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0is paper presents a feedback control solution that achieves robust stability and disturbance rejection in systems with multiple
manipulated inputs and a single measurable output. 0e uncertain plant models may exhibit either nonminimum phase, or delay,
or unstable phenomena, which makes it not easy to take full advantage of the frequency response of each plant. In the framework
of quantitative feedback theory (QFT), a methodology is proposed to decide the best control bandwidth distribution among inputs
and to design the set of parallel controllers with as small as possible gain at each frequency. 0e temperature regulation in a
continuous stirred-tank reactor (CSTR) illustrates the benefits of a quantitative frequency distribution of the dynamic con-
trollability between the jacket flow and the feed flow. 0e main challenge is that the feed flow exhibits a higher temperature
regulation capacity and also produces a temporary decrease in the reactor temperature (nonminimum phase behaviour).

1. Introduction

0e collaboration of multiple inputs at a time to regulate a
single measurable output (MISO control) is often considered
in process control to increase control authority, perfor-
mance, or flexibility. How to use the additional degrees of
freedom has led to different designations, structures, and
designmethods in the scientific literature. On the basis of the
inputs differing significantly in their dynamic effect on the
output and the relative cost of manipulating each one, valve
position control [1] and habituating control [2] pursue the
participation of each input along different frequency bands.
0us, a chained intervention of gradually slower loops takes
place whenever the output is deviated from its set point.0is
also makes the slowest inputs reset the fastest inputs (input
resetting control [3]) to convenient set points (midranging
control [4]), which prevents the saturation of actuators and
may report economical benefits in different ways. For ex-
ample, since the cheapest input manages the stationary
[2, 5], or since the midrange set points condition a more
profitable equilibria of the whole set of manipulated inputs
[6, 7]. A serial arrangement of feedback controllers [2, 8]

offers a more transparent design methodology in accordance
with the previous objectives. Alternatively, a parallel ar-
rangement (Figure 1) is more general and flexible [2]. In fact,
it provides the ability of several inputs collaborating along
the same frequency band [9], and eventually, the control
bandwidth distribution among the inputs as desired [10]. It
is also common to separate a master centralised controller
from the parallel structure of branch elements [11] (slaves),
as in load-sharing applications [12]. 0is paves the way to
much more complex distribution structures [13] and specific
algorithms among which the model predictive control and
optimization techniques are frequent [2, 4, 9]. In general, it
can be regarded as a hierarchical structure where the high-
level linear controller faces the single output regulation by
yielding a single virtual control input. 0en, a low-level
control allocation algorithm coordinates the different ma-
nipulated inputs such that they together produce the desired
virtual control effort, if possible [14]. Nonlinear approaches
to control allocation are common in flight control, marine
applications, automotive, and other industries where
mechatronics prevails [15, 16]. Optimization-based alloca-
tion methods are referred in [17]. 0e relevance of different
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multi-input control approaches is supported by recent ap-
plications in several fields such as process control [7, 18, 19],
medical systems [20–22], robotics [23–25], unmanned aerial
vehicles [26, 27], automotive industry [28], and electrical
power systems [29].

Nonminimum phase (NMP) behaviours (or delays) are
frequent in MISO process control. 0e design methods in
[1, 2, 30] pay special attention to them inside serial ar-
rangements of controllers. 0ose strategies make the inputs
collaborate over different bands of frequency, such that the
NMP input handles the low-frequency band and does not
limit the achievable performance. However, as long as the
inputs cannot collaborate along the same frequencies, a
control effort reduction is not possible by using redundant
control inputs. On the other hand, authors in [9, 11]
present methods for some kind of parallel structure, which
allows a potential collaboration of inputs over the same
frequencies. Alvarez-Ramirez et al. [9] illustrate how less-
expensive control effort can be obtained with the addition
of redundant control inputs, but such a cost saving is
obtained at the expense of a sluggish closed-loop response
if any additional control input is of the NMP nature. 0us,
the drawback of the method is that the inputs are forced to
collaborate along the same frequency band. Schroeck et al.
[11] propose a master-slaves structure and develop a PQ
method for control design. Firstly, the slaves are designed
bearing in mind the following issues: (a) they condition the
zeros of the equivalent slaves-plants avoiding that they are
located in the right half-plane (RHP) and may limit the
achievable closed-loop performance; (b) they determine
the relative magnitude contribution to the output (a sep-
arated contribution of the inputs along the frequency band
is pursued); (c) the relative phase contribution may be
critical if they are out of phase when their magnitude
contribution is nearly the same (destructive interference).
Secondly, the master achieves the desired performance and
stability. 0e PQ method has been proved in a hard disk
drive application [11] and in a turbocharged engine control
[31]. Some drawbacks of the method are the inputs
eventually collaborate in different frequencies, the slaves
are designed open loop with no reference to the closed-loop
specifications, which can negatively interfere with the

master task, and the control structure and the design
method are complex when the number of inputs grows.
Finally, any specific method in the scientific literature has
dealt with the potential collaboration of unstable systems to
the best of the author’s knowledge.

0e frequency domain appears to be the most mean-
ingful approach to determine the best input participation,
under the assumption that the system can be approximated
by linear models. And, the parallel structure in Figure 1 is
being used to freely distribute the frequency band. A proper
scaling of all ui input ranges allows fairer comparisons as it
considers saturation constraints. 0en, the frequency re-
sponse (y/ui), i.e., pi(jω), reveals the relative “capacity” of
each input; pi plant models can include uncertainty, for
example, corresponding to unmodelled dynamics or small-
signal linear approximations of nonlinearities. 0e capacity
of each pi(jω) plant is in reference to the closed-loop
bandwidth (required performance). Inside the framework of
quantitative feedback theory (QFT), the bounds express, at
discrete frequencies, the set of closed-loop specifications in
terms of the nominal open-loop transfer function, which
initially matches the nominal plant [32, 33]. In this way,
special bounds [10] depict in a transparent and quantitative
way the capacity of each plant of the MISO system to achieve
the specifications. A comparison of those bounds helped to
distribute the control bandwidth among loops in order to get
the set of controllers of minimum gain at each frequency
[10]. Several inputs could either collaborate at a certain
frequency to reduce the individual control effort or be
inhibited to avoid useless fatigue and saturation risk of
actuators. However, only magnitude contributions of plants
(inputs) were taken into account, which only works well for
minimum-phase (MP) plants. 0is paper develops a method
that takes into account the relative phase of the branches
under the potential presence of RHP dynamics (zeros or
poles) or delays. If branches were out of phase, they would
fight each other and the total output magnitude would drop
considerably .

