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Abstract

The concept of agency is of fundamental importance for Cog-
nitive Science. However, usual definitions of agency are
loose and the work to capture and measure it using mathe-
matical tools is still in its infancy. Recently, the framework
of integrated information theory has been proposed to cap-
ture the causal boundaries of biological autonomous systems.
Here, we test measures of integrated information theory in
a minimal model to test its capacity to identify and delimit
an autonomous agent interacting with an environment. Do-
ing so, we reformulate some aspects of current definitions
of agency using insights from integrated information in our
models. Specifically, we propose a redefinition of how we
capture the ability of an agent to modulate its interaction with
the environment in terms of the control of the emergent causal
structure of the agent-environment system. In this way, we
propose an operational definition of agency based on the ca-
pacity of a system to modulate its causal boundary, extending
and reducing it by functionally open and closing sensorimo-
tor loops, and coupling the agent to different environmental
processes. This allows us to formulate a tentative measure
for our definition of agency and test it in minimal models of
sensorimotor interaction, which we test in a minimal agent
evolved to solve a simple task.

Introduction
The notion of agency is essential in fields as Artificial Intelli-
gence and Cognitive Science. The need to define and clarify
this concept is considered as one of the most crucial contri-
butions capable of improving cognitive modelling practices.
Although one finds a lot of definitions of agency in the liter-
ature (Wooldridge and Jennings, 1995; Russell and Norvig,
2016; Maes, 1993), when observed in detail, most of these
definitions rely on intuitive notions and undefined terms. In
particular, in engineering domains, it is very common to use
a vague and uncritical use of this notion.

The difficulty of proposing a definition of agency in-
creases when we seek a description that allows us to iden-
tify living systems with more or less clear physical bound-
aries but also sets of processes and, more generally, collec-
tive or cultural organizations. That is, defining agency be-
comes challenging when we intend to go beyond the stan-
dard notion of agent as a physical system with sensors and

effectors. In practical terms, and in order to obtain a use-
ful scientific definition it becomes necessary to provide an
operational, quantitative and precise characterization of the
object of study beyond an intuitive notion of agency.

Previous work has been oriented to outline a definition
from these considerations. For example, Barandiaran et al.
(2009) propose three different aspects of agency that con-
stitutes a description of what an agent should be: (i) it is
a distinguishable entity different from its environment (indi-
viduality), (ii) it is an active source of activity and interaction
in its environment (asymmetry) and (iii) it is able to actively
regulate their interactions according to some internal goals
or norms (normativity). We take this definition of agency as
starting point because we are interested in having an approx-
imation for the agency in tune with the notion of embodied
cognition. Thus, in order to define admissible conditions for
agency, sensorimotor coupling and modulation of the inter-
actions agent-world need to be considered. In this approach,
an agent is understood not only as a structure that is indi-
vidualized by itself, through autonomous mechanisms of or-
ganization, but it shows a sensorimotor dimension (agents
should be able to maintain interaction and flexible senso-
rimotor coupling with the environment, Figure 1). More-
over, it explicitly involves a temporal dimension in the coor-
dination dynamics between agent and environment (agents
should be able to modulate the coupling in an adaptive man-
ner).

In any case, we believe that this definition has some limi-
tations that we intend to overcome. For example, the authors
provide a generative definition (that is, a description of an
organization capable of satisfying a set of requirements) but
we seek an operational definition, a criterion that allows us
to quantitatively evaluate the degree of agency of a system.
On the other hand, a generative definition is necessarily se-
quential since it proposes a set of requirements in the form
of a list. In (Barandiaran et al., 2009), the individuality con-
dition is understood as a precondition for the modulation of
the couplings with the environment. However, it is not clear
that this occurs in natural living systems, where we could
observe how the three mentioned conditions taking place si-
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multaneously at a given instant of time.
Finally, other of the most controverted aspects of this con-

tribution is how the modulation of the coupling is concep-
tualized. Once the agent and environment have been de-
fined, it is proposed that the agent modulates its interaction
by changing the value of a set of predefined conditions on
the coupling. It is hypothesized, henceforth, that the agent
can systematically and repeatedly modulates its structural
coupling by controlling the value of certain constraints and
that these changes typically are not induced by the environ-
ment. As well as we should avoid assuming that we know
what the boundaries of an agent are before defining it, we
should also avoid definitions that first tell us what an indi-
vidual entity is, and then impose a specified interaction in
terms of predetermined variables.

