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Abstract: In this paper, we present the local results of the convergence of the two-step King-like
method to approximate the solution of nonlinear equations. In this study, we only apply conditions
to the first derivative, because we only need this condition to guarantee convergence. As a result,
the applicability of the method is expanded. We also use different convergence planes to show family
behavior. Finally, the new results are used to solve some applications related to chemistry.

Keywords: King-like iterative methods; local convergence; Lipschitz conditions; dynamics

1. Introduction

In this study, inspired in previous papers such us [1], we want to approximate a locally unique
solution z∗ of equation

G(z) = 0, (1)

where G : I ⊂→ T, T = R or T = C, I is convex and G is a differentiable function.
As society changes, the way in which we understand science also changes, as can be seen in [2–6].

In the case of Mathematical Modelling [2–5] it is important to comment that it enables us to solve
problems with the form of the Equation (1). Based on the results, researchers are working to use the
same assumptions to increase the convergence domain of the iterative method because it is usually
small, the final purpose is to estimate: ‖zn+1 − zn‖ and ‖zn − z∗‖.

The dynamic behavior of iterative methods provides key information about its reliability
and stability. In the past ten years, some studies related to dynamic characteristics have been
presented [3,4,6–25]. The main problem of this research is related to the fact that these families
or methods have only one parameter, or even no parameters. In our case, we have more free
parameters, so we need another tool to study it. The tools in [19,21], arevery useful for studying
the dynamic behavior of families with two different parameters or the actual dynamics in other
interactive applications. In this article, we will study the convergence of:

wn = zn − α
G(zn)

G′(zn)

zn+1 = wn −
G(wn)

G′(zn)

G(zn) + βG(wn)

G(zn) + (β− 2)G(wn)
,
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Includes computable convergence radius and error estimates. In addition, we will show the
behaviors related to the family by using the convergence planes.

We recognize local, semi-local and global convergence. In the case of local (convergence ball
is centered at the solution) and semi-local (convergence ball is centered at the starting point x0) the
convergence is faster, and less expensive than global convergence. But global convergence provides all
roots inside a domain. It is worth noticing that loocal convergence results are important because they
demonstrate the degree of difficulty in choosing starters x0. There is a plethora of literature on solvers.
See for example [26–30] and the references therein. In these references other techniques are used on
polynomials (or not) considering proper intervals containing a root or all roots. These references
do not provide computable bounds on ‖xn − x∗‖ or uniqueness of the solution x∗ results. But we
do. Moreover, the starter x0 really a shot in the dark, whereas in our case it is picked up from a
predetermined ball of convergence.

Consider the motivational example for T = R, I = [− 1
2 , 3

2 ] where

f (t) =

{
t3 ln t2 + t5 − t4, t 6= 0
0, t = 0

Then, we have x∗ = 0, and

f ′′′(t) = 6 ln t2 + 60t2 − 24t + 22.

Then, obviously, function f ′′′(t) is unbounded on I. Hence, earlier results using the third (or
higher order, that do not appear on (2), b ut used to compute the order of convergence) derivatives
cannot guarantee convergence (2) to z∗,

The convergence studies so far have shown convergence using high order derivatives that do not
appear on the method. Hence, limiting the applicability of the method. But we show convergence
using only the first derivative that actually appears on the method. Hence, we expand the applicability
of the method. A radius of convergence, estimates on ‖xn − x∗‖ and uniqueness results not given
before are also provided. Our technique can be used to expand the applicability of other methods
along the same lines. The convergence order is determined using (COC) orr (ACOC) to be precised in
Remark 2.

All this work is organized into different chapters: Next section, number 2, we display the method
and the theorems that guarantee the local convergence of the method. In the next section, number 3,
the authors study the convergence planes of the method of the previous section applied to a quadratic
polynomial. In the next section we introduce some chemical applications that reinforce the applicability
of the method and in the last section, number 5, we write the conclusions that complete the article.

2. Local Convergence Analysis

We start to introduce in this section the method we will study throughout the article. We study the
local convergence analysis of the two-step King-like method defined as follow for each n = 0, 1, . . . by

wn = zn − α
G(zn)

G′(zn)

zn+1 = wn −
G(wn)

G′(zn)

G(zn) + βG(wn)

G(zn) + (β− 2)G(wn)
,

(2)

where z0 is an initial point, α ∈ T and β ∈ T are parameters. Some well-known methods, such as our
King’s family methods or Traub-Ostrowski method, are special cases of this family.