0e paper is organised as follows: Section 2 formulates
the feedback control problem to be solved inside a QFT
framework. 0en, it puts forward the challenges to decide
the best control bandwidth distribution when output/input
relations are not in the minimum phase; in particular, the
unstable case is analysed by an example. Finally, the section
summarises the methodology to find the set controllers of
smallest gain at each frequency. Section 3 applies it for the
dual-input control of a continuous stirred-tank reactor
(CSTR), where a convenient distribution of feedback im-
proves the system controllability despite the nonminimum
phase behaviour of one manipulated input. Conclusions are
in Section 4.

2. MISO Control to Reduce the
Feedback Demand

2.1. Statement of the Robust Regulation Problem. Figure 1
depicts an architecture of n parallel feedback controllers
ci�1,...,n(s). Each plant pi(s) models the dynamic response
from the manipulated input ui to the single controlled
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Figure 1: Parallel control structure for MISO systems.
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output y. 0e plant pd(s) determines how a nonmeasurable
disturbance d deviates the output y from its set point r. Each
actuator contribution in the steady state can be conveniently
selected by set points rui

for n − 1 manipulated inputs at
most. At least a plant (i.e., p1) will work in the low-frequency
band, and ui�1 will compensate any output deviation in
steady state. External input v represents the high-frequency
noise associated with the single sensor that measures the
output y.

Uncertainty of plant models is being explicitly consid-
ered in the collaborative control design. 0us, let us take a
1 × (n + 1) vector of plant transfer functions
P � [pi�1,...,n, pd], which can be any element of

P � P s, qj  : qj ∈ Q , (1)

where qj is a vector with them uncertain parameters of plant
models and Q is the set in Rm that is defined by all its
possible values.

0en, if a certain performance model is desired for d
disturbance rejection at the y output, QFTdefines the robust
specification in the frequency domain s � jω, ω � [0,∞) as

Td(jω)


 �
y(jω)

d(jω)




�

pd(jω)

1 + lt(jω)




≤ Wd(jω)


; ∀P(jω),∀ω,

(2)

where lt � 
n
i�1 li denotes the total open-loop transfer

function that is contributed by branches li � pici. Addi-
tionally, occasional changes in rui

may be of interest, and
robust specifications on (y/rui

) responses can be also taken
into account. From a mathematical point of view, these can
be treated identically to (2). 0us, they are here being
omitted for simplicity.

Robust stability in s � jω, ω � [0,∞) is being defined by
the set

Ti(jω)


 �
li(jω)/ 1 + j≠ilj(jω)  

1 + li(jω)/ 1 + j≠ilj(jω)  




�

li(jω)

1 + lt(jω)




≤Wsi

,

i � 1, . . . , n; ∀P(jω),∀ω,

(3)

where the upper tolerance Wsi
means the minimum distance

from (li(jω)/(1 + j≠ilj(jω))) to the critical point −1. It is
usually of interest to assure a certain phase margin PMi by
taking

Wsi
�

1
2 sin PMi/2( 

, (4)

or, if preferred, to choose a certain gain margin GMi by
taking

Wsi
�

1
GMi − 1

, GMi > 1. (5)

Robust stability (3) is straight forward related to indi-
vidual loops, while robust performance (2) is a collaborative
task among loops.

0e cicontroller design is being executed by loop-
shaping a nominal open-loop loi

(jω) � poi
(jω)ci(ω) on a

mod-arg chart. loi
(jω) has to meet the QFT bounds βli

(ω),
which are computed at discrete frequencies ω ∈ Ω. 0ese
βli
-bounds translate the closed-loop robust specifications

(2)–(3) in terms of loi
, and they can be computed by using the

command genbnds of Terasoft QFT Toolbox [34]. It handles
specifications in the general form:

A + BG

C + DG




≤ |W|, (6)

where G is the ci-controller to be designed and functions A,
B, C, D, and W can be easily identified by comparison with
(2)–(3).

0e aim is obtaining the feedback control solution
ci�1,...,n that achieves (2)–(3) using as small as possible
control gain at each frequency. 0e challenge is how to
distribute the collaborative task over the frequency band
among loops despite the fact that plants pi,...,n contain RHP
poles, RHP zeros, or delays.

2.2. Challenges in the Collaboration of Plants with RHP
Dynamics. Let us suppose a system where two inputs can
intervene in the output regulation. 0e uncertainty-free
plant models are

p1(s) �
1

s + 1
,

p2(s) �
1

s − 1
,

pd(s) � 1.

(7)

0e disturbance rejection model

Wd(s) �
1.75s

(s + 12)
, (8)

defines the desired (y/d) behavior (2). For aminimum phase
margin of 40∘ at both loops (3), the tolerance choice (4) is

Wsi�1,2
� 1.462. (9)

QFT bounds will represent those closed-loop specifi-
cations in terms of open-loop transfer functions at the
discrete set of ω-frequencies:

Ω � 0.1, 0.3, 1, 2, 3, 6, 10, 20, 50{ }[rad/s]. (10)

In order to compare the capacity of each plant in the
regulation task, let us firstly solve the problem assuming that
only one of the two plants (inputs) participates at a time. For
the case ofp1 alone participation, the bounds βl1

in Figure 2(a)
show the feedback demand in terms of lt � l1. 0e initial
location of this open-loop function is p1 since c1 � 1. A
possible solution l1 � p1c1 that fulfils the bounds is given by

c1 �
7.3(s + 1)

s (s/25)2 +(2 × 0.6/25)s + 1 
. (11)

On the other hand, let us only use p2 in the regulation.
As long as p2 is not a minimumphase plant, the QFTmethod
allows two ways of conducting the loop-shaping. 0e former
is depicted in Figure 2(b) where bounds βl2

express the
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feedback demand in terms of lt � l2 � c2p2, which is not
minimum phase and initially (c2 � 1) matches p2. Another
procedure [35, 36] is shown in Figure 2(c). In this case,
bounds βl2

′ express the feedback demand in terms of l2′ , which
initially matches p2′ . 0is plant corresponds to a p2 plant
whose RHP pole has been mirrored to the LHP (in this
example, p2′ is equal to p1). 0en, l2′ and p2′ are minimum
phase, and the phase shift due to p2 RHP pole has been
translated to the bounds βl2

