abstract: Brain–computer interfaces (BCI) can extract information about the subject’s intentions by
registering and processing electroencephalographic (EEG) signals to generate actions on physical
systems. Steady-state visual-evoked potentials (SSVEP) are produced when the subject stares at
flashing visual stimuli. By means of spectral analysis and by measuring the signal-to-noise ratio
(SNR) of its harmonic contents, the observed stimulus can be identified. Stimulus color matters, and
some authors have proposed red because of its ability to capture attention, while others refuse it
because it might induce epileptic seizures. Green has also been proposed and it is claimed that white
may generate the best signals. Regarding frequency, middle frequencies are claimed to produce the
best SNR, although high frequencies have not been thoroughly studied, and might be advantageous
due to the lower spontaneous cerebral activity in this frequency band. Here, we show white, red, and
green stimuli, at three frequencies: 5 (low), 12 (middle), and 30 (high) Hz to 42 subjects, and compare
them in order to find which one can produce the best SNR. We aim to know if the response to white is
as strong as the one to red, and also if the response to high frequency is as strong as the one triggered
by lower frequencies. Attention has been measured with the Conner’s Continuous Performance Task
version 2 (CPT-II) task, in order to search for a potential relationship between attentional capacity
and the SNR previously obtained. An analysis of variance (ANOVA) shows the best SNR with the
middle frequency, followed by the low, and finally the high one. White gives as good an SNR as red
at 12 Hz and so does green at 5 Hz, with no differences at 30 Hz. These results suggest that middle
frequencies are preferable and that using the red color can be avoided. Correlation analysis also
show a correlation between attention and the SNR at low frequency, so suggesting that for the low
frequencies, more attentional capacity leads to better results.

Keywords: brain–computer interface; electroencephalography; biomedical signal processing; SSVEP

1. Introduction

A brain–computer interface (BCI) is a system that allows a direct communication
between the brain and the external world since it directly translates recorded neural
activity into a control signal for an external device [1–7]. It can also be defined as a system
that provides an interface to communicate or control a physical environment, through
the use of brain signals, and without using the normal neuro-muscular pathways [2,6,8].
In short, it is a system that allows interaction between people and physical systems, such
as computers, wheelchairs or other devices, through forms of interaction that do not
involve the musculoskeletal system [9,10]. The most important application of BCIs in their
few decades of existence has been to allow subjects with physical disabilities to interact
with external devices [11–14]. A person could be confined to bed and from there turn
on and off lights, heating, television, home automation, speller or any other device by
BCI control [15–18]. Therefore, it is an applied field where neuroscience and technology
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converge, and it is of paramount importance if the aim is to improve the quality of life of
people with this type of need [8].

BCIs extract information from electroencephalographic signals measured by means of
applying mostly non-invasive electrodes to the participant’s scalp [12]. Various paradigms
are used to obtain information about the wishes and intentions of the participant, which
is necessary to generate useful commands oriented to fulfill the BCI purposes [13]. In the
steady-state visual-evoked potentials (SSVEP) paradigm employed in this study, partic-
ipants are presented with visual stimuli in basic shapes, such as circles or squares, in
computer screens or dedicated LEDs [1]. These stimuli flicker at different frequencies, and
observing them triggers evoked potentials, resulting from the electrical activity of neurons
in the visual cortex [19,20]. This response occurs at the same frequency as the blinking
stimulus, and also, with a lower intensity, at the frequencies of its harmonics which are
multiples of the fundamental one [21]. A typical arrangement may include several stimuli
flashing at different frequencies, so that each one represents a different commandment that
the participants may choose by means of directing their gaze [19,20]. By measuring and
recording the evoked activity by means of electroencephalography (EEG) devices and ap-
plying signal processing and spectral analysis techniques—frequency domain analysis—it
is possible to determine with relative ease which stimulus is the participant observing, as
well as selecting the control action which corresponds to their desires [19]. For a reliable
operation of the system, however, a correct identification of the stimulus that the subject is
looking at is needed, as well as reducing as much as possible the possibility to obtain false
positives. This will allow us to undertake the right action on the devices, depending on the
participant’s wishes.

The process of detecting and discriminating frequency components in SSVEPs is
influenced by both their amplitude and the noise accompanying them. It should be borne
in mind that noise is everything that does not correspond to the signal we aim to detect, and
can be formed by both external disturbances that interfere with the process of capturing
signals, and internal disturbances due to the incessant activity produced by the brain, as
well as by artifacts due to blinking or to participant’s movements [20]. The relationship
between the signal level and the noise level (signal-to-noise ratio, SNR) is a measure that
allows us to know precisely how large the amplitude of the evoked signal is in relation to
the noise level or background activity [22]. Higher SNR values help to better detect and
discriminate the frequency components of interest to us [20,23–25].

Several stimulus properties can influence the amplitude of the harmonics in the
obtained SSVEPs, as well as the capacity to discriminate them from the noise to which
they are superimposed. Among theses properties there is the color of the stimulus and
the blinking frequency. They can also affect the comfort experienced by the user; a factor
that may affect the results obtained. Prolonged observation of blinking stimuli causes
visual fatigue [19,26–28], which provokes decreases in the amplitude of visual-evoked
potentials. It has been reported that certain colors, such as red, and certain low frequencies,
can induce epileptic seizures in some people [20,29]. Some studies have addressed the
comparison of these properties in order to draw conclusions applicable to the design of
reliable BCIs. For the time being, however, there is no consensus on which are the best, and
a high interindividual variability has been reported in the responses to these stimuli [19].