We consider N ≥ 1, L0, L > 0 and α, β ∈ T. We now want to demonstrate the local convergence
of the method (2) for which we are going to use the following auxiliary functions and parameters
defined as:
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The first auxiliary function that we are going to define is called k1 on the interval [0, 1
L0
) by

k1(t) =
1

2(1− L0t)
(Lt + 2N|1− α|)

and

r1 =
2(1− N|1− α|)

2L0 + L

rA =
2

2L0 + L
.

Next, taking into account the definition of N and α, we can write

|1− α|N < 1. (3)

Based on the above, we obtain as a consequence

0 < r1 < rA <
1
L0

, (4)

k1(r1) = 1 and 0 ≤ k1(t) < 1 for each t ∈ [0, r1).

Now consider the interval [0, 1
L0
) and defining a new auxiliary functions

k0(t) =
L0

2
t + N|β− 2|k1(t),

and other auxiliary function
p0(t) = k0(t)− 1,

Next, suppose that
N2|(1− α)(2− β)| < 1, (5)

It clearly follows that
p0(0) = N2|(1− α)(β− 2)| − 1 < 0

and consequently,
p0(t)→ +∞

when

t→ 1
L0

−
.

Using now the Intermediate Value Theorem, it is clear that there exist at least one root of p0

located in the interval (0, 1
L0
), we will call r0 the smallest zero in that interval.

Now we can perform the same technique, for this we define on the interval [0, r0) a new
auxiliary functions

k2(t) =
[

1 +
N2(1 + |β|k1(t))

(1− L0t)(1− k0(t))

]
k1(t)

and
p2(t) = k2(t)− 1.

Similarly, suppose [
N2(1 + |β|N|1− α|)

1− N2|(1− α)(2− β)| + 1
]
|1− α|N < 1, (6)
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it is easy to see that

p2(0) =
[

N2(1 + |β|N|1− α|)
1− N2|(1− α)(2− β)| + 1

]
|1− α|N − 1 < 0

and
p2(t)→ ∞

when
t→ r−0 .

So, it is clear that there exist at least one root of p2 located in the interval (0, r0). We will call r2 as
the smallest zero in the interval.

We also define the value r as the minimum of the values between r1 and r2

r = min{r1, r2}. (7)

For t ∈ [0, r), the following conditions are fulfilled by definition of the functions

0 ≤ k0(t) < 1, (8)

0 ≤ k1(t) < 1 (9)

and
0 ≤ k2(t) < 1. (10)

From now on, we will also consider U(v, ρ) as the open ball in T with center v ∈ T and radius
ρ > 0, as Ū(v, ρ) the closed one and I0 = I ∩U(Z∗, 1

L0
), where L0 is positive therefore we can present

the following result.

Theorem 1. Let G : I ⊂ T → T be a differentiable function. Suppose that there exists z∗ ∈ I, L0, L > 0,
N ≥ 1 and α, β ∈ T such that the following requirements are true

G′(z∗) 6= 0, G(z∗) = 0, (11)

|(1− α)(2− β)|N2 < 1,

[
N2(1 + |β|N|1− α|)

1− N2|(1− α)(2− β)|

]
|1− α|N < 1,

‖G′(z∗)−1(G′(z)− G′(z∗)‖ ≤ L0‖z− z∗‖, for each z ∈ I (12)

‖G′(z∗)−1(G′(z)− G′(w)‖ ≤ L‖z− w‖, for each z, w ∈ I0 (13)

‖G′(z∗)−1G′(z)‖ ≤ N, for each z ∈ I0 (14)

and
Ū(z∗, r) ⊆ I. (15)

Then, the method (2) generate a well defined sequence {zn} for z0 ∈ U(z∗, r) \ {z∗}, and {zn} remains in
U(z∗, r) for each n = 0, 1, 2, . . . and moreover, the sequence converges to z∗.

Furthermore, the inequalities written below are also fulfilled

‖wn − z∗‖ ≤ k1(‖zn − z∗‖)‖zn − z∗‖ < ‖zn − z∗‖ ≤ r, (16)

and
‖zn+1 − z∗‖ ≤ k2(‖zn − z∗‖)‖zn − z∗‖ ≤ ‖zn − z∗‖, (17)
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Moreover, if we take R in the form

R ∈ [r,
2
L0

)

the limit point z∗ is the only solution of Equation (1) in the domain

I1 := Ū(z∗, R) ∩ I.