′. Let us note as the relative
position between plant frequency responses (p2 or p2′) and
their respective bounds (βl2

or βl2
′) is the same. As expected,

both procedures can yield the same solution, for example,

c2 �
7.3(s/0.8 + 1)

s (s/25)2 +(2 × 0.7/25)s + 1 
. (12)

Placing the open-loop function exactly onto the bounds
at each design frequency means using the minimum con-
troller gain to achieve the specifications, which favours a
smaller control gain beyond the gain cross-over frequency
ωgc [32, 37], where feedback becomes useless or even
harmful (e.g., high-frequency unmodeled dynamics or
sensor noise amplification that can saturate the control
input). 0en, the minimum quantity of feedback to achieve
the specification at each design frequency is the distance
between the plant frequency response and the corresponding
bound. To quantify it, Rico-Azagra et al. [10] proposed the
use of bounds βc(ω), which were calculated scaling classical
bounds βl(ω) by the nominal plant magnitude|po(jω)|, i.e.,
βc(ω) � (βl(ω)/|po(jω)|). Performing this on bounds of
Figure 2 yields the bounds of Figure 3.

At any frequency, several locations onto the bound are
possible for the loop-shaping: one for each phase in the
horizontal axis. 0us, the design phase becomes important.
Let us analyse the lowest frequency ω � 0.1 in Figure 2.
Either the control solution through p1 (11) or through p2
(12) contains an integrator to achieve zero steady-state error

r − y when a d-step happens. 0e integrator is usually the
first element added during the loop-shaping, which pro-
duces a phase lag of −90∘. Secondly, the control gain is raised
to fulfil the low-frequency bound. After performing these
operations in Figures 2(a) and 2(b), the same control ele-
ment (7.3/s) makes l1(jω) and l2(jω) to fulfil the lowest
frequency bounds, βl1

(0.1) and βl2
(0.1), respectively. Ob-

viously, as long as both plants (7) have the same magnitude
at low frequencies, both demand the same control gain.
However, the design phase to measure and compare the
demanded gain is different: about −90∘ for l1 in Figure 2(a)
and about −180∘ for l2 in Figure 2(b). 0e exact quantities
can be measured on Figures 3(a) and 3(b), respectively.
Applying the same reasoning for other frequencies may be a
challenging task since it is not so obvious which design
phases have to be compared between l1 and l2. However,
those phases for comparisons become the same on the
pictures for l1 and l2′ , see Figures 2(a) and 2(c). In summary,
the bound height (feedback demand) can be easily compared
between bounds in Figures 3(a) and 3(c) looking at the same
phase. 0en, bearing only this criterion in mind, both plants
p1 and p2 could be indistinctly used to solve the regulation
problem since both require the same control gain at any
frequency.

However, the fact that two plants require the same
feedback when working by their own does not necessarily
imply that a collaboration of both would have that quantity of
feedback inside an MISO structure. 0is is only true for
minimum-phase plants: for example, the use of two twin
plants p1 would yield two controllers (c1/2). On the contrary,
p1 and p2 (or l1 and l2) are completely in counter phase at
ω � 0, and are only in phase at ω �∞, as shown in
Figures 2(a) and 2(b).0en, they can collaborate over the high
frequencies but not over the low frequencies to reduce the
individual feedback gain since the function lt is the vectorial
sum of l1 + l2. Any attempt of designing minimum-phase
controllers c1 and c2 to make p1 and p2 collaborate at low
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Figure 2: Loop-shaping bounds: (a) βl1
, (b) βl2

, and (c) βl2
′ ; frequencies in different colours.
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frequencies would yield controllers of higher gains than c1
(11) and c2 (12). As a general rule of thumb, to build a vector
lt(jω) with vectors l1(jω) and l2(jω) that have a smaller
magnitude than lt, the phase difference between l1(jω) and
l2(jω) has to be less than ±90∘. Looking back at Figure 2, the
information about the p2 phase that can be read in Figure 2(b)
has been translated to the bounds that appear shifted in
Figure 2(c). 0erefore, the phase shift between true plants p1
and p2 can be read in the phase shift between bounds βc1

and
βc2
′ in Figure 3; the vertical segment is taken as a reference that

marks the critical phase (−180∘) on the bounds.
Once detected at which frequencies the two plants are

not out of phase (ω≥ 1), the amount of feedback that each
one would demand becomes of interest. 0is focuses on the
height difference (magnitude in dB) between bounds βc1

and
βc2
′ in Figure 3 at the design phaseΘd that is selected for each

frequency ω≥ 1. Regardless of the bound height difference, a
collaboration would always reduce the gain of controllers

(let us remind the loops are not out of phase). However,
these reductions may not justify the major complexity of
performing the design. A magnitude difference of 20 log2
between bounds is a practical guideline to attempt a col-
laboration, and it is funded on the ideal collaboration of two
equal plants, which would reduce the controller gain two
times.

Applying previous guidelines, Table 1 summarises the
frequency band distribution between the two loops of the
example (7). 0e next step is the loop-shaping of l1 and l2
that achieves it, for which viewing the real phase of l1 and l2
becomes of great importance.0us, bounds of the kind of βl2

′
in Figure 2(c) are not advisable, but bounds βl2

in Figure 2(b)
are preferred.0e standard procedure to compute βli

bounds
and to perform iteratively the loop-shaping of each li is fully
described in [10].0e main steps for the present example are
illustrated in Appendix A.