Some researchers [26] have investigated the influence on SSVEP of five-colors—white,
gray, red, green and blue—at different frequencies between 7.5 and 17.14 Hz. To that end,
they have studied the amplitude of the evoked frequencies and also the harmonics’ phase,
by means of the canonical correlation analysis (ACC). The results show that white generates
both the largest amplitude and the smallest phase variance; two favorable conditions to
increase the discriminability of the stimuli, and to facilitate a higher performance of
the final system. Gray follows white, then red and green, and finally blue. In contrast,
in [29] the authors conclude that red is the color that provides the highest discriminating
accuracy, although they point out as drawbacks that it is the least comfortable, and that
according to the literature it can be dangerous because of the possibility of inducing
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epileptic seizures [30,31]. Finally, and for security reasons, they suggest the green color
as the most appropriate to design BCI systems with a SSVEP paradigm. On the other
hand, in [21] researchers tested 10 colors by means of spectral analysis for amplitudes,
concluding that colors with large wavelengths, such as red and orange, would capture
more attention and generate SSVEP of a higher amplitude, than shorter wavelength colors
such as blue and purple. In a review of 57 articles on visual stimulation in BCI systems with
the SSVEP paradigm, in [19] researchers classified stimulation frequencies into three bands:
low (1–12 Hz), medium (12–30 Hz), and high (30–60 Hz). The low and medium frequencies
have, according to the authors, the disadvantage of causing more visual fatigue, and of
interfering with the spontaneous activity of the brain, while the high ones are better in
these aspects, although they generate SSVEP of a lesser amplitude. The authors note that
these high frequencies have received little consideration and should be further investigated.
In terms of the colors, they indicate that red causes high-amplitude SSVEP at 11 Hz, but this
amplitude decays with both lower and higher frequencies. Blue, on the other hand, shows
a flatter response with frequency, but also less amplitude. According to the authors, there
are no clear conclusions about which color is preferable, and perhaps the color selection
should be chosen in order suit the participants’ characteristics.

Another potentially important factor in order to obtain evoked visual potential is
attention. The sensory environment includes a large number of stimuli, and each one is a
potential focus for attention. Only a few, however, are behaviorally relevant at any given
time. Attention is in part a mechanism aimed to select the most relevant environmental
characteristics for current or planned behavior [32]. In relation to visual perception, atten-
tion acts as a modulating factor on the neuronal activity of the visual cortex. Attention to
visual stimuli increases cortical neurons’ responses, and attention directed to a particular
site in the visual field improves detection and discrimination, and also reduces reaction
times in that position relative to others [33]. Not only is the response to the attended stimuli,
in the visual cortex, increased but also the suppressive influences of nearby distractors are
decreased [34]. Concentration in the fovea field enhances the evoked visual potentials gen-
erated by stimulation in that field, while reducing the potentials generated in the peripheral
visual field [35]. Attention thus influences the amplitude of the evoked visual potentials,
participants with low attentional capacity might show poorer performances while using
such devices (i.e., generating SSVEP with worse amplitude and reducing the percentage
of correct positives in classifying tasks). In [36], the context of BCIs with motor imagery
paradigm (another paradigm that requires great imaginative abilities), suggest that some
previous training might improve attentional ability and consequently performance with
BCI devices. As has been shown, although these are different paradigms, attention is also a
very important factor here, and therefore it is advisable to study the relationship between
attentional capacity and amplitude of SSVEP, when considering training oriented to an
effective use of these devices.

The main objective of this study is to compare the properties of visual stimuli of
different colors and frequencies, in terms of their discriminability, measured as a SNR, in
an offline task (i.e., the subject observes the stimuli and EEG signals are recorded for later
analysis, but no classification decisions are made, nor action taken on devices, as would
be the case with an online task) corresponding to the SSVEP paradigm. Three of the most
widely employed and recommended colors in the literature are used: red, green, and white,
and three frequencies corresponding to the low, medium, and high bands according to the
classification of [19,37]: 5, 12 and 30 Hz. As specific objectives, we aim to check whether the
SNR obtained with the white color is comparable to that obtained with the red, because, for
safety reasons, it may be preferable not to use the latter. On the other hand, the comparison
of the different frequencies will allow us to check the possible advantage of working
with high frequencies; a range of frequencies in which brain activity interferes less with
frequency recognition. We also aim to verify the existence of relationships between SSVEP
activity and several variables related to attentional capacity. We propose as a hypothesis
that the white color can reach SNR of the same magnitude as the red, which would help
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to dispense with this color in real-life applications. It is also hypothesized that the high
frequency will reach SNR of equal or greater magnitude than the other frequencies, because
it works in a range that has less interference from spontaneous brain activity. With reference
to attention, we propose that the attentional capacity of the subjects will be related to the
amplitude of the SSVEPs obtained and, therefore, to their SNR.

The practical orientation of the work lays in the possibility to contribute to the con-
struction of simple BCI systems that are easy to apply and quick to learn. It is possible to
advance in this last point, by using the SSVEP paradigm, which is based on a purely sensory
process, which needs no more condition than that of paying attention to the stimuli. In
terms of easy application, we intend to be able to use a configuration of only two electrodes,
which is why we will analyze which generate the most SNR out of the six we will measure.

2. Materials and Methods
2.1. Data Acquisition

After preprocessing and debugging the data, 42 university students of whom 31
(73.8%) were female and 11 (26.2%) were male, participated in the experiment in exchange
for academic compensation. The average age was 19.12 years (sd = 1.64). All participants
had normal vision. Color blindness, a history of past or present epileptic seizures, and/or
severe migraines had been considered as exclusion criteria. All participants had been
informed and had read and signed a consent that guarantees the confidentiality of the data
and the freedom to participate as well as to leave the test at any time and without penalty.
Signed consents are kept in a specific file. All procedures performed involving human
participants were in accordance with the Ethical Commission for Experimental Research of
the Universitat de València (https://www.uv.es/ethical-commission-experimental-resear
ch/en/commission/comission.html), that considers the Spanish and European legislations,
the Ethical Declarations of Helsinki and Tokyo, the Bioethical Declaration of Gijón (24 June
2000) and the recommendations of the World Health Organisation.

