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ABSTRACT
The first long-term Land Surface Temperature (LST) maps for the Peninsular Spain at annual and
seasonal time scales for 1981–2015 is presented in this work. A robust protocol for correcting
and calibrating NOAA-AVHRR images and computing LST datasets at the spatial resolution of
1.1 km has been used. Simultaneously, maximum air temperature (Tmax) maps at the same
spatial resolution have been produced using data from meteorological stations. The
comparison between the two datasets resulted in statistically significant spatial correlations
at annual and seasonal scales. Finally, the Normalized Difference Vegetation Index (NDVI)
data were also compared with the obtained LST datasets and the results showed significant
negative correlations between the two variables, especially in summer.

ARTICLE HISTORY
Received 17 April 2017
Revised 21 May 2018
Accepted 10 July 2018

KEYWORDS
Land Surface Temperature;
NOAA-AVHRR; maximum air
temperature; regression-
based interpolation

1. Introduction

Climate change processes are demanding high spatial
and temporal observational datasets for the evaluation
of climate models and the interaction of the climate
with natural elements (Hofstra, Haylock, New, Jones,
& Frei, 2008). Although, minimum and maximum air
temperature and total precipitation are the most com-
monly used gridded climate variables, there are still
other key climate parameters to be derived from either
ground-based stations or satellite observations. Among
these parameters, Land Surface Temperature (LST) is
an essential environmental variable, which is a direct
driving force of turbulent heat fluxes and long-wave
radiation exchanges (Maurer, Wood, Adam, Lettenma-
ier, & Nijssen, 2002; Nishida, Nemani, Running, &
Glassy, 2003). LST is a key variable in formulating
energy and water budgets at local through global scales
(Anderson et al., 2008; Karnieli et al., 2010; Kustas &
Anderson, 2009; Li et al., 2013; Zhang et al., 2008),
and it has been widely used during the last decades in
a variety of environmental processes including veg-
etation dynamic (Kogan, 2001), drought (Karnieli
et al., 2010; Rabin, Temimi, Stepinski, & Bothwell,
2014), forest fires (Vlassova, Pérez-Cabello, Mimbrero,
Llovería, & García-Martín, 2014), urban expansion
(Meng & Dou, 2016; Voogt & Oke, 2003) and climate
change (Hansen, Ruedy, Sato, & Lo, 2010; Kalma, McVi-
car, & McCabe, 2008; Weng, 2009; Zhang et al., 2008).

LST can be obtained by large wide infrared radio-
metric information from different sensors on board
of satellite platforms, some of them recording this
data from the early of the 1980s, being the LST from
the National Oceanic and Atmospheric Administration
Advanced Very High Resolution Radiometer data
(NOAA-AVHRR hereafter) the most widely used to
obtain long-term time series of the sea surface temp-
erature (SST, e.g. Reynolds, Rayner, Smith, Stokes, &
Wang, 2002). In continental areas, there are larger pro-
blems to retrieve LST given the diversity of land cover
types with different emissivity (Becker & Li, 1990; Qin,
Dall, Karni, & Berliner, 2001; Sobrino, Raissouni, & Li,
2001), land cover changes (Jin & Liang, 2006), etc.

In Spain, the majority of studies that analyzed sur-
face parameters, estimated from remote sensing data,
have focused on visible and near-infrared images to
retrieve indices of vegetation activity (e.g. Del Barrio,
Puigdefabregas, Sanjuan, Stellmes, & Ruiz, 2010; Hill,
Stellmes, Udelhoven, Röder, & Sommer, 2008).
Although several studies have focused on the develop-
ment of algorithms for an accurate estimation of the
LST from NOAA-AVHRR data (e.g. Coll, Caselles,
Sobrino, & Valor, 1994; Sobrino, Coll, & Caselles,
1991), or used LST to improve air temperature map-
ping (Vogt, Viau, & Paquet, 1997), there is not still a
study that explores the potential of the NOAA-
AVHRR thermal infrared data to obtain long-term