0e final elements that integrate the MISO control are

c1 �
63.47s(s/1.3 + 1)

(s/0.2 + 1)(s/0.5 + 1) (s/32)2 +(2 × 0.6/32)s + 1 
, (13)

c2 �
7.01(s/2.7 + 1)(s/1.7 + 1)(s/0.23 + 1)

s (s/0.8)2 +(2 × 0.8/0.8)s + 1  (s/32)2 +(2 × 0.6/32)s + 1 
. (14)

Figure 4 compares different control solutions: c1s is the
SISO controller (11), c2s is the SISO controller (12), and c1 −

c2 the MISO control solution (13)–(14). It proves the control
gain reduction over the frequencies where the two loops
collaborate (ω> 1). To illustrate the challenges due to RHP
dynamics, let us build pe � p1 + p2, and design for it a
controller

ce �
4(s/0.8 + 1)(s + 1)

s2 (s/35)2 + (2 × 0.7/35)s + 1 
, (15)

to fulfil the specifications. It has forced both plants to collaborate
over the whole frequency band, which has implied a huge gain
at frequencies where both plants are out of phase (ω< 1). Over
the frequencies where only one branchworks, theMISO control
is obviously equal to any SISO control (ω< 1).
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Figure 3: Feedback demand bounds: (a) βc1
, (b) βc2

, and (c) βc2
′ ; frequencies in different colours.
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2.3. Proposed Methodology

2.3.1. Stage 1: Feedback Sharing at Each Frequency of Design.
0is first stage distributes the control bandwidth among the
plants that could contribute to the robust regulation
problem (2)–(3) in order to reduce as much as possible the
amount of feedback (gain) that is demanded by the con-
trollers at each frequency. 0ese decisions are made by the
comparison of control bounds βci

′ (ω), i � 1, . . . , n.
βci
′ (ω) quantifies the necessary feedback |ci(jω)| at each

discrete frequency ω in the event that a single plant pi(jω)

worked to achieve the robust control requirements. In order
to calculate the said bounds, nominal MP plants poi

′ must be
employed. For those plants that were not minimum phase,
poi
′ is obtained from poi

by mirroring all RHP dynamics into
the LHP and neglecting any possible delay (it fulfils
|poi

(jω)| � |poi
′ (jω)|). Nominal plants can be any P(jω) of

the uncertainty set (1). 0en, common QFT bounds on the
nominal open-loop function loi

′ (jω) are computed, which
yields βli

′(ω). 0ese are computed in the event that only
pi(jω) assumes the regulation task. Eventually,
βci
′ (ω) � (βli

′(ω)/|poi
′ (jω)|). Bounds βci

′ (ω)shift with respect
to−180∘an amount equal to the phase difference between
poi

(jω) and poi
′ (jω).

0e βci
′ (ω) bound comparison among loops

i � 1, . . . , n focuses at the desired design phase
Θd ∈ (−360∘, 0∘], which is particularly chosen for each
frequency and is unique for all loops (Θd is the phase in
which the nominal open loop loi

will be modified through
the addition of gain, pole, or zero elements during the
loop-shaping at Stage 2). 0e criteria for the control
bandwidth distribution are

(a) Criterion 1: m plants (m≥ 2) can collaborate at ω, if
the phase differences between the m bounds βck�1,...,m

′
are less than ±90∘ and if the heights of the said
bounds do not differ from each other more than
±20 logm dB at the design phase Θd. Additionally,
there is no bound j≠ k of lesser height. Conse-
quently, the remaining plants j≠ k should be
inhibited, reducing their control gain as much as
possible at ω during the design stage.

(b) A single plant is in charge of the regulation at ω if
criterion 1 is not met.

(c) 0e highestm is sought (m≤ n) since the gain saving
on each one of the m branch controllers is pro-
portional to m, i.e., to the number of plants that
collaborate.

0e amount 20 logm is a practical guideline. It is funded
on the ideal collaboration of m equal plants, which would
reduce the controller gain m times. 0e phase shifting be-
tween bounds is vital when plants contain RHP dynamics
and delays. 0is argument condition determines if the loops
are not out of phase, and therefore, |lot

(jω)| ≈ |  lok
(jω)|

can be built with |lok
(jω)|≤ |lot

(jω)|.

2.3.2. Stage 2: Design of Controllers. 0e designs of the i �

1, . . . , n loops are carried out sequentially such that loi
(jω)

fulfils the specifications (bounds βli
(ω)) according to the

feedback sharing that was established in Stage 1. 0e general
procedure was provided in [10], and it does not depend on
the plants being MP or not. Bounds βli

are computed and
referenced to the true plant poi

being MP or not.

3. Application: MISO Control of a Continuous
Stirred-Tank Reactor

In this section, the benefits of the proposed methodology are
shown on a recurrent benchmark of the chemical and
materials industry, the continuous stirred-tank reactor
(CSTR) of unquestionable importance in the transformation
of raw materials into valuable chemicals or products
[6, 38, 39].

3.1.3e Process and the Control Design. 0e control setup of
the MISO plant is depicted in Figure 5. A coolant flow
(usually water) through a jacket u2 � Fj removes the nec-
essary energy to prevent the exothermic and irreversible
reaction runaway and to regulate the reactor temperature
y � Tr. Due to the limited heat-removal capacity of the
coolant flow, the manipulation of the reactant flow u1 � F

can contribute to the temperature control. 0e linear dy-
namic models linked to these manipulated inputs are p1 and
p2. 0e work [6] presented a MISO control strategy inside a
series control architecture following the VPC of [40]. In this
paper, the parallel architecture of Figure 1 is used.0e jacket
coolant flow (the fastest actuation) midranges around
ru2

� rFj
, while large reaction temperature excursions are

compensated with the feed flow rate (the slowest actuation).
0us, beyond the dual-input collaboration in disturbance

Table 1: Frequency band distribution between control inputs of
system (7).

ω 0.1 0.3 1 2 3 6 10 20 50
p1 × × × × × × ×

p2 × × × × × × × × ×

10−2 10−1 100 101 102 103
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Figure 4: Benchmark of controllers for system (7).
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compensation, the MISO strategy can achieve the highest
possible production rate: F is maximised when Fj set point is
set to maximum. 0ree disturbance inputs are being

considered: the feed concentration d1 � Cain
, the feed

temperature d2 � Tin, and the inlet coolant temperature
d3 � Tjin

, whose contributions to the output Tr deviation are
being represented by linear plants pd1

, pd2
, and pd3

, re-
spectively. Appendix B details the procedure on how to
obtain all linear plant models from nonlinear differential
equations of dynamic mass and energy balances [6]. Small-
signal linearisation is executed about the system operating
point

qj � Tre
, Fe, Fje

, Caine
, Tine

, Tjine
 , (16)

which relates the equilibrium (subscript “e”) of main process
variables. A discrete set of 192 possible operating points is
being considered (see Appendix B), which yields uncertainty
about linear plant models.0us, there is a plant matrixP (1)
that collects 192 vectors P(s; qj) � [p1, p2, pd1

, pd2
, pd3

].
Figure 6 shades the envelopes of magnitude frequency re-
sponses of all plant cases and highlights the nominal plants

p1o
�

31.1342(−s/0.002224 + 1)(s/0.003147 + 1)

