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Introduction 

In his address to the 1950 Proceedings of the International Congress of 

Mathematicians, Whitehead described the program on which he has been working 

for some years [31]. He mentioned in particular the realization problem: that of 

deciding if a given set of homomorphisms defined on homotopy groups of complexes, 

K and K’, have a geometric realization, K + K’. His attempt to study this problem 

involved examining algebraic structures, containing more information than the 

homotopy groups, so that homomorphisms that preserved the extra structure would 

be realizable. In particular he divided up the problem of finding such models into 

simpler steps involving n-types as introduced earlier by Fox [13, 141 and gave 

algebraic models for 2-types in a paper with MacLane [24]. (Warning: their 3-types 

are our 2-types-see later.) 
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The notion of n-type is given a clear geometric meaning and it is easy to see how 

to generalise this definition to the proper homotopy context of noncompact com- 

plexes and proper maps as has been done by Geoghegan [ 151. The rest of Whitehead’s 

program is less immediately easy to implement in the proper context as it involves 

algebraic models, etc. In this paper we show how to modify the Edwards-Hastings 

embedding theorem to embed the proper n-homotopy category (at infinity) into an 

n-homotopy procategory in which the “pro-analogues” of algebraic models of 

n-types can be applied more easily. Here we will apply this to questions involving 

the proper forms of Whitehead’s theorems, proper analogues of J,,-complexes, to 

the classification of proper 2-types and an algebraic characterization of the pointed 

proper type of R’ among the connected open 3-manifolds that have only one 

Freudenthal end. As Whitehead’s theory uses the cellular approximation theorem 

many times, we will restrict our attention to cT-compact simplicial complexes as in 

that setting there is a simplicial approximation theorem. In the larger category of 

a-compact CW-complexes, no corresponding result holds. 

1. The classical theory of n-types 

The usual numbering of the approximating n-types has changed since Whitehead 

published his work, thus as was mentioned above the MacLane-Whitehead results 

on 3-types, [24] would now be phrased in terms of 2-types. Because of this, we have 

collected here a consistent set of definitions and results on the continuous as opposed 

to the proper case. The best sources for much of this material are Whitehead’s 

original papers (see the reference list) and Hilton’s monograph [23]. These sources 

use the old numbering system so their n-type would be called (n - 1)-type here. We 

will phrase our version of these results either for CW-complexes or for simplicial sets. 

Definition. Iff; g : X + Y are two maps, we say f is n-homotopic to g (written f zn g) 
if for every map 4 of an arbitrary CW-complex P, of dimension Sn, into X, f4 is 
homotopic to g+. 

Two CW-complexes X and Y are said to be of the same n-type if there are maps 

(assumed to be cellular), 

4:x n+‘+ Y”+‘, 

4': yn+l+X"+l, 

such that 4’4 =,, 1, 44’ e,, 1. We write 4:X”+’ =” Y”+‘. 

The inclusion of X”+’ into X gives X”+’ =,, X. 

Since there is a cellular approximation theorem, the n-type is a homotopy 

invariant. 
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_ If X and Y are connected, then 4 : X”+’ = ,, Y”+’ if and only if for r = 1, . . , n, 

4r : n,(X) + nTT,( Y) is an isomorphism [27]. 

Whitehead’s proof uses the long exact sequence of the mapping cylinder of 4 

and its “subcomplex” X. 

A map f: X+ Y will be called an n-equivalence if the homotopy fibre off is 

n-connected. From the long exact sequence of the associated fibration, f is an 

n-equivalence if and only if it induces an isomorphism between v,(X) and n,(Y) 

for r s n and an epimorphism for r = n + 1. 

In Spanier [26], we note (with shift of numbering): 

- If f: X + Y is an n-equivalence, then for any CW-complex P, the induced map 

is surjective if dim PC n + 1 and injective if dim P G n. In particular, if ,f is 

an n-equivalence, taking P = Y”+‘, we obtain a map g: Y”+‘+ X such that 

fg-1: Y”+’ + Y, whilst gf =,, 1, so X and Y have the same n-type. 

We shall use the term weak n-equivalence for a map f: X+ Y that induces 

isomorphisms on rrr for r G n (no condition imposed on fn+, : x,+,(X) + n,,+,( Y)). 

We showed in [22] how with this notion of weak n-equivalence, and with suitable 

notions of n-fibration and n-cofibration, one obtains a Quillen model category 

structure on the category of CW-complexes, simplicial sets, etc. The categories 

obtained by formally inverting the weak n-equivalences will be denoted Ho,(CW), 

Ho,(SS), etc. 

For Baues [2, p. 3641, the category n-types denotes the full subcategory of 

Ho(Top,) consisting of CW-spaces Y with rriY = 0 for i> n. The n-type of a 

CW-complex X is P,,X, the nth term in the Postnikov decomposition of X, obtained 

from X by killing homotopy groups. The nth Postnikov section P,, : X + P,,X is then 

an n-equivalence as its homotopy fibre is n-connected. This functor P,, with the 

natural transformation p,, provides a natural equivalence 

Ho,(CW) q n-types. 

