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Abstract—Object detection is a computer vision field that has
applications in several contexts ranging from biomedicine and
agriculture to security. In the last years, several deep learn-
ing techniques have greatly improved object detection models.
Among those techniques, we can highlight the YOLO approach,
that allows the construction of accurate models that can be em-
ployed in real-time applications. However, as most deep learning
techniques, YOLO has a steep learning curve and creating models
using this approach might be challenging for non-expert users.
In this work, we tackle this problem by constructing a suite of
Jupyter notebooks that democratizes the construction of object
detection models using YOLO. The suitability of our approach
has been proven with a dataset of stomata images where we have
achieved a mAP of 90.91%.

Index Terms—Object Detection, YOLO, Jupyter Notebooks.

I. INTRODUCTION

Object detection is a computer vision area that focuses

on identifying the position of multiple objects in an image.

Traditionally, object detection methods have been based on

two main techniques known as sliding windows and image

pyramids; and, they have been successfully applied to solve

problems such as face detection [1] or pedestrian detection [2].

However, those approaches are slow, lack the notion of aspect

ratio and are error prone [3]. These problems have been

recently overcome using deep learning techniques.

Deep learning has impacted almost every area of computer

vision, and object detection is no exception. Intuitively, in

deep learning-based object detectors, we input an image to

a network and obtain, as output, the bounding boxes (that is,

the minimum rectangle containing the objects) and the class

labels. Deep learning-based object detectors can be split into

two groups: one-stage and two-stage object detectors. The

former divide the image into regions, that are passed into

a convolutional neural network, and then the prediction is

obtained — these detectors include techniques such as SSD [4]

or YOLO [5]. The two-stage object detectors employ region

proposal methods to obtain interesting regions in the image,

that are later processed to obtain the prediction — these

methods include the R-CNN family of object detectors [6]–[8].

*This work was partially supported by Ministerio de Economı́a y Competi-
tividad [MTM2017-88804-P]. We also gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Titan Xp GPU used for this
research.

Usually, one-stage object detectors are faster but less precise

than two-stage object detectors; however, the one-stage object

detector YOLO has recently achieved a similar accuracy to the

one obtained by two-stage object detectors, but keeping fast

processing [5]. Due to this fact, the YOLO object detector has

been applied in problems that require real time processing

but also need a high accuracy, like real time detection of

lung modules [9] or the detection of small objects in satellite

imagery [10].

The YOLO object detector is provided as part of the Darknet

framework [11]; but, as almost every deep learning tool, it has

a steep learning curve and adapting it to work in a particular

problem might be a challenge for several users — apart from

understanding the underlying algorithm of YOLO (a step that

might not be necessary to create an object detection model

with YOLO), using YOLO might be a challenge since it

requires, among others, the installation of several libraries, the

modification of several files and the usage of a concrete file

structure. Therefore, even if this technique might be helpful

for several fields (ranging from biomedicine and agriculture to

security), users from those fields are not able to take advantage

of it. To solve this problem, we have developed an assistant,

in the form of a suite of Jupyter notebooks, that guides non-

expert users through all the steps that are necessary in an object

detection project using YOLO.

As we explain in Section II, there are several steps that

are required to create a deep learning-based object detector;

but, thanks to our assistant, see Section III, they are reduced

to fixing a few parameters, and the rest of the process is

conducted automatically by our tool. To prove the suitability

of our approach, we have employed the assistant to create an

stomata detector for plant images, see Section IV. The paper

ends with some conclusions and further work.

II. A PIPELINE TO CREATE DEEP LEARNING-BASED

OBJECT DETECTORS

In this section, we present the common workflow to create

a deep learning-based object detector (see Figure 1), the

challenges that are faced on each stage of the pipeline, the

solutions that we propose to deal with those challenges, and

the particularities of using the YOLO network in each stage.
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Fig. 1. Workflow of object detection projects

1. Dataset acquisition

Independently of the framework employed to create an

object detection model, the first step to construct an object

detection model is always the acquisition of a dataset of

images containing the objects that we want to detect. This task

is far from trivial since the dataset must be representative of

what the model will find when deployed in the real world; and,

therefore, its creation must be carefully undertaken. Moreover,

acquiring data in problems related to, for instance, biomedical

images might be difficult [12], [13].

There are several ways of obtaining a dataset of images

depending on the project, but we can identify four main

sources:

• Open datasets. There are several projects that have col-

lected a huge amount of images, such as ImageNet [14]

or Pascal VOC [15]; however, those datasets might not

contain the objects that the user is interested in detecting.

