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Abstract

We study the zero location and the asymptotic behavior of iterated integrals
of polynomials. Borwein-Chen-Dilcher’s polynomials play an important role in
this issue. For these polynomials we find their strong asymptotics and give the
limit measure of their zero distribution. We apply these results to describe the
zero asymptotic distribution of iterated integrals of ultraspherical polynomials with
parameters (2α +1)/2, α ∈Z+.

1 Introduction and main results
Several problems require the location of the zeros of a polynomial in areas such as
numerical analysis, approximation theory, differential equations, and complex dynam-
ics. The zeros of a polynomial can represent equilibrium points in a certain force field,
geometric points of certain curves, critical points, and so on (see [6, 9, 10, 14], and
the references therein). The objective of this paper is the study of some algebraic and
asymptotic properties of the zeros of iterated integrals of polynomials.

Given a monic polynomial pn of degree n, λ ∈C, and m ∈Z+, its m−fold integral

Im,λ (pn)(z) :=
(n+m)!

n!

∫ z

λ

∫ tm−1

λ

. . .
∫ t1

λ

pn(t0)dt0 . . .dtm−2dtm−1 (1)
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defines a monic polynomial of degree n+m for which the derivatives of order j, 0 ≤
j ≤ m−1, at λ are zero and

(Im,λ (pn))
(m)(z) =

(n+m)!
n!

pn(z), (2)

where m ∈ Z+ and λ ∈ C. Of course, I0,λ (pn) := pn. When λ = 0, for simplicity
of notation, let Im(pn) := Im,0(pn) . The interchange of the order of integration or
integration by parts yields

Im,λ (pn)(z) =
(n+m)!
(m−1)!n!

∫ z

λ

(z− s)m−1 pn(s) ds

=
(n+m)!zm

(m−1)!n!

∫ 1

λ/z
(1− t)m−1 pn(zt) dt.

Let Qn,m be the polynomials of degree n given by

Qn,m(z) :=
(n+m)!

n!

n

∑
k=0

(
n
k

)
k!

(m+ k)!
zk =

n

∑
k=0

(
n+m
k+m

)
zk

=
(n+m)!
(m−1)!n!

∫ 1

0
(1− t)m−1(1+ zt)n dt =

(n+m)!
n!zm Im((1+ z)n). (3)

Borwein, Chen and Dilcher ([4, Th. 1]) prove that the zeros of Qn,n+1 are dense in the
curve

Γ :=
{

z ∈ C :
∣∣∣∣ (z+1)2

4z

∣∣∣∣= 1 and |z| ≥ 1
}
.

and these are the only limit points of the zeros. Using this result, they give estima-
tions for the radius of a disc containing the zeros of In(pn) for every n. Moreover,
they also obtain the curve to which the zeros of the n−fold integral of the n−th Leg-
endre polynomial converge, as n goes to infinity. We call Qn,m Borwein-Chen-Dilcher
polynomials.

We give strong asymptotics for Qn,n. This allows us to characterize the measure
which describes their zero distribution. The steepest descent method is used to obtain
this estimation. For this description, let us consider two regions induced by Γ:

E1 :=
{

z ∈ C :
∣∣∣∣ (z+1)2

4z

∣∣∣∣> 1, |z|> 1
}
,

E2 :=
{

z ∈ C :
∣∣∣∣ (z+1)2

4z

∣∣∣∣< 1
}⋃{

z ∈ C :
∣∣∣∣ (z+1)2

4z

∣∣∣∣> 1, |z|< 1
}
.

Theorem 1. We have

Qn,n(z) =


(z+1)2n

zn (1+o(1)) if z ∈ E1,

22n
√

πn(1−z) (1+o(1)) if z ∈ E2,

(4)

uniformly, as n→ ∞, on compact subsets of each stated domain1.
1Here we state results for m = n but analogous statements hold for m = n+ j with j a fixed integer.
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A consequence of the above result is the zero distribution of Qn,n. Define

ν [Qn,n] :=
1
n ∑

Qn,n(z)=0
δζ ,

its weak-∗ limit is given in terms of the equilibrium measure of Γ. For each Borel
set B⊂ C, µΓ(B) = m(ϕ(B∩Γ)), where dm = dθ/(2π), the normalized arc-length on

∂D1, and ϕ(z) = (z+1)2

4z .

Corollary 1. We have w-lim
n→∞

ν [Qn,n] = µΓ, where µΓ is the equilibrium measure on

Γ. The support of µΓ is Γ. The measure µΓ is the pre-image of the normalized arc-
length on ∂D1 under the mapping ϕ(z) = (z+1)2

4z from Γ to ∂D1. We have cap(Γ) = 4.
Moreover, for n large enough and all m ∈Z+ the zeros of Qn,m are inside Γ.

