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Abstract: Citrus trees with cankers and dieback symptoms were observed in Bushehr (Bushehr
province, Iran). Isolations were made from diseased cankers and branches. Recovered fungal
isolates were identified using cultural and morphological characteristics, as well as comparisons of
DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, translation
elongation factor 1α, β-tubulin, and actin gene regions. Dothiorella viticola, Lasiodiplodia theobromae,
Neoscytalidium hyalinum, Phaeoacremonium (P.) parasiticum, P. italicum, P. iranianum, P. rubrigenum,
P. minimum, P. croatiense, P. fraxinopensylvanicum, Phaeoacremonium sp., Cadophora luteo-olivacea,
Biscogniauxia (B.) mediterranea, Colletotrichum gloeosporioides, C. boninense, Peyronellaea (Pa.) pinodella,
Stilbocrea (S.) walteri, and several isolates of Phoma, Pestalotiopsis, and Fusarium species were obtained
from diseased trees. The pathogenicity tests were conducted by artificial inoculation of excised shoots
of healthy acid lime trees (Citrus aurantifolia) under controlled conditions. Lasiodiplodia theobromae
was the most virulent and caused the longest lesions within 40 days of inoculation. According to
literature reviews, this is the first report of L. theobromae and N. hyalinum on citrus in Iran. Additionally,
we report several Phaeoacremonium species, S. walteri, Pa. pinodella and C. luteo-olivacea on citrus trees
for the first time in the world.

Keywords: bscogniauxia; botryosphaeriaceae; cadophora; citrus dieback; colletotrichum;
phaeoacremonium

1. Introduction

Iran is the sixth largest Citrus producer, accounting for 3.3% of the world’s Citrus production,
which yielded 4.1 million tons in 2016 [1]. A total of 276,000 ha of various Citrus species are
cultivated in Iran, including sweet orange (Citrus sinensis L.), acid lime (C. aurantifolia (Christm.)
Swingle), sour orange (C. aurantium L.), mandarin (C. reticulata Blanco), lemon (C. limon (L.) Osbeck),
and grapefruit (C. paradisi Macfad). The most important producing regions in Iran are Mazandaran,
Fars, Hormozgan, Giroft, and Kahnouj.

Fungal trunk diseases have been studied in detail in grapevine, which are the main biotic factor
limiting vineyard productivity and longevity [2]. However, recent findings of high incidence in stone
and pome fruits, small fruits, nut crops, citrus, and olive worldwide highlight the need for a focus on
this novel group of hosts [3]. Trunk diseases are caused by a broad range of taxonomically unrelated
fungi that primarily infect wood hosts through winter pruning wounds, thus colonizing the vascular
tissues. Members of the families Botryosphaeriaceae, Togninaceae, Diatrypaceae, Diaporthaceae,
as well as several basidiomycetes are included in this group of fungi. Members of Diatrypaceae

Plants 2020, 9, 754; doi:10.3390/plants9060754 www.mdpi.com/journal/plants

http://www.mdpi.com/journal/plants
http://www.mdpi.com
https://orcid.org/0000-0001-9587-1690
https://orcid.org/0000-0003-1755-3413
http://dx.doi.org/10.3390/plants9060754
http://www.mdpi.com/journal/plants
http://www.mdpi.com/2223-7747/9/6/754?type=check_update&version=2


Plants 2020, 9, 754 2 of 20

(Xylariales) can often be observed on dead wood and bark of a wide range of plant species around the
world. Nevertheless, some species of this family are reported as putative plant pathogens on fruit,
ornamental, and forest trees [4–8]. Some species of Eutypella have been previously isolated from citrus
species, including Citrus limon, C. paradisi, C. maxima, and C. aurantium in Australia, Argentina, Brazil,
Coted’Ivoire, Philippines, and USA [9–14]. Diatrypaceae spp. were also isolated from citrus trees in
Australia [15].

Species of Botryosphaeriaceae have a cosmopolitan distribution and have been associated with
numerous plant species worldwide [16–18]. Many species of the genera Lasiodiplodia [19–23], Diplodia,
Dothiorella, Neofusicoccum [20], and Neoscytalidium [14,20] have been previously reported to affect
citrus trees. Togniniaceae (Togniniales), with the well-known asexual morph genus Phaeoacremonium,
is another family of fungi traditionally associated with dieback, canker, and yellowing of various
fruit, forest, and ornamental trees, worldwide [24–31]. To date, 56 Phaeoacremonium species have been
identified from woody hosts [32]. The most prevalent Phaeoacremonium species isolated from woody
hosts are P. minimum, followed by P. parasiticum [33]. Dieback and related disease symptoms have been
achieved by inoculating Phaeoacremonium species onto several hosts such as Prunus spp., kiwifruit, oak,
and grapevine [33,34]. Phaeoacremonium species isolated from grapevine have been intensively studied
because of their involvement in two trunk diseases, Petri disease in young vines and esca in mature
vines [32,35]. To our knowledge, there are no reports of Phaeoacremonium species affecting Citrus spp.