A similar and even more elegant formulation occurs in the theory of simplicial sets 

where P,, is given by the coskeleton functor cask,+,. This theory will be briefly 

recalled shortly as we will need one or two lemmas that are “folklore” but do 

not seem to be in the literature. The basic reference is Artin and Mazur’s lecture 

notes [l]. 

In the Postnikov formulation, two spaces X and Y have the same n-type if and 

only if P,,X and P,,Y have the same homotopy type. These results show that if one 

forms a category from CW by inverting the n-equivalences one gets a category 

isomorphic to Ho,(CW). This may seem strange but as Ho,(CW) and n-types are 

equivalent and p,, is naturally a (strong) n-equivalence, it is quite easy to check. 

Any weak n-equivalence f: X + Y can be factored 

u-1 = [Pn( y)I-‘[~~mPn(wl 
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where P,(f) is a homotopy equivalence, within the category CW(ZP’) where 2 is 

the class of n-equivalences. 

These results give a modern interpretation of Whitehead’s theory of n-types and 

it is in this formulation that we will prove analogues in the proper context. 

J”-complexes. Whitehead’s algebraic model for the 2-type of a complex involves 

crossed modules (cf. Hilton [23, p. 391). These he generalised to what he called 

“homotopy systems” [28] which are special cases of the “crossed complexes” of 

Brown and Higgins ([7], [8], etc., see also [22]) and the “crossed chain complexes” 

of Baues [2]. These crossed complexes were used as an intermediate stage in the 

realization problem. For a reduced CW-complex X, that is one with only one O-cell, 

the associated crossed complex consists of the relative homotopy groups 

rrTT,(Xfl, Xfl_‘) f or n > 1, the group n,(Xr) and the boundary maps, actions, etc. 

between them. The class of J-complexes gives a class of complexes whose homotopy 

types are completely determined by their associated crossed complexes, similarly 

for the J,,,-complexes, the crossed complex is an algebraic model for the m-type. 

Definition. Given a CW-complex, X, we will say X is a J,,,-complex (or X is J,) if 

im(5-q(X”-‘) + nq(Xy)) is zero for q = 2, . . . , m. 

If X is J, then clearly it is J, for 1 <m. If X is J,,, for all m then we say X is a 

J-complex. 

- For any CW-complex X, let 17, = n,,(X), H, = H,(X), 2 the universal cover 

of X, and r,=im(~,(X”-‘)~~TT,(Xn)) for n 22, then there is a “certain exact 

sequence” 

