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Abstract: The aim of this paper is to study the local dynamical behaviour of a broad class of purely
iterative algorithms for Newton’s maps. In particular, we describe the nature and stability of fixed
points and provide a type of scaling theorem. Based on those results, we apply a rigidity theorem
in order to study the parameter space of cubic polynomials, for a large class of new root finding
algorithms. Finally, we study the relations between critical points and the parameter space.

Keywords: general convergence; cubic polynomials; purely iterative methods; Lipschitz
conditions; dynamics

1. Introduction

The computation of solutions for equations of the form

Ψ(x) = α,

is a classic problem that arises in different areas of mathematics and in particular in numerical analysis.
Here Ψ : C→ C is a complex function, and usually it is assumed that α = 0. Due to the dependence
on the space where the equation is defined, and where possible solutions are acting, it is ambitious to
expect a unified theory that provides the exact, or even approximate solutions to this class of equations.
Also, depending on the objective that is being addressed, solving an equation as above can be very
different in nature, as well as, the techniques used to solve it. For instance, Picard–Lindelöf’s theorem
(see for example [1]) on existence and uniqueness of solutions of ordinary differential equations,
and fundamental theorem of Algebra in complex analysis. On the other hand, if we turn our attention
to explicit solutions, then the problem becomes even more difficult.

Consider a complex polynomial f and

N f = Id− f
f ′

the classical Newton’s method. In this case, higher–order methods have been extensively used and
studied in order to approach the equation f (z) = 0. The iterative function N f defines a rational map
on the extended complex plane (Riemann sphere) C = C ∪ {∞}. The simple roots of the equation
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f (z) = 0, or in other words, the roots of the equation f (z) = 0 that are not roots of the derivative
f ′(z), are super–attracting fixed points of N f , that is, let ζ be a simple root of f (z), then N f (ζ) = ζ

and N′f (ζ) = 0. For a review of the dynamics of Newton’s method, see for instance [2,3].
More generally, Polyd and Ratk denote the space of polynomials of degree d and the space of

rational functions of degree k, respectively. By a root–finding algorithm or root–finding method it is meant
a rational map Tf : Polyd → Ratk, such that the roots of the polynomial map f are attracting fixed
points of Tf . A root–finding algorithm Tf has order σ, if the local degree of Tf in every simple root of f
is σ.

In this paper we study the dynamical aspects of

Tf (z) = z− (z− N f (z))
(a0 + a1N′f (z) + a2(N′f (z))

2)

b0 + b1N′f (z)
, (1)

where a0, a1, a2, b0 and b1 are real numbers. Depending on those parameters, this family is of order 2,
3, 4 or 5. Also, this family can be viewed as a generalization of c−iterative functions (for a definition
see Example 5 below).

In [4] C. Mcmullen proved a rigidity theorem that implies that a purely iterative root finding
algorithm generally convergent for cubic polynomials, is conformally conjugate to a generating map.
Applying this result, J. Hawkins in [5] was able to obtain an explicit expression for rational maps
which are generating, and so it is natural to ask which of these rational maps Tf are generating maps.
We use that rigidity result in order to show that over the space of cubic polynomials, those maps
Tf that generate a generally convergent algorithm are restricted to Halley’s method applied to the
cubic polyomial.

The paper is organized as follows. Section 2 contains some basic notions of the classic theory of
complex dynamics. In addition to establish the notation and main examples, Section 3 contains the
definition of purely iterative iterative algorithm for Newton’s maps, that will be used throughout the
article. Section 4 is devoted to the study of the nature of fixed points. In Section 5 we study the order
of convergence of Tf , and in Section 6 we provide the results about Scaling theorems. We provide
the result concerning maps that generates generally convergent root finding algorithms for cubic
polynomials in Section 7. In Section 8 we provide the relation between critical points and parameter
space. The last Section summarize the conclusion.

2. Basic Notions in Complex Dynamics

We recall the reader so see [6] or [7–16] to obtain some basic notions of the classic theory of
Fatou-Julia of complex dynamics which appear in (as a reference of the Fatou– Julia theory see for
instance P. Blanchard [17] and J. Milnor [18]). Here we show a small summary: Let

R(z) =
P(z)
Q(z)

be a rational map of the extended complex plane into itself, where P and Q are polynomials with no
common factors.

• A point ζ is called a fixed point of R if R(ζ) = ζ , and the multiplier of R at a fixed point ζ is the
complex number λ(ζ) = R′(ζ) .

• Depending on the value of the mulitplier, a fixed pointcan be superattracting (λ(ζ) = 0),
attracting(0 < |λ(ζ)| < 1), repelling(|λ(ζ)| > 1), indifferent (|λ(ζ)| = 1)

• Let z0 be a fixed point of Rn which is not a fixed point of Rj, for any j with 0 < j < n. We say
that orb(z0) = {z0, R(z0), . . . , Rn−1(z0)} is a cycle of length n or simply an n–cycle. Note that
orb(zj) = orb(z0) for any zj ∈ orb(z0), and R acts as a permutation on orb(z0) .

• The multiplier of an n−cycle is the complex number λ(orb(z0)) = (Rn)′(z0).
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• At each point zj of the cycle, the derivative (Rn)′ has the same value.
• An n−cycle {z0, z1 , . . . , zn−1 } is said to be attracting, repelling, indifferent, depending the value of

the associated multiplier (same conditions than in the fixed points).
• The Julia set of a rational map R, denoted J(R), is the closure of the set of repelling periodic

points. Its complement is the Fatou set F(R). If z0 is an attracting fixed point of R, then the
convergence region B(z0) is contained in the Fatou set and J(R) = ∂B(z0), where ∂ denotes the
topological boundary.

3. Definitions and Notations

Now we recall the definition of purely iterative algorithms due to S. Smale in [19]. Let Pd be the
space of all polynomials of degree less than or equal to d . For every k ≥ 1, define the space Jk = Ck+2

and the map

j : C×Pd → Jk

given by

j(z, f ) = (z, f (z), f ′(z), . . . , f [k](z)),

where f [k] denotes the kth derivative of f . Let F : Jk → C be the rational map defined as

F(z, ξ0, . . . , ξk) = z− P(z, ξ0, . . . , ξk)

Q(z, ξ0, . . . , ξk)
, (2)

where P and Q are polynomials in k + 2 variables z, ξ0, . . . , ξk, with no common factors. A purely
iterative algorithm is a rational endomorphism T̂f : C→ C that depends on f ∈ Pd and takes the form

T̂f (z) = F(j(z, f (z))) , (3)

for a rational map as in (2).
Consider a modification of the preceding definition. Let Ratd be the space consisting of the

rational maps of degree less than or equal to d . Define a subset V ⊂ Ratd as

V = {R ∈ Ratd : finite fixed points α of R are simple,
1

1− R′(α)
∈ N,

R(∞) = ∞ and R′(∞) = d/(d− 1)}.

