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Protein-protein interactions play an essential role in many biological processes, and their perturbation is
a major cause of disease. The use of small molecules to modulate them is attracting increased attention,
but protein interfaces generally do not have clear cavities for binding small compounds. A proposed strat-
egy is to target interface hot-spot residues, but their identification through computational approaches
usually require the complex structure, which is not often available. In this context, pyDock energy-
based docking and scoring can predict hot-spots on the unbound proteins, thus not requiring the complex
structure. Here, we have devised a new strategy to detect protein–protein inhibitor binding sites, based
on the integration of molecular dynamics for the generation of transient cavities, and docking-based
interface hot-spot prediction for the selection of the suitable cavities. This integrative approach has been
validated on a test set formed by protein–protein complexes with known inhibitors for which complete
structural data of unbound molecules and complexes is available. The results show that local conforma-
tional sampling with short molecular dynamics can generate transient cavities similar to the known inhi-
bitor binding sites, and that docking simulations can identify the best cavities with similar predictive
accuracy as when knowing the real interface. In a few cases, these predicted pockets are shown to be suit-
able for protein–ligand docking. The proposed strategy will be useful for many protein–protein com-
plexes for which there is no available structure, as long as the the unbound proteins do not deviate
dramatically from the bound conformations.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Protein-protein interactions (PPIs) are involved in the majority
of diseases, and thus are essential to understand, prevent and cor-
rect pathological situations. Indeed, experimental studies show
that many pathological mutations can affect protein–protein inter-
actions, either by disrupting the entire interaction network of the
mutated protein, or by specifically affecting some interactions
[1–3]. In this context, PPIs emerge as attractive targets for drug dis-
covery, and the field is shifting the focus of target identification
and characterization from individual proteins to interaction net-
works [4]. Recent examples of protein–protein interfaces as poten-
tial therapeutic targets are the mitochondria–endoplasmic
reticulum contact sites (MERCs), which are involved in different
neurodegenerative and metabolilc disorders and cancer [5], or
the disassembling of the trimeric structure of SARS-CoV-2 spike
glycoprotein, which has been proposed as a therapeutic strategy
against COVID-19 [6]. Protein-protein interactions have been suc-
cessfully modulated with different apporaches, such as pep-
tidomimetics [7], peptide aptamers [8], nucleic acid aptamers [9],
or nanobodies [10]. However, modulation of PPIs with small mole-
cules is perhaps the most sought way to contribute to new thera-
peutic developments, and several strategies have been reported for
this purpose [11]. A variety of small-molecule inhibitors of PPIs
have been identified, most of them by optimization of peptides
or natural ligands, fragment-based, high-throughput screening, or
rational design [12–14]. However, the path from a hit to a thera-
peutic drug is challenging. Indeed, few small-molecule PPI inhibi-
tors have already been approved by FDA or are in clinical trials
[2,15].

Computational identification of small molecules that can mod-
ulate PPIs faces important challenges. A major difficulty is the
absence of natural pockets in protein–protein interfaces that are
ready to bind a small molecule. Contrary to standard ligand design,
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which usually aims to target a protein cavity (e.g. enzyme active
site) that is often well defined and characterized from the struc-
tural and even energetic point of view, small-molecule modulators
of protein–protein interactions need to target a protein–protein
interface that does not usually contain obvious cavities [16,17].
Indeed, analysis of available structures of PPI inhibitors bound to
one of the partner proteins shows that these PPI inhibitor binding
sites are less clearly defined than those of enzyme inhibitors [18].
Moreover, in the majority of cases these cavities need to be identi-
fied in the 3D structure of the unbound proteins or in that of the
protein–protein complex, which is even more challenging, since
these pockets may show large conformational rearrangements to
adapt their shape and physicochemical environment to a potential
inhibitor and thus remain mostly hidden in the unbound or bound-
to-protein states. This imposes a real limitation to the use of ligand
identification tools that are based on single protein structures, such
as small-molecule docking or virtual screening, which usually have
a rather limited exploration of the protein conformational space.
Therefore, a dynamic view of protein–ligand recognition is essen-
tial here. Indeed, small-molecule ligands can show a large confor-
mational diversity to maximize complementarity with different
surface pockets, which in turn can exhibit significant variability
in their geometrical and physicochemical environments [19–21].
This claims for the necessity of a thorough conformational analysis
of the interacting molecules when analyzing potential ligand-
binding sites in protein–protein interaction surfaces. In this con-
text, conformational sampling with computational molecular
dynamics (MD) in water and other solvent mixtures has been
reported to identify transient cavities at protein–protein surfaces
that are similar to the known PPI inhibitor binding sites
[16,22,23]. More recently, biased simulations were able to generate
protein fluctuations at specific surface sites leading to PPI-inhibitor
pockets [24].

However, among the different transient cavities generated
across a given protein–protein interface, it could be difficult to
select a suitable cavity for ligand binding, which can be optimally
located to compete with a protein interaction [17,25]. Protein-
protein complex structures usually have large interfaces [26] that
show high geometrical and physicochemical complementarity
[27,28], and the problem is to identify which transient cavity could
be optimal for binding a small molecule capable of disrupting this
network of tightly bound interface side-chains [29–31]. Regarding
this, it has been shown that residue composition of protein–pro-
tein interfaces is not homogeneous. There are usually a few amino
acids (so-called ‘‘hot-spots”) that contribute to most of the free
energy of binding [32]. Targeting such hot-spot residues with a
small-molecule could have significant impact on a protein–protein
interaction, which can be exploited for the discovery of PPI modu-
lators [33]. Indeed, the knowledge of such hot-spots has been
shown to help identifying transient pockets in interleukin-2 com-
plexes [34]. But the identification of hot-spots is not trivial. There
is experimental information on the energetic impact of mutations
for a limited number of cases [35], but for large-scale applications a
variety of bioinformatics approaches have been reported, from sta-
tistical analyses to molecular modeling and energetic calculations.
Several studies found that hot-spots are enriched in arginine, tyro-
sine, and tryptophan, whereas leucine, serine, threonine, and
valine are less frequent [36,37]. The total number of hot-spots in
a complex is proportional to the interface size, and they are usually
found at the center of the contact interface [17,37,38].