Instead, we propose that this modulation is a systemic
effect of the agent-environment coupling and not the fine-
tuning of certain variables by the agent. In this paper we
introduce a definition referred to something that spreads
throughout, system-wide, affecting the whole and not in
terms of its elements.

System

modulation of 

the coupling
coupling

Figure 1: Illustration of an autonomous agent modulating its
coupling with the environment.

To advance in this challenge, we take inspiration in inte-
grated information theory (IIT, Oizumi et al., 2016). This
theory provides an interesting approach to determine the in-
dividualization of certain processes that are integrated. It is,
in other words, an operative measurement of irreducibility
of a system based on the integration of processes and delim-
itation of causal boundaries. Moreover, IIT has been pro-
posed to identify the integrated causal circuits that compose
an autonomous biological systems (Marshall et al., 2017).
Here, we propose to adapt some measures from IIT in order
to advance towards an operational definition of agency. For
doing so, we must use it in a fashion that allows us to take
into account aspects of sensorimotor interaction, as we have
proposed above, and this extension should be operationally
determined without the need to fragment the two dimensions
of the agency (individualization and regulation of its cou-
pling). Achieving this, we also obtain a definition that meets
theoretical conditions with operative requirements, provid-
ing a tentative measure to determine not only autonomous
processes but a characteristic signature of agency.

For doing so, we postulate, as a proof of concept, a min-
imal model of a sensorimotor entity in interaction with an
environment. We hypothesize that the agent’s identity may
emerge around a transition where the agent has the ability to
intrinsically control the transit between modes of coupling
and decoupling from its environment, and we define a cri-
terion to capture this phenomena using current tools from
integrated information theory. To further explore this idea,
we consider another minimal agent designed to solve a non-
trivial task requiring a high level of sensorimotor integration.
We find that, when the task to solve is not trivial, agents able
to successfully solve this task are poised near a similar tran-
sition in which the causal boundary of the integrated sys-
tem goes back and forth from the agent to the whole agent-
environment coupled system. Finally, we discuss the impli-
cations and possible generalization of our findings.

Integrated Information Theory and
Individuality

Recent efforts have tried to quantify individuality and au-
tonomy using information theory over the path of a system
dynamics (Bertschinger et al., 2008; Krakauer et al., 2014).
Still, these approaches presents some limits in order to dis-
tinguish a system from its environment. Typically, while
nonlinear correlations of a dynamical system can be de-
scribed in dynamical or information theoretical terms, they
cannot be used to directly infer the boundary between an au-
tonomous system and its environment.

Latterly, instead of analyzing mere correlations, it has
been proposed that interventionist notions of causality are
better suited to characterize autonomous organization (Mar-
shall et al., 2017). That is, instead of assessing whether a
system is unified into a coherent whole by analyzing its be-
haviour in stability, one could capture the causal forces in-
tegrating the behaviour of the system by observing it when
some perturbations are imposed. Specifically, Marshall et al.
(2017) have proposed the framework of integrated informa-
tion theory (IIT, Oizumi et al., 2014).

IIT postulates that any subset of elements of the system
is a mechanism integrating information if its intrinsic cause-
effect power (i.e. its ability to determine past and future
states) is irreducible. Irreducibility is measured by the inte-
grated information ϕ of the subset of elements, which when
larger than 0 indicates that the subset at its current state con-
straints the past and future states of the system in an irre-
ducible way. By irreducibility it is understood that even the
less disrupting bipartition of the system in two disconnected
halves (that is called the minimum information partition,
MIP) would imply a loss of information. Asides from com-
puting integrated information at the level of mechanisms,
IIT postulates a composite measure Φ, which is calculated
from the set of all mechanisms (each one defined by a value
of ϕ) obtained in the original system and the system under
bidirectional partitions. A system with Φ > 0 is described as
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forming an unitary whole. Since many subsets of the system
may present Φ > 0, the causal boundaries of the system are
defined around the subset with larger Φ. A more detailed
description of the steps for calculating Φ is detailed in the
Appendix.

Model
In order to advance towards an operational definition of
agency, we propose to test our ideas in a very simple model.
The model presents a general case of some elements of a
system engaged in a loop of interaction. The question is
whether we can delimit the boundaries of an agent to some
of the elements when an asymmetry arises in the interaction
of this subsystem and what is outside of it.