Since Newton’s method applied to zd − 1 is a rational map that satisfies the conditions in V ,
we conclude that V 6= ∅, for every d ≥ 2.

As above, define
ˆ : C× V → Jk

by
ˆ(z, R) = (z, R(z), R′(z), . . . , R[k](z)) .

Let G : Jk → C be the rational map defined as

G(z, ξ0, . . . , ξk) = z− P(z, ξ0, . . . , ξk)

Q(z, ξ0, . . . , ξk)
, (4)

where P and Q are polynomials in k + 2 variables with no common factors.
We define a rational endomorphism Tf : C→ C , depending on R ∈ Ratd , by

Tf (z) = G( ˆ(z, R)),
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where R ∈ V .
In [6] it is proved the following.

Theorem 1. For every G : Jk → C defined as before, there exists a complex polynomial f of degree d such that
for every R ∈ V , R = N f , where N f is the Newton method. Also, there exists a linear space H of dimension
d + 1 such that V is contained in Ratd ∩ H.

Theorem 1 motivates the following definition.

Definition 1. Let S f : C→ C be the rational endomorphism depending on f ∈ Pd , given by

S f (z) = G( ˆ(z, N f (z))) (5)

where N f is Newton’s map applied to f , and G is defined by the Formula (4). A rational endomorphism S f as
above will be called a purely iterative algorithm for Newton’s maps.

Remark 1. Note that the degree of the polynomials P and Q in (4) does not depend on the degree of f .

In this paper we consider the family of purely iterative algorithm for Newton’s maps given by
the Formula (5), with

G(z, ξ0, ξ1) = z− P(z, ξ0, ξ1)

Q(z, ξ0, ξ1)
,

P(z, ξ0, ξ1) = (z− ξ0)(a0 + a1ξ1 + a2ξ2
1)

and
Q(z, ξ0, ξ1) = b0 + b1ξ1,

where a0, a1, a2, b0 and b1 are real numbers. Then the family is given by

Tf (z) = z− (z− N f (z))
(a0 + a1N′f (z) + a2(N′f (z))

2)

b0 + b1N′f (z)
,

which is exactly the Formula (1) above.

Example 1. The family of Purely iterative algorithms for Newton’s maps (1) include several important families
of root–finding algorithms.

1. Newton’s method is obtained by taking a0 = b0 = 1, a1 = a2 = b1 = 0. Indeed, in this case

P(z, ξ0, ξ1) = z− ξ0 and Q(z, ξ0, ξ1) = 1.

Hence Tf (z) = z− (z− N f (z)) = N f (z). This method has been briefly studied in the last decades [20].
2. Halley’s method is obtained by considering a0 = 2, a1 = 0, a2 = 0, b0 = 2 and b1 = −1. Indeed,

Tf (z) = H f (z) = z− 2

(
z− N f (z)
2− N′f (z)

)
.

Therefore,
P(z, ξ0, ξ1) = 2(z− ξ0) and Q(z, ξ0, ξ1) = 2− ξ1.

For a study of dynamical and numerical properties of Halley’s method, see for instance [21,22].
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3. Whittaker’s iterative method also known as convex acceleration of Whittaker’s method (see [23,24]), is an
iterative map of order of convergence two given by

W f (z) = z− 1
2
(z− N f (z))

(
2− N′f (z)

)
.

Thus, according with (4) and (5), Whittaker’s method is a purely iterative algorithm for Newton’s maps
when considering k = 1, and the polynomials

P(z, ξ0, ξ1) = (z− ξ0)

(
1− ξ1

2

)
and Q(z, ξ0, ξ1) ≡ 1.

4. Newton’s method for multiple roots is obtained by considering a0 = b0 = 1, a1 = a2 = 0 and b1 = −1.
Indeed,

Tf (z) = M f (z) = z−
(

z− N f (z)
1− N′f (z)

)
.

Note that
P(z, ξ0, ξ1) = z− ξ0 and Q(z, ξ0, ξ1) = 1− ξ1.

This method has been studied by several authors. See for example [25,26] and more recently [27,28].
5. The following method, that may be new and it is denoted by SH2 f , is a modification of the super–Halley

method(for a study of this method see for instance [29]). This is given by the formula

SH2 f (z) = z− 1
2

(
z− N f (z)

)(3− N′f (z)

1− N′f (z)

)
.

Consider the polynomials

P(z, ξ0, ξ1) =
1
2
(z− ξ0)(3− ξ1) and Q(z, ξ0, ξ1) = 1− ξ1.

Again, it follows from (4) and (5) that SH2 f is a purely iterative algorithm for Newton’s maps.
6. More generally, considering a0 = 2, a1 = 1− 2θ, a2 = 0, b0 = 2 and b1 = −2θ we obtain the following

third-order family studied in [30,31].

M f , θ(z) = z− (z− N f (z))

(
1 +

N′f (z)

2(1− θN′f (z))

)
.

In this case

P(z, ξ0, ξ1) = (z− ξ0)(2− (1− 2θξ0)) and Q(z, ξ0, ξ1) = 2− 2θξ1.

7. The following family of iterative functions represents Newton’s method, Chebyshev’s iterative function,
Halley’s method, Super-Halley, c–iterative function (considering θ = 0 below) and Chebyshev-Halley
family, among others. See for instance [22,29–38]. The family of iterative methods given by

M f , θ,c(z) = z− (z− N f (z))

(
1 +

N′f (z)

2(1− θN′f (z))
+ c(N′f (z))

2

)
,
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where θ and c are complex parameters conveniently chosen, form a family of purely iterative algorithms for
Newton’s maps. Indeed, this follows by considering the polynomials

P(z, ξ0, ξ1) = (z− ξ0)[2(1− θξ1) + ξ1 + 2cξ1(1− θξ1)

= (z− ξ0)(2 + ξ1(1− 2θ + 2c)− 2cθξ2
1)

and
Q(z, ξ0, ξ1) = 2− 2θξ1,

in (4) and (5).

It is clear that a0 = 2, a1 = 1− 2(c + θ), a2 = −2cθ, b0 = 2 and b1 = −2θ.

Remark 2. Note that a purely iterative algorithm for Newton’s maps may not be a root–finding algorithm.
For instance, by considering the polynomial f (z) = (z− 1)2(z + 1), and the purely iterative Newton’s map
defined by

P(z, ξ0, ξ1) = (z− ξ0)(1 + ξ1 + ξ2
1)

and
Q(z, ξ0, ξ1) = 1 + b1ξ1,

where b1 < −2, it follows that root 1 is repelling for the associated rational map. In fact, in this case

Tf (z) = z− (z− N f (z))
(1 + N′f (z) + (N′f (z))

2)

1 + b1N′f (z)
.