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Journal of Maps
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT Makki Khorchani makki.khorchani@gmail.com Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE–CSIC),
Zaragoza, Spain

JOURNAL OF MAPS
2018, VOL. 14, NO. 2, 465–475
https://doi.org/10.1080/17445647.2018.1500316

http://crossmark.crossref.org/dialog/?doi=10.1080/17445647.2018.1500316&domain=pdf
http://orcid.org/0000-0001-9379-7052
http://creativecommons.org/licenses/by/4.0/
mailto:makki.khorchani@gmail.com
http://www.tandfonline.com/loi/tjom20
http://www.tandfonline.com


LST climatology at high spatial resolution over the past
three decades.

The objective of this study is to use 34 years (July
1981–June 2015) of NOAA-AVHRR to (i) develop
the first long-term LST dataset for the Peninsular
Spain and (ii) infer robust annual and seasonal long-
term LST climatology at a high spatial resolution (i.e.
1.1 km) never showed before for the region.

2. Materials and methods

2.1. Protocol for processing development of a
historical NOAA-AVHRR LST dataset

AVHRR sensor collects information in two long-wave
thermal infrared bands at 10.3–11.3 μm and 11.5–12.5
μm. The two thermal bands on board of the NOAA-
AVHRR satellites show a spatial resolution of 1.1 km
at the nadir, collected at images of around 2700 km
wide. In the thermal infrared region, there is a direct
emission of energy, which is directly related to the
temperature of the surface (Becker & Li, 1990; Sobrino
et al., 1991). According to the Planck thermodynamic
law, the temperature of a body may be estimated
according to its radiation, by means of the simple
inversion of the Planck equation (e.g. Becker & Li,
1990; Snyder, Wan, Zhang, & Feng, 1998; Urban,
Eberle, Hüttich, Schmullius, & Herold, 2013).

Here, we have used the historical daily NOAA-
AVHRR dataset comprising 12,418 afternoon images
from July 1981 to June 2015 for the entire Peninsular
Spain. All the available daily images from 1981 to
1986 were acquired to the Dundee Satellite Reception
Center. Images from 1986 to 1997 were required to
the European Spatial Agency and rescued from the
original tapes. Finally, the images from 1997 were
obtained from the Advanced High Resolution Picture
Transmission (AHRPT/HRPT) antennae located at
the Centro de Recepción, Proceso, Archivo y Distribu-
ción de Imágenes de Observación de la Tierra (CRE-
PAD) that the Spanish National Institute of
Aerospace Technology (INTA) has in its Canaries
Space Centre (Maspalomas, Gran Canaria). Software
was designed and implemented in the IDL language
to read the different NOAA-AVHRR satellites and
convert all images to the same format. We used the
complete range of available AVHRR bands (1–5)
since in addition to the two thermal bands (4 and 5)
used to calculate the LST, we needed the information
from the visible, near-infrared and medium infrared
spectral regions with the purpose of calculating the sur-
face emissivity and obtaining robust cloud coverage
masks.

The first step was to apply a geometric correction to
the digital numbers (DN) of the NOAA-AVHRR
images. For this purpose, we used the algorithm devel-
oped by Baena-Calatrava (2002), which is based first on

the satellite parameters and second on geometric cor-
rections. The second geometric correction uses a set
of 97 Ground Control Points, which are based on
recognizing land patterns (Ho & Asem, 1986) and
are mostly located in coastal accident (e.g. capes), but
also in land areas (e.g. reservoirs). The images were
then re-projected to the European-ED50-UTM zone
30N over an area bounded between 34°22′N and 44°
12′N and 11°7′W and 4°16′E.

The second step was to calibrate the different satel-
lites (Price, 1991). Initially, we applied a linear correc-
tion to obtain the radiance recorded by the satellite (La)
from the DNs, using the coefficients embedded in the
images (G and I), for bands 4 and 5. These coefficients
are different for each line of the image.