In spring 2014, a severe decline of citrus trees was noticed in some orchards in Bushehr (Bushehr
province, Iran). External disease symptoms included chlorosis of leaves, defoliation, branch and shoot
cankers, and dieback. Internal wood symptoms ranged from brown to black wood streaking and
black spots to wedge-shaped necrosis, irregular wood discoloration, central necrosis, and arch-shaped
necrosis. Many fungi associated with trunk diseases have been isolated from several woody hosts
in Iran, including grapevine [36,37], pome and stone fruit trees [28,38], and ornamental and forest
trees [29,31,39,40]. However, little information is presently available on the causal agents of the severe
decline of citrus trees in Iran. Therefore, the aim of this study was to investigate the etiology of fungal
trunk diseases associated with wood necrosis of citrus trees in Iran and to determine their pathogenicity.

2. Results

2.1. Field Survey and Diversity of Disease Symptoms

In this study, wood samples were collected from lime (46 trees), sweet lemon (23 trees), sweet orange
(22 trees), mandarin (eight trees), sour orange (four trees) and lemon (three trees). Citrus trees showed
various external disease symptoms, including yellowing, canker, defoliation, dieback, cracking of
the bark associated with gumming, and sooty cankers (form a black powder underneath the bark).
Examination of infected branches from symptomatic trees revealed different types of wood discoloration
in cross-sections, black to brown streaking in the wood, wedge-shaped necrosis, black spots, irregular
wood discoloration, central necrosis, and arch-shaped necrosis (Figure 1).
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Figure 1. Diversity of external (A–D) and internal (E–I) trunk disease symptoms on Citrus species in 
Iran (A) a severe dieback on Citrus sinensis; (B) two cankers on a trunk of a C. sinensis tree indicated 
by arrows; (C) an extended canker on the branch of Citrus aurantifolia indicated by arrow; (D) 

Figure 1. Diversity of external (A–D) and internal (E–I) trunk disease symptoms on Citrus species in
Iran (A) a severe dieback on Citrus sinensis; (B) two cankers on a trunk of a C. sinensis tree indicated by
arrows; (C) an extended canker on the branch of Citrus aurantifolia indicated by arrow; (D) gummosis
on Citrus limetta; (E) cross-section of a healthy branch of C. aurantifolia; (F) central necrosis on C. sinensis;
(G) Co-occurrence of brown wood streaking (black arrow), wedge-shaped necrosis (white arrow)
and irregular wood necrosis (red arrow) on C. sinensis; (H) Arch-shaped necrosis on C. aurantifolia;
(I) a young wedge shaped necrosis on Citrus reticulata; (J) Co-occurrence of wedge-shaped necrosis is
indicated by the white arrow and black spots are indicated by the black arrow on the C. sinensis.
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2.2. Fungal Isolation and Morphological Identification

In this survey, 326 fungal isolates were collected from citrus trees (Table 1). According to colony
appearance, culture characteristics, and microscopic structures, the main fungal isolates were classified
as Phaeoacremonium spp., Botryosphaeriaceae spp. Cadophora sp., Colletotrichum spp., Peyronellaea
sp., Phoma spp., and Biscogniauxia mediterranea. Thirty-nine isolates (11.96% of total isolates) were
identified as Phaeoacremonium species and characterized by beige to medium brown flat slow-growing
cultures on potato dextrose agar (PDA; Merck, Darmstadt, Germany) and on malt extract agar (MEA;
2% malt extract, Merck, Darmstadt, Germany). Septate hyphae were single or fasciculate, and three
types of phialides, variable in shape and size (I, II, and III types), were recorded in these isolates [41].
Morphological features of 49 isolates (15.03%) were consistent with the description of species of
Botryosphaeriaceae [16,17,42]. These isolates were characterized by dark green to gray or fast-growing
gray mycelium on the PDA. All isolates produced fruit bodies, pycnidia, on pine needles within
15–35 days. Conidia were pigmented or hyaline. These isolates belonged to the genera Lasiodiplodia,
Neoscytalidium, and Dothiorella. Twelve isolates of the phialides fungus were identified as Cadophora sp.
These isolates formed flat, felty, and black-olivaceous and white to gray colonies on PDA, and their
conidia were ellipsoid or elongate. Cultural and morphological characteristics observed were similar
with the description of the Cadophora spp. [43,44]. Based on morphological characteristics, the remaining
isolates were classified to Colletotrichum, Peyronellea, Pestalotiopsis, Fusarium, Microsphaeropsis, Alternaria,
Trichoderma, Paecilomyces, Aspergillus, Penicillium, Phoma, Biscogniauxia, and Stilbocrea genera.

Table 1. Fungal species isolated from Citrus species in Iran.