Note that Tf (1) = 1. Since b1 < −2 then 16 + 8b1 < 0. Therefore

T′f (1) = 1− 14
16 + 8b1

> 1.

As a consequence the root 1 is a repelling fixed point.

4. The Nature of Fixed Points

In order to ensure that Tf be a root–finding algorithm (see Remark 2), some restrictions over the
choice of the real parameters a0, a1, a2, b0 and b1, are required. Let m ≥ 1 be an integer and define

λm = 1− lm (6)

where,

lm =
am2 − bm + a2

m2(m(b0 + b1)− b1)

and a = a0 + a1 + a2 and b = a1 + 2a2.

Theorem 2. Suppose that
0 < λm < 1 (7)

for every m ≥ 1. Let f : C → C be a complex polynomial of degree d ≥ 2. Denote by αi its zeros and by
mi ≥ 1 their multiplicities. Then Tf defined in (1) is a root finding algorithm. Moreover,

(a) Each root αi of multiplicity mi ≥ 1 is an attracting fixed point for Tf with multiplier λmi = 1− lmi .
Assuming that a0 = b0, we have that every simple root is a superattracting fixed point for Tf .

(b) Tf has a repelling fixed point at ∞ with multiplier λ−1
d .
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(c) If a1 = a2 = 0, b0, b1 6= 0 and a0/b1 < 0 then the extraneous fixed points of Tf are the zeros of f ′ which
are not zeros of f . More precisely, if β is a zero of order n ≥ 2 of f ′ , then it is a repelling fixed point of Tf
with multiplier

1− a0

b1(n− 1)
.

Remark 3. If a0 = 0, then by Formula (6) we have that λ1 = 1, that is, the simple roots of a complex polynomial
are parabolic fixed points for Tf . In this case Tf cannot be a root–finding algorithm. So, from now on, a0 6= 0.

Proof. (a) First note that the factor (z− N f (z)) in (1) implies that Tf (αi) = αi for every i. If f has a
zero α of multiplicity m , then α is a (super)attracting fixed point of Newton’s method with multiplier
(m− 1)/m . Thus

N f (z) = α + (z− α)

(
m− 1

m

)
+ O(z− α)2.

It follows that
z− N f (z) =

1
m
(z− α) + O(z− α)2,

N′f (z) =

(
m− 1

m

)
+ O(z− α) and (N′f (z))

2 =

(
m− 1

m

)2
+ O(z− α).

Consequently,

Tf (z) = α + (z− α)− (z− α)(m2a0 + a1(m− 1)m + a2(m− 1)2)

m2(mb0 + b1(m− 1))
+ O(z− α)2

= α +

(
1−

(
am2 − bm + a2

m2(m(b0 + b1)− b1)

))
(z− α) + O(z− α)2

= α + (1− lm) (z− α) + O(z− α)2

Consequently, α is an attracting fixed point with multiplier 0 < 1− lm < 1. By supposing that
a0 = b0, we have that l1 = 1, which implies that α is a superattracting fixed point.

(b) Note that the degree d polynomial f can be written as

f (z) = µzd
(

1 + O
(

1
|z|

))
,

for some µ ∈ C∗. Indeed, if f (z) = adzd + ad−1zd−1 + · · ·+ a1z + a0, then

f (z) = adzd
(

1 +
ad−1
adz

+ · · ·+ a1

adzd−1 +
a0

adzd

)
.

Therefore, when |z| tends to ∞ , it follows that f ∼ a0zd, and we may write Newton’s method applied
to the polynomial f as

N f (z) =
(

d− 1
d

)
z + O(1) and N′f (z) =

(
d− 1

d

)
+ O(1).

By constructing the Formula (1), this implies that

z− N f (z) =
(

1− d− 1
d

)
z + O(1) =

(
1
d

)
z + O(1),

and so,
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Tf (z) =
a0 + a1N′f (z) + a2(N′f (z))

2

b0 + b1N′f (z)
=

 a0 +
a1(d−1)

d + a2(d−1)2

d2 + O(1)

b0 +
b1(d−1)

d + O(1)

 .

Thus,

Tf (z) = z− (z− N f (z))
(a0 + a1N′f (z) + a2(N′f (z))

2)

b0 + b1N′f (z)

= z−
((

1
d

)
z + O(1)

) a0 +
a1(d−1)

d + a2(d−1)2

d2 + O(1)

b0 +
b1(d−1)

d + O(1)



=

(
1−

(
a0d2 −+a1d2 − a1d + a2d2 − 2a2d + a2

d2(b0d + b1d− b1)

))
z + O(1)

=

(
1−

(
ad2 − bd + a2

d2(d(b0 + b1)− b1)

))
z + O(1)

= (1− ld) z + O(1)

= λdz + O(1)

(c) Suppose that β is a zero of order n ≥ 2 of f ′ which is not a zero of f . Then β is a pole of order
n ≥ 2 for the map b0 + b1N′f , that is,

b0 + b1N′f (z) =
λ

(z− β)n + O|z− β|−(n−1).

This implies that

N f (z) =
λ

b1(1− n)(z− β)n−1 + O|z− β|−(n−2)

and consequently,

Tf (z) = z−
a0(z− N f (z))
b0 + b1N′f (z)

= z− a0
(z− [λ/(b1(1− n)(z− β)n−1) + O|z− β|−(n−2)])

λ/(z− β)n + O|z− β|−(n−1)

= β + (z− β) +
a0(z− β)

b1(1− n)
+ O(z− β)2

= β + (z− β)

(
1− a0

b1(n− 1)

)
+ O(z− β)2,

provided m > 1. Since b1 6= 0 and a0/b1 < 0, the quantity 1− a0

b1(n− 1)
is greater than one, and the

proof is complete.

Example 2. Now we give some examples of Theorem 2:

1. Since Newton’s method is given by considering a0 = b0 = 1, a1 = a2 = b1 = 0, then a = 1 and b = 1.
Hence lm = 1/m and λm = 1− 1/m. Thus the condition (7) is satisfied for every integer m ≥ 1.
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2. Halley’s method is obtained with a = 2, a2 = 0, b = 0, b0 = 2 and b1 = −1. Then, lm = 2/(m + 1)
and λm = (m− 1)/(m + 1). Thus, the condition (7) is satisfied for every integer m ≥ 1. In this case,
repelling fixed point has multiplier of the form (m + 1)/(m− 1), provided m > 1.