First, we postulate a minimal model defining causal tem-
poral interactions among the elements that constitute it.
Looking for generality, we use the least structured statistical
model (i.e., a maximum caliber model, Pressé et al., 2013)
establishing causal correlations between pairs of units from
one time step to the next. We study a kinetic Ising model
whereN Ising elements si evolve in discrete time, with syn-
chronous parallel dynamics. Given the configuration of units
at time t − 1, s(t − 1) = {s1(t − 1), . . . , sN (t − 1)}, the
units si(t) are independent random variables drawn from the
distribution:

P (s(t)|s(t− 1)) =

N∏
i=1

eβsi(t)hi(t)

2 cosh(βhi(t))
(1)

where
hi(t) = Hi +

∑
j

Jijsj(t− 1) (2)

The parameters Hi and Jij represent the local fields at
each element and the couplings between pairs respectively,
and β is the inverse temperature of the model. Without loss
of generality, we can assume a β = 1.

Looking for a minimal example, we describe the case of
three units S,M,E engaged in a loop of interaction (Fig-
ure 2.A). All elements have self-connections and each ele-
ment influences the immediately posterior one E → S →
M → E in a circular loop. In order to introduce an asymme-
try in the interaction, we add an extra connection M → S,
with the objective of allowing the SM system to modulate
the input received from an hypothetical environment E.

Individuality in a minimal sensorimotor model
In our system, we can easily apply IIT over its causal struc-
ture (Figure 2.B). We do so using the PyPhi toolbox (Mayner
et al., 2017). IIT provides different values of Φ for different
subsystems quantifying the level of integration of its rela-
tions. As an example, we apply IIT over a specific configu-
ration of the system, where JSS = JMM = JEE = 0.25,
JSE = JMS = JEM = 1, HS = HM = HE = 0, and
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Figure 2: Description of the model. (A) The structure of the
kinetic Ising model consisting of three elements (S, M and
E). (B) The system’s causal structure of dependencies with
future and past states.

JSM is a free parameter that determines the strength of the
reentrant connection modulating the input of the system.

In this simple system, we find two subsystems with a
value of Φ larger than zero: the one formed by the units
SM and the one comprised by the whole system SME. For
different values of JSM , the results are shown in Figure 3.A.

According to Marshall et al. (2017), IIT can identify
causal boundaries defined as subsets of elements that define
maximum local values of intrinsic and irreducible cause-
effect relations. In that sense, we estimate that Φ can be
a good indicator of the level of individuality of a system,
although some extra steps would be necessary for this indi-
viduality to constitute an autonomous agent.

We can observe the levels of Φ in our simple model in Fig-
ure 3.A, where we show the mean values of ΦSM and ΦSME

as well as the area comprised by their maximum and mini-
mum values. For large values of JSM , the value of ΦSM
increases, indicating that the coupling SM defines an emer-
gent causal boundary that separates it from the environment
E. If we take larger values of JSM , the system SM is practi-
cally ‘blind’ to its environment (since the input fromM to S
has a much larger influence). Similarly, in cases where JSM
is very small, the boundary around SM disappears and we
can identify an individuality at the level of the whole sys-
tem SME with a large value of ΦSME . In this case, all
the elements are closely interacting, and we can not find an
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Figure 3: Effect of the parameter JSM in the integration of
information of the system. (A) Comparison of the mean Φ
values obtained in both the whole system ΦSME (continu-
ous line) and the subsystem Φ. The gray area represents the
interval between the minimum and maximum Φ values. (B)
Proposed measure of agencyA = 〈|∆Φ|〉− |〈∆Φ〉|, captur-
ing fluctuations between ΦSM and ΦSME as local maxima
of Φ.

asymmetry in the relations between elements that can define
an isolated agent.

Somehow, the most interesting situation appears in the
case where there is an uncertainty about which subsys-
tem constitutes an individuality. For values roughly around
JSM = 1.1 there is a situation in which ΦSM could be either
higher or lower than ΦSME (note that Φ is state dependent
and its value changes in time). We can define this uncer-
tainty through the variable ∆Φ = ΦSM − ΦSME . In some
cases, e.g. around JSM = 1.1, the span of ∆Φ will be high
enough that the local maxima of Φ will shift back and forth
from the agent SM to the agent-environment system SME.
In this case, if we take a local maximum of Φ to be the main
causal structure of a system at a specific moment, we can
interpret shifts in Φ as an agent-environment sensorimotor
loop that can be opened and closed at different moments
of time. We hypothesize that this phenomenon is a good
candidate to describe the ability of an agent to modulate its
sensorimotor coupling.