Proof. To prove the Theorem we are going to use the mathematical induction method to show estimates
(16) and (17). First of all, using

z0 ∈ U(z∗, r) \ {z∗}

and (12) we get
‖(G′(z0)− G′(z∗))‖

‖G′(z∗)‖ ≤ L0‖z0 − z∗‖ < L0r < 1. (18)

Using this condition and the Banach lemma on invertible functions [2,3,5] it is obvious that

G′(z0)

is not equal to zero and satisfied

‖G′(z0)
−1G′(z∗)‖ ≤ 1

1− L0‖z0 − z∗‖ ≤
1

1− L0r
. (19)

As a consequence, w0 is well defined. Now, using (11) we obtain

G(z0) = G(z0)− G(z∗) is equal to
∫ 1

0
G′(z∗ + θ(z0 − z∗))(z0 − z∗)dθ. (20)

Notice that θ(z0 − z∗) + z∗ ∈ U(z∗, r) since ‖θ(z0 − z∗)− z∗ ++z∗‖ = θ‖z0 − z∗‖ < r.
Now, from (14) and (19), we obtain

‖G′(z∗)−1G(z0)‖ is equal to ‖
∫ 1

0
G′(θ(z0 − z∗)z∗)(z0 − z∗)dθ‖ ≤ N‖z0 − z∗‖. (21)

From method (2) for n = 0, and the Equations (7), (8), (13), (19) and (22) we get

‖w0 − z∗‖ ≤ ‖(z0 − z∗ − G′(z0)
−1G(z0)) + (1− α)G′(z0)

−1G(z0)‖

≤ ‖G′(z0)
−1G(z∗)‖‖

∫ 1
0 G′(z∗)−1G(z∗ + θ(z0 − z∗)− G′(z0))(z0 − z∗)dθ‖

+|1− α‖G′(z0)
−1G′(z∗)‖‖G′(z∗)−1G(z0)‖

≤ L‖z0 − z∗‖2

2(1− L0‖z0 − z∗‖) +
N|1− α|‖z0 − z∗‖
1− L0‖z0 − z∗‖

= k1(‖z0 − z∗‖)‖z0 − z∗‖ ≤ ‖z0 − z∗‖ < r.

(22)

As a result, it is satisfied (16) taking n = 0 and y0 ∈ U(x∗, r).
Now, replace z0 by w0 in the previous inequality (22) we get

‖G′(z∗)−1G(w0)‖ ≤ N‖w0 − z∗‖. (23)

Now we must prove G(z0) + (β− 2)G(w0) 6= 0 for z0 6= z∗.
From conditions (7), (9), (11), (12) and (22)–(23) it follows that
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‖G′(z0)(z0 − z∗))−1 [G(z0)− G(z∗)− G′(z∗)(z0 − z∗) + (β− 2)G(w0)]

≤ ‖z0 − z∗‖−1 [‖G′(z∗)−1(G(z0)− G(z∗)− G′(z∗)(z0 − z∗))‖+ |2− β|‖G′(z∗)−1G(w0)‖
]

≤ ‖z0 − z∗‖−1
[

L0

2
‖z0 − z∗‖2 + |2− β|N‖w0 − z∗‖

]
≤ L0

2
‖z0 − z∗‖+ |2− β|Nk1(‖z0 − z∗‖)

= k0(‖z0 − z∗‖) < k0(r) < 1.

(24)

Or what is the same, from (24) we obtain

‖(G(z0) + (2− β)G(w0))
−1G′(z∗)‖ ≤ 1

(1− k0(‖z0 − z∗‖))‖z0 − z∗‖ . (25)

Consequently, z1 is well defined by the second substep of method (2) for n = 0.
Now, from (2) for n = 0, (7), (10), (19), (22) and (25) we get

‖z1 − z∗‖ ≤ ‖w0 − z∗‖+ ‖G′(z0)
−1G′(z∗)‖‖G′(z∗)−1G(y0)‖

×(‖G′(z∗)−1G(z0)‖+ |β|‖G′(z∗)−1G(w0)‖)‖(G(z0) + (β− 2)G(w0))
−1G′(z∗)‖

≤ ‖w0 − z∗‖+ N2‖w0 − z∗‖(‖z0 − z∗‖+ |β|‖w0 − z∗‖
(1− L0‖z0 − z∗‖)‖z0 − z∗‖(1− k0(‖z0 − z∗‖))

