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Abstract Let nd,t be the free nilpotent Lie algebra of type d and nilindex
t. Starting out with the derivation algebra and the automorphism group of
nd,t, we get a natural description of derivations and automorphisms of any
generic nilpotent Lie algebra of the same type and nilindex. Moreover, along
the paper we discuss several examples to illustrate the obtained results.

1 Introduction

In the middle of the 20th century, the study of derivations and automor-
phisms of algebras was a central topic of research. It is well known that
many linear algebraic Lie groups and their Lie algebras arise from the au-
tomorphism groups and the derivation algebras of certain nonassociative al-
gebras. In fact, for a given finite-dimensional real nonassociative algebra A,
the automorphism group AutA is a closed Lie subgroup of the lineal group
GL(A) and the derivation algebra DerA is the Lie algebra of AutA (see [20,
Proposition 7.1 and 7.3, Chapter 7]).

Paying attention to Lie algebras, a lot of research papers on this topic are
devoted to the study of the interplay between the structures of their deriva-
tion algebras, their groups of automorphisms and Lie algebras themselves
(see [24] and references therein). We point out two simple but elegant results
on this direction. According to [1], any Lie algebra that has an automorphism
of prime period without nonzero fixed points is nilpotent. The same result is
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valid in the case of Lie algebra has a nonsingular derivation (see [11, Theo-
rem 2]). So, automorphisms and derivations and the nature of their elements
are interesting tools in the study of structural properties of algebras.

The main motif of this paper is to describe the group of automorphisms
and the algebra of derivations of any finite-dimensional t-step nilpotent Lie
algebra n (this means that nt ̸= 0 = nt+1) generated by a set U of d ele-
ments. The description will be given through the derivation algebra and the
automorphism group of the free t-step nilpotent Lie algebra nd,t generated
by U . Denoting by u = span⟨U⟩, the elements of the derivation algebra,
Der nd,t, arise by extending and combining, in a natural way, linear maps
from u into u and from u to n2d,t. The group of automorphisms, Aut nd,t, is
described through automorphism induced by elements of the general linear
group GL(u) and automophisms provide by linear maps from u to nd,t which

induce the identity mapping on
nd,t
n2d,t

.

The paper splits into three sections starting from number 2. Section 2
collects some known results about derivations and automorphisms of free
nilpotent Lie algebras. This information let establish the structure of deriva-
tions and automorphisms of any nilpotent Lie algebra in Theorems 1 and 2.
Section 3 contains examples which show the way to compute automorphism
groups and derivation algebras. This last section may also be consider as a
short illustration of techniques which may be used in this regard.

Along the paper, vector spaces are of finite dimension over a field F of
characteristic zero. All unexplained definitions may be found in [12] or [10].

2 Theoretical results

We begin by recalling some basics facts and notations about Lie algebras.
Let n be a Lie algebra with bilinear product [x, y], and Aut n denote the
automorphism group of n, that is, the set of linear bijective maps φ : n → n
such that φ[x, y] = [φ(x), φ(y)]. Also, let Der n denote the set of derivations of
n, so, the set of linear maps d : A → A such that d[x, y] = [d(x), y]+ [x, d(y)].
If V,W are subspaces of n, [V,W ] denotes the space spanned by all products
[v, w], v ∈ V,w ∈ W . The terms of the lower central series of n are defined
by n1 = n, and ni+1 = [n, ni] for i ≥ 2. If nt ̸= 0 and nt+1 = 0, then n
is said nilpotent of nilpotent index or nilindex t. We refer to them also as
t-step nilpotent. A nilpotent algebra n is generated by any set {y1, . . . , yd}
of n such that {yi + n2 : i = 1, . . . , d} is a basis of n

n2 (see [8, Corollary 1.3]).
The dimension of this space is called the type of n and {y1, . . . , yd} is said
minimal set of generators (m.s.g.). So, the type is just the dimension of any
subspace u such that n = u⊕ [n, n].