(s/0.003329 + 1) (s/0.00032696)2 +(2 × 0.6697/0.00032696)s + 1 
, (17)

p2o
�

−8.7745(s/0.0008615 + 1)

(s/0.003329 + 1) (s/0.00032696)2 +(2 × 0.6697/0.00032696)s + 1 
, (18)

pd1o
�

3.0482(s/0.003147 + 1)

(s/0.003329 + 1) (s/0.00032696)2 +(2 × 0.6697/0.00032696)s + 1 
, (19)

pd2o
�

1.6408(s/0.003147 + 1)(s/0.0008615 + 1)

(s/0.003329 + 1) (s/0.00032696)2 + (2 × 0.6697/0.00032696s + 1 
, (20)

pd3o
�

4.5446(s/0.0008615 + 1)

(s/0.003329 + 1) (s/0.00032696)2 + (2 × 0.6697/0.00032696s + 1 
, (21)

which correspond to the nominal values of equilibrium (16):
Tro

� 350K, Fo � 4.377 × 10− 3(m3/s), Fjo
� 11.3×

10− 3(m3/s), Caino
� 8.01(kmol/m3), and Tino

� Tjino
� 294K.

Regarding Figure 6, the gain of p1 is higher than that of
p2 over the whole frequency band; this reveals the feed flow F
is the most powerful regulation variable. Its counterpart is
the feed temperature Tin which gets a significant impact on
dynamic controllability. When the feed is colder than the
reactor (Tin <Tr), the immediate effect of increasing the
feed flow rate is a temporary decrease in the reactor tem-
perature, i.e., p1 behaves as a nonminimum phase (NMP)
plant. In particular, the RHP-plane uncertain zero of p1 at
ω ∈ [0.0014, 0.0029] makes the p1 participation unsuitable
in control tasks over high frequencies. 0en, a convenient
frequency distribution of MISO dynamic controllability is of
importance and can be quantitatively accomplished through
the robust frequency domain method that this paper

develops. Let us also mention that p2 plant has a negative
gain since raising the jacket flow rate Fj makes the reactor
temperature Tr to drop.

0ree performance specifications for robust disturbance
rejection are defined following (2), being pd equal to pd1

, pd2
,

and pd3
, respectively.0e required performance is that in the

case of a maximum disturbance happens, the reactor tem-
perature deviation has to be less than 1K; and this maximum
deviation has to be reduced to 0.25K no later than 2.5 h after
and fully extinguished in the steady state (settling time less
than 4.0 h to stay within a ±5% band). To ensure these
conditions, the performance upper model is

Wd(jω) �
6796jω

(jω/0.0004 + 1)2
. (22)

Besides, two robust stability specifications (3) adopt as
upper tolerance

TC1

TC2

TT

F (t)
Tin (t) Cain (t)

Tjin (t)
Fj (t)

Fj (t)

F (t)

Tj (t)

Tr (t)

Tr (t)
Ca (t)

Figure 5: MISO control of CSTR.
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Wsi�1,2
� 1.462, (23)

to guarantee minimum phase margins of 40∘ on each of the
two loops (4). 0e discrete set of ω-frequencies to compute
QFT bounds is

Ω � [1, 2, 3, 5, 8, 10, 50] × 10− 4
[rad/s]. (24)

3.1.1. Stage 1: Feedback Sharing at Each Frequency of Design.
Bounds βci

′ are calculated. Figure 7 depicts them at the most
illustrative frequencies, which yields the following conclu-
sions according to the criteria in Section 2.3:

At low frequencies ω≤ 3 × 10− 4, bounds βc1
′ (ω) and

βc2
′ (ω) are found phase-shifted less than ±90∘. How-

ever, βc1
′ (ω) are located over 20 log 2 � 6 dB lower than

βc2
′ (ω), which make the participation of p2(jω) useless

in the regulation. 0us, the branch of p1(jω) should
assume only the y regulation, and the branch of p2(jω)

should be switched off at ω≤ 3 × 10− 4.
At medium frequencies 3 × 10− 4 <ω≤ 8 × 10− 4,
bounds βc1

′ (ω) and βc2
′ (ω) are found phase-shifted less

than ±90∘ and present a similar height around
Θd � −90∘. 0us, plants p1(jω) and p2(jω) can col-
laborate over this interval of frequencies.
At frequencies ω> 8 × 10− 4, the phase shifting between
bounds βc1

′ (ω) and βc2
′ (ω) increases beyond ±90∘ such

that the collaboration between plants is no longer possible.
0us, p2(jω) should assume the control tasks while
p1(jω) should be inhibited by making l1(jω) ≈ 0, which
avoids the limitations introduced by the RHP zero of p1.

3.1.2. Stage 2: Loop-Shaping of Controllers. To fulfil the
objectives set in Stage 1, the loop-shaping of the two nominal
open-loop functions is carried out following a sequential
methodology as detailed in [10]. Figure 8 shows the final
arrangement of bounds βli�1,2

(ω) at design frequencies (24)
and the nominal open-loop transfer functions loi�1,2

(jω) that

satisfy them. Let us note that lo1 contains an RHP zero. 0e
resulting controllers are

c1 �
3.2 × 10− 5(s/0.0003 + 1)(s/0.0084 + 1)

s(s/0.0017 + 1)2 (s/0.015)2 +(2 × 0.5/0.015)s + 1 
,

(25)

c2 �
−0.37(s/0.0003 + 1)(s/00018 + 1)

(s/0.001 + 1) (s/0.0024)2 +(2 × 0.8/0.0024)s + 1 
.