Fungal Species
Citrus Species Total

IsolatesC. sinensis C. aurantifolia C. reticulata C. limetta C. aurantium C. limon

Phaeoacremonium
parasiticum 1 11 0 0 0 0 12

P. rubrigenum 0 4 0 0 0 0 4
P. minimum 0 8 0 0 0 0 8
P. italicum 0 5 0 0 0 0 5

P. croatiense 2 0 0 2 0 0 4
P. iranianum 0 0 2 0 0 0 2

P. fraxinopennsylvanicum 0 0 0 0 1 1 2
Phaeoacremonium sp. 0 2 0 0 0 0 2

Cadophora luteo-olivacea 0 0 6 6 0 0 12
Biscogniauxia mediterranea 2 0 0 0 0 0 2
Neoscytalidium hyalinum 0 7 0 7 0 0 14

Dothiorella viticola 7 7 0 0 6 0 20
Lasiodiplodia theobromae 7 8 0 0 0 0 15

Colletotrichum
gleoesporioides 8 0 0 10 0 0 18

Colletotrichum boninense 0 0 0 7 0 0 7
Peyronellea pinodella 5 6 0 0 0 0 11

Phoma herbarum 0 6 0 5 0 0 11
Phoma fungicola 5 0 5 4 0 0 14

Microsphaeropsis olivacea 6 0 0 0 0 0 6
Stilbocrea walteri 0 3 0 0 1 4 8
Pestalotiopsis sp. 4 0 0 0 0 0 4
Fusarium spp. 2 3 0 1 1 5 12

Paecilomyces spp. 2 3 5 1 3 1 15
Phoma spp. 3 0 0 0 0 0 3

Penicillium spp. 7 4 9 0 4 5 29
Aspergillus spp. 11 10 8 8 3 8 48
Trichoderma spp. 5 0 2 5 0 1 13
Alternaria spp. 3 7 3 10 0 2 25

Total fungal isolates 80 94 40 66 19 27 326
Total number of trees

surveyed 39 57 19 43 18 12 188
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No association was found between wood symptoms and fungal species. Dual infections by trunk
disease fungi in a single tree occurred. Phaeoacremonium parasiticum and P. italicum were isolated
from one tree of C. aurantifolia; P. parasiticum, P. croatiense, and Do. viticola from one tree of C. sinensis,
L. theobromae and Neoscytalidium hyalinum from one tree of C. aurantifolia, and C. luteo-olivacea and
P. croatiense from one tree of C. limetta. In addition, some fungal species grew from an individual wood
segment, such as Stilbocrea walteri and P. fraxinopennsylvanicum from C. limon.

2.3. Molecular Characterization and Phylogenetic Analyses

BLASTn searches in GenBank showed that the nuclear ribosomal DNA-internal transcribed spacer
region (ITS) and translation elongation factor 1α (tef1-α) sequences of Botryosphaeriaceae isolates had
99–100% identity with isolates of Lasiodiplodia theobromae (strain CBS559.70), Neoscytalidium hyalinum
(strain CBS 145.78), and Dothiorella viticola (strain CBS 117006). The ITS sequences of the Cadophora
isolates had 99–100 % identity with isolates previously identified as Cadophora luteo-olivacea in GenBank
(strain CBS 855.69). ITS and β-tubulin (BT) sequences of Colletotrichum isolates were identical to isolates
previously reported as Colletotrichum gloeosporioides (ITS: strain CBS 132465; BT: strain CBS 100471)
and Colletotrichum boninense (ITS and BT: strain CBS:123755) in GenBank. ITS and BT sequences of
Peyronellea isolates in our study showed 99–100 % identity with those isolates previously submitted as
Didymella pinodella (strain CBS 531.66) in GenBank. ITS and tef1-α sequences of Stilbocrea isolates from
citrus trees had 99–100% identity with Stilbocrea walteri (strain NQI). Regarding the Biscogniauxia isolates,
ITS of our isolates had 99–100% identity with isolates previously identified as Biscogniauxia mediterranea
(strain CBS 129072).

Datasets of the BT and actin (ACT) alignments of Phaeoacremonium were congruent and could
be combined (p = 0.225). The Hasegawa–Kishino–Yano model (HKY) with gamma distributed with
invariant sites rates (G+I) was identified as the BIC best-fit nucleotide substitution model by the
jModelTest for the Phaeoacremonium multi-locus analysis. Maximum likelihood (ML) of the combined
ACT-BT regions provided a phylogeny with 98 to 100% ML bootstrap support for all species-level clades,
with the exception of P. alvesii (paraphyletic, 87% bootstrap support), P. griseorubrum (paraphyletic,
66% bootstrap support), P. roseum (89% bootstrap support), and P. viticola (paraphyletic with regard to
P. roseum and P. angustius) (Figure 2). The 39 strains from Iran clustered in eight clades (P. italicum,
Phaeoacremonium sp., P. rubrigenum, P. parasiticum, P. minimum, P. iranianum, P. fraxynopennsylvanicum,
and P. croatiense). The isolates of the clade 2 grouped together in a polyphyletic clade with 100%
bootstrap support with the P. italicum as a closely related species. The BT and ACT sequences of
the second clade of Phaeoacremonium isolates were 98% (BT) and 98.77% (ACT) identical to those of
P. italicum CBS 137763 (GenBank KJ534074, KJ534046). Three nucleotides varied in the ACT region
and ten nucleotides in the BT region between the second clade of Phaeoacremonium isolates and the
P. italicum CBS 137763 sequences.
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Figure 2. Maximum likelihood phylogeny of Phaeoacremonium spp. according to concatenated 
alignments of the actin (ACT) and beta-tubulin (BT) gene regions. Support values less than 70% 
bootstrap were omitted. Maximum likelihood bootstrap percentages are indicated at the nodes. 
Isolates obtained in this study are indicated in bold. The eight clades associated with the 
Phaeoacremonium spp. obtained in this study are indicated by numbers. 
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Figure 2. Maximum likelihood phylogeny of Phaeoacremonium spp. according to concatenated
alignments of the actin (ACT) and beta-tubulin (BT) gene regions. Support values less than 70%
bootstrap were omitted. Maximum likelihood bootstrap percentages are indicated at the nodes. Isolates
obtained in this study are indicated in bold. The eight clades associated with the Phaeoacremonium spp.
obtained in this study are indicated by numbers.