As introduced above, the main requirements for auton-
omy are: (i) the constitution of an agent as an individuated
unit separated from its environment and (ii) the emergence
of an agent-environment asymmetry in which the agent ac-
tively modulates its interaction with the environment. Estab-
lishing condition (i) as a prerequisite for testing (ii) is prob-
lematic because, as we have just seen, defining the bound-
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Figure 4: Three scenarios of the evolution of the causal
boundaries of an agent-environment system. (A) The most
integrated unit is the agent (ΦSM > ΦSME). (B) The
most integrated unit is the joint agent-environment system
(ΦSM < ΦSME). (C) The most integrated unit fluctuates
over time between the previous cases.

ary between agent and environment is not easy, and in the
most interesting cases this boundary is going to extend back
and forth covering some elements of the environment as the
agent is engaged in sensorimotor coupling.

Based on these intuitions, we formulate an alternative ap-
proach for an operational definition of agency. We propose
that agents are entities coupled to external environments
capable of generating emergent causal boundaries that de-
limit the sensorimotor integration at a particular moment.
The limits of this causal boundary will extend and contract
with time, as the internal mechanism of the agents couple
and decouple from different sensorimotor loops. Agency
emerges precisely throughout open loops that are formed in
the course of interactions, extending the boundary of causal
integration of an agent to elements of the environment at dif-
ferent moments of time.

Following this idea, we formulate a tentative measure of
agency A = 〈|∆Φ|〉 − |〈∆Φ〉|. This measure tries to assess
the changes in the role of leading mechanism that constitutes
the identity in the system (i.e. the location of the subsystem
with maximum Φ). A value ofA = 0 would indicate that al-
ways the same subsystem has the higher level of integration,
while values upper zero would indicate that the location of
the mechanism with higher integration changes with time.
Thus, in the latter cases we could define an integrated dy-
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namic core that describes the causal structure of an agent as
a dynamical entity that open and closes different loops of
interaction.

Analyzing the value of A across systems with different
values of the parameter JSM , we get the results shown in
Figure 3.B. There, it is illustrated how the value of A arises
at a narrow range close to JSM = 1.1. Taking a look at this
point, we could consider it as a transition point between two
regimes in the parameter space where, in one side, always
the corresponding subsystem of the agent arises as the most
integrated one (Figure 4.A) and in other regime, always the
whole system is the maximally integrated unit (Figure 4.B).
But, in the transition region, the limits of the most integrated
unit of the system change depending on the state of the sys-
tem (Figure 4.C). One possible interpretation of these fluc-
tuations of the causal boundary could be to view it as an
scenario in which an ‘agent’ is constituted throughout the
open loops that can engage in different modes of coupling
with its surrounding environment.

Interactional asymmetry in a minimal agency
task

In this part we apply the proposed measure in terms of inte-
grated information to a minimal model of an agent engaged
in a non-trivial task. We design an agent performing a task
in an environment that can be interpreted in cognitive terms,
while maintaining the same statistical structure than the pre-
vious minimal model.

The environment consists of a binary world composed by
two squares (Figure 5), where it is only possible to move
between two positions: left or right (i.e. sE = ±1). As in
the previous case, we consider an agent composed of a sen-
sor and motor units (S and M ) able to perceive and move in
this environment. Depending on the location of the agent in
the environment, the sensor unit S perceives light or dark-
ness (i.e. sS = ±1). The position of the lights changes
randomly, with a probability of change Pchange = 2−5 at
each time step. The goal of the agent is to maximize the
time it spends in the illuminated square.

The direct connections (JEM , JSE) related to how the
agent and environment influence each other are fixed. The
influence from the motor to the environment is set to JEM =
Jc. The local field and self-connection of the environment
are set to HE = 0 and JEE = 0. The position of the
light will determine the influence of the environment to the
agent. When the right square is illuminated, JSE = Jc. On
the other hand, when the left square is illuminated JSE =
−Jc. The rest of the connections affecting S and M , i.e.,
HS , HM , JSS , JMM , JSM , JMS will be tuned for maximiz-
ing the fitness of the agent withing the range [0, 5].

A fitness function is designed to select agents that are
able to perform well for both possible environments (left
and right light). For computing the fitness value, agents
are simulated for 100 trials of duration 500 steps starting

on off

SM

E
Figure 5: Illustration of the task. A sensorimotor agent must
maximize its exposition to light in a noisy environment.

from a random state, for the two scenarios (light either at
the left or right square). Then, the fitness value is defined as
F =

√
〈L〉left〈L〉right, where L(t) = 1 when the position

of the agent E corresponds with the illuminated square, and
L(t) = 0 otherwise.