• Web scraping. It is quite straightforward to create a

program that uses image search engines, such as Google

images or Bing images, to download images with a

Creative Commons License from the web — this al-

lows us to legally employ those images to create object

detectors. Even if this approach can be a fast way of

downloading images, it might require data curation to

obtain a representative dataset for the intended task.

• Special purpose datasets. This approach might be the

only option in problems with sensitive data, like in

biomedicine, where an external agent (for instant, a

hospital) provides the images. The main drawbacks for

this approach are the limited number of images, the

difficulties to acquire new data, and restrictions related

to access and use of the images.

• Special purpose devices to capture images. In this case,

the images are acquired by using devices that might

range from a microscope to a fixed camera in a working

environment. This approach has the advantage of dealing

with images that are representative of the environment

where the model will be later used; and, additionally,

it is usually easy to obtain new images. However, the

models created with those images might not be useful if

the conditions change. For instance, if a model is created

using images acquired with a microscope using a set of

fixed conditions, the model might not work as expected

if applied to images acquired with a different microscope

or under different conditions.

As we have previously mentioned, this step is independent

of the tool that is employed to create the object detection

model. The only restriction from the YOLO side is that the

images must be stored using the JPG format.

2. Dataset annotation

Once the images have been acquired, they must be anno-

tated, a task that is time-consuming and might require experts

in the field to conduct it properly [16]. In the object detection

context, images are annotated by providing a file with the list

of bounding boxes and the category of the objects inside those

boxes. Those annotation files are not written manually, but they

are built using graphical tools like LabelImg [17] or YOLO

mark [18]. Unfortunately, there is not a standard annotation

format and, in fact, the format varies among object detection

frameworks, and also among the annotation tools. Therefore,

this must be taken into account when annotating a dataset of

images; otherwise, a conversion step will be necessary after

the annotation process is completed.

In the case of YOLO, the annotations are provided as plain

text files where each bounding box is given by the position

of its center, its width and height. It is convenient to use a

tool that produces the annotations directly in this format, like

YOLO mark [18], but there are also converters from other

formats; for instance, from Pascal VOC or Kitti [19].

3. Dataset augmentation

As we have previously mentioned, acquiring and annotating

datasets of images for object detection problems might be a

challenge; this might lead to generalization problems if enough

images are not acquired. A successful method that has been

applied to deal with the issue of limited amount of data is

data augmentation [20]. This technique consists in generating
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new training samples from the original dataset by applying

image transformations (for instance, applying flips, rotations,

filters or adding noise). This approach has been applied in

image classification problems, and there are several libraries

implementing this method (for instance, Augmentor [21] or

Imgaug [22]).

The application of data augmentation is not straightforward

in the case of object detection due to the fact that, on

the contrary to data augmentation in image classification,

transformation techniques alter the annotation in the context

of object detection. For instance, applying the vertical flip

operation to a cat image produces a new cat image — i.e.

the class of the image remains unchanged — but the position

of the cat in the new image has changed from the original

image. Therefore, we have to transform not only the image

but also the annotation.

In order to apply data augmentation in object detection, the

usual approach has consisted in implementing special purpose

methods, depending on the particular problem, or manually

annotating artificially generated images. Neither of these two

solutions is feasible when dealing with hundreds or thousands

of images. To deal with this issue, we can employ the CLoDSA

library [23], a tool that can be applied to automatically aug-

ment a dataset of images devoted to classification, localization,

detection or semantic segmentation using a great variety of the

classical image augmentation transformations. Using this tool,

it is possible to automatically generate a considerable amount

of images, together with their annotations, starting from a

small dataset of annotated images. CLoDSA is compatible

with the YOLO format.

4. Dataset split

As in any other kind of machine learning project, it is

instrumental to split the dataset obtained in the previous steps

into two independent sets: a training set — that will be

employed to train the object detector — and a test set — that

will be employed to evaluate the model. Common split sizes

for training and testing set include 66.6%/33.3%, 75%/25%,

and 90%/10%, respectively.

In the case of YOLO, the dataset split is achieved by

using a particular folder structure to store the images and

the labels that will be employed for training and testing, and

providing two files that indicate, respectively, the set of images

that will be employed for training and testing. It is worth

mentioning that the YOLO framework is really sensitive to

such a structure, and small changes will prevent the user from

training the model.