The free t-step nilpotent Lie algebra on the set U = {x1, . . . , xd} (where
d ≥ 2) is the quotient algebra nd,t = FL(U)/FL(U)t+1, where FL(U) is
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the free Lie algebra generated by U (see [12, Section 4, Chapter V]). The
elements of FL(U) are linear combinations of monomials [xi1 , . . . , xis ] =
[. . . [[xi1 , xi2 ], xi3 ], . . . , xis ], s ≥ 1 and xij ∈ U . So, the free nilpotent algebra
nd,t is generated as vector space by s-monomials [xi1 , . . . , xis ], for 1 ≤ s ≤ t.

Again, if we set u = span⟨U⟩, the subspace us = [us−1, u] is the linear span
of the s-monomials. Thus nd,t is an N-graded algebra whose s-th homogeneous
component is us. The dimension of any subspace us, 1 ≤ s ≤ t is:

1

s

∑
a|s

µ(a)ds/a,

where µ is the Möebius function.
The algebra nd,t enjoys the following Universal Mapping Property (see [8,

Proposition 1.4] and [21, Proposition 4]): for any k-step nilpotent Lie alge-
bra n with k ≤ t of type d, and any d-elements y1, . . . , yd of n, the corre-
spondence xi 7→ yi extends to a unique algebra homomorphism nd,t → n.
In the particular case that {y1, . . . , yd} is a m.s.g., the image contains a set
of generators, so the map is surjective. Therefore, any t-step nilpotent Lie

algebra of type d is an homomorphic image
nd,t
t

where t is an ideal such that

t ⊆ n2d,t and ntd,t ̸⊆ t.
Derivations and automorphisms of nd,t are completely determine by their

effect on u. Conversely, any linear map from u into nd,t (bijection from a basis
of u to any m.s.g.) determines a unique derivation (automorphism) of nd,t.
This assertion is covered by the next result and its corollary. A detailed proof
can be found in [21, Propositions 2 and 3].

Proposition 1. Let φ denote any linear map from the vector space u =
span⟨x1, . . . , xd⟩ into nd,t, where {x1, . . . , xd} is a m.s.g. of nd,t. Then:

a) φ extends to a derivation of nd,t by declaring

dφ([xα1
, . . . , xαr

]) =
∑

1≤i≤r

[xα1
, . . . , φ(xαi

), . . . , xαr
].

b) φ extends to an algebra homomorphism of nd,t by declaring

Φφ([xα1 , . . . , xαr ]) = [φ(xα1), . . . , φ(xαr )].

Moreover if pu stands for the projection map from nd,t into u, then Φφ is an
automorphism iff {pu(φ(x1)), . . . ,pu(φ(xn))} is a linearly independent set.

Corollary 1. Let nd,t be the free t-nilpotent Lie algebra on d-generators
x1, . . . , xd and u = span⟨xi⟩. The derivation algebra and the automorphism
group of nd,t are described as Der nd,t = {dφ : φ ∈ Hom(u, nd,t)} and
Aut nd,t = {Φφ : φ ∈ Hom(u, nd,t) and {pu(φ(x1)), . . . ,pu(φ(xd))} m.s.g.}.
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Remark 1. The Levi factor Sd,t of Der nd,t is given by the maps dφ for
φ ∈ sl(u). Clearly, Sd,t is isomorphic to the special Lie algebra sld(F).
The elements of the nilpotent radical Nd,t are the linear maps dφ where
φ ∈ Hom(u, n2d,t). And the solvable radical is just Rd,t = k · idd,t⊕Nd,t where

idd,t(ak) = k · ak for any ak ∈ uk (see [3, Proposition 2.4]).

Remark 2. The group Aut nd,t is the semidirect product of the general linear
group GL(d, t), obtained from the automorphisms Φφ where φ ∈ GL(u), and
the nilpotent group NL(d, t), whose elements are Φσ and σ = Idu +δ and
δ ∈ End(u, n2

d,t) (see [4, Proposition 3.1]).

For any ideal t of nd,t such that ntd,t ̸⊆ t ⊆ n2d,t, let denote by Dert nd,t and
Dernd,t,t nd,t the subset of derivations which map t into itself, and nd,t into t
respectively. Both sets are subalgebras of Der nd,t, even more, Dernd,t,t nd,t is
an ideal inside Dert nd,t, and the following result follows [21, Proposition 5]:

Theorem 1. Let t be an ideal of nd,t such that ntd,t ̸⊆ t ⊆ n2d,t, the alge-

bra of derivations of
nd,t
t

is isomorphic to
Dert nd,t

Dernd,t,t nd,t
, where Dert nd,t and

Dernd,t,t nd,t maps t and nd,t into t respectively.