A flexible EEG headcap (Enobio 8, Neuroelectrics company, Barcelona, Spain) was
used to register EEG signals. It includes 8 easy-to-apply dry electrodes (no electroconduc-
tive gel required), and wirelessly communicates with a computer in real time, via Bluetooth.

One of the aims of the experiment consisted in finding the electrodes that generate
a higher SNR, in order to be able to build simple BCI systems that are easy to apply and
with as few electrodes as possible. To check this point, EEG activity was recorded at six
electrodes, three occipitals: O1, O2, and Oz, and three parieto-occipital: PO3, PO4, and
Pz (Figure 1), which are the points most frequently reported in the BCI literature with the
SSVEP paradigm [21,26,38,39], to later select the two single ones that generate the most
activity. If we select only one, and it fails, it compromises the operation of the entire system,
so we aimed to select and work with the average of two.
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2.2. Visual Stimulation

The Openvibe free software version 1.3.0 (Institut National de Recherche en Infor-
matique et en Automatique, France) has been used for stimuli presentation and signal
recording. This software allows to manage BCI experiments and has everything which
is needed to communicate with the Enobio 8G helmet. It runs on a laptop with an Intel
Core I7 processor and Windows 10 operating system, which has an auxiliary display with
a refresh rate of 60 Hz. This frequency is necessary, because it must be a multiple of the
flashing frequencies of the stimuli presented. The computer runs the program, presents
the stimuli on the auxiliary screen—which only the participant can see—and receives and
records the data sent by Enobio, via Bluetooth. Visual stimuli consist of square figures
presented on an auxiliary screen with a refresh rate of 60 Hz. They can come in three colors:
red, green, and white (Figure 2), and flash at three different frequencies: 5, 12, and 30 Hz.
(low, medium and high, respectively) [40], which gives rise to nine experimental conditions
resulting from crossing the three levels of the two variables (Table 1). We will name the
colors red, green, and white as C1, C2, and C3 respectively, and frequencies 5, 12, and 30 as
F1, F2, and F3.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 1. Disposition of the 6 electrodes used according to the international 10–20 system for elec-
trode placement. 

2.2. Visual Stimulation 
The Openvibe free software version 1.3.0 (Institut National de Recherche en Informa-

tique et en Automatique, France) has been used for stimuli presentation and signal re-
cording. This software allows to manage BCI experiments and has everything which is 
needed to communicate with the Enobio 8G helmet. It runs on a laptop with an Intel Core 
I7 processor and Windows 10 operating system, which has an auxiliary display with a 
refresh rate of 60 Hz. This frequency is necessary, because it must be a multiple of the 
flashing frequencies of the stimuli presented. The computer runs the program, presents 
the stimuli on the auxiliary screen—which only the participant can see—and receives and 
records the data sent by Enobio, via Bluetooth. Visual stimuli consist of square figures 
presented on an auxiliary screen with a refresh rate of 60 Hz. They can come in three 
colors: red, green, and white (Figure 2), and flash at three different frequencies: 5, 12, and 
30 Hz. (low, medium and high, respectively) [40], which gives rise to nine experimental 
conditions resulting from crossing the three levels of the two variables (Table 1). We will 
name the colors red, green, and white as C1, C2, and C3 respectively, and frequencies 5, 
12, and 30 as F1, F2, and F3. 

 
Figure 2. Square stimuli with the three colors presented during the experiment. Figure 2. Square stimuli with the three colors presented during the experiment.

Table 1. Experimental conditions resulting from combining stimulus color and frequency.

Colour/Frequency 5 Hz 12 Hz 30 Hz

Red C1F1 C1F2 C1F3
Green C2F1 C2F2 C2F3
White C3F1 C3F2 C3F3

2.3. Experimental Protocol

Participants were received and informed about the test, before reading and signing
the informed consent. The preparation of the participant consisted of placing the Enobio
helmet and performing an adjustment test of the electrodes. They then answered some
questions about demographic data and psychoactive substance use. This preparatory part
took about 15 min, and they were ready to start the experiment. The experiment took place
in a quiet, low-light cabin, where participants sat comfortably at a distance of 60 cm of the
auxiliary screen on which the stimuli were presented. All participants went through all
the experimental conditions three times during the same session, so this is an intra-subject
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study. The order of presentation of the stimuli was completely random, both for the three
series presented to each participant and for the series between participants. Each stimulus
turned on and off intermittently for 10 s, and the time lapse between stimuli was 30 s.
Participants were instructed to pay close attention to the square while blinking, and to
avoid moving and blinking for 10 s. For the remaining 20 s between the end of one flash of
the stimulus and the beginning of the next, they could blink and discharge any eye or body
tension. At the end of each series, the participants stood up and were free to modify their
position for three minutes. This part of the experiment took about 25 min.

To assess the attentional capacity of the participants, a standardized test was used: the
Conner’s Continuous Performance Task version 2 (CPT-II) [41]. It is a behavioral task that
measures reaction times, omission errors, and commission errors by responding with a
click to the presentation of letters on a screen. Specifically, all letters are answered with the
press of the space bar, except the letter X, which must not be answered. It is therefore a
computerized test that has been run on a laptop where it was installed.

After the presentation of the three series of stimuli, the participants took the standard-
ized test of attention with the CPT-II test that was installed on a different computer. Letters
appeared sequentially on the computer screen, and participants were instructed to answer
all letters except the X with a press of the space bar, while they do not have to answer when
it comes to the X. The test is divided into six series of letters, and the time of appearance of
the letters varied throughout each series. At the end of this test, which lasted about 14 min,
the experiment concluded.