3. In Remark 2 was considered an example of purely iterative algorithm for Newton’s maps, that is not a
root-finding algorithm. In this case (7) is not satisfied when b1 < −2. Indeed, l2 = 14/(16 + 8b1) and
λ2 = 1− 14/(16 + 8b1) > 1, and so the condition (7) is not satisfied.

4. The root finding algorithm SH2 has order of convergence 3 and does not satisfy a0 = b0. In this case
λm = 2/(m + 1).

The following table summarizes the examples (1)

a0 a1 a2 b0 b1 λm

N f 1 0 0 1 0 1− 1/m
M f 1 0 0 1 −1 0
H f 2 0 0 2 −1 (m− 1)/(m + 1)

SH2 f 3 −1 0 2 −2 1/(2m)

W f 2 −1 0 2 0 1− (m + 1)/(2m2)

5. Order of Convergence

This section will describe the order of convergence of Tf defined in (1). In this section, N[n]
f denote

the nth derivative of Newton’s method.

Lemma 1. Consider Tf as a root finding algorithm applied to a degree d polynomial f . Then:

1. If a0 = b0, then Tf is at least of order 2.

2. If a0 = b0 and b1 = a1 −
a0

2
, then Tf is at least of order 3.

3. If a0 = b0, b1 = a1 −
a0

2
, a1 = 2a2 and N[3]

f (α) = 0 for every simple root α of f , then Tf is at least of
order 4.

4. If condition in (3) is satisfied and additionally a1 = 0 and N[4]
f (α) = 0 for every simple root α of f , then

Tf has order 5.

Proof. Recall that a0 6= 0. Let α be a simple root of a polynomial f . Since Newton’s method is an order
2 root–finding algorithm, it follows that

N f (z) = α + µ(z− α)2 + O(z− α)3 and N′f (z) = 2µ(z− α) + O(z− α)2,

for some µ 6= 0. Hence,

z− N f (z) = (z− α)− µ(z− α)2 + O(z− α)3,

(N′f (z))
2 = 4µ2(z− α)2 + O(z− α)3.

Consequently,
a0 + a1N′f (z) + a2(N′f (z))

2

b0 + b1N′f (z)
=

a0 + 2µa1(z− α) + O(z− α)2

b0 + 2µb1(z− α) + O(z− α)2 .
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Now to prove part (1) write the Formula (1) as

Tf (z) = z− (z− N f (z))
(a0 + a1N′f (z) + a2(N′f (z))

2)

b0 + b1N′f (z)

= z−
(
(z− α)− µ(z− α)2 + O(z− α)3) ( a0 + 2µa1(z− α) + O(z− α)2

b0 + 2µb1(z− α) + O(z− α)2

)

= α +

(
1− a0

b0

)
(z− α) + O(z− α)2.

Thus, if a0 = b0 we have that Tf (α) = α, T′f (α) = 0 and so Tf is a root–finding algorithm of order
at least 2, which proves part (1).

In order to prove part (2) consider that a0 = b0. Thus

Tf (z) = z− (z− N f (z))
(a0 + a1N′f (z) + a2(N′f (z))

2)

a0 + b1N′f (z)

= z−
(
(z− α)− µ(z− α)2 + O(z− α)3) ( a0 + 2µa1(z− α) + O(z− α)2

a0 + 2µb1(z− α) + O(z− α)2

)

= α + µ

(
−2a1 + a0 + 2b1

a0

)
(z− α)2 + O(z− α)3.

where µ 6= 0. Hence, if b1 = a1 −
a0

2
, then −2a1 + a0 + 2b1 = 0 and we conclude that Tf (α) = α,

T′f (α) = 0, T′′f (α) = 0, and so Tf is a root–finding algorithm of order at least 3, which proves part (2).
Now we will prove part (3) by similar computations as above. For this, consider the Taylor

expansion of Newton’s method around the simple root α of the polynomial f ,

N f (z) = α + µ1(z− α)2 + µ2(z− α)3 + O(z− α)4 .

where µ1 6= 0. Hence, N′f (z) = 2µ1(z − α) + 3µ2(z − α)2 + O(z − α)3 and combining those

computations with the fact that b0 = a0, b1 = a1 −
a0

2
, and so

Tf (z) = z− (z− N f (z))
(a0 + a1N′f (z) + a2(N′f (z))

2)

a0 + b1N′f (z)

= α−
(

µ2a0 − 4µ2
1a1 + 8a2µ2

1
2a0

)
(z− α)3 + O(z− α)4.

= α−
(

µ2a0 + 4µ2
1(−a1 + 2a2)

2a0

)
(z− α)3 + O(z− α)4.

Since N[3]
f (α) = 6µ2 = 0, which implies that µ2 = 0. Thus if a1 = 2a2, we conclude that Tf (α) = α,

T′f (α) = 0, T′′f (α) = 0, T′′′f (α) = 0, and so Tf is a root–finding algorithm of order at least 4. This
conclude part (3).

Finally to prove part (4), consider the Taylor expansion of Newton’s method around the simple
root α of the polynomial f ,

N f (z) = α + µ1(z− α)2 + µ2(z− α)3 + µ3(z− α)4 + O(z− α)5 .
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where µ1 6= 0. Hence, N′f (z) = 2µ1(z− α) + 3µ2(z− α)2 + 4µ3(z− α)3 + O(z− α)4 , and combining

those computations with the hypothesis if b0 = a0, b1 = a1 −
a0

2
and a1 = −2a2, implies that

Tf (z) = z− (z− N f (z))
(a0 + a1N′f (z) + a2(N′f (z))

2)

a0 + b1N′f (z)

= α +

(
2µ3

1a1 − µ3a0

a0

)
(z− α)4 + O(z− α)5.

Since N[4]
f (α) = 24µ3 = 0, we have that µ3 = 0. Additionally, by supposing that a1 = 0, it follows

that Tf (α) = α, T′f (α) = 0, T′′f (α) = 0, T′′′f (α) = 0, T[4]
f (α) = 0, and so Tf is a root–finding algorithm of

order at least 5. This conclude part (4), and the proof of the Lemma.

Remark 4. Note that in the Lemma above, while conditions in part (1) and (2) are easy to check, in the opposite,
part (3) and (4) are harder to verify.

The following corollary characterizes the Newton’s method for Multiple roots. See part 4. in
Example 1.

Corollary 1. Let f be a complex polynomial and denote by αi its roots. Suppose that Tf is a root finding
algorithm with order of convergence equal to two and the order does not depend on the multiplicity of the roots
αi. Then Tf is the Newton’s multiple for multiple roots.

Proof. By part (a) of Theorem 2 we have that

Tf (z) = α + (1− lm) (z− α) + O(z− α)2.