Figure 1: a) Zeros of Qn,n for n = 20, . . . ,70. b) Zeros of Q100,100. c) Zeros of Qn,m
for n = 70 and m = 20, . . . ,70. d) Zeros of Qn,m for n = 100 and m = 20, . . . ,70. In all

cases the curve is
∣∣∣ (z+1)2

4z

∣∣∣= 1.

In Figures 1 we can see the zeros of Qn,m for several values of n and m. Another
consequence of Theorem 1 is the strong asymptotics and zeros distribution of iter-
ated integrals of ultraspherical polynomials. Let α ∈ Z+ be a positive integer and let
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P̂(α+1/2)
n be monic ultraspherical polynomials with parameter α +1/2. The polynomi-

als P̂(1/2)
n are monic Legendre polynomials.

Theorem 2. Let α ∈Z+ be a nonnegative integer. Then we have

I2n

(
P̂(α+1/2)

2n

)
(z) =


(z2−1)2n−α z2α(1+o(1)) if z ∈F1,

(−1)n22n−α z2n
√

πn(1+z2)
(1+o(1)) if z ∈F2,

I2n+1

(
P̂(α+1/2)

2n+1

)
(z) =


(z2−1)2n+1−α z2α(1+o(1)) if z ∈F1,

(−1)n22n+1−α z2n+2
√

πn(1+z2)
(1+o(1)) if z ∈F2,

as n→ ∞, where F j are the pre-image of E j under the transformation ϕ1(z) = −z2.
Moreover, its zero distribution2 β is supported on ϕ1(Γ) and for each Borel set E this
measure satisfies

β (E) = µΓ(ϕ1(E)).

Ultimately, the behavior of Qn,n is the same as that obtained by integrating poly-
nomials a number of times which does not change with the integrand (see Section 2).
In order to set our result in this context, let us fix some notations. Let A be a Jor-
dan rectifiable arc in C and Ω := C \A. Given r ∈ (0,∞), Dr := {z ∈ C : |z| < r},
∂Dr := {z ∈ C : |z| = r}, Dc

r := {z ∈ C : |z| > r}, and Dr(z0) := {z ∈ C : |z− z0| < r}
for z0 ∈ C. Let τ denote the conformal mapping of Ω onto Dc

1 such that τ ′(∞) :=
cap(A) := limz→∞

τ(z)
z > 0. It is well known that τ can be extended continuously

to A and limz→ζ |τ(z)| = 1, ζ ∈ A. If λ ∈ Ω, let Λλ := {z ∈ Ω : |τ(z)| < |τ(λ )|},
∂Λλ := {z ∈ Ω : |τ(z)| = |τ(λ )|}, Λ

c
λ := {z ∈ Ω : |τ(z)| > |τ(λ )|}, when λ ∈ A, we

consider ∂Λλ := A and Λ
c
λ := Ω. Let (φn) denote a sequence of monic polynomials

such that degφn = n for all n and

lim
n→∞

φn(z)
cap(A)n

τn(z)
= F(z), (5)

uniformly on compact subsets of Ω, in which the analytic function F has no zeros.
There are several sequences of monic polynomials which satisfy condition (5) such as
extremal polynomials with respect to a measure whose weight satisfies the Szegő con-
dition (see [16]). If (φn) is a sequence of monic orthogonal polynomials with respect to
a measure µ , (Im,λ (φn))n∈Z+ is a sequence of polynomials orthogonal in a non-standard
sense, i.e., they satisfy Sobolev-type orthogonality with respect to the inner product

〈 f ,g〉 :=
m

∑
k=0

∫
f (k)g(k) dµk,

where µk = δλ , 0≤ k≤m−1, and µm = µ . There are several papers on this issue (e.g.
[1, 2, 7, 8, 11, 13]). These polynomials are useful in Fourier analysis ([13]), numerical
analysis ([5]), and so on (see [8] and references therein).

2The zeros of In(P̂n) different from 0.
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Theorem 3. Let (φn) be a sequence of monic polynomials which satisfies (5).

(i) If λ ∈ A, then

lim
n→∞

φn(z)
Im,λ (φn)(z)

= ψ
m(z),

uniformly on compact subsets of Ω, where the function ψ(z) := τ ′(z)
τ(z) . Also, we

have w-lim
n→∞

ν
∗[Im,λ (φn)] = µA, where µA is the equilibrium measure on the arc A

and
ν
∗[Im,λ (φn)] = ∑

Im,λ (φn)(ζ )=0
ζ 6=0

δζ .

(ii) If λ ∈Ω, then

lim
n→∞

nm−1φn(z)
Im,λ (φn)(z)

=− (m−1)!ψm(z)
(z−λ )m−1

uniformly on compact subsets of Λλ and

lim
n→∞

φn(z)
Im,λ (φn)(z)

= ψ
m(z),

uniformly on compact subsets in Λ
c
λ . Moreover,

w-lim
n→∞

ν
∗[Im,λ (φn)] = µΛλ

,

where µΛλ
is the equilibrium measure on the arc ∂Λλ .