(26)

3.2. Results: Analysis and Comparatives. Figure 9 proves the
fulfilment of control specifications for the whole set of 192 plant
cases: Figure 9(a) showswhat concerns the robust rejection at the
output of the three disturbances and the performance specifi-
cation (2) and (22), and Figure 9(b) shows what concerns the
robust stability of the two loops and the stability specification (3)
and (23). Figure 10 illustrates the frequency band allocation
between both loops: lt(jω) matches l1(jω) over low frequen-
cies, lt(jω) matches l2(jω) over high frequencies, and lt(jω)

matches l1(jω) + l2(jω) over midfrequencies.
Closed-loop time responses of main system variables are

shown in Figure 11. 0ese results have been obtained using
the proposed control system in the nonlinear model of CSTR
(at this point it is recommended to see Appendix B for a full
understanding of the physical units and experiments). 0e
simulation shows the system behaviour for step-type dis-
turbances in the feed temperature (δTin � 5K at t � 2 h), in
the coolant temperature (δTjin

� −5K K at t � 8 h), and in
the feed concentration (δCain

� 5%Caino
at t � 14 h). Mea-

sured output Tr incorporates sensor noise, which is gen-
erated by a band-limited white noise source v(t) (noise
power: 0.02; sample time = 100). Several set points on the
coolant flow rate rFj

between 65% and 85% of Fj maximum
capacity have been tested. In all cases, the reactor temper-
ature Tr deviates less than the maximum permitted (1K) and
recovers the set point (350K) in less than 4.0 h after any
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Figure 6: CSTR. Frequency responses of scaled plants.
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disturbance happens. 0e steady-state feed flow F increases
when the coolant set point rFj

increases. 0is proves the
smart VPC strategy [6] of indirectly maximizing the pro-
duction rate by using a dual-input control.0e collaboration
of inputs (plants) in disturbance rejection is as follows: when
a disturbance happens, the coolant flow rate Fj quickly
reacts to compensate the reactor temperature deviation.
0en, as the feed flow F takes control of the situation, Fj is
progressively reset. Eventually, Fj returns to rFj

after ap-
proximately 30min. F cannot return to a particular set point

rF while any disturbance persists. However, rFj
can be wisely

moved to bring F towards a particular range: a larger rFj

involves a larger F, which increases the production rate; on
the other hand, a smaller rFj

pursues saving the amount of
Fj. Both F and Fj move between their margins of operation
[0% and 100%], despite the fact perturbations are of max-
imum amplitude. 0e evolution of other internal system
variables, like Tj and Ca, is also included in the simulations.

Following, there are argued benefits of MISO control
versus SISO control. In this last case, the same robust control
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Figure 8: CSTR. Loop-shaping of controllers.
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Figure 7: CSTR. Feedback demands in the event of single plant intervention.
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specifications are being satisfied with solely a loop inter-
vention. Let us denote F-SISO control when u1 � F is in

charge of the regulation tasks, and thus u2 � Fj remains at a
constant value. In that case, the control design process yields

c1SISO(s) �
3.1354 × 10− 5(s/0.0012 + 1)(s/0.0004 + 1)(s/0.00045 + 1)

s(s/0.003 + 1)(s/0.006 + 1)
. (27)

On the other hard, let us denote Fj-SISO control when
u2 � Fj is in charge of the regulation task and u1 � F re-
mains at a constant value. 0us, the single controller results

c2SISO(s) �
−1.2402 × 10− 4 s/ 3.488 × 10− 4( ( 

2
+ 2 × 0.76/ 3.488 × 10−4( ( s + 1 

s(s/0.001 + 1)(s/0.004 + 1)
. (28)
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Figure 10: MISO control of CSTR. Open-loop frequency responses.
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Figures 12 and 13 depict frequency and time responses,
respectively; their first and second columns of plots corre-
spond to F-SISO and Fj-SISO control, respectively. 0e
beam of frequency responses in Figures 12(c)–12(f ) corre-
sponds to the 192 cases of plant uncertainty. 0e time ex-
periments of Figure 13 are run in a nonlinear simulator of
CSTR and under the same conditions than the MISO
control. In particular, Figure 11(e) details the changes of
disturbance inputs, and five cases are being considered: for
F-SISO, the coolant flow Fj(t) takes constant values
65%, 70%, 75%, 80%, and 85%{ }, and for Fj-SISO, the feed
flow F(t) adopts constant values 55%, 57.5%,{

60%, 62.5%, and 65%}. Correlation between time and

frequency responses agrees with the superiority of MISO
over SISO control as follows.

0e required performance and stablility cannot be
achieved by p1 on its own due to the limited bandwidth
imposed by the RHP zero; F-SISO (27) yields a reasonable
trade-off solution between disturbance rejection and sta-
bility commitments. Figure 12(e) shows how Td1

and Td3
slightly violate Wd over midfrequencies, despite the fact this
worsening is hardly noticeable in Figure 13(a) in comparison
with Figure 11(a). Additionally, Figure 12(e) shows viola-
tions of robust stability Ws, which means a reduction of the
phase margin from 40∘ to 35∘. Nevertheless, the major
drawback of F-SISO control can be noticed from the
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Figure 11: MISO control of CSTR. Closed-loop time responses.
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comparison of control gains in Figure 12(a). p1-plant, which
has an RHP zero at ω ∈ [0.0014, 0.0029], has been forced to
work beyond ω � 0.0008 at the expense of a huge increase of
the controller gain |c1SISO(jω)| over high frequencies. It
produces an inadmissible sensor noise amplification at the
control input F(t),see Figure 13(c), which did not happen in

MISO control—see Figures 11(c) and 11(d). In that case, a
minimum phase p2-plant worked over the high-frequency
band, despite apparently being less powerful (less gain) than
a nonminimum phase p1-plant, see Figure 6(a). 0erefore,
|c2(jω)|≪ |c1SISO(jω)| over high frequencies reports im-
portant benefits. Additionally, |c1(jω)| ≈ |c1SISO(jω)| at low
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Figure 12: SISO control of CSTR. Frequency responses: (a), (c), and (e) F-SISO; (b), (d), and (f) Fj-SISO.
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Figure 13: SISO control of CSTR. Closed-loop time responses: (a), (c), and (e) F-SISO; (b), (d), and (f) Fj-SISO.
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frequencies, which means that the same F(t) is needed to
manage the steady states at Figure 13(c) and at Figure 11(c) if
the noise components are dismissed from Figure 13(c).