The whole session, including information and preparation of the subject, the pre-
sentation of the three sets of stimuli, and the completion of the attention test, lasted
approximately one hour (Table 2). The sessions were held with a maximum of three per
day, in a reduced afternoon time slot from 15:30 to 18:30 (first session from 15:30 to 16:30,
second session from 16:30 to 17:30, and third session from 17:30 to 18:30) to avoid a possible
effect of the participants’ circadian rhythms on the results of the experiment.

Table 2. Duration of the different parts of the experiment.

Experiment Stage Time (min) Activities

Subject preparation 15

- Filling out consent form
- General information (posture, stop the

experiment)
- Initial questionnaire
- Electrode placement

Experiment session 25 - SSVEP stimuli

CPT-II Test 15 - Standardized test of attention

Total experiment time 55

2.4. Electroencephalographic (EEG) Signal Processing

Once the tests were finished, the processing of the recorded signals was done with the
proprietary software MATLAB version 2017b (https://www.mathworks.com), through the
use of code sequences specifically developed to preprocess the signals, and then, to obtain
all the SNR of interest, for all electrodes. The recorded signals went through two filters, a 3
to 80 Hz bandpass, and a 50 Hz slot filter for line noise. The data were visually inspected for
erroneous or artifact records that might affect the quality of the SNR results to be calculated.
Subsequently, the vectors (numerical lists) containing the data for each subject, condition,
and electrode were truncated to extract 8 s records corresponding to the blinking at each
stimulus. The first and last of the 10 seconds of presentation were discarded. These 8 s
were segmented into 7 two-second overlapping windows (each one with the next one) 50%

https://www.mathworks.com
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of the time. To each window, the fast Fourier transform (FFT) was applied, and the results
were averaged, according to the Welch’s method. Welch’s method combines windowing
and averaging for calculation of the power spectral density (PSD) of the signal, resulting in
a smoother spectrum. The data resulting from this process were normalized considering
the total spectral power equal to 1. Since the sampling frequency was 500 Hz, and the
window had a length of 1000 samples (2s), the resolution of the FFT was 0.5 Hz. To obtain
the SNRs, the first and second harmonics of each frequency were considered: 5 and 10 Hz
for low frequency, 12 and 24 Hz for the average, and 30 and 60 Hz for high frequency. To
calculate the SNR the following equation was used, where y(f) is the magnitude of the
signal at frequency f, n is the total number of samples of the signal window and k was set
to 4 (i.e., two frequencies on each side) [40,42].

SNR =
n ∗ y( f )

∑n/2
k=1[y( f + 0.25 ∗ k) + y( f − 0.25 ∗ k)]

This equation reveals the relation between the amplitude of the harmonic of interest
and the average of the k neighboring frequencies.

Finally, the resulting SNRs were passed onto a logarithmic scale in decibels (dB).
Since each participant went through all the experimental conditions three times in a
random order, of the three SNRs corresponding to each condition, the average is calculated
in one SNR per condition and participant. Prior to the condition analysis, an activity
analysis of the electrodes was performed, which showed a higher activity at the occipital
electrodes. Thus, for subsequent analyzes, the SNRs corresponding to the O1 and O2
electrodes were averaged, as established by one of the objectives of the work (Figure 3).
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2.5. Statistical Evaluation

Among the available statistical analysis, analysis of variance (ANOVA) is a well-
known and widely used procedure. In a data set, it aims to estimate the proportion of
variance in the set due to one or more variables of interest, and the one due to random
differences in subjects or groups. It can be performed for independent measures (different
groups) or related measures (same groups in different time or condition). The result of this
proportion is given as an index F and, moreover, ANOVA provides a statistical significance
for this index. Therefore, due to its very nature and accepted validity for data analysis,
ANOVA has been chosen for the primary evaluation method of our data.

With the SNRs for all participants and conditions, after averaging the results of the
three presentations per participant, and the activity of the O1 and O2 electrodes, bifactorial
normality and repeated measures ANOVA tests were performed in order to estimate the
effect of the color and frequency variables on the resulting SNRs. Correlation analyses
have also been performed between SNR measures by participant and attention measures
obtained with the CPT-II test, consisting of four of the variables provided: reaction time,
omission errors, commission errors, and general confidence index. Statistical variance and
correlation tests have been performed on the SNR data obtained, with data about attention,
by means of proprietary SPSS software (IBM), version 22.

3. Results

Firstly, an intra-subject bifactorial ANOVA was performed in order to identify which
electrodes were generating a higher SNR. This first step is decisive insofar as, for the
subsequent analyses, we will rely on the two electrodes that generate the higher activity.
The two factors are Lobe, with two levels: occipital and parieto-occipital, and Hemisphere,
with three levels: left, right and medial. The ANOVA results indicate an effect of the Lobe
factor (F (1, 41) = 17.990, p < 0.001, η2 = 0.305) and no effect of the Hemisphere factor.
There is an effect of Lobe, but not of Hemisphere. Thus, the electrodes of the occipital lobe
generated signals with more SNR than those of the parieto-occipital lobe. So, it seems
preferable to work with the occipital ones. Between O1, O2 and Oz there is no statistical
difference. Thus, if we aimed to use only one electrode, we would choose Oz, but as we
aimed to use two for improved performance, we will rely on the average of the electrodes
O1 and O2 to obtain the SNRs that will be used in all the analyses that follow. Figure 4
shows a graph with the SNR averages for the 6 electrodes.
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Figure 4. SNR means for the 6 electrodes measured with 95% confidence intervals.