Since the order of convergence of the root finding algorithm Tf is 2, then for every root αi we have
that λ1 = 1− lm = 0 and a0 = b0 for all m ∈ N. This implies that

a2 −m (a1 + 2a2) + m2 (a0 + a1 + a2 + b1)−m3 (a0 + b1) = 0 (8)

for every m ∈ N, if and only if
b1 = −a0, and a1 = a2 = 0.

Therefore

Tf (z) = z− (z− N f (z))
a0

a0 − a0N′f (z)

= z−
z− N f (z)
1− N′f (z)

.

This concludes the proof.

Example 3. The following example show three examples to find an approximation of the roots of

f (z) = 2z3 − 4z2 − 5z− 3,
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which are − 1
2 + 1

2 i, − 1
2 −

1
2 i and 3. Note that for simple roots and order higher than two, we have that lm = 1.

Suppose the first two parts of Lemma 1, that is,

b0 = a0, b1 = a1 − a0
2 .

Thus, (1) takes the form

Tf (z) = z− (z− N f (z))
(a0 + a1N′f (z) + a2(N′f (z))

2)

a0 +
(
a1 − a0

2
)

N′f (z)
.

Suppose, in addition that a0 = 2, a1 = 1 and a2 = 0. Therefore

Tf (z) = z− 1
2
(z− N f (z))(2 + N′f (z)).

After some calculations, we obtain

Tf (z) =
120z7 − 416z6 + 360z5 + 228z4 − 690z3 − 72z2 + 306z + 111

(6z2 − 8z− 5)3 . (9)

Now suppose that a0 = 4 and a1 = −2. Then for

f (z) = 2z3 − 4z2 − 5z− 3,

and so,

Tf (z) = z− (z− N f (z))

(
2− N′f (z)

)
(

2− 2N′f (z)
) ,

which implies

Tf (z) =
24z7 − 64z6 + 216z5 + 28z4 − 578z3 + 108z2 + 294z + 39

72z6 − 288z5 + 388z4 + 360z3 − 762z2 − 388z− 5
. (10)

Finally consider

b0 = a0, b1 = a1 − a0
2 , a2 = a0

4 + a1
2 , and a1 = − 3

4 a0.

Note that this set of parameters gives convergence of order 3. Then

Tf (z) = z− (z− N f (z))

(
8− 6N′f (z)− (N′f (z))

2
)

2
(

4− 5N′f (z)
) . (11)

The following table show the iterations of order three, where

zn+1 = Tf (zn),

and z0 = 1 + i.

(9) (10) (11)

z0 1 + i 1 + i 1 + i
z1 −0.190 57− 0.053 58i −0.125 02 + 0.837 42i 0.09 039 0 + 0.636 79
z2 −1. 475 6− 0.378 19i −0.490 27 + 0.507 84i −0.455 09 + 0.485 78i
z5 −0.767 42− 0.233 97i −0.49999 + 0.5i −0.500 02 + 0.499 98i
z4 −0.305 28− 0.508 72i −0.5 + 0.5i −0.5 + 0.5i
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6. Conjugacy Classes of the Schemes

We next prove an extension of the Scaling Theorem for purely iterative algorithms for Newton’s
maps. Let R1, R2 : C→ C be two rational maps. Then R1 and R2 are conjugated if there exists a Möbius
transformation T : C→ C such that R1 ◦ T(z) = T ◦ R2(z) for all z.

Conjugacy plays a central role in the understanding of the behavior of classes of maps under
iteration in the following sense. Suppose that we wish to describe both, the quantitative and the
qualitative behaviors of the map z 7→ Tf (z) , where Tf (z) is an iterative function resulting from an
iterative method zn+1 = Φ(zn).

Let f be an arbitrary analytic function. Since conjugacy preserves fixed points, cycles and their
character (whether (super)attracting, or repelling, or indifferent), and their basins of attraction, it is a
worthwhile idea to try to construct a parameterized family or families consisting of polynomials fa, as
simple as possible so that, for a suitable choice of the complex parameter a, there may exists a conjugacy
between Tf (z) and Tfa(z).

In order to describe the conjugacy classes of Tf , recall a next useful result (see [39], Section 5,
Theorem 1).

Theorem 3 (The Scaling Theorem for Newton’s method). Let f (z) be an analytic function on the Riemann
sphere, and let A(z) = αz + β , with α 6= 0 , be an affine map. If g(z) = f ◦ A(z) , then A ◦ Ng ◦ A−1(z) =
N f (z) , that is, N f is analytically conjugated to Ng by A.

Theorem 4 (Scaling Theorem). Assume that k = 1 in (2), that is,

F(z, ξ0, ξ1) = z− P(z, ξ0, ξ1)

Q(z, ξ0, ξ1)

where
P(z, ξ0, ξ1) = (z− ξ0)(a0 + a1ξ1 + a2ξ2

1 + · · ·+ amξm
1 ),

Q(z, ξ0, ξ1) = (b0 + b1ξ1 + b2ξ2
1 + · · ·+ bnξn

1 )

and m, n ≥ 1.
Let f and g be polynomials, and let A be the affine map A(z) = αz + β , with α 6= 0 . Consider the purely

iterative algorithms

Tf (z) = F(ˆ (z, N f (z))) and Tg(z) = F(ˆ (z, Ng(z))) .

If g(z) = f ◦ A(z) , then Tf ◦ A = A ◦ Tg , that is, Tf is analytically conjugated to Tg by A.

Proof. Assume that there exists a constant λ ∈ C∗ such that g(z) = λ f ◦ A(z). According to
Theorem 3, we have A(Ng(z)) = αNg(z) + β = N f (A(z)) . Hence

N′g(z) = N′f (αz + β) = N′f (A(z)) .

This yields
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Tf (A(z)) = F(ˆ(A(z), N f (A(z))))

= A(z)−
P(A(z), N f (z), N′f (A(z)))

Q(A(z), N f (z), N′f (A(z)))

= A(z)−
(A(z)− N f (A(z)))(a0 + a1N′f (A(z)) + · · ·+ amN′f (A(z))m)

(b0 + b1N′f (A(z)) + b2N′f (A(z))2 + · · ·+ bmN′f (A(z))m)

= αz + β−
(αz + β− A(Ng(z)))(a0 + a1N′g(z) + · · ·+ amN′g(z)m))

(b0 + b1N′g(z) + b2N′g(z)2 + · · ·+ bmN′g(z)m)

= αz + β−
α(z− Ng(z))(a0 + a1N′g(z) + · · ·+ amN′g(z)m)

(b0 + b1N′g(z) + b2N′g(z)2 + · · ·+ bmN′g(z)m)

= α

(
z−

(z− Ng(z))(a0 + a1N′g(z) + · · ·+ amN′g(z)m)

(b0 + b1N′g(z) + b2N′g(z)2 + · · ·+ bmN′g(z)m)

)
+ β

= A(Tg(z))

which completes the proof.