hn 
~~~+H,+,+r,+17,----+ H,,+r,_,+ . . ’ 

where the homomorphism h, is the Hurewicz homomorphism of the universal cover, 

thus if X is simply connected h, is the usual Hurewicz homomorphism [30]. Note 

also (cf. [29]), X is J, if and only if T,(X) = 0 for q s m. This implies: 
_ If X is a simply connected J,,,-complex, then the Hurewicz homomorphisms 

h, : TV -+ H,(X) are isomorphisms if q s m and Jr,,, is an epimorphism. 

If X is a Jntl- complex and Y has the same n-type as X then Y is also J,+, (see 

Whitehead [27]). 

The connection between J,-complexes and n-type is quite complex. Brown and 

Higgins [9] prove that if X is any CW-complex then there is a natural mapping 

X + BTTX where TX is the crossed complex of X and B is the classifying space 

functor. They prove that the homotopy fibration sequence of this natural map is 

Whitehead’s “certain exact sequence” and hence that X is a J,-complex if and 

only if X + Bz-X is an m-equivalence. 

In [22] the authors introduced a weakened version of the J, condition that they 

denote Brn. A CW-complex X is ,$,,, if X + BrX is a weak m-equivalence. The 
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corresponding condition on homotopy groups is that 

and 

im(rrq(XYp’) + ITS) is trivial for 4 G n - 1, 

im(5-,(X”-‘)+ 7rn(Xn+‘)) is trivial. 

The classifying space functor B : Crs + SS, where Crs is the category of crossed 

complexes, is right adjoint to n-R where R is the geometric realization functor. This 

adjointness passes to the corresponding Ho,-categories. We say a crossed complex 

Y is Bn if rrRBY + Y is a weak n-equivalence and denote by Ho,(Crs) IB,, the full 

subcategory determined by $,-crossed complexes. We proved in [22] that 

TR : Ho,(SS) ]Bn + Ho,(Crs) IB,, 

is an equivalence of categories so if X, Y are simplicial sets, with Y, $,,, and 

cp : TTRX + n-R Y is a map of crossed complexes, then within Ho,(SS)(X, Y) there 

is a unique map that is sent to cp by xR. This is a version of Whitehead’s realization 

theorem 4 of [28]. 

Other results of Whitehead’s involve realizability of chain maps on universal 

covers. Again the codomain complex is assumed to be J,,. We will not be handling 

this aspect here. 

The above selection of results from the theory of n-types has been chosen to 

suggest the tools that are useful in this area, notably a Postnikov or coskeleton 

construction, a condition of J,,,- or 2”1-type, the “certain exact sequence” and some 

elements of the theory of crossed complexes. Our aim will be to extend and adapt 

these ideas to the proper homotopy context. In particular note that Whitehead’s 

realizability result interprets as an equivalence of categories or rather a result on 

horn-sets in two n-homotopy categories; in the proper homotopy context we will 

be working with embeddings into procategories rather than equivalences. 

2. Terminology and notation 

2.1. Categories of spaces and proper maps 

Basic terminology will be derived from that of Edwards and Hastings [ll]. As 

we sometimes need to use proper simplicial or cellular approximations, we restrict 

to the category SC,, of a-compact locally compact simplicial complexes and proper 

maps, the basic rayed version will be denoted (SC,,), and the versions of these “at 

infinity”, i.e., using only germs of proper maps “at infinity”, by (SC,), and ((SC,,),), 

respectively. The corresponding proper homotopy categories are Ho(SC,), 

Ho( (SC,,),),, etc. The Edwards-Hastings end functor e : (SC,), + pro Top, and its 

variant (E, 1) : SC, + (pro Top, Top) provide embeddings (cf. [ 121) Ho((SC,),) + 

Ho(pro Top) and Ho(SC,) + Ho(pro Top, Top). Similarly there are pointed/base 

rayed versions of these results. 
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2.2. Simplicial sets 

We have already used the notation SS for the category of simplicial sets which 

we consider with the usual Quillen model category structure. We will also need the 

theory of skeleta and coskeleta as outlined in Artin and Mazur [ 11. The category A 

consists of the ordered sets [n] = (0 < 1 < . . . <n} with monotone maps between 

them so, as usual, a simplicial set is a functor K : Aop+ Sets. Let AS-k denote the 

full subcategory of A determined by the objects [q] for q G k and let SS,,, denote 

the corresponding category of k-truncated simplicial sets, i.e., functors from Ao,p, 

to Sets. The restriction functor 

*/k:SS+SS,,, 

has, by the theory of Kan extensions, both left and right adjoints. We denote these 

by skk and coskk respectively, following Artin and Mazur [l]. This same notation 

is used for the composite functors defined on SS namely 

(sk, : SS + SS) = sk, 0 */k, 

(coskk : SS + SS) = coskk 0 */k. 

The possibility of confusion is slight, as which functor is being used should be clear 