=

[
1 +

N2(1 + |β|k1(‖z0 − z∗‖))
(1− L0‖z0 − z∗‖)(1− k0(‖z0 − z∗‖)

]
‖w0 − z∗‖

≤ k2(‖z0 − z∗‖)‖z0 − z∗‖ ≤ ‖z0 − z∗‖ < r,

which demonstrates the Equation (17) with n = 0 and z1 ∈ U(z∗, r).
Now substituting z0, w0, z1 by zk, wk, zk+1 in the previous estimates we reach (16)–(18).
Next, from ‖zk+1 − z∗‖ ≤ c|zk − z∗‖ < r, where c = k2(‖z0 − z∗‖) ∈ [0, 1] =, we obtain:

lim
k→∞

zk = z∗ and zk+1 ∈ U(z∗, r).

Finally, we set

M =
∫ 1

0
G′(w∗ + θ(z∗ − w∗))dθ

for some w∗ ∈ Ū(z∗, R) with G(w∗) = 0. From (12), we obtain

‖G′(z∗)−1(M− G′(z∗))‖ ≤ ‖
∫ 1

0 L0‖w∗ + θ(z∗ − w∗)‖dθ

= L0
∫ 1

0 (1− θ)‖w∗ − z∗‖ ≤ L0

2
R < 1.

(26)

It is clear that from (26), M−1 ∈ L(T, T). Finally, using 0 = G(w∗)− G(z∗) = M(w∗ − z∗), we get

z∗ = w∗.
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Remark 1.

• Moreover for the error bounds in practice we can use the computational order of convergence
(COC) [31] using

ξ∗ = sup
ln
(
|xn+2−x∗ |
|xn+1−x∗ |

)
ln
(
|xn+1−x∗ |
|xn−x∗ |

) for each n = 0, 1, 2, . . .

• or the approximate computational order of convergence (ACOC) [31] using iterations instead of the
exact solution

ξ = sup
ln
(
|xn+2−xn+1|
|xn+1−xn |

)
ln
(
|xn+1−xn |
|xn−xn−1|

) for each n = 1, 2, . . .

Remark 2.

(a) Condition (11) and estimates (12)–(14) are natural Lipschitz-type conditions which are standard in the
study of iterative methods. In fact (12)–(14) can be condensed in one condition. But used this way is better
for reasons of precision.

(b) Concerning the second and the thirs conditions in Theorem 1, these were left as uncluttered as possible.
One can easily see that there are infinitely many pair of values (α, β) satisfying these inequalities (but not
as weak). Indeed, suppose that

|(1− α)(2− β)| < 1
2N2 (27)

Then, the second inequality is satisfied provided that

2N2(1 + |β|N|1− α|)|1− α|N < 1

or
|1− α| < 1

N2
√

N2 + 2|β|
(<

1
N
). (28)

Then, the original inequalities certainly hold, if (27) and (28) hold. Moreover, (27) (in view of (28)) can
ever be replaced by

|2− β| < 1
2N4

√
N2 + 2|β|

. (29)

However as noted earlier condtions (27) and (28) or (28) and (29) are stronger than the two inequalities
appearing in the statemetn of Theorem 1 (and can certainly replace them). Either way, as claimed above
there are infinitely many choices of (α, β).

3. The Convergence Planes Applied to the Quadratic Polynomial p(z) = z2 − 1 Using Method (2)

Once the convergence of the method has been demonstrated in the previous section, we will
study the convergence planes. We should first study the parameter planes of the method (2), but the
details of these parameter planes can be seen in [24]. We will show the convergence planes applied to
p(z) = z2 − 1 a polynomial of degree two, taking different values of the method parameters α and β.
In this article, to draw the points, we iterate a maximum of 200 times and a tolerance of 10−3. We will
use different colors to differentiate the numerical behavior of the points when they are iterated:

• in yellow if the iteration of the initial point diverges to ∞,
• in magenta if the starting point converges to the first root of the quadratic polynomial, z = 1,
• in cyan if the iteration of the starting point converges to the other root of the quadratic polynomial

z = −1,
• if the iteration of the initial point converges to any strange fixed points, it is colored in red,
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• in other colors if the iteration of the initial point converge to different n-cycles (n ≤ 8),
• in black if the iteration of the initial point has other behavior.

Consequently, we are only interested in points painted in cyan or magenta since it means that the
selection of parameters α and β for that initial point z0 in numerical terms is a good one.