Lastly, an important limitation is that the identification of suit-
able cavities and hot-spots at protein–protein interfaces, as above
mentioned, requires the 3D structure of the protein–protein com-
plex and/or the precise location of the interface residues, and this
information is not available for the majority of interactions. Indeed,
at the Protein Data Bank (PDB) [39] there are available 3D
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structures for only around 7,500 interactions between human pro-
teins (Interactome3D, https://interactome3d.irbbarcelona.org/,
2020_1 version) [40], a small fraction of the estimated total num-
ber of PPIs in human, ranging between 130,000 [41] and 650,000
[42] interactions. In this scenario, protein–protein complexes with
no available structure can be computationally modelled by a vari-
ety of template-based modeling [43,44] and in silico docking
approaches [45–52]. Among the docking methods using energy-
based scoring, pyDock [53] has shown excellent predictive results
in the most recent CASP-CAPRI and CAPRI assessment experiments
[54,55], and can also be used for the identification of interface resi-
dues and hot-spots [56,57]. Actually, this is one of the fewmethods
that can identify hot-spots on two specific interacting proteins
without requiring the 3D structure of the protein–protein complex.
An alternative approach is computational solvent mapping, which
can identify druggable hot-spots in protein–protein interfaces on
unbound protein structures with minimal side-chain sampling
[58].

Here, we have systematically explored the application of these
docking-based interface and hot-spot predictions to the selection
of transient cavities generated by local conformational sampling
with MD at protein–protein interfaces. The results show that com-
putational hot-spot predictions can help to identify PPI-inhibitor
binding sites on protein surfaces in cases in which the structure
of the protein–protein complex is not available.
2. Materials and methods

2.1. Benchmark set

Benchmark cases were extracted from structural databases of
PPIs with known small-molecule modulators: TIMBAL version 1
[59] and 2P2I version 1 [60]. For each PPI, we defined the receptor
as the protein that was known to bind the PPI inhibitor, and the
ligand as the partner protein in the PPI. We selected a total of nine
non-redundant PPIs with available 3D structure for the complex
between the small-molecule modulator and one of the interacting
proteins (the receptor), as well as for the protein–protein complex
and for the entire unbound proteins (Table 1; see Table 1 SI for
extended information). We defined redundant PPIs as those in
which both receptor and ligand molecules had sequence iden-
tity � 30% with respect to the corresponding receptor and ligand
molecules in another PPI. A larger dataset of 14 complexes with
known PPI inhibitors and available structure for the unbound pro-
teins has been recently reported [61], but there are two major dif-
ferences with our set here: in that study a larger sequence identity
threshold (>95%) was applied to remove redundancies, and we
have removed from our study cases in which the structure of the
unbound entire protein (not just a peptide) is not available.

Six of the nine benchmark cases are related to human signaling
pathways involved in cell growth and death. Bcl-xL plays a relevant
role as a regulator of apoptosis, since its interaction with Bak acti-
vates the mitochondrial apoptotic process [62]. Several inhibitors
are known for this interaction, many of them with available struc-
ture for the protein-inhibitor complex (Table 1 SI). The best known
inhibitor is ABT-737 (813.4 Da), with IC50 of 9 nM, which has been
approved by FDA for the treatment of cancer [63,64]. X-linked inhi-
bitor of apoptosis protein (XIAP) is also an important regulator of
apoptosis. XIAP BIR3 domain binds caspase 9 to prevent the forma-
tion of its active dimeric form, thus inhibiting its enzymatic apop-
totic initiator activity. XIAP activity is inhibited by binding of Smac
protein, which promotes apoptosis [65,66]. Several small mole-
cules are known to target XIAP, which can inhibit specifically the
interaction with caspase (e.g. PubChem CID: 5388929; 534.7 Da;
Kd 5 nM) or with Smac (e.g. BI6; 494.6 Da; Ki 67 nM). MDM2
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Table 1
Structural data of PPIs with known modulators (PDB codes and chain IDs).

PPI protein–protein complex PDB receptor PDB ligand PDB PPI-inhibitor PDB

Bcl-xL/Bak 1BXL_A:Bc 1R2D_Aa 2YV6_A 2YXJ_A:N3C
HPV E2/E1 1TUE_B:A 1R6K_Aa (2V9P_A)b 1R6N_A:434
IL-2/IL-2R 1Z92_A:B 1M47_A (1Z92_B)b 1PY2_A:FRH
HIV Integrase/LEDGF 2B4J_A:D 3L3U_A 1Z9E_A 3LPU_A:976
MDM2/p53 1YCR_A:Bc 1Z1M_A 2K8F_B 4ERF_A:0R3
XIAP BIR3/Caspase 1NW9_A:B 1F9X_A 1JXQ_A 1TFT_A:997
XIAP BIR3/Smac 1G73_D:A 1F9X_A 1FEW_A 2JK7_A:BI6
TNFR1A/TNF-b 1TNR_R:A 1EXT_A (1TNR) _A b 1FT4_A:703
ZipA/FtsZ 1F47_B:Ac 1F46_A (2VAW_A)b 1S1J_A:IQZ

a Missing loops were built with Modeller 9v10.
b Structural model built with Modeller (template PDB ID is indicated in brackets).
c The structure of the complex between the receptor protein and the ligand protein is not available, but there is structure for a protein-peptide complex (while the structure

for the entire unbound ligand is available).
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inhibits p53 mediated cell cycle arrest and apoptosis by binding its
transcriptional activation domain, which also promotes the nuclear
export of p53 [67]. A known inhibitor is 0R3 molecule (478.4 Da),
with IC50 1.1 nM. Another benchmark case involved in apoptosis is
the functional homo-trimeric form of TNFR1A (also known as
TNFR1; gene TNFRSF1A) bound to the homo-trimeric cytokine
tumor necrosis factor-beta TNF-b (also known as TNFB; gene
LTA), which also binds to other proteins, such as TNFBR (also
known as TNFR2; gene TNFRSF1B) or HVEM (gene TNFRSF14)
[68]. A known inhibitor for this interaction is molecule 703 (Pub-
Chem CID 4470566, 456.5 Da), with IC50 270 nM. Another case
involving cell growth and death is ZipA, an essential cell division
protein that binds FtsZ to stabilize it [69]. Several inhibitors are
known for this interaction (e.g. WAC, IQZ, WAI, or CL3, with molec-
ular weights ranging from 240.3 to 423.9 Da). Biological activity is
only available for WAI (Kd 12.0 lM) and CL3 (Kd 83.1 lM).