La = G× DN+ I

The radiances were corrected non-linearly for the sat-
ellites N-7, N-9, N-11 and N-14:

L = ALa + BL2a + C

where A, B and C are coefficients that can be retrieved
from Walton, Sullivan, Rao, and Weinreb (1998) for
NOAA-7 to NOAA-14 satellites and in the NOAA
user guide for NOAA-16, NOAA-18 and NOAA-19
(http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/
klm/html/d/app-d2.htm; last accessed 1 February
2017).

Brightness temperatures (TB) were obtained from
radiances according to the Planck equation:

TB = c2v

ln 1+ c1v3

L

( )

where c1 = 1.1910659 × 10−5 mW sr−1 cm4, c2 = 1.438833
cm K. The values of v change for each satellite and they
can be found in the NOAA satellite specifications
(http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/
podug/html/c1/sec1-4.htm; last accessed 1 February
2017).

Once brightness temperatures were obtained, we
removed cloudy pixels. For this purpose, we used the
cloud detection algorithm developed by Azorin-Molina
et al. (2013) also implemented in the IDL software. To
avoid problems related to cloud shadows, we also
removed three pixels around the identified cloudy pix-
els. In addition, to avoid geometric and radiometric
problems related to the view angle of satellites, we
removed those pixels with observation angles higher
than 50°.

Red and near-infrared bands were calibrated using
revised calibration coefficients considering the orbit
degradation for each satellite (Rao & Chen, 1995,
1999; http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/
docs/intro.htm; last accessed 1 February 2017). Chan-
nel 1 and 2 radiances were transformed to top-of-
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the-atmosphere reflectances and cross-calibrated to the
NOAA-9 sensor to correct the different spectral
response of the sensors (Trishchenko, 2009; Trish-
chenko, Cihlar, & Li, 2002), and finally the reflectances
were topographically corrected by means of a non-
Lambertian model using a digital elevation model at
the resolution of 1.1 km (Riaño, Chuvieco, Salas, &
Aguado, 2003).

To obtain the LST, we applied a split-window algor-
ithm developed by Sobrino and Raissouni (2000) and
widely tested by the atmospheric conditions of the
Iberian Peninsula:

LST = T4 + c1(T4 − T5)+ c2(T4 + T5)
2 + c0 + (c3

+ c4W)(1− 1)+ (c5 + c6W)D1

whereW is the water vapor content in each pixel of the
image, according to the algorithm by Sobrino, Jimenez,
Raissouni, and Soria (2002), valid for the latitudes in
which the Iberian Peninsula is located:

W = 0.259− 14.253( cos u lnR)− 11.649( cos u lnR)2

R is obtained for the whole pixels available in the
image (free of clouds and lower than 50° of view angle).

R =
∑N

K=1 (T4,k − T4,0)(T5,k − T5,0)∑N
K=1 (T4,k − T4,0)

2

T4,k is the value of the pixel k in the band 4; T4,0 is
the average of all the available pixels in the band 4;
T5,k is the value of the pixel k in the band 5; T5,0 is
the average of all the pixels in the band 5. The emissiv-
ity ε and Δε are obtained according to the method
developed by Sobrino et al. (2008) using thresholds

of the Normalized Difference Vegetation Index
(NDVI) values from the red and near-infrared bands.
The coefficients c0 to c6 were obtained from Lahraoua,
Raissouni, Chahboun, Azyat, and Achhab (2012). For
inland water bodies and given they are relatively
small in Spain, we did not apply a different algorithm
for them. We considered that the same algorithm
used to estimate the LST is valid for water areas chan-
ging the value of emissivity corresponding to the water.
This was addressed in the emissivity methodology
(Sobrino et al., 2008) used in this study.