In a similar vein to the previous theorem, it is possible to arrive at a struc-
tural description of automorphisms of homomorphic images of free nilpotent
algebras. For any ideal t of nd,t, n

t
d,t ̸⊆ t ⊆ n2d,t, let denote by Autt nd,t the

subset of automorphisms which map t into itself. It is easily checked that
Autt nd,t is a subgroup of Aut nd,t. Consider now the map:

θ : Autt nd,t → Aut
nd,t
t

, θ(Φ)(x+ t) = Φ(x) + t

By using Φ(t) = t and Φ homomorphism, we can easily check that θ is well
defined. Now, a straightforward computation shows that θ is a group homo-
morphism with kernel,

Ker θ = {Φ ∈ Aut nd,t : Im(Φ− Id) ⊆ t}.

Then, we have the following result:

Theorem 2. For any ideal t of nd,t such that ntd,t ̸⊆ t ⊆ n2d,t, the set
Aut◦t nd,t = {Φ ∈ Aut nd,t : Im(Φ−Id) ⊆ t} is a normal subgroup of the group

of automorphisms of
nd,t
t

. Moreover Aut
nd,t
t

is isomorphic to
Autt nd,t
Aut◦t nd,t

,

where Autt nd,t maps t into t.

Proof. From previous comments we only need to proof that the map θ is onto.
Let ρt : nd,t → nd,t

t be the canonical projection and let {f1 + t, . . . , fk + t} be
a basis of

nd,t

t and {e1 + t, . . . , ed + t} a m.s.g. of
nd,t

t . Then {e1, . . . , ed} is

also a m.s.g. of nd,t. If we take a generic automorphism Â ∈ Aut
nd,t
t

,
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Â(ei + t) =

k∑
j=1

αijfj + t, and declare A(ei) =

k∑
j=1

αijfj ,

A extends to a linear homomorphism,A : e → nd,t, where e = span⟨e1, . . . , ed⟩.
Let ΦA be the homomorphism given by Proposition 1. We check that
θ(ΦA) = Â noting that, for a generic element [[. . . [a1, a2], . . . , al] where ai ∈ e,
up to linear combinations, we have that

ρt ◦ ΦA[[. . . [a1, a2], . . . , al] = [[. . . [ρt ◦A(a1), ρt ◦A(a2)], . . . , ρt ◦A(al)]

= [[. . . [Â ◦ ρ(a1), Â ◦ ρt(a2)], . . . , Â ◦ ρt(al)]
= Â ◦ ρt[[. . . [a1, a2], . . . , al].

The second equality follows because for every ai =
∑d

j=1 βjiej ,

ρt ◦A(ai) = ρt ◦A

 d∑
j=1

βjiej

 =

d∑
j=1

βjiρt ◦A(ej) =

d∑
j=1

βjiρt

(
k∑

l=1

αjlfl

)

=

d∑
j=1

βji

k∑
l=1

(αjlfl + t) =

d∑
j=1

βjiÂ(ei + t) =

d∑
j=1

βjiÂ ◦ ρt(ei) = Â ◦ ρt(ai).

Now Ker ρt = t and ρt◦ΦA = Â◦ρt implies ΦA(t) = t and, ΦA automorphism,
follows by using the equivalence given in Proposition 1 and the fact that Â
is an automorphism.

3 Examples, techniques and patterns

From the generator set U = {x1, . . . , xd}, we easily get the standard mono-
mials [xi1 , . . . , xir ] that (linearly) generate the Lie algebra nd,t. However,
the anticommutativity law ([xi, xj ] + [xj , xi] = 0) and the Jacobi identity
(
∑

cyclic[[xi, xj ], xk] = 0), both set linear dependence relations. This makes it
difficult to find a basis formed by monomials. The problem was solved by M.
Hall in 1950. Focusing on the behavior of algorithms, the most natural basis
to work on free nilpotent Lie algebras, is the Hall basis (see [9] for definition,
and [23, Chapter IV, Section 5] for a detailed construction).