For the analysis corresponding to the SNRs of the first harmonic, we subjected the 9
experimental conditions to normality tests. All conditions adjust to normal, except C3F1
(low-frequency white) and C3F3 (high-frequency white).
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To test the effect produced by the variables color and frequency on the SNR of the
first harmonic, an intra-subject bifactorial ANOVA on the 9 conditions was performed.
Three levels: red, green and white, were considered for the color factor, and three: 5, 12
and 30 Hz, for the frequency factor. The results show an effect of both the color (F (2, 82)
= 11.718, p < 0.001, η2 = 0.222) and the frequency (F (2, 82) = 15.363, p < 0.001, η2 = 0.273),
as well as an interaction between both of them (F (4, 164) = 7.266, p < 0.001, η2 = 0.151).
Figure 5 shows a graph with the SNR averages for the 9 experimental conditions of the
first harmonic.
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Since there is an interaction between factors, the simple effects have been analysed as
it is shown in Table 3 (color) and Table 4 (frequency).

Table 3. Simple effects of the color variable on SNR for the 1st harmonic, for the three frequencies.

Frequency Colour Analysis

5 Hz F(2, 82) = 15.912, p < 0.001, η2 = 0.28
12 Hz F(2, 82) = 12.17, p < 0.001, η2 = 0.229
30 Hz Not significant

Table 4. Simple effects of the Frequency variable on SNR for the 1st harmonic, for the three colors.

Colour Frequency Analysis

Red F(2, 82) = 17.86, p < 0.001, η2 = 0.303
Green F(2, 82) = 7.973, p = 0.001, η2 = 0.163
White F(2, 82) = 12.177, p < 0.001, η2 = 0.229

Regarding the simple effects of color, at 5 Hz, red and green generated more SNR than
white (p < 0.001 for both), and there were no differences between the first two. At 12 Hz,
red generated more SNR than green (p < 0.001) and white more than green (p = 0.006);
No differences between red and white were found. At 30 Hz, no differences between the
three colors appeared. Regarding the simple effects of frequency, with red, the average
frequency generated more SNR than the low (p = 0.004) and the high one (p < 0.001). The
low frequency also generated more SNR than the high one (p = 0.027). For green, both
the low frequency (p = 0.008) and the medium frequency (p < 0.002) generated more SNR
than the high one, with no differences between the first two. Finally, for white, the average
frequency generated more SNR than the low and high ones (p < 0.001 for both). In addition,
the effect of the color and frequency variables on the SNR of the second harmonic signals
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was analysed. First, the 9 conditions corresponding to the second harmonic were subjected
to normality tests. All conditions were normal, except C1F3 (high frequency red).

Again, a bifactorial intra-subject ANOVA was applied to color and frequency factors,
which showed a significant effect of color (F(2, 82) = 6.033, p = 0.004, η2 = 0.128) and of
frequency (F(2, 82) = 39.232, p < 0.001, η2 = 0.489), as well as an interaction between both
factors (F(4, 164) = 4.107, p = 0.003, η2 = 0.091). Figure 6 shows SNR means for 9 conditions
of the 2nd harmonic.
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Since, again, there was an interaction between factors, the simple effects were analysed
as shown in Table 5 (color) and Table 6 (frequency).

Table 5. Simple effects of color on SNR for the 1st harmonic for the 3 frequencies.

Frequency Colour Analysis

10 Hz F(2, 82) = 5.229, p = 0.007, η2 = 0.113
24 Hz F(2, 82) = 6.514, p = 0.002, η2 = 0.137
60 Hz Not significant

Table 6. Simple effects of the variable Frequency on the SNR of the 1st harmonic in the 3 colors of
the experiment.

Colour Frequency Analysis

Red F(2, 82) = 22.884, p < 0.001, η2 = 0.358
Green F(2, 82) = 23.497, p < 0.001, η2 = 0.364
White F(2, 82) = 35.086, p < 0.001, η2 = 0.461

When considering the simple effects of the color variable, at 10 Hz, both white
(p < 0.001) and green (p = 0.045) generated more SNR than red, with no differences between
the first two. At 24 Hz, white generated more SNR than green (p < 0.001) and no differences
between red and white or red and green were found. And at 30 Hz there are no differences
between the three colors. As for the simple effects of the frequency variable, with red, both
10 Hz (p < 0.001) and 24 Hz (p < 0.001) generated more SNR than 60 Hz, with no differences
between the first two. With green, 10 Hz generated more SNR than 24 Hz (p = 0.001) and
60 Hz (p < 0.001), while 24 Hz also generated more SNR than 60 Hz (p = 0.024). Finally, with
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white, both 10 Hz (p < 0.001) and 24 Hz (p < 0.001) generated more SNR than 60 Hz, with
no differences between the first two. The visual inspection carried out while preprocessing
the data showed that the first harmonic was not always accompanied by the following
ones. Some subjects presented the first harmonic in absence of the second, while others
present the second in absence or with very little amplitude of the first. For this reason, it is
interesting to know the relationship between the activity of the first and second harmonics,
and thus, a correlation analysis between the SNR corresponding to the first harmonic and
that of the second was performed. The two distributions were adjusted to normality and a
high correlation (r = 0.839, p < 0.001) was obtained between the two harmonics (Figure 7
shows the scatter plot).
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To verify the existence of relationships between the SNR of the signals measured
in the SSVEP task and the attentional capacity of the participants, correlation analyzes
were performed between the SNR of the harmonics in the 9 experimental conditions and 4
variables provided by CPT-II. These are the reaction time, omission errors and commission
errors, all three considered to be valid measures of sustained attention capacity, as well as
the general confidence index, a global probabilistic measure indicative of the clinical/non-
clinical status of the participant, in terms of attention and impulsivity disorders. Analyses
showed a negative correlation between SNR of the 1st harmonic signal and reaction time,
for all three colors and only for low frequency (Table 7 indicates the results of correlation
analyses). No correlations were found for the other frequencies and attentional variables.

Table 7. SNR correlations for the three colors at low frequency and reaction time (RT) at CPT-II task.