For 36 values of Jc in the range [0.1, 3.5], we run a micro-
bial genetic algorithm (Harvey (2009)) in order to obtain the
agent with the highest fitness. The genetic algorithm sim-
ulates a population of 100 agents during 5000 generations.
Recombination and mutation rates are set to 0.5 and 0.1 re-
spectively. In Figure 6.A it is illustrated the evolution of
the fitness related to the value of the connections with the
environment. Notice that fitness increases when the connec-
tions become stronger. The interpretation of this correlation
would be that, for higher values of Jc, the task becomes eas-
ier for the agent, because the interactions with the environ-
ment are dominating the internal dynamics, so the agent can
just interact with the environment in a reactive fashion.

Once an agent has been evolved, in order to analyze its
relations with the environment in terms of integration of in-
formation, we simulate the system during T = 10000 steps
and, for each state obtained at each time, we calculate the
corresponding value of Φ and ∆Φ associated to that state.
Doing this, we get the temporal evolution of the integration
of information for both the agent and the whole system. For
each agent, we get a single value of agency A that deter-
mines the level of how the agent integrates and disintegrates
the environment with itself across time.

Making a comparison over systems with different values
of Jc, we analyze the level of agency of the 20 agents with
the best performance resolving the task (Figure 6.B). We
find that, for most values of Jc, most agents present A = 0,
suggesting that a level of agency is not necessary to obtain
the maximum fitness available for an agent. We find an ex-
ception around Jc = 1, where most agents have a value ofA
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Figure 6: Results of applying the measure of agency across
different setups. (A) Evaluation of the task. In the Figure is
shown the fitness function of the best agent performing the
task across each value of the parameter Jc. (B) Histogram
of the values of A for the best 20 agents obtained with the
genetic algorithm for each value of Jc.

larger than zero. As well, for larger values of Jc some agents
present large values ofA, although the majority presents val-
ues of zero. Although further tests are necessary, we spec-
ulate that precisely the region around Jc = 1 is the region
where solving the task is possible (the signal to noise ratio
starts to be significative) but not trivial (the agent must in-
tegrate information about its input to filter out input noise).
In this scenario, it may be difficult to solve the task with-
out some level of agent-environment asymmetry, since the
agent must integrate a noisy imput signal with limited in-
ternal resources. As for the large values of A that we find
for large values of Jc, we hypothesize that when the task is
simpler to solve, a larger diversity of structures may be able
to achieve higher fitness, thus presenting some agents with
high A, although this is not necessary to solve the task.

Discussion
In this paper we have proposed an operational definition of
agency based on ideas from integrated information theory
that offers a framework for measuring the level of integra-
tion of the causal structure of subsets of elements of a sys-
tem. Specifically, inspired by previous work by Barandiaran
et al. (2009), we have proposed that a definition of agency
should be able to capture at the same time the ability of an

System

Environment

Figure 7: Illustration of a situation when we can not differ-
entiate an agent of its environment

agent to constitute an integrated whole (individuality) and
to modulate its coupling with the environment to extend its
boundary of integration in order to incorporate elements of
the environment at certain moments of time (interactional
asymmetry, Figure 7).

Moreover, we have tried to go beyond a generative defini-
tion such as that proposed by the authors, i. e., a set of nec-
essary and sufficient conditions for a minimum conception
of the agency, because it is not as useful as an operational
definition that allows to quantitatively determine the degree
of agency of a system. Our way of characterizing the agency
offers the following properties: (i) it is an ‘operative crite-
ria’, i.e. it specifies how to calculate and how to be applied
in experimental domains being able to characterize the de-
gree of agency of a system (and not only providing a list of
requirements); (ii) it assumes the condition of ‘sensorimotor
agency’ (it differs from internalist perspectives that under-
stand the agency based on internal architecture of controllers
but not at the embodied mechanisms of relations with the
environment), (iii) it has a temporal dimension (it highlights
the dynamic nature of the interactive regulation processes)
(iv) it is conceived from a holistic perspective (avoiding the
simplicity of sequential approaches in which the agent is first
identified and then examined about how it interacts with the
world).