from the context. It is important to note that */k 0 sk, = identity = */k 0 coskL, which 

means that both ski, and cask, are idempotent functors and that skkcoskk = skk, 

etc. We will use these identities freely later on. It is also easily checked that if 

K, LESS, 

SS(sk,K, L) = SSsk( K/ k, L/k) = SS( K, cosk,L) 

so skk is left adjoint to coskli. 

We note that rri(cosk,+, K) = 0 if is n+ 1, and that there is a canonical map 

T(K): K +cosk,+, K which is universal with respect to maps to objects, L, with 

ri( L) = 0 for i 2 n + 1. This map is an n-equivalence as was mentioned earlier. 

2.3. The singular complex and its relatives 

Given a space X, SX will denote the singular simplicial set of X. The geometric 

realization functor, R, is left adjoint to S. 

We set (sX), = {a : A” +X 1 LY E SX, (Y is cellular}, where A” is given its usual cell 

structure. The inclusion k: sX + SX is a homotopy equivalence and is natural 

provided we restrict to cellular maps. A simplicial variant J(X) of this can be defined 

if X is a simplicial complex. We note that 3(X”) = sk,s(X). 

2.4. The category, Crs, of crossed complexes 

We have already mentioned the origins of this category in the work of Whitehead. 

The modern treatment is contained in a series of articles by Brown and Higgins, in 

particular [7, 8, lo]. The abstract homotopy theory of Crs can be found in Brown 

and Golasifiski [6] and its n-homotopy theory in our own [22]. 
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The classifying space functor B : Crs + SS is left adjoint to TR. This was introduced 

by Brown and Higgins in [9] in a cubical version and by us in [22] in a simplicial 

one. We also note the extension of all these structures to the procategories pro Crs 

and (pro Crs, Crs). 

3. Proper n-homotopy 

Suppose f; g : X -+ Y are two morphisms in SC, (respectively (SC,),). We will 

say that f is properly n-homotopic to g (at infinity) written fzn g, if for every 

cp : K + X in SC, (respectively in (SC,),) where K has dimension d n, fq and gcp 

are equal in Ho(SC,) (respectively in Ho( (SC,),)). 

As there are simplicial/cellular approximation theorems in both SC, and (SC,,),, 

it is easy to prove the following: 

Proposition 3.1. Let f, g : X + Y in SC,, (respectively (SC,),), then f = n g if and 0nl.Y 

iff IX” = g IX” in Ho(SC,) (respectively Ho((SC,),)). 

The proper n-homotopy category, Ho,, (SC,) (respectively at infinity, 

Ho,((SC,),)) is defined to have as objects a-compact simplicial complexes and as 

morphisms (Y : X + Y, the proper n-homotopy classes of proper maps (respectively 

germs of proper maps at infinity) f: X”+’ + Y”+‘. 

Remarks. (i) From now on we will not always repeat definitions and results in both 

global and “at the end” versions. There are also pointed/base rayed versions of the 

embedding theorems. 

(ii) As all our spaces are cT-compact, the end of a space in SC, can be considered 

to be a tower of spaces. Replacing each space in the tower by its singular simplicial 

set takes us to tow SS, the category of towers in SS. 

Theorem 3.2. Let i g:X+ Y in (SC,),, then f 2-” g if and only if cosk,+,Sef = 

cosk,+rS&g in Ho(tow SS). 

Proof. First some preliminary lemmas whose proofs use standard methods. 

Lemma 3.3. Let B be a Kan complex, then for any diagram 

sk,+,(A[n + 11 x ALlI) 

h has an extension h’:sk,+,(A[n+l]xA[l])+ B. 
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Lemma 3.4. Let B be afibrant object in SSN, N the ordered category of natural numbers. 

Suppose thatforeach ksN(, B(k) is (n+l)-coconnected, i.e., r,(B(k))=O ifian+ 

for any base point. If J; g : A + B are morphisms in SSN and F : sk, A x A[ l] + B is a 

homotopy from f ) sk, A to g 1 sk, A, then F extends to a homotopy from f to g. 

Lemma 3.5. Let i : A + X be a morphism in SS” such that 

(i) the transition maps of A and X are inclusions; 

(ii) for every k E N, ik : Ak + X, is an inclusion; 

(iii) dim X\A = n + 1; and 

(iv) lim X, = 0. 

Suppose that p : E + B is a fibration in SS” such that for each k E N, pk : Ek + Bk is 

an n-equivalence. 

Then if the diagram 

is commutative in SS”, there is a filler h : X -+ E in SSw. 

This third lemma and the following proposition will later be applied to J&X which 

clearly satisfies the condition lim _saX = 0. 

These lead to the following. 

Proposition 3.6. Let X = {X,} be an object in tow SS such that the transition maps of 

X are inclusions and lim Xi = 0. Given J; g: X + Y morphisms in tow SS, then 

f ]sk,X = g ]sk,,X in Ho(tow SS) if and only if cask .+,f = cosk,+,g in Ho(tow SS). 

Proof. Since Y is weakly equivalent to a fibrant object, we may assume that Y is 

itself fibrant in SS”. We can also assume, by reindexing if necessary (cf. Artin and 