5. Training the model

Given the training set of images, several tasks remain before

starting the process to train an object-detection model. In

particular, it is necessary to define the architecture of the

model (that is, the number and kind of layers), fix some hyper-

parameters (for example, the batch size, the number of epochs,

or the momentum) and decide whether the training process

starts from scratch or some pre-trained weights are employed

— the latter option, known as fine-tuning, usually improves

the training process [24].

The YOLO framework supplies several pre-defined models

for training an object detector — the best model, both in

terms of accuracy and time efficiency, is the YOLO model

v3. The architecture and the hyper-parameters of those models

are defined in a configuration file; and, even if the by-default

YOLO hyper-parameters usually work properly for training

a new model, it is necessary to modify the configuration

files since the model architecture must be adapted depending

on the number of classes included in the dataset. Once the

configuration files have been adapted, the training process

can start just by executing a command. The process will end

either after the provided number of epochs is reached or when

the user decides to manually stop the process. In order to

train a YOLO model, it is recommended to use some pre-

trained weights that must be downloaded and included in the

project [5].

6. Evaluating the model

After training the model, we need to evaluate it to assess

its performance. Namely, for each of the images in the testing

set, we present it to the model and ask it to detect the objects

in the image. Those detections are compared to the ground-

truth provided by the annotations of the testing set, and the

result of the comparison is evaluated using metrics such as the

IoU, the mAP, the precision, the recall or the F1-score [15].

The YOLO framework can perform such an evaluation auto-

matically provided that several configuration files are correctly

defined, and the correct instruction is invoked.

A problem that might arise during the evaluation is the

overfitting of the object detection model; that is, the model

can detect objects on images from the training dataset, but it

cannot detect objects on any others images. In order to avoid

this problem, early stopping [25] can be applied by comparing

the results obtained by the models after different numbers of

epochs. In the case of YOLO models, early stopping can be

applied since the framework saves the state of the model every

time that a certain number of training iterations is reached.

7. Deploying the model

Finally, the model is ready to be employed in images that

neither belong to the training set nor to the testing set. Even

if using the model with new images is usually as simple as

invoking a command with the path of the image (and, probably,

some additional parameters), it is worth mentioning that it

is unlikely that the person who created the object detection

model is also the final user of such a model. Therefore, it is

important to create simple and intuitive interfaces that might

be employed by different kinds of users; otherwise, they will

not be able to take advantage of the object detection model.

III. A SUITE OF JUPYTER NOTEBOOKS

As we have explained in the previous section, training and

using a YOLO model involves the creation and modification

of several configuration files, the use of a concrete folder
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structure, and the execution of several commands; hence, the

process is time-consuming and error prone. In this section,

we introduce a simple-to-use tool that facilitates the creation

of YOLO-based object detectors using Jupyter notebooks —

the suite of notebooks can be downloaded from https://github.

com/ancasag/YOLONotebooks.

Jupyter notebooks [26] are documents for publishing code,

results and explanations in a form that is both readable and ex-

ecutable. Jupyter notebooks have been widely adopted across

multiple disciplines, both for its usefulness in keeping a record

of data analyses, and also for allowing reproducibility. In

addition, Jupyter notebooks are a useful tool to teach and learn

concepts from data science and artificial intelligence [27], [28].

In our case, we have developed a suite of notebooks that guides

the user in the process to create a YOLO-based object detector.

The only requirement to run the notebooks is the installation

of the programming language Python and its Jupyter library.

The suite of notebooks is open-source and contains several

notebooks that introduce several traditional object detection

notions, explain how to install the YOLO framework, and

provide several examples showing how to use it (for instance,

showing how the pre-trained models included in the frame-

work might be used to detect objects in images and videos).

However, the most important notebook of the suite is the one

that automates the process of creating a new object detection

model. Using this notebook, the user only has to (1) create a

folder containing the images and the annotations in the YOLO

format, and (2) fix 4 parameters in the notebook (the name

of the project, the path to the folder containing the images

and annotations, the list of classes, and the percentage of the

images that will be employed for training); the rest of the

process is carried out by simply following the steps included

in the notebook. In particular, the notebook is in charge of:

• Validating that the images of the dataset are given in the

correct format.

• Checking that all the images of the dataset have their

corresponding annotation.

• Guiding the user in the process to augment the dataset of

images using the CLoDSA library.

• Splitting the dataset into a training set and testing set, and

organizing those sets in the way required by the YOLO

framework.

• Creating all the configuration files for training, evaluating

and deploying the model using the last version of the

YOLO network.

• Generating all the instructions that are required to train,

test and deploy the YOLO model.