7. Methods Generally Convergent for Cubic Polynomials

A purely iterative rational root-finding algorithm Tf is generally convergent if Tn
f (z) converge to

the roots of the polynomial f for almost all complex polynomials of degree d ≥ 2 and almost all initial
conditions. C. Mcmullen proved that if d > 3, then there is no possibility to find a generally convergent
root–finding algorithm. Moreover, he proved the following result:

Theorem 5 ([4]). Every generally convergent algorithm for cubic polynomials is obtained by specifying a
rational map R in such a way that

1. R is convergent for p(z) = z3 − 1.
2. Aut(R) contains those Möbius maps that permutes the roots of unity.

Moreover the generated algorithm has the form

Rc = φc ◦ R ◦ φ−1
c

where φc is a Möbius transformation that associate the roots of unity to the points 1, 1
2 (−1−

√
1− 4c) and

1
2 (−1 +

√
1− 4c).

So, the following definition is natural: a rational map R generates a generally convergent
algorithm if it is convergent for the cubic polynomial representing the roots of unity and its associated
automorphism group contain the Möbius transformations which commutes the roots of unity.

As an example, consider Halley’s method applied to the family of cubic polynomials fλ(z) =
z3 + (λ− 1)z− λ. Hawkins’s theorem implies that if a rational map R generates a generally convergent
algorithm, then zero is a fixed point of R. Hence, the condition H f (0) = 0 implies that λ = 0 or λ = 1.
Also the group of automorphisms must contain the Möbius transformations that permutes the roots of
unity, then λ cannot be 0. Thus, λ = 1 and we obtain Halley’s method applied to z3 − 1.

McMullen’s theorem tells us how to generate a generally convergent iterative algorithm by finding
the map R. The following question is natural: When Tf contain rational maps which are generating of
generally convergent algorithms?
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The following theorem is due to J. Hawkins (Theorem 1 [5]) and describes explicitly the rational
maps which are generating of generally convergent algorithms for cubic polynomials according to
their degree.

Theorem 6. If R generates a generally convergent root–finding algorithm for cubic polynomials, then there
exist constants α0, α1, . . . , αk 6= 0, such that R has the following form:

R(z) =
z(α0 + α1z3 + · · ·+ αkz3k)

αk + αk−1z3 + · · ·+ α0z3k .

Using this theorem it is proved that over the space of cubic polynomials, those maps Tf
that generates a generally convergent algorithm are restricted to Halley’s method applied to the
cubic polyomial.

Theorem 7. Let f be a cubic polynomial. Suppose that

Tf (z) = z− (z− N f (z))
(a0 + a1N′f (z) + a2(N′f (z))

2)

b0 + b1N′f (z)

where a0, a1, a2, b0 and b1 are real numbers, generates a generally convergent root–finding algorithm for cubic
polynomials. Then Tf is the Halley method applied to z3 − 1.

Proof. Since Tf satisfies the Scaling theorem, then in the case of cubic polynomials, we can restrict
to fλ(z) = z3 + (λ− 1)z− λ. From Theorem 6 we see that 0 is always a fixed point of the generating
map. This imposes restrictions on the values of a0, a1, a2, b0 and b1.

If λ 6= 1, then, since N fλ
(0) = λ/(λ− 1) and N′fλ

(0) = 0, we have that Tf (0) = λa0/(λ− 1) = 0
which implies two cases: λ = 0 or a0 = 0. Also the case λ = 1 must be treated separately. Remark 3
shows that a0 cannot be 0. Consequently the cases are:

1. λ = 1
2. λ = 0

Case (1). If λ = 1, and Tf generates a generally convergent root–finding algorithm for cubic
polynomials then a1 = a2 = 0 and b1 6= 0, otherwise 0 would be a pole of Tf . In fact, in this case

f1(z) = z3 − 1, and in a neighborhood of zero we have N f1(z) =
γ

z2 + O(z), with γ 6= 0. Thus

Tf1(z) = z− (z− N f (z))
(a0 + a1N′f (z) + a2(N′f (z))

2)

b0 + b1N′f (z)

= z +
(γ1

z2 + O(z)
) (γ2

z3 + O(1)
)

=
γ3

z5 +
γ4

z2 + O(z)

where γ1, γ2, γ3 and γ4 are non–zero constants. This implies that 0 is a pole of order 5 for Tf1 .
Moreover,

lim
z→0

z5Tf1(z) =
−2a2

9b1
= γ3

Hence, if a2 = 0 y b1 6= 0, then we have

lim
z→0

z2Tf1(z) =
a1

3b1
= γ4,
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and then 0 is a pole of order 2. Therefore, if a1 = a2 = 0 and b1 6= 0, we are able to remove the poles of
Tf1 and consequently Tf1 has a fixed point at 0. Thus the map must have the form

Tf1(z) =
z((−a0 + 3b0 + 2b1)z3 + (−2b1 + a0))

(3b0 + 2b1)z3 − 2b1
. (12)

According to Theorem 6, Formula (12) must also satisfy the equation

a0 = 4b1 + 3b0 (13)

in order to Tf1 generates a generally convergent root–finding algorithm for cubic polynomials.
Since the roots of unity are superattracting fixed points, we have

T′f1
(1) =

b0 − a0

b0
= 0, (14)

which impose the relation a0 = b0. Together with Formula (13), it follows that b0 = −2b1. As a
consequence we have

Tf1(z) =
z(z3 + 2)
2z3 + 1

,

which is exactly Halley’s method applied to z3 − 1.
Case (2). If λ = 0, it follows that 0 is a fixed point of Tf , however it cannot generate a generally

convergent method. Indeed, note that

T′f0
(1) = T′f0

(0) =
b0 − a0

b0
= 0. (15)

Hence, in order to obtain that 1 to be a superattracting fixed point, we must have that b0 = a0.
Furthermore, this implies that 0 is a superattracting fixed point, that is, there exists an open subset of
the plane which belongs to the basin of attraction of 0. Therefore the rational map T′f0

cannot generate
a generally convergent root finding algorithm for cubic polynomials, and the proof is complete.

8. Dynamical Study of the Fourth-Order Family

In this section we will study the complex dynamics of the family (1) when b0 = a0, b1 = a1 −
a0

2
and a2 =

a0

4
+

a1

2
. In this case, according to Lemma 1 Tf is of order 4. The fixed point operator

associated to this family of methods, on a nonlinear function f (z) is

Tf (z) = z− (z− N f (z))
(a0 + a1N′f (z) +

( a0
4 + a1

2
)
(N′f (z))

2)

a0 +
(
a1 − a0

2
)

N′f (z)
, (16)

where N f (z) = z− f (z)
f ′(z) . Note that in this case Tf depends only on a0 and a1.