Starting with the total order xd < xd−1 < · · · < x1, the definition of Hall
basis states recursively if a given standard monomial depends on the previous
ones. The recursive algorithm is covered by the pseudocode given in Table 1
and provides a Hall basis that we will denote as Hd,t(U<) or Hd,t if the total
order in U is clear. This algorithm checks if an element v belongs to the Hall
basis once we have defined a monomial order. For some small d and t values,
the output of Hall basis algorithm is given in Table 2.
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Table 1 : Hall basis algorithm

isCanonical(v):
if deg v == 1 then true;
else if (not isCanonical(v1) or not isCanonical(v2) or v2 > v1) then false;
else if deg v1 > 1 then (isCanonical(v1,1) or isCanonical(v1,2) or v2 ≥ v1,2);
else true;

a Note that this is a recursive algorithm. Here v = [v1, v2]. In order to generate
Hall Basis elements of degree n we can combine v1 and v2 in level n − k and k
respectively, where k = 1, . . . , n/2.

Table 2 : Hall basis of nd,t

(d, t) Hd,t

(2, 6) x2, x1, [x1, x2], [[x1, x2], x2], [[x1, x2], x1], [[[x1, x2], x2], x2], [[[x1, x2], x2], x1],
[[[x1, x2], x1], x1], [[[[x1, x2], x2], x2], x2], [[[[x1, x2], x2], x2], x1],
[[[x1, x2], x2], [x1, x2]], [[[[x1, x2], x2], x1], x1], [[[x1, x2], x1], [x1, x2]],
[[[[x1, x2], x1], x1], x1], [[[[[x1, x2], x2], x2], x2], x2], [[[[[x1, x2], x2], x2], x2], x1],
[[[[x1, x2], x2], x2], [x1, x2]], [[[[[x1, x2], x2], x2], x1], x1], [[[[x1, x2], x2], x1], [x1, x2]],
[[[[[x1, x2], x2], x1], x1], x1], [[[x1, x2], x1], [[x1, x2], x2]], [[[[x1, x2], x1], x1], [x1, x2]],
[[[[[x1, x2], x1], x1], x1], x1]

(4, 3) x4, x3, x2, x1, [x3, x4], [x2, x4], [x2, x3], [x1, x4], [x1, x3], [x1, x2], [[x3, x4], x4],
[[x3, x4], x3], [[x3, x4], x2], [[x3, x4], x1], [[x2, x4], x4], [[x2, x4], x3], [[x2, x4], x2],
[[x2, x4], x1], [[x2, x3], x3], [[x2, x3], x2], [[x2, x3], x1], [[x1, x4], x4], [[x1, x4], x3],
[[x1, x4], x2], [[x1, x4], x1], [[x1, x3], x3], [[x1, x3], x2], [[x1, x3], x1], [[x1, x2], x2],
[[x1, x2], x1]

(6, 2) x6, x5, x4, x3, x2, x1, [x5, x6], [x4, x6], [x4, x5], [x3, x6], [x3, x5], [x3, x4], [x2, x6],
[x2, x5], [x2, x4], [x2, x3], [x1, x6], [x1, x5], [x1, x4], [x1, x3], [x1, x2]

b We point out that from expanded basis H4,3 and H2,6 we can recover Hall basis
of n4,2 and n2,t for t = 2, 3, 4, 5.

Now we introduce several examples which ilustrate (among other things):

1. The way to describe a generic d-generated t-nilpotent Lie algebra as an
homomorphic image of nd,t.

2. The way to compute automorphisms and derivations regarding Proposi-
tion 1 and Theorems 1 and 2.

3. The recognition of some structural patterns of nilpotent algebras depend-
ing on the nature of their derivations and automorphisms.

In the sequel, if a map φ is given in a matrix form A = (aij) attached to a
basis B = {v1, . . . , vn}, then φ(vi) =

∑n
j=1 ajivj .