Section 5 is devoted to the proof of the above theorem. Theorem 2 is proved in
Section 3. In Section 4 we state some results about the location of the zeros of iterated
integrals of polynomials and the next section includes the proof of Theorem 1 as well
as some of its consequences.

2 Proof of Theorem 1 and some consequences
Let

Pn,m(z) :=
∫ 1

0
(1− t)m−1(1+ zt)n dt.

The relations in (4) are equivalent to

Pn,n(z) =


√

π

22n√n
(z+1)2n

zn (1+o(1)) if z ∈ E1,

1
n(1−z) (1+o(1)) if z ∈ E2,

uniformly, as n→ ∞, on compact subsets of each stated domain.

5



Changing t = 1
2 (1−

1
z )+

1
2 (1+

1
z )x, a straightforward computation gives us

Pn,n(z) :=
∫ 1

0
(1− t)n−1(1+ zt)n dt =

(z+1)2n

22nzn

∫ 1

w
(1− x2)n−1(1+ x)dx, (6)

where w = 1−z
1+z . Observe that the Möbius transformation w = 1−z

1+z transforms Dc
1 onto

ℜ(w)< 0 and 1−w2 = 4z
(1+z)2 . Define

Gn(w) :=
∫ 1

w
(1− x2)n dx. (7)

We have ∫ 1

w
(1− x2)n−1(1+ x)dx = Gn−1(w)+

(1−w2)n

2n
,

so, the theorem 1 is equivalent to the following statements:

(i) Uniformly on compact subsets of G2 := {w ∈ C : |1−w2| > 1}∪{w ∈ C : |1−
w2|< 1 and ℜ(w)> 0},

Gn(w) =
(1−w2)n+1

2nw
(1+o(1)). (8)

(ii) Uniformly on compact subsets of G1 := {w ∈ C : |1−w2|< 1 and ℜ(w)< 0},

Gn(w) =
√

π√
n
(1+o(1)), (9)

The integral (7) does not depend on the contour of integration. Thus, we deform the
integration interval [w,1] as we need in each case.

First, we obtain (8). Let K ⊂ (G2 ∩{w ∈ C : ℜ(w) ≥ 0}) be a compact set and
w ∈ K. From the change of variable t2

n = x2−w2

1−w2 and the dominated converge theorem,
we get ∫ 1

w
(1− x2)n dx =

(1−w2)n+1

n

∫ √n

0

(
1− t2

n

)n t√
(1−w2) t2

n +w2
dt

=
(1−w2)n+1

2nw
(1+o(1)).

If K ⊂ (G2∩{w ∈ C : ℜ(w)≤ 0}) is a compact set and w ∈ K, the proof is reduced to
the former case because

Gn(w) =−Gn(−w)+2Gn(0),

and

Gn(0) =
Γ(n+1)Γ(1/2)

2Γ(n+3/2)
=

√
π

2
√

n
(1+o(1)). (10)
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Second, we get (9). Let K ⊂ G1 and w ∈ K; we can choose w1 ∈ (−1,0) such that
K ⊂ {u : ℜ(u)< w1}. Then

Gn(w) =
∫ w1

w
(1− x2)n dx+

∫ 0

w1

(1− x2)n dx+Gn(0) = 2Gn(0)(1+o(1)).

�
The following result is a consequence of Theorem 1.

Corollary 2. We have

lim
n
|Qn,n(z)|1/n =

∣∣∣∣ (z+1)2

z

∣∣∣∣ , z ∈ E1,

lim
n
|Qn,n(z)|1/n = 4, z ∈ E2,

uniformly on compact subsets of each of the two regions. Moreover,

lim
n

(
max
z∈Γ

|Qn,n(z)|
)1/n

= 4. (11)

Proof. We will only check (11). From (6), it is equivalent to

lim
n→∞

(
max

w∈∂G1
|Gn(w)|

)1/n

= 1.

By the maximum principle,

Gn(0)≤ max
w∈∂G1

|Gn(w)| ≤ 1.

From (10), the conclusion of the proof is straightforward.

Remark 1. If z∈ E 1 := {z∈C :
∣∣∣ (z+1)2

4z

∣∣∣≥ 1, |z| ≥ 1}, then there exists K1(z)> 0 (K1(z)
only depends on z) such that

K1(z)√
n
≤ |Qn,n(z)|

for n large enough. In fact, from (3) and (6), the above relation is equivalent to

K2(w)√
n
≤ |Gn(w)|

for w∈ G 1 := {w∈C : |1−w2| ≤ 1 and ℜ(w)≤ 0}, where K2(z) is a positive function.
The case w = 0 is straightforward. If w 6= 0,

Gn(w) = 2Gn(0)−
∫ 1

−w
(1− x2)n dx

7



and there exists C(w)> 0 such that∣∣∣∣∫ 1

−w
(1− x2)n dx

∣∣∣∣≤ C(w)
n

.