LST may vary as a function of the viewing angle
(Wan & Dozier, 1996), but also as a function of the
time at which the images are taken, given the different
sun angles and radiation received by the surface (Price,
1991). Julien and Sobrino (2012) illustrated this pro-
blem and demonstrated that orbit drift is an important
source of noise in LST time series. The difficulties of
developing a physical approach to correct these
effects motivated the use of a statistical approach, simi-
lar to that followed by Julien and Sobrino (2012) to
remove from each daily LST image the effects of the
different solar zenith and observation angles. Given
the strong seasonality found in solar effects, we split
the available daily time series in semimonthly series
(all the images between 1st January and 15th January,
between 16th January and 31st January and so on).
This selection produced 24 series of LST for the period
1981–2015. For each series and pixel, we removed the
effect of the zenith and observation angles by means
of a multiple regression model:

LST = a+ b∗az + c∗ao

where a, b and c are the regression coefficients and az
and a0 are the solar zenith and observation angles,
respectively. Using the coefficients obtained, we calcu-
lated the free-effect LST (LST_c) removing the
obtained residuals (observed minus predicted LST by
the model) according to:

LST c = m+ (LST–(a+ az∗b+ ao∗c))

where m is the average LST in the semimonthly time
series.

Daily images were composited in semimonthly
periods (two per month, from the 1st day of the
month to the 15th, and from 16th to the end of the
month) using the maximum temperature recorded in
the period. The use of maximum LST values instead
of the mean of the semimonthly periods was made to
ensure the minimum effect of any remaining cloud
coverage on our data. Moreover, as a function of the
dates in which data is available the mean values may
produce strong spatial contrasts mostly driven by
data availability. On the other hand, and as rec-
ommended by NDVI, maximum instead mean values

Figure 1. Diagram of the protocol adopted to derive LST data
from NOAA-AVHRR images between 1981 and 2015.
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Figure 2. Spatial variability of the average monthly LST during 2010.

Figure 3. Network of meteorological stations by altitudinal intervals.
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also produce much better results in terms of spatial and
temporal homogeneity of the resulting LST.

The large number of images affected by clouds, large
observation angles and geometric distortions caused
several gaps in the data series. To fill these gaps we
used a regression model considering the LST values
of the series of the pre- and post-semimonthly periods
as predictors. The procedure was applied iteratively to
complete all the gaps existing in the images and to
make sure all consecutive periods with no data are cor-
rectly filled. The series of each pixel were temporally
filtered to reduce residual noise by means of the algor-
ithm developed by Quarmby, Milnes, Hindle, and Sil-
leos (1993), which filters low LST values since high

LST values are less affected by atmospheric contami-
nation and residual noise.

LST = Max{LST(n), (LST(n−1) + LST(n+1))/2}

Finally, the semimonthly images were used to create
monthly, seasonal (defined as winter (DJF), spring
(MAM), summer (JJA), autumn (SON)) and annual
series, using the average values for each period. Figure
1 shows a summarizing schema of the main steps of the
LST dataset development and Figure 2 shows an
example of the monthly images from January to
December 2010 as an example.

Figure 4. Evolution of the Willmott’s D (blue) and the MAE (red) from the Jackknife validation approach.

Figure 5. Spatial variability of the average monthly Tmax during 2010.
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2.2. Spatial modeling of air temperature

2.2.1. Air temperature data
To deepen the knowledge of the relationship between
the spatial variability of the LST retrieved from
NOAA-AVHRR images and air temperature, we have
used the available information on air temperature in
Spain. There are different gridded layers of air temp-
erature in Spain (e.g. Gonzalez-hidalgo, Peña-angulo,
& Cortesi, 2015; Herrera, Fernández, & Gutiérrez,
2016). Nevertheless, these datasets show low spatial
resolutions to be compared with the high spatial resol-
ution (1.1 km) of the LST dataset created in this study.
For this reason, we have developed a new monthly
gridded dataset for the period 1981–2015 to match
with the spatial resolution of the LST images. We
have focused on maximum air temperatures (Tmax)
since they are more comparable to the LST.