The Universal Mapping Property lets us describe any t-nilpotent Lie al-
gebra n of type d as a homomorphic image of nd,t in a easy way. From any
m.s.g. {e1, . . . , ed} of n, the correspondence xi 7→ ei for i = 1, . . . , d extends

uniquely to a surjective algebra homomorphism θn : nd,t → n and n ∼=
nd,t

Ker θn
.

We will compute ideals of this type in our following example.
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Example 1. Let n1 and n2 be the 8-dimensional and 5-dimensional Lie alge-
bras described through the basis {e1, . . . , e8} and {u1, . . . , u5} by the follow-
ing multiplication table ([a, b] = −[b, a] and [a, b] = 0 is not in the table):

[e1, e2] = e5,

[e1, e3] = e6,

[e1, e4] = e7,

[e1, e5] = −e8,

[e2, e3] = e8,

[e2, e4] = e6,

[e2, e6] = −e7,

[e3, e4] = −e5,

[e3, e5] = −e7,

[e4, e6] = −e8,

[u1, u3] = u5,

[u2, u4] = u5,

The lower central series of these algebras are:

n21 = span⟨e5, e6, e7, e8⟩, n31 = span⟨e7, e8⟩, n41 = 0,

and
n22 = span⟨u5⟩, n32 = 0.

Consider now the maps θn1
: xi → ei for i = 1, . . . , 4 from n4,3 onto n1

and θn2
: xi → ui for i = 1, . . . , 4 from n4,2 onto n2. Both correspondances

extend to homomorphisms of algebras as in the proof in [21, Proposition 4]
(θ[xα1 . . . xαs ] = [θ(xα1) . . . θ(xαs)]). It is not hard to see that:

Ker θn1
= span⟨[x3, x4] + [x1, x2], [x2, x4]− [x1, x3], [x2, x3]− [[x1, x3], x1],

[x1, x4] + [[x1, x2], x2], [[x3, x4], x4]− [[x1, x3], x1], [[x3, x4], x3],

[[x3, x4], x2] + [[x1, x2], x2], [[x3, x4], x1], [[x2, x4], x4], [[x1, x4], x2],

[[x2, x4], x3] + [[x1, x2], x2], [[x2, x4], x2], [[x2, x4], x1]− [[x1, x3], x1],

[[x2, x3], x3], [[x2, x3], x2], [[x2, x3], x1], [[x1, x4], x4], [[x1, x4], x3],

[[x1, x4], x1], [[x1, x3], x3] + [[x1, x2], x2], [[x1, x3], x2], [[x1, x2], x1]⟩,

and

Ker θn2 = span⟨[x3, x4], [x2, x3], [x1, x4], [x1, x2], [x1, x3]− [x2, x4]⟩.

We point out that Ker θn2 is an homogeneous ideal in the N-graded structure
of n4,2 and Ker θn1 is not an homogeneous ideal of n4,3. Therefore, n2 inherits
the grading of n4,2, but n1 does not inherit that of n4,3.

Example 2. According to Proposition 1, derivations and automorphisms of
n2,4 in Hall basis H2,4 can be easily obtained by iterating the Leibniz rule
φ([a, b]) = [φ(a), b])] + [a, φ(b)] and the law φ([a, b]) = [φ(a), φ(b)]. The ma-
trices representing the elements of Aut n2,4 = GL(2, 4)⋊ NL(2, 4) are product
of matrices of the following shapes:
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a1 a2

a3 a4
0 0 0

0 ϵ 0 0

0 0
ϵa1 ϵa2

ϵa3 ϵa4
0

0 0 0 ϵ · A′

 ∈ GL(2, 4),


I2 0 0 0

b1 b2 1 0 0
c1 c2
c3 c4

b2
−b1

I2 0

d1 d2

d3 d4

d5 d6

c2
c4 − c1
−c3

b2 0
−b1 b2
0 −b1

I3

 ∈ NL(2, 4);

here Ik denotes the k × k identity matrix, ϵ = a1a4 − a2a3 ̸= 0 and

A′ =

(
a2
1 a1a2 a2

2
2a1a3 a1a4 + a2a3 2a2a4

a2
3 a3a4 a2

4

)
.