Actually, if z is outside a disc with center at 1 (w is outside of a disc with center at 0)
with small radius, then we can take the positive constant C(w) independent of w.

With the same arguments we obtain

Qn,n+1(z) =


(z+1)2n+1

zn+1 (1+o(1)) if z ∈ E1,

22n+1
√

πn(1−z) (1+o(1)) if z ∈ E2,

(12)

as n→ ∞, uniformly on compact subsets of the two regions.

2.1 Proof of Corollary 1

Given that w = (z+1)2

z is a conformal transform from E1 onto Dc
4, and cap(D4) = 4 (see

[10, Th. 5.2.3]), we have cap(Γ) = 4. Moreover, by the subordination principle ([10,
Th. 4.3.8], for each Borel set B⊂ C, µΓ(B) = m(ϕ(B∩Γ)), where dm = dθ/(2π) on
∂D1.

Let µ be a weak-∗ limit of ν [Qn,n] := 1
n ∑z:Qn,n(z)=0 δz, i.e., there exists a subse-

quence (ν [Qnk,nk ]) such that limk→∞

∫
f (ζ )dν [Qnk,nk ](ζ ) =

∫
f (ζ )dµ(ζ ) for all con-

tinuous function f in C with compact support. To simplify notation, we write n instead
of nk. By Theorem 1, supp(µ)⊂ Γ. It is well known that3

lim
n→∞

V (ν [Qn,n],z) =V (µ,z)

uniformly on compact subsets of C\Γ. Then, by (3), and Corollary 2, we obtain

V (ν [Qn,n],z) =
1
n

log
(
(n−1)!n!
(2n)!

)
+V (ν [Pn,n],z)

and

V (µ,z) = log
(

1
4

)
+


0 if z ∈ E2,

log
∣∣∣ 4z
(z+1)2

∣∣∣ if z ∈ E1.

Then, from the identity principle for harmonic functions (see [10, Th. 1.1.7]) we get
supp(µΓ) = Γ and from the principle of descent, if z ∈ Γ and (zn) ⊂ E2 such that
lim
n→∞

zn = z,

V (µ,z)≤ liminf
n→∞

V (ν [Qn,n],zn) = log
(

1
4

)
.

3Hereafter, if ν is a positive Borel measure with compact support in the complex plane, its logarithmic
potential and energy are respectively V (ν ,z) :=

∫ 1
|z−x| dν(x) and I(ν) :=

∫
V (ν ,z)dν(z).
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Since µ is a probability measure, I(µ) =
∫

V (µ,z)dµ(z)≤ log( 1
4 ), but µΓ is the unique

measure which minimizes the energy between the probability measures with support
on Γ, and I(µΓ) = log 1

cap(Γ) = log( 1
4 ). Therefore, µ = µΓ,

w-lim
n→∞

ν [Qn,n] = µΓ.

�

3 Asymptotic analysis for the integral of ultraspherical
polynomials

Proof of Theorem 2.
We shall proceed by induction on the parameter α . For α = 0, we have Legendre

polynomials. By Rodrigues’ formula (see [15, (4.3.1)]) the monic Legendre polynomi-
als P̂(1/2)

n are given by

P̂(1/2)
n (z) := (−1)n n!

(2n)!
∂

n
z
(
(1− z2)n) .

So,
I2n(P̂

(1/2)
2n )(z) = (−z2)nQn,n(−z2),

I2n+1(P̂
(1/2)
2n+1 )(z) =−(−z2)n+1Qn,n+1(−z2).

Let F1 := {z ∈ C :
∣∣∣ z2−1

2z

∣∣∣ > 1, |z| > 1}, F2 := ({z ∈ C :
∣∣∣ z2−1

2z

∣∣∣ < 1})∪ ({z ∈ C :∣∣∣ z2−1
2z

∣∣∣ > 1, |z| < 1}. Observe that the coefficient of z2n in I2n(P̂
(1/2)
2n ) is P(1/2)

2n (0)
κ2n

∼
(−1)n22n
√

πn as n→ ∞, where κ2n is the leading coefficient of P(1/2)
2n . From (12) , Theorem

1, and Corollary 1, we obtain

I2n(P̂
(1/2)
2n )(z) =


(z2−1)2n(1+o(1)) if z ∈F1,

(−1)n22n
√

πn
z2n

1+z2 (1+o(1)) if z ∈F2,

I2n+1(P̂
(1/2)
2n+1 )(z) =


(z2−1)2n+1(1+o(1)) if z ∈F1,

(−1)n22n+1
√

πn
z2(n+1)

1+z2 (1+o(1)) if z ∈F2,

as n→ ∞, where F j are the pre-image of E j under the transformation ϕ1(z) = −z2.
Moreover, its zero distribution4 β is supported on ϕ1(Γ) and for each Borel set E this
measure satisfies β (E) = µΓ(ϕ1(E)).

Next, we assume that the statement holds for α . According to [15, (4.21.7)], we
have

∂z

(
P(α+1/2)

n (z)
)
=

1
2
(n+2α +1)P(α+3/2)

n−1 (z).