Colour Correlations

Low frequency red SNR and RT r = −0.453, p = 0.003
Low frequency green SNR and RT r = −0.393, p = 0.01
Low frequency white SNR and RT r = −0.359, p = 0.02

Regarding the results of the questions contained in the participant questionnaire, 100%
of the subjects did not consume alcohol during the day of the test. 42.9% drank coffee,
while 57.1% did not. 7.1% had slept 5 h or less, 64.3% had slept 6 or 7 h, and 28.6% had
slept 8 h or more. Finally, 38.1% took the test from 15:30 to 16:30, 40.5% from 16:30 to 17:30,
and 21.4% from 17:30 to 18:30.

4. Discussion

Several questions related to the possibility of building simple BCI systems that can
be easy to apply and would need little training were addressed in this study. Regarding
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training, the SSVEP paradigm has been chosen, as it rests on a purely sensory neural
process that only requires visual attention in order to work, thus being the paradigm
that needs the least training. For people with disabilities, a multi-electrode setup that
uses electroconductive gel can be very uncomfortable to the point of being impossible.
A setup with a couple of dry electrodes that can be placed on the head—even with the
aid of some kind of tape—may be very promising. We wondered which would be the
best places and electrodes to get a good detection and discrimination of the measured
frequencies. Our results show that the electrodes in the occipital cortex can generate the
highest SNR and all subsequent analyses were based on measurements obtained at the O1
and O2 electrodes.

Next, we focused on the effect of color and frequency on the SNRs obtained. We wanted
to know if white would produce results similar to the ones obtained with red, which would
make it possible to dispense with the risks associated with the latter color. Also, we were
willing to know if high frequencies would produce results equal to or higher than the
low and medium ones, since that outcome would allow us to avoid working in an area
of the spectrum with greater spontaneous brain activity. The ANOVA results for the two
color and frequency factors show a significant effect of the two variables, both for the first
harmonic of the presented frequencies and for the second, as well as an interaction between
the two factors. We analyzed the simple effects and found significantly different effects for
the two harmonics.

4.1. First Harmonic–Color

Focusing on the first harmonic, it can be observed that there are no differences between
red and green for the 5 Hz frequency, while both do produce greater SNRs than white.
In contrast, at a frequency of 12 Hz there are no differences between red and white, and
both produce higher SNRs than green. At a frequency of 30 Hz, no color differences were
found. Authors in [21,29] found that the red color is the one that produces the best results.
Our results, however, suggest that working with a medium frequency—according to the
classification of [19]—white can be used instead of red, while equivalent results can be
obtained in discrimination capacity, on the basis of frequency analysis and SNR. In contrast,
with a low frequency of 5 Hz, the SNR for white decreases significantly, and better results
can be reached with both red and green. One possible reason for this drop would be that
the target would be especially difficult to meet at a low frequency. Low and medium
frequencies are known to cause more visual fatigue [19,28], and white could intensify the
situation in the low-frequency condition.

However, in both cases we could do without the red color and use green at low fre-
quencies as well as white at medium frequencies. For high frequency, there is no difference
between the colors, so both, white and green can be used instead of red. The results
obtained partially support our hypothesis that white would generate results equivalent to
red, and allow us to dispense with it, at least for the medium and high frequencies.

4.2. First Harmonic—Frequency

Regarding the effect of the frequency, our results indicate that the medium frequency
produces higher SNR than the low and high ones, for red and for white, as well as higher
SNR than the high for green. The high frequency produces the lowest SNR of the three for
red and green colors, while no differences were found with the low frequency for white.
With these results, the medium frequency is more favorable, insofar as it produces higher
SNR than low and high in all cases, except with the green color, which is equal to the low.
This result contradicts our hypothesis that high frequency might be more advantageous.
The results mentioned in the review by [19] suggested that the amplitude of SSVEPs
would be greater at medium frequencies, and would decline, to a greater or lesser extent
depending on the color, at low and high frequencies. Our results are along the same lines.
The aforementioned review proposed, however, that high frequencies should be further
investigated, because they could present advantages due to decreasing interference with
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spontaneous brain activity, rather than the low and medium ones, although the amplitude
of SSVEPs is reduced at these frequencies. Our results put the high 30 Hz-frequency at
a disadvantage. Only for white does it look like it can produce an SNR equivalent to
that of the low frequency. This might be explained by the fact that, as has been shown,
the white color at low frequency is at a disadvantage compared to the other two colors.
The explanation for these high-frequency SNR declines could be that, although the noise
activity is lower, the signal level decreases with frequency, as noted in the review, and
perhaps does so in a greater proportion than noise, thereby eventually producing a smaller
SNR amplitude. Therefore, with respect to the frequency of the first harmonic, the results
of the revision are confirmed, and we find no confirmation for the hypothesis that high
frequencies could be advantageous because of their ability to generate a higher SNR than
lower ones.

4.3. Second Harmonic—Frequency and Color

Focusing on the second harmonic, we found that the low frequency produces SNRs
higher than the medium one, with the green (the same for red and white), while the
medium frequency produces higher SNRs than the high one for all colors. Regarding color,
white and green produce higher SNR than red at low frequency, while white along with
red produce higher SNR than green at medium frequency. There are no color differences
at high frequency. In short, the amplitude of the SNR falls with the frequency, a fact that
we have already been able to check with the analysis of the first harmonic, and that now
can be seen in more depth because, for the second harmonic, we started from an average
frequency (10 Hz), for the first level of the variable, and we moved to high frequencies,
both for the second and the third levels of the variable (24 and 60 Hz, respectively). The
amplitude of the SNR also has an advantage for white at low and medium frequencies.
In short, we have found advantages in the second harmonic with the use of white, and
we got the highest SNRs, with the low frequency. It should also be noted that for this
second harmonic, the effect of frequency (η2 = 0.489) is much greater than the effect of color
(η2 = 0.128).