The remaining three benchmark cases are related to viral infec-
tion and immune response. HIV integrase binds human lens
epithelium-derived growth factor (LEDGF), a transcriptional coac-
tivator involved in neuroepithelial stem cell differentiation and
neurogenesis, which facilitates the virus replication and survival
[70]. Several inhibitors are known for this interaction (Table 1
SI), being compound 976 (353.8 Da) the most active (IC50
1.37 lM). Another case is the E2 from human papillomavirus type
11 (HPV-11), which plays a role in the initiation of viral DNA repli-
cation, and interacts with E1 to improve the specificity of E1 DNA
binding activity [71]. There is only one inhibitor for this interaction
with available complex structure (PDB ID: 1R6N, molecule 434;
PubChem CID 5287508), with Kd 40 nM. This is a large molecule
(608.5 Da) formed by several aromatic and carbonil groups, 2 chlo-
ride groups, and a thiadiazole group. Another case is Interleukine-2
(IL-2), which acts as a central regulator of the immune response, by
binding to the hetero-trimeric IL-2 receptor (IL-2R) and stabilizing
this functional oligomeric state [72]. A known inhibitor for this
interaction (IC50 60 nM) is FRH (662.56 Da), also quite a large
and flexible molecule.
2.2. Surface cavity detection

We applied fpocket [73] (http://fpocket.sourceforge.net/) to
identify surface cavities on unbound protein structures and MD-
based conformational models (see next section). We analyzed the
pockets predicted by fpocket, ranked according to the provided
score, which are based on five descriptors: the normalised number
of alpha spheres, the normalised mean local hydrophobic density,
the normalised proportion of apolar alpha sphere, the polarity
score, and the alpha sphere density [73]. In addition, the druggabil-
ity score provided by fpocket, a multiparametric descriptor previ-
ously trained as a bimodal predictive model on available
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structures of known druggable and nondruggable proteins [74],
was also used to filter the cavities predicted on MD conformers
(see Results). Volumes of the pockets were computed by ICM
browser (www.molsoft.com) using the coordinates of the pocket
as provided by fpocket.

To evaluate the performance of fpocket for pocket detection, the
predicted pocket residues (based on the list of pocket atoms pre-
dicted by fpocket) were compared to those in the reference pocket
of the complex-inhibitor complex structure (i.e. protein residues
within 5 Å from the inhibitor), and different evaluation metrics
were calculated: precision or positive predicted value (PPV), and
sensitivity or coverage (COV) (eq. (1)). We usually defined as cor-
rect predictions (hits) those ones with PPV �40% and COV � 40%
with respect to the real position of the residues in the inhibitor
pocket.

PPVi ¼ TPi

TPi þ FPi
Coverage ¼ TPi

TPi þ FNi
ð1Þ

where for each predicted pocket i, true positives (TP) are the pre-
dicted pocket residues that are also found in the reference pocket,
false positives (FP) are the predicted pocket residues that are not
found in the reference pocket, and false negatives (FN) are the real
residues in the reference pocket that are not found in the predicted
pocket.

2.3. Molecular dynamics and transient cavities detection

For each analyzed protein structure, ten nanoseconds (ns) of
molecular dynamics (MD) simulations were carried out using
AMBER10, with the purpose of evaluating whether fast local con-
formational sampling could be useful to generate transient cavities
suitable for protein–protein inhibitors. The unbound structures
were prepared with pyDock setup module to use the same files in
MD and later in pyDock docking, as described in next section
[53]. In some cases, protein structure from available PDB (Table 1)
was modified for more realistic conditions (see details in Table 1
SI). This setup step removed all hydrogen atoms. The topology
and coordinates of the receptors were obtained by using Force
Field 99 and general AMBER force field (GAFF). The water mole-
cules were added keeping their coordinates as in the x-ray struc-
tures. A fast minimization with cartesian restraints (100 steps)
was performed to remove severe clashes, followed by minimiza-
tion with explicit solvation (100 steps). Each receptor was embed-
ded in a solvated system within a periodic truncated octahedron
box (water solvent TIP3P model), and 150 mMNaCl was added into
the system. Lastly, a fast solvent minimization (1000 steps) was
performed with a restraint mask of waters and ions. Then equili-
bration was performed at constant volume, using a 12 Å non-
bonding cutoff. The equilibration process started by running
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120 ps with protein constraints (50 kcal/mol�Å2, from 0 to 300 K)
using Langevin dynamics (LD). The next 40 ps restraints were
reduced from 50 to 25 kcal/mol�Å2, and the next 40 ps from 25
to 10 kcal/mol�Å2 at constant pressure. Finally, restraints were
reduced to 5 kcal/mol�Å2 including backbone atoms, followed by
20 ps with backbone restraints (1 kcal/mol�Å2), and 60 ps with
no restraints using LD, at 300 K. After equilibration, 10 ns MD were
performed at 300 K at constant pressure, using explicit solvation
(in a periodic truncated octahedron box of TIP3P water model),
with a collision frequency of 0.2 ps�1 excluding bonds involving
hydrogen atoms, and 2 ps of relaxation time. Then for practical
purposes, 1000 conformational states were systematically ran-
domly selected out of the 10,000 snapshots from MD trajectories
(starting from first MD snapshot, every 10th one was taken), and
they were analyzed using fpocket, focusing on the best-scoring
pockets predicted for each of these conformations.

2.4. Docking simulations and hot-spot predictions

We applied pyDock docking and scoring method [53] to the
unbound structures of the benchmark cases analyzed here. This
docking approach consists in a two-step procedure in which dock-
ing orientations are generated with the FFT-based approach ZDOCK
2.1 [75], and they are later scored by an energy-based scoring func-
tion, composed of desolvation, electrostatics and van der Waals
energy terms. The results of docking were used to compute Nor-
malized Interface Propensity (NIP) values for every protein residue,
which describes the normalized (expected over random) frequency
in which a given residue is found at the docking interface in the
best-ranked 100 docking orientations, as previously reported
[56,57]. The predicted hot-spots are defined as those residues with
NIP� 0.2. This cutoff was previously found to provide a precision of
around 70% for the prediction of interface hot-spots on unbound
structures, as benchmarked in a set of experimental hot-spot val-
ues [56,57]. The interacting proteins used in docking were defined
according to the biological assembly of the available protein–pro-
tein complexes (Table 1 SI). All cases are hetero-dimeric com-
plexes, except the hetero-tetrameric HIV integrase/LEDGF
complex, which had 2A:B2 stoichiometry, with two symmetric
hetero-dimeric interfaces, and was thus treated as hetero-dimer.
According to this, all unbound proteins were treated as monomers
independently of their biological unit annotation. We used ICM
browser (http://www.molsoft.com) to visualize structures, com-
pute atom distances, select atoms within a given distance, align
and superimpose structures.