By applying this operator on a generic polynomial p(z) = (z − a)(z − b), and by using the
Möebius map h(z) = z−a

z−b , whose properties are

(i) h (∞) = 1, (ii) h (a) = 0, (iii) h (b) = ∞,

the rational operator associated to the family of iterative schemes is finally

G(z, a0, a1) =
z4 (3a0 + 4a1 + 3a0z + 2a1z + a0z2)

a0 + 3a0z + 2a1z + 3a0z2 + 4a1z2 . (17)



Mathematics 2020, 8, 1158 17 of 27

It is easy to see that this family of methods has at least order of convergence 4. We have seen that
for the special case a1 = − 3

4 a0 the family have fifth order of convergence and the family has the form

G(z) =
z5(3 + 2z)

2 + 3z
.

8.1. Study of the Fixed Points and Their Stability

It is clear that z = 0 and z = ∞ are fixed points of G(z, a0, a1) which are related to the root a and b
respectively. Now, we focus our the attention on the extraneous fixed points (those points which are
fixed points of Tf and are not solutions of the equation f (z) = 0). First of all, we notice that z = 1 is an
extraneous fixed point, which is associated with the original convergence to infinity. Moreover, there
are also another two strange fixed points which correspond to the roots of the polynomial

q(z) = 6a2
0 + 8a0a1 + 9a2

0z + 16a0a1z + 12a2
1z + 6a2

0z2 + 8a0a1z2,

whose analytical expression, depending on a0 and a1, are:

ex1(a0, a1) =
−3a0 − 2a1 −

√
−3a2

0 − 4a0a1 + 4a2
1

2a0
,

ex1(a0, a1) =
−3a0 − 2a1 +

√
−3a2

0 − 4a0a1 + 4a2
1

2a0
,

There exist relations between the extraneous fixed points and they are described in the
following result.

Lemma 2. The number of simple extraneous fixed points of G(z, a0, a1) is three, except in the following cases:

(i) If a1 = − a0

2
, then ex1(a0, a1) = ex2(a0, a1) = −1 that is not a fixed point, so there is only one

extraneous fixed point.

(ii) If a1 =
3a0

2
, then ex1(a0, a1) = ex2(a0, a1) = −3 that is not a fixed point, so there is only one

extraneous fixed point.

(iii) If a1 = −3a0

4
, then ex1(a0, a1) = ex2(a0, a1) = 0 that is a fixed point related to the root a, so there are

is only one extraneous fixed point.

(iv) If a1 = −7a0

6
, then ex1(a0, a1) = ex2(a0, a1) = 1 that is an extraneous fixed point, so there is only one

extraneous fixed points.

Related to the stability of that extraneous fixed points, the first derivative of G(z, a0, a1) must
be calculated

G′ (z, a0, a1) =
2z3(1+z)2(6a2

0+8a0a1+9a2
0z+16a0a1z+12a2

1z+6a2
0z2+8a0a1z2)

(a0+3a0z+2a1z+3a0z2+4a1z2)
2 .

Taking into account the form of the derivative, it is immediate that the origin and ∞ are
superattractive fixed points for every value of a0 and a1.
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The stability of the other fixed points is more complicated and will be shown in a separate way.
First of all, focussing the attention in the extraneous fixed point z = 1, which is related to the original
convergence to ∞, and the following result can be shown.

G′(1, a0, a1) =
8(3a0 + 2a1)

7a0 + 6a1
,

Related to the stability of the extraneous fixed point z = 1 we have the following result.

Lemma 3. The behavior of z = 1 is the following:

(i) If a0 = − 2a1
3 , then z = 1 is a superattracting fixed point.

(ii) If a1 < 0 and − 10a1
17 < a0 < − 2a1

3 or − 2a1
3 < a0 < − 22a1

31 . Then, z = 1 is attracting.

(iii) If a1 > 0 and − 22a1
31 < a0 < − 2a1

3 or − 2a1
3 < a0 < − 10a1

17 . Then, z = 1 is attracting.

(iv) If a0 = − 10a1
17 and a1 6= 0, then z = 1 is an indifferent fixed point.

(v) If a0 = − 22a1
31 and a1 6= 0, then z = 1 is an indifferent fixed point.

In the rest, of the cases z = 1 is repelling.

Due to the complexity of the stability function of each one of the extraneous fixed points

G′(ex1(a0, a1), a0, a1) =
1

2a2
0(a0+2a1)(7a0+6a1)

(
27a4

0 + 6a2
0a1

(
7a1 − 5

√
−(3a0 − 2a1)(a0 + 2a1)

)
−18a3

0

(
−5a1 +

√
−(3a0 − 2a1)(a0 + 2a1)

)
− 12a3

1

(
2a1 +

√
−(3a0 − 2a1)(a0 + 2a1)

)
−2a0a2

1

(
20a1 + 13

√
−(3a0 − 2a1)(a0 + 2a1)

))
and

G′(ex2(a0, a1), a0, a1) =
1

2a2
0(a0+2a1)(7a0+6a1)

(
27a4

0 + 6a2
0a1

(
7a1 − 5

√
−(3a0 − 2a1)(a0 + 2a1)

)
+18a3

0

(
−5a1 +

√
−(3a0 − 2a1)(a0 + 2a1)

)
− 12a3

1

(
2a1 +

√
−(3a0 − 2a1)(a0 + 2a1)

)
−2a0a2

1

(
20a1 + 13

√
−(3a0 − 2a1)(a0 + 2a1)

))
to characterize its domain analytically is not affordable. We will use the graphical tools of software
Mathematica in order to obtain the regions of stability of each of them, in the complex plane.

In Figure 1, the stability region of z = 1 can be observed and in Figures 2 and 3, the region of
stability of ex1(a0, a1) and ex2(a0, a1) are shown. These stability regions are drawn in 3D, since we
study the behavior of the derivative G′ which depends on two parameters, so we need three axes
to observe it. Taking into account these regions the following result summarize the behavior of the
extraneous fixed points. These Figures are important, as it can be seen in [40–42] due to the fact that
they give light about the stability of the extraneous fixed points, if there is no region with attracting
behaviour of them, they won’t have any problematic behaviour.

As a conclusion we can remark that the number and the stability of the fixed points depend on
the parameters a0 and a1.
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Figure 1. Stability region of z = 1.

Figure 2. Stability region of ex1(a0, a1).