4.4. Correlation between Harmonics

In order to design BCI devices, some studies choose to discriminate only the first
harmonic in classification tasks [43], while others discriminate both the first and the
second ones [44], or even three [39]. Using two harmonics for classification could present
some advantages for decision making. Classification tasks must take decisions about
the presence and identity of harmonics, in order to act on the control system of physical
devices. Thresholds should be set in the SNR to discriminate harmonics, and limitations
on the reliability and robustness of this process can lead to the emergence of false positives.
With our data, we can observe a high correlation between the SNRs produced by the two
harmonics, which indicates that, in general, the presence of one harmonic is accompanied
by the other, although visual inspection shows that not all participants present the second
harmonic along with the first, and there are even times when some participants present
only the second harmonic and not the first one. An advantage of using two harmonics
would, therefore, be to have more information available for decision-making purposes in
classification tasks. The SNR measurement of the first harmonic could be reinforced with
the measurement of the second, thus facilitating decision making.

4.5. Correlation with Attention

Regarding the relationship between attentional capacity and amplitude of the pro-
duced SSVEPs, correlation analyses were performed between the variables corresponding
to the SNR of the 9 experimental conditions and the variables reaction time, omission
errors, commission errors, and confidence index, all of them provided by the CPT-II test.
Moderate correlations were found between Reaction Time and SNR amplitude for all three
colors, at low frequency, while no correlations were found for the remaining conditions
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and variables. The negative sign of the correlations indicates that higher SNRs are related
to lower reaction times, an observation that is consistent with the effect of attention on both
tests. A higher sustained attention capacity would be reflected in lower reaction times in
the CPT-II task, as well as a greater amplitude of the evoked potentials in the SSVEP task
which would, therefore, provide more SNR. It is interesting that this correlation appears
only with low frequency. One possible explanation is that the observation of stimuli that
flicker at low frequency could require more attentional effort and concentration, due to the
fatigue and discomfort caused by them, when compared to stimuli of higher frequencies,
as it has already been mentioned. Participants with a higher attentional ability might be
better prepared to make this effort while maintaining concentration, and would perform
better on the SSVEP task than subjects with less ability. Finally, the information collected
on sleeping hours or consumption of psychoactive substances has not been shown to have
any relation to the SNR obtained.

4.6. Studies Comparison and Limitations

Out of the 12 reviewed references, this study is the only one that worked with the
Enobio interface; 42 subjects were analyzed, while in the other references subjects were
between 1 and 20. Number of electrodes used is two in [38] and [21]. This study analyzed
the signal at the O1 and O2 electrodes. See Table 8 for a summary.

Table 8. Characteristics of adquisition device and electrodes.

Study Interface Electrodes Electrodes Placement Subjects

Present study Enobio 8/2 Cz, O1, O2, PO3, Oz, PO4, Pz 42
Cao et al. 2012 [26] g.USBamp, Guger Technologies 6 POZ, P3, P4, OZ, O1, O2 5
Chu et al. 2017 [21] Biosemi 16/2 POZ y OZ 15

Chen et al. 2019 [45] Neuroscan amplifier 64/9 Pz, POz, Oz, PO3, PO4, PO5,
PO6, O1, O2 12

Floriano et al. 2018 [40] Grass 15LT Amplifier and
NI-DAQ Pad6015 3 OZ, TP9, TP10, A2 12

Yan et al. 2017 [27] g.USBAmp, Guger Technologies 15
O1, Oz, O2, PO7, PO3, POz,

PO4, Cz, P1, Pz, P2, CP3, CPz,
CP4 y Fz

9

Szalowski and Picovici.
2016 [46] Emotiv Epoc Headset 14 AF3, F3, F4, AF4, FC5, FC6, F7,

F8, T7, T8, P7, P8, O1, O2 1

Szalowski and Picovici.
2019 [47] Emotiv Epoc Headset 14

AF3, F7, F3, FC5, T7, P7, O1,
O2, P8, T8,

FC6, F4, F8, AF4
1

Chien et al. 2017 [48]
64-channel Quik-Cap. EEG

amplifier (SynAmps2 model 8050,
Neuroscan)

64/9 P1, PZ, PO3, POZ, PO4, O1,
OZ, O2 10

Tello et al. 2015 [29] BrainNet-36 equipment 12 P7, PO7, PO5, PO3, POz, PO4,
PO6, PO8, P8, O1, O2, Oz 20

Evain et al. 2016 [49] g.USBAmp, Guger Technologies 6 CPz, POz, Oz, Iz, O1, O2 12
Cheng et al. 2001 [38] Two monopolar channels 2 O1, O2 -

Out of 12 references reviewed, 4 use square stimuli, 4 checkerboard and the others have
different stimulus type. The low and medium frequency bands are used in 11 references
and 3 also use high frequency. Monitors, light-emitting diodes (LEDs) and tablets are used
in the screen type. With the square stimulus, the screen used is a monitor. Comparing
the present study with references [21,26] that have the same screen (liquid crystal display
(LCD) monitor) and stimulus type (square), it can be concluded that in the present study a
better response was found in the frequency of 5 Hz for the red and green colour, at 12 Hz
for the red and white colour, and at 30 Hz the three colours had the same response. In [26]
there is a better response of white at low and medium frequencies, followed by the colours
gray, red, green and blue. In [21] the study was done at a low frequency with a good impact
on colour red and orange. See Table 9 for a summary.
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Table 9. Characteristics of stimuli.

Study Frequencies (Hz) Screen Shape Stimuli
Number Colour Stimuli Colour Evaluation

Present study 5,12,30 LCD monitor Square 3
Red (R)

Green (G)
White (W)

5: R = G > W
12: R = W > G
30: R = G = W

Cao et al.
2012 [26]

17.14, 15, 13.33,
12, 10.9, 10, 9.23,

8.57, 8, 7.5
LCD monitor Square Offline:5/

Online:16
Gray, Red, Green,

Blue, White

High performance is
white, followed by gray,

red, green and blue
stimuli.