2.5. Protein-ligand docking

Protein-ligand was performed by Glide XP [76] and rDock [77],
in order to evaluate the suitability of the identified inhibitor pock-
ets for their use in docking. Schrödinger software platform (https://
www.schrodinger.com/) was used for the preparation of proteins
with Protein Preparation Wizard [78], and that of ligands with Lig-
Prep [79] The OPLS2005 [80] forcefield was used for the prepara-
tion of ligands in Glide. The same prepared protein and ligand
structures were used for the docking executions with rDock.
Receptor grids were generated from the inhibitor pockets (either
the predicted ones or taken from the protein-inhibitor complexes).
In rDock, the center of mass of the residues in a given pocket was
used to set the center of the docking box whose side length was
defined as the distance between this center to the farthest atom
of the pocket, plus 5 Å (radial distance). The side of the cubic
OUTER box in Glide was defined as twice the side length of the
docking box in rDock, while the INNER box in Glide was kept at
the default value (10 Ȧ3).
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3. Results

3.1. PPI inhibitor pockets are more difficult to identify than general
ligand pockets

Fpocket was previously reported to detect 94% and 92% of the
pockets within the three best-ranked predictions (i.e. top 3 per-
formance) on the holo and apo proteins, respectively, in a set of
150 protein–ligand complexes [73]. In order to confirm this per-
formance on protein–ligand complexes, and compare it with that
on protein-PPI inhibitor complexes, we applied here fpocket on
the bound proteins (holo) of two different datasets: the first one
composed of 102 protein–ligand complex structures from DUD-
e database (http://dude.docking.org/) [81], and the second one
with 264 non-redundant protein-PPI inhibitor complex structures
from TIMBAL and 2P2I databases (involving 26 different proteins).
For comparison purposes, we initially used the same evaluation
metrics as in above mentioned study [73], where the Pocket
Picker Criterion (PPC) defined a correctly predicted pocket as that
one in which its center of mass lies within 4 Å from at least one
atom of the ligand. Using this criterion, a correctly predicted
pocket (hit) was found within the three best-ranked predictions
in 89% of the DUD-e cases and in 69% of the 2P2I/TIMBAL cases
(Fig. 1A). The performance on DUD-e cases is similar to the
results described in the above mentioned study (94%). When ana-
lyzing only the best-scoring predicted pocket, success rate is 70%
for DUD-e and 43% for 2P2I/TIMBAL (Fig. 1A). We note that the
top 1 performance thus obtained here for DUD-e is slightly worse
than the one obtained in the above mentioned study for the lar-
ger set of 150 cases (83%) [73].

Since we were concerned that the PPC metrics to define correct
pockets might not be too restrictive, we used other evaluation met-
rics like the PPV and coverage of the predicted pocket residues
with respect to the reference ones. As can be seen in Fig. 1B, the
large majority of pockets considered good by PPC have PPV and
coverage over 40% (both in protein-ligands and in protein-PPI inhi-
bitors). Protein-ligand pockets detected by PPC have better cover-
age with respect to the reference pockets. Based on the above
findings, when using this criterion to define a correctly predicted
pocket (PPV and coverage � 40%), the top 1 success rate for
DUD-e and 2P2I/TIMBAL is 68% and 53%, respectively, while the
top 3 success rate is 82% and 74%, respectively. This follows the
same trends as the PPC criterion, and confirms that the PPI inhibi-
tor sites are more difficult to identify than the ligand ones, even
when using the protein–ligand and -inhibitor complex structures
for test purposes. Previous studies discussed about the importance
of the pocket size and accessibility [11,82]. In this context, PPI inhi-
bitor binding sites tend to be large and flat, making it difficult to
identify them with methods initially developed to detect deep cav-
ities. Indeed, the predicted ligand cavities have in average higher
fpocket scores than the predicted inhibitor cavities.

To explore the possibility that perhaps in the unsuccessful cases
fpocket might have found the correct PPI inhibitor pockets but
with poorer score (i.e. ranking > 3), we computed the predictive
performance when considering all the predicted pockets for each
case, independently of their ranking. In this case, fpocket can iden-
tify a correct pocket (i.e. PPV and coverage � 40% with respect to
the reference pocket) in 86% of the DUD-e cases, and in 77% of
the 2P2I/TIMBAL cases, which is similar to the above shown top
3 performance, thus indicating that no additional correct pockets
are found beyond the top 3 predicted pockets in the unsuccessful
cases. To further evaluate potential problems in the scoring of
PPI inhibitor cavities, we have restricted the predicted pockets to
only those at the protein–protein interface (predictions were made
on the protein coordinates from the protein–ligand or -inhibitor
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Fig. 1. Prediction of protein–ligand and protein-PPI inhibitor pockets by Fpocket. (A) Performance of fpocket on predicting known protein–ligand (DUD-e database) and
protein-PPI inhibitor (TIMBAL/2P2I databases) pockets, considering the best-rank (orange) or 3 best-ranked (blue) predictions. (B) Positive predicted value (PPV) and coverage
(COV) of best-scoring predicted pockets on DUD-e (left) and TIMBAL/2P2I (right) databases. The plot shows the best-scoring predicted pocket for each case, with those
considered a hit by Pocket Picker Criterion (PPC) represented as * symbol. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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complexes, and no information from the protein–protein com-
plexes was used until this last test). When selecting only the pre-
dicted pockets at the protein–protein interface, the top 1
predictive performance for DUD-e and 2P2I/TIMBAL cases improve
up to 79% and 67%, respectively, and the top 3 predictive perfor-
mance up to 86% and 77%, respectively, obtaining values more sim-
ilar to those when considering all predicted pockets independently
of the ranking. This shows that knowledge of the protein–protein
interface might be important to complement fpocket scoring and
improve the predictions.

In addition to the above discussed difficulties in detecting PPI
inhibitor cavities, there are also problems in the assessment of
predictions. Perhaps the definition for a successful predicted
pocket used in traditional ligand sites is not optimal for PPI inhi-
bitor cases. Fig. 1 SI shows an example of a predicted pocket that
englobes the real PPI inhibitor site. Therefore, it has good cover-
age, but its PPV is slightly below the cutoff (40%) used to define
a correct prediction (PDB ID: 3VNG). In the same figure, there is
another case in which PPC indicates unsuccessful prediction, but
it is assessed as correct according to PPV and coverage criteria
(PDB ID: 3U5L).
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3.2. Identifying PPI inhibitor pockets on unbound proteins

After the above described general test on protein–ligand and -
inhibitor complex structures, we aimed to perform a more realistic
benchmark test by applying fpocket to identify surface cavities on
the unbound proteins (apo) of the PPIs of our benchmark set
(Table 1) and compare them with the reference pocket in the
protein-PPI inhibitor complex. In most of the benchmark cases,
there were several available structures with the protein bound to
different inhibitors (Table 1 SI). For the initial evaluation of the pre-
dictions, we selected as reference the structure of the complex
with the inhibitor with the highest experimentally reported inhibi-
tory potency, based on the half maximal inhibitory concentration
IC50, which indicates the concentration of compound required to
inhibit the target protein–protein interaction by half, or on the
inhibitory constant Ki. If these values were not available, the selec-
tion criteria was based on the dissociation constant Kd. All these
values were taken as annotated in the PDB. As an example,
Fig. 2A shows the best-scoring pocket predicted by fpocket in the
unbound IL-2 structure, which is not located near the PPI inhibitor
with the best IC50, not even at the known protein–protein inter-