Mazur [l]), that J; g are morphisms in SS”. As sk,cosk,+, = Sk,,, if f Isk,X = g 1 sk,X 

in Ho(tow SS), this is the same as saying cosk,+,f Isk,cosk,+,X = 

cosk,+,g 1 sk,cosk,+, X in Ho(tow SS). Finally replacing cask,+, Y by a weakly 

equivalent fibrant object, u : cask,+] Y + B, the equality 

ucosk,+, f Isk,cosk,+,X = cask,,, g]sk,cosk,+,X 

is realisable by a homotopy F between the two morphisms in SS” and the chosen 

F can be extended by Lemma 3.4, to get a homotopy between ucosk,+,f and 

ucosk,+,g. Since u is a weak equivalence, cask,+, f = cosk,+,g. 
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Conversely suppose that cosk,+,f= cosk,+,g in Ho(tow SS) and replace the map 

Y + cask,+, Y by a fibration of fibrant objects: 

cc&+, Y"B 

Thus here B is fibrant in tow SS, p is a fibration and u, v are weak equivalences. 

As ucosk,+,f= Ucosk,+,g in Ho(tow SS) and B is fibrant, there is a homotopy 

F: cask,+, X x A[l] + B from Ucosk,+,f to Ucosk,+,g. Now the diagram 

XxWsk,,XWll)uXxl~ B 

satisfies the conditions of Lemma 3.5, after reindexing if necessary. Here F is the 

restriction of F to sk,X x A[ 11. By Lemma 3.5, we thus have a homotopy from 

vf 1 sk,X to vg 1 sk,X. 

Since v is a weak equivalence, this implies that 

f]sk,X=glsk,X 

as required. 0 

Proof of Theorem 3.2 (continued). Consider the following diagram for f (and the 

analogous one for g): 

\Ff sex - S&Y 

I I 
SEX s’/, s&y 

induced by the natural inclusion of s into S. The vertical arrows are weak equivalen- 

ces and so cask,,+, S&f = cosk,+,S&g if and only if cosk,+,sef = cosk,+,s&g. Now 

assume that f 1 X” = g I X n in Ho((SC,),) then of I EX” = eg / eX” in Ho(tow Top). 

Applying the functor s, we have that S(E~ / eX”) = s(eg ( EX”) in Ho(tow SS) and 

as sk,,s.zX” = sk,seX, we have 

s(EfIFX”)Isk,,s(eX”)=s&f/sk,,s(&X), 

and similarly for g. Therefore s&f I sk,s( &X) = s&g I sk,s( &X) and by Proposition 3.6, 

it follows that cask,+, s&f = cosk,+,seg as required. 
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Conversely assume cask,+, s&f = cosk,+,seg. Using again Proposition 3.6, it fol- 

lows that s.$ sk,s(eX) = seg 1 sk,s(eX) in Ho(tow SS). 

Now the diagram 

sk,~(eX”)~sk,s(&X”)=sk,s(eX) 

II f-l n 

S(&Xn) G S(FX))) c SF(X) 
11 

commutes, so we also have that 

and as u is a weak equivalence, s(.$ EX’) = S(&gl EX”) but this implies that 

&f I EX” = cg I FX” in Ho(tow Top). Finally by the Edwards-Hastings embedding 

theorem, f 1 X” = g I X” as required. 0 

A similar proof can be given for the global version: 

Theorem 3.2’. Let f, g : X -+ Y be morphisms in SC,, then f is proper n-homotopic to 

g if and only if 

(cosk,+,Sef + cask,+, Sf) = (cosk,+,S&g + cosk,+lSg) 

in Ho(tow SS, SS). 

Theorem 3.7. i%e functor cosk,+,SE gives 

Ho(pro SS). 

an embedding of Ho,((SC,),) into 

Proof. Let K be a simplicial complex. If i: K”+’ + K is the inclusion of the 

(n+l)-skeleton of K, then cosk,+,i:cosk,+,SKnt’+cosk,+,SK is a weak 

equivalence, so if X is in (SC,),, the inclusion of X”+’ into X induces a weak 

equivalence 

cosk,+,Sei : cosk,+,SEX”+’ + cosk,+,SEX. 

Given a morphism (Y : X + Y in Ho,((SC,),) represented by f: X”+’ + Ynt’, we 

set cask,+, Sea to be the composite (cosk,+,Sei,) 0 (cosk,+,Sef) 0 (cosk,+iSeiy))’ 

where ix, iY are the corresponding inclusions. This does not depend on the choice 

off and gives a functor 

cask,,, SE : Ho,((SC,),) + Ho(pro SS). 

Now let (Y, /3 :X + Y in Ho((SC,),) be represented by f; g : X”+’ + Y”+‘. If 

cask,+, Secu = cask ,,+,SE& then cask,+, Sef =cosk,+rSEg in Ho(pro SS) or in 

Ho(tow SS) and so by Theorem 3.2, f I X” = g I X” in Ho,((SC,),) and (Y = p, i.e., 

the functor cosk,+I& is faithful. 
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Now let cp : cosk,+,S&Y+ cask,+, SsY in Ho(tow SS). Noting that SEX + SEX and 

cask n+,~eX + cask,+, SEX are isomorphisms in Ho(tow SS), we can assume that cp 

is a morphism of the form cp : cosk,+,J&X + cosk,+,~eY and that dim X G n + 1. We 

thus have a commutative diagram 

0 bJ&Y 

I I ‘) 
JFX = sk,,+,cosk,+,S&X - cosk,+,~eX - cosk,+,SeY ‘) m 

where the various n denote the natural morphisms. We can replace as before 

~:~eY+cosk ,,+,JE Y by a fibration p : E + B of fibrant objects. As B is fibrant, the 

composite morphism from J&X to B in Ho(tow SS) is represented by an actual 

morphism in tow SS. After reindexing if necessary we can apply Lemma 3.5 to 

obtain a filler from _seX to E hence a morphism + : SEX + SF Y in Ho(tow SS) such 

that n+ = (~7 in Ho(tow SS). 

We note that as sk,cosk,+, = Sk,,, 

cosk,+,$ Isk,,cosk,,+,_~eX = (cosk,+,+)n Isk,_seX = r]+ Isk,s&X 

= cpn 1 sk,_seX = cp 1 sk,,cosk,+,JeX. 

We can thus compose both morphisms with a weak equivalence, u : cosk,+,J& Y + B 

with B fibrant and (n + 1)-coconnected and as 