From the decomposition Der n2,4 = S2,4 ⊕ F · id2,4 ⊕N2,4, the matrices that
represent derivations of n2,4 are sum of matrices of three different types:

a1 a2

a3 −a1
0 0 0

0 0 0 0

0 0
a1 a2

a3 −a1
0

0 0 0
2a1 a2 0
2a3 0 2a2

0 a3 −2a1

 ∈ S2,4, λid2,4 =


λ 0
0 λ

0 0 0

0 2λ 0 0

0 0
3λ 0
0 3λ

0

0 0 0
4λ 0 0
0 4λ 0
0 0 4λ


and 

0 0 0 0
b1 b2 0 0 0
c1 c2
c3 c4

b2
−b1

0 0

d1 d2

d3 d4

d5 d6

c2
c4 − c1
−c3

b2 0
−b1 b2
0 −b1

0

 ∈ N2,4.

For any 0 ̸= λ ∈ F, the linear map φλ(xi) = λxi provides the (semisim-
ple) automorphism Φφλ

([xα1
. . . xαr

]) = λr[xα1
. . . xαr

] and the (semisimple)
derivation dφλ

([xα1 . . . xαr ]) = rλ[xα1 . . . xαr ].

Consider now the 5-dimensional Lie algebra n3 with basis {z1, . . . , z5} and
nonzero products:

[z1, z2] = z3, [z1, z3] = z4, [z1, z4] = [z2, z3] = z5.

The lower central series is n23 = span⟨z3, z4, z5⟩, n33 = span⟨z4, z5⟩, n43 =
span⟨z5⟩ and n53 = 0. So, the correspondence xi 7→ zi for i = 1, 2 extends to a

surjective algebra homomorphism θn3 : n2,4 → n3 and n3 ∼=
n2,4

Ker θn3

. In this

case, the kernel is the 3-dimensional ideal:

Ker θn3 = span⟨[[[x1, x2], x2], x2], [[[x1, x2], x2], x1],

[[x1, x2], x2] + [[[x1, x2], x1], x1]⟩.

Example 3. Let denote t = Ker θn3
. According to Theorems 1 and 2, deriva-

tions (automophisms) of n3 are a quotient of the set of derivations (automor-
phisms) of n2,4 that leave t invariant. These sets are:
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Dert n2,4 :



a1 a2

0 1
2a1

0 0 0

b1 b2
3
2a1 0 0

c1 c2

c3 c4

b2

−b1

5
2a1 a2

0 2a1
0

d1 d2

d3 d4

d5 d6

c2

c4 − c1

−c3

b2 0

−b1 b2

0 −b1

7
2a1 a2 0

0 3a1 2a2

0 0 5
2a1


,

and, for a4 ̸= 0,

Autt n2,4 :



a2
4 a2 0 0 0 0 0 0

0 a4 0 0 0 0 0 0

b1 b2 a3
4 0 0 0 0 0

c1 c2 a2
4b2 − a2b1 a5

4 a2a
3
4 0 0 0

c3 c4 −a4b1 0 a4
4 0 0 0

d1 d2 a2
4c2 − a2c1 a4

4b2 − a2a
2
4b1 a2

(
a2
4b2 − a2b1

)
a7
4 a2a

5
4 a2

2a
3
4

d3 d4 c4a
2
4 − a4c1 − a2c3 −a3

4b1 a3
4b2 − 2a2a4b1 0 a6

4 2a2a
4
4

d5 d6 −a4c3 0 −a2
4b1 0 0 a5

4


.

Note that the isomorphism
n2,4

t → n3 is provided by the correspondence
z′i 7→ zi by taking z′1 = x1+t, z′2 = x2+t, z′3 = [x1, x2]+t, z′4 = [x1, [x1, x2]]+t,
z′5 = [x2, [x1, x2]] + t. So B′ = {z′1, z′2, z′3, z′4, z′5} is a basis. Now, by using the
isomorphisms in Theorem 1 and Theorem 2 and a minor change of basis, we

get a complete description of derivations and automorphisms of n3 ∼=
n2,4
t

.