To generate a gridded dataset for air temperature,
we have used the most complete, quality controlled
and homogenized dataset available for Spain, based
on the Monthly Temperature Data for Spain (MOTE-
DAS) dataset (Gonzalez-hidalgo et al., 2015). This
dataset contains more than 1300 stations over Spain.
The dataset was updated to 2015 using the raw time
series of air temperature from the Spanish National

Meteorological Agency (AEMET), and the few existing
gaps filled by means of the use of reference series, fol-
lowing the same approach used by Gonzalez-hidalgo
et al. (2015) to generate the MOTEDAS dataset. A
total number of 1348 meteorological stations, which
cover the entire study domain, were used to generate
the gridded layers (Figure 3).

2.2.2. Regression-based approach
To generate the gridded layers at the spatial resolution
of 1.1 km, we applied a regression-based approach
(Ninyerola, Pons, & Roure, 2000). For this purpose,
we used different geographic and topographic variables
that affect the spatial distribution of air temperatures
(i.e. elevation, distance to the sea, latitude and longi-
tude) that were incorporated as independent layers in
the generation of global regression models in which
the dependent variable was Tmax. Correlation between
variables (collinearity) can complicate the interpolation
of the results. To prevent this problem, a forward step-
wise procedure, with ‘probability to enter’ set to .05,
was used to select only significant variables (Hair,
Anderson, Tatham, & Black, 1998).

Air temperature predictions by the linear regression
models are inexact since usually there is a difference

Figure 6. Spatial distribution of annual and seasonal average maximum air temperature.

470 M. KHORCHANI ET AL.



between the observed and predicted air temperature
values in the location of the points of observation.
For this reason, we applied a local interpolation of
the residual values (observed minus predicted) to
obtain exact values in the points of measurement by
means of the difference between the regression results
and the interpolated residuals. For this purpose, a kri-
ging algorithm was used considering independent
spherical semivariograms for each month.

2.2.3. Validation of the predictions
To determine the quality of the Tmax predictions, the
grid layers were validated by a Jackknife resampling
procedure (Phillips, Dolph, & Marks, 1992). This
approach is based on withholding, in turn, one station
out of the network, estimating regression coefficients
from the remaining observatories, locally interpolating
the residuals and calculating the difference between the
predicted and observed value for each withheld

observatory. We calculated two validation statistics
by means of the comparison between the observed
and predicted values of each monthly layer: the mean
absolute error (MAE) and the agreement index (D)
(Willmott, 1981), which are relative and bounded
measures of model validity.

Figure 4 shows the temporal evolution of D (blue)
and MAE (red) in the different monthly gridded data
created. These results indicate the good quality of pre-
dictions since D values are always higher than 0.9 and
they are close to 0.95 most of the months, which indi-
cates a high agreement between observations and pre-
dictions. The MAE oscillates around 1°C, being the
errors a bit higher for winter than for summer months.
Figure 5 presents an example of the obtained grids cor-
responding to the average monthly maps of Tmax over
the Peninsular Spain during 2010 in which there is cer-
tain spatial and seasonal agreement of the maps to the
obtained results for the LST during the same year.

Figure 7. Relationship between the average LST and the maximum air temperature at seasonal and annual scales. The colors rep-
resent the density of points.
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2.3. Normalized Difference Vegetation Index

To study the interaction between the spatial variabil-
ity of the LST and the vegetation coverage, we have
used the NDVI dataset at the same spatial resolution
of 1.1 km. The NDVI dataset has recently been devel-
oped by Martin-Hernandez et al. (2017) using the
same NOAA-AVHRR dataset processed in this
study therefore covering the same spatial and tem-
poral coverage.

3. Results

The Main Map shows the spatial distribution of the
average annual and seasonal LST in the Peninsular
Spain for 1981–2015 showing marked spatial and sea-
sonal differences. Summer is the season that recorded
the highest values, in some areas of the South and
Southwest higher than 55°C. Also in areas of the
Northeast, in the semiarid regions of the Ebro river

basin, LST greater than 50°C have been recorded in
summer. In spring and autumn, the spatial distribution
of the LST is highly controlled by the relief disposition,
with low LST recorded in the different topographic
chains (the Pyrenees, Central system, etc.). In winter,
dominated a North–South gradient, with the lowest
temperatures recorded in the northern chains (the Pyr-
enees, Cantabrian mountains), and also in the northern
plateau of the Iberian Peninsula.Annual distribution of
LST shows a mixture of these seasonal patterns. There
is a high topographic control, but also clear latitudinal
gradient, which is modulated by the spatial distribution
of the vegetation coverage.