• Providing a simple way of invoking the generated YOLO

model to detect objects in new images.

Without our tool, all those steps should be carried out

manually; hence, the burden of creating a YOLO-based object

detector is significantly reduced. The aforementioned function-

ality has been implemented in Python using several third-party

libraries such as Scikit-learn [29] and OpenCV [30].

IV. CASE STUDY: STOMATA DETECTION

In this section, we show the feasibility of using our tool

by creating a stomata detector in images of plant leaves. A

stoma is a tiny opening, or pore, that is used for gas exchange

in plants. The amount and behavior of stomata provide key

information about water stress levels, production ratio, and,

in general, the overall health of the plant [31]. Hence, by

measuring the number of stomata, it is possible to manage

better the resources in agriculture and obtain better yields [32].

However, manually counting the number of stomata is a time-

consuming and subjective task due to the considerable amount

of stomata in an image, their small size, and the fact that it is

necessary to analyze batches of dozens of images. Therefore,

it is useful to automatically detect and count the number of

stomata in plant images.

Several studies can be found on automatic detection of

stomata, but they employ traditional features like Haar [33],

MSER [34] or HOG [35] combined with a cascade classifier,

and neither the implementation of those techniques nor the

datasets of those studies are available, making unfeasible the

reproducibility of their results or the use of their models with

new images. On the contrary, using the suite of notebooks

presented in the previous section, and a dataset of images

provided by the University of Missouri, we have built a freely

available YOLO-based stomata detector for images of plant

leaves.

The dataset employed to construct our model consists of 468

microscope images of the leaf epidermises of different plant

types (including cotton, peanut and maize plants), and those

images contain a total amount of 1652 stomata — the dataset

is available from the authors on request. The images were

annotated by expert biologists using the LabelImg program,

that produces annotations in the Pascal VOC format; hence,

it was necessary to transform those annotation to the YOLO

format using a Python script. After storing the images and

labels in the same folder, and fixing the 4 parameters explained

in the previous section, the following process was conducted

guided by the notebook.

First of all, to improve the generalization of the model,

the CLoDSA library was employed to augment the dataset of

images by employing techniques like flips, rotations, filters and

adding noise. The final dataset was formed by a total of 4212

images, enough for training an object detector. Subsequently,

the dataset was split into two sets, using 90% of the dataset for

training, and 10% for testing — those sets were automatically

split, organized in the corresponding folders, and, additionally,

all the configuration files were automatically generated. After

training the model for 250000 epochs, we stopped the process

and evaluated the model using the testing set. The results

achieved by the model were a mAP of 90.91%, a precision of

98% and a F1-score of 99%.

This process can be easily reproduced using the notebook

available in the project webpage, and the obtained model can

be invoked to detect stomata in images that do not belong

neither to the training nor the testing set, see Figure 2. The

https://github.com/ancasag/YOLONotebooks
https://github.com/ancasag/YOLONotebooks
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Fig. 2. Stomata identification results

model was trained using a Titan Xp GPU, but it can be

employed for detecting stomata in any computer that has

Python and C++ installed on it.

V. CONCLUSIONS AND FURTHER WORK

Democratizing Artificial Intelligence is a movement that

has been born with the goal of making artificial intelligence

accessible to non-expert users from different fields [36], [37].

The work presented in this paper can be framed in that context;

in particular, after carefully analyzing all the steps that are

required to construct an object detector using deep learning

techniques, we have presented a suite of Jupyter notebooks

that allows non-expert users to easily create fast and accurate

object-detection models using the YOLO approach — one of

the most effective methods for object detection. The suitability

of our approach has been tested by developing a model for

stomata detection in plant images that achieves a mAP of

90.91%.

In addition to the benefit of simplifying the creation of ob-

ject detection models, the suite of Jupyter notebooks has value

as a teaching material since we have included explanations,

both textual and graphical, of all the steps involved in the

creation of an object detector; and, hence, they can be useful

for Artificial Intelligence and Computer Vision courses.

The main drawback of our suite of plugins is that users need

a GPU installed, and properly configured, in their computer,

since training deep learning models usually requires the use

of a GPU. Therefore, as further work, we plan to integrate

our tool in a cloud service like Amazon or Google Cloud to

provide a cheap and fast way of constructing object detection

models. Moreover, we intend to extend the suite of plugins

with other deep learning techniques for object detection, such

as SSD or faster R-CNN; and also for other computer vision

problems like image classification or semantic segmentation.
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