On the contrary, Figures 12(d) and 12(f) check how the
minimum phase p2-plant can achieve the specifications on
its own, which means the temperature recovery Tr(t) meets
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Figure 14: Loop-shapings with Table 1 aims: (a) loop-shaping l01, (b) loop-shaping l02, (c) loop-shaping lI1, (d) loop-shaping lI2, (e) loop-
shaping lII1 , (f ) loop-shaping lII2 , (g) loop-shaping lIII1 , and (h) loop-shaping lIII2 .
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the time requirements in Figure 13(b) as it happened in
Figure 11(a). 0e counterpart is that the p2-plant has to do
the p1-plant work at ω≤ 0.0003, despite the fact p2 is less
powerful (gain) than p1, see Figure 6(a). It results in higher
control gains |c2SISO(jω)≫ |c1(jω)| over low frequencies and
specifically at ω � 0. In this way, δFj in each steady state, see
Figure 13(f), is larger than δF in each steady state, see
Figure 11(c). As an example, after the step change of the feed
temperature (δTin � 5K) at t � 2 h, the SISO control (case
F � 65%) requires a steady-state variation δFj of 14%, which
approaches the available maximum of Fj; meanwhile, the
MISO control (case rFj

� 85%) only required a steady-state
variation δF of 5%. Additionally, |c2(jω)| ≈ |c2SISO(jω)| at
high frequencies, which means the same sensor noise am-
plification at Fj in Figure 13(f) and in Figure 11(d).

In summary, the superiority ofMISO versus the SISO control
of CSTR relies on the following facts. A better performance for
reactor temperature control can be achieved without high sensor
noise amplification at the manipulated inputs, which prevents
actuator saturation and fatigue. One input F is in charge of the
steady state, which resets the fastest input Fj to prescribed values
rFj

.0is is important from two points of view. As the fastest input
returns to the set point after a disturbance rejection, it preserves
the initial manoeuvring range to quickly react to new distur-
bances. Additionally, rFj

gives places to infinite combinations of
manipulated inputs to achieve the same reactor temperature.
Some convenient ones are increasing rFj

to maximize the pro-
duction rate F or decreasing rFj

to reduce the coolant cost Fj.

4. Conclusions

0is work has presented a control solution where multiple
inputs to a system can be used to govern its single mea-
surable output. 0e method aimed a set of parallel con-
trollers with the smallest possible gain at each frequency to
achieve prescribed robust stability and robust performance
in disturbance rejection. At a frequency, the gain of a branch
controller was reduced when themagnitude of the associated
plant contributed significantly to increasing the total mag-
nitude of the vector sum of the branches (each branch in-
cluded a controller and a plant). However, this was not easily
to foresee due to counter-phase effects of RHP dynamics (or
delays), due to uncertainties in the plant models, or due to
the intervention of a great number of plants (inputs). 0e
quantitative feedback theory (QFT) framework succeeds in
the challenge. 0en, some QFT control bounds were pro-
posed to quantify the capacity of each plant to achieve the
performance at each frequency. 0e lower the height the
control bounds represented, the lower the control magni-
tude required by the associated plant. Besides, RHP dy-
namics and delays resulted in a phase shifting of these
control bounds. 0us, comparing not only their relative
magnitude but also their relative phase, the criteria of plant
collaboration or inhibition at certain frequency to yield the
control solution of the smallest gain were established. At the
end of this first stage, the frequency band was allocated
amongst the plants. At a second stage, the loop-shaping of
the controllers carried out the predefined regulation sharing.
Classical QFT bounds were computed to guide each loop-

shaping. To illustrate the method, the MISO control of an
unstable system was conducted.

As a challenging example, the temperature of a con-
tinuous stirred-tank reactor was regulated through the
coolant and feed flows pulling together along frequency
bands that slightly overlapped. 0e feed flow capacity
dominated the steady state, but from a dynamic point of
view, it involved a temporary decrease in the reactor tem-
perature. 0is nonminimum phase behaviour made useful
the contribution of the coolant flow in the high-frequency
band to improve the performance. Several feed flow tem-
peratures, cooling flow temperatures, and reactant con-
centrations were considered. 0e provided control design
method achieved a quantitative frequency distribution of
MISO dynamic controllability in order to meet the pre-
scribed robust performance and stability. Besides, a con-
veniently chosen set point for the coolant flow (midrange
variable) governed indirectly the feed flow in the steady state,
which conditioned the production rate.

Appendix

A. Design of Controllers for a Dual-Input
System with an Unstable Plant

As part of the example in Section 2.2, the sequential loop-
shaping of c1 and c2 is performed with Table 1 aims. Fig-
ure 14 illustrates the procedure in detailed steps (marked
with superscripts). Steps 0, I, and II belong to the same first
iteration, which explains the design of c1 and c2. Further
iterations (step III) are required to optimize both designs
looking for the strictly minimum amount of feedback (gain)
at each frequency, which usually trades off with a reasonable
order of the controllers.

0 Initial bound computation is drawn with c01 � 0 for
the loop 1 (Figure 14(a)) and with c02 � 0 for the loop
2 (Figure 14(b)).

(I) Loop-shaping of l2 (see Figure 14(d)): to achieve
lt ≈ l2 at ω< 1.0, l2 is located onto bounds βl2

(0.1)

and βl2
(0.3). At ω≥ 1, l2 will collaborate with l1, so l2

can slightly violate the bounds. After step I, the
controllers are

c
I
1 � c

0
1 � 0,

c
I
2 �

7.5(s/1.8 + 1)

s (s/32)2 +(2 × 0.6/32)s + 1 
.

(A.1)

As a consequence, new bounds βl1
result in

Figure 14(c).
(II) Loop-shaping of l1 (see Figure 14(e)): l1 should fulfil

all the bounds if no more iterations were desired.
However, this would make hard the design, and
require a high-order controller. Further iterations
are recommended. A simpler controller is designed
despite the fact it temporarily violates the bounds
that are hard to satisfy (ω � 1). It yields
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c
II
1 �

29.74(s/1.3 + 1)

(s/0.2 + 1) (s/32)2 +(2 × 0.6/32)s + 1 
,

c
II
2 � c

I
2.

(A.2)

New bounds βl2
result in Figure 14(f ).

(III) Both loops are iteratively redesigned, finally giving
Figures 14(g) and 14(h). 0is is usually a simple
procedure, thanks to the help of software tools, e.g.,
[34].0e final controllers are c1 in (13) and c2 in (14).

B. CSTR Mathematical Modelling

0ree nonlinear first-order differential equations describe
the process behaviour [6]:

(i) 0e dynamic balance of component A inside the
reactor (irreversible exothermic liquid-phase reac-
tion A⟶ B)

dCa(t)

dt
�

F(t)

Vr

Cain
(t) − Ca(t)  − koe

− E/R/Tr(t)( )Ca(t).