ucosk,+,+Isk,Icosk ,,+,_sEX = ucp 1 sk,cosk,+,SsX 

in Ho(tow SS), we can find a homotopy between these maps in tow SS, then applying 

Lemma 3.4, we can find a homotopy between ucosk,+,$ and ucp, thus cosk,+,$ = cp 

in Ho(tow SS). 

Since SE : Ho((SC,),) + Ho(tow SS) is a full embedding, we can find a map 

f: X + Y such that S&f= $. Thus cosk,+,Sef= cp and consequently cosk,+rSe is a 

full embedding. 0 

Corollary. The functor Se : Ho, (( SC,,),) + Ho, (pro SS) is a fulf embedding. 

Proof. This follows from Theorem 3.7 on noting that 

SEX + cask,+, SEX 

is naturally an n-equivalence in pro SS. 0 

There is, of course, a global version of Theorem 3.7, which we leave the reader 

to formulate. 
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4. Applications 

4.1. A proper Whitehead theorem for n-types 

Theorem 4.1 (at the end). Let .f: X + Y be a proper map of w-compact simplicial 

complexes. Then f induces isomorphisms 

pro-rr,sX + pro-r,& Y 

for 0 4 i 8 n, and for all choices of base ray in X, if and only zf f is invertible in 

Ho,((SG),). 

Proof. Suppose f induces isomorphisms as claimed. By Theorem 3.7, it suffices to 

prove that cask,+, Sef is invertible in Ho(pro SS), but cosk,+,Ssfinduces isomorph- 

isms on prohomotopy groups in all dimensions hence is a b-isomorphism in the 

terminology of At-tin and Mazur [l]. As cosk,cosk,+, and cask,+, are the same if 

m 2 n + 1, cask,+, S&f is an isomorphism in Ho(pro SS) by Edwards and Hastings’ 

version of the Whitehead theorem in Ho(tow SS) ([12, p. 1931, see also [12, 

Theorem 6.45, p. 2261). 

The converse is easy. 0 

Theorem 4.1’ (Global version). Let (X, a), ( Y, p) b e b ase rayed u-compact simplicial 

complexes with only one end and let f: (X, (Y) + ( Y, p) be a proper map that preserves 

base rays. Then f is invertible in Ho,((SC,)*) if and only if f induces isomorphisms 

Ti(x~ a(O)) + ri( Y P(O)) 

and 

pro-rr,(&X, a)+pro-n,(EY,p) 

for lGi<n. 

Proof. Again one can reduce this to a statement about (cosk,+,S&f; cosk,+,Sf) 

within Ho(pro Top,Top,) using the global version of Theorem 3.7. This can then 

be attacked exactly as above, again using [12, p. 2261. 0 

4.2. n-equivalences and proper homotopy groups 

There is no single, all embracing, definition of proper homotopy groups that will 

detect all the proper analogues of the geometric features detected by the homotopy 

groups. The two main definitions of proper homotopy group are the “Cerin” or 

“Steenrod” definition [ 111, and the Brown-Grossman definition [5]. There are close 

relationships between them (cf. [20,25]), and relationships between the invariants 

at the end, globally and “compactly”. Here we examine their effectiveness for 

detecting n-equivalences. 

Let (X, a) be in (SC,,),, or in ((SC,),), . The group of proper homotopy 

classes [(S” x [0, co), * x [0, co)), (X, a)] is isomorphic to rr,,(holim F(X)), the nth 

homotopy group of the homotopy limit of F(X) (cf. [ 11,20,25]). As X is cr-compact 
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the Bousfield-Kan spectral sequence (cf. [4]) reduces to a short exact sequence, 

the form of which resembles that of the Milnor sequence, namely: 

O+ lim’7r,+,(sX) + ~~ (holim FX) + lim( r,,.aX) + 0. 

Thus iff: (X, a) + ( Y, p) induces isomorphisms on pro-ri for i < n, we immediately 

have that it induces isomorphisms on the “Tech” limiting groups lim ~~(a-), in n 

and on the “Cerin” or “Steenrod” groups, ri(holim F-), is n - 1. In general it does 

not seem possible to obtain an isomorphism at level n on these Cerin groups since 

they involve the (n + 1)-dimensional space S” x [0, a), but if both X and Y are end 

=Il+1 -movable (i.e., the progroups pro-m,+,(&X) and pro-r,,+I(aY) are movable), 

then r,(holim EX) = lim(r,eX) and similarly for Y. In this case iff is an isomorph- 

ism in Ho,((SC,),), the corresponding maps on the r,(holim E-) groups for is n 

are isomorphisms. 

The situation with the Brown-Grossman groups is simpler. These groups are 

defined (at the end) for (X, (Y) in ((SC,),,,) by 

r:(X, a) = Ho((SC,),,,)((S’, *), (X, a)) 

where Sq is the “infinite line of q-spheres”, more precisely Sq consists of [0, a) 

with a q-sphere attached at each integer. We denote by Eq the prospace with 

VIzk Sq = .Eq(k) so Eq = ~(8~) in Ho(pro Top). These groups were introduced by 

Brown in [5] and in [16], Grossman gave a reduced power construction I defined 

on sets, groups or Abelian groups such that rT(X, a) =&r I(nq(aX)). Thus if f 

induces an isomorphism on the prohomotopy groups pro-vi, is n, it induces an 

isomorphism on ~7, is n. (One can also use Brown’s P-construction for this.) 

Grossman also proved that if f: G + H is a morphism of prosets (or progroups), it 