In Figure 1 we see the convergence plane associated to the method (2) applied to the two order
polynomial p(z) = z2 − 1 with the initial point z0 = 0.5 and in the region of the plane (α, β) ∈
[−5, 5] × [−5, 5]. and in Figure 2 with starting point z0 = −0.75 and in the region of the plane
(α, β) ∈ [−5, 5]× [−5, 5]

Figure 1. Convergence plane of method (2). The starting point is z0 = 0.5.

Figure 2. Convergence plane of method (2). The starting point is z0 = 0.75.
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4. Application Examples

To show the applicability of the theorems and results presented in this article, let’s look at the
Planck’s radiation law problem, which can be obtained from the reference [32]:

ϕ(λ) =
8πsPλ−5

e
sP

λBK−1
(30)

which estimates the density of within an isothermal black body.
If we use a variable change:

x =
sP

λBK
,

The expression which estimates the density of within an isothermal black body can be defined in
the following terms:

1− x
5
= e−x (31)

And if we now define the function h(x) as:

h(x) = e−x − 1 +
x
5

. (32)

As a result, if we are able to find the roots of Equation (32) can provide us the maximum
wavelength of radiation (λ) through the expression:

λ ≈ sP
x∗BK

. (33)

Let’s consider the interval D = [4, 6] and the solution x∗ = 4.965114 . . ..
Then, we will introduce the applicability of the three special cases introduced in previous Section 3.

Application 1. First we will consider the case α = 0.9 and β = 2.5
We obtain the values for this case

L0 = 0.060865 . . . ,

L = 0.0948885 . . .

and
N = 1.02331 . . . .

Moreover, we can conclude the following conditions[
N2(1 + |β|N|1− α|)

1− N2|(1− α)(2− β)| + 1
]
|1− α|N = 0.273262 . . . < 1.

N2|(1− α)(2− β)| = 0.0523577 . . . < 1,

are satisfied. Then, due to the definition of the “k” functions we can derive

r0 = 9.71092 . . . ,

r1 = 9.23282 . . .

and
r2 = 2.64413 . . . .

Therefore, if we take the alpha and beta values as α = 0.9, β = 2.5 and r = r2 = 2.64413 . . . we we can
assure that the method described in (2) converges to the unique solution x∗ of the function h(x) by Theorem 1.
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Application 2. Secondly we will consider the case α = 0.75 and β = 2.01
We obtain the values for this case

L0 = 0.060865 . . . ,

L = 0.0948885 . . .

and
M = 1.02331 . . . .

Moreover, we can conclude the following conditions[
1 +

N2(1 + |β|N|1− α|)
1− N2|(1− α)(2− β)|

]
|1− α|N = 0.867984 . . . < 1.

|(1− α)(2− β)|N2 = 0.00261788 . . . < 1,

are satisfied.
Now, applying the definition of the “k” functions we get

r0 = 16.09389 . . . ,

r1 = 6.87083 . . .

and
r2 = 1.18924 . . . .

So,taking the values: α = 0.75, β = 2.01 and r = r2 = 1.18924 . . . we can assure the convergence of the
method described in (2) to the solution x∗ of h(x) applying Theorem 1.

Application 3. Finally we will consider the case α = β = 1.
We obtain the values for this case

L0 = 0.060865 . . . ,

L = 0.0948885 . . .

and
N = 1.02331 . . . .

Moreover, we can conclude the following conditions[
N2(1 + |β|N|1− α|)

1− N2|(1− α)(2− β)| + 1
]
|1− α|N = 0 < 1.

|(1− α)(2− β)|N2 = 0 < 1,

are satisfied. Now, applying the definition of the “k” functions we get

r0 = 9.71092 . . . ,

r1 = 9.23282 . . .

and
r2 = 2.64413 . . . .

So,taking the values: α = 0.9, β = 2.5 and r = r2 = 2.64413 . . . we can assure the convergence of the
method described in (2) to the solution x∗ of f (x) by Theorem 1.
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5. Conclusions

In this paper, we have studied the local convergence of the two-step King-like method of
Equation (2). The local convergence of the method has been proved giving the theorem that assure it,
in addition to its proof. The advantage of this research is that it is only necessary to apply conditions
to the first derivative to ensure local convergence, which can avoid the study of advanced derivatives
that may not be simple, thus expanding the applicability of the method. In addition, the dynamics
of the method for quadratic polynomials has been studied to prove the performance of the method.
We finish by showing several examples using the new proposed method where we can assure the
convergence.
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