4The zeros of In(P̂
(1/2)
n ) different from 0.
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Remember that Im(z) are monic polynomials and ∂
j

z (Im(z)) = 0, j = 0,1, . . . ,m− 1.
The factor (2n−2)!

(n−2)!n! is to guarantee that ∂ n−2
z (In−1

(
P̂(α+3/2)

n−1 )
)
= 0. So,

In−1

(
P̂(α+3/2)

n−1

)
(z) =

(
In−2

(
P̂(α+1/2)

n

)
(z)− P̂(α+1/2)

n (0)
(2n−2)!
(n−2)!n!

zn−2
)
.

Moreover, we have

In−2

(
P̂(α+1/2)

n

)
(z) =

1
2n(2n−1)

∂
2
z

(
In

(
P̂(α+1/2)

n

)
(z)
)
.

Next, we consider n = 2k+2 even. By the Cauchy integral formula for the derivative
and by induction hypothesis, we get

I2k

(
P̂(α+1/2)

2k+2

)
(z) =

1
(4k+2)(4k+1)

∂
2
z

(
I2k+2

(
P̂(α+1/2)

2k

)
(z)
)

=(z2−1)2k−α z2α(1+o(1))

uniformly on compact subsets of F1. Observe that on F1,∣∣∣∣ z2−1
2z

∣∣∣∣> 1,

and by [15, (4.7.31)],

P̂(α+1/2)
2k+2 (0) =

(−1)k+1Γ(k+α +3/2)Γ(2k+3)
22k+2Γ(k+2)Γ(2k+α +5/2)

.

Moreover, by Stirling’s formula,

Γ(k+α +3/2)
Γ(k+2)

= kα−1/2(1+o(1)),
(4k+2)!

(2k)!(2k+2)!
=

24k+2
√

2πk
(1+o(1)).

Thus,

I2k(P̂
(α+1/2)
2k+2 )(z)− P̂(α+1/2)

2k+2 (0)
(2k)!

k!(k+2)!
z2k−2 =I2k(P̂

(α/2)
2k+2 )(z)(1+o(1))

=(z2−1)2k+2−α z2α(1+o(1))

uniformly on compact subsets of F1. Therefore,

I2k+1

(
P̂(α+3/2)

2k+1

)
(z) = (z2−1)2k+1−(α+1)z2(α+1)(1+o(1)),

uniformly on compact subsets of F1.
Consider z ∈F2; we have

1
(4k+4)(4k+3)

∂
2
z

(
I2k+2

(
P̂(α+1/2)

2k+2

)
(z)
)
=

(−1)k+122k+2−α z2k

22
√

πk(1+ z2)
(1+o(1)).
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In fact, it is immediately checked that

∂
2
z

(
(−1)k+122k+2−α z2k+2
√

πk(1+ z2)

)
=
(−1)k+122k+2−α

√
πk

∂
2
z

(
z2k+2

1+ z2

)
=
(−1)k+122k+2−α

√
πk

× 2z2n(1−3z2 +n(1+ z2)(3+2n+(−1+2n)z2))

(1+ z2)3 ,

and
z2k

1+ z2 − z2k =
−z2k+2

1+ z2 . Therefore,

I2k+1

(
P̂(α+3/2)

2k+1

)
(z) =

(−1)k22k+1−(α+1)
√

πk
z2k+2

1+ z2 (1+o(1))

uniformly on compact subsets of F2.
If n is odd, then P̂(α+1/2)

n (0) = 0,

I2n

(
P̂(α+3/2)

2n

)
(z) =

1
(4n+2)(4n+1)

∂
2
z

(
I2n+1

(
P̂(α+1/2)

2n+1

)
(z)
)
,

and the proof is concluded as in the first case.
The conclusion about the limiting distribution of the zeros of In

(
P̂(α+1/2)

n

)
follows

in a straightforward manner from their asymptotic behavior and the unicity theorem for
potentials (see [12, Theorem 2.1, p. 97]).

�
In Figures 2 and 3 we can see the zeros of iterated integral of ultraspherical poly-

nomials, in particular, of Legendre polynomials, for different values of n.

Figure 2: Zeros of the iterated integral of Legendre polynomials In(P
(1/2)
n ): to the left,

for n even n = 10 to n = 80. To the right, for n odd n = 11 to n = 81. In both the curve∣∣∣ 1−z2

2z

∣∣∣= 1.
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Figure 3: Zeros of the integral of ultraspherical polynomials In(P
(13/2)
n ): to the left, for

n even, n = 20, . . . ,160. To the right, for n = 120. In both the curve
∣∣∣ 1−z2

2z

∣∣∣= 1.

4 Zeros of polynomials with critical points on a disc
It is clear that if we know the location of the critical points of a polynomial and one
of its zeros, the remaining zeros are uniquely determined. Nonetheless, there are only
a few general results about the zero locations of polynomials in terms of theirs critical
points and a given zero, most of them contained in [9, §4.5] and [4].