is an isomorphism if and only if lim If is an isomorphism of sets (or groups). This 

implies: 

Corollary (Brown form of Whitehead theorem for n-types). Let f: X + Y be a proper 

map of u-compact simplicial complexes. Then f is invertible in Ho,( (SC,),) if and 

only if f induces isomorphisms 

Tr”(X, a) + %-Y( Y, fa) 

for 0 s i c n, and all choices of base ray a. 

This is closely related to the proper Whitehead theorem proved by Brown [S]. 

There is a corresponding global version of this corollary using Theorem 4.1’ instead 

of Theorem 4.1. 

Corollary. Let f: (X, a) + ( Y, p) be a proper map of based rayed u-compact simplicial 

complexes. Then f is invertible in Ho, (( SC,),) if and only if f induces isomorphisms 

rP(X, a) + r?( Y, P) 

and n;(X, a(O))+ 7ri( Y, p(0)) for all 0s is n. 
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Proof. First the global version of the Brown-Grossman groups, rz is defined by 

nT(X, a) = Ho((SC,),)((Sq, *), (X, CZ)) (cf. [21]). The global to “local at infinity” 

natural epimorphism introduced in [21] has kernel naturally isomorphic to 

@ n,(X, (~(0)). Thus the conditions on rc and ri imply the corresponding condition 

at infinity. The result now follows by the same argument as before from 

Theorem 4.1’. 0 

4.3. Realization theorems for $,,-spaces 

In Section 1, we summarised the theory of J,,,-complexes and the weaker $,,- 

complexes. The reason for the introduction of the $,-condition was that it is easier 

to work with when considering weak n-equivalences. We will say X in SC, is J,, 

(respectively yn) at infinity if FX is a J,-prospace (respectively $n-prospace), 

i.e., the natural map SEX + BrRSeX is an n-equivalence (respectively weak 

n-equivalence). 

Given any X in SC, and a choice of base ray a in X, the pro-map SEX + BTRSEX 

yields functorially a “certain long exact sequence” of progroups 

. . .+pro-H,+r(&)+pro-T,(eX)+pro-r,(EX)A pro-H,(sZ)+. * . 

where h, is the Hurewicz homomorphism, where we have written EX for SEX. If 

X is J, at infinity then pro-T,(&X) = 0 for q d n and conversely. If X is $,, at 

infinity, pro-rq(sX) = 0 for q G n - 1 and the natural map from pro-I’,,(cX) to 

pro-rr,(sX) is zero. As T,,(X) can be identified with im(rr,(X”-‘)+ rr,(X”)), for 

X a CW-complex, this gives equivalent formulations of both J,,-space and ,$,,-space: 

Proposition 4.2. (a) A space X in SC,, with (Y a base ray in X, is a J,,-space at injinity 

if and only if 

im(pro-rq(X4-‘, a)+pro-nq(Xq,Ly))=O forqsn. 

(b) A space X in SC, with CY a base ray in X is a $,,-space at infinity if and only if 

im(pro-nq(X4-‘, n)+pro-r4(Xq, a))=0 for q<n-1 

and 

im(pro-g,(X”-‘, a)+pro-n,(X”+‘, a))GO. 

Proof. The proofs of (a) and (b) are similar. We identify sk,SsX with J&X’ and 

using the weak equivalence between SEX and SEX for any X, we have that pro-T,(X) 

is defined up to isomorphism, by 

pro-T,(X)=im(pro-7rq(sk,_,SsX)+pro-7rq(skq~eX)). 

The result follows. 0 

Before we prove proper analogues of Whitehead’s realization theorems for g,- 

spaces, let us note the following immediate implication of the above definitions. 



An embedding theorem 229 

Proposition 4.3. If X is a J,,-space or a $,,-space at infinity, then the Hurewicz 

homomorphism 

h,:pro-~~(eX)~pro-H,(e~) 

is an isomorphism for all q G n and if X is J,,, h,,, is an epimorphism. 

Here pro-H,(ez) is interpreted as the cellular homology of a universal cover of 

each cl(X - C), C compact. Problems of functoriality are avoided by its actual 

definition as pro-r,B7rRseX. If SX is cofinally simply connected then this is simply 

the prohomology of EX. 

If X is both Bn at infinity and is an $,,-space, we will say X is globally $,,. 

In the following, Ho((SC,,),) I($,, at infinity) denotes the full subcategory of 

Ho((SC,),) determined by the spaces which are B,, at infinity. Similarly 

Ho,(SC,,) 1 (global Bn) is the restriction of Ho,,(SC,) to those objects that are 

globally B,, . 

Proposition 4.4. The jiunctors 

~ZZ : Ho,((SC,,),) 1 (Bn at infinity) + Ho,(tow Crs), 

r.s : Ho,,(SC,,) 1 (global $,,) + Ho,(tow Crs, Crs) 

are full embeddings. 

Proof. This is a corollary of Theorems 4.1 and 4.1’ given the embedding results for 

pro-$,-complexes in [22]. 0 

Theorem 4.5 (realization). Let X, Y be u-compact simplicial complexes and suppose 

that Y is $,, at infinity, then 

Ho,((SC,,),)(X, Y) = Ho,(tow Crs)(rrRSeX, ~RSEY). 

Proof. Using the model category structure given in [22], we can assume that Z-&Y 

is n-fibrant so any map in Ho,(tow Crs) from x&X to VSY is realizable by a map 

from TRSEX to TRSFY in tow Crs. Using adjointness of n and B, this corresponds 

to a map in tow Top from R&X to BvRSeY. As this latter tower is assumed to be 

linked to Y by an n-equivalence we check that 

Ho,((SC,,),)(X, Y) = Ho,(tow Top)(RSeX, RSeY) 