Fig. 2. Predicted pockets in IL-2 protein using different conformational states. IL-2 protein is shown in grey surface, with IL-2R partner protein in blue ribbon, and the
inhibitor with the best IC50 in green. (A) Predicted pockets (best-scoring in orange, the other one in yellow) on the unbound IL-2. (B) 10 best-scoring pockets predicted on MD
side-chain conformers generated from unbound IL-2 (best-scoring pocket in orange, the others in yellow). (C) 10 best-scoring pockets from MD, restricted to the known
protein–protein interface (best-scoring pocket in orange, the others in yellow). (D) 10 best-scoring pockets from MD, containing � 3 predicted hot-spots (best-scoring pocket
in orange, the others in yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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face. A second pocket is also predicted for this case, which is not
located near the inhibitor site either (Fig. 2A SI). The predicted
pockets with the best fpocket score for all the cases are shown in
Fig. 3 SI. Only in one case (11% of the benchmark set; see Table 2)
we can find a correctly predicted pocket (i.e. PPV and cover-
age � 40%) (Fig. 4A1 SI). The predicted surface cavities have an
average volume of 396 Å3, with values ranging from 193 Å3

(TNFR1A) to 599 Å3 (HIV Integrase). In the only successful case,
HPV E2, the predicted cavity has a volume of 412 Å3, close to the
average value. For comparison purposes, if we apply fpocket to
the proteins bound to these PPI inhibitors (holo), a correctly pre-
dicted pocket is found in 33% of the cases (Fig. 4B SI; Table 2),
which is better than when using the unbound proteins (11%), but
still a poor performance that is comparable to that obtained on
Table 2
Success rates for the best-ranked predicted PPI inhibitor pocket by fpocket on
different selected protein structures and filtering conditions.

Protocol Reference on inhibitor
with best IC50

Reference on all
inhibitors

Unbound protein 11% 11%
Protein bound to inhibitor 33% 33%
Protein bound to protein 33% 33%
MD side-chain conformers 11% 11%
MD side-chain

conformers + interface
56% 67%

MD side-chain
conformers + hot-spots

44% 56%
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TIMBAL/2P2I databases described in the previous section (43%).
Interestingly, the predicted inhibitor pockets in the holo structures
have an average volume of 352 Å3, similar to the predicted surface
cavities in the unbound structures, with values ranging from
132 Å3 (TNFR1A) to 659 Å3 (Bcl-xL). These predictive results con-
firm that PPI inhibitor pockets are not easy to identify, despite
using the holo protein structures, and that they are even more dif-
ficult to predict on the unbound proteins. Nevertheless, to disre-
gard the possibility that the inhibitor with the best IC50 might
not be the most appropriate to be predicted, we compared the pre-
dicted pockets on the unbound proteins with respect to all the
other known inhibitors for each system, and the predictive results
do not improve (Fig. 4C SI; Table 2). Finally, we have also explored
the pocket prediction on the proteins taken from the protein–pro-
tein complexes, to check whether they adopt some conformations
that could facilitate pocket prediction, but while some cases can be
now correctly predicted, the overall predictive rate (33%) is the
same as when using the holo proteins bound to the inhibitors
(Fig. 4D SI; Table 2). Binding energy calculations on these pro-
tein–protein complex structures show tight binding in most of
the cases, with high shape (according to van der Waals values)
and electrostatic complementarity (Table 2 SI), which can explain
the difficulties in finding suitable pockets within the protein–pro-
tein interfaces. We should note that here, despite using the pro-
tein–protein complex structure for the predictions, we have not
restricted the predicted pockets to be located only at the interface
region, since our goal was to evaluate the impact of the different
conformational states on the predictions.
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Overall, these results confirm that x-ray protein structures (ei-
ther in their unbound states or from protein-protein complexes)
do not have surface cavities that can be easy to identify and
exploited as binding sites for protein–protein inhibitors. All this
suggests that we need to consider conformational variability in
the protein structures in order to identify suitable pockets for PPI
inhibitors.

3.3. MD simulations can generate transient PPI inhibitor pockets

Molecular dynamics (MD) simulations were previously
reported to identify transient pockets in unbound protein surfaces
known to be involved in protein–protein interactions, which were
not present in the crystal structure of the unbound proteins [16].
We wanted to apply this strategy to the proteins of our benchmark
set in order to generate transient pockets that could be suitable for
inhibitor binding. With this purpose, we performed local confor-
mational sampling at the side-chain level by generating 10 ns
MD trajectories from the unbound protein structures, from which
1,000 conformers were generated (see Methods). Fig. 5 SI shows
the evolution of the root mean square deviation (RMSD) for the
Ca atoms of protein and inhibitor binding residues with respect
to the starting unbound structures along the MD trajectories.
Fig. 1 SI shows root mean square fluctuation (RMSF) per residue,
computed by CPPTRAJ implemented in AmberTools suite [83].
Binding residues do not seem to be clearly different in their
dynamic behaviour with respect to the rest of the protein. Then
we used fpocket to identify surface cavities in all these conformers.
For each conformer, the pocket with the best fpocket score was
selected, as we did for the unbound, holo, or protein–protein com-
plex single structures, but in this case, since we considered all the
1,000 conformers, we obtained a total of around 1000 predicted
pockets per protein (for a few conformers, no pocket was pre-
dicted). The fpocket score indicates the capacity of the pocket to
bind a small-molecule [73], but it does not include the druggability
of the pocket. Thus, we took the best-scoring pocket from every
conformer, and the resulting set of pockets was filtered to keep
only the 100 pockets with the best druggability score as defined
by fpocket. Finally from these, we selected the pocket with the best
fpocket score. As an example, Fig. 2B shows the 10 best-scoring
pockets predicted from the MD-based conformers generated from
the unbound IL-2 (predicted pockets detailed in Fig. 2B SI). The
best-scoring pocket (in orange) is not located at the PPI inhibitor
site, but some of the top 10 pockets are nearby. The performance
of pocket prediction on MD-based conformers for all the bench-
mark cases is shown in Fig. 4E SI, in comparison with all known
PPI inhibitors. Correctly predicted pockets are found only in 11%
of the cases (Table 2), yielding the same performance as with the
unbound protein structures. Despite being able to generate suit-
able pockets with MD-based local conformational sampling in
some of the cases (see for instance Fig. 2B SI), they are not identi-
fied with the default fpocket scoring tools.