Since

Qn,m(z) =
(n+m)!

m!
1
zm Im[(1+ z)n] =

1
zm

(
(1+ z)n+m−

m−1

∑
k=0

(
n+m

k

)
zk

)
,

we have the following lemma.

Lemma 1.

Qn,m(z) =


(z+1)n+m

nm−1zm (1+o(1)) if |z+1|> 1,

− 1
z(m−1)! (1+o(1)) if |z+1|< 1.

as n→ ∞. Moreover, w-limn→∞ ν [Qn,m] = µD1(−1), where µD1(−1) is the equilibrium
measure on D1(−1). So it is given by the normalized arc length on D1(−1).

If pn is a polynomial of degree n,

pn(z) =
n

∑
k=0

(
n
k

)
akzk,

Im,0(pn)(z) =
(n+m)!

n!

n

∑
k=0

(
n
k

)
k!

(m+ k)!
akzk+m = zm

n

∑
k=0

(
n
k

)
ckzk,

then ck = akbk, where
n

∑
k=0

(
n
k

)
bkzk = Qn,m(z).

12



This means that, as Borwein, Chen and Dilcher [4] observed, Im,0 is a Hadamard
product of pn and Qn,m. Then, by a theorem of Szegő and Schur (as quoted, for in-
stance, in [4]), for n large enough, we have:

Corollary 3. If the zeros of pn lie in the disc Dr, then the zeros of Im,0(pn) lie in
D(2+ε(n))r, where (ε(n)) is a deacreasing sequence of positive number with lim

n→∞
εn = 0.

The next result also helps to locate the zeros of the iterated integral of a polynomial.
This is an extension of [14, Th. 5.7.8] and the proof is carried out with analogous
arguments.

Lemma 2. Let P be a polynomial of degree n ≥ 2 with all its critical points in the
closed disc Dr, where r ∈R+ is fixed. If P(λ ) = P(z) = 0, with λ ,z ∈ C, then

(i) there exists w ∈ D1 such that

z = Fr(w) := 2rw−λw2. (13)

(ii) ||z|− |λ || ≤ 2r.

(iii) Fr is univalent on D1 if and only if |λ | ≤ r.

Proof. As z and λ are zeros of P, from the bisector lemma (see [9, Th. 4.3.1]), if we
draw a straight line ` which cuts perpendicularly the segment joining the two zeros
at its middle point, then P′ has at least one zero in each of the closed half planes
in which ` divides the complex plane. But, we have assumed that all the zeros of
P′ lie in Dr and therefore ` must intersect ∂Dr. Hence, there exists u ∈ ∂D1 such
that |z− r u| = |r u− λ | = |r− λ u|. It follows that there exists v ∈ ∂D1 such that
z− r u = v(r−λ u), where we have z = r(u+ v)−λ uv. This expresses z as a value
of a symmetric linear form in the variables u and v taking their values on ∂D1, and
therefore in D1. It follows from Walsh’s coincidence lemma [9, Th. 3.4.1b] that z is a
value of the polynomial obtained by putting w = u = v with w ∈ D1, which establishes
(13) and the inequality in statement (ii) as an immediate consequence.

If λ = 0 then obviously Fr is univalent. Assume that λ 6= 0, if there exist w1,w2 ∈
D1 such that w1 6= w2 and Fr(w1) = Fr(w2), we get that w1 +w2 = 2(r/λ ). Therefore,
Fr is univalent on D1 if and only if |λ | ≤ r and we get the third statement of the lemma.

Remark 2. Under the above assumptions, as a consequence of Lemma 2, the possible
region of zeros of P is the set Fr(D1) and if |λ | ≤ r then Fr maps ∂D1 onto a Jordan
curve (for r = 1 see Figure 4).

Corollary 4. Given two integers n,m > 0 and λ ∈ C, let ρ = 2m(|λ |+ r)−|λ |. If all
the zeros of φn are in Dr, then all the zeros of the polynomials Im,λ (φn) lie in the closed
disc Dρ .

Proof. For m = 1, as all the zeros of φn lie in Dr (i.e., the critical points of I1,λ (φn)),
the assertion follows from Lemma 2. The rest of the proof runs by induction.

13



Figure 4: The cardioidal curve Fr(∂D1), for r = 1 and several values of λ . The interior
circle is ∂D1 and the exterior one is given by |z|= 2+ |λ |.

5 Proof of Theorem 3
The proof of Theorem 3 is divided into three subsections: first, two auxiliary lemmas,
second, the case λ ∈ A, and third, the case λ 6∈ A.

5.1 Auxiliary lemmas
The following result plays a main role in obtaining the strong asymptotic behavior of
the mth iterated integrals Im,λ (φn).