= Ho,(tow Crs)(7rRS&X, vRSeY). 0 

Remark. As Baues notes in [3], realization theorems are closely related to properties 

of functors and are similar to categorical embedding results. Here the result interprets 

as saying that any map between the towers of crossed complexes can be replaced, 

up to n-homotopy by a proper map between X n+’ and Y, i.e., it is a realization result. 
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As in [22], we denote by Crs 1 (dim d n) the full subcategory of Crs determined 

by crossed complexes of dimension G n. Thus Crs 1 (dim G 2) is the category of crossed 

modules. In [22] we proved that the category Ho,(tow Crs) was equivalent to 

Ho(tow Crs 1 (dim 4 n)) via a truncation functor, tr,. We single out the case n = 2 

of Proposition 4.4 for further comment. 

Theorem 4.6. The functors 

tr,rc : Ho>((SC,),) + Ho(tow Crs 1 (dim G 2)), 

tr,xs : Ho,((SC,)) + Ho((tow Crs, Crs) / (dims 2)) 

are fill embeddings. 

There are pointed versions of all these results. This result encorporates a version 

of the classification theorem of MacLane and Whitehead [24]. If X, Y are in (SC,), 

we will assume for simplicity they both have only one Freudenthal end. Consider 

the following objects in (tow Gps, Gps): 

TI(X) = (tow 7r~,7Txz)(&X + X) = H. 

(This also sets up the notation for future use.) 

Assume r,( Y) = G and r2( Y) = H as G-modules. Then X and Y have the same 

proper 2-type if and only if r2(X, X’) + r,(X’) and a2( Y, Y’)+ a,( Y’) are isomor- 

phic in Ho((tow Crs, Crs) 1 (dims 2)). Presumably those isomorphism classes for 

fixed G, H form the cohomology group H’(G, H) but we have not checked that 

this is so. 

4.4. Open 3-manifolds of the proper homotopy type of R3 

Using the same notation as above, we have r,(R3) = (O-2 0) = 0, rz(R3) = (Z + 0) 

and r3(R3) = (Z + 0). Since ER’ = ( S2 + *), the corresponding object of 

(tow Crs, Crs), ~~([w’, (R3)‘) + r, ((IQ’)‘) . IS isomorphic in Ho( (tow Crs, Crs) 1 (dim d 

2)) to ~~([w~) + 0. In the following theorem we characterise using this sort of data, 

those open 3-manifolds that have the pointed proper homotopy type of R’. 

Theorem 4.7. Let M be an open 3-manifold with one Freudenthal end. Then M has 

thepointedproperhomotopy typeof R3 ifandonlyif~,(M)=(O-+O), a,(M)=((Z+O) 

and %“(M; r3(M))=0. 

Here x3( M; a3( M)) is the cohomology with (tow groups, groups)-coefficients 

introduced and studied in [17-191. 
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Proof. Because r,(M) =Q, it follows that the “crossed module” pz(M, M’) + 

a,( M’) is onto r,(M’). Consider the obvious map: 

in ((tow Crs, Crs) ldim 4 2). As it induces an isomorphism on the two homotopy 

groups r, and gTTz, it is a weak 2-equivalence, i.e., an isomorphism in 

Ho*(tow Crs, Crs) or Ho( (tow Crs, Crs) 1 dim c 2). By Theorem 4.6, this implies that 

M has the same proper 2-type as Ri and thus that there exist proper maps f: R'+ M, 
g : M + R3 so that the two composites are properly 2-homotopic to the respective 

identities. It therefore remains to see if they are properly 3-homotopic to these 

identities as both spaces have dimension 3. The obstructions to being properly 

3-homotopic give elements of %‘(I@; a3(R3)) and %?(M; r3, (M)), see [17-191. 

WehaveZ3(R3; ~3(R3))~%?3(S2+*; ~3(R’))=Oandwearegiven%3(M; r3(M))=0, 

thus these obstructions must be trivial and both gf and fg are properly homotopic 

to the respective identities. The converse implication is easy. 0 

4.5. Computations of pointed proper homotopy classes 

Proposition 4.8. Let X and Y be v-compact simplicial complexes with one Freudenthal 

end. Further suppose that X has jinite dimension and the Y is a proper l-type, i.e., 

rk( Y)=O for ks2. Then 

Ho,((SG),)(X, Y) = (tow Gps, GPS)(T,(X), z-,(Y)). 

Proof. Let f; g : X + Y be morphisms in (SC,),. If f is properly k-homotopic to g, 

the obstruction to it being (k+ 1)-homotopic is given by an element of 
zk+l(X. , rTTk+,( Y)) (cf. [17-191) but this is trivial since ~~y( Y) =O for 422, hence 

Ho((SC,),)(X, Y) = Ho,((SC,),)(X, Y). 

Both X and Y are global $,-spaces, so 

Ho,((SC,,),)(X, Y) = Ho,(tow Crs,, Crs,)(rcX, rr&Y) 

where for convenience we have written EX for (EX + X). Since X and Y have only 

one Freudenthal end, we can replace r&X, ~T_F Y by reduced subcomplexes (cf. [22]) 

at each level and on using the fact that the l-truncation map is a natural weak 

l-equivalence, we conclude 

Ho,(tow Crs,, Crs,)(7rsX, rr~Y) = Ho,(tow Crs,, Crs,)(tr,neX, tr,T&Y) 

= (tow Gps, Gps)( c,X, r, Y) 

as claimed. 0 
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Note that any connected open surface Y with one Freudenthal end satisfies the 

conditions of the above proposition. 
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