The problem is that the transient cavities are found accross the
entire protein surface, while we are mostly interested on those
cavities at the protein–protein interfaces (apart from possible
allosteric effects, one would expect that a small-molecule modula-
tor would affect a PPI only if it is bound at the interface). Therefore,
we analyzed whether knowing the location of the protein–protein
interface could help to improve the predictions. This information is
known in the cases of our benchmark, so we filtered the MD-based
cavities to select only those in which � 40% of the pocket residues
are located at the protein–protein interface (defined as those resi-
dues within 5 Å inter-atomic distance from the partner protein).
The impact of including the information of the protein–protein
interface can be visualized in our IL-2 example, in which now the
best-scoring pocket is correctly predicted (Fig. 2C; see more detail
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in Fig. 2C SI). The benefit of including the protein–protein interface
information is clear for many of the benchmark cases: under this
assumption, the best-scoring pocket would be correctly located
at a known inhibitor binding site in 67% of the cases (Fig. 4F SI;
Table 2). This indicates that, althoughmolecular dynamics can gen-
erate transient binding pockets that could be suitable for binding
PPI inhibitors, such pockets are still difficult to identify unless we
know the protein–protein interface location. The main difficulty
here is that the 3D structure of the complex is available only for
a small fraction of all possible protein–protein interactions (see
Introduction), which limits its applicability in real cases. In this
context, we will analyze in the next sections whether computa-
tional prediction of protein interfaces and structural modeling of
protein–protein interactions can help to identify the correct pock-
ets among the many ones predicted from MD side-chain conform-
ers in cases in which the structure of the protein–protein complex
is not available.

3.4. Computational docking can identify interface and hot-spot
residues

As we discussed above, in realistic situations in which the loca-
tion of the protein–protein interface is not known, it would be
helpful to rely on computational tools for the prediction of the
interface residues. Among the several reported methods, we have
explored here the use of pyDock, which can identify interface
and hot-spot residues on unbound proteins based on docking cal-
culations (see Methods). First, we tested the capabilities of this
method for the prediction of interface hot-spots in our benchmark
set. For this, docking orientations were generated with pyDock
from the unbound proteins for each target PPI, and the 100
lowest-energy orientations were used to calculate NIP values for
all residues in each interacting protein of the PPI, as previously
described [57]. Fig. 3 shows the docking-based NIP values for the
unbound proteins known to bind PPI inhibitors in the benchmark
set. The predicted hot-spot residues are defined as those with
NIP � 0.2 (see Methods). The number of predicted hot-spots in
the unbound proteins of our benchmark set ranges from 0 (ZipA)
to 21 (HPV E2) (Table 3). As can be seen in Fig. 3, in many of the
cases the predicted hot-spot residues are located at the interface
with the partner protein in the target PPI. We have quantified in
Table 3 the number of predicted hot-spot residues that are located
at the known protein–protein interfaces (i.e. within 10 Å from any
atom of the partner protein). In general, 55% of the predicted hot-
spots are located at the protein–protein interface. Moreover, in six
out of the nine benchmark cases, more than half of the predicted
hot-spot residues are located at the protein–protein interface.

For some of the predicted hot-spot residues, there is experimen-
tal evidence in the literature. For instance, Bcl-xL F146 residue is
predicted here as a hot-spot, which is confirmed in previous exper-
imental studies [84–86]. Several hot-spots have been experimen-
tally identified for E2 (Y19, Q24, E39, Y99 and E100) [87], and we
successfully predict two of them (Y19 and E100). In IL-2, we suc-
cessfully predict three hot-spots (R38, F42 and L72) among the
experimentally identified ones (K35, R38, F42, K43, E62 and L72)
[88]. Since the docking-based method generated hot-spot predic-
tions on both interacting proteins for a given target PPI, we could
also checked the predictive performance on the partner protein
(i.e. not the one binding the PPI inhibitor): in some cases, we
observed that the interface hot-spots in the partner protein were
successfully predicted (data not shown), although they were not
used here for the purpose of identifying PPI inhibitor binding sites.

Regarding the type of predicted residues, we find here, in agree-
ment with previous observations, that NIP values are more likely to
predict as hot-spots the aromatic phenylalanine, tyrosine and tryp-
tophan residues, the polar lysine, arginine, glutamic acid and thre-



Fig. 3. Docking-based hot-spot predictions. Protein residues are colored by NIP value, resulting from the docking calculations on the unbound proteins known to bind PPI inhibitors.
For comparison, the partner protein is shown in green ribbon. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 3
Docking-based prediction of hot-spot residues compared to real interfaces.

Protein target Predicted hot-spots (HS) Predicted HS
located at
protein–protein
interfaces (%)1

Bcl-xL 9 7 (78%)
HPV E2 21 16 (76%)
IL-2 4 4 (100%)
Integrase 16 0 (0%)
MDM2 7 7 (100%)
XIAP BIR3/caspase 18 10 (56%)
XIAP BIR3/smac 19 11 (58%)
TNFR1A 14 4 (29%)
ZipA 0 0 (0%)

1 Predicted hot-spot residues located within 10 Å from any atom of the partner
protein in the protein–protein complex structure (in brackets, percentage with
respect to the total predicted hot-spots).

M. Rosell and J. Fernández-Recio Computational and Structural Biotechnology Journal 18 (2020) 3750–3761
onine residues, and the non-polar leucine residue. NIP values are
less likely to predict as hot-spots the non-polar methionine, gly-
cine, valine or alanine residues, and the polar glutamine residue.
Fig. 4. Assessment of the identification of PPI inhibitor pockets by integrating MD
simulations and docking-based hot-spot predictions. PPV and coverage of the best-
scoring predicted pocket on the MD-based side-chain conformers, which contain at least
three predicted hot-spots.
3.5. Predicted hot-spot residues are critical to identify PPI inhibitor
pockets

We found in previous sections that the use of information on
the protein–protein interface is essential to reduce the number
of candidate pockets from MD conformers and thus identify the
correct pockets with higher precision. Despite this information
is not available in the majority of protein–protein complexes,
we have studied here whether using the predicted hot-spots from
docking simulations could help to improve the identification of
the predicted pockets. In our example protein IL-2, when the
pockets predicted on MD side-chain conformers from the
unbound state are filtered to select only those that contain at
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least three predicted hot-spot residues, the 10 best-scoring pock-
ets are located at the protein–protein interface, and the best-
scoring one is correctly predicted as close to the PPI inhibitor
binding site (Fig. 2D; see more detail in Fig. 2D SI). These results
are much better than those obtained directly from the MD con-
formers (Fig. 2B; Fig. 2B SI), and similar to the ones obtained
when using the location of the known protein–protein interface
(Fig. 2C; Fig. 2C SI). This strategy of selecting only MD-based pre-
dicted pockets containing � 3 predicted hot-spots improved the
general predictive performance for the benchmark set, obtaining
correctly predicted pockets in 56% of the cases (Fig. 4; Table 2).
The transient cavities predicted with this strategy have an aver-
age volume of 648 Å3, with values ranging from 222 Å3 (IL-2)
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to 998 Å3 (Bcl-xL). The volume of the transient cavities in the suc-
cessful cases showed a variety of values: 206 Å3 (MDM2), 222 Å3