Lemma 3. Set λ ∈ Ω, and let K1, K2 be two compact sets with K1 ⊂ (Λλ ∪A) and
K2 ⊂ Λ

c
λ . Let z1 ∈ K1,z2 ∈ K2 and {φn}n∈Z+ be a sequence of polynomials which

satisfies (5). Then

lim
n→∞

∣∣∣∣∫ z2

z1

φn(s)ds
∣∣∣∣1/n

= cap(A) |τ(z2)| uniformly on K1 and K2. (14)

Proof. For z1 ∈ K1 and z2 ∈ K2, denote Jn :=
∫ z2

z1
φn(s)ds . This integral is indepen-

dent of the contour of integration from z1 to z2. Then, by the maximum principle for
holomorphic functions and (5) we have

limsup
n→∞

|Jn|1/n ≤
(∫ z2

z1

|ds| max
{z∈C:|τ(z)|=|τ(z2)|}

|φn(z)|
)1/n

= cap(A) |τ(z2)|.
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Since the convergence in (5) is uniform on compact subsets of Ω, the above relation
also holds uniformly on K1 and K2.

The proof of the inequality

liminf
n→∞

|Jn|1/n ≥ cap(A) |τ(z2)| (15)

requires a more detailed analysis. We chose ζ0 near z2 such that [ζ0,z2]∩A = /0,

|τ(ζ0)|> |τ(λ )| and Arg(τ(ζ0)) = Arg(τ(z2)). (16)

Let ∆1 be a Jordan rectifiable arc from z1 to ζ0 in {z∈C : |τ(z1)| ≤ |τ(z)| ≤ |τ(ζ0)|} and
let ∆2 be the arc given by r(t) = τ−1(tτ(z2)+(1− t)τ(ζ0)), t ∈ [0,1], which satisfies

Arg(τ(r(t))) is constant and r′(t) =
τ(z2)− τ(ζ0)

τ ′(tτ(z2)+(1− t)τ(ζ0))
6= 0, t ∈ [0,1].

We take as integration path in Jn the curve ∆ := ∆1 +∆2. Then,

|Jn|=
∣∣∣∣∫

∆

φn(s)ds
∣∣∣∣≥ ∣∣∣∣∫

∆2

φn(s)ds
∣∣∣∣−∫

∆1

|φn(s)| |ds|.

By the maximum modulus principle and (5), it follows that

limsup
n

(∫
∆1

|φn(s)| |ds|
)1/n

≤ cap(A) |τ(ζ0)|. (17)

Since F(r(1))τ ′(r(1)) 6= 0, we have that its real or its imaginary part is different from
zero. We assume that

ℜ

(
F(r(1))τ ′(r(1))

)
6= 0.

The case where the imaginary part is nonzero is reduced to this one by multiplying φn
by i. So, by (5), we can chose ∆1

2 ⊂ ∆2 a piece of arc of ∆2 containing z2 such that

lim
n→∞

ℜ

(
φn(s)τ ′(s)

cap(A)n
τn(s)|τ ′(s)|2

)
= ℜ

(
F(s)τ ′(s)
|τ ′(s)|2

)
6= 0

uniformly on ∆1
2 and Hn(s) := ℜ

(
φn(s)τ ′(s)

cap(A)n
τn(s)|τ ′(s)|2

)
has constant sign for s ∈ ∆1

2 and n
large enough. From (16), we have∣∣∣∣∫

∆2

φn(s)ds
∣∣∣∣≥ ∣∣∣∣∫

∆1
2

φn(s)
(cap(A))nτn(s)

(cap(A))n|τn(s)|ds
∣∣∣∣ (18)

−
∫

∆2\∆1
2

|φn(s)| |ds|

≥
∣∣∣∫

J
Hn(r(t))(cap(A))n|τn(r(t))|dt

∣∣∣−∫
∆2\∆1

2

|φn(s)| |ds|
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where J denote the parameter interval for the ∆1
2 path. By the choice of Γ1

2, it follows
that

limsup
n→∞

(∫
∆2\∆1

2

|φn(s)| |ds|
)1/n

< |cap(A)τ(z2)|.

Now, we deduce

lim
n→∞

∣∣∣∣∫J
Hn(r(t))(cap(A))n|τn(r(t))|dt

∣∣∣∣1/n

= |cap(A)τ(z2)|. (19)

In fact, since |τ(r(t))| ≤ |τ(r(1))|= |`(z2)| for all t ∈ J, we have

limsup
n→∞

∣∣∣∣∫J
Hn(r(t))(cap(A))n|τn(r(t))|dt

∣∣∣∣1/n

≤ |cap(A)τ(z2)|.

On the other hand, given ε ∈ (0, |τ(z2)|), we choose δ > 0 such that [1−δ ,1]⊂ J and
|τ(r(t))|> |τ(z2)|− ε, ∀t ∈ J. Then,∣∣∣∣∫J

Hn(r(t))(cap(A))n|τn(r(t))|dt
∣∣∣∣≥ ∣∣∣∣∫

[1−δ ,1]
Hn(r(t))dt

∣∣∣∣(cap(A))n(|τ(z2)|− ε)n

and we get

liminf
n→∞

∣∣∣∣∫J
Hn(r(t))(cap(A))n|τn(r(t))|dt

∣∣∣∣1/n

≥ |cap(A)τ(z2)|.