2.4. Pathogenicity Test

Mean lengths of wood discolorations caused by inoculated isolates obtained from Citrus species
on the detached shoots of C. aurantifolia are shown in Figures 3 and 4. Our results showed a variation
in the total (Figure 4a), and both the upward and downward lesion lengths (Figure 4b) from the point
of inoculation and re-isolation frequencies of inoculated isolates on lime shoots. L. theobromae was the
most aggressive fungal species and produced the longest necrotic lesions (57.67 mm) on the inoculated
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shoots followed by Do. viticola (38.17 mm) and P. parasiticum (34.33 mm) (Figure 4a). In contrast,
two species of S. walteri (6.33 mm) and P. rubrigenum (6.00 mm) produced the smallest wood lesions
on the inoculated shoots, and no significant differences were observed between these species and the
control treatments (3.67 mm).
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Figure 3. Pathogenicity tests of fungal species inoculated onto Citrus aurantifolia detached shoots,
40 days after inoculation: (A) control; (B,C) Lasiodiplodia theobromae; (D); Dothiorella viticola;
(E) Neoscytalidium hyalinum; (F,G) Phaeoacremonium parasiticum; (H) Cadophora luteo-olivacea;
(I) Phaeoaremonium minimum; (J) Phaeoacremonium iranianum; (K) Colletotrichum gloeosporoides;
(L) Phaeoacremonium fraxinopennsylvanicum; (M) Phaeoacremonium italicum; (N) Stilbocrea walteri;
(O) Phaeoacremonium rubrigenum; (white arrows show the point of inoculation, and the red dashed
lines indicate the lesion length caused by each isolate).

All inoculated fungi caused longer basipetal than acropetal lesions on the lime shoots (Figure 4b).
Of the isolates inoculated, 10 species caused downward and upward wood lesions that were significantly
different to those in the control (p < 0.05). L. theobromae also produced the longest wood lesion lengths
both in upward (22.34 mm) and in downward (35.33) directions, while S. walteri (upward = 2.5,
downward = 3.83 mm) and P. rubrigenum (upward = 2.5, downward = 3.50 mm) did not cause any
significant necrotic lesion lengths both in the downward and in the upward directions compared to
the control treatments (upward = 1.34, downward = 2.33 mm) on the inoculated shoots. Re-isolation
percentages were between 40.0% (C. luteo-olivacea) and 100% (L. theobromae and N. hyalinum) on the
inoculated lime shoots, and no fungal isolates were recovered from control treatments.
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3. Discussion

This study shows the high incidence and severity of fungal trunk pathogens associated with wood
decay symptoms of six Citrus species (C. sinensis, C. aurantifolia, C. reticulate, C. limetta, C. aurntium,
and C. limon) in Iran. During the last decade, extensive studies have been done on fungal trunk pathogens
of fruit trees, including grapevine [36,37], stone [38], and pome fruit trees [28,30], pistachio [45],
almond [46–48], walnut [49,50], pomegranate, and fig trees [51] in Iran. The current study shows
that Citrus also represents a rich catch host for fungi associated with trunk diseases in this country.
Different trunk disease fungi often co-occurred in the same tree and even in the same type of symptom,
thus showing the complexity of the etiology of wood symptoms observed. The co-infection of several
trunk disease fungi on woody crops could lead to an increase in disease severity compared to the
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single occurrence of a fungal species, as it has been previously demonstrated on grapevine with
Botryosphaeriaceae and Ilyonectria spp. [52].