Relative to the basis {z1, z2, z3, z4, z5}:

Der
n2,4
t

:


a1 0
a3 2a1

0 0 0

b1 b2 3a1 0 0
c1 c2 b2 4a1 0
d1 d2 c2 − b1 a3 + b2 5a1

 ,

and, for a4 ̸= 0,

Aut
n2,4
t

:


a4 0 0 0 0

a2 a2
4 0 0 0

b2 b1 a3
4 0 0

−c4 −c3 a4b1 a4
4 0

d6 − c2 d5 − c1 a2b1 − a4(a4b2 + c3) a2
4(a2a4 + b1) a5

4

 .

From previous descriptions, it is clear that the map φλ : xi → λxi, for
i = 1, 2, extends to a derivation iff λ = 0 and φλ extends to an automor-
phism iff λ = 1. We also remark that, t is not an homogeneous ideal, so n3
does not inherit the natural N-grading of n2,4. However Φλ : xi → λixi is an
automorphism for all 0 ̸= λ ∈ F with eigenvalues λi for 1 ≤ i ≤ 5. In the case
of F be the reals and λ > 1, Φλ is an (expanding) automorphism that provides
the N-grading n3 = ⊕5

i=1S(λ
i) where S(λi) = {v ∈ n3 : Φλ(v) = λiv}.
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As in the previous example, in the final one we get the conditions that
determine derivations and automorphisms of n2, the Lie algebra described in
Example 1, by using Der n4,2 and Aut4,2.

Example 4. Let now t = Ker θn2
. Derivations and automorphisms of n4,2 in

Hall basis H4,2 are (here ∆k,l
i,j = aiaj − akal):

Der n4,2 : dA=



a1 a2 a3 a4 0 0 0 0 0 0
a5 a6 a7 a8 0 0 0 0 0 0
a9 a10 a11 a12 0 0 0 0 0 0
a13 a14 a15 a16 0 0 0 0 0 0
b1 b2 b3 b4 a1 + a6 a7 −a3 a8 −a4 0
b5 b6 b7 b8 a10 a1 + a11 a2 a12 0 −a4

b9 b10 b11 b12 −a9 a5 a6 + a11 0 a12 −a8

b13 b14 b15 b16 a14 a15 0 a1 + a16 a2 a3

b17 b18 b19 b20 −a13 0 a15 a5 a6 + a16 a7

b21 b22 b23 b24 0 −a13 −a14 a9 a10 a11 + a16


,

and, for nonsingular matrices with entries ai,

Aut n4,2 : ΦA=



a1 a2 a3 a4 0 0 0 0 0 0

a5 a6 a7 a8 0 0 0 0 0 0

a9 a10 a11 a12 0 0 0 0 0 0

a13 a14 a15 a16 0 0 0 0 0 0

b1 b2 b3 b4 ∆2,5
1,6 ∆3,5

1,7 ∆3,6
2,7 ∆4,5

1,8 ∆4,6
2,8 ∆4,7

3,8

b5 b6 b7 b8 ∆2,9
1,10 ∆3,9

1,11 ∆3,10
2,11 ∆4,9

1,12 ∆4,10
2,12 ∆4,11

3,12

b9 b10 b11 b12 ∆6,9
5,10 ∆7,9

5,11 ∆7,10
6,11 ∆8,9

5,12 ∆8,10
6,12 ∆8,11

7,12

b13 b14 b15 b16 ∆2,13
1,14 ∆3,13

1,15 ∆3,14
2,15 ∆4,13

1,16 ∆4,14
2,16 ∆4,15

3,16

b17 b18 b19 b20 ∆6,13
5,14 ∆7,13

5,15 ∆7,14
6,15 ∆8,13

5,16 ∆8,14
6,16 ∆8,15

7,16

b21 b22 b23 b24 ∆10,13
9,14 ∆11,13

9,15 ∆11,14
10,15 ∆12,13

9,16 ∆12,14
10,16 ∆12,15

11,16


.

Let dA ∈ Der n4,2 be and ΦA ∈ Aut n4,2. An easy computation shows that

dA ∈ Dert n4,2 iff

{
a12 = −a5, a13 = a10, a7 = a4,
a15 = −a2, a16 = a1 − a6 + a11,

and

ΦA ∈ Autt n4,2 iff


∆2,9

1,10 +∆6,13
5,14 = ∆3,10

2,11 +∆7,14
6,15 = 0,

∆4,9
1,12 +∆8,13

5,16 = ∆4,11
3,12 +∆8,15

7,16 = 0,

∆3,9
1,11 +∆4,10

2,12 +∆7,13
5,15 +∆8,14

6,16 = 0.