Once we have obtained (19), from (16)–(17) and (18)–(19) the relations (14) and
(15) follow readily. Observe that the limit in (15) is uniform on z1 and z2. By the
continuity of F(s)τ ′(s)/|τ ′(s)|2, we can consider that the relations (16)–(19) hold for
all z′1 and z′2 in a closed disc around z1 and z2.

The following lemma is a well-known result, but we include a proof for easy refer-
ence.

Lemma 4. We have

ψ(z) =
∫ dµA(w)

z−w
, z ∈Ω,

where ψ(z) = τ ′(z)/τ(z), as it was defined in Theorem 3.

Proof. Let {φn} be a sequence of monic polynomials which satisfy (5). So, their zeros
tend to A and

w-lim
n→∞

ν [φn] = µA.

(See arguments to check w-limn→∞ ν [I1,λ (φn)] = µA in the proof of statement (i) of
Theorem 3 in the next section.) Let (gn) be the sequence of analytic functions gn(z) :=
(cap(A))nF(z)(τ(z))n, z ∈ Ω, n ∈N. Then, limn→∞

g′n(z)
ngn(z)

= ψ(z), uniformly on com-
pact subsets of Ω. Since(

φn(z)
gn(z)

)′
=

φn(z)
gn(z)

(
φ ′n(z)
φn(z)

− g′n(z)
gn(z)

)
,
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we get lim
n→∞

φ ′n(z)
nφn(z)

= lim
n→∞

g′n(z)
ngn(z)

= ψ(z), uniformly on compact subsets of Ω and

ψ(z) = lim
n→∞

φ ′n(z)
nφn(z)

= lim
n→∞

∫ dν [φn](w)
z−w

=
∫ dµA(w)

z−w
, z ∈Ω.

5.2 Proof of Theorem 3 (i): λ ∈ A
We only consider the case m = 1 because the next step of induction on m follows with
the same argument. It is well known that, if Pn is a monic polynomial of degree n≥ 1,
we have ‖Pn‖A ≥ (cap(E))n. (See [10, Th. 5.5.4].) Combining this relation with the
definition of I1,λ (φn) and the condition (5) on φn, it plainly follows that

lim
n→∞
‖I1,λ (φn)‖1/n

A = cap(A) .

Thus, since A has empty interior and a connected complement (see [3]), we have

w-lim
n→∞

ν [I1,λ (φn)] = µA. (20)

As τ has no zeros in Ω, by Lemma 3, we know that the zeros of (I1,λ (φn)) converge to
A. So, we obtain

φn(z)
I1,λ (φn)(z)

=
(I1,λ (φn))

′(z)
(n+1)I1,λ (φn)(z)

=
∫ dν [I1,λ (φn)](w)

z−w
,

and by (20),

lim
n→∞

φn(z)
I1,λ (φn)(z)

=
∫ dµA(w)

z−w
= ψ(z), z ∈Ω.

Therefore, the statement (i) of Theorem 3 follows immediately from the hypothesis (5)
on (φn). �

5.3 Proof of Theorem 3 (ii): λ 6∈ A
We choose λ0 ∈ A and λ ∈Ω. From (1), Im,λ (φn) can be written alternatively as

Im,λ (φn)(z) = Im,λ0(φn)(z)−Pm−1(z),

where Pm−1(z) is the m− 1-th Taylor polynomial of Im,λ0(φn) in powers of (z− λ ).
From (2), we have that

(Im,λ0(φn))
(k)(λ )k! =

(
n+m

k

)
Im−k,λ0(φn)(λ ),
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Figure 5: Here we illustrate Theorem 3 for ultraspherical polynomials on [−1,1]:
I6(P

(3/2)
n ).

Figure 6: We illustrate Theorem 3 for orthogonal polynomials on the arc {eit : θ ≤ t ≤
2π − θ} of the unit circle. In each case we take the Chebyshev measure on the arc.
The zeros of φn are marked by bullets, the zeros of I1,λ (φn) by squares, and the zeros
of I2,λ (φn) by diamonds. In each case, the dashes circle is ∂D1 and the gray path is the
curve ∂Λλ for the corresponding values of λ .

0≤ k ≤ m−1. Therefore,

Pm−1(z) =
m−1

∑
k=0

(
n+m

k

)
Im−k,λ0(φn)(λ )(z−λ ) j.

The proof is completed using (i) of Theorem 3 for Im−k,λ0(φn). �
By way of illustrating Theorem 3, Figures 5 and 6 include several examples of the

curve ∂Λλ , the zeros of the φn, and the zeros of their iterated integrals for different
values of λ , m.
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