(IL-2), 752 Å3 (XIAP BIR3, with respect to smac binding) and
770 Å3 (XIAP BIR3, with respect to caspase binding). The predic-
tive performance obtained by using the information from the pre-
dicted hot-spots is comparable with that obtained when using
information of the known protein–protein interface (67%, see Sec-
tion 3.4), which suggests that docking calculations with pyDock
can be a helpful tool to locate PPI inhibitor binding sites in the
absence of structural information on the protein–protein inter-
faces. For comparison, we revisited the pocket prediction on the
unbound structures, where the selection of pockets based on
the best fpocket score was correct only in 11% of the cases (see
Section 3.2). We tested on the unbound structures the above
mentioned strategy of selecting those pockets containing � 3 pre-
dicted hot-spots, independently of their fpocket scores, but the
results did not improve (11% success rate). This clearly shows
that both MD-based side-chain conformational sampling and
hot-spot predictions are required for an optimal predictive
strategy.

3.6. Assessing the use of the predicted pockets in protein–ligand
docking

As above discussed, we have devised a protocol integrating local
conformational sampling with MD simulations and docking-based
hot-spot predictions to identify transient cavities on protein–pro-
tein interfaces suitable for binding of small molecules. We already
showed that this approach is able to predict the location of known
PPI inhibitor binding sites in 56% of the cases of the benchmark set.
Now, we should evaluate whether these predicted pockets are suit-
able for binding of PPI inhibitors, and can be used in protein–ligand
docking simulations. In a recent study on a set of 19 complexes
with known PPI inhibitors, low-resolution docking when using
protein coordinates from protein-protein complex structures
yielded similar success rate as when using the holo proteins, and
significantly better than for the unbound proteins [61]. Here we
will evaluate the predicted transient pockets with high-
resolution docking, a more realistic but challenging scenario.

As an initial test, we aimed to reproduce the known protein-PPI
inhibitor binding modes by protein–ligand docking, starting from
the structure of the protein bound (holo) to the inhibitor with
the best IC50. For the sake of simplicity, the PPI inhibitor confor-
mation was also kept as in the protein-PPI inhibitor complex struc-
ture. We used Glide [76] and rDock [77] protein–ligand docking
programs, with different parameters. More specifically, we tested
several grid size values in order to extend the original grids in up
to 10 Ȧ, increased the number of docking poses up to 1000, and
tried different force fields: the default Tripos 5.2 force field [89]
in rDock, and the OPLS2005 [80] and the newest OPLS3 [90] force
fields in Glide. Under these ideal conditions, Glide with OPLS2005
forcefield was the best choice, finding correct docking orientations
(i.e. ligand RMSD < 2 Ȧ) within the 5 best-scoring docking models
in 7 of the 9 cases, while rDock found correct models in only 3
cases (sampling during docking was extended to up to 1000 poses).
According to these results, we decided to assess the use of Glide
with the predicted pockets, in realistic conditions.

With this purpose, we applied Glide to the unbound proteins,
using the pockets predicted by MD and hot-spot predictions, a
more realistic situation. In this case, the performance was much
worse. We can get reasonable models (ligand RMSD � 4.0 Ȧ)
within the 20 best-scoring docking poses in two of the benchmark
cases, but for this we had to use the 10 best-scoring pockets. We
should note that ligand RMSD was calculated after superimposing
only the inhibitor binding residues, to minimize the effects of glo-
bal conformational changes on the evaluation of the docked poses
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(i.e. superposition of the entire protein when the MD conformer
and the holo structure have quite different conformation could
make the docked ligand to appear in an apparent different orienta-
tion to that in the holo structure). However, if the shape of the
binding pocket in the MD-based conformer is very different from
that in the reference holo structure, the ligand RMSD could be still
high due to a different orientation between the docked and the real
inhibitor, even in the hypothetical case they have the same binding
mode with respect to relevant residues within the pocket. In the
case of IL-2, the rank 1 docking model obtained when using the
best-scoring pocket from MD and hot-spot prediction (Fig. 5B)
has a conformation that is slightly different (ligand RMSD 5.2 Ȧ)
from that of the PPI inhibitor in the complex structure (Fig. 5A),
but this can be due to the different shape adopted by the transient
pocket. When using the pocket ranked 9th from MD and hot-spot
prediction, the best-RMSD docking model is closer to the reference
(ligand RMSD 3.5 Ȧ) (Fig. 5C). But in general, it seems that the tran-
sient pockets generated by MD and selected by the predicted hot-
spots, even if they are well located at the PPI inhibitor sites, their
conformation is not optimal for ligand docking.
4. Discussion

4.1. Other possible criteria to select the pockets

In our protocol, we used the hot-spot predictions by pyDock to
select the pockets predicted by fpocket from local conformational
sampling with MD simulations. This helped to identify the correct
pockets. In Fig. 7 SI we show the PPV values for the best-scoring
pockets in the 1000 MD conformers as a function of fpocket score.
Since this score alone is not able to discriminate the correct pock-
ets in some cases, the addition of a filtering step based on the pre-
dicted hot-spots help to improve the predicted pockets.

We wanted to further explore other possible criteria to select
the MD-based pockets. For instance, perhaps the size of the pocket
in terms of number of residues could help to identify the cavities
more suitable for inhibitor binding. In Fig. 8 SI we show the PPV
of the MD-based predicted pockets for every case, as a function
of the number of residues of each pocket. While in some cases
(e.g. XIAP interacting with caspase, or the same protein interacting
with smac) the largest pockets are good in terms of coverage, they
have PPV < 40%. So in general, the size of the pocket does not help
to identify a successful pocket. This is consistent with the fact that
PPI inhibitor pockets are in average smaller (15.0 ± 6.2 residues;
average and SD computed on pockets in TIMBAL/2P2I databases)
than traditional ligand binding sites (23.7 ± 6.4 residues; average
and SD computed from pockets in DUD-e set).