Morphological comparisons of trunk disease fungi often reveal an overlap between species in
several characters [13,16,41]. In our study, the use of these characters to distinguish fungal species
within a genus or family was inadequate, thus highlighting the convenience of DNA-based methods
for such purposes. This is particularly important for species of the genus Phaeoacremonium [41].
Throughout this survey, seven Phaeoacremonium species, including P. parasiticum, P. minimum,
P. rubrigenum, P. italicum, P. iranianum, P. croatiense, P. fraxinopennsylvanicum, and an unidentified
species of Phaeoacremonium were recovered from Citrus spp. showing a decline in symptoms.
All Phaeoacremonium species reported herein have been found associated with grapevine [41,53–55].
P. parasiticum was the dominant Phaeoacremonium species in this study, with 12 isolates collected
from C. sinensis and C. aurantifolia. This fungus has previously been reported from C. reticulata in
Iran [56], and from various fruit trees, such as grapevine [41], Actinidia chinensis [57], Cydonia oblonga,
Ficus carica [58], Olea europaea [58,59], Malus domestica [28,58], Prunus armeniaca [24], Prunus avium [60],
Punica granatum [58], and Pyrus communis [28] worlwide. In our study, P. minimum, P. rubrigenum
and P. italicum were isolated only from C. aurantifolia. Similar to P. parasiticum, P. minimum was also
reported from a wide range of fruit trees, including A. chinensis [61], A. deliciosa [62], C. oblonga [28,58],
M. domestica [25,28,63], O. europaea [64], P. armeniaca [24], Prunus dulcis [57], P. pennsylvanica [65],
Prunus salicina [24], P. granatum [58], P. communis [25,28], in Iran and other parts of the world.
P. rubrigenum has previously been reported from C. oblonga [28], O. europaea [59], and P. communis [28].
More recently, fruit tree infections by P. italicum have also been reported from South Africa and
this fungus has been isolated from C. oblonga, Ficus carica, M. domestica, O. europaea, P. persica, and
P. granatum in this country [58]. P. croatiense was isolated from C. sinensis and C. limetta, while
P. fraxinopennsylvanicum was isolated form C. aurantium. Related to fruit trees, P. fraxinopennsylvanicum
was previously reported to affect A. deliciosa [62], M. domestica [28,58], P. salicina [24], and Pyrus
communis [25], while P. croatiense was only reported from grapevine [54]. Our research confirms the
broad distribution of Phaeoacremonium spp. affecting woody crops, and provides their first record on
citrus trees in the world.

Three species of Botryosphaeriaceae, namely N. hyalinum, Do. viticola and L. theobromae were
obtained from citrus trees in this study. Neoscytalidium hyalinum was isolated from C. aurantifolia and
C. limetta, Do. viticola was recovered from C. sinensis, C. aurantifolia, and C. aurantium, and L. theobromae
was associated with C. sinensis and C. aurantifolia. Several species of Botryosphaeriaceae are known
to dieback and branch cankers in Citrus spp. worldwide [14,20,22,23,66–70]. Dothiorella viticola has
been previously reported to cause gummosis in citrus in California [20] and Tunisia [71]. This fungus
has also been reported from cultivar Parent Washington on sour orange rootstock [68], C. sinensis and
C. latifolia Tan. in California [20], and C. sinensis in New Zealand [72]. Abdollahzadeh et al. reported
this species from Citrus sp. in Guilan province of Iran [73]. Our study provides the first report of this
fungus from C. aurantifolia and C. aurantium.

Neoscytalidium hyalinum has been reported as the most prevalent Botryosphaeriaceae species
associated with citrus branch cankers in the desert regions of southern California [14]. This fungus
has been recovered from C. paradise showing gummosis in California [20] and also from C. sinensis in
Italy [74]. Therefore, our work is the first report of N. hyalinum from two Citrus species, C. aurantifolia
and C. limetta. L. theobromae has been previously reported from some Citrus species, including C. limon
in Chile [23] and Persian lime (Citrus latifolia) trees in Mexico [70]. Our study represents the first report
of this species on C. sinensis and C. aurantifolia.

In the current study, 12 isolates of Cadophora luteo-olivacea were obtained from C. reticulata and
C. limetta. C. luteo-olivacea has previously been reported with black vascular streaking and a decline in
the symptoms characteristic of Petri disease on grapevine [44,54,75,76], bark cracks of kiwifruit [62],
and from pear fruits showing dark-brown and slightly sunken spots [77]. Aside from these reports,
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little is known regarding the role of Cadophora species involved in trunk diseases of trees. This is the
first time that C. luteo-olivacea has been found on Citrus spp.

Most species of the genus Biscogniauxia are reported from forest trees, mainly from Quercus
spp. [78–80]. Some species of this genus have also been found associated with fruit trees such as
B. pruni and B. granmoi on Prunus padus [81,82], B. marginata on M. communis [83], B. rosacearum
on P. communis, C. oblonga and Prunus domestica [84], and B. capnodes on Averrhoa carambola [85].
Biscogniauxia mediterranea is known to be the causal agent of charcoal cankers on a wide range of trees
worldwide, in particular Quercus spp. [79,80,86]. In Iran, this pathogen was already reported from
C. sinensis [87], along with other woody hosts, such as Quercus castaneifolia [88], Zelkova carpinifolia [89],
Q. brantii [89], and Amygdalus scoparia [90].