Figure 3. Stability region of ex2(a0, a1).
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8.2. Study of the Critical Points and Parameter Spaces

In this section, we compute the critical points and we show the parameter spaces associated to the
free critical points. It is well known that there is at least one critical point associated with each invariant
Fatou component. The critical points of the family are the solutions of is G′(z, a0, a1) = 0, where

G′(z, a0, a1) =

2z3(1 + z)2
(

6a02 + 8a0a1 + 9a02z + 16a0a1z + 12a12z + 6a02z2 + 8a0a1z2
)

(a0 + 3a0z + 2a1z + 3a0z2 + 4a1z2)
2 .

By solving this equation, it is clear that z = 0 and z = ∞ are critical points, which are
related to the roots of the polynomial p(z) and they have associated their own Fatou component.
Moreover, there exist critical points no related to the roots, these points are called free critical points.
Their expressions are:

cr0 = −1,

cr1(a0, a1) =

−9a02 − 16a0a1− 12a12 −
√

3
√
−21a04 − 32a03a1 + 72a02a12 + 128a0a13 + 48a14

4
(

3a02 + 4a0a1
)

and

cr2(a0, a1) =

−9a02 − 16a0a1− 12a12 +
√

3
√
−21a04 − 32a03a1 + 72a02a12 + 128a0a13 + 48a14

4
(

3a02 + 4a0a1
)

The relations between the free critical points are described in the following result.

Lemma 4.

(a) If a1 = − a0
2 or a1 = a0

2

(i) cr1 = cr2 = −1.

(b) If a1 = − 3a0
2 or a1 = − 7a0

6

(i) cr1 = cr2 = 1.

(c) For other values of a0 and a1

(i) The family has 3 free critical points.

Moreover, it is clear that for every value of a0 and a1, cr1(a0, a1) =
1

cr2(a0,a1)

It is easy to see that z = −1 is a pre-periodic point as it is the pre-image of the fixed point related
to the convergence to infinity, z = 1, and the other free critical points are conjugated cr1(a0, a1) =

1/cr2(a0, a1). So, there are only two independent free critical points and only one is not pre-periodic.
Without loss of generality, we consider in this paper the free critical point cr1(a0, a1). In order to
find the best members of the family in terms of stability, the parameter space corresponding to this
independent free critical point will be shown.

The study of the orbits of the critical points gives rise about the dynamical behavior of an iterative
method. More precisely, to determinate if there exists any attracting extraneous fixed point or periodic
orbit, the following question must be answered: For which values of the parameters, the orbits of the
free critical points are attracting periodic orbits? In order to answer this question we are going to draw
the parameter space but our main problem is that we have 2 free parameters a0, a1. In order to avoid
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this problem, we are going to use a a variant of the algorithm that appears in [43] and similar, in which
we will consider the horizontal axis as the possible real values of a0 and the vertical one as the possible
values of a1. When the critical point is used as an initial estimation, for each value of the parameter, the
color of the point tell us about the place it has converged to: to a fixed point, to an attracting periodic
orbit or even the infinity.

In Figure 4, the parameter space associated to cr1(a0, a1) is shown. The algorithm to draw
this parameter speace is similar to the one used in [44]: A point is painted in cyan if considerint
z0 = cr1(a0, a1) the iteration converges to 0 (which is related to one root), in magenta the convergence
to ∞ (which is related to the other root) and in yellow appear the points which iteratations converges
to 1 (which is related to ∞). Other colors used are:red for theconvergence to a extraneous fixed points
and other colors, including black, for cycles.

Now, we are going to show these anomalies using dynamical planes where the convergence
to 0, after a maximum of 2000 iterations and with a tolerance of 10−6 appear in magenta, in cyan it
appears the convergence to ∞, after a maximum of 2000 iterations and with a tolerance of 10−6 and
in black the zones with no convergence to the roots. First of all, in Figures 5 and 6 the dynamical
planes associated with the values of a0 a1 for which there is no convergence problems, are shown. As a
consequence, those selections of pair of values are a good choice since all points converge to the roots
of the original equation.

Then, focussing the attention in the region shown in Figure 4 it is evident that there exist members
of the family with complicated behavior. In Figure 7, the dynamical planes of a member of the family
with regions of convergence to any of the extraneous fixed points is shown. In this case, there exist
regions of points which iterations do not converge to any of the roots of the original equations, so these
values are not a good choice.

On the other hand, in Figures 4 and 8, the dynamical planes of a member of the family with
regions of convergence to z = 1, related to ∞ is shown, in which we observe that there exist. In this
case, there exist regions of points which iterations do not converge to any of the roots of the original
equations, so these values are not a good choice.

Figure 4. Parameter space associated to the free critical point cr1(a0, a1).
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Figure 5. Basins of attraction associated to the member of the family a0 = −5 and a1 = −4.

Figure 6. Basins of attraction associated to the member of the family a0 = 1 and a1 = −3/4.
This member has fifth order of convergence.
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Figure 7. Basins of attraction associated to the member of the family a0 = 3.25 and a1 = −4.5.

Figure 8. Basins of attraction associated to the member of the family a0 = 2.75 and a1 = −4.75.
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Finally, in Figures 9 and 10, some dynamical planes of members of the family with convergence
to different attracting cycles are shown.

If we choose as a particular value of a0 = 5 and a1 = 0.1375 we can observe the existence of a
periodic orbit of period 3

{x1 = 0.97769− 0.210052i, x2 = 0.75091− 0.660405i, x3 = −0.763289− 0.646058i},

moreover, this orbit is attracting as

|G′(x1)G′(x2)G′(x3)| = 0.265145 . . . < 1.

Sharkovsky’s Theorem [31], states that the existence of orbits of period 3, guaranties orbits of
any period.

Figure 9. Basins of attraction associated to the member of the family a0 = 3.6 and a1 = −4.75. The black
zones are related to the convergence of a 2-cycle.
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Figure 10. Basins of attraction associated to the member of the family a0 = 5 and a1 = 0.1375. The black
zones in this case correspond with zones of convergence to a 3-cycle.

9. Conclusions

This article discusses purely iterative algorithms for Newton’s maps Tf , given by the Formula (1),
and that were proposed in [6]. This family represents a large class of root finding algorithms, including
the best known, and those of high order of convergence. Depending on the parameters a0, a1, a2,
b0 and b1, in general the family Tf may not define a root finding algorithm. To avoid this difficulty,
we achieved a characterization in terms of those parameters, so that it is effectively a root finding
algorithm. The scaling theorem has the advantage of reducing the parameter space in dimension,
and it is useful for plotting the parameter space in low dimension, among other things. We give a
classification of extraneous fixed points and indifferent fixed points of Tf , in terms of the parameters
a0, a1, a2, b0 and b1. Then, we use those results and Hawkins’s theorem to conclude that over the
family Tf , the rational map that generates generally convergent root finding algorithms, is the Halley’s
method applied to cubic polynomials. This shows that rigidity is even stronger, and is not obtained
only in terms of the conjugation.
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