We have tested this idea in a simple model evolved to per-
form an easy but non-trivial task. Using a minimal model of
an agent and an environment, we have shown how there ex-
ist situations where the location of the maximally integrated
structure of the system is not fixed but changes with time.
At some moments, it only comprises the agent, while at oth-
ers it is composed of the agent plus the environment it is
coupled to. Throughout the paper, we have shown some ev-
idence that our definition is a good identifier for this type of
organizations capable of adaptively regulating its coupling
with the environment.

Contrarily to Barandiaran et al. (2009), our approach does
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not need to add ad hoc variables to describe how an agent
might modulate the interaction with its environment. In-
stead, this modulation is described at an emergent level of
how integrated information expands or shrinks to cover parts
of this environment. Moreover, although our tests are imple-
mented over very simple agents, the objective is to illustrate
the kind of phenomena we could encounter in more complex
systems.

As a further observation, we would like to remark that our
proposal is in tune with works that point out that many of the
difficulties for an adequate definition of agency are related
to the fact that operational closure requires systems that con-
stitute itself as unified wholes that can be regarded as sep-
arated from the environment although in continuous inter-
action with it. For example, contributions in extended cog-
nition (Dotov et al., 2010) that analyze situations in which
a subject and a tool constitute an extended device during
smooth coping, which can be temporarily interrupted and
again self-assembled during an action. Or works as (Fuchs,
2011), where the brain is conceived as a plastic system of
open loops that are formed in the process of interaction with
the environment and are closed to full functional cycles in
each interaction.

Although further experimental tests are needed, we hope
that this contribution could be a step in fields as autonomous
robotics or artificial life towards the development of quan-
tifiable artificial forms of agency, focusing on the question
of how the emergence of sensorimotor loops relate to the
autonomous constitution of a system.
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Appendix
Integrated information of a subset of elements of a system is
computed as follows. For a system of elements S in state s,
we describe the input-output relationship of the system ele-
ments through its corresponding transition probability func-
tion p, describing the probabilities of the transitions from
one state to another for all possible system states. Given
Equation 1, the computation of p is straightforward. IIT re-
quires that p satisfies the Markov property (i.e., the state at
time t only depends on the state at time t − 1), and that the
current states of elements are independent, conditional on
the past state of the system. This conditions are satisfied by
the asymmetric kinetic Ising model used here.

For any two subsets of S, called the mechanism M and
the purviewP , we can define the cause and effect repertoires
ofP overM, that is, howM in its current state {si(t)}i∈M,
constrains the potential past or future states of {si(t−1)}i∈P
or {si(t + 1)}i∈P (Figure 2.B). We describe the cause and
effect repertoires of the system by the probability distribu-
tions pcause(Pt−1|Mt) = p({si(t− 1)}i∈P |{si(t)}i∈M)
and peffect(Pt+1|Mt) = p({si(t+ 1)}i∈P |{si(t)}i∈M).
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The integrated cause-effect information ofM is then de-
fined as the distance between the cause-effect repertoires of
the mechanism, and the cause-effect repertoires of their min-
imum information partition (MIP) over the purview that is
maximally irreducible,

ϕcause =

max
P

(
min
cut

(
D(pcause(Pt−1|Mt), p

cut
cause(Pt−1|Mt))

))
ϕeffect =

max
P

(
min
cut

(
D(peffect(Pt+1|Mt), p

cut
cause(Pt+1|Mt))

))
(3)

where cut is a partition of the mechanism into two halves,
and pcut the cause or effect probability distribution under the
partition,

cut = {M1,P1,M2,P2}
pcut(P|M) = p(P1|M1)⊗ p(P2|M2)

(4)

The integrated information of the mechanism M is the
minimum of its corresponding integrated cause and effect
information,

ϕ = min(ϕcause, ϕeffect) (5)

The integrated information of the entire system is then
defined as the distance between the cause-effect structure of
the system, and cause-effect structure defined by its mini-
mum information partition, eliminating constraints from one
part of the system to the rest:

Φ = min
cut

D(C,Ccut) (6)

For both the integrated information of a mechanism (ϕ)
and the integrated information of a system (Φ), distance D
is computed as the Wasserstein or earth movers distance. Fi-
nally, if S is a subset of elements of a larger system, all
elements outside of S are considered as part of the environ-
ment and are conditioned on their current state throughout
the causal analysis. All computations in this paper were per-
formed by the PyPhi software package (Mayner et al., 2017).
Further details of the steps described here can be found in
(Oizumi et al., 2014).
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