In the current study, eight isolates of Stilbocrea walteri were isolated from C. aurantifolia, C. aurntium,
and C. limon. This species was originally reported from dead corticated branches of Quercus ilex in
Portugal [91], and to our knowledge, it has not been reported from necrotic wood tissues of trees.
Therefore, this study is the first report of this species in Iran and on Citrus species worldwide.

Peyronellea pinodella (Didymellaceae) is a destructive necrotrophic pathogen on some plant families,
including Fabaceae, Amaranthaceae, Asteraceae, Amaryllidaceae, Appiaceae Rubiaceae, Malvaceae, Poaceae,
and Polemoniaceae [92]. To date, there is no report on the occurrence of P. pinodella on Citrus species and
this is the first data on the occurrence of this species on C. sinensis and C. aurantifolia.

Two species of Colletotrichum were found to be associated with trunk diseases of citrus trees in
this work, C. gleoesporioides on C. sinensis and C. limetta and C. boninense on C. limetta. Several species
of Colletotrichum are associated with fruit and leaf anthracnose diseases of Citrus species; however,
other diseases such as twig and shoot dieback caused by Colletotrichum spp. have been documented on
citrus trees [14,93]. Colletotrichum gloeosporioides has been reported from a wide range of fruit trees
such as strawberry, olive, almond, mango, apple, avocado, and citrus [94]. This fungus was found
to be associated with twig dieback of lemon trees in Portugal [93]. C. boninense has been associated
with fruit and leaf anthracnose on citrus trees [95,96]. According to a recent study, some Colletotrichum
species have been isolated and reported from stems of citrus trees in Iran. These included C. karstii
from C. aurantifolia and C. sinensis and four species, C. gloeosporioides, C. novae–zelandiae, C. siamense,
and C. fructicola from C. sinensis [97]. Therefore, our study represents the first report of C. gleoesporioides
and C. boninense from branches of C. limetta.

In our work, six isolates of M. olivacea were obtained from sweet orange. This fungus has
been reported from various plant species worldwide. This taxon has previously been isolated as an
endophytic species from P. persica [98], from xylem and stems of Pinus sylvestris [99] and Chilean
gymnosperms [100]. Carlucci et al. isolated this species from internal wood discoloration of olive trees
in Italy [101]. Microsphaeropsis olivacea has also been isolated and reported from some woody plants,
such as Prunus cerasus, P. avium [102], and Persian oak (Quercus brantii) [103] in Iran. To our knowledge,
this is the first report of M. olivacea on citrus trees. Several isolates of Fusarium, Pestalotiopsis, Phoma,
Penicillium, Aspergillus, Trichoderma, and Alternaria species were also obtained from Citrus species in
this study. Therefore, more studies are needed on these taxa in order to elucidate their potential impact
on citrus trunk diseases.

Pathogenicity of selected fungal species in detached shoots of lime tree were confirmed in the
current study. Results revealed that L. theobromae was more virulent on lime shoots than other species.
In contrast to our results, Bautista-Cruz et al. reported that L. theobromae was the least virulent species
when inoculated in Persian lime branches [70]. Several factors differed from the study carried out by
Bautista-Cruz et al. and might have contributed to the discrepancy between the experiments, including
the type of planting material inoculated, the environmental conditions for disease development, the
time for virulence assessment, and the fungal strain used in the pathogenicity test. L. theobromae has
been considered the most aggressive species on Eucalyptus [104,105], grapevine [42,106], and pistachio
trees [107]. Lasiodiplodia theobromae was considered an important pathogen on greengage, sour cherry,
peach, apricot, cherry [38], and willow trees [29] in Iran. Our study improved the knowledge on
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the occurrence of fungal trunk pathogens on Citrus species showing a decline in symptoms. Further
investigations are needed throughout the citrus orchards to determine the potential impact of these
fungi on citrus decline.

4. Materials and Methods

4.1. Tree Sampling and Fungal Isolation

During 2014 and 2015, several field surveys were performed in important citrus-producing
regions of Bushehr province, Tallhe and Tang Eram. This province is located in the south of Iran,
within 28.7621◦ N latitude and 51.5150◦ E longitude. Symptomatic wood samples were collected from
various species of citrus trees including, acid lime, sweet orange, mandarin, sour orange, sweet lemon
(C. limetta), and lemon showing yellowing, defoliation, canker, dieback, and gummosis. In total,
325 wood samples were collected from branches of 106 symptomatic trees (15- to 35-year-old) in
27 orchards. A map with the point locations of the sampled orchards is shown in Figure 5. Collected
samples were brought to the laboratory and inspected for internal wood lesions and fungal isolation.
Small fragments (4 × 4 mm) of symptomatic wood tissues were cut from the edges of wood lesions,
surface-sterilized in sodium hypochlorite solution (1.5%) for 60 s, and rinsed three times in sterilized
water. Wood chips were dried in sterilized filter paper and placed on PDA amended with 90 to
100 mg/L streptomycin sulfate (PDAS). For each branch sampled, three to five Petri dishes were
obtained. All Petri dishes were incubated at 25 ◦C until fungal colonies were observed. Pure cultures
of the fungal isolates were obtained by hyphal-tipping or transferring single conidia to fresh PDA.
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4.2. Morphological Identification