(B.1)

(ii) 0e dynamic balance of energy inside the reactor

dTr(t)

dt
�

F(t)

Vr

Tin(t) − Tr(t)(  −
λ
ρcp

koe
− E/R/Tr(t)( )Ca(t)

−
UAj

Vrρcp

Tr(t) − Tj(t) .

(B.2)

(iii) 0e dynamic balance of energy inside the jacket

dTj(t)

dt
�

UAj

Vjρjcpj

Tr(t) − Tj(t)  −
Fj(t)

Vj

Tj(t) − Tjin
(t) ,

(B.3)

whose parameters are defined in Table 2.
Equilibrium values of main process variables (denoted

with subscript “e”)

qj � Tre
, Fe, Fje

, Caine
, Tine

, Tjine
 , (B.4)

are related by the steady state of the nonlinear differential
equations (B.1)–(B.3). 0us, qj (B.4) denotes an operating point
of the system. A particular equilibrium point is adopted as the
nominal and denoted with subscript “o” in Table 2.

0e nonlinear equations (B.1)–(B.3) are being linearised.
0e procedure is based on the expansion of the nonlinear
function into a Taylor series about the operating point and
the retention of only the linear terms.

0en, after taking the Laplace transform, and conve-
niently substituting and rearranging the equations, a small
variation of reactor temperature about equilibrium δTr(t) �

Tr(t) − Tre
can be expressed as an s-Laplace function

ΔTr(s). It depends on two manipulated inputs, the reactant
flow ΔF(s) and the jacket cooling flow ΔFj(s); and on three
disturbance inputs, the feed concentration ΔCain

(s), the inlet
temperature ΔTin(s), and the inlet coolant temperature
ΔTjin

(s). All these inputs are s-Laplace transforms of
δF(t) � F(t) − Fe, δFj(t) � Fj(t) − Fje

, δCain
(t) � Cain

(t) −

Caine
, δTin(t) � Tin(t) − Tine

, andδTjin
(t) � Tjin

(t) − Tjine
,

respectively. Eventually, it yields five 3rd-order output-input
transfer functions:

Table 2: CSTR: parameters and nominal equilibrium values.

Volume of the vessel Vr m3 101.6
Reaction rate pre-exponential factor k0 s−1 20.75 × 106
Activation energy E J kmol−1 69.71 × 106
Universal gas constant R J kmol−1 K−1 8.314 × 103
Heat of reaction λ J kmol−1 −69.71 × 106
Process density ρ kgm−3 801
Process heat capacity cp J kg− 1 K−1 3137
Coolant density ρj kgm−3 1000
Coolant heat capacity cpj

J kg−1 K−1 4183
Overall heat transfer coefficient U Wm−2 K−1 851
Jacket heat transfer area Aj m2 101.25
Jacket volume Vj m3 10.12
Nominal feed concentration Caino

kmolm−3 8.01
Nominal feed temperature Tino

K 294.00
Nominal inlet coolant temperature Tjino

K 294.00
Nominal reactant concentration Cao

kmolm−3 0.4
Nominal reactor temperature Tro

K 350.00
Nominal jacket temperature Tjo

K 330.20
Nominal feed flow rate Fo m3 s−1 4.40 × 10−3

Maximum feed flow rate Fmax m3 s−1 7.30 × 10−3

Nominal jacket flow rate Fjo
m3 s−1 11.3 × 10−3

Maximum jacket flow rate Fjmax
m3 s−1 15 × 10−3
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mj�1,...,5(s) �
bj2

s2 + bj1
s + bj0

s3 + a2s
2 + a1s + a0

, (B.5)

where m1 � (ΔTr/ΔF), m2 � (ΔTr/ΔFj), m3 � (ΔTr/ΔCain
),

m4 � (ΔTr/ΔTin), and m5 � (ΔTr/ΔTjin
); coefficients

bjk
and ak(j � 1, . . . , 5; k � 0, . . . , 2) of (B.5) depend on

process parameters (Table 2) and equilibrium values in (B.4).
Several operating points (B.4) are being considered as

follows: a single equilibrium value is adopted for the con-
trolled variable: Tre

� Tro
. 0e three nonmanipulated inputs

are taken as independent variables, whose equilibrium
values are estimated as

Caine
� 0.9, 1, 1.1{ } × Caino

, (B.6)

which represents a variation range of ±10% around nominal
Caino

, and

Tine
� Tjine

� 284, 289, 294, 299{ }, (B.7)

which represents a variation range of −10/+5K around
nominal Tino

, Tjino
. Finally, the steady state of jacket flow rate

is allowed to reach values in-between 65% and 85% of full
capacity:

Fje
� 0.65, 0.7, 0.75, 0.85{ } × Fjmax

. (B.8)

A grid combination of discrete values in (B.6), (B.7), and
(B.8) yields 192 cases. 0en, the dependent variable Fe for
each case is computed from the steady state of the nonlinear
differential equations (B.1)–(B.3). Finally, a set of 192 op-
erating points qj (B.4) is obtained. Substituting them in the
coefficients of (B.5) yields a plant matrix that collects 192
vectors of size 1 × 5 each one.

Multivariable systems must be conveniently scaled for
control design tasks [41]. Here, the presence of a single
output makes only necessary to scale the range of the five
inputs to the normalized range [−1, +1]. 0e scaling gain for
Tin is 5, for Tjin

is 5, and for Cain
is 0.1Caino

, according to the
smallest distance from the nominal equilibrium to the edge
value in the variation range.0e scaling gain for Fj is 0.2Fjmax
according to the smallest distance from any equilibrium
value (B.8) to the maximum flow rate capacity of installation
Fjmax

. In a similar way, a scaling gain of 0.29Fmax for F is
computed.0ese scaling gains are applied to the plants (B.5).
Eventually, it is obtained a plant matrix Pthat collects 192
vectors P(s; qj) � [p1, p2, pd1

, pd2
, pd3

], whose magnitude
frequency response is depicted in Figure 6. Let us cite the
most relevant information: (i) all p1-plant cases contain a
nonminimum phase zero, which locates over
ω ∈ [0.0014, 0.0029] rad/s; (ii) all p2-plant cases have inverse
gain; (iii) the maximum resonant pick of the set of plant
cases takes place at ω � 0.000271 rad/s and reaches the
values 32.2 dB for p1, 23.5 dB for p2, 12.1 dB for pd1

, 16.8 dB
for pd2

, and 17.1 dB for pd3
.
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