In our protocol, we finally sorted the best-scoring predicted
pockets from MD by druggability score, selecting only the top
100 pockets according to that score. We also explored the inclusion
of druggability score as a filter, with different cutoffs. In Fig. 9 SI we
show the effect of using a druggability cutoff of > 0.7%, which is
almost not affecting the predictions.
4.2. Lessons from unsuccessful predictions

Unsuccessful cases might be related to conformation and/or
oligomerization issues. For instance, the TNFR1A/TNFB complex,
besides the difficulty of its large protein–protein interface and
the large difference between the unbound conformation and that
in the complex with the inhibitor (Table 3 SI), the main challenge
is that the functional homo-trimeric form of TNFB is interacting
with the homo-trimeric form of TNFR1A in addition to other pro-
teins [68]. Since we docked TNFR1A and TNFB as monomers, and
did not consider the rest of interacting proteins, the docking calcu-



Fig. 5. Docking of inhibitor on the predicted cavities of IL-2. IL-2 is shown in grey surface, and the different binding modes of the inhibitor are shown as ball and sticks. (A) IL-
2 bound to FRH inhibitor (PDB ID: 1PY2). (B) Best-scoring docking model by Glide, using the 1st ranked pocket from MD and hot-spot prediction (from a MD snapshot at
2.241 ns). (C) The closest docking model to the reference in terms of ligand RMSD, obtained with the 9th ranked pocket fromMD and hot-spot prediction (from a MD snapshot
at 2.261 ns).
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lations might not be fully accurate (indeed, most of the predicted
hot-spots for this case are not located at the studied protein–pro-
tein interface, perhaps because they are part of the interface with
the other functional interactions). Moreover, the known PPI inhibi-
tors bound to TNFR1A are only partially located at the interface
with TNB. We could speculate that the inhibitor may also affect
the interaction with the other partner proteins, which indirectly
would disrupt TNFR1A/TNFB interaction.

Another unsuccessful case is Bcl-xL. This is another example in
which different oligomerization states and conformational
arrangements can critically affect the predictions. The structure
of this protein in complex with Bak has been determined by
NMR (PDB ID: 1BXL), and the unbound structure by x-ray crystal-
lography (PDB ID: 1R2D). In the latter, there is a long missing
loop after the N-terminal a-helix, which we modeled based on
the NMR structure. In a newer x-ray structure for the Bcl-xL/
Bak complex (PDB ID: 5FMK), this N-terminal a-helix has been
assigned to a different chain (Fig. 10A SI). The biological assembly
assigned by the Protein Data Bank (PDB) is a hetero-tetramer,
formed by two copies of Bcl-xL/Bak complex. Since the location
of Bak does not seem to affect Bcl-xL homo-dimer interface, this
suggests that unbound Bcl-xL could be a homo-dimer (this struc-
ture containts a few more Bcl-xL C-terminal residues that might
explain the observed different oligomerization). Interestingly,
the structure of the homologue Bcl-2 (PDB ID: 5VAX) has the
same missing loop and the same N-terminal a-helix as unbound
Bcl-xL (PDB ID: 1R2D), and the biological assembly for Bcl-2/
peptide interaction is hetero-dimeric. Despite not participating
directly in the interaction, this flexible N-terminal a-helix seems
to have an essential role in the oligomerization of Bcl-xL. In addi-
tion, Bcl-xL shows a large conformational rearrangement when
the hinge/turn region between a-helices 5 and 6 is extended,
which induces a different dimer orientation (PDB ID: 4PPI)
(Fig. 10B SI). Similar dimerization is found by domain swapping,
which seems to be important to avoid interaction with p53
[85,91]. The pocket predicted by our method is far from the
known inhibitor of Bcl-xL/Bak interaction (Fig. 10C SI). This could
be due to problems derived from the above discussed conforma-
tional flexibility of this protein. Indeed, in the unbound protein
structure, there could be potential clashes between the inhibitor
and the C-term a-helix, which is not present in the protein-PPI
inhibitor complex structure (PDB ID: 2YXJ). Another reason is that
our approach might be detecting another cavity of biological rel-
evance. Actually, in the structure of Bcl-xL in complex with p53
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(PDB ID: 2MEJ), p53 residues 176–193 are found in the predicted
pocket region (Fig. 10D SI).

In the case of XIAP, although our approach correctly located the
PPI inhibitor binding site, this predicted pocket was not sufficiently
open to efficiently bind the small-molecule inhibitor. Perhaps in
some cases, the local conformational sampling applied here is
not sufficient for finding the relevant cavities, and longer MD sim-
ulations would be required. In other cases such as ZipA, TNFR1A or
integrase, a major limitation was that the docking calculations pro-
vided incorrect hot-spots. In the case of ZipA/FtsZ interaction, the
complex structure contained only residues 367–383 of FtsZ, but
the entire FtsZ was modelled and used in docking, which perhaps
caused problems in the predictions. Finally, the hetero-tetrameric
HIV integrase/LEDGF complex was actually treated as hetero-
dimer, since its stoichiometry was 2A:B2, with two equal hetero-
dimeric interfaces. However, the inhibitor pocket was formed by
the two homo-dimer integrase molecules, and the use of only
one integrase monomer might have affected the pocket and hot-
spot predictions. This shows once again the importance of consid-
ering the appropriate oligomerization state of the interacting
proteins.

5. Conclusions

In this work we have shown how the integration of structure-
based cavity detection, molecular dynamics, and docking-based
prediction of hot-spots, can help to identify PPI inhibitor binding
sites on the surface of unbound proteins. Two critical aspects here
are: i) the use of MD-generated side-chain conformers, which pro-
duces thousands of transient cavities accross the protein surface,
and ii) the use of protein–protein docking method to predict hot-
spots, which can help to locate the interface pockets among all
the generated by MD. The main advantage is that this strategy
can be applied in the abscence of structural information on the
protein–protein complex, a realistic situation in the majority of
cases.

One of the limitations is the small size of the benchmark set.
There are few cases for which the structure is available for the
unbound proteins as well as for the protein–protein complex and
the protein-PPI inhibitor complex, which are important for bench-
marking new computational approaches. Other problems are
related to the existence of large conformational rearrangements,
which are not described by the local conformational sampling
obtained by the short MD simulations used here, and to the limited
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knowledge of the possible oligomerization states in some of the
proteins. Both are essential for accurate predictions.

Despite the difficulties, we propose here a protocol that can
improve the detection of surface cavities for the identification of
small-molecule modulators of protein–protein interactions. More
work needs to be done in the conformational description of pro-
teins and their interactions, as well as in the optimal use of these
predicted pockets in ligand docking protocols, but this study can
be helpful towards the goal of targeting PPIs of therapeutic
interest.
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