Therefore, the correspondance ui 7→ λui for i = 1, . . . , 4, and u5 7→ 2λu5

extends by linearity to a derivation of n2 for all λ. The correspondence ui 7→
λui for i = 1, . . . , 4, and u5 7→ λ2u5 extends to an automorphism if λ ̸= 0.
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Epilogue

In 1955, N. Jacobson proved in [11, Theorem 3] that any Lie algebra of
characteristic zero with a nonsingular derivation is nilpotent. The author
also noted that the vality of the converse was an open question. Two years
later, J. Dixmier and W.G. Lister supplied in [5] a negative answer to the
question by means of the algebra n1 that we have revisited in Example 1.
Every derivation of n1 is nilpotent, so the elements of Der n1 are nilpotent
maps, and therefore, Der n1 is a nilpotent Lie algebra. It can be also proved
that Aut n1 is not a nilpotent group (see [15]). The existence of n1 is the
starting point of the study of the so called characteristically nilpotent Lie
algebras, that is, Lie algebras in which any derivation is nilpotent. Over fields
of characteristic zero, this class of algebras matches to the class of algebras in
which every semisimple automorphism is of finite order (see [16, Theorem 3])
or the class of algebras in which the algebra of derivations is nilpotent (see
[16, Theorem 1]).

Quasi-cyclic Lie algebras were introduced at [17] by G. Leger in 1963. A
nilpotent Lie algebra n is called quasi-cyclic (also known in the literature
as homogenous) if n has a subspace u such that n decomposes as the direct
sum of subspaces uk = [uk, u]; in particular, quasi-cyclic algebras are N-
graded. Free nilpotent Lie algebras nd,t are examples of this type of algebras.
It is not hard to see that a nilpotent Lie algebra n ∼= nd,t

t is quasi-cyclic iff
t is a homogeneous ideal of nd,t. In fact, quasi-cyclic Lie algebras are the
class of nilpotent Lie algebras that contain a m.s.g. {e1, . . . , ed} such that
the correspondence ei 7→ ei extends to a derivation of n according to [13,
Corollary 1]. By reviewing Ker θni

, we conclude that n2 is quasi-cyclic, but
n1 and n3 are not.

An automorphism of a real Lie algebra is called expanding authomorphism
if it is a semisimple automorphism whose eigenvalues are all greater than
1 in absolute value. In 1970, J. L. Dyer states in [6] that quasi-cyclic Lie
algebras admits expanding automorphisms, the converse is false. The Lie
algebra n3 provides a counterexample: according to Example 3, n3 admits
expanding automorphisms, but it is not quasi-cyclic. The algebra n3 has
been introduced in [17] and [13] to illustrate the results therein. The latter
paper includes the characterization of (real) quasi-cyclic Lie algebras as those
algebras that admit grading automorphisms.

As it is noted in 1974 by J. Scheuneman in [22, Section 1], “ (. . . ) the Lie
algebra of a simply transitive group of affine motions of Rn has an affine
structure (. . . )”. The main result in this paper is that each 3-step nilpo-
tent Lie algebra has an complete (also known as transitive) affine structure.
Therefore, any homomorphic image

nd,3

t can be endowed with a such struc-
ture. The notion of (complete or transitive) affine structure on Lie algebras
is equivalent to that of (complete) left-symmetric structure (see [7] and refer-
ences therein). In fact any positively Z-graded real Lie algebra admits a com-
plete left symmetric structure according to [2, Theorem 3.1]. Therefore, any
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quasi-cyclic nilpotent Lie algebra admits a complete left symmetric structure.
There is an interesting interplay among gradings, expanding and hyperbolic
automorphisms and affine structures.

It is not difficult to find recent research on derivations and automorphisms
algebras and their applications. For nilpotent Lie algebras we point out [14],
[18] and [19]. So, this research area deserves to be considered.
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