All fungal isolates were identified initially to the genus level based on colony morphology and
main microscopic structures using published articles and descriptions. Botryosphaeriaceae isolates
were identified based on colony appearance and conidial morphology [16,108]. To induce sporulation,
three to five mycelial plugs from each isolate were placed on 2% water agar (WA; Biokar-Diagnostics)
plates amended with sterilized pine needles and incubated at 25 ◦C under near-ultraviolet light for
15–45 days [42]. Conidial characteristics (size, shape, color, and presence or absence of septa) were
recorded for all isolates. Phaeoacremonium isolates were grouped based on colony appearance, pigment
production on MEA, PDA and oatmeal agar (OA; 60 g oatmeal; 12.5 g agar; Difco, France) and the
main microscopic structures (phialide shape and type, conidiophore morphology, size of hyphal
warts, and conidial shape and size) [41,57,109]. Identification of Cadophora isolates was based on the
colony and micro-morphological structures, such as conidiogenous cell size and shape, and conidia.
The remaining fungal isolates were identified based on available identification keys and published
papers [91,110–114].

4.3. DNA Extraction, Amplification, and Sequencing

Identities of representative isolates were confirmed using molecular data. Fungi selected for
molecular studies were grown on PDA for 10 to 15 days at 25 ◦C in the dark. DNA was extracted
using an AccuPrep®Genomic DNA Extraction Kit (Bioneer, South Korea) following the instructions
of the manufacturer. Four primer sets, ITS1/ITS4 [115], EF1-728F/EF1-986R [116], T1/Bt2b [117,118],
and ACT-512F/ACT-783R [116] were used to amplify the ITS region ITS1-5.8S-ITS2, portions of the
tef1-α, BT and ACT genes, respectively. The identification of Botryosphaeriaceae isolates was confirmed
by the sequencing of ITS and a partial sequence of tef-1a. For Phaeoacremonium isolates, a partial
sequence of BT and ACT genes were amplified and sequenced. Molecular identifications of other
isolates were confirmed by sequence analysis of ITS (Cadophora, Colletotrichum, Peyronellea, Stilbocrea,
and Biscogniauxia isolates), BT (Colletotrichum and Peyronellea isolates), or tef1-α (Stilbocrea isolates).
The polymerase chain reaction (PCR) was performed in a Techne TC-312 Thermal Cycler (Techne,
Cambridge, UK), as described by Hashemi and Mohammadi [29]. For each isolate, 3–4 µL of PCR
product was separated by electrophoresis on a 1% agarose gel (UltraPureTM Agarose, Invitrogen)
containing ethidium bromide and visualized under UV illumination. The size of the products was
evaluated using a 100 bp ladder (Gene Ruler, TMDNA Ladder Mix, Fermentas). PCR products were
submitted to Bioneer Corporation (Daejeon, South Korea) for sequencing. MegaBLAST approach of
the NCBI database (https://www.ncbi.nlm.nih.gov/) was initially used to identify fungal species.

4.4. Phylogenetic Analysis

Due to the broad range of Phaeoacremonium spp. obtained in this study, a phylogenetic analysis
was carried out for the Phaeoacremonium spp. isolates. Sequences from citrus in Iran were aligned
with sequences available in GenBank/NCBI. These were compared using MAFFT sequence alignment
program v. 6 [119] with ex-type specimens from different hosts. Alignments were inspected in
Sequence Alignment Editor v. 2.0a11 [120]. PAUP version 4.0 b 10 [121] was used to perform a partition
homogeneity test. The congruence between the ACT and BT datasets was tested at 1000 replicates,
and the maximum likelihood (ML) was carried out on the concatenated alignment. The MEGA version
7 software [122] was used for ML analysis. Bayesian information criterion in jModelTest 2.1.10 [123] was
used to estimate the best fit model. Single and concatenated datasets were tested for branch support
(1000 bootstrap replicates). We included sequences published by Spies et al. as reference sequences [58].
Pleurostoma richardsiae CBS 270.33 was included as an outgroup. Phaeoacremonium sequences obtained
in this study were submitted to GenBank/NCBI (Table 2) and the sequence alignments were deposited
in TreeBASE under study number 26006 (http://treebase.org).

https://www.ncbi.nlm.nih.gov/
http://treebase.org
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Table 2. Host, origin, and GenBank accession numbers of Phaeoacremonium isolates obtained from
Citrus spp. in Iran (used in phylogenetic studies).

Fungal Isolates
Citrus spp.