The observed spatial distribution of LST is
strongly related to the spatial distribution of the aver-
age Tmax at seasonal and annual scales (Figures 6
and 7). The spatial distribution of the average annual
Tmax also shows higher values in the southwestern
and southeastern parts of Spain. The Guadalquivir
valley shows the highest average values and the

Figure 8. Relationship between the average LST and the NDVI at seasonal and annual scales. The colors represent the density of
points.
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lowest values are recorded in the North, correspond-
ing to the Pyrenees and the Cantabrian range. The
maps show strong seasonality in the air temperature,
but independently of the season of the year, the
spatial patterns are very close to that observed for
the average LST.

Nevertheless, there is also a close relationship with
the spatial distribution of the vegetation activity, rep-
resented by the NDVI. The average LST shows a nega-
tive and strong correlation with the average NDVI
(Figure 8), indicating that areas that show higher veg-
etation activity/coverage tend to show a lower LST
than areas showing nude soils or low vegetation cover-
age. Thus, at the annual scale, the correlation is strong
among these two variables (r =−0.68).

4. Conclusion

This study develops a long-term database (1981–2015)
of LST at a high spatial resolution (1.1 km2) from the
set of NOAA-AVHRR images available in the Peninsu-
lar Spain, which were obtained after processing the
thermal infrared bands (4 and 5) using a split-window
algorithm. This dataset has improved the spatial resol-
ution of previous available datasets for Spain, i.e. the
Pathfinder 64 km2 – (Julien, Sobrino, & Verhoef,
2006; Ouaidrari, Goward, Czajkowski, Sobrino, & Ver-
mote, 2002) and the Land Long Term Data Record
(LTDR) 16 km2 (Sobrino & Julien, 2016).

The study analyzed for the first time the spatial pat-
terns of the long-term high spatial resolution (1.1 km2)
LST for the Peninsular Spain. The LST climatology
shows more spatial details and contrasts than the avail-
able air surface temperature climatology for Spain (e.g.
http://www.opengis.uab.es/wms/iberia/mms/index.
htm) since it allows to identify features related to the
terrain conditions (e.g. vegetation coverage and type)
and to cover areas in which the availability of meteor-
ological stations is low.

There are important spatial and seasonal differences
of the LST across Spain. Nevertheless, strong agree-
ment between the spatial distribution of the average
LST and the average Tmax has been found. In addition,
we have also showed that other factors may also con-
tribute to explain the spatial distribution of the LST.
The principal of these factors is the spatial distribution
of the vegetation coverage, being mainly evident during
the summer season, in which the contrasts between the
areas covered by vegetation and areas of nude soil are
clearer in terms of radiative fluxes (Kustas & Anderson,
2009). Thus, in the summer season, there is a negative
and linear relationship between the spatial distribution
of the LST and the NDVI, which is also identified at the
annual scale. The strong relationship between the aver-
age distribution of the LST and the NDVI has impli-
cations to understand current soil moisture
differences, which can be determined by means of

conceptual models based on the combination between
LST and NDVI (Sandholt, Rasmussen, & Andersen,
2002).

The gridded seasonal and annual climatology layers
of LST and air temperature for continental Spain are
available in Ascii ESRI format at the Institutional
Repository of the Spanish National Research Council
(http://hdl.handle.net/10261/164053).

Software

Interactive Data Language (IDL) software was devel-
oped to process the daily NOAA-AVHRR images. R
3.3.2 was used to develop the seasonal and annual data-
set of LST. MiraMon 6.4 and Idrisi Taiga were used to
model mean air temperature. ArcGis 10.2 was used to
generate the final maps.
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