Chu et al.
2017 [21] 10 Monitor Square 10

Light purple, Dark
purple, blue, Light

green
Dark green, Yellow,

Orange
Red, Brown, White

Violet colour had the least
influence. Red and orange

colour has stronger
impact.

Chen et al.
2019 [45]

Low: 6, 8, 10, 12,
14, 16, 18, 20, 22
High: 24, 26, 28,
30, 32, 34, 36, 38,

40

LCD Monitor Square 1 White Stimulus waveform (sine
or square)

Zhu et al.
2010 [19]

4–50
Low: 1–12

Medium: 12–30
High: 30–60

LCD Monitor Square - White, Black -

Floriano et al.
2018 [40]

5, 10, 15, 20, 25,
30, . . . , 65

Light emitting
diodes (LED) Checkboard 4

Red-Green (R-G)
Green-Blue (G-B)

White

15–25: GR > W
30–40: GB > W

55–65: W > RG = RB

Yan et al.
2017 [27] <15 Monitor Checkboard 2 Red-Green

White-Black

Red-green in low
frequency (<15 Hz)

produced higher power
and recognition accuracy

than black-white.

Szalowski
and Picovici.

2016 [46]
10 LCD monitor Checkboard 11

Blue-White,
Blue-Magenta,

Blue-Red,
Green-White,
Green-Blue,

Magenta-White,
Green-Magenta,

Red-White,
Red-Green,

Red-Magenta.

Cleanest 10 Hz peak:
Red-White. Then

Black-White, Blue-White,
Green-Blue,

Magenta-White. Poor
response of blue-red

Szalowski
and Picovici.

2019 [47]
10 Tablet 12.9” Checkboard 33

RGB
(Red-Green-Blue). 33

combinations: first
color (green, red,

blue, yellow, cyan
and magenta with

white, black), second
color (gray)

Significant signal gain
from the use of colour
flickers compared to

greyscale flickers.

Chien et al.
2017 [48]

32
40

Light emitting
diodes (LED)

Projected
onto a

viewing
screen

2 Red-Green
Red-Blue

Dual-colour lights
flickering (R/G–R/B)

achieved a greater
detection accuracy with

little or no flickering
sensation.

Tello et al.
2015 [29] 8, 11, 13, 15 Light emitting

diodes (LED) Box 4 Red, Green, Blue,
Yellow

Red is less comfortable.
Order of choice was:

green, blue and yellow

Evain et al.
2016 [49] 10, 12, 15 Monitor Circle 3 Green, Orange,

purple

No significant effect of
colour on accuracy was
found neither during

training phase and end
use.

Cheng et al.
2001 [38]

6.45, 7.23, 8.01,
13.87 LCD monitor Block 1 Red, Green, Yellow Stimulus method
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The main limitations of the present work have to do with the use of dry electrodes and
with the age range of the sample. With regard to the first issue, the use of wet electrodes
is likely to improve the signals obtained and the corresponding SNR. However, it should
be noted that, on the one hand, we aim to build BCI systems that are easy to apply, with
few electrodes and dry, so that resourcing to use wet electrodes would take us away from
our target. On the other hand, the effect of using dry or wet electrodes would affect all
conditions and subjects equally. It is not foreseeable, therefore, that differences in activity
analyses and color and frequency effects could occur. Regarding the age, the range in
our sample is quite short and, consequently, we cannot know what effect it might have
on the variable of interest in this study. Other studies should be designed with subjects
of different ages, which opened up the possibility of clarifying this issue. Also, future
research should consider the option of working with multiple mid-band frequencies at the
same time, because, as has been noted, the results of this and other studies suggest that
they might produce the best results. However, it would be necessary to study how many
medium frequencies can be used at the same time, bearing in mind that the proximity
of harmonics in a limited frequency band could make discrimination difficult. Also, in
case the use of low frequencies was forced, it could be considered whether some form of
mindfulness training, such as mindfulness or neurofeedback, could be able to improve the
performance obtained.

Finally, a matter of paramount importance is to continue at the point where it ends
here: to build complete systems with order classification tasks and control of devices, and
to implement the conclusions reached in order to check how they work. In this context,
high frequencies could continue to be studied; while there is evidence that they produce
less SNR, perhaps working in a frequency band in which spontaneous brain activity is
lower would help reduce the number of false positives. All of these issues could be verified
in the practice of complete systems with the measurement of performance, or through the
percentage of successes for each participant in a task.

5. Conclusions

At this point, the conclusions that can be draw from the results of this work are:

1. The average frequency produces the best SNRs, followed by the low, and finally the
high frequencies.

2. Both white and red can be used at a medium frequency, and both green and red at a
low frequency, while at high frequency there are no differences between the colors.

3. Therefore, it is possible to dispense with the use of red in order to avoid possible
associated risks.

4. Detection and discrimination of two harmonics could provide advantages in classifi-
cation tasks, because they support each other, and if it is necessary to work with low
frequencies, attentional ability may be relevant for good results.

The BCI area is relatively new with a still very long way to go. Applying it to im-
proving the quality of life of people with disabilities makes it a field of great humanitarian
interest and potential. That said, for BCI systems to achieve the purpose for which they
are intended, mechanisms are needed to read the intentions of the participants to act on
the various devices with maximum reliability and robustness. Basic studies such as the
one presented here are necessary to correctly understand how to extract useful information
from the neural electrical activity of the participants, so that they are able to interact directly
with the outside world. All this is with the aim of creating solid foundations on which we
can contribute to the improvement of the evolution of this fascinating field of basic and
applied study.
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