GenBank Accession Number

Phaeoacremonium Species Code b-Tubulin Actin

P. parasiticum IRNHM-KPH35* C. aurantifolia KU737504 MT127573
IRNHM-KPH35E1 C. sinensis MT122909 MT127574
IRNHM-KPH35E2 C. aurantifolia MT122910 MT127575
IRNHM-KPH35E3 C. aurantifolia MT122911 MT127576
IRNHM-KPH35E4 C. aurantifolia MT122912 MT127577
IRNHM-KPH35E5 C. aurantifolia MT122913 MT127578
RNHM-KPH35E6 C. aurantifolia MT122914 MT127579
IRNHM-KPH35E7 C. aurantifolia MT122915 MT127580
IRNHM-KPH35E8 C. aurantifolia MT122916 MT127581
IRNHM-KPH35E9 C. aurantifolia MT122917 MT127582
IRNHM-KPH35E10 C. aurantifolia MT122918 MT127583
IRNHM-KPH35E11 C. aurantifolia MT122919 MT127584

Phaeoacremonium sp. IRNHM-KPH61 C. aurantifolia KU737517 MT127585
IRNHM-KPH61E4 C. aurantifolia MT122920 MT127586

P. italicum IRNHM-KPH61E1 C. aurantifolia MT122921 MT127587
IRNHM-KPH61E2* C. aurantifolia MT122922 MT127588
IRNHM-KPH61E3 C. aurantifolia MT122923 MT127589
IRNHM-KPH63E1 C. aurantifolia MT122924 MT127590
IRNHM-KPH63E2 C. aurantifolia MT122925 MT127591

P. rubrigenum IRNHM-KPH91E1 C. aurantifolia MT122926 MT127592
IRNHM-KPH91E2 C. aurantifolia MT122927 MT127593
IRNHM-KPH91E3 C. aurantifolia MT122928 MT127594
IRNHM-KPH91E4* C. aurantifolia MT122929 MT127595
IRNHM-KPH424E1 C. aurantifolia MT122930 MT127596
IRNHM-KPH424E2 C. aurantifolia MT122931 MT127597

P. minimum IRNHM-KPH425E1* C. aurantifolia MT122932 MT127598
IRNHM-KPH425E2 C. aurantifolia MT122933 MT127599
IRNHM-KPH425E3 C. aurantifolia MT122934 MT127600
IRNHM-KPH426E1 C. aurantifolia MT122935 MT127601
IRNHM-KPH428E1 C. aurantifolia MT122936 MT127602
IRNHM-KPH430E1 C. aurantifolia MT122937 MT127603

P. iranianum IRNHM-KZ38E1 C. reticulata MT122938 MT127604
IRNHM-KZ38E2* C. reticulata MT122939 MT127605

P. croatiense IRNHM-KPH24E C. sinensis MT122940 MT127606
IRNHM-KZ40E1 C. limetta MT122941 MT127607
IRNHM-KZ54E1 C. limetta MT122942 MT127608
IRNHM-KZ63E1 C. sinensis MT122943 MT127609

P. fraxinopennsylvanicum IRNHM-KZ73E1* C. limon MT122944 MT127610
IRNHM-KZ73E2 C. aurantium MT122945 MT127611

Isolates used for pathogenicity tests on detached shoots of C. aurantifolia.

4.5. Pathogenicity Tests

Pathogenicity tests were carried out with 12 species on detached shoots of C. aurantifolia
under controlled conditions. These include Do. viticola, P. italicum, P. minimum, P. rubrigenum,
and P. parasiticum isolated from C. aurantifolia, L. theobromae, and Col. gloeosporioides obtained from
C. sinensis, C. luteo-olivacea, and N. hyalinum recovered from C. limetta, P. fraxinopensylvanicum from
C. limon, P. iranianum from C. reticulata and S. walteri isolated from C. aurantium. The shoots (38–40 cm in
length and 2–2.5 cm in diameter) were surface-disinfected with alcohol (96%) and then were wounded
at the uppermost internode with a 4-mm cork borer. To assess pathogenicity, wounds were inoculated
with a 4-mm colonized PDA agar from 14-days-old cultures. All inoculated sites first were covered by
moist cotton and then were wrapped with a strip of Parafilm (Pechiney Plastic Packaging, Menasha,
USA). Six shoots per fungal isolate were used, and an equal number of shoots were also inoculated
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with 4-mm non-colonized PDA agar plugs for negative controls. Inoculated shoots were arranged
at random, including the six inoculated shoots per isolate. Inoculated shoots were placed in moist
chambers and incubated at 25 ºC. The total, upward, and downward lesion length data were evaluated
individually, 40 days after inoculation. Recorded data were checked for normality of distribution by
means of the Shapiro–Wilk and Kolmogorov–Smirnov tests. The data were subjected to analysis of
variance (one-way ANOVA) using SAS v 9.1 (SAS Institute, Cary, NC, USA) (Dataset S1; Dataset S2).
The least significant difference (LSD) test was used for comparison of treatment means at p < 0.05.
Fungal re-isolations were made from the edges of the lesions on the test and control shoots and placed
on PDA. The identity of the re-isolated fungi was confirmed based on morphological characteristics
and molecular analysis in order to complete Koch’s postulates. The pathogenicity of other species was
not tested in this work because they were identified after the pathogenicity trials had begun on the
detached shoots of C. aurantifolia.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/6/754/s1,
Dataset S1: SAS code, Dataset S2: Lesion length data.
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